WorldWideScience

Sample records for hydrogen-induced delayed cracking

  1. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  2. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  3. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  4. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  5. Hydrogen-Induced Cracking of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944])

  6. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Depover, T. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Petrov, R. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium)

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  7. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-01-01

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  8. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  9. Hydrogen Induced Cracking of Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    G. De

    2003-02-24

    One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

  10. Susceptibility of cold-worked zirconium-2.5 wt% niobium alloy to delayed hydrogen cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1976-01-01

    Notched tensile specimens of cold-worked zirconium-2.5 wt% niobium alloy have been stressed at 350 K and 520 K. At 350 K, above a possible threshold stress of 200 MPa, specimens exhibited delayed failure which was attributed to hydride cracking. Metallography showed that hydrides accumulated at notches and tips of growing cracks. The time to failure appeared to be independent of hydrogen content over the range 7 to 100 ppm hydrogen. Crack growth rates of about 10 -10 m/s deduced from fractography were in the same range as those necessary to fracture pressure tubes. The asymptotic stress intensity for delayed failure, Ksub(1H), appeared to be about 5 MPa√m. With this low value of Ksub(1H) small surface flaws may propagate in pressure tubes which contain large residual stresses. Stress relieving and modified rolling procedures will reduce the residual stresses to such an extent that only flaws 12% of the wall thickness or greater will grow. At 520 K no failures were observed at times a factor of three greater than times to failure at 350 K. Zirconium-2.5 wt% niobium appears to be safe from delayed hydrogen cracking at the reactor operating temperature. (author)

  11. Influence of sample geometry and microstructure on the hydrogen induced cracking characteristics under uniaxial load

    Energy Technology Data Exchange (ETDEWEB)

    Laureys, A., E-mail: aurelie.laureys@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Depover, T., E-mail: tom.depover@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Petrov, R., E-mail: roumen.petrov@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K., E-mail: kim.verbeken@ugent.be [Department of Materials, Textiles and Chemical Engineering, Ghent University (UGent), Tech Lane Ghent Science Park - Campus A, Technologie park 903, B-9052 Gent (Belgium)

    2017-04-06

    The present work evaluates hydrogen induced cracking in a TRIP (transformation induced plasticity) assisted steel and pure iron. The goal of this work is to understand the effect of the macroscopic stress distribution in the material on the hydrogen induced cracking phenomenon. Additionally, the effect of a complex multiphase microstructure on the characteristics of hydrogen induced cracking was investigated by comparing results for TRIP-assisted steel and pure iron as reference material. Tensile tests on notched and unnotched samples combined with in-situ electrochemical hydrogen charging were conducted. Tests were performed until the tensile strength was reached and until fracture. The resulting hydrogen induced cracks were studied by optical microscopy and scanning electron microscopy (SEM). Hydrogen induced cracks showed a typical S-shape and crack propagation was mainly transgranular, independently of the presence of a notch or the material's microstructure. This was also the case for the V-shaped secondary crack network and resulting stepped crack morphology characteristic for hydrogen induced damage. These observations indicate that the stress state surrounding the crack tip has a very large impact on the hydrogen induced cracking characteristics. The use of a notch or the presence of a different microstructure did not influence the overall hydrogen induced cracking features, but did change the kinetics of the hydrogen induced cracking process.

  12. Influence of sample geometry and microstructure on the hydrogen induced cracking characteristics under uniaxial load

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2017-01-01

    The present work evaluates hydrogen induced cracking in a TRIP (transformation induced plasticity) assisted steel and pure iron. The goal of this work is to understand the effect of the macroscopic stress distribution in the material on the hydrogen induced cracking phenomenon. Additionally, the effect of a complex multiphase microstructure on the characteristics of hydrogen induced cracking was investigated by comparing results for TRIP-assisted steel and pure iron as reference material. Tensile tests on notched and unnotched samples combined with in-situ electrochemical hydrogen charging were conducted. Tests were performed until the tensile strength was reached and until fracture. The resulting hydrogen induced cracks were studied by optical microscopy and scanning electron microscopy (SEM). Hydrogen induced cracks showed a typical S-shape and crack propagation was mainly transgranular, independently of the presence of a notch or the material's microstructure. This was also the case for the V-shaped secondary crack network and resulting stepped crack morphology characteristic for hydrogen induced damage. These observations indicate that the stress state surrounding the crack tip has a very large impact on the hydrogen induced cracking characteristics. The use of a notch or the presence of a different microstructure did not influence the overall hydrogen induced cracking features, but did change the kinetics of the hydrogen induced cracking process.

  13. Hydrogen induced crack growth in Grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Lee, K.S.

    1984-01-01

    Internal hydrogen induced crack growth rates were measured in Grade-12 titanium which is a candidate material for high-level nuclear waste containers. As-received and hydrogen charged samples (5 ppM to 330 ppM hydrogen) were used for slow crack growth measurements at constant loads using a Krak Gauge. The testing temperature ranged from room temperature to 148 0 C. The crack growth kinetics under low to moderate loads are linear, but this linear rate is interrupted by discrete fast crack jump segments with parabolic or cubic type kinetics. These fast jump segments are thought to be associated with the passage of the crack front through the alpha-beta interface phase or with the initial loading sequence. By measuring striation spacings on the fracture surface, most crack growth rates observed are found to be in stage II. The striations are considered to be associated with hydride fracture. The crack path is either transgranular in the alpha phase or interfacial in the alpha phase adjacent to the beta phase. For transgranular growth, crack growth rates are constant and slower than those for interfacial growth which is associated with fast crack growth through a high hydrogen concentration region. Most stage II crack growth rates depend slightly on the stress intensity suggesting the contribution of plastic tearing process to stage II kinetics. The activation energies for crack growth are much lower than the activation energy of hydrogen diffusion through the alpha phase, implying that hydrogen is transported along dislocations, grain boundaries or interfaces. When the temperature is increased, the crack velocity first reaches a maximum and then decreases at higher temperatures. These temperature effects come from lower hydrogen concentration trapped at dislocations or from slower hydride nucleation kinetics, both at higher temperatures

  14. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  15. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  16. Modeling of hydrogen induced cold cracking in a ferritic steel

    International Nuclear Information System (INIS)

    Chen, Qianqiang

    2015-01-01

    This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)

  17. Hydrogen-induced cracking: 2

    International Nuclear Information System (INIS)

    Puls, M.P.

    1984-12-01

    There is a strong motivation for understanding the factors controlling zirconium hydride reorientation under stress because of the important role this plays in hydrogen-induced crack growth and/or crack initiation in zirconium and its alloys, particularly under thermal cycling conditions. Following an approach developed by Sauthoff, an analysis of the orienting effect of external stress on the nucleation, growth and coarsening of γ- and delta-zirconium hydride precipitates in zirconium and its alloys is presented. The analysis is based on a previous theoretical study of some of the factors affecting hydride solubility in stressed and unstressed solids. Expressions are derived for the effect of stress on nucleation, growth and coarsening. We conclude, on the basis of these that the preferential orientation of hydride precipitates under stress is most efficient during the nucleation stage. The reason for this is that the overall driving force for nucleation, for the chosen parameters and the usual experimental conditions, is fairly small. Therefore, the driving force for orientating under stress can be a substantial fraction of the overall driving force. The analysis shows that hydride growth is unlikely to play a role in preferential orientation, but coarsening could be important under carefully chosen experimental conditions, which may be relevant to the hydride-cracking process

  18. HYDROGEN INDUCED CRACKING IN MICROALLOYED STEELS

    Directory of Open Access Journals (Sweden)

    Duberney Hincapie-Ladino

    2015-03-01

    Full Text Available The need for microalloyed steels resistant to harsh environments in oil and gas fields, such as pre-salt which contain considerable amounts of hydrogen sulfide (H2 S and carbon dioxide (CO2 , requires that all sectors involved in petroleum industry know the factors that influence the processes of corrosion and failures by hydrogen in pipelines and components fabricated with microalloyed steels. This text was prepared from a collection of selected publications and research done at the Electrochemical Processes Laboratory of Metallurgical and Materials Engineering Department, Polytechnic School, São Paulo University. This document does not intend to be a complete or exhaustive review of the literature, but rather to address the main scientific and technological factors associated with failures by hydrogen in the presence of wet hydrogen sulfide (H2 S, particularly, when related to the Hydrogen Induced Cracking (HIC phenomenon. This complex phenomenon that involves several successive stages, HIC phenomena were discussed in terms of environmental and metallurgical variables. The HIC starts with the process of corrosion of steel, therefore must be considered the corrosive media (H2 S presence effect. Moreover, it is necessary to know the interactions of compounds present in the electrolyte with the metal surface, and how they affect the hydrogen adsorption and absorption into steel. The following stages are hydrogen diffusion, trapping and metal cracking, directly related to the chemical composition and the microstructure, factors that depend strongly on the manufacture of steel. The purpose of this paper is to provide the scientific information about the failures caused by hydrogen and challenge for the Oil and Gas Pipeline Industry.

  19. Hydrogen induced surface effects on the mechanical properties of type 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V. da; Pascual, R.; Miranda, P.E.V. de.

    1983-01-01

    The possibilities of modifying the mechanical properties of type 304 stainless steel by cathodic hydrogen charging were studied. The situations analysed included hydrogen embrittlement itself in tensile tests of hydrogen containing samples and the effects of delayed cracks in fatigue tests of hydrogenated and outgassed samples. SEM and TEM observations were also performed. It was found that hydrogen induced surface delayed cracks appear in great quantity during outgassing (of the order of several millions in a square centimeter). Hydrogen embrittlement was responsible for drastic losses in ductility in tension, while surface cracks severely reduced fatigue life. (author) [pt

  20. Prevention of delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Coleman, C.E.; Ambler, J.F.R.

    1987-01-01

    Zirconium alloys are susceptible to a mechanism for crack initiation and propagation called delayed hydride cracking. From a review of component failures and experimental results, we have developed the requirements for preventing this cracking. The important parameters for cracking are hydrogen concentration, flaws, and stress; each should be minimized. At the design and construction stages hydrogen pickup has to be controlled, quality assurance needs to be at a high enough level to ensure the absence of flaws, and residual stresses must be eliminated by careful fabrication and heat treatment

  1. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  2. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  3. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  4. Computer assisted tomography for the non-destructive evaluation of hydrogen-induced cracking in steel

    International Nuclear Information System (INIS)

    Tapping, R.L.; Sawicka, B.D.

    1986-06-01

    Computer assisted tomography (CAT) was used to assess hydrogen-induced cracking in steel exposed to an H 2 S-saturated ('sour') environment. In this case the environment was the NACE TM-02-84 test for susceptibility to hydrogen-induced cracking. The feasibility of using CAT in this application was shown in a previous paper. This study extends the application of CAT to a quantitative assessment of the cracking. Optimal parameters for CAT imaging in such an application are determined and the advantages of using CAT in comparison to traditional inspection methods are discussed

  5. Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ambler, J.F.R.

    1984-01-01

    The delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb at temperatures above about 423 K depends upon the direction of approach to test temperature. Cooling to the test temperatures results in an increase in crack growth rate, da/dt, with increase in temperature, given by the following Arrhenius relationship da/dt = 6.86 X 10 -1 exp(--71500/RT) Heating from room temperature to the test temperature results in the same increase in da/dt with temperature, but only up to a certain temperature, T /SUB DAT/ . The temperature, T /SUB DAT/ , increases with the amount of hydride precipitated during cooling to room temperature, prior to heating, and with cooling rate. The results obtained can be explained in terms of the Simpson and Puls model of delayed hydrogen cracking, if the hydride precipitated at the crack tip is initially fully constrained and the matrix hydride loses constraint during heating

  6. Hydrogen Induced Crack and Phase Transformation in Hydrogen Pressured Tensile Test of 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Un Bong; Nam, Sung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Choe, Byung Hak; Shim, Jong Hun [Gangneung-Wonju National University, Gangneung (Korea, Republic of); Kim, Young Uk [Hanyang University, Ansan (Korea, Republic of); Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Keyyong [Korea Research Institute of Ship and Ocean Engineering, Deajeon (Korea, Republic of)

    2015-02-15

    The aim of this investigation is to prove the mechanism of hydrogen induced crack (HIC) of 316L stainless steels in hydrogen pressured tensile test. Microstructures like twin, planar slip, and abnormal phase transformation around the HIC were analyzed by transmission electron microscopy. Deformation twin accompanied by planar slip could be related to the main cause of HIC in the hydrogen pressured tensile condition, because intragranular HICs were mainly observed along the boundaries of twins and planar slip lines. An abnormal forbidden diffraction was also accompanied by HIC in the hydrogen attacked area. Examination of the HIC mechanism in austenitic stainless steel can be applied to the fitness of use for alloys with the possibility of various susceptible cracks in a hydrogen and stress atmosphere.

  7. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  8. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  9. CAT scanning of hydrogen-induced cracks in steel

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Tapping, R.L.

    1987-01-01

    Computer assisted tomography (CAT) was applied to detect small cracks caused by hydrogen ingress into carbon steel samples. The incipient cracks in the samples resulted from a quality control procedure used to test the susceptibility of carbon steel to hydrogen blistering/cracking. The method used until now to assess the extent of the cracking resulting from this test has been mechanical sectioning, polishing and microscopic examination of the sections. The CAT results are compared with the reference method and the feasibility of using CAT in the proposed application is demonstrated. (orig.)

  10. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    Science.gov (United States)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  11. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak

    2012-11-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure build-up mechanism related to the recombination of atomic hydrogen into hydrogen gas within the crack cavity. In addition, the strong couplings between non-Fickian hydrogen diffusion, pressure build-up and crack extension are accounted for. In order to enhance the predictive capabilities of the proposed model, problem boundary conditions are based on actual in-field operating parameters, such as pH and partial pressure of H 2S. The computational results reported herein show that, during the extension phase, the propagating crack behaves like a trap attracting more hydrogen, and that the hydrostatic stress field at the crack tip speed-up HIC related crack initiation and growth. In addition, HIC is reduced when the pH increases and the partial pressure of H2S decreases. Furthermore, the relation between the crack growth rate and (i) the initial crack radius and position, (ii) the pipe wall thickness and (iii) the fracture toughness, is also evaluated. Numerical results agree well with experimental data retrieved from the literature. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  12. Role of microtexture in the interaction and coalescence of hydrogen-induced cracks

    Energy Technology Data Exchange (ETDEWEB)

    Venegas, V. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico D.F. 07738 (Mexico); Caleyo, F. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico D.F. 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Baudin, T. [Laboratoire de Physico-Chimie de l' Etat Solide, ICMMO, UMR CNRS 8182, Batiment 410, Universite de Paris Sud, 91405, Orsay, Cedex (France); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico D.F. 07738 (Mexico); Penelle, R. [Laboratoire de Physico-Chimie de l' Etat Solide, ICMMO, UMR CNRS 8182, Batiment 410, Universite de Paris Sud, 91405, Orsay, Cedex (France)

    2009-05-15

    The role of microtexture in hydrogen-induced crack interaction and coalescence is investigated in line pipe steels using electron backscatter diffraction. Experimental evidence shows that, depending on the local grain orientation, crack interaction and coalescence can depart from the conditions predicted by the mixed-mode fracture mechanics of isotropic linear elastic materials. Stress simulation and microtexture analysis are used to explain the experimental observations.

  13. Role of microtexture in the interaction and coalescence of hydrogen-induced cracks

    International Nuclear Information System (INIS)

    Venegas, V.; Caleyo, F.; Baudin, T.; Hallen, J.M.; Penelle, R.

    2009-01-01

    The role of microtexture in hydrogen-induced crack interaction and coalescence is investigated in line pipe steels using electron backscatter diffraction. Experimental evidence shows that, depending on the local grain orientation, crack interaction and coalescence can depart from the conditions predicted by the mixed-mode fracture mechanics of isotropic linear elastic materials. Stress simulation and microtexture analysis are used to explain the experimental observations.

  14. Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking

    KAUST Repository

    Traidia, Abderrazak; El-Sherik, A. M.; Duval, Sé bastien; Lubineau, Gilles; El Yagoubi, Jalal

    2014-01-01

    NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility

  15. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  16. EBSD study of hydrogen-induced cracking in API-5 L-X46 pipeline steel

    International Nuclear Information System (INIS)

    Venegas, V.; Caleyo, F.; Gonzalez, J.L.; Baudin, T.; Hallen, J.M.; Penelle, R.

    2005-01-01

    The spatial distribution of plastic deformation and grain orientation surrounding hydrogen-induced cracks (HIC) is investigated in samples of API-5L-X46 pipeline steel using scanning electron microscopy and electron backscattering diffraction (EBSD). This work shows direct experimental evidence of the influence of microstructure, microtexture and mesotexture on HIC crack path

  17. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak; Alfano, Marco; Lubineau, Gilles; Duval, Sé bastien; Sherik, Abdelmounam M.

    2012-01-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure

  18. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    Science.gov (United States)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  19. Effect of Crack Tip Stresses on Delayed Hydride Cracking in Zr-2.5Nb Tubes

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Moo

    2007-01-01

    Delayed hydride cracking (DHC) tests have shown that the DHC velocity becomes faster in zirconium alloys with a higher yield stress. To account for this yield stress effect on the DHC velocity, they suggested a simple hypothesis that increased crack tip stresses due to a higher yield stress would raise the difference in hydrogen concentration between the crack tip and the bulk region and accordingly the DHC velocity. This hypothesis is also applied to account for a big leap in the DHC velocity of zirconium alloys after neutron irradiation. It should be noted that this is based on the old DHC models that the driving force for DHC is the stress gradient. Puls predicted that an increase in the yield stress of a cold worked Zr-2.5Nb tube due to neutron irradiation by about 300 MPa causes an increase of its DHC velocity by an order of magnitude or 2 to 3 times depending on the accommodation energy values. Recently, we proposed a new DHC model that a driving force for DHC is not the stress gradient but the concentration gradient arising from the stress-induced precipitation of hydrides at the crack tip. Our new DHC model and the supporting experimental results have demonstrated that the DHC velocity is governed primarily by hydrogen diffusion at below 300 .deg. C. Since hydrogen diffusion in Zr-2.5Nb tubes is dictated primarily by the distribution of the β-phase, the DHC velocity of the irradiated Zr-2.5Nb tube must be determined mainly by the distribution of the β-phase, not by the increased yield stress, which is in contrast with the hypothesis of the previous DHC models. In short, a controversy exists as to the effect on the DHC velocity of zirconium alloys of a change in the crack tip stresses by irradiation hardening or cold working or annealing. The aim of this study is to resolve this controversy and furthermore to prove the validity of our DHC model. To this end, we cited Pan et al.'s experiment where the delayed hydride cracking velocity, the tensile strengths

  20. Hydrogen induced crack propagation in metal under plain-strain deformation

    International Nuclear Information System (INIS)

    Fishgojt, A.V.; Kolachev, B.A.

    1981-01-01

    A model of subcritical crack propagation conditioned by the effect of dissolved hydrogen in the case of plane-strain deformation of high-strength materials, is suggested. It is supposed that diffusion takes place in the isotropic material and hydrogen diffuses in the region of tensile stress maximum before crack tip under the effect of the stress gradient. When hydrogen achieves the critical concentration, microcrack growth takes place. Values of crack growth rates experimentally obtained agree with values calculated according to the suggested formula. Calculation and experimental data on the Ti-6Al-4V alloy, are presented [ru

  1. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  2. Comparison of delayed hydride cracking behavior of two zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, L.M.E. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Mieza, J.I. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); De Las Heras, E. [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Domizzi, G., E-mail: domizzi@cnea.gov.ar [CNEA – Centro Atómico Constituyentes, Hidrógeno en Materiales, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina); Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín (B1650KNA), Bs. As. (Argentina)

    2013-08-15

    Delayed hydride cracking (DHC) is an important failure mechanism that may occur in Zr alloys during service in water-cooled reactors. Two conditions must be attained to initiate DHC from a crack: the stress intensity factor must be higher than a threshold value called K{sub IH} and, hydrogen concentration must exceed a critical value. Currently the pressure tubes for CANDU reactor are fabricated from Zr–2.5Nb. In this paper the critical hydrogen concentration for DHC and the crack velocity of a developmental pressure tube, Excel, was evaluated and compared with that of Zr–2.5Nb. The DHC velocity values measured in Excel were higher than usually reported in Zr–2.5Nb. Due to the higher hydrogen solubility limits in Excel, its critical hydrogen concentration for DHC initiation is 10–50 wppm over that of Zr–2.5Nb in the range of 150–300 °C.

  3. Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors. Final report of a coordinated research project 1998-2002

    International Nuclear Information System (INIS)

    2004-10-01

    This report describes all of the research work undertaken as part of the IAEA coordinated research project on hydrogen and hydride induced degradation of the mechanical and physical properties of zirconium based alloys, and includes a review of the state of the art in understanding crack propagation by Delayed Hydride Cracking (DHC), and details of the experimental procedures that have produced the most consistent set of DHC rates reported in an international round-robin exercise to this date. It was concluded that 1) the techniques for performing measurements of the rate of delayed hydride cracking in zirconium alloys have been transferred from the host laboratory to other countries; 2) by following a strict procedure, a very consistent set of values of crack velocity were obtained by both individual laboratories and between the different laboratories; 3) the results over a wide range of test temperatures from materials with various microstructures fitted into the current theoretical framework for delayed hydride cracking; 4) an inter-laboratory comparison of hydrogen analysis revealed the importance of calibration and led to improvements in measurement in the participating laboratories and 5) the success of the CRP in achieving its goals has led to the initiation of some national programmes

  4. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Magudeeswaran, G.; Balasubramanian, V. [Centre for Materials Joining Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbagh (P.O.) Hyderabad 560 058 Andhra Pradesh (India)

    2008-04-15

    Quenched and tempered (Q and T) steels are prone to hydrogen induced cracking (HIC) in the heat affected zone after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q and T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic (LHF) steel consumables can be used to weld Q and T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on hydrogen induced cold cracking of armour grade Q and T steel welds by implant testing. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for making welds using ASS and LHF welding consumables. ASS welds made using FCAW process offered a higher resistance to HIC than all other welds considered in this investigation. (author)

  5. Hydrogen-induced crack interaction and coalescence: the role of local crystallographic texture

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F.; Hallen, J. M.; Venegas, V. [ESIQIE, Instituto Politecnico Nacional, Mexico, (Mexico); Baudin, T. [Universite de Paris Sud, Orsay, (France)

    2010-07-01

    Hydrogen induced cracking (HIC) is a big concern in pipeline industry specialized in sour service. The strategies to improve HIC resistance of pipeline steel have not been completely efficient. This study investigated the role of grain orientation in the interaction and coalescence of non-coplanar HIC cracks through experimental analysis. HIC samples of pipeline steels (API 5L X46 and ASME-A106) were studied using automated electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM). The results showed that the microtexture can play a significant role in the coalescence of closely spaced non-coplanar HIC cracks. It was also found that the presence of cleavage planes and slip systems correctly oriented to the mixed-mode stresses can activate low-resistance transgranular paths along in which cracks can merge. It is demonstrated that crystallographic texture must be considered in developing predictive models for the study of the stepwise propagation of HIC cracking in pipeline steels.

  6. Hydrogen-induced delayed cracking: 1. Strain energy effects on hydrogen solubility

    International Nuclear Information System (INIS)

    Puls, M.P.

    1978-08-01

    Based on Li, Oriani and Darken's derivation of the chemical potential of a solute in a stressed solid and Eshelby's method for obtaining the strain energy of solids containing coherent inhomogeneous inclusions, we have carried out a detailed theoretical analysis of the factors governing hydrogen solubility in stressed and unstressed zirconium and its alloys. Specifically, the analysis demonstrates the strong influence hydride self-stresses may have on the terminal solid solubility of hydrogen in zirconium. The self-energy arises due to the misfit strains between matrix and precipitate. We have calculated the total molal self-strain energy of some commonly observed δ and γ-hydride shapes and orientations. The magnitude of this energy is substantial. Thus for γ-hydride plates lying on basal planes, it is 4912 J/mol, while for γ-hydride needles with the needle axis parallel to the directions of the α-zirconium matrix, it is 2662 J/mol. This self-strain energy causes a shift in the terminal solid solubility. For example, at 77 o C, assuming fully constrained basal plane δ-hydride plates, the terminal solid solubility is increased 5.4 times over the stress-free case. We have also calculated the effect of external stress on the terminal solid solubility. This is governed by the interaction energy arising from the interaction of the applied stresses with the precipitate's misfit strain components. The interaction energy has been calculated for δ and γ-hydride plates and needles, taking full account of the anisotropy of the misfit. The interaction energy is negative for tensile applied stresses and, as a result of the anisotropic misfit, is texture-dependent. Its magnitude is small for most applied stresses but can achieve values of the order of the self-strain energy in the plastic zone of a plane-strain crack. We have also carried out a careful analysis of the solubility data of Kearns and Erickson and Hardie. This analysis is based partly on the theoretical

  7. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiqi [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); College of Mechanical Engineering, Yangtze University, Jingzhou 434023 (China); Huang, Yunhua, E-mail: huangyh@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Sun, Bintang, E-mail: bingtangsun@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liao, Qingliang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lu, Hongzhou [CITIC Metal Co. Ltd., Room 1901, Capital Mansion 6, Xin Yuan Nanlu, Chaoyang District, Beijing 100004 (China); The School of Resources and Environmental Engineering, East China University of Science and Technology, Meilong road 130, Xujiahui District, Shanghai 200237 (China); Jian, Bian [Niobium Tech Asia, 068898 Singapore (Singapore); Mohrbacher, Hardy [NiobelCon bvba, 2970 Schilde (Belgium); Zhang, Wei; Guo, Aimin [CITIC Metal Co. Ltd., Room 1901, Capital Mansion 6, Xin Yuan Nanlu, Chaoyang District, Beijing 100004 (China); Zhang, Yue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); The State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-02-25

    The effect of Nb addition (0.022, 0.053, 0.078 wt%) on the hydrogen-induced delayed fracture resistance of 22MnB5 was studied by constant load test and electrochemical hydrogen permeation method. It is shown that the appropriate addition of Nb is beneficial to the improvement of the delayed fracture resistance of tested steel, especially when the steel contains high concentration of hydrogen, and the maximum delayed fracture resistance is obtained at a Nb content of 0.053%.The result of hydrogen permeation test shows that the diffusion coefficient of hydrogen in the steel containing niobium is lower than that in steel without niobium, which indicates that it is harder for hydrogen in the steels containing niobium to diffuse and aggregate. In addition, the reason for Nb improving the delayed fracture resistance of steels is discussed from two aspects: hydrogen trap effect and grain refinement effect. The analysis shows that the main reason leading to the improvement of the delayed fracture resistance is the hydrogen trapping effect of NbC while the grain refinement effect of Nb(C,N) secondary.

  8. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

    International Nuclear Information System (INIS)

    Zhang, Shiqi; Huang, Yunhua; Sun, Bintang; Liao, Qingliang; Lu, Hongzhou; Jian, Bian; Mohrbacher, Hardy; Zhang, Wei; Guo, Aimin; Zhang, Yue

    2015-01-01

    The effect of Nb addition (0.022, 0.053, 0.078 wt%) on the hydrogen-induced delayed fracture resistance of 22MnB5 was studied by constant load test and electrochemical hydrogen permeation method. It is shown that the appropriate addition of Nb is beneficial to the improvement of the delayed fracture resistance of tested steel, especially when the steel contains high concentration of hydrogen, and the maximum delayed fracture resistance is obtained at a Nb content of 0.053%.The result of hydrogen permeation test shows that the diffusion coefficient of hydrogen in the steel containing niobium is lower than that in steel without niobium, which indicates that it is harder for hydrogen in the steels containing niobium to diffuse and aggregate. In addition, the reason for Nb improving the delayed fracture resistance of steels is discussed from two aspects: hydrogen trap effect and grain refinement effect. The analysis shows that the main reason leading to the improvement of the delayed fracture resistance is the hydrogen trapping effect of NbC while the grain refinement effect of Nb(C,N) secondary

  9. IAEA co-ordinated research program. 'Round Robin' on measuring the velocity of delayed hydride cracking (DHC)

    International Nuclear Information System (INIS)

    Grigoriev, V.; Jakobsson, R.

    1999-09-01

    The International Atomic Agency (IAEA) has initiated a new Co-ordinated Research Programme (CRP) on Hydrogen and hydride induced degradation of the mechanical and physical properties of Zirconium-based alloys. In the first phase of this CRP the methodology for measuring the velocity of Delayed Hydride Cracking (DHC) should be established and participating laboratories from about nine countries around the world carry out identical tests in 'round robin'. The objective of the present work is to establish at Studsvik laboratory the method of a constant load cracking test on unirradiated Zr-2.5Nb and attain a comparison of results between laboratories. Constant load tests are performed on specimens cut from unirradiated CANDU Zr-2.5Nb pressure tube and the rate of crack propagation is determined in each test. Pre-hydrided specimens for testing are supplied from the host laboratory. Six specimens have been tested for delayed hydride cracking (DHC) at 250 deg C. The axial crack growth velocities measured in the tests are within the interval of 8.62x10 -8 - 1.06x10 -7 m/s. The results obtained agree well with the earlier published data for similar materials and test conditions

  10. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  11. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K; Uhlemann, M; Engelmann, H J [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  12. Susceptibility to hydrogen-induced cracking in H2S corrosion environment of API 5L-X80 weld metal

    International Nuclear Information System (INIS)

    Hilton, J.; Fals, H. C.; Trevisan, R. E.

    2009-01-01

    The susceptibility to hydrogen-induced cracking in H 2 S environment of welded API X80 steel was studied. The flux cored arc welding (FCAW) process was employed with E71-T1 and E71-T8K6 wires. The welding parameters were kept constant, but the samples were welded using different preheat temperatures (room temperature and 100 degree centigrade). The gapped bead-on-plate (G-BOP) test was used. The specimens of modified G-BOP tests were exposed to an environment saturated in H 2 S, as recommended by the NACE TM0284 standard. The weld beads were characterized by optical microscopy and the level of residual hydrogen in the samples was measured. The fracture surface areas of hydrogen-induced cracking were calculated and the fracture mode was discussed. It was found that the preheating temperature of 100 degree centigrade was enough to avoid cracking, even in the presence of H 2 S. It was also found that the E71- T8K6 wire was more susceptible to cracking, and the typical mixed-mode fracture was predominant in all samples. (Author) 15 refs

  13. Calculation of hydrogen diffusion toward a crack in a stressed solid

    International Nuclear Information System (INIS)

    1976-10-01

    A set of eigensolutions is derived for use in expanding the steady-state concentration of hydrogen diffusing through a region bounded by two cylinders centred on an infinite crack in a stressed solid. Comparison is made with some experimental values of the hydrogen-induced crack-propagation velocity within the framework of the theory of Dutton and Puls. (author)

  14. Application of the potential-drop method to measurements of hydrogen-induced sub-critical crack growth in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Simpson, L.A.; Clarke, C.F.

    1977-10-01

    Adaptation of the potential-drop method of crack-following to the problem of hydrogen-induced sub-critical crack growth in Zr-2.5% Nb is described. Reasons for non-linearity in the calibration of crack extension against potential drop in compact tension specimens are discussed. It is shown that despite non-linearities, careful comparison of fractographic features with the potential-drop record can lead to a continuous plot of crack velocity against time or stress intensity factor. Procedures for correcting data through temperature and load changes are also described. The application of the technique to studies of the mechanism of hydrogen crack growth is illustrated with several examples. (author)

  15. Evaluation of hydrogen-Induced cracking resistance of the In625 laser coating system on a C-Mn steel substrate

    Directory of Open Access Journals (Sweden)

    Vicente Braz Trindade

    Full Text Available Abstract The corrosion of C-Mn steels in the presence of hydrogen sulfide (H2S represents a significant challenge to oil production and natural gas treatment facilities. The failure mechanism induced by hydrogen-induced cracking (HIC in a Inconel 625 coating / C-Mn steel has not been extensively investigated in the past. In the present work, an API 5CT steel was coated with In625 alloy using laser cladding and the HIC resistance of different regions, such as the coating surface, the substrate and HAZ, were evaluated. SEM observations illustrated that all HIC cracks were formed at the hard HAZ after 96h of exposure. No HIC cracks were observed in the substrate and the In625 coating after the same exposure duration. Pitting was recorded in the substrate caused by non-metallic inclusion dissolving.

  16. Delayed hydride cracking behavior for zircaloy-2 plate

    International Nuclear Information System (INIS)

    Mills, J.W.; Huang, F.H.

    1991-01-01

    The delayed hydride cracking (DHC) behaviour for Zircaloy-2 plate was characterized at temperatures ranging from 300 to 550 o F. Specimens with a longitudinal (T-L) orientation exhibited a classic two-stage DHC response. At K values slightly above the threshold level (K th ), crack-growth rates increased dramatically with increasing K values (stage I). The K th value was found to be 11 and 14 ksi√ in at 400 and 500 o F. At high K values (stage II), cracking rates were relatively insensitive to applied K levels. Stage II crack growth was a thermally activated process described by an Arrhenius-type relationship with an activation energy of 65 kJ/mol. This energy level agreed with the theoretical activation energy for hydrogen diffusion into the triaxial stress field ahead of a crack. Above a critical temperature (300 o F), an overtemperature cycle was required to initiate DHC. The magnitude of the thermal excursion required to initiate cracking was found to increase at higher test temperatures. Specimens with a transverse(L-T) orientation showed a very low sensitivity to DHC because of an unfavorable crystallographic orientation for hydride reorientation. Metallographic and fractographic examinations were performed to understand the DHC mechanism. (author)

  17. Surface modifications induced by hydrogen in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Evangelista, G.E.; Miranda, P.E.V. de

    1983-01-01

    Hydrogen induced surface modifications of type AISI 304 SS were studied by charging the samples in a 1N a 1N H 2 SO 4 electrolyte at room temperature. Current densities were varied from 500 to 4000 A/m 2 and charging times from 2 to 50 hours. Charged specimens were analysed using optical and electron scanning microscopy. Vickers microhardness tests with small load was also performed. Metallographic etching metodologies were developed (in black and white and colored photographies) which permited identification of all phases present. It was shown that delayed cracks appear somewhat curved on austenite and perfectly strainght on martensite, following the intersections of a phase platlets. These are the regions where α' martensite is located. The habit plane of these cracks might belong to (100) sub(γ) or (221) sub(γ) plane families. A new phenomenon termed hydrogen induced softening was observed on type AISI 304 SS at elevated current densities and/or charging times. (Author) [pt

  18. IAEA co-ordinated research program. 'Round Robin' on measuring the velocity of delayed hydride cracking (DHC)

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, V.; Jakobsson, R. [Studsvik Material AB, Nykoeping (Sweden)

    1999-09-01

    The International Atomic Agency (IAEA) has initiated a new Co-ordinated Research Programme (CRP) on Hydrogen and hydride induced degradation of the mechanical and physical properties of Zirconium-based alloys. In the first phase of this CRP the methodology for measuring the velocity of Delayed Hydride Cracking (DHC) should be established and participating laboratories from about nine countries around the world carry out identical tests in 'round robin'. The objective of the present work is to establish at Studsvik laboratory the method of a constant load cracking test on unirradiated Zr-2.5Nb and attain a comparison of results between laboratories. Constant load tests are performed on specimens cut from unirradiated CANDU Zr-2.5Nb pressure tube and the rate of crack propagation is determined in each test. Pre-hydrided specimens for testing are supplied from the host laboratory. Six specimens have been tested for delayed hydride cracking (DHC) at 250 deg C. The axial crack growth velocities measured in the tests are within the interval of 8.62x10{sup -8} - 1.06x10{sup -7} m/s. The results obtained agree well with the earlier published data for similar materials and test conditions.

  19. Leak-before-break assessment of RBMK-1500 fuel channel in case of delayed hydride cracking

    International Nuclear Information System (INIS)

    Klimasauskas, A.; Grybenas, A.; Makarevicius, V.; Nedzinskas, L.; Levinskas, R.; Kiselev, V.

    2003-01-01

    One of the factors determining remaining lifetime of Zr-2.5% Nb fuel channel (FC) is the amount of hydrogen dissolved during corrosion process. When the concentration of hydrogen exceeds the terminal solid solubility limit zirconium hydrides are precipitated. As a result form necessary conditions for delayed hydride cracking (DHC). Data from the RBMK-1500 fuel channel tubes (removed from service) shows that hydrogen in some cases distributes unevenly and hydrogen concentration can differ several times between individual FC tubes or separate zones of the same tube and possibly, can reach dangerous levels in the future. Consequently, lacking statistical research data, it is difficult to forecast increase of hydrogen concentration and formation of DHC. So it is important to verify if under the most unfavorable situation leak before break condition will be satisfied in the case of DHC. To estimate possible DHC rates in RBMK 1500 FC pressure tubes experiments were done in the following order: hydriding of the Zr-2.5Nb pressure tube material to the required hydrogen concentration; hydrogen analysis; machining of specimens, fatigue crack formation in the axial direction, DHC testing; average crack length measurement and DHC velocity calculation. During the tests in average DHC values were determined at 283, 250 and 144 degC (with hydrogen concentrations correspondingly 76, 54 and 27 ppm). The fracture resistance dependence from hydrogen concentration was measured at 20 degC. To calculate leak through the postulated flaw, statistical distribution of DHC surface irregularity was determined. Leak before break analysis was carried out according to requirements of RBMK 1500 regulatory documents. J integral and crack opening were calculated using finite element method. Loading of the FC was determined using RELAP5 code. Critical crack length was calculated using R6 and J-integral methods. Coolant flow rate through the postulated crack was estimated using SQUIRT software

  20. Delayed hydride cracking: alternative pre-cracking method

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)

  1. Delayed hydride cracking velocity and crack growth measurement using DCPD technique in Zr-2.5Nb pressure tube material

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Roychaudhury, S.; Unnikrishnan, M.; Sinha, T.K.; De, P.K.; Banerjee, S.; Kumar, Santosh

    2000-12-01

    Nuclear structural materials have to perform under most demanding and exotic environmental conditions. Due to its unique properties dilute zirconium alloys are the only choice for in-core structural materials in water cooled nuclear reactors. Hydrogen related problems have been recognized as the life-limiting factor for the core components of Pressurized Heavy Water Reactors (PHWR). Delayed Hydride Cracking (Dhc) is one of them. In this study, Dhc crack growth has been monitored using Direct Current Potential Drop (Dcp) technique. Calibration curve between normalized Dcp output and normalized crack length was established at different test temperatures. Dhc velocity was measured along the axial direction of the Zirconium-2.5Niobium pressure tube material at 203 and 250 degree C. (author)

  2. Defect enhanced diffusion process and hydrogen delayed fracture in high strength steels

    International Nuclear Information System (INIS)

    Lung, C.W.; Mu Zaiqin.

    1985-10-01

    A defect enhanced diffusion model for hydrogen delayed fracture in high strength steels is suggested. It is shown that the rate of crack growth is dependent on the square or higher power of the stress intensity factor which is consistent with recent experiments. (author)

  3. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    International Nuclear Information System (INIS)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2006-01-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment will provide

  4. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment

  5. Hydrogen Absorption Induced Slow Crack Growth in Austenitic Stainless Steels for Petrochemical Pressure Vessel Industries

    Directory of Open Access Journals (Sweden)

    Ronnie Rusli

    2011-05-01

    Full Text Available Type 304Land type 309 austenitic stainless steels were tested either by exposed to gaseous hydrogen or undergoing polarized cathodic charging. Slow crack growth by straining was observed in type 304L, and the formation of α‘ martensite was indicated to be precursor for such cracking. Gross plastic deformation was observed at the tip of the notch, and a single crack grew slowly from this region in a direction approximately perpendicular to the tensile axis. Martensite formation is not a necessary condition for hydrogen embrittlement in the austenitic phase.

  6. Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence.

    Science.gov (United States)

    Matsunaga, Hisao; Takakuwa, Osamu; Yamabe, Junichiro; Matsuoka, Saburo

    2017-07-28

    In the context of the fatigue life design of components, particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles, it is important to understand the hydrogen-induced, fatigue crack growth (FCG) acceleration in steels. As such, the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper, with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further, this frequency dependence is debated by introducing some potentially responsible elements, along with new experimental data obtained by the authors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  7. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    Hydrogen embrittlement has been postulated as a cause of stress corrosion cracking in numerous alloy systems. Such an interrelationship is useful in design considerations because it permits the designer and working engineer to relate the literature from both fields to a potential environmental compatibility problem. The role of hydrogen in stress corrosion of high strength steels is described along with techniques for minimizing the susceptibility to hydrogen stress cracking. (U.S.)

  8. Delayed hydride cracking in Zr-2.5% wt Nb pressure tubes

    International Nuclear Information System (INIS)

    Cirimello, Pablo; Haddad, Roberto; Domizzi, Gladys

    2003-01-01

    During service, pressure tubes of CANDU nuclear power reactor are prone to suffer crack growth by delayed hydride cracking (DHC). For a given H 2 plus D 2 concentration there is a critical temperature (T c ) below which DHC may occur. In this work, T c was measured for CCT specimens cut from Zr-2.5 Wt % Nb pressure tubes. Hydrogen was added to the specimens to get concentrations of 40, 59 and 72 ppm. It was found that T c is higher than the corresponding precipitation temperature. The axial crack velocity (V p ) was also measured. Decreasing temperature from T c makes V p increase until a maximum is attained at a temperature close to precipitation temperature. At lower temperatures, in the presence of precipitated hydrides, decreasing temperature implies lower velocities, following an Arrhenius law: Vp=Aexp(-Q/RT), with an activation energy Q= 66 KJ/mol K. (author)

  9. Delayed Hydride Cracking Mechanism in Zirconium Alloys and Technical Requirements for In-Service Evaluation of Zr-2.5Nb Tubes with Flaws

    International Nuclear Information System (INIS)

    Kim, Young Suk

    2007-01-01

    In association with periodic inspection of CANDU nuclear power plant components, Canadian Standards Association issued CSA N285.8 in 2005 as technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors. This first version, CSA N285.8 involves procedures for, firstly, the evaluation of pressure tube flaws, secondly, the evaluation of pressure tube to calandria tube contact and, thirdly, the assessment of a reactor core, and material properties and derived quantities. The evaluation of pressure tube flaws includes delayed hydride cracking evaluation the procedures of which are stipulated based on the existing delayed hydride cracking models. For example, the evaluation of flaw-tip hydride precipitation during reactor cooldown involves a procedure to calculate the equilibrium hydrogen equivalent concentration in solution at the flaw tip, Htipas follows: Htip=Hfexp[- (VH delta no.)/RT], where Hf is the total bulk hydrogen equivalent concentration, VH partial molar volume of hydrogen in zirconium, δ a difference in hydrostatic stress between the bulk and the crack tip. When Htip ≥TSSP at temperature, then flaw-tip hydride is predicted to precipitate. Eq. (1) suggests that hydrogen concentration at the crack tip would increase due to an work energy given by the difference in the hydrostatic stress

  10. Evaluation of the current status of hydrogen embrittlement and stress-corrosion cracking in steels

    Energy Technology Data Exchange (ETDEWEB)

    Moody, N.R.

    1981-12-01

    A review of recent studies on hydrogen embrittlement and stress-corrosion cracking in steels shows there are several critical areas where data is either ambiguous, contradictory, or non-existent. A relationship exists between impurity segregation and hydrogen embrittlement effects but it is not known if the impurities sensitize a preferred crack path for hydrogen-induced failure or if impurity and hydrogen effects are additive. Furthermore, grain boundary impurities may enhance susceptibility through interactions with some environments. Some studies show that an increase in grain size increases susceptibility; at least one study shows an opposite effect. Recent work also shows that fracture initiates at different locations for external and internal hydrogen environments. How this influences susceptibility is unknown.

  11. Effect of Grain Orientation and Boundary Distributions on Hydrogen-Induced Cracking in Low-Carbon-Content Steels

    Science.gov (United States)

    Masoumi, Mohammad; Coelho, Hana Livia Frota; Tavares, Sérgio Souto Maior; Silva, Cleiton Carvalho; de Abreu, Hamilton Ferreira Gomes

    2017-08-01

    Hydrogen-induced cracking (HIC) causes considerable economic losses in a wide range of steels exposed to corrosive environments. The effect of crystallographic texture and grain boundary distributions tailored by rolling at 850 °C in three different steels with a body-centered cube structure was investigated on HIC resistance. The x-ray and electron backscattered diffraction techniques were used to characterize texture evolutions during the rolling process. The findings revealed a significant improvement against HIC based on texture engineering. In addition, increasing the number of {111} and {110} grains, associated with minimizing the number of {001} grains in warm-rolled samples, reduced HIC susceptibility. Moreover, the results showed that boundaries associated with low {hkl} indexing and denser packing planes had more resistance against crack propagation.

  12. Environmentally-induced cracking of zirconium alloys - a review

    International Nuclear Information System (INIS)

    Cox, B.

    1990-01-01

    The general field of environmentally-induced cracking of zirconium alloys has been reviewed and the phenomena that are observed and the progress in understanding the mechanisms are summarized. The details of the industrially important pellet-clad interaction failures of nuclear reactor fuel have been left for a companion review, and only observations on the mechanism are summarized briefly here. It is concluded that in the zirconium alloy system, by virtue of the physical peculiarities of the system, it is easier to reach unambiguous conclusions about the environmental cracking mechanisms that are operating than with other systems. Thus, chemical dissolution in either liquid or vapour phase is thought to be the principal mechanism for intergranular cracking, while adsorption-induced embrittlement is thought to be the most common transgranular quasi-cleavage process. Hydrogen embrittlement in this system can be identified because it requires precipitated hydride that gives characteristic fractography when cracked. Only in a few instances does stress-corrosion cracking appear to proceed by a hydride cracking mechanism. (orig.)

  13. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  14. Delayed hydrogen cracking of zirconium alloy pressure tubes

    International Nuclear Information System (INIS)

    Jackman, A.H.; Dunn, J.T.

    1976-10-01

    After several years of almost continuous service, Pickering Units 3 and 4 have both experienced long outages to replace cracked pressure tubes. This report summarizes the status of the investigation into the cause of the cracks as of May 1976. The basic cause of the cracking was the presence of very high residual tensile stresses in the pressure tubes due to improper rolling procedures. These residual stresses are being reduced to acceptable levels by local stress relieving techniques at Bruce G.S. and in future reactors improvements in rolling procedures and changes in pressure tube specifications will prevent a recurrence of this problem. (author)

  15. Effect of composition on diffusible hydrogen content and hydrogen assisted cracking of steel welds

    International Nuclear Information System (INIS)

    Albert, S.K.; Ramasubbu, V.; Bhaduri, A.K.; Parvathavarthini, N.

    2008-01-01

    Study of hydrogen assisted cracking and measurement of diffusible hydrogen content in different Cr-Mo steel welds showed that for identical conditions, susceptibility to cracking increased and diffusible hydrogen content decreased with increase in alloy content. Hydrogen permeation studies showed that hydrogen diffusivity decreases and solubility increases with increase in alloy content. Thus decrease in diffusible hydrogen content with increase in alloying is attributed to increase in apparent solubility and decrease in apparent diffusivity of hydrogen with increase in alloy content. Analysis of the results indicates that variation of diffusible hydrogen content and apparent diffusivity of hydrogen with alloy content can be represented as a function of alloy composition. (author)

  16. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    International Nuclear Information System (INIS)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 950 0 C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  17. A study of hydrogen cracking in metals by the acoustoelasticity method

    Science.gov (United States)

    Alekseeva, E. L.; Belyaev, A. K.; Pasmanik, L. A.; Polyanskiy, A. M.; Polyanskiy, V. A.; Tretiakov, D. A.; Yakovlev, Yu. A.

    2017-12-01

    The results of the study of acoustic anisotropy distribution in samples with preliminary hydrogenation during the standard HIC test are presented in the article. It is shown experimentally that there is a monotonic relationship between the hydrogenation time and the average acoustic anisotropy. This result allows us to apply the method of acoustoelasticity to the technical diagnostics of structures, parts and units of machines for hydrogen embrittlement and hydrogen cracking. In contrast, the results of direct measurements of the hydrogen concentration in samples depend on many factors, such as the holding time of the sample after extraction from the electrolyte. This uncertainty does not allow one to establish clear correlations between the measured concentrations of hydrogen and the presence of hydrogen-induced microcracks.

  18. Influence of metallurgical variables on the velocity of crack propagation by delayed hydride cracking (DHC) in Zr-Nb

    International Nuclear Information System (INIS)

    Cirimelo, Pablo G.

    2002-01-01

    In the present thesis work the propagation of cracks due to the delayed hydride cracking (DHC) mechanism in Zr-2,5 % Nb pressure tubes is analyzed. For this purpose two different type of tubes of different origin were used: CANDU type (Canada) and RBMK type (Russia). The analyzed figurative parameters were: critical temperature Tc (highest temperature at which DHC phenomenon could occur) and crack propagation velocity by DHC, Vp, in the axial direction. The influence of the memory effect (phenomenon proper of hydride precipitation) was studied, as well as the type of cracks (fatigue or DHC) on Tc. However, no influence of these effects was found. Instead, it was found that Tc varies with the hydrogen content of the specimen, in agreement with previous works. Samples obtained from tubes with different microstructures and similar amounts of hydrogen presented similar Tc values. It was also shown that DHC propagation could occur without precipitated hydrides in the volume. Besides, Vp determinations were performed in temperature ranges and hydrogen amounts of technological importance. Two techniques were set up in order to determine Vp at different temperatures in a single specimen, thus saving time and material. An Arrhenius type variation was found for Vp vs. temperature, for temperatures lower than that corresponding to precipitation. For higher temperatures, but lower than the critical one, velocity decreases with temperature. Determination of Vp vs. temperature was performed for the two above-mentioned materials, whose microstructure and hardness were previously characterized. For RBMK material, which presents a spheroidal β phase, the velocity was lower than the corresponding to CANDU material, in which β phase is formed by continuous plates. In addition, yield stress σ Y is lower in RBMK material, which presents lower Vp. However, it is considered that the effect of microstructure is more important on Vp since it highly affects diffusion of hydrogen from the

  19. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  20. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    International Nuclear Information System (INIS)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-01-01

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative

  1. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  2. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Silva, T.C.V.

    1984-08-01

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H 2 S O 4 solution containing As 2 O 3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  3. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  4. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    Science.gov (United States)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  5. Structural sensitivity of cyclic crack resistance of rotor steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Kozak, L.Yu.

    1984-01-01

    Comparative evaluation of cyclic crack resistance of hardened rotor set steel 35KhN3MFA in different cstructural states during tesis in agea geseous hydrogen, in the air and in vacuum, has been mde made. It is shown, that structural sensitivity of near-threshold crack resistance of the studied rotor steel in gaseous hydrogen is to a high extent determined by the closing and morphology of fatigue crack. The decrease in crack closing (CC) observed during tests in hydrogen in low-strenght and crack branching in high-strength steels results in the fact, that in contrast to well-known notions on a higher sensitivity to hydrogen embrittlement of high-strenght alloys the negative effect of hydrogen on the near-threshold cyclic crack resistance is manifested only in steel in low-strenght state. The considered regularities in crack growth in low-alloyed steel under the effect of gaseous hydrogen are just only for high-frequency loading. In all probability in the case of fatigue crack growth (GCG) at low frequencies of loading not only the medium activity, but also the role o, closing and crack geometty in the kinetics of fatigue fracture, the clarifying of which requires further studieds, will change

  6. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  7. Modelling of fatigue crack propagation assisted by gaseous hydrogen in metallic materials

    International Nuclear Information System (INIS)

    Moriconi, C.

    2012-01-01

    Experimental studies in a hydrogenous environment indicate that hydrogen created by surface reactions, then drained into the plastic zone, leads to a modification of deformation and damage mechanisms at the fatigue crack tip in metals, resulting in a significant decrease of crack propagation resistance. This study aims at building a model of these complex phenomena in the framework of damage mechanics, and to confront it with the results of fatigue crack propagation tests in high pressure hydrogen on a 15-5PH martensitic stainless steel. To do so, a cohesive zone model was implemented in the finite element code ABAQUS. A specific traction-separation law was developed, which is suitable for cyclic loadings, and whose parameters depend on local hydrogen concentration. Furthermore, hydrogen diffusion in the bulk material takes into account the influence of hydrostatic stress and trapping. The mechanical behaviour of the bulk material is elastic-plastic. It is shown that the model can qualitatively predict crack propagation in hydrogen under monotonous loadings; then, the model with the developed traction-separation law is tested under fatigue loading. In particular, the simulated crack propagation curves without hydrogen are compared to the experimental crack propagation curves for the 15-5PH steel in air. Finally, simulated fatigue crack propagation rates in hydrogen are compared to experimental measurements. The model's ability to assess the respective contributions of the different damage mechanisms (HELP, HEDE) in the degradation of the crack resistance of the 15-5PH steel is discussed. (author)

  8. Characterization of SCC crack tip and hydrogen distribution in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Nakajima, Nobuo; Fukuya, Koji [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Hatano, Yuji [Toyama Univ. (Japan)

    2001-09-01

    In order to identify the mechanism of primary water stress corrosion cracking (SCC), direct observations of SCC crack tip microstructure and hydrogen distribution in alloy 600 were carried out. A new technique has been developed to prepare electron transparent foils including the crack tip using focused-ion beam (FIB) micro-processing technique. Cr-rich oxide and metal-Ni phase were identified in the crack tip and grain boundary ahead of the crack. >From the fact that similar microstructure was observed in the surface oxide layer, it is suggested that the oxidation mechanism is identical at the crack tip region and the surface. It became clear that the crack tip region and the oxidized grain boundary don't work as strong trapping sites of solute hydrogen under unloaded condition, because a homogeneous hydrogen distribution around the crack tip region was detected by tritium microautoradiography. (author)

  9. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    International Nuclear Information System (INIS)

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  10. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2005-01-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from γ-hydrides to δ-hydrides is likely to be a cause of this, based on Root's observation that the γ-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be δ-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or γ-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be δ-hydrides. When the δ-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the γ-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the γ- and δ-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the hydrogen concentration or .C between the bulk and the

  11. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from {gamma}-hydrides to {delta}-hydrides is likely to be a cause of this, based on Root's observation that the {gamma}-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be {delta}-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or {gamma}-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be {delta}-hydrides. When the {delta}-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the {gamma}-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the {gamma}- and {delta}-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the

  12. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  13. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    Science.gov (United States)

    Ramasagara Nagarajan, Varun

    hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the

  14. Determination of delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tube

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Chan Jung; Rheem, Y. W.; Im, K. S.; Kwon, Sang Chul

    2000-07-01

    As agreed upon the contract with an IAEA Co-ordinated Research Project 'Hydrogen and Hydride Induced Degradation of the Mechanical and Physical Properties of Zirconium Based Alloys', we conducted DHC tests at 3 different temperatures of 144, 182 and 250 deg C on the curved compact tension specimens made from a Zr-2.5Nb pressure tube. Additional tests were carried out at 200 and 230 deg C with an aim to determine the activation energy for delayed hydride cracking. This report summarizes the results of DHC tests obtained so far. All the DHC tests were conducted in accordance with the procedures suggested by the Host Lab. 7 DHCV values determined at the same temperature such as 250 deg C show very low standard deviation, whose average values are very comparable to those reported by the participants. Thus, one of the most important results we have got is that we establish qualified DHC testing procedure through the IAEA CRP. An activation energy for DHC of unirradiated Zr-2.5Nb pressure tube was 49 KJ/mol which is very similar to the activation energy of 43 KJ/mol for irradiated Zr-2.5Nb pressure tubes. DHCV increased linearly with the hydrogen content up to around 25 ppm and then became saturated at higher hydrogen concentration

  15. Use of the gapped bead-on-plate test to investigate hydrogen induced cracking of flux cored arc welds of a quenched and tempered steel

    International Nuclear Information System (INIS)

    Chen, Liang; Dunne, Druce; Davidson, Len

    2014-01-01

    Gapped bead-on-plate (G-BOP) testing of flux cored arc welds was conducted to assess the susceptibility to hydrogen induced cold cracking (HICC) of weld metal deposited on a high strength quenched and tempered steel. For preheat temperatures higher than 40°C, no weld metal cracking was observed using a shielding gas consisting of argon with 20% carbon dioxide. In contrast, the no-crack condition was not achieved for a shielding gas consisting of argon-5% carbon dioxide for preheat temperatures lower than 100°C. This extraordinary difference in weld metal HICC resistance indicates that, in general, the shielding gas mixture can exert a major influence on weld metal transverse cold cracking behaviour

  16. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mohtadi-Bonab, M.A., E-mail: m.mohtadi@usask.ca; Eskandari, M.; Szpunar, J.A.

    2015-01-03

    In the present study, API X60 and X60SS pipeline steels were cathodically charged by hydrogen for 8 h using 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate. After charging, SEM observations showed that the hydrogen induced cracking (HIC) appeared at the center of cross section in the X60 specimen. However, HIC did not appear in the X60SS steel. Therefore, electron backscatter diffraction (EBSD) technique was used to analyze the center of cross section of as-received X60SS, X60 and HIC tested X60 specimens. The results showed that the HIC crack not only can propagate through 〈100〉||ND oriented grains but also its growth may happen in various orientations. In HIC tested X60 specimen, an accumulation of low angle grain boundaries around the crack path documented that full recrystallization was not achieved during hot rolling. Kernel Average Misorientaion (KAM) histogram illustrated that the deformation is more concentrated in as-received and HIC tested X60 specimens rather than in as-received X60SS specimen. Moreover, the concentration of coincidence site lattice (CSL) boundary in HIC tested X60 specimen was very low compared with other samples. The recrystallization area fraction in X60SS steel was very high. This high amount of recrystallization fraction with no stored energy is one of the main reasons for high HIC resistance of this steel to HIC. The orientation distribution function (ODF) of the recrystallized, substructured and deformed fractions in as-received X60SS and X60 steel showed relative close orientations in both as-received specimens.

  17. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof; P. Gangloff, Richard

    2016-01-01

    Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenologicaland mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models...... to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage......; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cusuperalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (Aer...

  18. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.

    2016-12-16

    The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.

  19. Selective hydrogenation processes in steam cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Schroeter, M.K.; Hinrichs, M.; Makarczyk, P. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    Hydrogen is the key elixir used to trim the quality of olefinic and aromatic product slates from steam crackers. Being co-produced in excess amounts in the thermal cracking process a small part of the hydrogen is consumed in the ''cold part'' of a steam cracker to selectively hydrogenate unwanted, unsaturated hydrocarbons. The compositions of the various steam cracker product streams are adjusted by these processes to the outlet specifications. This presentation gives an overview over state-of-art selective hydrogenation technologies available from BASF for these processes. (Published in summary form only) (orig.)

  20. Modelling of hydrogen assisted cracking of nickel-base Alloy X-750 in water

    International Nuclear Information System (INIS)

    Oka, T.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    A closed-form, semi-empirical, electrochemical model has been developed to rationalize the intergranular corrosion fatigue behavior of alloy X-750 in aqueous electrolytes. The model is based on the assumption that, in the electrolytes investigated and for the microstructures studied, that hydrogen assisted crack growth is the dominant mechanism. Further, it is assumed that the rate of hydrogen reduction is a controlling factor in the magnitude of the environmental component of crack growth. Electrolyte conductivity, dissolution and passivation kinetics of precipitates, grain boundary coverage of precipitates are identified as important environmental and microstructural variables governing the hydrogen reduction rate at the crack tip. The model is compared with experimental data for fatigue crack growth where hydrogen is supplied by external charging and with data where galvanically-generated local hydrogen is responsible for enhanced crack growth. It is shown that predicted results characterize the observed effects of frequency, microstructure, electrolyte conductivity, and stress intensity factor. The agreement between the hydrogen reduction model and measured crack growth rate is believed to support the proposed galvanic corrosion mechanism for the intergranular cracking of alloy X-750 in low temperature water

  1. The hydrogen influenced cold cracking tendency of two high strength low alloy steels - evaluated by the implant-test

    International Nuclear Information System (INIS)

    Neumann, V.; Schoenherr, W.

    1978-01-01

    A possible way of evaluating the hydrogen influenced cold cracking tendency of constructional steels is the implant test. Using this testing method, it is possible to adjust extensively independently of one other the three influencing parameters - hydrogen content of the welding deposit and the heat-affected zone, hardness structure and stresses - and to examine their effect on the crack behaviour. Due to the same microstructure formation in the heat affected zone of the implant samples and in the non-heat affected regions from the consequent position of the heat affected zone of component seams, welding conditions can be determined with suitable changing of the sample whose application to the real component practically excludes the danger of cold cracking. The broken surfaces in cold cracking are partly ductile and poor in deformation. The deformation-poor fracturing can possibly take an intercrystalline or transcrystalline course according to the chemical composition of the steel. The investigation confirm the theories and test results of other authors: The formation of deformation-poor, typical fracture sections for cold cracking was only obtained when there was a clear delay between putting on the test load and fracture of the sample. (orig./RW) [de

  2. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    Science.gov (United States)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  3. Hydrogen induced plastic damage in pressure vessel steel of 2.25Cr-1Mo

    International Nuclear Information System (INIS)

    Han, G.W.; Song, Y.J.

    1995-01-01

    2.25Cr-1Mo steel is generally employed as a hydrogenation reaction vessel material used at elevated temperature and in a hydrogen containing environment. During service of the reaction vessel, a large number of hydrogen atoms would enter its wall. When the reaction vessel is shutdown and the temperature reduces to about ambient temperature, the hydrogen atoms remaining in the wall would induce plastic damage in the steel. The mechanism of hydrogen induced plastic damage is different for various materials with different microstructures. Investigations have demonstrated that the hydrogen induced plastic damage in carbide annealed carbon steels is caused by hydrogen accelerating the initiating and growing of microvoids from the carbide particles. However, SEM examination on the fracture surface of hydrogen charged tensile specimen of 2.25Cr-1Mo steel show that a large number of fisheyes appear on the fracture surface. This indicates that hydrogen induced plastic damage in 2.25Cr-1Mo steel is related to the occurrence of fisheye cracks during plastic deformation. By means of micro-fracture mechanics to analyze fisheye crack occurrence from the first generation microvoid, the mechanism of hydrogen induced plastic damage in the pressure vessel steel is investigated

  4. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.

  5. Measurements of delayed hydride cracking propagation rate in the radial direction of Zircaloy-2 cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan); Uchikoshi, H. [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The delayed hydride cracking (DHC) velocity of Zircaloy-2 was measured. Black-Right-Pointing-Pointer The velocity followed the Arrhenius law up to 270 Degree-Sign C. Activation energy was 49 kJ/mol. Black-Right-Pointing-Pointer The threshold stress intensity factor for the DHC was from 4 to 6 MPa m{sup 1/2}. Black-Right-Pointing-Pointer An increase in material strength accelerated the DHC. Black-Right-Pointing-Pointer Precipitation and fracture of hydrides at a crack tip is responsible for the DHC. - Abstract: Delayed hydride cracking (DHC) tests of Zircaloy-2 cladding tubes were performed in the chamber of a scanning electron microscope (SEM) to directly observe the crack propagation and measure the crack velocity in the radial direction of the tubes. Pre-cracks were produced at the outer surfaces of the tubes. Hydrogen contents of the tubes were from 90 ppm to 130 ppm and test temperatures were from 225 Degree-Sign C to 300 Degree-Sign C. The crack velocity followed the Arrhenius law at temperatures lower than about 270 Degree-Sign C with apparent activation energy of about 49 kJ/mol. The upper temperature limit for DHC, above which DHC did not occur, was about 280 Degree-Sign C. The threshold stress intensity factor for the initiation of the crack propagation, K{sub IH}, was from about 4 MPa m{sup 1/2} to 6 MPa m{sup 1/2}, almost independent of temperature. An increase in 0.2% offset yield stress of the material accelerated the crack velocity and slightly decreased K{sub IH}. Detailed observations of crack tip movement showed that cracks propagated in an intermittent fashion and the propagation gradually approached the steady state as the crack depth increased. The SEM observations also showed that hydrides were formed at a crack tip and a number of micro-cracks were found in the hydrides. It was presumed from these observations that the repetition of precipitation and fracture of hydrides at the crack tip would be

  6. Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking

    KAUST Repository

    Traidia, Abderrazak

    2014-01-01

    NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility on the choice of test parameters (pH, H2S partial pressure, and test duration), with zero tolerance to HIC initiation as an acceptance condition. The present modeling work is a contribution for a better understanding on how the test parameters and inclusion size can influence HIC initiation, and is therefore of potential interest for both steel makers and endusers. A model able to link the test operating parameters (pH, partial pressure of H2S, and temperature) to the maximum hydrogen pressure generated in the microstructural defects is proposed. The model results are then used to back calculate the minimum fracture toughness below which HIC extends. A minimum fracture toughness of 400 MPa√mm, at the segregation zone, prevents HIC occurrence and leads to successfully pass the HIC qualification test, even under extreme test conditions. The computed results show that the maximum generated pressure can reach up to 1,500 MPa. The results emphasize that the H2S partial pressure and test temperature can both have a strong influence on the final test results, whereas the influence of the pH of the test solution is less significant. © 2014, NACE International.

  7. Evaluation of delayed hydride cracking and fracture toughness in zirconium alloys

    International Nuclear Information System (INIS)

    Oh, Je Yong

    2000-02-01

    The tensile, fracture toughness, and delayed hydride cracking (DHC) test were carried at various temperatures to understand the effect of hydrides on zirconium alloys. And the effects of yield stress and texture on the DHC velocity were discussed. The tensile properties of alloy A were the highest, and the difference between directions in alloy C was small due to texture. The fracture toughness at room temperature decreased sharply when hydrided. Although the alignment of hydride plates was parallel to loading direction, the hydrides were fractured due to the triaxiality at the crack tip region. The fracture toughness over 200 .deg. C was similar regardless of the hydride existence, because the triaxiality region was lost due to the decrease of yield stress with temperature. As the yield stress decreased, the threshold stress intensity factor and the striation spacing increased in alloy A, and the fracture surfaces and striations were affected by microstructures in all alloys. To evaluate the effect of the yield stress on DHC velocity, a normalization method was proposed. When the DHC velocity was normalized with dividing by the terminal solid solubility and the diffusion coefficient of hydrogen, the relationship between the yield stress and the DHC velocity was representable on one master curve. The equation from the master curve was able to explain the difference between the theoretical activation energy and the experimental activation energy in DHC. The difference was found to be ascribed to the decrease of yield stress with temperature. texture affected the delayed hydride cracking velocity by yield stress and by hydride reprecipitation. The relationship between the yield stress and the DHC velocity was expressed as an exponential function, and the relationship between the reprecipitation of hydride and the DHC velocity was expressed as a linear function

  8. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    Science.gov (United States)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  9. Fatigue Crack Growth Behavior of Austempered AISI 4140 Steel with Dissolved Hydrogen

    Directory of Open Access Journals (Sweden)

    Varun Ramasagara Nagarajan

    2017-11-01

    Full Text Available The focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behavior of an austempered low-alloy AISI 4140 steel. The investigation also examined the influence of dissolved hydrogen on the fatigue threshold in this material. The material was tested in two conditions, as-received (cold rolled and annealed and austempered (austenitized at 882 °C for 1 h and austempered at 332 °C for 1 h. The microstructure of the annealed specimens consisted of a mix of ferrite and fine pearlite; the microstructure of the austempered specimens was lower bainite. Tensile and Compact Tension specimens were prepared. To examine the influence of dissolved hydrogen, two subsets of the CT specimens were charged with hydrogen for three different time periods between 150 and 250 h. All of the CT samples were then subjected to fatigue crack growth tests in the threshold and linear regions at room temperature. The test results indicate that austempering resulted in significant improvement in the yield and tensile strength as well as the fracture toughness of the material. The test results also show that, in the absence of dissolved hydrogen, the crack growth rate in the threshold and linear regions was lower in austempered samples compared to the as-received (annealed samples. The fatigue threshold was also slightly greater in the austempered samples. In presence of dissolved hydrogen, the crack growth rate was dependent upon the ∆K value. In the low ∆K region (<30 MPa√m, the presence of dissolved hydrogen caused the crack growth rate to be higher in the austempered samples as compared to annealed samples. Above this value, the crack growth rate was increasingly greater in the annealed specimens when compared to the austempered specimens in presence of dissolved hydrogen. It is concluded that austempering of 4140 steel appears to provide a processing route by which the strength, hardness, and fracture toughness of

  10. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    Science.gov (United States)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  11. Strain gradient plasticity modeling of hydrogen diffusion to the crack tip

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; del Busto, S.; Niordson, Christian Frithiof

    2016-01-01

    to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental......In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory...

  12. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  13. Effect of microplastic strain on hydrogen behaviour in steel and resistance to hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Gribanova, L.I.; Sarrak, V.I.; Filippov, G.A.; Shlyafirner, A.M. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1981-01-01

    A connection between the tendency to delayed fracture and resistance to microplastic deformation is studied in the presence of hydrogen on smooth samples of the 40Kh steel. Tests for delayed fracture have been carried out at the ''Instron'' machine. Two critical levels of strains during delayed fracture in the hydridation process are found out (sigmasub(cr1)=0.3sigmasub(0.2) and sigmasub(cr2)=0.5sigmasub(0.2)). At stresses below the sigmasub(cr1) hydrogen does not influence on the resistance to microplastic deformation of steel and does not cause delayed fracture. Propagation of cracks arising from defects occurring as a result of mutual effect of hydrogen and elastic stresses runs in the stress range from sigmasub(cr1) up to sigmasub(cr2). At stresses higher than sigmasub(cr2) the crack propagates from defects existing in the moment of hydridation process beginning.

  14. Hydrogen-related stress corrosion cracking in line pipe steel

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    1997-01-01

    A correlation between hydrogen concentration (C0) and the critical stress intensity factor for propagation of hydrogen-related cracks has been established by fracture mechanical testing of CT-specimens for the heat affected zone of an X-70 pipeline steel. This has been compared with field...

  15. Dynamics of hydrogen induced blistering of a low carbon steel sheet by lamb waves analysis; Ramuha no teiryo kaiseki ni yoru hakubanteitansoko no suiso hare no dainamikkusu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Teruyoshi.; Takemoto, Mikio. [Aoyama Gakuin University, Tokyo (Japan). Faculty of Science and Engineering

    1999-06-15

    With the aim of studying the fracture dynamics of environmentally assisted fractures in thin plates, we developed a new source simulation method of the zeroth-order symmetric (or S{sub 0}-) Lamb wave using the experimental overall-transfer function of the system. The transfer function was determined by the time-domain deconvolution of detected S{sub 0}-Lamb component by the artificial fracture source of a compression -type PZT element whose vibration kinetics was estimated by the iteration so that the S{sub o}-waveform detected. Hydrogen induced blistering was found to be caused by the succession of fast Mode-I fracture with source rise times from 0.6 to 1.0{mu}s. The crack volume estimated by the source simulation corresponded to that of fine blistering with an opening displacement of 5{mu}m. As the estimated fracture kinetics of hydrogen blistering coincide with those of delayed fracture of high tension low alloy steel under tensile loading, the kinetics of first and micro-fractures and blistering induced by hydrogen gas precipitation appears to be independent on the hydrogen solubility and strength of steels, the applied stresses and the orientation of cracks. (author)

  16. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen.

    Science.gov (United States)

    Nanninga, N; Slifka, A; Levy, Y; White, C

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications.

  17. Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    Directory of Open Access Journals (Sweden)

    Gopa Chakraborty

    2016-12-01

    Full Text Available DMR-249A is an indigenously developed high strength low alloy steel for Indian ship building industry for making ship-hull and is extensively used in the construction of war ships and submarines. Welding electrodes conforming to SFA 5.5 AWS E8018 C1 has been indigenously developed for welding of this steel using shielded metal arc welding process. In the present study, susceptibility to hydrogen assisted cracking of DMR-249A steel welds made using this electrode has been assessed using implant test. Implant tests were conducted using this electrode at two different levels of diffusible hydrogen, measured using gas chromatography technique. It is observed that both the steel and the welding consumable are not susceptible to hydrogen assisted cracking even with a high diffusible hydrogen level of 9 mL/100g of weld metal. In implant tests, specimen did not fracture even after loading to stress levels higher than the yield strength of the base metal. The good resistance of this steel and the welding consumable, even with high levels of diffusible hydrogen, is attributed to absence of a susceptible microstructure in both the weld metal and heat affected zone. Hence, this study shows that, in the absence of a susceptible microstructure, hydrogen assisted cracking is unlikely to occur even if hydrogen level is high. It also confirms that in welding of DMR-249A with indigenously developed E8018 C1 electrode, hydrogen assisted cracking is not a concern and no preheating is required to avoid it during welding.

  18. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  19. Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels

    Science.gov (United States)

    Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo

    2017-11-01

    Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.

  20. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Sung Soo

    2010-01-01

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack

  1. Kinetic of martensitic transformations induced by hydrogen in the austenite

    International Nuclear Information System (INIS)

    Oliveira, Sergio P. de; Saavedra, A.; Miranda, P.E.V. de

    1986-01-01

    The X-ray diffractometry technique was used, with an automatic data acquisition system to determine the kinetics of hydrogen induced martensitic phase transformations in an AISI 304 austenitic stainless steel type, used in nuclear power plants. Hydrogenation was performed cathodically in a 1N sulfuric acid solution, containing 100 mg/l of arsenic trioxide, at 50 0 C, during 2 hours and with a current density of 200 A/m 2 . It was found that the microstructure of the steel plays a role on the generation of hydrogen induced martensitic phases and surface micro cracks. Both kinetics were slower on a pre-cold rolled steel. (Author) [pt

  2. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading

    International Nuclear Information System (INIS)

    Kotake, Hirokazu; Matsumoto, Ryosuke; Taketomi, Shinya; Miyazaki, Noriyuki

    2008-01-01

    The effect of hydrogen on the material strengths of metals is known as the hydrogen embrittlement, which affects the structural integrity of a hydrogen energy system. In the present paper, we developed a computer program for a transient hydrogen diffusion-elastoplastic coupling analysis by combining an in-house finite element program with a general purpose finite element computer program to analyze hydrogen diffusion. In this program, we use a hypothesis that the hydrogen absorbed in the metal affects the yield stress of the metal. In the present paper, we discuss the effects of the cyclic loading on the hydrogen concentration near the crack tip. An important finding we obtained here is the fact that the hydrogen concentration near the crack tip greatly depends on the loading frequency. This result indicates that the fatigue lives of the components in a hydrogen system depend not only on the number of loading cycles but also on the loading frequency

  3. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  4. Preventing hydrogen-including cracking after welding of pressure vessel steels by use of low temperature postweld heat treatments

    International Nuclear Information System (INIS)

    Schulze, G.

    1977-01-01

    Based on extensive literature evaluations and an experimental programme, the possibilities and limits of avoiding hydrogen-induced cracking in welded joints through heat treatment are presented. The author refers to a report by J.S. Caplan and E. Landerman, published in 1976. (orig./IHOE) [de

  5. Hydrogen Assisted Cracking of High Strength Steel Welds

    Science.gov (United States)

    1988-05-01

    differs in general from the previous models in that hydrogen is assumed , to enhance local plasticity rather than truly embrittle the lattice. 5) Formation...measured. - The salient caracteristics of the IIW test include: - A 10mm X 15mm X 30mm specimen machined from mild steel with a sur- . .. face ground...hydrogen so %4. -. ,*. that a crack can grow under a lower applied stress. This theory has been criticized on the basis that the small but finite plastic

  6. Measurement of effective solvus temperature of hydrogen in Zr - 2. 5 wt % Nb using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E.; Ambler, J.F.R.

    1978-01-01

    The effect of applied tensile stress on the solvus temperature of hydrogen in cold-worked Zr - 2.5 wt % Nb has been measured using acoustic emission. Hydrides are necessary for delayed hydrogen cracking and the lowest temperature at which hydride cracking cannot be detected by acoustic emission was taken as the solvus temperature. The results show that any effect of tensile stress on terminal solubility, Cs, is undetectable. Between about 2 and 100 ppM hydrogen, the results can be described by: C/sub s/ = 1.40 x 10/sup 5/ exp - (36100/RT) ppM. They also suggest that the equilibrium phase, delta-hydride, is responsible for delayed hydrogen cracking.

  7. Microbial corrosion and cracking in steel. A concept for evaluation of hydrogen-assisted stress corrosion cracking in cathodically protected high-pressure gas transmission pipelines

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    An effort has been undertaken in order to develop a concept for evaluation of the risk of hydrogen-assisted cracking in cathodically protected gas transmission pipelines. The effort was divided into the following subtasks: A. Establish a correlation between the fracture mechanical properties...... crack propagation. This resulted in threshold curves that can be used for assessment of the risk of hydrogen-assisted cracking as a function of operating pressure and hydrogen content - having the flaw size as discrete parameter. The results are to be used mainly on a conceptual basis......, but it was indicated that the requirements for crack propagation include an overprotective CP-condition, a severe sulphate-reducing environment, as well as a large flaw (8 mm or a leak in the present case). A 1 mm flaw (which may be the maximum realistic flaw size) is believed to be unable to provoke crack propagation...

  8. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    Science.gov (United States)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  9. Some aspects on the role of hydrogen in the cold crack develoment process on welding

    International Nuclear Information System (INIS)

    Bourges, P.; Faure, F.

    1983-03-01

    Examination of the hydrogen input during welding (humidity of the electrode coatings, humidity of the wires, ribbon, and weld fluxing) and the means to minimize these hydrogen inputs. Description of various examples of cold crack development in welded joints caused by hydrogen, influence of the chemical composition, of the thermal processing on the two metals joints, influence of sulfur on cold crack on low alloy steels [fr

  10. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  11. Delayed hydride cracking of zirconium alloy fuel cladding

    International Nuclear Information System (INIS)

    2010-10-01

    This report describes the work performed in a coordinated research project on Hydrogen and Hydride Degradation of the Mechanical and Physical Properties of Zirconium Alloys. It is the second in the series. In 2005-2009 that work was extended within a new CRP called Delayed Hydride Cracking in Zirconium Alloy Fuel Cladding. The project consisted of adding hydrogen to samples of Zircaloy-4 claddings representing light water reactors (LWRs), CANDU and Atucha, and measuring the rates of delayed hydride cracking (DHC) under specified conditions. The project was overseen by a supervisory group of experts in the field who provided advice and assistance to participants as required. All of the research work undertaken as part of the CRP is described in this report, which includes details of the experimental procedures that led to a consistent set of data for LWR cladding. The participants and many of their co-workers in the laboratories involved in the CRP contributed results and material used in this report, which compiles the results, their analysis, discussions of their interpretation and conclusions and recommendations for future work. The research was coordinated by an advisor and by representatives in three laboratories in industrialized Member States. Besides the basic goal to transfer the technology of the testing technique from an experienced laboratory to those unfamiliar with the methods, the CRP was set up to harmonize the experimental procedures to produce consistent sets of data, both within a single laboratory and between different laboratories. From the first part of this project it was demonstrated that by following a standard set of experimental protocols, consistent results could be obtained. Thus, experimental vagaries were minimized by careful attention to detail of microstructure, temperature history and stress state in the samples. The underlying idea for the test programme was set out at the end of the first part of the project on pressure tubes. The

  12. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Directory of Open Access Journals (Sweden)

    Ming Qin

    Full Text Available FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10−7–5.748 × 10−7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa m. The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface. Keywords: FV520B, Wedge opening loading specimen, Stress corrosion cracking, Hydrogen sulfide

  13. Investigation of hydrogen assisted cracking in acicular ferrite using site-specific micro-fracture tests

    Energy Technology Data Exchange (ETDEWEB)

    Costin, Walter L. [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Lavigne, Olivier, E-mail: Olivier.lavigne@adelaide.edu.au [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Kotousov, Andrei; Ghomashchi, Reza [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Linton, Valerie [Energy Pipelines Cooperative Research Centre, Faculty of Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-01-10

    Hydrogen assisted cracking (HAC) is a common type of failure mechanism that can affect a wide range of metals and alloys. Experimental studies of HAC are cumbersome due to various intrinsic and extrinsic parameters and factors (associated with stress, hydrogen and the materials microstructure) contributing to the hydrogen crack kinetics. The microstructure of many materials consists of diverse constituents with characteristic features and mechanical properties which only occur in very small material volumes. The only way to differentiate the effect of these individual constituents on the hydrogen crack kinetics is to miniaturise the testing procedures. In this paper we present a new experimental approach to investigate hydrogen assisted crack growth in a microstructural constituent, i.e. acicular ferrite. For this purpose, sharply notched micro-cantilevers were fabricated with a Focus Ion Beam within this selected microscopic region. Acicular ferrite can be found in many ferrous alloys including ferritic weld metal and has specific features that control its intrinsic susceptibility to HAC. These features were characterised via Electron Backscatter Diffraction and the specimens were subsequently loaded under uncharged and hydrogen charged conditions with a nano-indenter. The outcomes of the testing, demonstrated that the threshold stress intensity factor, K{sub th}, to initiate crack propagation in acicular ferrite ranges between 1.56 MPa m{sup 1/2} and 4.36 MPa m{sup 1/2}. This range is significantly below the values of K{sub th} reported for various ferrous alloys in standard macro-tests. This finding indicates that the mechanisms and resistance to HAC at micro-scale could be very different than at the macro-scale as not all fracture toughening mechanisms may be activated at this scale level.

  14. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  15. Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.

    2012-05-15

    This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, T.Y.; Liu, Z.Y.; Cheng, Y.F. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta (Canada)

    2010-08-15

    In this work, the type, composition and distribution of inclusions contained in an API5L X100 steel were characterized by scanning electron microscopy and energy-dispersive x-ray analysis. A hydrogen-charging at various current densities was used to introduce hydrogen into the steel, and the correlation between HIC and the inclusions was established. The microstructure of the steel consists of a leather-like bainitic ferrite matrix, with martensite/austenite as the second phase particles. At least four types of inclusions are contained in API5L X100 steel, elongated MnS inclusions and spherical Al-, Si- and Ca-Al-O-S-enriched inclusions. In particular, the majority of inclusions in the steel are Al-enriched. Upon hydrogen-charging, hydrogen blisters and HIC could be caused in the steel in the absence of external stress. The cracks are primarily associated with the Al- and Si-enriched inclusions, rather than the elongated MnS inclusion. The critical amount of hydrogen resulting in HIC of the tested API5L X100 steel is determined to be 3.24 ppm under condition in this work. (author)

  17. Assessment of predictive models for the failure of titanium and ferrous alloys due to hydrogen effects. Report for the period of June 16 to September 15, 1981

    International Nuclear Information System (INIS)

    Archbold, T.F.; Bower, R.B.; Polonis, D.H.

    1982-04-01

    The 1977 version of the Simpson-Puls-Dutton model appears to be the most amenable with respect to utilizing known or readily estimated quantities. The Pardee-Paton model requires extensive calculations involving estimated quantities. Recent observations by Koike and Suzuki on vanadium support the general assumption that crack growth in hydride forming metals is determined by the rate of hydride formation, and their hydrogen atmosphere-displacive transformation model is of potential interest in explaining hydrogen embrittlement in ferrous alloys as well as hydride formers. The discontinuous nature of cracking due to hydrogen embrittlement appears to depend very strongly on localized stress intensities, thereby pointing to the role of microstructure in influencing crack initiation, fracture mode and crack path. The initiation of hydrogen induced failures over relatively short periods of time can be characterized with fair reliability using measurements of the threshold stress intensity. The experimental conditions for determining K/sub Th/ and ΔK/sub Th/ are designed to ensure plane strain conditions in most cases. Plane strain test conditions may be viewed as a conservative basis for predicting delayed failure. The physical configuration of nuclear waste canisters may involve elastic/plastic conditions rather than a state of plane strain, especially with thin-walled vessels. Under these conditions, alternative predictive tests may be considered, including COD and R-curve methods. The double cantilever beam technique employed by Boyer and Spurr on titanium alloys offers advantages for examining hydrogen induced delayed failure over long periods of time. 88 references

  18. The cracking of pressure tubes in the Pickering reactor

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.

    1978-01-01

    Small cracks in 17 of the 390 pressure tubes in Unit 3 of the 2056 MW (electrical) Pickering Generating Station and of 52 tubes in Unit 4, resulted in each of these units being out of service for many months. The cracks originated at areas of extremely high residual tensile stress produced by improper positioning of the rolling tool used during construction to join the pressure tube to its end-fitting. The mechanism of failure was delayed hydrogen cracking. (author)

  19. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels

    International Nuclear Information System (INIS)

    Mente, Tobias

    2015-01-01

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  20. Catastrophic failures due to environment-assisted cracking of metals: Case histories

    International Nuclear Information System (INIS)

    Shipilov, S.A.

    1999-01-01

    One of the most serious problems in development of reliable equipment and structures in numerous major industries, namely a problem of the environment-assisted cracking of engineering materials, has been reviewed. This problem is directly related to the problems of maintenance of the safety and reliability of potentially dangerous engineering systems, such as nuclear power plants, fossil fuel power plants, oil and gas pipelines, field equipment, oil production platforms, aircraft and aerospace technologies, chemical plants, etc. At present, environment-assisted cracking, including stress corrosion cracking, corrosion fatigue, hydrogen-induced cracking, hydrogen embrittlement, sulfide stress cracking, irradiation-assisted stress corrosion cracking, and metal-induced embrittlement, has been a major cause of the premature failures of various components and equipment in these systems. (author)

  1. Iodine-induced stress corrosion cracking of fixed deflection stressed slotted rings of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Sejnoha, R.; Wood, J.C.

    1978-01-01

    Stress corrosion cracking of Zircaloy fuel cladding by fission products is thought to be an important mechanism influencing power ramping defects of water-reactor fuels. We have used the fixed-deflection stressed slotted-ring technique to demonstrate cracking. The results show both the sensitivity and limitations of the stressed slotted-ring method in determining the responses of tubing to stress corrosion cracking. They are interpreted in terms of stress relaxation behavior, both on a microscopic scale for hydrogen-induced stress-relief and on a macroscopic scale for stress-time characteristics. Analysis also takes account of nonuniform plastic deformation during loading and residual stress buildup on unloading. 27 refs

  2. Multiscale modelling of hydrogen embrittlement in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Majevadia, Jassel; Wenman, Mark; Balint, Daniel; Sutton, Adrian [Imperial College London (United Kingdom); Nazarov, Roman [MPIE, Dusseldorf (Germany)

    2013-07-01

    Delayed Hydride Cracking (DHC) is a commonly occurring embrittlement phenomenon in zirconium alloy fuel cladding within Pressurized Water Reactors (PWRs). DHC is caused by the accumulation of hydrogen atoms taken up by the metal, and the formation of brittle hydrides in the vicinity of crack tips. The rate of crack growth is limited by the rate of hydrogen diffusion to the crack, which can be modelled by solving a stress driven diffusion equation that incorporates the elastic interaction between defects. This of interest in the present work. The elastic interaction is calculated by combining defect forces determined through Density Functional Theory (DFT) simulations, and an exact solution for the anisotropic elastic field of an edge dislocation in Zr. making it possible to determine the interaction energy without the need to simulate directly a hydrogen atom in the presence of a crack or dislocation, which is computationally prohibitive with DFT. The result of the elastic interaction energy calculations can be utilised to determine the segregation of hydrogen to a crack tip for varying crack tip geometries, and in the presence of other crystal defects. This is done by implementing a diffusion equation for hydrogen within a discrete dislocation dynamics simulation. In the present work a model has been developed to demonstrate the effect of a single dislocation on hydrogen diffusion to create a Cottrell atmosphere.

  3. Hydrogen cracking and stress corrosion of pipeline steels. Contribution of the cracking mechanisms study to the understanding of the in-service damage and to the definition of a ranking test; Fissuration assistee par l'hydrogene et corrosion sous contrainte des aciers de pipelines. Apports de l'etude des mecanismes de fissuration a la comprehension de l'endommagement de service et a la definition d'un test de classification

    Energy Technology Data Exchange (ETDEWEB)

    Le Friant, D.

    2000-12-19

    This work is based on the study of the cracking of a French oil transmission pipeline protected by a cathodic protection system. The objective is to identify field parameters, which contribute to the cracks propagation, and to assess changes in the operating conditions, which could lead to a mitigation of the phenomenon. We have focused on the study of the micro-mechanisms by means of slow strain rate tests. Then, cyclic loading tests were carried out to investigate cracks propagation mechanisms. Smooth and pre-notched specimens were tested at free and cathodic potential. Hydrogen is responsible for crack advance through changes in the local steels properties. Such effects take place when two phenomenons occur: favourable conditions for hydrogen entry and, a localisation of hydrogen and its effects. In particular, we have shown the essential role of a dynamic loading in promoting hydrogen entry into the steel (especially at the very crack tip). At cathodic potential, hydrogen-related effects are exacerbated by the presence of MnS inclusions which leads to the initiation of internal cracks (HIC) and to a SOHIC-like crack morphology. At free potential, the lesser amount of available hydrogen give localisation-related effects a greater importance. Cracking is then related to a hydrogen-induced SCC mechanism. Three parameters are involved in the field cracking: operating pressure variations, period of over-protection and a sensitive steels microstructure (MnS). Cathodic protection appears to be the most efficient field parameter to mitigate the phenomenon: it requires a better control of the polarisation level. Finally, a ranking test is outlined from the study of the cracking mechanisms. (author)

  4. J-controlled crack growth as an indicator of hydrogen-stainless steel compatibility

    International Nuclear Information System (INIS)

    Dietrich, M.R.; Caskey, G.R. Jr.; Donovan, J.A.

    1980-01-01

    The J-integral was evaluated as a parameter to characterize fracture of stainless steels and as a measure of hydrogen damage. C-shaped specimens of type 304L, 316, and 21-6-9 stainless steels were tested in high pressure helium and hydrogen. The critical force for crack initiation (Jm), and tearing resistance (dJ/da) were decreased by hydrogen in all three alloys. The J-integral appears useful as a measure of hydrogen compatibility because it is sensitive to both test environment and microstructure

  5. 3D imaging of hydrogen assisted cracking in metals using refraction enhanced synchrotron CT

    Energy Technology Data Exchange (ETDEWEB)

    Laquai, Rene; Mueller, Bernd R.; Bruno, Giovanni [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. 8.5 Micro-NDT; Schaupp, Thomas; Griesche, Axel; Kannengiesser, Thomas [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. 9.4 Weld Mechanics

    2015-07-01

    Hydrogen in metals can cause a degradation of the mechanical properties with possible subsequent hydrogen assisted cracking (HAC). Though, the mechanism of HAC is not completely understood yet and thus suitable methods for in situ investigations to characterise the crack formation are needed. X-ray computed tomography (CT) is a well-known tool for analysing these properties. However, the effective resolution of the detector system limits the detection of small defects by CT. Analyser based imaging (ABI) takes advantage of X-ray refraction at interfaces between volumes of different density, i.e. of cracks, pores, inclusions, etc., within the sample to detect defects smaller than the resolution of the detector system. In this study, measurements on an aluminium alloy weld showed that ABI allows us to resolve the 3D structure of cracks undetected by absorption based CT. Prospective investigations will analyse HAC in steels.

  6. 3D imaging of hydrogen assisted cracking in metals using refraction enhanced synchrotron CT

    International Nuclear Information System (INIS)

    Laquai, Rene; Mueller, Bernd R.; Bruno, Giovanni; Schaupp, Thomas; Griesche, Axel; Kannengiesser, Thomas

    2015-01-01

    Hydrogen in metals can cause a degradation of the mechanical properties with possible subsequent hydrogen assisted cracking (HAC). Though, the mechanism of HAC is not completely understood yet and thus suitable methods for in situ investigations to characterise the crack formation are needed. X-ray computed tomography (CT) is a well-known tool for analysing these properties. However, the effective resolution of the detector system limits the detection of small defects by CT. Analyser based imaging (ABI) takes advantage of X-ray refraction at interfaces between volumes of different density, i.e. of cracks, pores, inclusions, etc., within the sample to detect defects smaller than the resolution of the detector system. In this study, measurements on an aluminium alloy weld showed that ABI allows us to resolve the 3D structure of cracks undetected by absorption based CT. Prospective investigations will analyse HAC in steels.

  7. Control of microstructure to increase the tolerance of zirconium alloys to hydride cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.; Sagat, S.; Amouzouvi, K.F.

    1987-12-01

    The microstructure of Zr-2.5 Nb has been altered in three ways in attempts to increase the alloy's tolerance to delayed hydride cracking, namely by breaking up the β-phase which reduces diffusivity of hydrogen and decreases crack velocity, by means of a gettering element (yttrium) which reduces susceptibility to cracking although the yttrium alloy has low toughness and poor corrosion resistance, and by reducing the number of basal plane normals in the main stressing direction which improves resistance to crack growth

  8. Implant test and acoustic emission technique used to investigate hydrogen assisted cracking in the melted zone of a welded HSLA-80 steel

    International Nuclear Information System (INIS)

    Fals, H. C.; Trevisan, R. E.

    1999-01-01

    Weld metal hydrogen assisted cracking was studied using two flux cored wire (AWS E 70T-5 and AWS E 120 T5-K4) and a mixture gas of CO 2 +5% H 2 to induce values of diffusible hydrogen in high strength low alloy steel (HSLA-80) weldments. An acoustical Emission Measurement System (AEMS) RMS voltmeter was coupled to the implant test (NF 89-100) apparatus to determine energy, amplitude and event numbers of signal. All cracks were initiated in the partially melted zone and propagated into the coarse-grained region of the heat affected zone when E 70 T5 consumable was used, and the quasi-cleavage fracture mode was predominant. When E 120 T5 K4 consumable was used the cracks propagated vertically across the fusion zone, and a mixed fracture mode was the most important. A significant relationship between acoustic emission parameters and fracture modes was found. (Author) 12 refs

  9. Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat

    Directory of Open Access Journals (Sweden)

    R.F. Beims

    2018-04-01

    Full Text Available This article presents the experimental data on the thermal cracking of soybean oil and blends with hydrogenated fat. Thermal cracking experiments were carried out in a plug flow reactor with pure soybean oil and two blends with hydrogenated fat to reduce the degree of unsaturation of the feedstock. The same operational conditions was considered. The data obtained showed a total aromatics content reduction by 14% with the lowest degree of unsaturation feedstock. Other physicochemical data is presented, such as iodine index, acid index, density, kinematic viscosity. A distillation curve was carried out and compared with the curve from a petroleum sample.

  10. Effects of absorbed hydrogen on crack-tip ductility in the welded A516 steel

    International Nuclear Information System (INIS)

    Khattak, M.A.; Haslan, M.H.; Tamin, M.N.

    2007-01-01

    Effects of absorbed hydrogen on structure and properties of welded A516 Grade-70 steel are investigated. Emphasis is placed on ductility measure of the crack-tip plastic zone under Mode I loading. Specimens are cathodically charged in a cell with dilute sulphuric acid and corrosion inhibitor with uniform charging current density of 20 mA/ cm 2 and at different exposure time. Results indicate a change from coarse- to fine-grained microstructures in the weld region and heat affected zone (HAZ) of hydrogen-charged specimen. Well-defined ferrite-pearlite bands in the base metal are transformed into coarse-grain structure. Hardness variation along radial distance indicates higher values towards the center of the bar, possibly due to faster diffusion rate but limited solubility of hydrogen. Load-COD responses indicate that slow, stable crack propagation occurred in both base metal and HAZ. The measured provisional fracture toughness, K Q is higher for HAZ than that for the base metal. The toughness values decreases significantly for the initial three hours of hydrogen charging. The tensile fracture region in the immediate fatigue pre-crack tip forms a triangular (rough) zone due to limited constraint to free surface deformation in the thin specimen. Fracture surface of HAZ is dominated by intergranular fracture with localized cleavage facets. (author)

  11. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A.

    2004-01-01

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement

  12. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  13. Improvements in the susceptibility to hydrogen attack and stress-relief cracking of 2 1/4Cr-1Mo steels

    International Nuclear Information System (INIS)

    Imanaka, T.; Sato, S.; Shimomura, J.; Aso, K.

    1985-01-01

    The influence of sulphur content at extremely low level on the susceptibility to hydrogen attack and stress-relief cracking in 2 1/4Cr-1Mo steels was studied. The reduction of sulphur content and/or the addition of REM (rare earth metal) or Ca in accordance with sulphur content remarkably improve the resistivity against hydrogen attack and stress-relief cracking. Micro-structural examination has showed that there exist Mn-REM-S-Al-O complex particles in the REM-added steels. It is concluded that the effect of REM on hydrogen attack and stress-relief cracking is to reduce ''the free sulphur'' in 2 1/4Cr-1Mo steels

  14. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Sik

    1992-02-15

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values.

  15. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Choi, Kwang Sik

    1992-02-01

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values

  16. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  17. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa

    2007-01-01

    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  18. Transenamel and transdentinal penetration of hydrogen peroxide applied to cracked or microabrasioned enamel.

    Science.gov (United States)

    Briso, A L F; Lima, A P B; Gonçalves, R S; Gallinari, M O; dos Santos, P H

    2014-01-01

    The present study evaluated transenamel and transdentinal penetration of hydrogen peroxide during tooth whitening recognized in altered enamel by the presence of cracks or microabrasion. We used 72 experimental units (n=20) obtained from bovine incisors: GI-sound enamel; GII-teeth showing visible enamel cracks (4 mm to 5.7 mm in length); and GIII-microabrasioned enamel. The 12 remaining specimens were used to analyze the enamel surface morphology using scanning electron microscopy. The specimens were cylindrical and 5.7 mm in diameter and 3.5 mm thick. A product based on 35% hydrogen peroxide was used for bleaching, following the manufacturer's recommendations for use. To quantify the H2O2 penetration, the specimens were placed in artificial pulp chambers containing an acetate buffer solution. After bleaching, the solution was collected and adequately proportioned with leucocrystal violet, peroxidase enzyme, and deionized water. The resulting solution was evaluated using ultraviolet visible reflectance spectrophotometer equipment. The data were analyzed by analysis of variance (ANOVA) and Fisher's PLSD at a significance level of 0.05, and significant differences in the penetration of peroxide in different substrate conditions were observed (penamel was microabraded showed intermediate values when compared to the control group. Microabrasion and the presence of cracks in the enamel make this substrate more susceptible to penetration of hydrogen peroxide during in-office whitening.

  19. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Science.gov (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  20. A study on fatigue crack growth behavior subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth

    International Nuclear Information System (INIS)

    Lee, S.Y.; Choo, H.; Liaw, P.K.; An, K.; Hubbard, C.R.

    2011-01-01

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest load is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between Δε eff and ΔK eff provides experimental support for the hypothesis that ΔK eff can be considered as the fatigue crack tip driving force.

  1. Role of plasticity-induced crack closure in fatigue crack growth

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2013-07-01

    Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.

  2. Stress corrosion cracking of an uranium-6 weight per cent niobium in gaseous oxygen, nitrogen and hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.

    1989-01-01

    Stress corrosion cracking (SCC) of uranium-6 weight per cent niobium alloy is studied in gaseous oxygen at room temperature (for pressures between 4.10 -7 and 0.15MPa) and 100 0 C (pressure of 0.15 MPa) and in gaseous hydrogen (for pressures between 10 -6 and 0.15 MPa). SCC map and cracking kinetics are determined as fonctions of stress-intensity factor, pressure and temperature. For oxygen, temperature seems to have no effect on the alloy embrittlement within the range of this study but the pressure influence is more complex. At room temperature, hydrogen pressure less than 0.15 MPa has no influence on the cracking kinetics. For a pressure of 0.15 MPa, fracture occurs by hydriding reaction. Complementary analyses on fracture surfaces lead to propose different mechanics responsible for cracking kinetics in these environments [fr

  3. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju [Sheet Products Design Team, Technical Research Center, Hyundai Steel Company, 1480 Bukbusaneop-ro, Dangjin, Chungnam 343-823 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of)

    2016-01-15

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M{sub 3}C→MX→MX+M{sub 7}C{sub 3}+M{sub 23}C{sub 6}. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M{sub 3}C particle, and increased after 10 min by the precipitation of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M{sub 7}C{sub 3} particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M{sub 23}C{sub 6} and M{sub 7}C{sub 3} particles deteriorated the HIC resistance.

  4. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    International Nuclear Information System (INIS)

    Moon, Joonoh; Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju; Lee, Chang-Hoon; Lee, Tae-Ho

    2016-01-01

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M_3C→MX→MX+M_7C_3+M_2_3C_6. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M_3C particle, and increased after 10 min by the precipitation of M_7C_3 and M_2_3C_6 particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M_7C_3 particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M_2_3C_6 and M_7C_3 particles deteriorated the HIC resistance.

  5. Hydrogen Induced Intergranular Cracking of Nickel-Base Alloys.

    Science.gov (United States)

    1982-02-01

    alloys are discussed. Experimental The steel used in the present investigation is a fully bainitic 2 1/4 Cr-lMo pressure vessel steel , ASTM A542 Class 3...Appendix A describes recent experiments performed in order to study the influence of plastic deformation on hydrogen transport in a 214 Cr-lMo steel (8...PLASTIC DEFORMATION ON HYDROGEN TRANSPORT IN 2 1/4 Cr-lMo STEEL M. Kurkela, G.S. Frankel, and R.M. Latanision Department of Materials Science and

  6. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  7. Developments in delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Puls, Manfred P.

    2008-01-01

    Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)

  8. Optimization of the dissolved hydrogen level in PWR to mitigate stress corrosion cracking of nickel alloys. Bibliographic review, modelling and recommendations

    International Nuclear Information System (INIS)

    Labousse, M.; Deforge, D.; Gressier, F.; Taunier, S.; Le Calvar, M.

    2012-09-01

    Nickel based alloys Stress Corrosion Cracking (SCC) has been a major concern for the Nuclear Power Plants (NPP) utilities since more than 40 years. At EDF, this issue led to the replacement of all upper vessel heads and of most of the steam generators with Alloy 600 MA tubes. Under the scope of plant lifetime extension, there is some concerns about the behaviour of Bottom Mounted Instrumentation Nozzles (BMI) made of Alloy 600 welded with Alloy 182 and a few vessel dissimilar metal welds made of Alloy 82, for only three 1450 MWe plants. It is considered for long that Primary Water Stress Corrosion Cracking (PWSCC) is influenced by the dissolved hydrogen (DH) level in primary coolant. Now, the whole community clearly understands that there is a hydrogen level corresponding to a maximum in terms of SCC susceptibility. Many experimental studies were done worldwide to optimize the hydrogen level in primary water during power operation, both in terms of SCC initiation and propagation. From these studies, most of American plants decided to increase the dissolved hydrogen level in order to mitigate crack propagation. Conversely, in Japan, based on crack initiation data, it is thought that drastically decreasing the hydrogen content would rather be beneficial. In order to consolidate EDF position, a review of laboratory tests data was made. Studies on the influence of hydrogen on nickel alloys 600 and 182 PWSCC were compiled and rationalized. Data were collapsed using a classical Gaussian model, such as initially proposed by Morton et al. An alternative model based on more phenomenological considerations was also proposed. Both models lead to similar results. The maximum susceptibility to SCC cracking appears to be rather consistent with the Ni/NiO transition, which was not taken as an initial hypothesis. Regarding crack initiation, an inverse Gaussian model was proposed. Based on the current hydrogen concentration range during power operation and considering components

  9. Influence of hydrogen on crack growth rate of alloy 690 CW in PWR conditions

    International Nuclear Information System (INIS)

    Garcia Redondo, M.S.; Perosanz, F.J.; Lapena, J.; Gomez-Briceno, D.

    2015-01-01

    The influence of hydrogen concentration is well established for Alloy 600 and other nickel base alloys as Alloy 182/ 82 weld metals and X-750. It is accepted that for these materials maximum crack growth rate peaks close to Ni/NiO phase boundary. The influence of the hydrogen on the CGR of Alloy 690 is not well established. Available results for Alloy 690 are scarce and not conclusive. Results obtained by CIEMAT, in conditions representative of the PWR operating plants, indicated an apparent crack growth rate increase by a 3 factor when the hydrogen concentration increased from 35 to 81 cm -3 of H 2 /kg H 2 O. In order to gain some insight into the influence of the hydrogen, a new test has been performed with 20 cm -3 H 2 /kg H 2 O at 360 Celsius degrees, concentration close to Ni/NiO phase boundary. The material used was extruded control rod drive mechanism (CRDM) tubes with homogeneous microstructure. Rolling and tensile straining was applied to the CRDM material to obtain 20% of cold work in order to simulate the strain condition expected in the Heat Affected Zone (HAZ). (authors)

  10. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    work of Kerns (36)] 29 22 Crack Velocity vs. Stress Intensity for AISI 4340 Steel (Martensitic and Bainitic Structures) in 314 NaCl Solution (pit = 6.0...magnitude greater for 4340 steel with a tempered martensite structure than for the lower bainite structure. Figure 22 shows crack velocity as a function of...applied stress intensity for martensitic and bainitic steels . The dif- ference was attributed to more effective trapping of hydrogen at coher- ently

  11. The effect of texture on delayed hydride cracking in Zr-2.5Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Resta Levi, R.; Sagat, S

    1999-09-01

    Pressure tubes for CANDU reactors are made of Zr-2.5Nb alloy. They are produced by hot extrusion followed by cold work, which results in a material with a pronounced crystallographic texture with basal plane normals of its hexagonal structure around the circumferential direction. Under certain conditions, this material is susceptible to a cracking mechanism called delayed hydride cracking (DHC). Our work investigated the susceptibility of Zr-2.5Nb alloy pressure tube to DHC in this pressure tube material, in terms of crystallographic texture and grain shape. The results are presented in terms of crack velocity obtained on different planes and directions of the pressure tube. The results show that it is more difficult for a crack to propagate at right angles to crystallographic basal planes (which are close to the precipitation habit plane of hydrides) than for it to propagate parallel to the basal plane. However, if the cracking plane is oriented parallel to preexisting hydrides (hydrides formed as a result of the manufacturing process), the crack propagates along these hydrides easily, even if the hydride habit planes are not oriented favourably. (author)

  12. Strain energy density-distance criterion for the initiation of stress corrosion cracking of alloy X-750

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.M. Jr.; Symons, D.M.

    1996-05-01

    A strain energy density-distance criterion was previously developed and used to correlate rising-load K{sub c} initiation data for notched and fatigue precracked specimens of hydrogen precharged Alloy X-750. This criterion, which was developed for hydrogen embrittlement (HE) cracking, is used here to correlate static-load stress corrosion cracking (SCC) initiation times obtained for smooth geometry, notched and fatigue precracked specimens. The onset of SCC crack growth is hypothesized to occur when a critical strain, which is due to environment-enhanced creep, is attained within the specimen interior. For notched and precracked specimens, initiation is shown by analysis to occur at a variable distance from notch and crack tips. The initiation site varies from very near the crack tip, for highly loaded sharp cracks, to a site that is one grain diameter from the notch, for lower loaded, blunt notches. The existence of hydrogen gradients, which are due to strain-induced hydrogen trapping in the strain fields of notch and crack tips, is argued to be controlling the site for initiation of cracking. By considering the sources of the hydrogen, these observations are shown to be consistent with those from the previous HE study, in which the characteristic distance for crack initiation was found to be one grain diameter from the notch tip, independent of notch radius, applied stress intensity factor and hydrogen level.

  13. Effects of off-centered cracks and restraint of induced bending caused by pressure on the crack-opening-area analysis of pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.M.; Bonora, N.

    1996-01-01

    Current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumptions which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions that involve off-centered cracks and the restraint of induced bending caused by pressure, and quantifies their effects on the crack-opening area analysis of pipes. Finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe, considering off-centered cracks and the restraint of induced bending caused by pressure. The results of the analyses show that, for both cases, the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of the induced bending caused by pressure, the reduction in crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is large, the restrained crack opening can be significantly smaller than the unrestrained crack opening, depending on the length of pipe involved; hence, it may be important for the crack-opening-area and leak-rate analyses. (orig.)

  14. Delayed hydride cracking in irradiated Zr-2.5 % Nb pressure tubes

    International Nuclear Information System (INIS)

    Cirimello, Pablo; Coronel, Pascual; Haddad, Roberto; Lafont, Claudio; Mizrahi, Rafael

    2003-01-01

    Pressure tubes in CANDU nuclear power plants are made of Zr-2.5 % Nb alloy, which is susceptible to a cracking process called Delayed Hydride Cracking (DHC). Measurement of DHC velocity on irradiated pressure tubes is essential to assure the validity of the Leak Before Break criterion. This work was performed on samples from two pressure tubes taken out of the Embalse NPP in 1995, belonging to fuel channels A-14 and L-12. DHC velocity in the axial direction was measured at 211 C degrees for samples taken from different axial positions, which allowed to study its dependence on fast neutron fluency and irradiation temperature. Non-irradiated material was also tested. It was found that DHC velocity results for the tested material were similar to those obtained for a great number of tubes irradiated in other CANDU plants. (author)

  15. Towards a quantification of stress corrosion mechanisms: numerical simulations of hydrogen-dislocations at the very crack tip

    International Nuclear Information System (INIS)

    Chateau, J.P.

    1999-01-01

    We discuss the respective roles played by anodic dissolution and hydrogen in SCC mechanisms of f.c.c. materials, by studying the fracture of copper in nitrite for which we compare the results with that previously obtained in 316L steel in hot chloride. It is surprising to note that even the crystallographies at the scale of the micron are different, the macroscopic inclination of the fracture surfaces are the same. In the case of 316L steel, the formation of strong pile-ups in the presence of hydrogen leads to a zigzag fracture along alternated slip planes in the most general case. In the absence of hydrogen, as in copper, this mechanism effectively disappears. Furthermore, numerical simulations of crack shielding by dislocations emitted on one plane predict the macroscopic inclination. It shows that it is due to the mere dissolution which confines slip activity at the very crack tip in f.c.c. materials. In order to quantify the mechanism involved in 316L steel, we developed simulations which numerically solve the coupled diffusion and elasticity equations for hydrogen in the presence of a crack and shielding dislocations. They reproduce the mechanisms of hydrogen segregation on edge dislocations and of a localised softening effect by decreasing pair interactions. These mechanisms lead to i) a localisation of hydrogen embrittlement along the activated slip planes, ii) an increase of the dislocation density in pile-ups, and iii) a decrease of the cross slip probability. These three factors enhance micro-fracture at the head of a pile-up, which is responsible of the zigzag fracture. Introducing the free surface effects for hydrogen, we point out a new mechanism: the inhibition of dislocation sources at the crack tip, which is relevant with the brittle fracture surfaces observed in some cases in 316L steel. The quantification of these different mechanisms allows to give a relation between the local fracture possibility and the macroscopic parameters. A general law for

  16. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  17. The behaviour of hydrogen in Excel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ells, C.E. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Coleman, C.E. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Cheadle, B.A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Sagat, S. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Rodgers, D.K. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1995-12-15

    To enable mitigation of deleterious effects from hydride on the mechanical behaviour of Excel alloy, Zr-3.5 wt.% Sn-0.8 wt.% Mo-0.8 wt.% Nb, the behaviours of hydrogen and hydride in the alloy have been studied. Properties of interest are the terminal solid solubility, diffusivity, heat of transport, stress reorientation, and the initiation and crack growth of delayed hydride cracking. The results obtained are compared with those of other zirconium-rich alloys, notably Zr-2.5 wt.% Nb. (orig.)

  18. Effects of off-centered crack and restraint of induced bending due to pressure on the crack-opening-area analysis of pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Ghadiali, N.; Wilkowski, G.; Bonora, N.

    1995-01-01

    Estimation of leak rate is an important element in developing leak-before-break (LBB) methodology for piping integrity and safety analysis of nuclear power plants. Here, current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumption which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions involving off-centered cracks and restraint of induced bending due to pressure and quantifies their effects on the crack-opening analysis of pipes. Both finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe considering off-centered cracks and restrain of induced bending due to pressure. The results of analyses show that for both cases the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of induced bending due to pressure, the reduction of crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is larger, the restrained crack-opening can be significantly smaller than the unrestrained crack-opening depending on the length of pipe involved, and hence, may be important for the crack-opening-area and leak-rate analyses

  19. Acoustic and electromagnetic emission as a tool for crack localization

    International Nuclear Information System (INIS)

    Sedlak, P; Sikula, J; Lokajicek, T; Mori, Y

    2008-01-01

    The creation of cracks is accompanied by electric charge redistribution due to loosened chemical bounds. Electric charge on a crack wall creates dipole moments. Vibrations of crack walls produce time-dependent dipole moments and, consequently, electric and magnetic fields are generated. An electric signal is induced on metal electrodes. Simultaneously with the electromagnetic emission (EME) signal, an acoustic emission (AE) signal is generated, but due to the different velocities of propagation of both waves, the detection of the AE signal is delayed. This time delay presents the time of the wave propagation from the individual acoustic emission sensor to the crack. The defect can be located by means of these time intervals. This paper describes the localization using acoustic and electromagnetic emission signals for the two-dimensional case

  20. A possible explanation for the contradictory results of hydrogen effects on macroscopic deformation

    International Nuclear Information System (INIS)

    Miresmaeili, Reza; Liu, Lijun; Kanayama, Hiroshi

    2012-01-01

    Despite extensive research, there have been many controversies on whether hydrogen hardens or softens iron and steels. Conventional application of hydrogen-enhanced localized plasticity (HELP) theory – including a decrease in the local flow stress in the presence of hydrogen – results in an expansion in the plastic zone ahead of a blunting crack tip rather than the localization of plastic deformation. Therefore, we propose a model to interpret the criterion for the application of local softening concept. According to our physical model, called pinning-softening model, the hydrogen-induced softening merely occurs in the large shear stress regions, e.g. in the vicinity of the crack tip. The remote areas from the stress raisers do not satisfy the critical condition of slip; as such, hydrogen-induced hardening occurs. Our model not only explains the contradictory results of hydrogen effects on the macroscopic deformation, but also gives more insight into the mechanistic understanding of hydrogen embrittlement phenomenon. Highlights: ► A model to interpret the criterion for the application of hydrogen-induced softening. ► Hydrogen-induced softening at the crack tip and hardening at the remote regions. ► Shear stresses and hydrogen contents-important factors on transition from hardening to softening. ► In BCC iron, as the hydrogen concentration increases, the local flow stress decreases. ► In 316L, depending on the hydrogen contents, we observe both softening and hardening.

  1. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction

    International Nuclear Information System (INIS)

    Sun Chao; Tan Jun; Ying Shihao; Peng Qian; Li Cong

    2010-01-01

    The objective of this study is to obtain the threshold stress intensity factor, K IH , for an initiation of delayed hydride cracking in a recrystallized N18 (Zr-Sn-Nb-Fe-Cr) alloy plate which was manufactured in China, gaseously charged with 60 ppm of hydrogen by weight. By using both the load increasing method and load drop method, the K IH 's along the rolling direction were investigated over a temperature range of 150-255 o C. The results showed that K IH along the rolling direction was found to be higher in the load increasing method than that in the load drop method. In the load increasing method, K IH 's of the N18 alloy plate appeared to be in the range of 31-32.5MPa√(m), and K IH in the load drop method appeared to be in the range of 27.5-28.6MPa√(m). This means that the N18 alloy plate has high tolerance for DHC initiation along the rolling direction. The texture of a N18 alloy plate was investigated using an X-ray diffraction and the K IH was discussed based on texture and analytically as a function of the tilting angle of hydride habit planes to the cracking plane.

  2. Relationship between thermal embrittlement and hydrogen cracking in 18Ni(250) maraging steel

    International Nuclear Information System (INIS)

    Rack, H.J.

    1974-01-01

    The role of grain boundary precipitate structure on the stress corrosion susceptibility of 18Ni(250) maraging steel was examined. Varying solution treatment procedures were used to achieve either a precipitate-free grain boundary or one containing a high density of Ti(C,N) particles. The introduction of these treatments, although drastically affecting the monotonic fracture toughness, did not significantly alter the stress corrosion threshold in 100 percent relative humidity. These results are shown to be consistent with the previous suggestion that, under open circuit conditions, hydrogen-assisted cracking controls the environmental crack growth behavior of 18Ni maraging steels. (U.S.)

  3. The effect of texture variation on delayed hydride cracking behavior of Zr-2.5%Nb plate

    International Nuclear Information System (INIS)

    Kim, S.-S.; Kim, Y.S.; Kuk, I.-H.

    1999-01-01

    In order to investigate the effect of texture variation on the delayed hydride cracking behavior in Zr-2.5%Nb plates, crack growth rate and K IH tests have been carried out at temperature ranges varying from 415 to 506 K after texture modification by rolling. The texture variation of plates was achieved by direct-rolling and cross-rolling. Texture was measured through the determination of inverse pole figures, from which the basal pole components were calculated. The results have shown that the texture of a plate in which the basal poles are concentrated in the transverse direction can be changed significantly by cross-rolling. The crack growth rate increases exponentially with the basal pole component in the direction normal to the cracking plane. The increase in stress relieving temperature on cold worked material reduces crack growth rate. K IH decreases linearly with the basal pole component, and a behavior of which could be explained by the uniformly dispersed aggregate composite theory. (orig.)

  4. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    Science.gov (United States)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  5. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  6. Hydrogen effect on tendency to delayed brittle fracture in titanium alloys

    International Nuclear Information System (INIS)

    Nazimov, O.P.; Bunin, L.A.; Il'in, A.A.; Ponomareva, N.A.

    1979-01-01

    The results of investigating hydrogen effetc on the tendency to delayed fracture of the titanium alloys of VT1-0, VT5, VT5-1, OT4, VT6S and VT14 are given. The delayed fracture test data have been compared with the results of fractographic investigations. The notion of structural instability in the initial condition during the tests was suggested as a criterion for evaluating the tendency of metal to delayed fracture

  7. Primary water stress corrosion cracking resistance of alloy 690 heat affected zones of butt welds

    International Nuclear Information System (INIS)

    Fournier, L.; Calonne, O.; Toloczko, M.B.; Bruemmer, S.M.; Massoud, J.P.; Lemaire, E.; Gerard, R.; Somville, F.; Richnau, A.; Lagerstrom, J.

    2015-01-01

    A wide V-groove butt weld was fabricated from Alloy 690 plates using Alloy 152 filler material, maximum allowable heat input, and very stiff strong-backs. Alloy 690 heat affected zones (HAZ) was characterized in terms of microstructure and plastic strains induced by weld shrinkage. Crack initiation tests were carried out in pure hydrogenated steam at 400 C. degrees for 4000 h. Crack growth rate tests were performed in simulated PWR primary water at a temperature of 360 C. degrees. A maximum plastic strain around 5% was measured in the vicinity of the fusion line, which decreased almost linearly with the distance from the fusion line. Crack initiation tests on Alloy 690 HAZ specimens as well as on 30% cold-rolled Alloy 690 specimens were performed in pure hydrogenated steam at 400 C. degrees (partial pressure of hydrogen = 0.7 bar) for a total of 4000 h using cylindrical notched tensile specimens, reverse U-bends and flat micro-tensile specimens. No crack initiation was detected. Stress corrosion propagation rates revealed extremely low SCC (Stress Corrosion Cracking) growth rates both in the base metal and in the HAZ region whose magnitudes are of no engineering significance. Overall, the results indicated limited plastic strain induced by weld shrinkage in butt weld HAZ, and to no particular susceptibility of primary water stress corrosion cracking. (authors)

  8. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    International Nuclear Information System (INIS)

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  9. Hydrogen embrittlement of titanium and its alloys - a literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haemaelaeinen, H.

    1986-05-01

    Hydrogen embrittlement data of titanium and its alloys is reviewed. Especially the results obtained in spent nuclear fuel repository conditions with commercially pure titanium and TiCode-12 alloy are examined. The results show that the mechanical properties of titanium are not much affected by hydrogen when tested by smooth specimens. Much greater effects can be expected with notched fracture mechanics specimens. However, only limeted data is available. Hydrogen distribution in titanium is affected by stress, alloy composition and temperature gradients. In order to model the hydrogen-induced crack growth in titanium much more mechanistic work is needed especially to understand the behaviour of hydrogen in crack tip stress field. (author)

  10. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  11. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    Science.gov (United States)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and

  12. Threshold stress intensity factor for delayed hydride cracking of a recrystallized N18 alloy plate along the rolling direction

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chao, E-mail: sunchaonpic@yahoo.com.c [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, P.O. Box 436, Chengdu 610041 (China); Tan Jun; Ying Shihao; Peng Qian [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, P.O. Box 436, Chengdu 610041 (China); Li Cong [Department of R and D, State Nuclear Power Technology Corporation Limited, Beijing (China)

    2010-11-15

    The objective of this study is to obtain the threshold stress intensity factor, K{sub IH}, for an initiation of delayed hydride cracking in a recrystallized N18 (Zr-Sn-Nb-Fe-Cr) alloy plate which was manufactured in China, gaseously charged with 60 ppm of hydrogen by weight. By using both the load increasing method and load drop method, the K{sub IH}'s along the rolling direction were investigated over a temperature range of 150-255 {sup o}C. The results showed that K{sub IH} along the rolling direction was found to be higher in the load increasing method than that in the load drop method. In the load increasing method, K{sub IH}'s of the N18 alloy plate appeared to be in the range of 31-32.5MPa{radical}(m), and K{sub IH} in the load drop method appeared to be in the range of 27.5-28.6MPa{radical}(m). This means that the N18 alloy plate has high tolerance for DHC initiation along the rolling direction. The texture of a N18 alloy plate was investigated using an X-ray diffraction and the K{sub IH} was discussed based on texture and analytically as a function of the tilting angle of hydride habit planes to the cracking plane.

  13. Underclad cracks growth under fatigue loading in stainless steel cladding

    International Nuclear Information System (INIS)

    Bernard, J.L.; Bodson, F.; Doule, A.; Slama, G.; Bramat, M.; Doucet, J.P.; Maltrud, F.

    1981-01-01

    Hydrogen induced cracks have been found in HAZ of PWR vessel nozzles under stainless steel cladding. Fatigue tests were performed to collect a large amount of data on the possible propagation of this type of flaws. Tests were conducted in two steps. The aim of the first step was to set up the experimental equipment and to device an adequate method for following cracks during fatigue loading. Clad plates with electroerosion machined slots were used for this purpose. The second step was then undertaken with material taken out of an actual nozzle containing hydrogen induced cracks in the HAZ under stainless steel cladding or flaws simulated by electroerosion machined slots. The test loadings were comparable to in service loadings of the nozzles. Special attention was taken to get representative R ratios. Again for the sake of representativity, the tests were performed at 300 0 C (In service temperature) and the hydrotest was simulated. The main results are: It was possible to follow the whole failure process by combining non-destructive examinations during fatigue testing and fractographic observations of broken specimens. Different striation patterns, before and after air has penetrated the actual embedded cracks were observed. Numerical simulation of fatigue crack growth of actual or simulated defects were consistent with experimental data, provided mainly that defect shape, effect of R ratio and of environment were taken into account. (orig.)

  14. Influence of Microstructure on the Fatigue Crack Growth of A516 in Hydrogen

    Science.gov (United States)

    Wachob, Harry F.; Nelson, Howard G.

    1980-01-01

    Some day hydrogen may be used as a viable energy storage and transport medium within the United States. Hydrogen gas may be used to dilute and extend our present methane supply as a blend or may even be used in its pure elemental form as a primary fuel. Independent of the methods of production, storage, and distribution, the interaction of hydrogen with its containment material will play an integral role in the success of a hydrogen energy program. Presently, the selection of hydrogen containment materials can be made such that the material will remain reasonably free from environmental degradation; however, costly alloying additions are required. Unfortunately, high alloy steels are economically prohibitive when large-scale hydrogen energy storage, transmission, and conversion systems are desired. Therefore, in order to implement such hydrogen energy systems in the future, existing low-cost materials must be improved via mechanical, thermal, or thermo-mechanical processing methods or new low-cost materials which are compatible with hydrogen must be developed. Originally, low strength, low alloy steels at room temperature were thought to be immune to hydrogen gas embrittlement, since no sustained load crack growth is observed. However, results of Clark in HY8O and Nelson in SAE 1020 have shown that the fatigue crack growth rate can be greatly accelerated in the presence of hydrogen gas. In recent results reported by Louthan and Mucci, the smooth bar fatigue life of an A1068 pipeline steel was reduced up to a factor of ten when the tests were performed in a 13.8 MPa hydrogen environment. These results suggest that the selection of material for structures designed to operate in hydrogen under cyclic loads must include consideration of hydrogen/metal fatigue interaction. Although the hydrogen/metal fatigue interaction can be severe in low strength low alloy steels, the degree of degradation may be altered by the underlying ferrous microstructure. At present, no

  15. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

    Directory of Open Access Journals (Sweden)

    Dahle Jostein

    2005-01-01

    Full Text Available Abstract Background Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability. Methods Delayed mutations in the hypoxanthine phosphoribosyl transferase (hprt gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies. Results The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione. Conclusion The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of

  16. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  17. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  18. Hydrogen-assisted fatigue crack growth in ferritic steels – a fractographic study

    Directory of Open Access Journals (Sweden)

    Wan Di

    2018-01-01

    Full Text Available Fatigue crack growth (FCG behavior of a Fe-3wt.%Si ferritic alloy under different environmental conditions using in-situ electrochemical (cathodic hydrogen (H charging has been investigated. Three frequencies have been applied. Results clearly show that the FCG rate increased by a factor spanning from 20 to 1000 times, depending on the loading frequencies, when compared to the reference test in air. Lower frequency leads to higher FCG rate. A comprehensive fractographic analysis was carried out: the area fraction of different fracture surface features was measured and taken into statistical analysis. Based on these investigations, the possible mechanisms of H-enhanced FCG are discussed. Similar tests in high-pressure H gas from other studies were also compared and discussed. These results give a preliminary understanding of H effect in fatigue crack propagation procedure in ferritic alloys.

  19. Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels

    Science.gov (United States)

    Pioszak, Greger L.; Gangloff, Richard P.

    2017-09-01

    Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.

  20. Chloride ingress in cracked concrete : A laser induced breakdown spectroscopy (LIBS) study

    NARCIS (Netherlands)

    Savija, B.; Schlangen, E.; Pacheco Farias, J.; Millar, S.; Eichler, T.; Wilsch, G.

    2014-01-01

    racks are always present in reinforced concrete structures. In the presented research, influence of mechanical cracks on chloride ingress is studied. A compact reinforced concrete specimen was designed, mimicking the cracking behaviour of beam elements. Cracks of different widths were induced by

  1. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  2. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  3. Influence of dissolved hydrogen and temperature on primary water stress corrosion cracking of mill annealed alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Nobuo; Nishikawa, Yoshito [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    The influence of dissolved hydrogen and temperature on primary water stress corrosion cracking (PWSCC) of alloy 600 was experimentally studied at temperature ranging from 310 to 360degC and hydrogen contents ranging from 0 to 4 ppm using slow strain rate tensile technique (SSRT) and constant load tensile test. As a result, it was revealed that the PWSCC susceptibility of alloy 600 has a maximum near 3 ppm of dissolved hydrogen at 360degC and the peak shifts to 1 ppm at 320degC. The mechanism of the peak shift is not clear yet, however, it is possibly explained by the change of absorbed hydrogen in the metal caused by the change of hydrogen recombination reaction and/or change of the surface film. (author)

  4. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels; Numerische Simulation der wasserstoffunterstuetzten Rissbildung in austentisch-ferritischen Duplexstaehlen

    Energy Technology Data Exchange (ETDEWEB)

    Mente, Tobias

    2015-07-01

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  5. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  6. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  7. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

    Directory of Open Access Journals (Sweden)

    Anna-Maria Alvarez Holston

    2017-06-01

    Full Text Available Delayed hydride cracking (DHC was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below 300°C. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor (KIH to initiate DHC as a function of temperature in Zry-4 for temperatures between 227°C and 315°C. The experimental technique used in this study was the pin-loading testing technique. To determine the KIH, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around 300°C, there was a sharp increase in KIH indicating the upper temperature limit for DHC. The value for KIH at 227°C was determined to be 2.6 ± 0.3 MPa √m.

  8. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Holston, Anna-MariaAlvarez; Stjarnsater, Johan [Studsvik Nuclear AB, Nykoping (Sweden)

    2017-06-15

    Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below 300°C. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor (K{sub IH}) to initiate DHC as a function of temperature in Zry-4 for temperatures between 227°C and 315°C. The experimental technique used in this study was the pin-loading testing technique. To determine the K{sub IH}, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around 300°C, there was a sharp increase in K{sub IH} indicating the upper temperature limit for DHC. The value for K{sub IH} at 227°C was determined to be 2.6 ± 0.3 MPa √m.

  9. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  10. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  11. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    Science.gov (United States)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-03-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  12. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Schreiber, D. K.

    2018-02-01

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  13. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    Science.gov (United States)

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  14. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  15. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  16. Modeling Restrained Shrinkage Induced Cracking in Concrete Rings Using the Thick Level Set Approach

    Directory of Open Access Journals (Sweden)

    Rebecca Nakhoul

    2018-03-01

    Full Text Available Modeling restrained shrinkage-induced damage and cracking in concrete is addressed herein. The novel Thick Level Set (TLS damage growth and crack propagation model is used and adapted by introducing shrinkage contribution into the formulation. The TLS capacity to predict damage evolution, crack initiation and growth triggered by restrained shrinkage in absence of external loads is evaluated. A study dealing with shrinkage-induced cracking in elliptical concrete rings is presented herein. Key results such as the effect of rings oblateness on stress distribution and critical shrinkage strain needed to initiate damage are highlighted. In addition, crack positions are compared to those observed in experiments and are found satisfactory.

  17. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-01-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested

  18. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Ghica, C; Nistor, L C; Vizireanu, S; Dinescu, G

    2011-01-01

    The smart-cut(TM) process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {1 1 1} and {1 0 0} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 deg. C, or by in situ heating in the electron microscope at 450, 650 and 800 deg. C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  19. Stress corrosion cracking of Alloy 82 in hydrogenated steam at 400 C: influence of microstructural and mechanical parameters on initiation of SCC cracks

    International Nuclear Information System (INIS)

    Chaumun, Elizabeth

    2016-01-01

    In Pressurize Water Reactors (PWR), Stress Corrosion Cracking (SCC) is the mean degradation mode of components pieced together by welding. Nickel based alloys are, among others, used in dissimilar metal welding (DMW). International report showed only 3 cracking cases in Alloy 82 out of 300 cracking cases concerned on nickel based alloys DMW in primary water circuit. The aim of this study is to identify which microstructural and local mechanism parameters at microstructure scale provide the initiation of SCC cracks. Characterizations performed on specimen surface to identify those parameters are composed of chemical composition analysis and EBSD analysis (Electron Back-Scattered Diffraction) to know the morphology and the crystallography of grains for microstructure features on one hand, and experimental strain fields measured by Digital Imaging Correlation (DIC) of gold micro-grids deposed by electronic lithography on U-bend specimen surface and stress fields calculated along grains boundaries by finite element for local mechanical features on the other hand. The correlation between those characterizations and localization of initiation sites of SCC cracks, obtained on U-bend specimens tested in autoclave in hydrogen steam water at 400 C and 188 bar for 3500 hours, confirmed the susceptibility of the Alloy 82 in SCC conditions with intergranular SCC cracks. The perpendicular position to the loading direction (mode I) is the worst conditions for grains boundary in SCC. The others points concern the chemical composition (precipitation, impurities) around grain boundary and the grain boundary type which is more susceptible when it is a High Angle Grain Boundary. It is following by the mechanical characterization (stress and strain gradient) along grain boundary. This methodology can be used to other material and helped to define which microstructural and mechanical parameter can be define the initiation of SCC cracks. (author) [fr

  20. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    Science.gov (United States)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  1. Microwave based method of monitoring crack formation

    International Nuclear Information System (INIS)

    Aman, Sergej; Aman, Alexander; Majcherek, Soeren; Hirsch, Soeren; Schmidt, Bertram

    2014-01-01

    The formation of cracks in glass particles was monitored by application of linearly polarized microwaves. The breakage behavior of glass spheres coated with a thin gold layer of about 50 nm, i.e. a thickness that is lower than the microwave penetration depth, was tested. In this way the investigation of fracture behavior of electronic circuits was simulated. A shielding current was induced in the gold layer by the application of microwaves. During the crack formation the distribution of this current changed abruptly and a scattered microwave signal appeared at the frequency of the incident microwaves. The time behavior of the scattered signal reflects the microscopic processes occurring during the fracture of the specimen. The duration of the increasing signal corresponds to the crack formation time in the tested specimen. This time was estimated as particle size divided by crack development speed in glass. An intense emission of electrons occurs during the formation of cracks. Due to this, coherent Thomson scattering of microwaves by emitted electrons becomes significant with a delay of a few microseconds after the initial phase of crack formation. In this time the intensity of the microwave signal increases. (paper)

  2. Hydrogen cracking susceptibility evaluation of buried steel pipe under cathodic protection. Cathode boshokuka ni okeru maisetsu kokan no suisoware kanjusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Y.; Nonaka, H. (Osaka Gas Co. Ltd., Osaka (Japan)); Yamakawa, K. (University of Osaka Prefecture, Osaka (Japan). College of Engineering)

    1992-12-01

    An evaluation was given on effects of hydrogen on pipeline materials in order to determine a most base value in an optimal cathodic protection potential in cathodic protection of buried pipelines. Protection potentials were estimated from the relation between critical hydrogen amount and the potentials in marine clays and sodium acetate as electrolyte. The materials were evaluated using a strain rate tensile experiment method. The following results were obtained: The more base the potential, the elongation was somewhat less than the result in air, while the tensile strength increased slightly; difference in water content in soils varies the cross section contraction rate; the rate does not change in a marine clay containing water at 20%, but it decreases in a 30%-content soil; an SEM observation revealed pseudo cleavage faces; and the critical hydrogen amount that causes hydrogen cracking is 10 ppb, which corresponds to -1.4V in a marine clay containing water at 30%, and -1.2V at 14%. A loading experiment with actual loads verified that no fracture due to hydrogen cracking occurs even under an overprotection environment when a load imposed on an actual pipeline is kept constant. 16 refs., 10 figs., 3 tabs.

  3. Strain-induced corrosion cracking in ferritic components of BWR primary circuits

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B.

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 o C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  4. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments

    International Nuclear Information System (INIS)

    Bala Srinivasan, P.; Sharkawy, S.W.; Dietzel, W.

    2004-01-01

    Supermartensitic stainless steel (SMSS) grades are gaining popularity as an alternate material to duplex and super duplex stainless steels for applications in oil and gas industries. The weldability of these steels, though reported to be better when compared to conventional martensitic stainless steels, so far has been addressed with duplex stainless steel electrodes/fillers. This work addresses the stress-cracking behaviour of weldments of a high-grade supermartensitic stainless steel (11% Cr, 6.5% Ni and 2% Mo) in the presence of hydrogen. Welds were produced with matching consumables, using electron beam welding (EBW) process. Weldments were subjected to slow strain rate tests in 0.1 M NaOH solution, with introduction of hydrogen into the specimens by means of potentiostatic cathodic polarisation at a potential of -1200 mV versus Ag/AgCl electrode. Reference tests were performed in air for comparison, and the results suggest that both the SMSS base material and the EB weld metal are susceptible to embrittlement under the conditions of hydrogen charging

  5. Delayed cracking in 301LN austenitic steel after deep drawing: Martensitic transformation and residual stress analysis

    International Nuclear Information System (INIS)

    Berrahmoune, M.R.; Berveiller, S.; Inal, K.; Patoor, E.

    2006-01-01

    The main objective of this work is to study the delayed cracking phenomenon of the 301LN unstable austenitic steel, by determining the distribution of residual stresses after deep drawing, taking into account the phase transformation. Deep drawing for different ratios is done for two different temperatures. Cracks appear for the highest drawing ratio (DR = 2.00) in the top of the cup. The breaking patterns observed using a scanning electron microscope show ductile fracture in the middle region, and both intergranular and transgranular rupture in the edges. Martensite contents throughout the cup wall and through the thickness are determined. Increasing the martensite content was found to have a great effect on the cracking sensitivity. X-ray diffraction allows us to determine the residual stresses in the martensitic phase. These last are positive, increase with increasing drawing ratios. The maximum value is located at the middle height of the cup, it exceeds 500 MPa for the 2.00 drawing ratio, and is less than 350 MPa for the 1.89 drawing ratio

  6. Prompt and delayed Coulomb explosion of doubly ionized hydrogen chloride molecules in intense femtosecond laser fields

    Science.gov (United States)

    Ma, Junyang; Li, Hui; Lin, Kang; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Lu, Peifen; Gong, Xiaochun; Zeng, Heping; Wu, Jian

    2018-06-01

    We experimentally investigate the dissociative double ionization of hydrogen chloride (HCl) molecules in intense femtosecond laser pulses. In addition to the prompt dissociation channels which occur on femtosecond timescales, long-lived hydrogen chloride dications which Coulomb-explode in flight towards the detector are clearly identified in the photoion-photoion coincidence spectrum. Different pathways leading to these prompt and delayed dissociation channels involving various bound and repulsive states of the HCl dication are discussed based on the observed kinetic energy release and momentum distributions. Our results indicate that the specific features of the HCl dication potential energy curves are responsible for the generation of the delayed fragmentation channels, which are expected to be general processes for the hydrogen halides.

  7. On physics of the hydrogen plasticization and embrittlement of metallic materials, relevance to the safety and standards' problems

    International Nuclear Information System (INIS)

    Yury S Nechaev; Georgy A Filippov; T Nejat Veziroglu

    2006-01-01

    In the present contribution, some related fundamental problems of revealing micro mechanisms of hydrogen plasticization, superplasticity, embrittlement, cracking, blistering and delayed fracture of some technologically important industrial metallic materials are formulated. The ways are considered of these problems' solution and optimizing the technological processes and materials, particularly in the hydrogen and gas-petroleum industries, some aircraft, aerospace and automobile systems. The results are related to the safety and standardization problems of metallic materials, and to the problem of their compatibility with hydrogen. (authors)

  8. Stress distributions due to hydrogen concentrations in electrochemically charged and aged austenitic stainless steel

    International Nuclear Information System (INIS)

    Rozenak, P.; Loew, A.

    2008-01-01

    As a result of hydrogen concentration gradients in type austenitic stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses were developed. These stresses were measured by X-ray technique and the crack formation thus induced could be studied using equilibrium stress equations. After various electrochemical charging and aging times, X-ray diffraction patterns obtained from samples indicated that the reflected and broadened diffraction peaks are the result of the formation of a non-uniform but continuous solid solution in the austenitic matrix. Since both hydrogen penetrations during charging and hydrogen release during aging are diffusion controlled processes and huge hydrogen concentration gradients in the thin surface layer, at depths comparable with the depth of X-ray penetration, are observed. The non-uniform hydrogen concentration in the austenitic matrix, results to the non-uniform expansion of the atomic microstructure and latter inevitably leads to the development of internal stresses. The internal stresses development formulae's are very similar to those relating to non-uniform heating of the materials, where thermal stresses appear due to non-uniform expansion or contraction. The relevant well developed theory is applicable in our case of non-uniform hydrogen concentrations in a solid solution of electrochemically charged and aged austenitic matrix. A few cracks were present on the surface after some minutes of electrochemical charging and the severity of cracking increased as hydrogen was lost during subsequent aging. This is consistent with the expectation of high compressive stresses in the bulk of the specimen during charging and high tensile surface stresses (at the level of 1 x 10 11 Pa) during the aging process. These stresses can induce the formation of surface cracks during the aging process after electrochemical charging in the AISI 316 stainless steel

  9. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)

    2014-07-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  10. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    International Nuclear Information System (INIS)

    Fong, C.; Lee, Y.C.; Yeh, T.K.

    2014-01-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  11. Contribution of the low cycle fatigue on ultra high purity Ni-Cr-Fe alloys and on Ni monocrystals to the understanding of the hydrogen role in stress corrosion cracking for the alloys 600 and 690

    International Nuclear Information System (INIS)

    Renaudot, N.

    1999-06-01

    We discuss the role of hydrogen in cracking of Ni base alloys used for pressurised water reactor (PWR) primary tubes (alloy 600 and 690). Cracking can be explained by a Stress Corrosion Cracking (SCC) phenomenon. For this purpose, Low cycle fatigue (R = - 1) under cathodic charging at room temperature is conducted to study hydrogen effects on propagation of cracks mechanically initiated by the formation of Persistent Slip Bands (PSB). Low cycle fatigue on Ultra High Purity specimens (Ni, alloy 600 and 690) reveals the very important hydrogen effect on crack propagation rate, whatever the Cr content in the Ni base alloy. If Cr seems to have an effect over-hydrogen penetration in specimens (by a protective film formation), it have no beneficial effect when hydrogen have diffused ahead of a crack tip. Propagation rates (transgranular or intergranular) are highly increased, no matter of the absence of impurities like sulphur. Then, in PWR, the difference in the behaviour of alloy 600 and 690 could be due to a slower microcrack propagation rate for alloy 690. Protective films could play an important role in this difference, which is to study. Low cycle fatigue on Ni single crystals oriented for single slip shows, for the first time on bulk specimen, a macroscopic softening which can be explained. by hydrogen-dislocation interactions. Moreover, a simple quantitative model based on these interactions results in the same softening as the one observed experimentally. These results allow to validate experimentally one of the most important steps in the 'Corrosion Enhanced Plasticity (CEP) model', i.e. the softening ahead of a stress corrosion crack tip by hydrogen dislocation interactions. This is of importance because this model can explain cracking in numerous FCC materials-environment couple. (author)

  12. Influence of hydrogen on the behaviour of metals - Mechanical and kinetic properties of fatigue cracking of steady (ZXNCTD-26-15) and unsteady (Z2CN-18-10) austenitic stainless steels. Role of heat treatments and of cathodic hydrogen

    International Nuclear Information System (INIS)

    Huwarts, Pascale; Habashi, Mahmoud

    1984-01-01

    In a context which is characterized by an increased demand in high resistance stainless steels, austenitic stainless steels with structural hardening have been notably studied. These are ductile materials in over-hardened state, therefore machinable, and can be hardened by ageing heat treatment after machining. The author reports the study of the tensile and resilience mechanical behaviour, and of the kinetic fatigue cracking of three austenitic stainless steels in presence of hydrogen. One of them is unsteady and belongs to the 300 family, whereas the two others are grades of a steady steel with structural hardening (26 pc Ni - 15 pc Cr). The author more particularly focused on the influence of thermal treatments and of phase transformation on hydrogen-induced embrittlement of these steels. After a bibliographical study on austenitic stainless steels and on their behaviour with respect to hydrogen, the author reports a detailed analysis of the studied steels. He reports tests and their results, and discusses the role of microstructure in the mechanical behaviour of these steels in presence and in absence of cathodic hydrogen [fr

  13. Evaluation of Detrimental Effects on Mechanical Properties of Zry-4 Due to Hydrogen Absorption by means of Scanning Electron Microscopy (SEM) In-Situ Observation of Crack Propagation

    International Nuclear Information System (INIS)

    Fernandez, L; Fernandez, G.E; Bertolino, G; Meyer, G

    2001-01-01

    The study of mechanical properties degradation of zirconium alloys due to hydrides assumes fundamental importance in the nuclear industry.During normal nuclear reactors operation, structural parts absorbed hydrogen generated from radiolysis of water, causing detrimental effects on mechanical properties.As a consequence, these materials are easily cracked in the presence of mechanical solicitation due to loss of ductility of the hydride-phase.The presence of cracks indicates fracture mechanic as the most suitable methodology in the study of mechanical properties degradation.In this work we used the crack tip opening displacement (CTOD) criteria to evaluate the detrimental effects on mechanical properties with the observation in SEM of crack propagation.The samples used were SEN (B) of Zry-4 and cathodic homogenous charged with hydrogen concentrations lower than 400 ppm

  14. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  15. On the controlling parameters for fatigue-crack threshold at low homologous temperatures

    International Nuclear Information System (INIS)

    Yu, W.; Gerberich, W.W.

    1983-01-01

    Fatigue crack propagation phenomena near the threshold stress intensity level ΔK /SUB TH/ , has been a vigorously studied topic in recent years. Near threshold the crack propagates rather slowly, thus giving enough time for various physical and chemical reactions to take place. Room air, which is the most commonly encountered environment, can still supply various ingredients such as oxygen, water vapor (and thus hydrogen) to support these reactions. Much effort had been directed toward the environmental aspects of near threshold fatigue crack growth. By conducting tests under vacuum, Suresh and coworkers found that the crack propagation rate in a 2-1/4 Cr-1Mo steel was higher in vacuum than in air. An oxide induced closure, which served to reduce the effective stress intensity at the crack tip, seems to furnish a good explanation. Neumann and coworkers proposed that during the fatigue process, extrusion-intrusion pairs can develop as a consequence of reversed slip around the crack tip when the crack was propagated near threshold stress intensity. Beevers demonstrated that fatigue fracture surfaces contact each other during unloading even under tension-tension cycling. Kanninen and Atkinson also reached the conclusion that the compressive stress acting at the crack tip due to residual plasticity can induce closure. Microstructural effects have also been cited as important factors in near threshold crack growth. It is generally accepted that coarser grains have a beneficial effect on the resistance to the near threshold crack propagation

  16. Towards a quantification of stress corrosion mechanisms: numerical simulations of hydrogen-dislocations at the very crack tip; Vers une quantification des mecanismes de corrosion sous contrainte: simulations numeriques des interactions hydrogene-dislocations en pointe de fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chateau, J.P

    1999-01-05

    We discuss the respective roles played by anodic dissolution and hydrogen in SCC mechanisms of f.c.c. materials, by studying the fracture of copper in nitrite for which we compare the results with that previously obtained in 316L steel in hot chloride. It is surprising to note that even the crystallographies at the scale of the micron are different, the macroscopic inclination of the fracture surfaces are the same. In the case of 316L steel, the formation of strong pile-ups in the presence of hydrogen leads to a zigzag fracture along alternated slip planes in the most general case. In the absence of hydrogen, as in copper, this mechanism effectively disappears. Furthermore, numerical simulations of crack shielding by dislocations emitted on one plane predict the macroscopic inclination. It shows that it is due to the mere dissolution which confines slip activity at the very crack tip in f.c.c. materials. In order to quantify the mechanism involved in 316L steel, we developed simulations which numerically solve the coupled diffusion and elasticity equations for hydrogen in the presence of a crack and shielding dislocations. They reproduce the mechanisms of hydrogen segregation on edge dislocations and of a localised softening effect by decreasing pair interactions. These mechanisms lead to i) a localisation of hydrogen embrittlement along the activated slip planes, ii) an increase of the dislocation density in pile-ups, and iii) a decrease of the cross slip probability. These three factors enhance micro-fracture at the head of a pile-up, which is responsible of thezigzag fracture. Introducing the free surface effects for hydrogen, we point out a new mechanism: the inhibition of dislocation sources at the crack tip, which is relevant with the brittle fracture surfaces observed in some cases in 316L steel. The quantification of these different mechanisms allows to give a relation between the local fracture possibility and the macroscopic parameters. A general law for

  17. Evaluation Model for Restraint Effect of Pressure Induced Bending on the Plastic Crack Opening of Circumferential Through-Wall-Crack

    International Nuclear Information System (INIS)

    Kim, Jin-Weon

    2006-01-01

    Most of the pipe crack evaluation procedures, including leak-before-break (LBB) analysis, assume that the cracked pipe subjected to remote bending or internal pressure is free to rotate. In this case, the pressure induced bending (PIB) enhances crack opening of a through-wall-crack (TWC) in a pipe. In a real piping system, however, the PIB will be restrained because the ends of the pipe are constrained by the rest of the piping system. Hence, the amount of restraint affects the crack opening of a TWC in a pipe, and the restraint effect on crack opening directly affects the results of LBB evaluation. Therefore, it is necessary to investigate the restraint effect of PIB on crack opening displacement (COD) to quantify the uncertainties in current analysis procedures and to ensure the application of LBB concepts to nuclear piping systems. Recently, several researches were conducted to investigate the restraint effect of PIB on COD, and they proposed a simplified model to evaluate COD under restrained conditions. However, these results are quite limited because the restraint effect was evaluated only in terms of linear-elastic crack opening. In practice, the TWC in a pipe behaves plastically under normal operating loads, and the current LBB analysis methodologies require elastic-plastic crack opening evaluation. Therefore, this study evaluates the restraint effect of PIB on the plastic crack opening of a TWC in a pipe using finite element analysis under various influencing parameters. Based on these results, a closed-from model to be able to estimate the restraint effect of PIB on plastic crack opening is proposed

  18. Technique to eliminate helium induced weld cracking in stainless steels

    International Nuclear Information System (INIS)

    Chin-An Wang; Chin, B.A.

    1992-01-01

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials

  19. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Li, H.; Yu, X.L.; Zhou, Y.; Duan, S.W.; Li, S.Z.; Huang, Z.L.; Zuo, L.S.

    2015-01-01

    Highlights: • LSP can greatly delay crack formation. • The micro-crack growing processes and its fracture are showed clearly. • Surface topographies and crack initiation locations are displayed. - Abstract: A series of contrasting experiments were carried out to examine the effects of laser shock processing (LSP) on fatigue properties of slot in 7075-T6 aluminum alloy plate. Both side surfaces of slot were subjected to LSP. The surface topographies were observed and the residual stresses were tested. The treated and the un-treated specimens were pulled by the fatigue cyclic loading respectively. The fatigue crack propagating processes were recorded, and the fatigue fracture microscopic morphologies were analyzed by scanning electron microscope (SEM). Experimental results and analyses show that LSP induces micro-dent on surface and squeezes the compressive residual stresses into surface layer of specimen. It can remarkably delay the micro-crack formation, and transfer the location of fatigue crack initiation from top surface to sub-surface. The spacing of fatigue striations on the treated specimen fatigue fracture obviously decreases. Therefore, the fatigue life of specimen after LSP treatment significantly increases

  20. Environmental Fatigue Behaviors of CF8M Stainless Steel in 310 .deg. C Deoxygenated Water - Effects of Hydrogen and Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Cho, Pyungyeon; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kim, Tae Soon [Korea Hydro and Nuclear Power Corporation, Seoul (Korea, Republic of)

    2014-01-15

    The effects of environment and microstructure on low cycle fatigue (LCF) behaviors of CF8M stainless steels containing 11% of ferrites were investigated in a 310 .deg. C deoxygenated water environment. The reduction of LCF life of CF8M in a 310 .deg. C deoxygenated water was smaller than 316LN stainless steels. Based on the microstructure and fatigue surface analyses, it was confirmed that the hydrogen induced cracking contributed to the reduction in LCF life for CF8M as well as for 316LN. However, many secondary cracks were found on the boundaries of ferrite phases in CF8M, which effectively reduced the stress concentration at the crack tip. Because of the reduced stress concentration, the accelerated fatigue crack growth by hydrogen induced cracking was less significant, which resulted in the smaller environmental effects for CF8M than 316LN in a 310 .deg. C deoxygenated water.

  1. Iodine induced stress corrosion cracking of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Brunisholz, L.; Lemaignan, C.

    1984-01-01

    Iodine is considered as one of the major fission products responsible for PCI failure of Zry cladding by stress corrosion cracking (SCC). Usual analysis of SCC involves both initiation and growth as sequential processes. In order to analyse initiation and growth independently and to be able to apply the procedures of fracture mechanics to the design of cladding, with respect to SCC, stress corrosion tests of Zry cladding tubes were undertaken with a small fatigue crack (approx. 200 μm) induced in the inner wall of each tube before pressurization. Details are given on the techniques used to induce the fatigue crack, the pressurization test procedure and the results obtained on stress releaved or recrystallized Zry 4 tubings. It is shown that the Ksub(ISCC) values obtained during these experiments are in good agreement with those obtained from large DCB fracture mechanics samples. Conclusions will be drawn on the applicability of linear elastic fracture mechanics (LEFM) to cladding design and related safety analysis. The work now underway is aimed at obtaining better understanding of the initiation step. It includes the irradiation of Zry samples with heavy ions to simulate the effect of recoil fragments implanted in the inner surface of the cladding, that could create a brittle layer of about 10 μm

  2. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    Science.gov (United States)

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  3. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  4. A fractographic distinction between hydride cracking and stress corrosion cracking in zircaloys

    International Nuclear Information System (INIS)

    Cox, B.

    1978-06-01

    The fractographic details of SCC and delayed hydride failures are compared by scanning and replica electron microscopy. It is shown that there are distinct features ascribable to the fracture of hydride platelets which are absent from SCC fractures and which distinguish them from fractures produced by delayed hydride cracking. (author)

  5. An elastic-plastic fracture mechanics based methodology to characterize cracking behavior and its application to environmental assisted processes

    International Nuclear Information System (INIS)

    Alvarez, J.A.; Gutierrez-Solana, F.

    1999-01-01

    Cracking processes suffered by new structural and piping steels when used in petroleum or other energy installations have demonstrated the need for a cracking resistance characterization methodology. This methodology, valid for both elastic and elastoplastic regimes, should be able to define crack propagation kinetics as a function of their controlling local parameters. This work summarizes an experimental and analytical methodology that has been shown to be suitable for characterizing cracking processes using compact tensile specimens, especially subcritical environmentally assisted ones, such as those induced by hydrogen in microalloyed steels. The applied and validated methodology has been shown to offer quantitative results of cracking behavior and to correlate these with the existing fracture micromechanisms. (orig.)

  6. Prediction of Cracking Induced by Indirect Actions in RC Structures

    Science.gov (United States)

    Anerdi, Costanza; Bertagnoli, Gabriele; Gino, Diego; Malavisi, Marzia; Mancini, Giuseppe

    2017-10-01

    Cracking of concrete plays a key role in reinforced concrete (RC) structures design, especially in serviceability conditions. A variety of reasons contribute to develop cracking and its presence in concrete structures is to be considered as almost unavoidable. Therefore, a good control of the phenomenon in order to provide durability is required. Cracking development is due to tensile stresses that arise in concrete structures as a result of the action of direct external loads or restrained endogenous deformations. This paper focuses on cracking induced by indirect actions. In fact, there is very limited literature regarding this particular phenomenon if compared to its high incidence in the construction practice. As a consequence, the correct prediction of the crack opening, width and position when structures are subjected to imposed deformations, such as massive castings or other highly restrained structures, becomes a compelling task, not so much for the structural capacity, as for their durability. However, this is only partially addressed by commonly used design methods, which are usually intended for direct actions. A set of non-linear analysis on simple tie models is performed using the Finite Element Method in order to study the cracking process under imposed deformations. Different concrete grades have been considered and analysed. The results of this study have been compared with the provisions of the most common codes.

  7. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    International Nuclear Information System (INIS)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm 2 ) Type 304 SS specimens in 289 0 C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s)

  8. Smeared crack modelling approach for corrosion-induced concrete damage

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie Anusha; Michel, Alexander; Stang, Henrik

    2017-01-01

    In this paper a smeared crack modelling approach is used to simulate corrosion-induced damage in reinforced concrete. The presented modelling approach utilizes a thermal analogy to mimic the expansive nature of solid corrosion products, while taking into account the penetration of corrosion...... products into the surrounding concrete, non-uniform precipitation of corrosion products, and creep. To demonstrate the applicability of the presented modelling approach, numerical predictions in terms of corrosion-induced deformations as well as formation and propagation of micro- and macrocracks were......-induced damage phenomena in reinforced concrete. Moreover, good agreements were also found between experimental and numerical data for corrosion-induced deformations along the circumference of the reinforcement....

  9. Hydrogen fracture toughness tester completion

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  10. Light-induced defect creation in hydrogenated polymorphous silicon

    International Nuclear Information System (INIS)

    Morigaki, K.; Takeda, K.; Hikita, H.; Roca i Cabarrocas, P.

    2005-01-01

    Light-induced defect creation in hydrogenated polymorphous silicon (pm-Si:H) is investigated from electron spin resonance measurements and is compared with that in hydrogenated amorphous silicon (a-Si:H). Light-induced defect creation occurs at room temperature similarly for both types of films prepared at 250 deg. C. Thermal annealing of light-induced defects is also investigated as a function of temperature. Different behaviours of annealing characteristics for pm-Si:H from those for a-Si:H are observed and discussed. In particular, we observed a decrease of the light-induced defect creation efficiency with repeated light-soaking-annealing cycles and discuss it with respect to the hydrogen bonding in pm-Si:H films

  11. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  12. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  13. Purifying oils, cracking oils, catalysts. [British Patent

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-05

    Hydrocarbon oils are refined by treating while substantially in the liquid phase between 200/sup 0/ and 400/sup 0/C with a phosphoric acid catalyst deposited on metallurgical coke, a suitable blast furnace slag, silica gel or other carrier with similar properties, until the objectionable components are converted into innocuous substances by polymerization cracking, isomerization and/or alkylation. By this treatment the bromine number is reduced, the end-point of the A.S.T.M. distillation is increased, the octane number is raised, mercaptans are converted to hydrogen sulphide and olefines, thioethers and thiophenes are converted to mereaptans, and the initial boiling point is lowered. The process is applicable to gasoline, cracked distillate, kerosine and lubricating oil, obtained by distilling or cracking petroleum, shale and hydrogenated oils; and is particularly applicable for stabilizing cracked distillates.

  14. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  15. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm/sup 2/) Type 304 SS specimens in 289/sup 0/C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s).

  16. Stress Corrosion Cracking of alloy 600 in high temperature water: a study of mechanisms

    International Nuclear Information System (INIS)

    Boursier, J.M.; Bouvier, O. de; Gras, J.M.; Noel, D.; Vaillant, F.; Rios, R.

    1992-12-01

    Investigations of the stress corrosion cracking behaviour of Alloy 600 tubing in high temperature water were performed in order to get a precise knowledge of the different stages of the cracking and their dependence on various parameters. The compatibility of the results with the main mechanisms to be considered was examined. Results showed three stages in the cracking: a true incubation time, a slow-rate propagation period followed by a rapid-propagation stage. Tests separating stress and strain rate contributions show that the strain rate is the main parameter which controls the crack propagation. The hydrogen overpressure was found to increase the crack growth rate up to 1-4 bar, but a strong decrease is observed from 4 to 20 bar. Analysis of the hydrogen ingress in the metal showed that it is neither correlated to the hydrogen overpressure nor to the severity of cracking; so cracking resulting from an hydrogen-model is unlikely. No detrimental effect of oxygen (4 bar) was noticed both in the mill-annealed and the sensitized conditions. Finally, none of the classical mechanisms, neither hydrogen-assisted cracking nor slip-step dissolution, can correctly describe the observed behaviour. Some fractographic examinations, and an influence of primary water on the creep rate of Alloy 600, lead to consider that other recent mechanisms, involving an interaction between dissolution and plasticity, have to be considered

  17. Low temperature hydrogen embrittlement of niobium. II. Microscopic observations

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Birnbaum, H.K.

    1977-01-01

    The detailed, microscopic processes which occur during the hydrogen embrittlement of pure Nb are examined using in situ SEM crack propagation studies, SEM fractography, electron diffraction and ion probe methods. These results show that the fracture process occurs in a stress induced NbH hydride phase which forms in front of the propagating crack. The experimental results are in good agreement with the stress induced hydride embrittlement mechanism which is discussed. The thermodynamics of precipitation of hydrides under external stress is discussed and calculations are presented for the stress effects on the α-β solvus temperatures. These are related to the embrittlement process and evidence is presented to support the calculated stress effects on the solvus temperature

  18. The Effect of Crack Width on Chloride-Induced Corrosion of Steel in Concrete

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2017-01-01

    Full Text Available When subjected to loading or thermal shrinkage, reinforced concrete structures usually behave in a cracking state, which raises the risk of bar corrosion from the working environment. The influence of cover cracking on chloride-induced corrosion was experimentally investigated through a 654-day laboratory test on cracked reinforced concrete specimens exposed to chloride solution. The concrete specimens have a dimension of 100 mm × 100 mm × 400 mm and a single prefabricated crack at the midspan. When the percentage concentration of chloride ion (0.6%, 1.2%, 2.1%, 3.0%, and 6.0% and crack width (uncracked, 0.2, 0.3, 0.4, and 0.5 mm are taken as variables, the experimental results showed that the corrosion rates for cracked specimens increased with increasing percentage concentration of chloride and increasing crack width. This study also showed the interrelationship between crack width and percentage concentration of chloride on the corrosion rate. In addition, an empirical model, incorporating the influence of the cover cracking and chloride concentration, was developed to predict the corrosion rate. This model allows the prediction of the maximum allowable wcr based on the given percentage concentration of chloride in the exposure condition.

  19. Detection and Analysis of Enamel Cracks by Quantitative Light-induced Fluorescence Technology.

    Science.gov (United States)

    Jun, Mi-Kyoung; Ku, Hye-Min; Kim, Euiseong; Kim, Hee-Eun; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The ability to accurately detect tooth cracks and quantify their depth would allow the prediction of crack progression and treatment success. The aim of this in vitro study was to determine the capabilities of quantitative light-induced fluorescence (QLF) technology in the detection of enamel cracks. Ninety-six extracted human teeth were selected for examining naturally existing or suspected cracked teeth surfaces using a photocuring unit. QLF performed with a digital camera (QLF-D) images were used to assess the ability to detect enamel cracks based on the maximum fluorescence loss value (ΔFmax, %), which was then analyzed using the QLF-D software. A histologic evaluation was then performed in which the samples were sectioned and observed with the aid of a polarized light microscope. The relationship between ΔFmax and the histology findings was assessed based on the Spearman rank correlation. The sensitivity and specificity were calculated to evaluate the validity of using QLF-D to analyze enamel inner-half cracks and cracks extending to the dentin-enamel junction. There was a strong correlation between the results of histologic evaluations of enamel cracks and the ΔFmax value, with a correlation coefficient of 0.84. The diagnostic accuracy of QLF-D had a sensitivity of 0.87 and a specificity of 0.98 for enamel inner-half cracks and a sensitivity of 0.90 and a specificity of 1.0 for cracks extending to the dentin-enamel junction. These results indicate that QLF technology would be a useful clinical tool for diagnosing enamel cracks, especially given that this is a nondestructive method. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Oxidation induced crack healing of Cr2(Al,Si)C max phase ceramic

    NARCIS (Netherlands)

    Shen, L.; Li, S.B.; Van der Zwaag, S.; Sloof, W.G.

    2013-01-01

    The oxidation crack healing of Cr2AlC and Cr2(Al,Si)C was studied and compared with known healing of Ti2AlC. The oxidation induced crack healing of Ti2AlC is relatively fast and leads to full strength recovery, but the oxidation product contains besides ?-Al2O3 also undesired TiO2. However, when

  1. Investigation of Non-Uniform Rust Distribution and Its Effects on Corrosion Induced Cracking in Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Sutrisno Wahyuniarsih

    2017-01-01

    Full Text Available Uniform corrosion still widely used by a lot of researchers and engineers to analyze the corrosion induced cracking. However, in practice, corrosion process occurred non-uniformly. The part nearest to the exposed surface is more likely to have faster corrosion initiation compared with other regions. This research is mainly focused on investigating the effect of non-uniform rust distribution to cover cracking in reinforced concrete. An experimental test performed using accelerated corrosion test by using 5% NaCl solution and applied a constant electric current to the concrete samples. The rust distribution and measurement were observed by using a digital microscope. Based on the experimental result, it was found that the rust was distributed in a non-uniform pattern. As a result, the cracks also formed non-uniformly along the perimeter of steel bar. At the last part of this paper, a simulation result of concrete cracking induced by non-uniform corrosion is presented. The result compared with a simulation using uniform corrosion assumption to investigate the damage pattern of each model. The simulation result reveals stress evolution due to rust expansion which leads to concrete cracking. Furthermore, a comparison of stresses induced by non-uniform corrosion and uniform corrosion indicates that non-uniform corrosion could lead to earlier damage to the structure which is specified by the formation and propagation of the crack.

  2. Cracking of GaN on sapphire from etch-process-induced nonuniformity in residual thermal stress

    International Nuclear Information System (INIS)

    Lacroix, Yves; Chung, Sung-Hoon; Sakai, Shiro

    2001-01-01

    An experiment was performed to explain the appearance of cracks along mesa structures during the processing of GaN device layers grown on sapphire substrates. Micro-Raman spectroscopy was used to measure the position-dependent stress in the GaN layer. We show evidence that the stress at the interface with the substrate may be larger along the mesa structures than that of the as-grown layer, and that this increase in stress can be enough to induce cracks along mesa structures during processing. We report on the formation of cracks that propagate guided by the nonuniformity of the stress induced by the formation of mesa structures in the GaN layer, independent of crystal direction. The understanding of cracking mechanisms has implications in GaN-based device structures that require heteroepitaxial growth of layers with different lattice size and thermal expansion coefficients. [copyright] 2001 American Institute of Physics

  3. Hydrogen-induced electrical and optical switching in Pd capped Pr ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. In this study, modification in the properties of hydrogen-induced switchable mirror based on Pr nanoparticle layers is reported. The reversible changes in hydrogen-induced electrical and optical properties of Pd capped Pr nanoparticle layers have been studied as a function of hydrogenation time and compared.

  4. Hydrogen embrittlement of titanium tested with fracture mechanics specimens

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Rahko, P.

    1990-11-01

    Titanium is one of the possible canister materials for spent nuclear fuel. The aim of this study is to determine whether the hydrogen embrittlement of titanium could be a possible deterioration mechanism of titanium canisters. This experimental study was preceded by a literature review and an experimental study on crack nucleation. Tests in this study were carried out with hydrogen charged fracture mechanics specimens. The studied hydrogen contents were as received, 100 ppm, 200 ppm, 500 ppm and 700 ppm and the types of the studied titanium were ASTM Grades 2 and 12. Test methods were slow tensile test (0.027 mm/h) and fatigue test (stress ratio 0.7 or 0.8 and frequency 5 Hz). According to the literature titanium may be embrittled by hydrogen at slow strain rates and cracking may occur under sustained load. In this study no evidence of hydrogen embrittlement was noticed in slow strain rate tension with bulk hydrogen contents up to 700 ppm. The fatigue tests of titanium Grades 2 and 12 containing 700 ppm hydrogen showed even slower crack growth compared to the as received condition. Very high hydrogen contents well in eccess of 700 ppm on the surface of titanium can, however, facilitate surface crack nucleation and crack growth, as shown in the previous study

  5. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-03-01

    Full Text Available Quenched and Tempered (Q&T steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC in the heat affected zone (HAZ after welding. The use of austenitic stainless steel (ASS consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW and Flux cored arc welding (FCAW were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  6. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  7. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  8. Hydrogen diffusion into fatigue cracks of aluminium alloy 6013 in a corrosive environment; Wasserstoffeinlagerung an Ermuedungsrissen der Aluminiumlegierung 6013 unter korrosiver Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Christian Alexander

    2009-08-13

    The author attempted a time-resolved detection of raised hydrogen concentrations in the plastic deformation region of fatigue cracks in an aluminium test piece deformed by cyclic stress in a corrosive environment. Mechanical material parameters like the crack propagation velocity under cyclic stress change dramatically in a corrosive environment. This is assumed to be caused by hydrogen diffusion, but so far there is no method that reliably measures additional hydrogen from the corrosive environment. For this reason, a special analytical configuration was set up which makes use of the thermal desorption method. First, chips with a thickness of about 20 micrometers are sawed out of the test specimen in high-vacuum conditions. The chips fall into a hot melting vessel in a UHV chamber, where the hydrogen contained in the chips is released. The resulting pressure increase is recorded by a mass spectrometer. A hydrogen profile of the test specimen is obtained by assigning the chip position to the signal. For the corrosive medium in which the test specimen is immersed during crack initiation, i.e. NaCl solution, heavy water was used. This makes it possible to distinguish between the hydrogen contained in a piece of technical aluminium alloy (AA6013) and the deuterium diffusing in from the corrosive fluid. The deuterium is found exclusively in the test piece volume in the strongly plastically deformed region surrounding the fatigue crack. (orig.) [German] Das Ziel der vorliegenden Arbeit besteht im ortsaufgeloesten Nachweis einer erhoehten Wasserstoffkonzentration im plastisch deformierten Bereich von Ermuedungsrissen einer unter korrosiver Umgebung zyklisch verformten Aluminiumprobe. Mechanische Materialparameter wie z.B. die Rissausbreitungsgeschwindigkeit unter zyklischer Belastung aendern sich drastisch in korrosiver Umgebung. Als Ursache fuer dieses Verhalten wird eine Eindiffusion von Wasserstoff vermutet, jedoch gibt es bisher keine Messung die den zusaetzlichen

  9. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  10. Factors that lead to the use of crack cocaine in combination with marijuana in Brazil: a qualitative study

    OpenAIRE

    Gon?alves, Janaina R.; Nappo, Solange A.

    2015-01-01

    Background In Brazil, crack cocaine use remains a healthcare challenge due to the rapid onset of its pleasurable effects, its ability to induce craving and addiction, and the fact that it is easily accessible. Delayed action on the part of the Brazilian Government in addressing the drug problem has led users to develop their own strategies for surviving the effects of crack cocaine use, particularly the drug craving and psychosis. In this context, users have sought the benefits of combining c...

  11. Influence of fatigue crack wake length and state of stress on crack closure

    Science.gov (United States)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  12. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  13. Electron beam induced fluorescence measurements of the degree of hydrogen dissociation in hydrogen plasmas

    NARCIS (Netherlands)

    Smit, C.; Brussaard, G.J.H.; de Beer, E.C.M.; Schram, D.C.; Sanden, van de M.C.M.

    2004-01-01

    The degree of dissociation of hydrogen in a hydrogen plasma has been measured using electron beam induced fluorescence. A 20 kV, 1 mA electron beam excites both the ground state H atom and H2 molecule into atomic hydrogen in an excited state. From the resulting fluorescence the degree of

  14. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  15. Prediction of long term crevice corrosion and hydrogen embrittlement behavior of ASTM grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Jain, H.

    1984-01-01

    Crevice corrosion and hydrogen embrittlement are potential failure modes of Grade-12 titanium high-level nuclear waste containers emplaced in rock salt repositories. A method is presented to estimate the environment domains for which immunity to these failure modes will exist for periods of hundreds of years. The estimation is based on the identification and quantification of mechanisms involved. Macroscopic concentration cell formation is responsible for crevice corrosion. The cell formation is accompanied by oxygen depletion, potential drop, anion accumulation and acidification inside the crevice. This process is quantified by simple mass balance equations which show that the immunity domain is a function of the time the container is exposed to the corrosion environment. Strain induced hydride formation is responsible for hydrogen assisted crack initiation. A simple model for slow crack growth is developed using data on growth rates measured at various temperatures. The parameters obtained in the model are used to estimate the threshold stress intensity and hydrogen solubility limit in the alloy at infinite container service time. This value gives a crack size below which container failure will not occur for a given applied stress and hydrogen concentration, and a hydrogen concentration limit at a given stress intensity. 37 references, 5 figures, 4 tables

  16. A Failure Locus for Hydrogen Assisted Failure

    DEFF Research Database (Denmark)

    Fuentes-Alonso, Sandra; Harris, Zach D.; Burns, James T.

    2017-01-01

    of a hydrogen-dependent traction separation law. A special control algorithm is employed to overcome numerical instabilities intrinsically associated with cohesive zone formulations. The fracture energy is degraded by means of an experimentally-motivated hydrogen degradation relation. Numerical results provide...... important insight into the failure process, enabling to identify critical values of hydrogen concentration and remote stresses that trigger cracking. The work builds upon previous works by the authors and brings important insight into the technologically important problem of hydrogen assisted cracking....

  17. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  18. Delay induced stability switch, multitype bistability and chaos in an intraguild predation model.

    Science.gov (United States)

    Shu, Hongying; Hu, Xi; Wang, Lin; Watmough, James

    2015-12-01

    In many predator-prey models, delay has a destabilizing effect and induces oscillations; while in many competition models, delay does not induce oscillations. By analyzing a rather simple delayed intraguild predation model, which combines both the predator-prey relation and competition, we show that delay in intraguild predation models promotes very complex dynamics. The delay can induce stability switches exhibiting a destabilizing role as well as a stabilizing role. It is shown that three types of bistability are possible: one stable equilibrium coexists with another stable equilibrium (node-node bistability); one stable equilibrium coexists with a stable periodic solution (node-cycle bistability); one stable periodic solution coexists with another stable periodic solution (cycle-cycle bistability). Numerical simulations suggest that delay can also induce chaos in intraguild predation models.

  19. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Philipp J. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Faculty of Medicine, University of Heidelberg, Heidelberg (Germany); Park, Henry S. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Knisely, Jonathan P.S. [Department of Radiation Medicine, North Shore University Hospital, Manhasset, New York (United States); Chiang, Veronica L. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Vortmeyer, Alexander O., E-mail: alexander.vortmeyer@yale.edu [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States)

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  20. Crack propagation under thermal cycling loading inducing a thermal gradient in the specimen thickness

    International Nuclear Information System (INIS)

    Le, H.N.

    2009-05-01

    This study aims to figure out the crack growth phenomenon by thermal fatigue induced by thermal gradient through thickness of specimen. Firstly, an experimental facility has been developed: a rectangular parallelepiped specimen is subjected to thermal cycling between 350 C and 100 C; the specimen is freed to expand and contract. Two semi-circular notches (0,1 mm depth and 4 mm length) have been machined on the surface of the specimen. A series of interrupted tests has been carried out to characterize and quantify the crack growth in depth and surface of the pre-existing crack. Next, a three-dimensional crack growth simulation has been implemented in ABAQUS. Automation using Python was used to simulate the propagation of a crack under thermal cycling, with re-meshing at crack front after each calculation step. No assumption has been taken on the crack front during the crack propagation. A comparison with test results showed very good agreement on the evolution of crack front shape and on the kinetics of propagation on the edge and the heart of pre-existing crack. An analytical approach was also developed based on the calculation of stress intensity factors (SIC). A two-dimensional approach was first introduced enabling us to better understand the influence of various thermal and geometric parameters. Finally, a three dimensional approach, with an elliptical assumption crack shape during the propagation, leading to a prediction of crack growth on the surface and in depth which is very similar to that obtained numerically, but with computational time much lower. (author)

  1. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation

    Directory of Open Access Journals (Sweden)

    Keming Sun

    2016-03-01

    Full Text Available Shale gas reservoirs are different from conventional ones in terms of their bedding architectures, so their hydraulic fracturing rules are somewhat different. In this paper, shale hydraulic fracturing tests were carried out by using the triaxial hydraulic fracturing test system to identify the effects of natural bedding directions on the crack propagation in the process of hydraulic fracturing. Then, the fracture initiation criterion of hydraulic fracturing was prepared using the extended finite element method. On this basis, a 3D hydraulic fracturing computation model was established for shale gas reservoirs. And finally, a series of studies were performed about the effects of bedding directions on the crack propagation created by hydraulic fracturing in shale reservoirs. It is shown that the propagation rules of hydraulically induced fractures in shale gas reservoirs are jointly controlled by the in-situ stress and the bedding plane architecture and strength, with the bedding direction as the main factor controlling the crack propagation directions. If the normal tensile stress of bedding surface reaches its tensile strength after the fracturing, cracks will propagate along the bedding direction, and otherwise vertical to the minimum in-situ stress direction. With the propagating of cracks along bedding surfaces, the included angle between the bedding normal direction and the minimum in-situ stress direction increases, the fracture initiation and propagation pressures increase and the crack areas decrease. Generally, cracks propagate in the form of non-plane ellipsoids. With the injection of fracturing fluids, crack areas and total formation filtration increase and crack propagation velocity decreases. The test results agree well with the calculated crack propagation rules, which demonstrate the validity of the above-mentioned model.

  2. Noise transmission and delay-induced stochasticoscillations in biochemical network motifs

    Institute of Scientific and Technical Information of China (English)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Fumihiko Sakata

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations,we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation.We systematically analyse the effects of time delays,the feedback mechanism,and biological stochasticity on the power spectra.It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator.Delay-induced stochastic resonance can be expected,which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations.Through the analysis of the power spectrum,a new approach is proposed to estimate the oscillation period.

  3. Stress corrosion cracking of alloy 600 in water at high temperature: contribution to a phenomenological approach to the understanding of mechanisms

    International Nuclear Information System (INIS)

    Abadie, Pascale

    1998-01-01

    This research thesis aims at being a contribution to the understanding of mechanisms of stress corrosion cracking of an alloy 600 in water at high temperature. More precisely, it aimed at determining, by using quantitative data characterizing cracking phenomenology, which mechanism(s) is (are) able to explain crack initiation and crack growth. These data concern quantitative characterization of crack initiation, of crack growth and of the influence of two cracking parameters (strain rate, medium hydrogen content). They have been obtained by quantifying cracking through the application of a morphological model. More precisely, these data are: evolution of crack density during a tensile test at slow rate, value of initial crack width with respect to grain boundary length, and relationship between crack density and medium hydrogen content. It appears that hydrogen absorption seems to be involved in the crack initiation mechanism. Crack growth mechanisms and crack growth rates are also discussed [fr

  4. Simulation Analysis of the Mutual Influence of the Stress Intensity Factor on the Multiple Blisters Caused by Hydrogen Induced Damage

    Science.gov (United States)

    Ji, Congwei; Zhang, Shaojie; Wang, Hehui

    2018-03-01

    Hydrogen blisters are taken as the research object by using the finite element software ABAQUS. The stress intensity factors of blister cracks are numerically calculated at varying depths and different edge distances for established three-dimensional finite element models of single-blister and double-blisters, respectively. The mutual influence of the stress intensity factors of the multiple blisters is obtained. It shows that the blister crack is easier to expand when the crack is closer to inner wall of the cylinder. What’s more, the crack growth rate increases firstly and then decreases as the increasing of the distance between two blisters cracks. The investigated result is of great reference value for predicting the trend of blister crack growth.

  5. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  6. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  7. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  8. Producing light hydrocarbons by destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Fohlen, J H

    1928-06-20

    A method of obtaining light hydrocarbons from fuels and natural or industrial carbonaceous materials by cracking under pressure from 5 to 200 atmospheres and within a temperature range of 200 to 1,000/sup 0/C, the cracking operation being assisted by the presence of catalysts such as metallic halides, simultaneously, with hydrogenation by means of nascent hydrogen in the reaction chamber.

  9. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  10. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  11. Proposal of guideline for bonding to prevention of hydrogen embrittlement at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was investigated with respect to the hydrogen content and applied stress in order to propose a guideline for the explosive bonding procedure to prevention of hydrogen embrittlement. Hydrogen charging test was conducted for SUS304ULC/Ta/Zr explosive bonded joints applied the different flexural strains. A hydrogen embrittlement crack occurred in the Zr substrate at Ta/Zr bond interface after hydrogen charging, and it was initiated at shorter charging times when the augmented strain was increased. The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was shifted to lower stress and hydrogen content with an increase in the amount of explosive during bonding. It was suggested that hydrogen embrittlement in Ta/Zr explosive bonded joint could be inhibited by reducing the initial hydrogen content in Ta substrate less than approx. 5 ppm. (author)

  12. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  13. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  14. Determination of hydrogen permeation using metallic sensors of construction similar to bimetallic thermocouples; Determinacao de permeacao de hidrogenio utilizando sensores metalicos de construcao similar a termopares bimetalicos

    Energy Technology Data Exchange (ETDEWEB)

    Maul, Alexandre M. [Ministerio de Ciencia e Tecnologia (MCT), Brasilia, DF (Brazil). Programa de Pos-graduacao em Engenharia e Processos (PIPE- PRH-24/ANP); Ponte, Haroldo A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Correa, Luiz A. [Metaldata Tecnologia de Materiais, Curitiba, PR (Brazil)] (in Memoriam)

    2004-07-01

    Crude oils range in consistency from water to tar-like solids, and in color from clear to black. An average crude oil contains about 84 percent carbon, 14 percent hydrogen, 1 to 3 percent sulfur, and less than 1 percent each of nitrogen, oxygen, metals, and salts. Crude oils are generally classified as paraffinic, naphthenic, or aromatic based on the predominant proportion of similar hydrocarbon molecules. Refinery crude base stocks usually consist of mixtures of two or more different crude oils. Many corrosive processes found in machines, equipment and pipes used in the petroleum industry are directly influenced by hydrogen. The structural damages are caused by hydrogen inclusion in metallic structures, generated by acid media that contain free protons (H{sup +}), by chemical processes that lead to the protons formation, by formation of atomic hydrogen (H0) or even by adsorbed gas hydrogen (H2). The structural damages are varied: hydrogen induced cracking (HIC), blistering, stress corrosion cracking (SSC), stress oriented hydrogen induced cracking (SOHIC). The main problem found in practice is how to detect, in a safe, fast and economically viable way, the formation of hydrogen close to a surface subjected to hydrogen permeation. Within this work, we built a cell for hydrogen generation/permeation to study and evaluate a new hydrogen sensor. This new sensor is composed of two parts, each one build with a couple of dissimilar materials, being a sensor couple, for hydrogen flux measurement, and a reference couple, for temperature corrections. In this sensor, the changes in some physical properties are related with the flow of permeated hydrogen. The results using a prototype model showed good agreement with a traditional Devanathan-Stachurski sensor. (author)

  15. On hydrogen-induced plastic flow localization during void growth and coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2007-11-15

    Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)

  16. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanlei [Materials; amp, Department; NorthEast; Omenya, Fredrick [NorthEast; Yan, Pengfei [Environmental; Luo, Langli [Environmental; Whittingham, M. Stanley [NorthEast; Wang, Chongmin [Environmental; Zhou, Guangwen [Materials; amp, Department; NorthEast

    2017-10-20

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor for the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.

  17. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    International Nuclear Information System (INIS)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T.

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, [3H]glutamate and [3H]glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of [3H]quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus

  18. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  19. Stress corrosion cracking of highly irradiated 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko; Nakajima, Nobuo; Furutani, Gen [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Mechanical property tests, grain boundary (GB) composition analysis and slow strain rate test (SSRT) in simulated PWR primary water changing dissolved hydrogen (DH) and dissolved oxygen (DO) content were carried out on cold-worked (CW) 316 stainless steels which were irradiated to 1-8x10{sup 26} n/m{sup 2} (E>0.1 MeV) in a Japanese PWR in order to evaluate irradiation-assisted stress corrosion cracking (IASCC) susceptibility. Highly irradiated stainless steels were susceptible to intergranular stress corrosion cracking (IGSCC) in both hydrogenated water and oxygenated water and to intergranular cracking in inert gas atmosphere. IASCC susceptibility increased with increasing DH content (0-45 ccH{sub 2}/kgH{sub 2}O). Hydrogen content of the section containing fracture surface was higher than that of the section far from fracture surface. These results suggest that hydrogen would have an important role for IASCC. While mechanical property was saturated, GB segregation and IASCC susceptibility increased with an increase in fluence, suggesting that GB segregation would have a dominant role for an increase in IASCC susceptibility at this high fluence region. (author)

  20. A comparison of the smeared-dislocation and super-dislocation description of a hydrided region in the context of modelling delayed hydride cracking initiation

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    In quantifying the stress distribution within a hydrided region in the context of modelling delayed hydride cracking (DHC) initiation in zirconium alloys, this paper highlights the desirability of accounting for image effects, i.e. the interaction between the hydrided region and any free surface, for example a sharp crack, blunt notch or planar surface. The super-dislocation representation of a finite thickness hydrided region is ideal for accounting for image effects. It also adequately accounts for the finite thickness, t, of a hydrided region provided, as is the case in practice, we are concerned with the stress value within the hydride at distances ≥ 0.25 t from an end of the region. (Author)

  1. Teriparatide Induced Delayed Persistent Hypercalcemia

    Directory of Open Access Journals (Sweden)

    Nirosshan Thiruchelvam

    2014-01-01

    Full Text Available Teriparatide, a recombinant PTH, is an anabolic treatment for osteoporosis that increases bone density. Transient hypercalcemia is a reported side effect of teriparatide that is seen few hours following administration of teriparatide and resolves usually within 16 hours of drug administration. Persistent hypercalcemia, although not observed in clinical trials, is rarely reported. The current case describes a rare complication of teriparatide induced delayed persistent hypercalcemia.

  2. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-01-01

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  3. Irradiation-assisted stress corrosion cracking considerations at temperatures below 288 degree C

    International Nuclear Information System (INIS)

    Simonen, E.P.; Jones, R.H.; Bruemmer, S.M.

    1995-03-01

    Irradiation-assisted stress corrosion cracking (IASCC) occurs above a critical neutron fluence in light-water reactor (LWR) water environments at 288 C, but very little information exists to indicate susceptibility as temperatures are reduced. Potential low-temperature behavior is assessed based on the temperature dependencies of intergranular (IG) SCC in the absence of irradiation, radiation-induced segregation (RIS) at grain boundaries and micromechanical deformation mechanisms. IGSCC of sensitized SS in the absence of irradiation exhibits high growth rates at temperatures down to 200 C under conditions of anodic dissolution control, while analysis of hydrogen-induced cracking suggests a peak crack growth rate near 100 C. Hence from environmental considerations, IASCC susceptibility appears to remain likely as water temperatures are decreased. Irradiation experiments and model predictions indicate that RIS also persists to low temperatures. Chromium depletion may be significant at temperatures below 100C for irradiation doses greater than 10 displacements per atom (dpa). Macromechanical effects of irradiation on strength and ductility are not strongly dependent on temperature below 288 C. However, temperature does significantly affect radiation effects on SS microstructure and micromechanical deformation mechanisms. The critical conditions for material susceptibility to IASCC at low temperatures may be controlled by radiation-induced grain boundary microchemistry, strain localization due to irradiation microstructure and irradiation creep processes. 39 refs

  4. Deterministic estimation of crack growth rates in steels in LWR coolant environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Lu, P.C.; Urquidi-Macdonald, M.

    1995-01-01

    In this paper, the authors extend the coupled environment fracture model (CEFM) for intergranular stress corrosion cracking (IGSCC) of sensitized Type 304SS in light water reactor heat transport circuits by incorporating steel corrosion, the oxidation of hydrogen, and the reduction of hydrogen peroxide, in addition to the reduction of oxygen (as in the original CEFM), as charge transfer reactions occurring on the external surfaces. Additionally, the authors have incorporated a theoretical approach for estimating the crack tip strain rate, and the authors have included a void nucleation model to account for ductile failure at very negative potentials. The key concept of the CEFM is that coupling between the internal and external environments, and the need to conserve charge, are the physical and mathematical constraints that determine the rate of crack advance. The model provides rational explanations for the effects of oxygen, hydrogen peroxide, hydrogen, conductivity, stress intensity, and flow velocity on the rate of crack growth in sensitized Type 304 in simulated LWR in-vessel environments. They propose that the CEFM can serve as the basis of a deterministic method for estimating component life times

  5. A unified model of hydride cracking based on elasto-plastic energy release rate over a finite crack extension

    International Nuclear Information System (INIS)

    Zheng, X.J.; Metzger, D.R.; Sauve, R.G.

    1995-01-01

    A fracture criterion based on energy balance is proposed for elasto-plastic cracking at hydrides in zirconium, assuming a finite length of crack advance. The proposed elasto-plastic energy release rate is applied to the crack initiation at hydrides in smooth and notched surfaces, as well as the subsequent delayed hydride cracking (DHC) considering limited crack-tip plasticity. For a smooth or notched surface of an elastic body, the fracture parameter is related to the stress intensity factor for the initiated crack. For DHC, a unique curve relates the non-dimensionalized elasto-plastic energy release rate with the length of crack extension relative to the plastic zone size. This fracture criterion explains experimental observations concerning DHC in a qualitative manner. Quantitative comparison with experiments is made for fracture toughness and DHC tests on specimens containing certain hydride structures; very good agreement is obtained. ((orig.))

  6. Adjoint method provides phase response functions for delay-induced oscillations.

    Science.gov (United States)

    Kotani, Kiyoshi; Yamaguchi, Ikuhiro; Ogawa, Yutaro; Jimbo, Yasuhiko; Nakao, Hiroya; Ermentrout, G Bard

    2012-07-27

    Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.

  7. Fractures in high-strength bolts due to hydrogen induced stress corrosion. Causes and corrective actions

    International Nuclear Information System (INIS)

    Hoche, Holger; Oechsner, Matthias

    2017-01-01

    Delayed brittle fractures of high-strength bolts of the strength class 10.9 are presented, taking the example of three damage cases. The respective damage mechanisms could be attributed to hydrogen induced stress corrosion which was caused, in turn, by hydrogen absorption during operation. The examples were chosen with a particular focus on the material condition's susceptibility which explains the cause for the occurrence of the damage mechanism. However, in only one of the three cases the susceptibility was evident and could be explained by violations of normative specifications and an unfavorable material choice. Whereas in the two other examples, only slight or no deviations from the standards and/or regulations could be found. The influencing parameters that caused the damage, those that further promoted the damage, as well as possible corrective actions are discussed taking into account the three exemplary damage cases.

  8. Hydrogenation of shale

    Energy Technology Data Exchange (ETDEWEB)

    Bedwell, A J; Clark, E D; Miebach, F W

    1935-09-28

    A process for the distillation, cracking, and hydrogenation of shale or other carbonaceous material consists in first distilling the material to produce hydrocarbon oils. Steam is introduced and is passed downwardly with hydrocarbon vapors from the upper portion of the retort where the temperature is maintained between 400/sup 0/C and 450/sup 0/C over the spent carbonaceous materials. The material is drawn off at the bottom of the retort which is maintained at a temperature ranging from 600/sup 0/C to 800/sup 0/C whereby the hydrocarbon vapors are cracked in the pressure of nascent hydrogen obtained by the action of the introduced steam on the spent material. The cracked gases and undecomposed steam are passed through a catalyst tower containing iron-magnesium oxides resulting in the formation of light volatile oils.

  9. Ultraviolet-induced birefringence in hydrogen-loaded optical fiber

    DEFF Research Database (Denmark)

    Canning, John; Deyerl, Hans-Jürgen; Sørensen, Henrik Rokkjær

    2005-01-01

    for the role of hydrogen and deuterium in the UV-induced process. Previous arguments for the origins are systematically ruled out by reviewing existing literature. We note that the birefringence is made up of at least two components with different thermal stabilities, one consistent simply with molecular...... hydrogen being present in the system. Overall the birefringence, by deduction, is associated with anisotropy in hydrogen reactions within the fiber. As a result they lead, through known mechanisms of dilation in glass, to anisotropic stress relaxation that can be annealed out, with or without hydrogen...

  10. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei, E-mail: xmma@bjut.edu.cn; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  11. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-01-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD 50 ) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in

  12. Stress induced martensite at the crack tip in NiTi alloys during fatigue loading

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2014-10-01

    Full Text Available Crack tip stress-induced phase transformation mechanisms in nickel-titanium alloys (NiTi were analyzed by Digital Image Correlation (DIC, under fatigue loads. In particular, Single Edge Crack (SEC specimens, obtained from a commercial pseudoelastic NiTi sheet, and an ad-hoc experimental setup were used, for direct measurements of the near crack tip displacement field by the DIC technique. Furthermore, a fitting procedure was developed to calculate the mode I Stress Intensity Factor (SIF, starting from the measured displacement field. Finally, cyclic tensile tests were performed at different operating temperature, in the range 298-338 K, and the evolution of the SIF was studied, which revealed a marked temperature dependence.

  13. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    Science.gov (United States)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  14. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR)

    International Nuclear Information System (INIS)

    Fuentes C, P.

    2003-01-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O 2 ; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  15. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    Science.gov (United States)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic

  16. Investigation of moisture-induced embrittlement of iron aluminides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alven, D.A.; Stoloff, N.S. [Rensselaer Polytechnic Inst., Troy, NY (United States). Materials Engineering Dept.

    1997-06-05

    Iron-aluminum alloys with 28 at.% Al and 5 at.% Cr were shown to be susceptible to hydrogen embrittlement by exposure to both gaseous hydrogen and water vapor. This study examined the effect of the addition of zirconium and carbon on the moisture-induced hydrogen embrittlement of an Fe{sub 3}Al,Cr alloy through the evaluation of tensile properties and fatigue crack growth resistance in hydrogen gas and moisture-bearing air. Susceptibility to embrittlement was found to vary with the zirconium content while the carbon addition was found to only affect the fracture toughness. Inherent fatigue crack growth resistance and fracture toughness, as measured in an inert environment, was found to increase with the addition of 0.5 at.% Zr. The combined addition of 0.5 at.% Zr and carbon only increased the fracture toughness. The addition of 1 at.% Zr and carbon was found to have no effect on the crack growth rate when compared to the base alloy. Susceptibility to embrittlement in moisture-bearing environments was found to decrease with the addition of 0.5 at.% Zr. In gaseous hydrogen, the threshold value of the Zr-containing alloys was found to increase above that found in the inert environment while the crack growth resistance was much lower. By varying the frequency of fatigue loading, it was shown that the corrosion fatigue component of the fatigue crack growth rate in an embrittling environment displays a frequency dependence. Hydrogen transport in iron aluminides was shown to occur primarily by a dislocation-assisted transport mechanism. This mechanism, in conjunction with fractography, indicates that the zirconium-containing precipitates act as traps for the hydrogen that is carried along by the dislocations through the lattice.

  17. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    International Nuclear Information System (INIS)

    Ouyang, Y.J.; Yu, G.; Ou, A.L.; Hu, L.; Xu, W.J.

    2011-01-01

    Highlights: → Designed an amperometric hydrogen sensor with double electrolytes. → Explained the principle of determining hydrogen permeation rate. → Verified good stability, reproducibility and correctness of the developed sensor. → Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm -3 KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  18. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  19. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  20. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  1. Cracking susceptibility of stainless steel subjected to plasma disruption

    International Nuclear Information System (INIS)

    Madarame, H.

    1995-01-01

    The similarities and differences in the cracking susceptibility between welding and resolidification after plasma disruption were examined experimentally using a number of primary candidate alloy samples with different chemical compositions. The product of the number density and the average depth of the cracks was measured after simulated disruption, employing a hydrogen ion beam as the heat source, and was compared with the Varestraint test result. An adequate correlation was observed between them, which indicates that the cracking susceptibility during plasma disruption can be well estimated from the welding cracking susceptibility. (orig.)

  2. Influence of a gaseous atmosphere on fatigue crack propagation

    International Nuclear Information System (INIS)

    Henaff, G.

    2002-01-01

    The paper presents a review of the current knowledge on the influence of gaseous atmospheres, and primarily ambient air, on fatigue crack propagation in metallic alloys. Experimental evidence of the effect of exposure to ambient air or any moist environment on fatigue crack propagation in steels is first proposed. The different interacting processes are analyzed so as to clearly uncouple the influence of the various factors on crack growth resistance. Two distinct mechanisms are identified: the adsorption of vapour molecules and hydrogen assisted fracture at crack tip. (author)

  3. Increase of resistance to cracking on stress relieving of hardened steel

    International Nuclear Information System (INIS)

    Velichko, V.V.; Zabil'skij, V.V.; Mikheev, G.M.

    1995-01-01

    Regularities of increase of resistance to cracking during stress relieving of hardened low-alloyed steels were studied, using complex of methods. Effect of carbon, stress concentrator radius, duration and temperature of stress relieving was studies in particular. Results of investigating kinetics of change of physicomechanical properties, hydrogen desorption from hardened specimens showed, that increase of resistance to cracking was caused by desorption from grain boundaries of diffusion-mobile hydrogen, formed during hardening. 18 refs., 8 figs

  4. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J. H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect o...

  5. Radioactive tracers and the cracking modelings

    International Nuclear Information System (INIS)

    Bettens, B.

    1982-01-01

    The use of tracers (3H and 14 C) labelled in specific positions is an intensive contribution to the understanding and the revealing of the very often complex cracking modeling. The pyrolytic decay of the phenol and the cresols, of the aniline, of the phenantrene and its hydrogenated derived products were investigated and are presented as examples. The decay mechanisms give a theoretical knowledge of the thermal cracking and allow to handle the results on an industrial scale. (AF)

  6. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    Science.gov (United States)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  7. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  8. Stress corrosion mechanisms of alloy-600 polycrystals and monocrystals in primary water: effect of hydrogen

    International Nuclear Information System (INIS)

    Foct, F.

    1999-01-01

    The aim of this study is to identify the mechanisms involved in Alloy 600 primary water stress corrosion cracking. Therefore, this work is mainly focussed on the two following points. The first one is to understand the influence of hydrogen on SCC of industrial Alloy 600 and the second one is to study the crack initiation and propagation on polycrystals and single crystals. A cathodic potential applied during slow strain rate tests does not affect crack initiation but increases the slow crack growth rate by a factor 2 to 5. Cathodic polarisation, cold work and 25 cm 3 STP/kg hydrogen content increase the slow CGR so that the K ISCC (and therefore fast CGR) is reached. The influence of hydrogenated primary water has been studied for the first time on Alloy 600 single crystals. Cracks cannot initiate on tensile specimens but they can propagate on pre-cracked specimens. Transgranular cracks present a precise crystallographic aspect which is similar to that of 316 alloy in MgCl 2 solutions. Moreover, the following results improve the description of the cracking conditions. Firstly, the higher the hydrogen partial pressure, the lower the Alloy 600 passivation current transients. Since this result is not correlated with the effect of hydrogen on SCC, cracking is not caused by a direct effect of dissolved hydrogen on dissolution. Secondly, hydrogen embrittlement of Alloy 600 disappears at temperatures above 200 deg.C. Thirdly, grain boundary sliding (GBS) does not directly act on SCC but shows the mechanical weakness of grain boundaries. Regarding the proposed models for Alloy 600 SCC, it is possible to draw the following conclusions. Internal oxidation or absorbed hydrogen effects are the most probable mechanisms for initiation. Dissolution, internal oxidation and global hydrogen embrittlement models cannot explain crack propagation. On the other hand, the Corrosion Enhanced Plasticity Model gives a good description of the SCC propagation. (author)

  9. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  10. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  11. Cyclic crack resistance of magnesium alloys in vacuum, humid an highly desiccated air

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.

    1986-01-01

    Investigation results on cyclic crack resistance of four structural magnesium alloys in vacuum, humid and highly desiccated air are presented. The regularities obtained are discussed at the background of the known data, using the data on crack closing and hydrogen concenration near its vertex. Diagrams of fatigue fracture of magnesium alloys MA2-1, MA15, MA8 and MA18, produced in vacuum, dry and humid air, on the whole obey the previously established regularities for aluminium alloys and steels. The diagrams of fatigue fracture plotted taking into account crack closing (v-ΔK eff ) for dry and humid air are quite similar. An increase in cyclic crack resistance of the materials in vacuum can not be explained by the change in the crack closing and is evidently conditioned by the absence of hydrogen absorption as the main factor accelerating the crack growth. Effect of vacuum on the threshold K th increases with the increase in σ 0.2 , which testifies to a strong effect of medium on the rate of fatigue crack growth in near the threshold region

  12. Study on the PWSCC Crack Growth Rate for Steam Generator Tubing

    International Nuclear Information System (INIS)

    Kang, Shin Hoo; Hwang, Il Soon; Lim, Jun; Lee, Seung Gi; Ryu, Kyung Ha

    2008-03-01

    Using in-situ Raman spectroscopy and crack growth rate lest system in simulated PWR primary water environment, the relationship between the oxide film chemistry and the PWSCC growth rate has been studied. We used I/2T compact tension specimen and disk specimen made of Alloy 182 and Alloy 600 for crack growth rate test and in-situ Raman spectroscopy measurement. Test was made in a refreshed autoclave with 30 cc STP / kg of dissolved hydrogen concentration. Conductivity, pH, dissolved hydrogen and oxygen concentration were continuously monitored at the outlet. The crack growth rate was measured by using switching DCPD technique under cyclinc triangular loading and at the same time oxide phase was determined by using in-situ Raman spectra at the elevation of the temperature. Additionally Raman spectroscopy was achieved for oxide phase transition of Alloy 600 according to the temperature and dissolved hydrogen concentration, 2 and 30cc STP / kg

  13. Environmentally assisted cracking in LWR materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Park, J.H.; Shack, W.J.; Zhang, J.; Brust, F.W.; Dong, P.

    1998-01-01

    The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2--0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized

  14. Crack cocaine inhalation induces schizophrenia-like symptoms and molecular alterations in mice prefrontal cortex.

    Science.gov (United States)

    Areal, Lorena Bianchine; Herlinger, Alice Laschuk; Pelição, Fabrício Souza; Martins-Silva, Cristina; Pires, Rita Gomes Wanderley

    2017-08-01

    Crack cocaine (crack) addiction represents a major social and health burden, especially seeing as users are more prone to engage in criminal and violent acts. Crack users show a higher prevalence of psychiatric comorbidities - particularly antisocial personality disorders - when compared to powder cocaine users. They also develop cognitive deficits related mainly to executive functions, including working memory. It is noteworthy that stimulant drugs can induce psychotic states, which appear to mimic some symptoms of schizophrenia among users. Social withdraw and executive function deficits are, respectively, negative and cognitive symptoms of schizophrenia mediated by reduced dopamine (DA) tone in the prefrontal cortex (PFC) of patients. That could be explained by an increased expression of D2R short isoform (D2S) in the PFC of such patients and/or by hypofunctioning NMDA receptors in this region. Reduced DA tone has already been described in the PFC of mice exposed to crack smoke. Therefore, it is possible that behavioral alterations presented by crack users result from molecular and biochemical neuronal alterations akin to schizophrenia. Accordingly, we found that upon crack inhalation mice have shown decreased social interaction and working memory deficits analogous to schizophrenia's symptoms, along with increased D2S/D2L expression ratio and decreased expression of NR1, NR2A and NR2B NMDA receptor subunits in the PFC. Herein we propose two possible mechanisms to explain the reduced DA tone in the PFC elicited by crack consumption in mice, bringing also the first direct evidence that crack use may result in schizophrenia-like neurochemical, molecular and behavioral alterations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Environmentally assisted cracking of LWR materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289 degree C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 degree C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections

  16. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  17. Effect of the 718 alloy metallurgical status on hydrogen embrittlement; Effet de l'etat metallurgique de l'alliage 718 sur la fragilisation par l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Galvano, F.; Andrieu, E.; Blanc, Ch.; Odemer, G.; Ter-Ovanessian, B.; Cocheteau, N.; Holstein, A.; Reboul, Ch. [Universite de Toulouse, CIRIMAT, UPS/CNRS/INPT, 31 - Toulouse (France); Clouez, J.M. [AREVA NP 69 - Lyon (France)

    2010-03-15

    The Inconel 718 is a nickel superalloy which is widely used in the nuclear industry, but is sensitive to hydrogen embrittlement induced by corrosion and stress corrosion cracking phenomena, and by the presence of dissolved hydrogen in pressurized water reactor environments. As this alloy is hardened by precipitation of different intermetallic phases, it appeared that the presence of these precipitates has a strong influence on the hydrogen embrittlement. The authors report the study of the nature and effect of the different traps (intermetallic phases, carbides or their interfaces) on the hydrogen embrittlement susceptibility of the 718 alloy, and more particularly on the observed failure modes. Experiments are performed on tensile samples in which hydrogen content can be measured. The type and grain size of the observed microstructures are given with respect with the thermal treatment, as well as the mechanical properties with or without hydrogen loading

  18. Chemical milling solution reveals stress corrosion cracks in titanium alloy

    Science.gov (United States)

    Braski, D. N.

    1967-01-01

    Solution of hydrogen flouride, hydrogen peroxide, and water reveals hot salt stress corrosion cracks in various titanium alloys. After the surface is rinsed in water, dried, and swabbed with the solution, it can be observed by the naked eye or at low magnification.

  19. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  20. Radiation induced mitotic delay and stimulation of growth

    International Nuclear Information System (INIS)

    Feldmann, A.

    1974-01-01

    The mechanisms responsible for the radiation induced mitotic delay and stimulation of growth are discussed in connection with the results of studies in Lemna minor and Lepidium sativum. The action of temperature seems to be of major importance. As many authors suggest that various chemical agents and slight intoxications also affect mitosis in a way similar to that induced by ionizing radiation, the radiation induced stimulation has lost its specific character and approaches might be found for further investigations of this phenomenon. (MG) [de

  1. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  2. Nitrogen effect on the tendency of Cr-Ni-MN steels to delayed fracture under stress and hydrogen effects

    International Nuclear Information System (INIS)

    Suvorova, S.O.; Fillipov, G.A.

    1996-01-01

    Austenitic steels types 03Kh17N16G10AM5, 03Kh6N12G10AM5 and 07Kh13AG20 with various nitrogen contents were studied for their tendency to delayed fracture using mechanical tests, fractography and X ray diffraction analysis. The steel type 07Kh13G20 exhibited the highest strength in the initial state but showed an increase tendency to delayed fracture after hydrogenation. It is underlined that nitrogen additions essentially intensify the tendency of cold worked steels to delayed fracture. This fact should be taken into account when using nitrogen-containing Cr-Ni-Mn steels under severe operational conditions. 4 refs., 2 tabs

  3. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Lenz, E.; Liebert, A.; Stellwag, B.; Wieling, N.

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 240 0 C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.) [de

  4. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP

    Energy Technology Data Exchange (ETDEWEB)

    Kimler, B.F.; Leeper, D.B.; Snyder, M.H.; Rowley, R.; Schneiderman, M.H. (Thomas Jefferson Univ., Philadelphia, PA (USA). Hospital)

    1982-01-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of x-radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 ..mu..g/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 ..mu..g/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 ..mu..g/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 ..mu..g/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered.

  5. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP

    International Nuclear Information System (INIS)

    Kimler, B.F.; Leeper, D.B.; Snyder, M.H.; Rowley, R.; SChneiderman, M.H.

    1982-01-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of x-radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 μg/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 μg/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 μg/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 μg/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered. (author)

  6. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    solidification range, refinement in grain size from 63 to 51 {mu}m, centerline columnar grains disappearance, and decreased cooling rate from 113 to 89 C/s. Moreover, in order to make direct comparison with literature, castings of controlled mixtures of alloys 6060 and 4043 were also investigated, thereby simulating weld metal composition under controlled cooling conditions. Castings showed a different trend than welds with small increases in silicon content (i.e. increase in 4043 filler dilution) resulting in huge effect on microstructure, no effect on liquidus temperature, drop in solidus temperature from 577 C to 509 C, increase in quantity of interdendritic constituent from 2% to 14%, and different phase formation. Binary {beta}-Al{sub 5}FeSi, Mg{sub 2}Si, and Si phases are replaced with ternary {beta}-Al{sub 5}FeSi, {pi}-Al{sub 8}FeMg{sub 3}Si{sub 6}, and a low melting quaternary eutectic involving Mg{sub 2}Si, {pi}, and Si. Also, variation of the cooling conditions in castings revealed the existence of a critical cooling rate, above which the solidification path and microstructure undergo a major change. Cracking Model. Implementing the critical conditions for cracking into the Rappaz- Drezet-Gremaud (RDG) model revealed a pressure drop in the interdendritic liquid on the order of 10{sup -1} atm, originating primarily from straining conditions. Since, according to literature, a minimum of 1,760 atm is required to fracture pure aluminum liquid (theoretical), this demonstrates that cavitation as a liquid fracture mechanism is not likely to occur, even when accounting for dissolved hydrogen gas. Instead, a porosity-based crack initiation model has been developed based upon pore stability criteria, assuming that gas pores expand from pre-existing nuclei. Crack initiation is taken to occur when stable pores form within the coherent dendrite region, critical to crack initiation being weld metal hydrogen content. Following initiation, a mass-balance approach developed by Braccini

  7. Evaluation of flaws or service induced cracks in pressure vessels

    International Nuclear Information System (INIS)

    Riccardella, P.C.; Copeland, J.F.; Gilman, J.

    1987-01-01

    An overview of the ASME flaw evaluation procedures for nuclear pressure vessels is presented, with emphasis on fatigue crack growth evaluations. Environmental and load-rate effects are further considered with respect to new crack growth data and a time-dependent crack growth model. This new crack growth model is applied to evaluate feedwater nozzle cracking in boiling water reactors and is compared to current and past ASME crack growth curves. The time-dependent model bounds the observed cracking and indicates that more detailed consideration of material susceptibility, in terms of sulfur content and product form, is needed

  8. Influence of metallurgical and electrochemical factors on cracking of steels at nuclear power plants under high temperature

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Gnyp, I.P.

    1994-01-01

    The influence of metallurgical heterogeneities in steels and electrochemical factors on corrosion cracking under high temperature water environment is studied, with special emphasis on the influence of manganese sulfide inclusions and other non-metallic ones on the crack growth rate. Results show that the electro-chemical conditions for an hydrogen concentration increase in a pre-failure zone exist at a crack tip under cyclic loading; hydrogen penetrating into metals at high temperature reduces manganese sulfides, ferric carbides, and cause high pressure of gases in micro-discontinuities, thus leading to cyclic corrosion cracking; anodic (relatively to a metal matrix) inclusions are rather the cause of steel cracking resistance decrease than cathodic ones. 16 refs., 4 figs

  9. Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H PIN solar cells. To explain the particular light-soaking behavior of such cells – namely an increase of the open circuit voltage (Voc and a rapid drop of the short circuit current density (Jsc – we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns. Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.

  10. Protective effect of Rhus coriaria fruit extracts against hydrogen peroxide-induced oxidative stress in muscle progenitors and zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Fadia Najjar

    2017-12-01

    Full Text Available Background and Purpose Oxidative stress is involved in normal and pathological functioning of skeletal muscle. Protection of myoblasts from oxidative stress may improve muscle contraction and delay aging. Here we studied the effect of R. coriaria sumac fruit extract on human myoblasts and zebrafish embryos in conditions of hydrogen peroxide-induced oxidative stress. Study Design and Methods Crude ethanolic 70% extract (CE and its fractions was obtained from sumac fruits. The composition of sumac ethyl acetate EtOAc fraction was studied by 1H NMR. The viability of human myoblasts treated with CE and the EtOAc fraction was determined by trypan blue exclusion test. Oxidative stress, cell cycle and adhesion were analyzed by flow cytometry and microscopy. Gene expression was analyzed by qPCR. Results The EtOAc fraction (IC50 2.57 µg/mL had the highest antioxidant activity and exhibited the best protective effect against hydrogen peroxide-induced oxidative stress. It also restored cell adhesion. This effect was mediated by superoxide dismutase 2 and catalase. Pre-treatment of zebrafish embryos with low concentrations of the EtOAc fraction protected them from hydrogen peroxide-induced death in vivo. 1H NMR analysis revealed the presence of gallic acid in this fraction. Conclusion Rhus coriaria extracts inhibited or slowed down the progress of skeletal muscle atrophy by decreasing oxidative stress via superoxide dismutase 2 and catalase-dependent mechanisms.

  11. Influence of alloying on hydrogen-assisted cracking and diffusible ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    moisture in the welding consumables which dissociate in the welding arc to form hydrogen and oxygen. The susceptibility of the weldment to HAC is assessed from the hydrogen diffused out from the weld after the welding is over. Hydrogen thus diffused out is referred to as diffusible hydrogen (HD) and is estimated from the ...

  12. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  13. Delay-Induced Consensus and Quasi-Consensus in Multi-Agent Dynamical Systems

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming; Ren, Wei

    2013-01-01

    This paper studies consensus and quasi-consensus in multi-agent dynamical systems. A linear consensus protocol in the second-order dynamics is designed where both the current and delayed position information is utilized. Time delay, in a common perspective, can induce periodic oscillations or even

  14. Variable amplitude fatigue crack growth behavior - a short overview

    International Nuclear Information System (INIS)

    Singh, Konjengbam Darunkumar; Parry, Matthew Roger; Sinclair, Ian

    2011-01-01

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented

  15. Variable amplitude fatigue crack growth behavior - a short overview

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol (United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-03-15

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented.

  16. Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for PHWR700

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, S.; Bind, A.K.; Khandelwal, H.K.; Singh, R.N., E-mail: rnsingh@barc.gov.in; Chakravartty, J.K.

    2015-11-15

    In order to attain improved in-reactor performance few prototypes pressure tubes of Zr-2.5Nb alloy were manufactured by employing forging to break the cast structure and to obtain more homogeneous microstructure. Both double forging and single forging were employed. The forged material was further processed by employing hot extrusion, cold pilgering and autoclaving. A detailed characterization in terms of mechanical properties and microstructure of the prototype tubes were carried for qualifying it for intended use as pressure tubes in PHWR700 reactors. In this work, Delayed Hydride Cracking (DHC) behavior of the forged Zr-2.5Nb pressure tube material characterized in terms of DHC velocity and threshold stress intensity factor associated with DHC (K{sub IH}) was compared with that of conventionally manufactured material in the temperature range of 200–283 °C. Activation energy associated with the DHC in this alloy was found to be ∼60 kJ/mol for the forged materials.

  17. A case study of environmental assisted cracking in a low alloy steel under simulated environment of pressurized water reactor

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.

    2011-01-01

    Highlights: → We study environmental assisted cracking (EAC) in simulated PWR environment. → The corrosion rate in simulated coolant is low but increases with B conc. → A516 steel shows EAC in simulated coolant particularly at high oxygen levels. → Fracture occurs when the surface cracks join the subsurface cracks. → Corrosion of MnS inclusions and ferrite provide crack nucleation sites. -- Abstract: The electromechanical behavior of a pressure vessel grade steel A516 has been investigated using potentiodynamic polarization curves and slow strain rate test (SSRT) in simulated environment of pressurized water reactor. The anodic polarization behavior shows that the steel remains active in the solution till localized attack (pitting) starts. The cracks initiated at the surface propagate in a trans-granular mode. These cracks are initiated at the inclusion (MnS) sites and at the interfaces between local anode (ferrite) and local cathode (pearlite). It seems that the ultimate fracture occurs when the propagating surface cracks join the subsurface hydrogen induced cracks. The addition of oxygen in the testing chamber to supersaturation levels shifts the corrosion potential to anodic side and significantly lowers the strength and ductility. Compared to the room temperature properties, the UTS and tensile elongation in various simulated conditions are reduced by 10-25% and 25-75%, respectively.

  18. Crack velocity measurement by induced electromagnetic radiation

    International Nuclear Information System (INIS)

    Frid, V.; Rabinovitch, A.; Bahat, D.

    2006-01-01

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality

  19. Crack velocity measurement by induced electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Frid, V. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)]. E-mail: vfrid@bgu.ac.il; Rabinovitch, A. [Deichmann Rock Mechanics Laboratory of the Negev, Physics Department, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2006-07-31

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality.

  20. Samspillet mellem korrosion og udmattelse

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1999-01-01

    Reactions between metal and environment can influence crack initiation as well as crack growth under fatigue by several mechanisms. Active corrosion allways accel-lerate the crack initiation while the creation of stable passi-ve film under same circumstances can delay fatigue crack initiation....... Crack growth can be accellerated by anodic dissolution, but very often the accellerated effect is connected to hydrogen embrittlement due to hydrogen uptake from a cathodic proces.Compared to crack growth rate in air it is assumed that the increased rate seen for steel in sea water under cathodic...... protection is due to hydrogen embrittlement, while the increased rate found for steel in district heating water can be explained by the combined action from anodic dissolution and hydrogen uptake in the steel....

  1. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  2. Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip

  3. Mechanistic dissimilarities between environmentally-influenced fatigue-crack propagation at near-threshold and higher growth rates in lower-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, S.; Ritchie, R. O.

    1981-11-01

    The role of hydrogen gas in influencing fatigue crack propagation is examined for several classes of lower strength pressure vessel and piping steels. Based on measurements over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, crack propagation rates are found to be significantly higher in dehumidified gaseous hydrogen compared to moist air in two distinct regimes of crack growth, namely (i) at the intermediate range of growth typically above approx. 10/sup -5/ mm/cycle, and (ii) at the near-threshold region below approx. 10/sup -6/ mm/cycle approaching lattice dimensions per cycle. Both effects are seen at maximum stress intensities (K/sub max/) far below the sustained-load threshold stress intensity for hydrogen-assisted cracking (K/sub Iscc/). Characteristics of environmentally influenced fatigue crack growth in each regime are shown to be markedly different with regard to fractography and the effect of such variables as load ratio and frequency. It is concluded that the primary mechanisms responsible for the influence of the environment in each regime are distinctly different. Whereas corrosion fatigue behavior at intermediate growth rates can be attributed to hydrogen embrittlement processes, the primary role of moist environments at near-threshold levels is shown to involve a contribution from enhanced crack closure due to the formation of crack surface corrosion deposits at low load ratios.

  4. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  5. Remote detection of stress corrosion cracking: Surface composition and crack detection

    Science.gov (United States)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  6. Hydrogen absorption mechanisms and hydrogen interactions - defects: implications to stress corrosion of nickel based alloys in pressurized water reactors primary water

    International Nuclear Information System (INIS)

    Jambon, F.

    2012-01-01

    Since the late 1960's, a special form of stress corrosion cracking (SCC) has been identified for Alloy 600 exposed to pressurized water reactors (PWR) primary water: intergranular cracks develop during the alloy exposure, leading, progressively, to the complete ruin of the structure, and to its replacement. The main goal of this study is therefore to evaluate in which proportions the hydrogen absorbed by the alloy during its exposure to the primary medium can be responsible for SCC crack initiation and propagation. This study is aimed at better understanding of the hydrogen absorption mechanism when a metallic surface is exposed to a passivating PWR primary medium. A second objective is to characterize the interactions of the absorbed hydrogen with the structural defects of the alloy (dislocations, vacancies...) and evaluate to what extent these interactions can have an embrittling effect in relation with SCC phenomenon. Alloy 600-like single-crystals were exposed to a simulated PWR medium where the hydrogen atoms of water or of the pressuring hydrogen gas were isotopically substituted with deuterium, used as a tracer. Secondary ion mass spectrometry depth-profiling of deuterium was performed to characterize the deuterium absorption and localization in the passivated alloy. The results show that the hydrogen absorption during the exposure of the alloy to primary water is associated with the water molecules dissociation during the oxide film build-up. In an other series of experiments, structural defects were created in recrystallized samples, and finely characterized by positron annihilation spectroscopy and transmission electron microscopy, before or after the introduction of cathodic hydrogen. These analyses exhibited a strong hydrogen/defects interaction, evidenced by their structural reorganization under hydrogenation (coalescence, migrations). However, thermal desorption spectroscopy analyses indicated that these interactions are transitory, and dependent on

  7. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  8. Ab initio atomic simulation of hydrogen and iodine effects in zirconium

    International Nuclear Information System (INIS)

    Domain, Ch.

    2002-03-01

    In this work we present ab initio atomic simulations concerning the effects of hydrogen and iodine in hexagonal zirconium. We first studied the point defects in the dilute Zr-H (and to a less extend Zr-H-O) systems and concluded that it is better described within the generalised gradient approximation for the exchange and correlation functional. We calculated the hydrogen thermal diffusion coefficient in solid solution that agree very well with the experimental values. The calculated formation energy of different self-interstitial configuration are rather small (around 3 eV) and close to each other indicating the high complexity of these defects. We studied the core structure of the screw dislocation that has a preferential prismatic spreading. We also calculated the gamma surface for different gliding planes. The influence of hydrogen, that induces a significant reduction of the gamma surfaces excess energies, allows to qualitatively explain experimental results regarding some hydrogen effects on hexagonal zirconium plastic deformation. We also discussed the effect of zirconium hydride stoichiometry on gamma surfaces. The results concerning the iodine and oxygen adsorption on zirconium surfaces, inducing the evaluation of the effective surface energy reduction as a function of the iodine partial pressure allow for a better description of iodine induced stress corrosion cracking of zirconium. (author)

  9. Evaluation of Conditions for Hydrogen Induced Degradation of Zirconium Alloys during Fuel Operation and Storage. Final Report of a Coordinated Research Project 2011-2015

    International Nuclear Information System (INIS)

    2015-12-01

    This publication reports on the work carried out in 2011–2015 in the coordinated research project (CRP) on the evaluation of conditions for hydrogen induced degradation of zirconium alloys during fuel operation and storage. The CRP was carried out to evaluate the threshold condition for delayed hydride cracking (KIH) in pressurized water reactors and zircaloy-4 and E635M fuel claddings, with application to in-pile operation and spent fuel storage. The project consisted of adding hydrogen to samples of cladding and measuring K IH by one of four methods. The CRP was the third in the series, of which the results of the first two were published in IAEA-TECDOC-1410 and IAEA-TECDOC-1649, in 2004 and 2010, respectively. This publication includes all of the research work performed in the framework of the CRP, including details of the experimental procedures that led to a set of data for tested materials. The research was conducted by representatives from 13 laboratories from all over the world. In addition to the basic goal to transfer the technology of the testing techniques from experienced laboratories to those unfamiliar with the methods, the CRP was set up to develop experimental procedures to produce consistent sets of data, both within a single laboratory and among different laboratories. The material condition and temperature history were prescribed, and laboratories chose one or two of four methods of loading that were recommended in an attempt to develop standard sets of experimental protocols so that consistent results could be obtained. Experimental discrepancies were minimized through careful attention to details of microstructure, temperature history and stress state in the samples, with the main variation being the mode of loading

  10. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  11. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  12. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang-Min [Kyungpook National Univ., DMI Senior Fellow, Daegu (Korea, Republic of); Nahm, Seung-Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jun-Hyong; Pyun, Young-Sik [Sun Moon Univ., Chunan (Korea, Republic of)

    2016-07-15

    This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of 13 μm. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

  13. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360 degree C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-01-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhances IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated

  14. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  16. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  17. Delayed neutron yield from fast neutron induced fission of 238U

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Roshchenko, V.A.; Goverdovski, A.A.; Tertytchnyi, R.G.

    2002-01-01

    The measurements of the total delayed neutron yield from fast neutron induced fission of 238 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of 238 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant. (author)

  18. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  19. A software tool for evaluation of hydrogen ingress in CANDU pressure tubes

    International Nuclear Information System (INIS)

    Mihalache, Maria; Vasile, Radu; Deaconu, Mariea

    2009-01-01

    The prediction of hydrogen isotopes concentration into the body and in the rolled joints of operating pressure tubes as a function of reactor hot hours is very important in many fitness-for-service assessments and end of life estimates. The rolled joints are high stress zones with potential for delayed hydride cracking. Predictive models for assessing the long-term deuterium ingress in both body and rolled joint of the pressure tubes have been implemented in a software tool, ROHID, developed in INR-Pitesti. ROHID is a PC-based Windows application with a user-friendly interface that predicts the equivalent hydrogen ingress for Zr-2.5Nb pressure tubes. It uses colour-coded reactor core maps to display the predicted deuterium concentration as a function of time for selected axial locations. Plots of deuterium versus axial location and time for individual pressure tubes are also available. Also, the software tool can predict the exceeding of hydrogen terminal solid solubility (HTSS) from hydrides during precipitation and dissolving processes as a function of time and axial location. (authors)

  20. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  1. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  2. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    Science.gov (United States)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  3. The effects of strain-induced martensitic transformation and temperature on impact fatigue crack propagation behavior of SUS 304 at low temperature

    International Nuclear Information System (INIS)

    Murakami, Ri-ichi; Akizono, Koichi; Kusukawa, Kazuhiro.

    1988-01-01

    The fatigue crack propagation behavior in fatigue impact at room temperature and 103 K was investigated by means of fracture mechanics, X-ray diffraction analysis and fractography for an austenitic stainless steel, SUS 304. The crack growth rate in fatigue impact decreased with decreasing temperature. The crack growth rate at room temperature was scarcely influenced by the microstructure, while at low temperature it was markedly influenced by the microstructure. The effects of microstructure and temperature on the crack growth rate were closely related to the strain-induced martensitic transformation. The martensitic transformation was influenced by the microstructure, the temperature, the fracture morphology and the stress intensity level and resulted in a decrease in crack growth rate with increasing crack opening level. (author)

  4. Influence of strain-induced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Baffie, N.; Stolarz, J.; Magnin, Th.

    2000-01-01

    The influence of martensitic transformation induced by cyclic straining on the mechanisms of low cycle fatigue damage in a metastable austenitic stainless steel with different grain sizes has been investigated using macroscopic measurements and microscopic observations of short crack evolutions. The amount of martensite formed during cyclic straining increases with increasing plastic strain amplitude and cumulative plastic strain but the dominant parameter is the grain size of austenite. The fine microstructure (D = 10 μm) with maximum martensite fraction of about 20% is characterised by a better fatigue resistance than the coarse one (D 40μm and only 2% of martensite) for the same plastic strain amplitude. Martensitic transformation is found to radically modify the cyclic response of the alloy and consequently the damage mechanisms. Indeed, both short crack nucleation and growth take place exclusively in the transformed regions. A mechanism of short crack propagation based on the γ→ α' transformation assisted by stress concentration at the crack tip is proposed. The indirect influence of grain boundaries in the austenite on crack propagation in the martensite is demonstrated. The better fatigue resistance of metastable alloys with fine granular structure can thus be understood. (authors)

  5. Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system

    Science.gov (United States)

    Yu, Wen-Ting; Tang, Jun; Ma, Jun; Yang, Xianqing

    2016-06-01

    A neuronal network often involves time delay caused by the finite signal propagation time in a given biological network. This time delay is not a homogenous fluctuation in a biological system. The heterogeneous delay-induced asynchrony and resonance in a noisy small-world neuronal network system are numerically studied in this work by calculating synchronization measure and spike interval distribution. We focus on three different delay conditions: double-values delay, triple-values delay, and Gaussian-distributed delay. Our results show the following: 1) the heterogeneity in delay results in asynchronous firing in the neuronal network, and 2) maximum synchronization could be achieved through resonance given that the delay values are integer or half-integer times of each other.

  6. Determination of crack morphology parameters from service failures for leak-rate analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  7. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  8. Understanding the Interaction between a Steel Microstructure and Hydrogen

    Science.gov (United States)

    Depover, Tom; Laureys, Aurélie; Wallaert, Elien

    2018-01-01

    The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels, i.e., high-strength low-alloy (HSLA), transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase, i.e., ferrite, bainite, pearlite or martensite, and with carbon contents of approximately 0, 0.2 and 0.4 wt %, are further considered to simplify the microstructure. Finally, the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction, a comparison of the available H trapping sites, the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis. PMID:29710803

  9. Assessment of the interaction of variables in the intergranular stress corrosion crack growth rate behavior of Alloys 600, 82, and 182

    International Nuclear Information System (INIS)

    Paraventi, D.J.; Moshier, W.C.

    2007-01-01

    SCC testing of Alloy 600 and its weld metals has demonstrated that temperature, stress intensity factor (K), dissolved hydrogen, and yield strength all play a role on crack growth in deaerated, hydrogenated water. Typically, each variable has been modeled independently. However, some of these variables interact, which can affect crack growth predictions. In particular, testing has demonstrated several important interactions, including final annealing temperature and K, cold work and dissolved hydrogen, and orientation and cold work. The annealing temperature influences the K dependence of Alloy 600, with lower temperature anneals decreasing the influence of stress on growth. The response to cold work varies as a function of processing method and orientation, with crack growth in the processing direction having a stronger yield strength dependence than crack growth perpendicular to the processing direction. The effect of hydrogen has been found to be related to electrochemical potential, with the most susceptible condition occurring near the Ni/NiO phase transition. However, cold worked Alloy 600 maintains the peak susceptibility at low hydrogen conditions. (author)

  10. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling.

    Science.gov (United States)

    Qin, S; Chock, P B

    2001-07-10

    Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for

  11. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  12. Zircaloy-4 stress corrosion by iodine: crack kinetics and influence of irradiation on the crack initiation

    International Nuclear Information System (INIS)

    Serres, A.

    2008-01-01

    During the PWR power transients, iodine-induced stress corrosion cracking (I-SCC) is one of the potential failure modes of Zircaloy-4 fuel claddings under Pellet-Cladding Interaction conditions. The primary objective of this study is to distinguish the parameters that contribute to the I-SCC phenomenon in iodized methanol solutions at ambient temperature, on notched tensile specimens, using crack growth rate measurements provided by Direct Current Potential Drop. The results show that for a KI lower than 20 MPa.m 1/2 , the IG and mixed IG/TG velocity of propagation is a linear function of KI, regardless of the propagation mode. Between 20 and 25 MPa.m 1/2 , the TG crack growth rate also depends linearly on KI, but increases at a faster rate with respect to KI than during the IG and mixed IG/TG propagation steps. The crack propagation direction and plane (LT and TL) have an impact on the propagation modes, but no impact on the kinetics. The increase of iodine content induces an increase of the crack growth rate for a given KI, and a decrease of the KI, threshold, allowing the crack propagation. This work enables us to quantify the effect of iodine content and of KI on the crack propagation step, propose a propagation law taking into accounts these parameters, and improve the I-SCC description for models. During operation, a zirconium cladding is neutron-irradiated, modifying its microstructure and deformation modes. The second objective of the study is therefore to investigate the impact of these modifications on I-SCC. For that purpose, smooth specimens in recrystallized Zircaloy-4 are proton-irradiated to 2 dpa at 305 C, the microstructure and deformation modes of unirradiated and irradiated Zircaloy-4 are characterized by TEM and SEM, and the influence of these radiation-induced modifications on the I-SCC susceptibility is studied. The Laves phases precipitates are slightly modified by irradiation. The formation of P -type dislocation loops correlated with

  13. Strain-induced corrosion cracking in ferritic components of BWR primary circuits; Risskorrosion in druckfuehrenden ferritischen Komponenten des Primaerkreislaufes von Siedewasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 {sup o}C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  14. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  15. Mechanism of vacancy formation induced by hydrogen in tungsten

    Directory of Open Access Journals (Sweden)

    Yi-Nan Liu

    2013-12-01

    Full Text Available We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  16. SAES St 909 pilot scale methane cracking tests

    International Nuclear Information System (INIS)

    Klein, J. E.; Sessions, H. T.

    2008-01-01

    Pilot scale (0.5 kg) SAES St 909 methane cracking tests were conducted for potential tritium process applications. Up to 1400 hours tests were done at 700 deg.C, 202.7 kPa (1520 torr) with a 0.03 sLPM feed of methane plus impurities, in a 20 vol% hydrogen, balance helium, stream. Carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered, but equating nitrogen to an equivalent amount of methane was nitrogen feed composition dependent. A decreased hydrogen feed increased methane getter rates while a 30 deg.C drop in one furnace zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate. (authors)

  17. The effect of potential upon the high-temperature fatigue crack growth response of low-alloy steels. Part 1: Crack growth results

    International Nuclear Information System (INIS)

    James, L.A.; Moshier, W.C.

    1997-01-01

    Corrosion-fatigue crack propagation experiments were conducted on several low-alloy steels in elevated temperature aqueous environments, and experimental parameters included temperature, sulfur content of the steel, applied potential level, and dissolved hydrogen (and in one case, dissolved oxygen) concentration in the water. Specimen potentials were controlled potentiostatically, and the observation (or non-observation) of accelerated fatigue crack growth rates was a complex function of the above parameters. Electrochemical results and the postulated explanation for the complex behavior are given in Part II

  18. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  19. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-01

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steel are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows

  20. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  1. Delay-induced stochastic bifurcations in a bistable system under white noise

    International Nuclear Information System (INIS)

    Sun, Zhongkui; Fu, Jin; Xu, Wei; Xiao, Yuzhu

    2015-01-01

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses

  2. Delay-induced stochastic bifurcations in a bistable system under white noise

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xiao, Yuzhu [Department of Mathematics and Information Science, Chang' an University, Xi' an 710086 (China)

    2015-08-15

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.

  3. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  4. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  5. Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Desquines, J., E-mail: jean.desquines@irsn.fr; Drouan, D.; Billone, M.; Puls, M.P.; March, P.; Fourgeaud, S.; Getrey, C.; Elbaz, V.; Philippe, M.

    2014-10-15

    Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450 °C with hydrogen contents ranging between 50 and 600 wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100 wppm had the lowest ductility.

  6. Contribution of the low cycle fatigue on ultra high purity Ni-Cr-Fe alloys and on Ni monocrystals to the understanding of the hydrogen role in stress corrosion cracking for the alloys 600 and 690; Apport de la fatigue oligocyclique sur alliages Ni-Cr-Fe d'ultra haute purete et sur monocristaux de Ni a la comprehension sous contrainte des alliages 600 et 69O

    Energy Technology Data Exchange (ETDEWEB)

    Renaudot, N

    1999-06-01

    We discuss the role of hydrogen in cracking of Ni base alloys used for pressurised water reactor (PWR) primary tubes (alloy 600 and 690). Cracking can be explained by a Stress Corrosion Cracking (SCC) phenomenon. For this purpose, Low cycle fatigue (R = - 1) under cathodic charging at room temperature is conducted to study hydrogen effects on propagation of cracks mechanically initiated by the formation of Persistent Slip Bands (PSB). Low cycle fatigue on Ultra High Purity specimens (Ni, alloy 600 and 690) reveals the very important hydrogen effect on crack propagation rate, whatever the Cr content in the Ni base alloy. If Cr seems to have an effect over-hydrogen penetration in specimens (by a protective film formation), it have no beneficial effect when hydrogen have diffused ahead of a crack tip. Propagation rates (transgranular or intergranular) are highly increased, no matter of the absence of impurities like sulphur. Then, in PWR, the difference in the behaviour of alloy 600 and 690 could be due to a slower microcrack propagation rate for alloy 690. Protective films could play an important role in this difference, which is to study. Low cycle fatigue on Ni single crystals oriented for single slip shows, for the first time on bulk specimen, a macroscopic softening which can be explained. by hydrogen-dislocation interactions. Moreover, a simple quantitative model based on these interactions results in the same softening as the one observed experimentally. These results allow to validate experimentally one of the most important steps in the 'Corrosion Enhanced Plasticity (CEP) model', i.e. the softening ahead of a stress corrosion crack tip by hydrogen dislocation interactions. This is of importance because this model can explain cracking in numerous FCC materials-environment couple. (author)

  7. Hydrogen environment embrittlement

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    Exposure of many metals to gaseous hydrogen causes losses in elongation, reduction of area, and fracture toughness, and causes increases in slow crack growth rate or fatigue life compared with values obtained in air or vacuum. Hydrogen pressure, temperature, and purity significantly influence deleterious effects. The strength and structural characteristics of the metal influence the degradation of its properties by hydrogen. Several theories have been proposed to explain the loss of properties in hydrogen, but none has gained wide acceptance. The embrittlement mechanism and the role of diffusion are, therefore, open questions and need more quantitative experimental data both to test the proposed theories and to allow the development of realistic preventive measures. (U.S.)

  8. Fast fracture of a zirconium alloy pressure tube: cause and implications

    International Nuclear Information System (INIS)

    Price, E.G.; Cheadle, B.A.

    1985-12-01

    The cause of the unstable fracture of a Zircaloy-2 pressure tube in the core of a CANDU reactor is reviewed. Failure was associated with the presence of brittle zones of zirconium hydride which developed as a result of thermal gradient induced hydrogen diffusion. Unstable fracture occurred when the partial thickness crack reached an unstable length and the crack ran 2 meters along the tube and terminated by circumferential tearing. The partial thickness defect initiated and propagated to an unstable length by delayed hydride cracking is high compared to fatigue progression and increases exponentially with temperature. Delayed hydride cracking can be prevented by reducing residual stresses to a minimum and by high standards of non-destructive testing that ensures freedom from unacceptable defects. Future prevention of fast fracture is based upon the inspection of a limited number of fuel channels for the presence of defects and for conditions which can cause hydride build-up together with the periodic removal of Zr-2.5wt% Nb tubes to monitor their condition

  9. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  10. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  11. Hydrogen permeability through metals

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tsvetkov, I.V.; Marenkov, E.D.; Yarko, S.S.

    2011-01-01

    The mechanisms of hydrogen permeability through one-layer and multi-layer membranes are considered. The effect of surface roughness, crystal defects, cracks and pores is described. Mathematical description of the processes is given [ru

  12. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  13. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  14. The relationship between observed stress corrosion cracking fracture morphology and microstructure in Alloy 600

    International Nuclear Information System (INIS)

    Symons, D.M.; Burke, M.G.; Foster, J.P.

    1997-01-01

    Microstructure is known to influence the stress corrosion cracking (SCC) behavior of Alloy 600 in both hydrogenated water and steam environments. This study evaluated the relative SCC response of a single heat of Alloy 600 as a function of microstructure in a hydrogenated doped-steam environment. The 400 C doped-steam environment was selected for the SCC tests to accelerate cracking. The material was evaluated in three conditions: (1) as-received (2) as-annealed, and (3) as-annealed + 26% deformation. Microstructural characterization was performed using analytical electron microscopy (AEM) techniques for the evaluation of carbide type and morphology, and general structure. Constant displacement (bolt-loaded) compact tension specimens were used to induce SCC. The as-annealed and as-annealed plus cold worked samples had two fracture morphologies: a rough intergranular SCC fracture morphology and a smooth intergranular fracture morphology. The SCC fracture in the as-received specimens was characterized by a classic intergranular morphology at low magnification, consistent with the microstructural evaluation of cross-sectional metallographic samples. More detailed examination revealed a pseudo-intergranular fracture morphology. This pseudo-intergranular morphology appears to be comprised of very fine cleavage-like microfacets. These observations may assist in understanding the difference in SCC fracture morphologies as reported in the open literature

  15. Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats.

    Science.gov (United States)

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-11-13

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

  16. Refinement and evaluation of crack-opening-area analyses for circumferential through-wall cracks in pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Brust, F.; Ghadiali, N.; Krishnaswamy, P.; Wilkowski, G.; Choi, Y.H.; Moberg, F.; Brickstad, B.

    1995-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet impingement shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. These leak rates depend on the crack-opening area of a through-wall crack in the pipe. In addition to LBB analyses, which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section 11. This study was requested by the NRC to review, evaluate, and refine current analytical models for crack-opening-area analyses of pipes with circumferential through-wall cracks. Twenty-five pipe experiments were analyzed to determine the accuracy of the predictive models. Several practical aspects of crack-opening such as; crack-face pressure, off-center cracks, restraint of pressure-induced bending, cracks in thickness transition regions, weld residual stresses, crack-morphology models, and thermal-hydraulic analysis, were also investigated. 140 refs., 105 figs., 41 tabs

  17. Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells

    International Nuclear Information System (INIS)

    Roy, K.; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami

    1999-01-01

    We studied X-ray-induced delayed cell death, delayed giant cell formation and delayed chromosome aberrations in normal human embryo cells to explore the relationship between initial radiation damage and delayed effect appeared at 14 to 55 population doubling numbers (PDNs) after X-irradiation. The delayed effect was induced in the progeny of X-ray survivors in a dose-dependent manner and recovered with increasing PDNs after X-irradiation. Delayed plating for 24 h post-irradiation reduced both acute and delayed lethal damage, suggesting that potentially lethal damage repair (PLDR) can be effective for relieving the delayed cell death. The chromosome analysis revealed that most of the dicentrics (more than 90%) observed in the progeny of X-ray survivors were not accompanied with fragments, in contrast with those observed in the first mitosis after X-irradiation. The present results indicate that the potentiality of genetic instability is determined during the repair process of initial radiation damage and suggest that the mechanism for formation of delayed chromosome aberrations by radiation might be different from that of direct radiation-induced chromosome aberrations. (author)

  18. The effect of caffeine on radiation-induced division delay

    International Nuclear Information System (INIS)

    Snyder, M.H.; Kimler, B.F.; Leeper, D.B.

    1977-01-01

    Caffeine (100 μg/ml) was added to monolayer cultures of Chinese hamster ovary cells coincident with 60 Co γ-irradiation (75 to 300 rad). The results indicated that caffeine (at concentrations that did not perturb cell-cycle progression as monitored by the mitotic selection technique) exerted a protective effect against radiation-induced division delay. This protection consisted of an increase in the number of cells that were refractory to the radiation insult, as well as a decrease in the average time that non-refractory cells were delayed before they recovered their ability to progress through the cell cycle. (U.K.)

  19. Factors that lead to the use of crack cocaine in combination with marijuana in Brazil: a qualitative study.

    Science.gov (United States)

    Gonçalves, Janaina R; Nappo, Solange A

    2015-07-25

    In Brazil, crack cocaine use remains a healthcare challenge due to the rapid onset of its pleasurable effects, its ability to induce craving and addiction, and the fact that it is easily accessible. Delayed action on the part of the Brazilian Government in addressing the drug problem has led users to develop their own strategies for surviving the effects of crack cocaine use, particularly the drug craving and psychosis. In this context, users have sought the benefits of combining crack cocaine with marijuana. Our aim was to identify the reasons why users combine crack cocaine with marijuana and the health implications of doing so. The present study is a qualitative study, using in-depth interviews and criteria-based sampling, following 27 crack cocaine users who combined its use with marijuana. Participants were recruited using the snowball sampling technique, and the point of theoretical saturation was used to define the sample size. Data were analyzed using the content analysis technique. The interviewees reported that the combination of crack cocaine use with marijuana provided "protection" (reduced undesirable effects, improved sleep and appetite, reduced craving for crack cocaine, and allowed the patients to recover some quality of life). Combined use of cannabis as a strategy to reduce the effects of crack exhibited several significant advantages, particularly an improved quality of life, which "protected" users from the violence typical of the crack culture. Crack use is considered a serious public health problem in Brazil, and there are few solution strategies. Within that limited context, the combination of cannabis and crack deserves more thorough clinical investigation to assess its potential use as a strategy to reduce the damage associated with crack use.

  20. Noncontact fatigue crack evaluation using thermoelastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)

    2012-12-15

    This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

  1. Investigation of delayed fission gas release

    International Nuclear Information System (INIS)

    Cayet, Nicolas

    1996-05-01

    The study of the fission gas release process in the high burnup rig IFA-562 has revealed a particular fuel behaviour: a delay in the fission gas release process. It appeared that an important release of gas was measured by the pressure transducers once the power had decreased, whereas, during steady-state operation, the pressure did not increase very much. After examinations, the gap size has been concluded to be the main parameter involving this delay. However the burnup could have been a potential factor, its role is mainly to close the gap by swelling. The observations of low burnup rods have shown the same delayed fission gas release, the gap being small by design and closed essentially by thermal expansion. The study of the kinetics has demonstrated the time-independency of the phenomenon. Thus the proposed mechanism driving this delayed fission gas release would involve three consecutives stages. During steady-state, the gas is released into the interlinkage network of grain boundary bubbles and cracks. Due to the closed gap, the gas is trapped in some void volumes, unable to escape the pellet. During power reduction, the gap and some old/new cracks open, immediately providing a path for the gas to the pressure transducers and explaining this delay in the fission gas release. (author)

  2. Comparison of fatigue crack initiation behavior in different microstructures of TC21 titanium alloy

    Directory of Open Access Journals (Sweden)

    Tan Changsheng

    2018-01-01

    Full Text Available Cyclic heterogeneous deformation, slip characteristics and crack nucleation with different microstructures, such as bimodal microstructure (BM and fine lamellar microstructure (FLM in TC21 alloy (Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.1Si, were systematically investigated and analyzed during high cycle fatigue at room temperature. The results demonstrated that the FLM microstructure possesses higher high-cycle fatigue strength than those of the BM one. For BM, the heterogeneous plastic deformation existed within the different large primary α phase, such as equiaxed primary α and primary α lath. The cracks at interfaces and slip bands easily coalesce with each other to form large cracks in BM. However, the α laths with similar morphology and size (nanosize distributed uniformly in FLM and could relatively deform homogeneously in micro-region, which delayed the initiation of the fatigue crack. Based on the electron-backscattered diffraction (EBSD analysis, it found that the strain was nonuniformly distributed in BM, however, it is relatively homogeneous in FLM. Moreover, lots of straight cracks are parallel and along single intrusions within the β grain which delays the coalescence of cracks.

  3. Charpy impact test of oxidized and hydrogenated zircaloy using a thin strip specimen

    International Nuclear Information System (INIS)

    Otsuka, Teppei; Hashizume, Kenichi; Sugisaki, Masayasu

    2004-01-01

    The impact properties of an oxidized and a hydrogenated Zircaloy have been studied with an instrumented Charpy machine by using a strip Charpy V-notch specimen (1 mm thick by 4mm wide). Fracture processes such as crack initiation and propagation were examined using load-displacement curves obtained in this study. In the case of the hydrogenated specimen containing preferentially oriented hydrides, an appreciable decrease in the absorbed energy was observed in the crack propagation rather than in the crack initiation. From results of fractographs of the specimen, it was suggested that the reduction of the crack propagation energy of hydrogenated specimen could be attributed to the change of the stress state in the Zircaloy matrix, which was caused by the fracture of hydride in the inner part of specimen. In the case of the specimen oxidized at 973k for 60 min, on which an oxide layer (4 μm in thickness) and oxygen incursion layer (4μm) were formed, the surface layers affected the crack initiation process. The growing oxygen incursion layer, in particular, resulted in the constraint of plastic deformation of the Zircaloy matrix not only in the crack initiation but also in the crack propagation as its thickness increased. (author)

  4. Embrittlement of the alloy U 7.5 Nb 2.5 Zr by gaseous oxygen and hydrogen

    International Nuclear Information System (INIS)

    Lepoutre, D.; Nomine, A.M.; Miannay, D.

    1981-04-01

    Embrittlement of the alloy uranium 7.5 niobium 2.5 zirconium in gaseous oxygen and hydrogen versus stress intensity, temperature and pressure is studied using rupture mechanics. Cracking speed is determined. In oxygen, only cracks are produced and embrittlement is due to oxidation. In hydrogen at high pressure an hydride is formed and at low pressure cracks are produced but the mechanism is not identified [fr

  5. Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center

    2016-02-15

    This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.

  6. Induction and comparison of craving for tobacco, marijuana and crack

    Directory of Open Access Journals (Sweden)

    Renata Brasil Araujo

    2015-10-01

    Full Text Available Abstract Background The literature findings report that use of multiple substances can produce adverse clinical and behavioral effects, which may affect craving and the results of drug treatment. Also, the understanding of craving construct and its interaction in the use of smoked substances is underexplored. Objectives To induce and compare craving for tobacco, marijuana and crack-cocaine on hospitalized dependents whose drug of choice is crack-cocaine. Methods Quasi-experimental study with a convenience sample consisting of 210 males divided into 3 equal groups (Group-1: craving induced by crack; Group-2: craving induced by tobacco; and Group-3: craving induced by marijuana. All participants met ICD-10 dependence criteria for cocaine/crack, marijuana and tobacco, were aged between 18 and 65 and had used these substances for at least one year. Photos were used to induce craving and self-report instruments to evaluate possible alterations. Results This study showed that craving for tobacco was more intense than for marijuana and crack, when the groups were compared by VAS. Using specific scales, both craving for tobacco and craving for marijuana were more intense than craving for crack. Discussion These results would imply interventions at the initial stages of abstinence with cognitive-behavioural techniques and pharmacotherapy in order to reduce craving.

  7. Stress corrosion cracking susceptibility of the earthquake resistant NOM B457 Mexican steel

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1994-01-01

    The Mexican construction code was modified after the Mexico city 1985 earthquake, substituted the medium carbon reinforced steel NOM B6 by the new micro alloyed steel NOM B457 in 42 Kg/mm 2 grade. The present study reports the evaluation of the NOM B457 steel behavior in mortar with and without 2% wt. in chlorides and in Ca(OH) 2 saturated solutions. The results are compared with the NOM B6 steel behavior in the same conditions. The Stress Corrosion Cracking (SCC) is not present in all the conditions used in this study and there are not susceptibility potential range to SCC when the material is evaluated by electrochemical Tests, Constant Extension Rate Tests (CERT) and Constant Load Test at 80 % of yield stress. A susceptibility potential range to Hydrogen Induced Cracking (HIC) is detected, below -900 mV. vs Standard Calomel Electrode (SCE) by CERT at constant potential

  8. Hydrogen-induced amorphization of SmFe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, M.; Handstein, A.; Gebel, B.; Gutfleisch, O.; Mueller, K.-H.; Schultz, L. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-07-01

    The hydrogen absorption behavior of SmFe{sub 3} (PuNi{sub 3}-type structure) was observed in the range from 0.05 to 4 MPa by differential scanning calorimetry. The structural changes were observed by X-ray diffraction measurements. For pressures below 0.8 MPa two exothermic reactions were found which are attributed (i) to the interstitial absorption and (ii) to the disproportionation into SmH{sub 2} and {alpha}-Fe. For higher hydrogen pressures, the second exothermic peak occured at significantly lower temperatures and splitted into two peaks. The first one was identified as the exothermic signal of the hydrogen-induced amorphization of the SmFe{sub 3} hydride. The second peak is caused by the precipitation of SmH{sub 2} and {alpha}-Fe from the amorphous material. (orig.)

  9. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    PENG Fan; FU YiMing; CHEN YaoJun

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  10. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated.The viscoelastic behavior of laminas is modeled by Schapery’s integral constitutive equation with growing matrix cracks.The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from mesomechanics approach,and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress.The governing equations for prebuckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Kármán-Donnell geometrically nonlinear relationship.Corresponding solution strategy is constructed by integrating finite-difference technique,trigonometric series expansion method and Taylor’s numerical recursive scheme for convolution integration.The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parameters and parameters of damage evolution as well as boundary conditions.The numerical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads,and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells,also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  11. Oxidation-induced crack healing in Ti3AlC2 ceramics

    NARCIS (Netherlands)

    Song, G.M.; Pei, Y.T.; Sloof, W.G.; Li, S.B.; Hosson, J.Th.M. De; Zwaag, S. van der

    Crack healing of Ti3AlC2 was investigated by oxidizing a partially pre-cracked sample. A crack near a notch was introduced into the sample by tensile deformation. After oxidation at 1100 degrees C in air for 2 h, the crack was completely healed, with oxidation products consisting primarily of

  12. Effect of residual stress induced by cold expansion on fatigue crack ...

    African Journals Online (AJOL)

    Fatigue life and fatigue crack growth rate are controlled by stress ratio, stress level, orientation of crack, temper-ature, residual stress, corrosion, etc. The effects of residual stress on fatigue crack growth in aluminium (Al) alloy 2024-T351 by Mode I crack were investigated by applying constant amplitude cycles based on ...

  13. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detection

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to asses a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double Canti...

  14. Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model

    Science.gov (United States)

    Cao, Xin; Song, Yongli; Zhang, Tonghua

    In this paper, we investigate the dynamics of a lac operon model with delayed feedback and diffusion effect. If the system is without delay or the delay is small, the positive equilibrium is stable so that there are no spatial patterns formed; while the time delay is large enough the equilibrium becomes unstable so that rich spatiotemporal dynamics may occur. We have found that time delay can not only incur temporal oscillations but also induce imbalance in space. With different initial values, the system may have different spatial patterns, for instance, spirals with one head, four heads, nine heads, and even microspirals.

  15. Thermally-Induced Crack Evaluation in H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Hassan Abdulrssoul Abdulhadi

    2017-11-01

    Full Text Available This study reported the effect of thermal wear on cylindrical tool steel (AISI H13 under aluminum die-casting conditions. The AISIH13 steels were immersed in the molten aluminum alloy at 700 °C before water-quenching at room temperature. The process involved an alternating heating and cooling of each sample for a period of 24 s. The design of the immersion test apparatus stylistically simulated aluminum alloy dies casting conditions. The testing phase was performed at 1850, 3000, and 5000 cycles. The samples were subjected to visual inspection after each phase of testing, before being examined for metallographic studies, surface crack measurement, and hardness characteristics. Furthermore, the samples were segmented and examined under optical and Scanning Electron Microscopy (SEM. The areas around the crack zones were additionally examined under Energy Dispersive X-ray Spectroscopy (EDXS. The crack’s maximum length and Vickers hardness profiles were obtained; and from the metallographic study, an increase in the number of cycles during the testing phase resulted in an increase in the surface crack formation; suggesting an increase in the thermal stress at higher cycle numbers. The crack length of Region I (spherically shaped was about 47 to 127 µm, with a high oxygen content that was analyzed within 140 µm from the surface of the sample. At 700 °C, there is a formation of aluminum oxides, which was in contact with the surface of the H13 sample. These stresses propagate the thermal wear crack length into the tool material of spherically shaped Region I and cylindrically shape Region II, while hardness parameters presented a different observation. The crack length of Region I was about 32% higher than the crack length of Region II.

  16. The participation of elevated levels of cyclic GMP in the recovery from radiation-induced mitotic delay

    International Nuclear Information System (INIS)

    Daniel, J.W.; Oleinick, N.L.

    1984-01-01

    The levels of cyclic AMP and cyclic GMP have been measured in Physarum plasmodia before and after treatment with gamma-radiation, 2 mM caffeine, or combinations of the two agents compared to the length of the radiation-induced mitotic delay. Caffeine alone produces a rapid transient elevation of cyclic AMP and a slower delayed elevation of cyclic GMP. Irradiation elicits an immediate transient increase in cyclic AMP and a later cyclic GMP increase which accompanies or precedes the delayed mitosis. A composite pattern is produced by combinations of radiation and caffeine, a distinctive feature of which is an elevated level of cyclic GMP near the time of the radiation-delayed and caffeine-promoted mitosis. With pretreatment by caffeine, the least radiation-induced mitotic delay occurs when plasmodia are irradiated during the caffeine-elicited increase in cyclic GMP. The plasmodium becomes refractory to the reduction of mitotic delay by caffeine at approximately the time it becomes refractory to the further elevation of cyclic GMP by caffeine. The data support a role for cyclic AMP in the onset of and for cyclic GMP in the recovery from mitotic delay induced by ionizing radiation. (author)

  17. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    Science.gov (United States)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  18. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    Science.gov (United States)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  19. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions

    International Nuclear Information System (INIS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Martens, B.; Deconinck, J.

    2009-01-01

    The crack propagation rate of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions was modelled. A film rupture/dissolution/repassivation mechanism is assumed and extended to cold worked materials by including a stress-dependent bare metal dissolution current density. The chemical and electrochemical conditions within the crack are calculated by finite element calculations, an analytical expression is used for the crack-tip strain rate and the crack-tip stress is assumed equal to 2.5 times the yield stress (plane-strain). First the model was calibrated against a literature published data set. Afterwards, the influence of various variables - dissolved hydrogen, boric acid and lithium hydroxide content, stress intensity, crack length, temperature, flow rate - was studied. Finally, other published crack growth rate tests were modelled and the calculated crack growth rates were found to be in reasonable agreement with the reported ones

  20. Characterization of SCC crack tips and surface oxide layers in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  1. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  2. Specific features of corrosion processes in a crack tip in chloride solution

    International Nuclear Information System (INIS)

    Kurov, O.V.; Vasilenko, I.I.

    1981-01-01

    Electrode potentials of metal and pH solution are measured by means of microelectrodes on structural materials-45 and 12Kh18N10T steels, AT3 titanium alloy and D16 aluminium alloy in the vertex of corrosion crack formed during corrosion cracking in 3% NaCl solution. Metal corrosion is shown to be followed by hydrogen liberation on all the investigated materials at corrosion potentials. The effects of chemical composition of alloys as well as external polarization on the solution pH in the crack vertex are determined

  3. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    Science.gov (United States)

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  5. Hydrogen Peroxide Toxicity Induces Ras Signaling in Human Neuroblastoma SH-SY5Y Cultured Cells

    Directory of Open Access Journals (Sweden)

    Jirapa Chetsawang

    2010-01-01

    Full Text Available It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  6. Capillary-induced crack healing between surfaces of nanoscale roughness.

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  7. Effect of temperature on the plastic zone in near-threshold fatigue crack propagation in Nb-H alloys

    International Nuclear Information System (INIS)

    Lin, C.C.; Polvanich, N.; Salama, K.

    1987-01-01

    The effect of temperature on the formation of plastic zone in near-threshold fatigue crack propagation is investigated in niobium-hydrogen alloys. The study was made with the ultimate goal of determining the role of hydrogen related to test temperatures on the embrittlement and fracture processes of niobium. Fatigue tests were performed at the two temperatures 220 and 350 K on a hydrogen-free specimen as well as specimens containing hydrogen in solid solution and in the form of hydride. Microhardness was measured on the fatigued specimens in order to determine the plastic zone size at positions where the crack propagation was in the near-threshold region. The results show that at both temperatures, the plastic zone size in hydrogen-free niobium decreases as the amount of hydrogen is increased until it reaches a minimum value and then increases as the amount of hydrogen is further increased. The hydrogen concentrations at the minimum plastic zone are found to be approximately equal to those where the maximum embrittlement occurs for each temperature

  8. Zinc-aluminates for an in situ sulfur reduction in cracked gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Quintana-Solorzano, R.; Valente, J.S.; Hernandez-Beltran, F.J.; Castillo-Araiza, C.O. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152 C.P., 07730 Mexico, D.F. (Mexico)

    2008-05-30

    Using additives remains as an attractive alternative for an in situ sulfur reduction in cracked gasoline since it is a practical, flexible and economical option. Zinc-aluminates prepared by the sol-gel method are used as additives for reducing sulfur in gasoline from the cracking of a high-sulfur feed in a fixed-bed bench reactor. Products distribution and feed conversion are not dramatically altered after incorporating the additive to the base catalyst with some effect on gasoline and its octane number and coke. A decrease in the gasoline sulfur content of up to 35 wt% including benzothiophene, and up to 50% excluding benzothiophene, is observed when blending the zinc-aluminates to the base catalyst, which is caused by lowering the C{sub 1} to C{sub 4} alkyl-thiophenes content. The zinc content of the zinc-aluminates has a positive effect on the gasoline sulfur reduction. It is suggested that together with the direct cracking of adsorbed thiophenic species on the additive, a further gasoline sulfur decrease is possible through cracking of saturated thiophenic species formed by hydrogenation of adsorbed thiophenic species with hydrogen produced in situ in the additive. The obtained results also demonstrate that solids with higher Lewis acidity are not unfailingly the most effective for gasoline sulfur reduction. (author)

  9. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    International Nuclear Information System (INIS)

    He Hongwen; Xu Guangchen; Guo Fu

    2009-01-01

    Electromigration (EM) behavior of Cu/Sn 3.5 Ag/Cu solder reaction couple was investigated with a high current density of 5 x 10 3 A/cm 2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results indicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu 6 Sn 5 intermetallic compounds (IMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu 6 Sn 5 at the cathode interface due to the thermal stress.

  10. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  11. Design and fabrication of an apparatus to study stress corrosion cracking

    International Nuclear Information System (INIS)

    Buscarlet, Carol

    1977-01-01

    In this research thesis, the author first gives a large overview of tests methods of stress corrosion cracking: definition and generalities, stress corrosion cracking in the laboratory (test methods with imposed deformation, load or strain rate, theories of hydrogen embrittlement, of adsorption, of film breaking, and electrochemical theories), stress corrosion cracking in alkaline environment (in light water reactors, of austenitic stainless steels), and conventional tests on polycrystals and monocrystals of stainless steels in sodium hydroxide. The next parts address the core of this research, i.e. the design of an autoclave containing a tensile apparatus, the fabrication of this apparatus, the stress application device, the sample environment, pressurization, control and command, preliminary tests in a melt salt, and the first cracking tests [fr

  12. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    Science.gov (United States)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  13. The reduction of radiation-induced mitotic delay by caffeine: a test of the cyclic AMP hypothesis

    International Nuclear Information System (INIS)

    Oleinick, N.L.; Brewer, E.N.; Rustad, R.C.

    1978-01-01

    A study has been made of the reduction in γ-radiation-induced mitotic delay by caffeine in the naturally-synchronous plasmodial slime mould. Physarum polycephalum during late G 2 and early prophase, and the results compared with those obtained with other compounds of similar structure and/or physiological function. The reduction of radiation-induced mitotic delay was related to increasing concentrations of caffeine over at least two orders of magnitude. Pre-irradiation treatment with caffeine had no detectable effect. Caffeine had to be present for most, if not all, of the post-irradiation pre-mitotic period. Other chemicals which are reported to inhibit cyclic AMP phosphodiesterase either reduce or increase radiation-induced mitotic delay. The results therefore indicate that the reduction of mitotic delay by caffeine is not a result of altered cyclic AMP levels. (UK)

  14. How to induce multiple delays in coupled chaotic oscillators?

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Department of Electronics, Asutosh College, Kolkata 700026 (India); Ghosh, Dibakar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Roy, Prodyot K. [Department of Physics, Presidency University, Kolkata 700073 (India); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, 14473 Potsdam (Germany); Institute for Physics, Humboldt University, 12489 Berlin (Germany); Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2013-12-15

    Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.

  15. The stress corrosion cracking of hard 2 1/4 CrMo steel in water at 2000 and 3000C

    International Nuclear Information System (INIS)

    Hurst, P.; Appleton, D.A.; Hurley, J.R.F.; Pennington, C.

    1983-01-01

    An account is given of experiments performed in 200 0 or 300 0 C water to evaluate the susceptibility of the quench-hardened steel to stress corrosion cracking. The work has covered self-stressed specimens (U-bends and C-rings), and constant load tests tensile specimens and tube/tube plate welds of the type used for the UK Prototype Fast Reactor. At 200 0 C, the effects have been examined of strength, stress and oxygen level; at 300 0 C the effect of quenching temperature (1400 or 1050 0 C) has been studied. Different mechanisms may be responsible at the two test temperatures. Hydrogen absorption in the region of any localised corrosion is believed to be mechanistically significant in the case of 200 0 C cracking, but general embrittlement does not occur. At 300 0 C the cracking has been linked with the increased probability of grain boundary segregation arising from the higher quenching temperature. The value of shot-peening as a means of inducing surface compressive stress, and hence reducing the risk of cracking, has been demonstrated and the factors that could counter-act its usefulness have been identified. (author)

  16. Opioid-induced delay in gastric emptying: a peripheral mechanism in humans.

    LENUS (Irish Health Repository)

    Murphy, D B

    2012-02-03

    BACKGROUND: Opioids delay gastric emptying, which in turn may increase the risk of vomiting and pulmonary aspiration. Naloxone reverses this opiate action on gastric emptying, but it is not known whether this effect in humans is mediated by central or peripheral opiate antagonism. The importance of peripheral opioid receptor antagonism in modulating opioid-induced delay in gastric emptying was evaluated using methylnaltrexone, a quaternary derivative of the opiate antagonist naltrexone, which does not cross the blood-brain barrier. METHODS: In a randomized, double-blind, crossover placebo-controlled study, 11 healthy volunteers were given either placebo (saline), 0.09 mg\\/kg morphine, or 0.09 mg\\/kg morphine plus 0.3 mg\\/kg methylnaltrexone on three separate occasions before ingesting 500 ml deionized water. The rate of gastric emptying was measured by two methods: a noninvasive epigastric bioimpedance technique and the acetaminophen absorption test. RESULTS: The epigastric bioimpedance technique was sufficiently sensitive to detect opioid-induced changes in the rate of gastric emptying. The mean +\\/- SD time taken for the gastric volume to decrease to 50% (t0.5) after placebo was 5.5 +\\/- 2.1 min. Morphine prolonged gastric emptying to (t0.5) of 21 +\\/- 9.0 min (P < 0.03). Methylnaltrexone given concomitantly with morphine reversed the morphine-induced delay in gastric emptying to a t0.5 of 7.4 +\\/- 3.0 (P < 0.04). Maximum concentrations and area under the concentration curve from 0 to 90 min of serum acetaminophen concentrations after morphine were significantly different from placebo and morphine administered concomitantly with methylnaltrexone (P < 0.05). No difference in maximum concentration or area under the concentration curve from 0 to 90 min was noted between placebo and methylnaltrexone coadministered with morphine. CONCLUSIONS: The attenuation of morphine-induced delay in gastric emptying by methylnaltrexone suggests that the opioid effect is

  17. Firing patterns transition and desynchronization induced by time delay in neural networks

    Science.gov (United States)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  18. Specific energy of cold crack initiation in welding low alloy high-strength steels

    International Nuclear Information System (INIS)

    Brednev, V.I.; Kasatkin, B.S.

    1988-01-01

    Methods for determination of energy spent on cold crack initiation, when testing welded joint samples by the Implant method, are described. Data on the effect of the steel alloying system, cooling rate of welded joints, content of diffusion hydrogen on the critical specific energy spent on the development of local plastic deformation upto cold crack initiation are presented. The value of specific energy spent on cold crack initiation is shown to be by two-three orders lower than the value of impact strength minimum accessible. The possibility to estimate welded joint resistance to cold crack initiation according to the critical specific energy is established

  19. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    Science.gov (United States)

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  20. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  1. A study on fatigue crack growth behavior subjected to a single tensile overload

    International Nuclear Information System (INIS)

    Lee, S.Y.; Liaw, P.K.; Choo, H.; Rogge, R.B.

    2011-01-01

    Neutron diffraction and electric potential experiments were carried out to investigate the growth behavior of a fatigue crack subjected to a single tensile overload. The specific objectives were to (i) probe the crack tip deformation and fracture behaviors under applied loads; (ii) examine the overload-induced transient crack growth micromechanism; (iii) validate the effective stress intensity factor range based on the crack closure approach as the fatigue crack tip driving force; and (iv) establish a quantitative relationship between the crack tip driving force and crack growth behavior. Immediately after a single tensile overload was introduced and then unloaded, the crack tip became blunt and enlarged compressive residual stresses in both magnitude and zone size were observed around the crack tip. The results show that the combined contributions of the overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are responsible for the observed changes in the crack opening load and the resultant post-overload transient crack growth behavior.

  2. The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, I G; Pan, Z L; Puls, M P [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1997-02-01

    The presence of hydrides in zirconium based alloys is an important factor in assessing the potential for delayed hydride cracking in pressure tubes and the embrittlement of other in-core components fabricated from these alloys. Consequently, the terminal solid solubility (TSS) of hydrogen in the zirconium alloys used in the Nuclear Industry is an important parameter. However, at the low hydrogen concentrations found in practice, the TSS is difficult to measure accurately and even the measurements of hydrogen concentrations by standard techniques are notoriously difficult to make reproducibly at the nominal levels found in pressure tube materials. The presence of hydrides, their dissolution and nucleation gives rise to a number of internal friction phenomena and changes in Young`s modulus that can be useful from the practical point of view. These phenomena can be used to establish expressions for the TSS as a function of temperature, the hysteresis between dissolution and nucleation and hydrogen supercharging from the gas phase. In particular, such studies show that the hysteresis between the TSS measured during heating and cooling is particularly sensitive to the thermal history of the sample. This paper reviews the phenomena involved and presents some recent results on Zr-2.5Nb pressure tube material. (author). 28 refs, 17 figs, 6 tabs.

  3. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  4. Sub-10-micrometer toughening and crack tip toughness of dental enamel

    OpenAIRE

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A.

    2011-01-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip toughness (KI0, KIII0), the crack closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine en...

  5. Instability in time-delayed switched systems induced by fast and random switching

    Science.gov (United States)

    Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong

    2017-07-01

    In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.

  6. Evaluation on effects of chloride-induced deterioration on mechanical properties of RC beams with cracking damage

    International Nuclear Information System (INIS)

    Matsuo, Toyofumi; Matsumura, Takuro; Otsuka, Taku

    2015-01-01

    This paper discusses the influence of chloride-induced deterioration on mechanical properties of aging reinforced concrete (RC) structures and the applicability of the material degradation model that takes reinforcing steel corrosion into consideration for finite element analysis. We conducted the corrosion tests under the simulated tidal environment and the flexural loading tests for the RC beams with cracking damage and initial defects. Then, the experimental results were numerically correlated to validate the devised modeling. The obtained results were summarized as follows: (a) The cracking damage in specimens caused a minor effect on the reinforcing steel corrosion in the case where the thickness of cover concrete was 40 mm and main rebars did not yield before chloride attack. On the other hand the maximum corrosion ratio of the deteriorated part became considerably larger than that of the non-cracking part in the specimens where the cover concrete were removed partially to simulate spalling by the severe corrosion. (b) Based on the test results, we derived the corrosion velocity of reinforcing steel corresponding to cracking damage degrees. (c) In FEM analyses, we showed that the above modeling can estimate the flexural strength of RC beams in consideration of the degradation in elongation performance of reinforcing steel due to corrosion. (author)

  7. A mechanism for the hydrogen uptake process in zirconium alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1999-01-01

    Hydrogen uptake data for thin Zircaloy-2 specimens in steam at 300-400 C have been analysed to show that there is a decrease in the rate of uptake with respect to the rate of oxidation when the terminal solid solubility (TSS) of hydrogen in the metal is exceeded. In order for TSS to be reached during pre-transition oxidation a very thin 0.125 mm Zircaloy sheet was used. The specimens had been pickled initially removing all Zr 2 (Fe/Ni) particles from the initial surfaces, yet the initial hydrogen uptake rates were still much higher than for Zircaloy-4 or a binary Zr/Fe alloy that did not contain phases that dissolve readily during pickling. Cathodic polarisation at room temperature in CuSO 4 solution showed that small cracks or pores formed the cathodic sites in pre-transition oxide films. Some were at pits resulting from the initial dissolution of the Zr 2 (Fe/Ni) phase; others were not; none were at the remaining intermetallics in the original surface. These small cracks are thought to provide the ingress routes for hydrogen. A microscopic steam starvation process at the bottoms of these small cracks or pores, leading to the accumulation of hydrogen adjacent to the oxide/metal interface, and causing breakdown of the passive oxide forming at the bottom of the flaw, is thought to provide the mechanism for the hydrogen uptake process during both pre-transition and post-transition oxidation. (orig.)

  8. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    Core components of light water reactor (LWR), mainly made of austenitic stainless steels (SS), subjected to stress and exposed to relatively high fast neutron flux may suffer a cracking process termed as Irradiation Assisted Stress Corrosion Cracking (IASCC). Neutron radiation leads to critical modifications in material characteristics, which can modify their stress corrosion cracking (SCC) response. Current knowledge highlights three fundamental factors, induced by radiation, as primary contributors to IASCC of core materials: Radiation Induced Segregation (RIS) at grain boundaries, Radiation Hardening and Radiolysis. Most of the existing literature on IASCC is focussed on the influence of RIS, mainly chromium depletion, which can promote IASCC in oxidizing environments, such a Boiling Water Reactor (BWR) under normal water chemistry. However, in non-oxidizing environments, such as primary water of Pressurized Water Reactor (PWR) or BWR hydrogen water chemistry, the role played by chromium depletion at grain boundary on IASCC behaviour of highly irradiated material is irrelevant. One important issue with limited study is the effect of radiation induced hardening. The role of hardening on IASCC is became stronger considered, especially for environments where other factors, like micro-chemistry, have no significant influence. To formulate the mechanism of IASCC, a well-established method is to isolate and quantify the effect of individual parameters. The use of unirradiated material and the simulation of the irradiation effects is a procedure used with success for evaluating the influence of irradiation effects. Radiation hardening can be simulated by mechanical deformation and, although some differences exist in the types of defects produced, it is believed that the study of the SCC behaviour of unirradiated materials with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the

  9. Crack resistance curve determination of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Bertsch, J.; Alam, A.; Zubler, R.

    2009-03-01

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 o C and 350 o C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could be

  10. Crack resistance curve determination of zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J.; Alam, A.; Zubler, R

    2009-03-15

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 {sup o}C and 350 {sup o}C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could

  11. Radiation induced early delayed changes in mice brain: a 1h MRS and behavioral evaluation study

    International Nuclear Information System (INIS)

    Gupta, Mamta; Rana, Poonam; Haridas, Seenu; Manda, Kailash; Hemanth Kumar, B.S.; Khushu, Subash

    2014-01-01

    Radiation induced CNS injury can be classified as acute, early delayed and late delayed. Most of the studies suggest that acute injury is reversible whereas early delayed and late delayed injury is irreversible leading to metabolic and cognitive impairment. Extensive research has been carried out on cranial radiation induced early and late delayed changes, there are no reports on whole body radiation induced early and delayed changes. The present study was designed to observe early delayed effects of radiation during whole body radiation exposure. A total of 20 C57 male mice were divided in two groups of 10 animals each. One group was exposed to a dose of 5 Gy whole body radiation through Tele 60 Co irradiation facility with source operating at 2.496 Gy/min, while other group served as sham irradiated control. Behavioral and MR spectroscopy was carried out 3 months post irradiation. Behavioral parameters such as locomotor activity and working memory were evaluated first then followed by MR spectroscopy at 7T animal MRI system. For MRS, voxel was localised in the cortex-hippocampus region of mouse brain. MR spectra were acquired using PRESS sequence, FID was processed using LC model for quantitation. The data showed impaired cognitive functions and altered metabolite levels during early delayed phase of whole body radiation induced injury. In behavioural experiments, there was a significant impairment in the cognitive as well as exploratory functions at 3 months post irradiation in irradiated group as compared to controls. MRS results explained changes in mI, glutamine and glx levels in irradiated animals compared to controls. Altered mI level has been found to be associated with reduced cognitive abilities in many brain disorders including MCI and Alzheimer's disease. The findings of this study suggest that whole body radiation exposure may have long lasting effect on the cognitive performance. (author)

  12. Growth of nanoparticles in hydrogen-implanted palladium subsurfaces

    International Nuclear Information System (INIS)

    Okuyama, F.

    2010-01-01

    Solid particles with nanometric dimensions are shown to grow in the opened subsurface of a polycrystalline palladium (Pd) hydrogen-implanted at around 500 C. The particles are Pd in main composition and densely grown on sloping walls of fissured grain boundaries or cracks. The average grain size increases from deeper to shallow regions, suggesting that a negative temperature gradient toward the surface existed along the crack walls. The nanoparticles are certain to arise from the condensation of Pd vapors on the walls, forcing us to assume that hydrogen atoms implanted in an overpopulation heated their implantation zone so strongly as to vaporize Pd. (orig.)

  13. Growth of nanoparticles in hydrogen-implanted palladium subsurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, F. [Nagoya Institute of Technology, Graduate School of Engineering, Nagoya (Japan)

    2010-07-15

    Solid particles with nanometric dimensions are shown to grow in the opened subsurface of a polycrystalline palladium (Pd) hydrogen-implanted at around 500 C. The particles are Pd in main composition and densely grown on sloping walls of fissured grain boundaries or cracks. The average grain size increases from deeper to shallow regions, suggesting that a negative temperature gradient toward the surface existed along the crack walls. The nanoparticles are certain to arise from the condensation of Pd vapors on the walls, forcing us to assume that hydrogen atoms implanted in an overpopulation heated their implantation zone so strongly as to vaporize Pd. (orig.)

  14. Thermal Cracking to Improve the Qualification of the Waxes

    Science.gov (United States)

    He, B.; Agblevor, F. A.; Chen, C. G.; Feng, J.

    2018-05-01

    Thermal cracking of waxes at mild conditions (430-500°C) has been reconsidered as a possible refining technology for the production of fuels and chemicals. In this study, the more moderate thermal cracking was investigated to process Uinta Basin soft waxes to achieve the required pour point so that they can be pumped to the refineries. The best thermal cracking conditions were set 420°C and 20 minutes. The viscosity and density of the final liquid product were respectively achieved as 2.63 mP•s and 0.784 g/cm3 at 40°C. The result of FT-IR analysis of the liquid product indicated that the unsaturated hydrocarbons were produced after thermal cracking, which was corroborated by the 13C NMR spectrum. The GC analysis of the final gas product indicated that the hydrogen was produced; the dehydrogenation reaction was also proved by the elemental analysis and HHV results. The pour point of the final liquid product met the requirement.

  15. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  16. Effect of plastic prestrain on the crack tip constraint of pipeline steels

    International Nuclear Information System (INIS)

    Eikrem, P.A.; Zhang, Z.L.; Nyhus, B.

    2007-01-01

    Before and during operation, pipelines may suffer from plastic pre-deformation due to accidental loading, cold bending and ground movement. Plastic prestrain not only modifies steel's yield and flow properties but also influences its fracture performance. This paper focuses on the effect of prestrain history on crack driving force and crack tip constraint. A single-edge notched tension specimen has been selected for the study and the crack is assumed to exist before a prestrain history was applied. The results show that prestrain history has a strong effect on the crack tip stress field. A new parameter has been proposed to characterize the prestrain-induced crack tip constraint. For the same crack tip opening displacement level, prestrain history will elevate the crack tip stress field. The prestrain-induced constraint decreases with the increase of loading

  17. Behaviour of high stretch bolts in tension working as part of elements of steel structures, and their tendency to delayed fracturing

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    2014-12-01

    Full Text Available In the article, the author has proven that manufacturing and installation errors, as well as contact deformations of high strength bolts, if analyzed as part of tensile connections of steel structures, work in eccentric tension. In pursuance of the effective state standards, the analysis of these bolts is based on the axial tension. The author has analyzed the failure of a steel structure, caused by the fracture of eccentrically loaded bolts made of steel grade XC 42 (France, or C40 (Germany, that later followed the delayed fracturing pattern. The author provides the findings of the lab tests, whereby the above bolts were tested in the presence of an angle washer. The author has also analyzed the findings of low-temperature tests of bolts in tension. The author demonstrates that the strength of high strength bolts is driven by the material, the structure shape, and the thermal treatment pattern. Eccentric tension tests of bolts have proven that cracks emerge in the areas of maximal concentration of stresses (holes in shafts, etc. that coincide with the areas where fibers are in tension; cracks tend to follow the delayed fracturing pattern, and their development is accompanied by the deformation-induced metal heating in the fracture area. Therefore, the analysis of high strength bolts shall concentrate on the eccentric tension with account for contact-induced loads, while the tendency to delayed fracturing may be adjusted through the employment of both metallurgical and process techniques.

  18. Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments

    Science.gov (United States)

    Piascik, Robert S.; Gangloff, Richard P.

    1989-01-01

    Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.

  19. The influence of cracks on chloride-induced corrosion of reinforced concrete structures - development of the experimental set-up

    NARCIS (Netherlands)

    Blagojevic, A.; Koleva, D.A.; Walraven, J.C.

    2014-01-01

    Chloride-induced corrosion of steel reinforcement is one of the major threats to durability of reinforced concrete structures in aggressive environmental conditions. When the steel reinforcement starts to corrode, structures gradually lose integrity and service life is shortened. Cracks are

  20. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Marián

    2015-07-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  1. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Mariá n; Luká č, František; Vlach, Martin; Prochá zka, Ivan; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Gemma, Ryota; Čí žek, Jakub

    2015-01-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  2. Influence of corrosion environment composition on crack propagation in high-strength martensitic steel

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Tsirul'nik, A.T.

    1984-01-01

    The 40 Kh steel is taken as an example to investigate the dependence of electrochemical parameters in the crack tip and characteristics of corrosion static cracking resistance of martensitic steel on the composition of environment. The tests are performed in acidic and alkaline solutions prepared by adding HC or NaOH in distilled water. It is established that growth of pH value of initial solutions trom 0 to 13 brings about linear increase of a threshold stress intensity factor. It is found that acidic medium in the crack tip preserves up to pH 13 of initial medium. The possibility of corrosion crack propagation in alkaline solutions according to the mechanism of hydrogen embrittlement is proved

  3. Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy

    DEFF Research Database (Denmark)

    Rapin, W.; Bousquet, B.; Lasue, J.

    2017-01-01

    On Mars, Laser-Induced Breakdown Spectroscopy (LIBS) as performed by the ChemCam instrument can be used to measure the hydrogen content of targets in situ, under a low pressure CO2 atmosphere. However, unexpected variations observed in the Martian dataset suggest an effect related to target...... to hydrogen, as other emission lines in the spectra are not affected. The increase of the signal could be related to an addition of hydrogen to the plasma due to interaction with the surrounding target surface, yet the exact physical process to explain such effect remains to be identified. More generally...

  4. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  5. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts

    International Nuclear Information System (INIS)

    Bore, C.

    1995-01-01

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a 'viscosity pump' phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. In addition, final metallurgical

  6. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    International Nuclear Information System (INIS)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H 3 BO 3 ) with 1 bar hydrogen overpressure at 360 degrees C and 320 degrees C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition

  7. High chromium nickel base alloys hot cracking susceptibility

    International Nuclear Information System (INIS)

    Tirand, G.; Primault, C.; Robin, V.

    2014-01-01

    High Chromium nickel based alloys (FM52) have a higher ductility dip cracking sensitivity. New filler material with higher niobium and molybdenum content are developed to decrease the hot crack formation. The behavior of these materials is studied by coupling microstructural analyses and hot cracking test, PVR test. The metallurgical analyses illustrate an Nb and Mo enrichment of the inter-dendritic spaces of the new materials. A niobium high content (FM52MSS) induces the formation of primary carbide at the end of solidification. The PVR test reveal a solidification crack sensitivity of the new materials, and a lowest ductility dip cracking sensitivity for the filler material 52MSS. (authors)

  8. Replacement of a cracked pressure tube in Bruce GS unit 2

    International Nuclear Information System (INIS)

    Dunn, J.T.

    1982-06-01

    In 1982 February, a primary heat transport system leak was detected in the annulus gas system by on-line instrumentation. The source of the leak was found to be a small axial crack in the pressure tube of fuel channel X-14. This fuel channel was removed and replaced by station maintenance staff, and the unit was returned to service five weeks after it had been shut down. The cracked pressure tube was sent to Chalk River Nuclear Laboratories for examination, and the crack was found to be very similar to those found in Pickering GS units 3 and 4 in 1974-75. It was caused by delayed hydride cracking during the period of high residual stress between the time of rolling and the pre-service stress relief

  9. Hydrogen-induced room-temperature plasticity in TC4 and TC21 alloys

    DEFF Research Database (Denmark)

    Yuan, Baoguo; Jin, Yongyue; Hong, Chuanshi

    2017-01-01

    In order to reveal the effect of hydrogen on the room-temperature plasticity of the titanium alloys TC4 and TC21, compression tests have been carried out at room temperature. Results show that an appropriate amount of hydrogen can improve the room-temperature plasticity of both the TC4 and TC21...... alloys. The ultimate compression strain of the TC4 alloy containing a hydrogen concentration of 0.5 wt.% increases by 39% compared to the untreated material. For the TC21 alloy the ultimate compression strain is increased by 33% at a hydrogen concentration of 0.6 wt.%. The main reason for the improvement...... of hydrogen-induced room-temperature plasticity of the TC4 and TC21 alloys is discussed....

  10. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  11. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  12. Induced resistance to hydrogen peroxide, UV and gamma radiation in bacillus species

    International Nuclear Information System (INIS)

    Bashandy, A.S.

    2005-01-01

    The catalase activity produced in four bacillus spp.(bacillus cereus, B. laterosporus, B. pumilus and B. subtilis (Escherichia coli was used for comparison) was measured and the sensitivity of these bacteria to hydrogen peroxide was tested. Bacillus spp. had higher resistance to hydrogen peroxide than E. coil. cultures of bacillus spp . When pretreated with sublethal level of hydrogen peroxide, became relatively resistant to the lethal effects of hydrogen than untreated control cultures. These pretreated cells were also resistant to lethality mediated by UV light and gamma radiation. The obtained results suggest that bacillus spp. Possess inducible defense mechanism (s) against the deleterious effects of oxidants and /or ionizing radiation

  13. Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging

    Science.gov (United States)

    Buitrago, N. L.; Santisteban, J. R.; Tartaglione, A.; Marín, J.; Barrow, L.; Daymond, M. R.; Schulz, M.; Grosse, M.; Tremsin, A.; Lehmann, E.; Kaestner, A.; Kelleher, J.; Kabra, S.

    2018-05-01

    Zr-based alloys are used in nuclear power plants because of a unique combination of very low neutron absorption and excellent mechanical properties and corrosion resistance at operating conditions. However, Hydrogen (H) or Deuterium ingress due to waterside corrosion during operation can embrittle these materials. In particular, Zr alloys are affected by Delayed Hydride Cracking (DHC), a stress-corrosion cracking mechanism operating at very low H content (∼100-300 wt ppm), which involves the diffusion of H to the crack tip. H content in Zr alloys is commonly determined by destructive techniques such as inert gas fusion and vacuum extraction. In this work, we have used neutron imaging to non-destructively quantify the spatial distribution of H in Zr alloys specimens with a resolution of ∼5 wt ppm, an accuracy of ∼10 wt ppm and a spatial resolution of ∼25 μm × 5 mm x 10 mm. Non-destructive experiments performed on a comprehensive set of calibrated specimens of Zircaloy-2 and Zr2.5%Nb at four neutron facilities worldwide show the typical precision and repeatability of the technique. We have observed that the microstructure of the alloy plays an important role on the homogeneity of H across a specimen. We propose several strategies for performing H determinations without calibrated specimens, with the most precise results for neutrons having wavelengths longer than 5.7 Å.

  14. Hydrogen terminal solubility in Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abrahan D.

    1999-01-01

    Terminal solubility temperature of hydrogen in zirconium and its alloys is an important parameter because hydrides precipitation embrittled these materials making them susceptible to the phenomenon known as retarded hydrogen cracking. This work continues the study presented in the 25 AATN Meeting. Within this framework, a study focused on determining these curves in recrystallized Zircaloy-4, using scanning differential calorimetric technique. Terminal solubility curves for Zircaloy-4 were constructed within a concentration range from 40 to 640 ppm in hydrogen weight and comparisons with results obtained by other authors were made. (author)

  15. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  16. BWR alloy 182 stress Corrosion Cracking Experience

    International Nuclear Information System (INIS)

    Horn, R.M.; Hickling, J.

    2002-01-01

    Modern Boiling Water Reactors (BWR) have successfully operated for more than three decades. Over that time frame, different materials issues have continued to arise, leading to comprehensive efforts to understand the root cause while concurrently developing different mitigation strategies to address near-term, continued operation, as well as provide long-term paths to extended plant life. These activities have led to methods to inspect components to quantify the extent of degradation, appropriate methods of analysis to quantify structural margin, repair designs (or strategies to replace the component function) and improved materials for current and future application. The primary materials issue has been the occurrence of stress corrosion cracking (SCC). While this phenomenon has been primarily associated with austenitic stainless steel, it has also been found in nickel-base weldments used to join piping and reactor internal components to the reactor pressure vessel consistent with fabrication practices throughout the nuclear industry. The objective of this paper is to focus on the history and learning gained regarding Alloy 182 weld metal. The paper will discuss the chronology of weld metal cracking in piping components as well as in reactor internal components. The BWR industry has pro-actively developed inspection processes and procedures that have been successfully used to interrogate different locations for the existence of cracking. The recognition of the potential for cracking has also led to extensive studies to understand cracking behavior. Among other things, work has been performed to characterize crack growth rates in both oxygenated and hydrogenated environments. The latter may also be relevant to PWR systems. These data, along with the understanding of stress corrosion cracking processes, have led to extensive implementation of appropriate mitigation measures. (authors)

  17. Formation dynamics of UV and EUV induced hydrogen plasma

    NARCIS (Netherlands)

    Dolgov, A.A.; Lee, Christopher James; Yakushev, O.; Lopaev, D.V.; Abrikosov, A.; Krivtsun, V.M.; Zotovich, A.; Bijkerk, F.

    2014-01-01

    The comparative study of the dynamics of ultraviolet (UV) and extreme ultraviolet (EUV) induced hydrogen plasma was performed. It was shown that for low H2 pressures and bias voltages, the dynamics of the two plasmas are significantly different. In the case of UV radiation, the plasma above the

  18. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  19. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels

    International Nuclear Information System (INIS)

    Dieudonne, T.; Chene, J.; Marchetti, L.; Wery, M.; Allely, C.; Cugy, P.; Scott, C.P.

    2014-01-01

    The role of alloying elements on the hydrogen embrittlement (HE) susceptibility of a Fe-18Mn-0.6C alloy was investigated by in situ tensile tests and characterized by the ductility loss associated with intergranular fracture. Under cathodic polarization an improvement of HE resistance is related to the SFE increase with Cu or Al additions reducing the stress-strain and H localization at grain boundaries, which prevents H-induced intergranular cracking. At rest potential, beneficial effects of Cu and Al are related to their influence on hydrogen absorption during the corrosion process. However, residual phosphorus strongly reduces the beneficial effect of aluminum. (authors)

  20. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    International Nuclear Information System (INIS)

    Chen, Han; Sun, Yan Ping; Li, Yang; Liu, Wen Wu; Xiang, Hong Gang; Fan, Lie Ying; Sun, Qiang; Xu, Xin Yun; Cai, Jian Mei; Ruan, Can Ping; Su, Ning; Yan, Rong Lin; Sun, Xue Jun; Wang, Qiang

    2010-01-01

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.