WorldWideScience

Sample records for hydrogen-deficient compact pulsators

  1. Experimental investigation on a pulsating heat pipe with hydrogen

    International Nuclear Information System (INIS)

    Deng, H R; Liu, Y M; Ma, R F; Han, D Y; Gan, Z H; Pfotenhauer, J M

    2015-01-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb 3 Sn and NbTi, MgB 2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB 2 , this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios. (paper)

  2. PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Steinfadt, Justin D. R.; Bildsten, Lars; Arras, Phil

    2010-01-01

    Helium core white dwarfs (WDs) with mass M ∼ sun undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

  3. Pulsations of white dwarf stars with thick hydrogen or helium surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.N.; Starrfield, S.G.; Kidman, R.B.; Pesnell, W.D.

    1986-07-01

    In order to see if there could be agreement between results of stellar evolution theory and those of nonradial pulsation theory, calculations of white dwarf models have been made for hydrogen surface masses of 10/sup -4/ solar masses. Earlier results indicated that surface masses greater than 10/sup -8/ solar masses would not allow nonradial pulsations, even though all the driving and damping is in surface layers only 10/sup -12/ of the mass thick. It is shown that the surface mass of hydrogen in the pulsating white dwarfs (ZZ Ceti variables) can be any value as long as it is thick enough to contain the surface convection zone. 10 refs., 6 figs.

  4. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E., E-mail: heb11@psu.edu [Current address: Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA. (United States)

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  5. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  6. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad; Wakil Shahzad, Muhammad; Ng, Kim Choon

    2017-01-01

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  7. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  8. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    Science.gov (United States)

    Reed, M. D.; Kawaler, S. D.; Østensen, R. H.; Bloemen, S.; Baran, A.; Telting, J. H.; Silvotti, R.; Charpinet, S.; Quint, A. C.; Handler, G.; Gilliland, R. L.; Borucki, W. J.; Koch, D. G.; Kjeldsen, H.; Christensen-Dalsgaard, J.

    2010-12-01

    We present the discovery of non-radial pulsations in five hot subdwarf B (sdB) stars based on 27 d of nearly continuous time series photometry using the Kepler spacecraft. We find that every sdB star cooler than ≈27 500 K that Kepler has observed (seven so far) is a long-period pulsator of the V1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p-modes with periods of 2-5 min and in addition, these stars exhibit periodicities between both classes from 15 to 45 min. We detect the coolest and longest-period V1093 Her-type pulsator to date, KIC010670103 (Teff≈ 20 900 K, Pmax≈ 4.5 h) as well as a suspected hybrid pulsator, KIC002697388, which is extremely cool (Teff≈ 23 900 K) and for the first time hybrid pulsators which have larger g-mode amplitudes than p-mode ones. All of these pulsators are quite rich with many frequencies and we are able to apply asymptotic relationships to associate periodicities with modes for KIC010670103. Kepler data are particularly well suited for these studies as they are long duration, extremely high duty cycle observations with well-behaved noise properties.

  9. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States)

    2012-05-10

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T{sub eff} = 9100 {+-} 170 K and log g = 6.22 {+-} 0.06, which corresponds to a mass of {approx}0.17 M{sub Sun }. This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  10. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    International Nuclear Information System (INIS)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin

    2012-01-01

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T eff = 9100 ± 170 K and log g = 6.22 ± 0.06, which corresponds to a mass of ∼0.17 M ☉ . This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  11. Numerical investigation on pulsating heat pipes with nitrogen or hydrogen

    Science.gov (United States)

    Y Han, D.; Sun, X.; Gan, Z. H.; Y Luo, R.; Pfotenhauer, J. M.; Jiao, B.

    2017-12-01

    With flexible structure and excellent performance, pulsating heat pipes (PHP) are regarded as a great solution to distribute cooling power for cryocoolers. The experiments on PHPs with cryogenic fluids have been carried out, indicating their efficient performances in cryogenics. There are large differences in physical properties between the fluids at room and cryogenic temperature, resulting in their different heat transfer and oscillation characteristics. Up to now, the numerical investigations on cryogenic fluids have rarely been carried out. In this paper, the model of the closed-loop PHP with multiple liquid slugs and vapor plugs is performed with nitrogen and hydrogen as working fluids, respectively. The effects of heating wall temperature on the performance of close-looped PHPs are investigated and compared with that of water PHP.

  12. First Kepler results on compact pulsators - V. Slowly pulsating subdwarf B stars in short-period binaries

    DEFF Research Database (Denmark)

    Kawaler, Stephen D.; Reed, Michael D.; Østensen, Roy H.

    2010-01-01

    of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear......The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for non-radial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical...... evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings...

  13. A radial velocity survey of extremely hydrogen-deficient stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Kiel Univ.; Drilling, J.S.; Heber, U.

    1987-01-01

    A radial velocity survey of hot extremely hydrogen-deficient stars has been carried out in order to search for possible binaries. The survey found three stars to have large velocity variations. Of these, two are known hydrogen-deficient binaries and one, HDE 320156 (= LSS 4300), is a suspected binary. HDE 320156 (= LSS 4300) is therefore confirmed to be a single-lined spectroscopic hydrogen-deficient binary. The hydrogen-deficient binary stars all show weak C-lines. The remaining stars in the sample are C-strong extreme-helium (EHe) stars and did not show large-amplitude velocity variations. Small-amplitude radial velocity variations known to be present amongst the EHe stars are largely undetected. Evidence for variability is, however, present in the known variable V2076 Oph (HD 160641) and in LS IV - 1 0 2 with amplitudes between 10 and 20 km s -1 . (author)

  14. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    DEFF Research Database (Denmark)

    Reed, M.D.; Kawaler, Stephen D.; Østensen, Roy H.

    2010-01-01

    1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p...

  15. Finding binaries from phase modulation of pulsating stars with Kepler

    Science.gov (United States)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  16. Hydrogen fueling demonstration projects using compact PSA purification

    International Nuclear Information System (INIS)

    Ng, E.; Smith, T.

    2004-01-01

    'Full text:' Hydrogen fueling demonstration projects are critical to the success of hydrogen as an automotive fuel by building public awareness and demonstrating the technology required to produce, store, and dispense hydrogen. Over 75 of these demonstration projects have been undertaken or are in the planning stages world-wide, sponsored by both the public and private sectors. Each of these projects represents a unique combination of sponsors, participants, geographic location, and hydrogen production pathway. QuestAir Technologies Inc., as the industry leader in compact pressure swing adsorption equipment for purifying hydrogen, has participated in four hydrogen fueling demonstration projects with a variety of partners and in North America and Japan. QuestAir's experiences as a participant in the planning, construction, and commissioning of these demonstration projects will be presented in this paper. The unique challenges of each project and the critical success factors that must to be considered for successful deployment of high-profile, international, and multi-vendor collaborations will also be discussed. The paper will also provide insights on the requirements for hydrogen fueling demonstration projects in the future. (author)

  17. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  18. Nonradial pulsations of hot evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1987-01-01

    There are three classes of faint blue variable stars: the ZZ Ceti variables (DAV degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DOV degenerate dwarfs). None of these classes of variable stars were known at the time of the last blue star meeting. Observational and theoretical studies of the ZZ Ceti variables, the DBV variables, and the GW Vir variables have shown them to be pulsating in nonradial g-modes. The cause of the pulsation has been determined for each class of variable star and, in all cases, also involves predictions of the stars envelope composition. The predictions are that the ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers with less than 30% (by mass) of helium. Given these compositions, it is found that pulsation driving occurs as a result of the kappa and gamma effects operating in the partial ionization zones of either hydrogen or helium. In addition, a new driving mechanism, called convection blocking, also occurs in these variables. For the GW Vir variables, it is the kappa and gamma effects in the partial ionization regions of carbon and oxygen. 45 refs

  19. Theoretical pulsation of metallic-line stars

    International Nuclear Information System (INIS)

    Cox, A.N.; King, D.S.; Hodson, S.W.

    1979-01-01

    The linear-theory radial-pulsation stability of low-helium delta Scuti variable models (1.0--2.5 Msun) has been investigated to see if metallicism and pulsation can occur simultaneously. Metallicism, which occurs in slowly rotating stars after the gravitational settling of He and the loss of the He II convection zone and its deep mixing for Y< or approx. =0.1, can then be established rapidly compared with the evolution time scale. Pulsation can still occur with driving due to the residual helium and the enhanced hydrogen. With the reduced helium giving no connection zone, the pulsation instability strip, whose blue and edges are estimated in this paoer, is about half as wide as with a normal helium abundance. Zero helium in the surface driving regions, however, produces blue edges so red that probably no instability strip exists at all. The red edge, predicted theoretically on the basis of the importance of convection in the outer zone, agrees well with the observational one. Cool, low-helium and metallic-line stars are then predicted to pulsate in a 200--500 K wide strip that is widest between the main-sequence luminosity of 5 Lsun and 15 Lsun. This strip reasonably includes the observed pulsating delta Del and mild Am stars, but there may be conflicts. Since blue edges for varying ionization-zone helium content occur across the entire instability strip, bluer first and higher overtone pulsations are also predicted everywhere from less than 7000 K to over 8000 K, the redder ones probably showing metallicism

  20. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  1. Iron Abundance in the Prototype PG 1159 Star, GW Vir Pulsator PG 1159-035, and Related Objects

    Science.gov (United States)

    Werner, K.; Rauch, T.; Kruk, J. W.; Kurucz, R. L.

    2011-01-01

    We performed an iron abundance determination of the hot, hydrogen deficient post-AGB star PG 1159-035. which is the prototype of the PG 1159 spectral class and the GW Vir pulsators, and of two related objects (PG 1520+525, PG 1144+005), based on the first detection of Fe VIII lines in stellar photospheres. In another PG 1159 star. PG 1424+535. we detect Fe VII lines. In all four stars, each within T(sub eff) = 110,000-150,000 K, we find a solar iron abundance. This result agrees with our recent abundance analysis of the hottest PG 1159 stars (T(sub eff) = 150,000-200,000 K) that exhibit Fe x lines. On the whole, we find that the PG 1159 stars are not significantly iron deficient, in contrast to previous notions.

  2. First Kepler results on compact pulsators - II. KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    DEFF Research Database (Denmark)

    Kawaler, Stephen; Reed, M.D.; Quint, A.C.

    2010-01-01

    We present the discovery of non-radial pulsations in a hot subdwarf B star based on 30.5 d of nearly continuous time series photometry using the Kepler spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes...... whose periods range from 130 to 190 s. It also shows one periodicity at a period of 3165 s. If this periodicity is a high-order g-mode, then this star may be the hottest member of the hybrid DW Lyn stars. In addition to the resolved pulsation frequencies, additional periodic variations in the light...... are independent stellar oscillation modes. We find that most of the identified periodicities are indeed stable in phase and amplitude, suggesting a rotation period of 2-3 weeks for this star, but further observations are needed to confirm this suspicion....

  3. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...

  4. Pulsational instabilities in hot pre-horizontal branch stars

    Directory of Open Access Journals (Sweden)

    Battich Tiara

    2017-01-01

    Full Text Available The ϵ mechanism is a self-excitation mechanism of pulsations which acts on the regions where nuclear burning takes place. It has been shown that the ϵ mechanism can excite pulsations in models of hot helium-core flash, and that the pulsations of LS IV-14· 116, a He-enriched hot subdwarf star, could be explained that way. We aim to study the ϵmechanism effects on models of hot pre-horizontal branch stars and determine, if possible, a domain of instability in the log g — log Teff plane. We compute non-adiabatic non-radial pulsations on such stellar models, adopting different values of initial chemical abundances and mass of the hydrogen envelope at the time of the main helium flash. We find an instability domain of long-period (400 s ≲ P ≲ 2500 s g-modes for models with 22000K ≲ Teff ≲ 50000K and 4.67 ≲ log g ≲ 6.15.

  5. Solar to hydrogen: Compact and cost effective CPV field for rooftop operation and hydrogen production

    KAUST Repository

    Burhan, Muhammad

    2016-11-25

    Current commercial CPV systems are designed as large units which are targeted to be installed in open desert fields with high DNI availability. It appeared that the CPV is among some of those technologies which gained very little attention of people, with less customers and market. For conventional PV systems, the installations at the rooftop of commercial and residential buildings have a significant share in the total installed capacity of PV systems. That is why for most of the countries, the PV installations at the rooftop of commercial and residential buildings are aimed to be increased to half of total installed PV. On the other hand, there is no commercial CPV system available to be suitable for rooftop operation, giving motivation for the development of CPV field of compact systems. This paper discusses the development of a CPV field for the rooftop operation, comprising of compact CPV system with cost effective but highly accurate solar tracking sensor and wireless master slave control. In addition, the performance of the developed CPV systems is evaluated for production of hydrogen, which can be used as energy carrier or energy storage and a maximum solar to hydrogen efficiency of 18% is obtained. However, due to dynamic nature of the weather data and throughout the day variations in the performance of CPV and electrolyser, the solar to hydrogen performance is proposed to be reported as daily and long term average efficiency. The CPV-Hydrogen system showed daily average conversion efficiency of 15%, with solar to hydrogen production rate of 218 kW h/kg.

  6. Pulsations of stellar models in H and He burning phases

    Energy Technology Data Exchange (ETDEWEB)

    Gurm, H S; Sukhija, H M; Badalia, J K [Punjabi Univ., Patalia (India). Dept. of Astronomy and Space Sciences

    1983-02-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of ..beta.. Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram.

  7. Investigation of Hydrogen and Nitrogen Content in Compacted Graphite Iron Production

    OpenAIRE

    Siafakas, Dimitrios

    2013-01-01

    The aim of this research, part of a wider program called SPOFIC, is to investigate how the casting procedure affects the concentration of hydrogen and nitrogen gases in Compacted Graphite Iron used for the production of truck cylinder blocks. Hydris equipment was used for the Hydrogen measurements and the Optical Emission Spectroscopy and combustion analysis methods were used for the nitrogen measurements. The experiment was performed in one of the cooperating foundries. It was found that Hyd...

  8. Pulsations of stellar models in H and He burning phases

    International Nuclear Information System (INIS)

    Gurm, H.S.; Sukhija, H.M.; Badalia, J.K.

    1983-01-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of #betta# Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram. (orig.)

  9. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    Directory of Open Access Journals (Sweden)

    Bell K. J.

    2015-01-01

    Full Text Available KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  10. The pulsation mode and period-luminosity relationship of cool variables in globular clusters

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1986-01-01

    The period-luminosity-temperature relationship for globular cluster red and yellow variables is examined. The results suggest that the higher temperature, more metal-deficient cluster variables pulsate in the fundamental mode, while the lower temperature more metal-rich variables pulsate in the first overtone. On the assumption that this is correct, a relationship between fundamental period and bolometric magnitude is derived for cluster variables with observed periods of between 1 and 300 days. (author)

  11. First Kepler results on compact pulsators – VIII. Mode identifications via period spacings in g-mode pulsating subdwarf B stars

    DEFF Research Database (Denmark)

    Reed, M.D.; Baran, A.; Quint, A.C.

    2011-01-01

    We investigate the possibility of nearly equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal-period spacings of modes with differing degrees ℓ...

  12. Diffusion of helium and estimated diffusion coefficients of hydrogen dissolved in water-saturated, compacted Ca-montmorillonite

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Sato, Seichi; Ohashi, Hiroshi; Otsuka, Teppei

    2001-01-01

    The diffusion coefficients of hydrogen gas dissolved in water-saturated, compacted montmorillonite are required to estimate the performance of bentonite buffer materials for geological disposal of nuclear waste. As part of the effort to determine the diffusion coefficients, the diffusion coefficients of helium in water-saturated, compacted calcium montmorillonite (Ca-montmorillonite) were determined as a function of dry density, 0.78 to 1.37x10 3 kg m -3 , by a transient diffusion method. The diffusion coefficients were from 8.3x10 -10 m 2 s -1 at 0.78x10 3 kgm -3 to 2.8x10 -10 m 2 s -1 at 1.37x10 3 kgm -3 . The data obtained by this diffusion experiment of helium were highly reproducible. The diffusion coefficients of helium in Ca-montmorillonite were somewhat larger than those previously obtained for helium in sodium montmorillonite (Na-montmorillonite). The diffusion coefficients of hydrogen gas in the montmorillonites were roughly estimated using the diffusion coefficients of helium. These estimates were based on assumptions that both helium and hydrogen molecules are non-adsorptive and that the geometric factors in the compacted montmorillonites are approximately the same for diffusion of helium and diffusion of hydrogen. (author)

  13. Modelling of temperature distribution and temperature pulsations in elements of fast breeder reactor

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Bogoslovskaia, G.P.; Ushakov, P.A.; Zhukov, A.V.; Ivanov, Eu.F.; Matjukhin, N.M.

    2004-01-01

    From thermophysical point of view, integrated configuration of liquid metal cooled reactor has some limitations. Large volume of mixing chamber causes a complex behavior of thermal hydraulic characteristics in such facilities. Also, this volume is responsible for large-scale eddies in the coolant, existence of stagnant areas and flow stratification, occurrence of temperature non-uniformity and pulsation of coolant and structure temperatures. Temperature non-uniformities and temperature pulsations depend heavily even on small variations in reactor core design. The paper presents some results on modeling of thermal hydraulic processes occurring in liquid metal cooled reactor. The behavior of following parameters are discussed: temperature non-uniformities at the core output and related temperature pulsations; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation at the core output and related temperature pulsation; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation of temperature during transients and during transition to natural convection cooling. Also, the issue of modeling of temperature behavior in compact arrangement of fast reactor fuel pins using water as modeling liquid is considered in the paper. One more discussion is concerned with experimental method of modeling of liquid metal mixing with the use of air. The method is based on freon tracer technique. The results of simulation of the thermal hydraulic processes mentioned above have been analyzed, that will allow the main lines of the study to be determined and conclusion to be drawn regarding the temperature behavior in fast reactor units. (author)

  14. Hydrogen-deficient Central Stars of Planetary Nebulae

    Science.gov (United States)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  15. Pulsating variables

    International Nuclear Information System (INIS)

    1989-01-01

    The study of stellar pulsations is a major route to the understanding of stellar structure and evolution. At the South African Astronomical Observatory (SAAO) the following stellar pulsation studies were undertaken: rapidly oscillating Ap stars; solar-like oscillations in stars; 8-Scuti type variability in a classical Am star; Beta Cephei variables; a pulsating white dwarf and its companion; RR Lyrae variables and galactic Cepheids. 4 figs

  16. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    Science.gov (United States)

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751

    Science.gov (United States)

    Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie

    2018-02-01

    We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at

  18. Using nonradial pulsations to determine the envelope composition of very evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.

    1986-01-01

    Recent observational and theoretical studies of the ZZ Ceti variables (DA degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DO degenerate dwarfs) have shown them to be pulsating in nonradial g + -modes. The pulsation mechanism has been identified for each class of variable star and, in all cases, involves predictions of the stars envelope composition. The ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers. 44 refs

  19. A Pulsation Mechanism for GW Virginis Variables

    Science.gov (United States)

    Cox, Arthur N.

    2003-03-01

    The mechanism that produces pulsations in the hottest pre-white dwarfs has been uncertain since the early work indicated that helium is a poison that smooths opacity bumps in the opacity-temperature plane caused by the ionizations of the large observed amounts of carbon and oxygen. Very little helium seemed to be needed to prevent the kappa effect pulsation driving, but helium amounts of almost half of the mass in the surface composition are observed in the pulsating PG 1159-035 stars called the GW Virginis variables. Rather little change in the C and O surface abundances is observed from the hottest (RX J2117.1+3412 at 170,000 K) to the coolest (PG 0122+200 at 80,000 K) GW Vir variables. Actually the shortest observed periods (300-400 s) of these variables are generally predicted to be unstable in all models, but the longest observed periods (up to 1000 s) are difficult to excite. Three recent investigations differ in their conclusions, with two finding that helium and even a slight amount of hydrogen does not prevent the kappa effect of C and O ionizations. A more detailed study reported here confirms the poisoning effect of helium. However, the ionization K- and L-edge opacity of the original iron, whose global abundance is unaffected by all previous evolution, especially if enhanced by radiation absorption levitation, can give different, previously unexplored, opacity driving that can explain the observed pulsations. But even this iron ionization driving can be somewhat poisoned by bump smoothing if the C and O abundances are large. Nonvariable GW Vir stars in the observed instability strip could be the result of small composition variations in the pulsation driving layers.

  20. Nonlinear asteroseismology: insight from amplitude and frequency modulations of oscillation modes in compact pulsators from Kepler photometry

    Directory of Open Access Journals (Sweden)

    Zong Weikai

    2017-01-01

    Full Text Available Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.

  1. GLOBAL PROPERTIES OF NEUTRAL HYDROGEN IN COMPACT GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lisa May [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Johnson, Kelsey E. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Gallagher, Sarah C. [Department of Physics and Astronomy, University of Western Ontario, London, ON (Canada); Privon, George C. [Departamento de Astronomía, Universidad de Concepción, Concepción (Chile); Kepley, Amanda A. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Whelan, David G. [Physics Department, Austin College, Sherman, TX 75090 (United States); Desjardins, Tyler D. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Zabludoff, Ann I. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-02-15

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group as a whole. We compare the H i content with mid-IR indicators of star formation and optical [g − r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe.

  2. GLOBAL PROPERTIES OF NEUTRAL HYDROGEN IN COMPACT GROUPS

    International Nuclear Information System (INIS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Privon, George C.; Kepley, Amanda A.; Whelan, David G.; Desjardins, Tyler D.; Zabludoff, Ann I.

    2016-01-01

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group as a whole. We compare the H i content with mid-IR indicators of star formation and optical [g − r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe

  3. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Bell, Keaton J.; Harrold, Samuel T. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Gianninas, A.; Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes that are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.

  4. Construction of Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  5. Energy confinement in the tokamak devices pulsator and ASDEX

    International Nuclear Information System (INIS)

    Klueber, O.; Murmann, H.

    1982-04-01

    The energy confinement of ohmically heated hydrogen plasmas obtained in the ASDEX and Pulsator tokamaks is investigated. In both devices, the confinement time does not follow a simple scaling law of the type tausub(E) approx. equal to nsub(e)a 2 . In the case of Pulsator, a regime is identified in which the transport is governed by electron heat conduction. The experimental data are compared with an analytic solution of the energy balance equation from which a heat diffusivity chisub(e) approx. equal to Zsub(eff)sup(1/3)/nsub(e)(r)Tsub(e)sup(1/2)(r)q(r) is inferred. chisub(i) is supposed to be neoclassical (plateau regime). Heat conduction following these laws is shown to lead to a consistent description of the full data set. (orig.)

  6. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  7. Pulsating red variables

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1990-01-01

    The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs

  8. Double-mode pulsation

    International Nuclear Information System (INIS)

    Cox, A.N.

    1982-01-01

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  9. A likely candidate of type Ia supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    HD 49798 is a hydrogen depleted subdwarf O6 star and has an X-ray pulsating companion (RX J0648.0-4418). The X-ray pulsating companion is a massive white dwarf. Employing Eggleton's stellar evolution code with the optically thick wind assumption, we find that the hot subdwarf HD 49798 and its X-ray pulsating companion could produce a type Ia supernova (SN Ia) in future evolution. This implies that the binary system is a likely candidate of an SN Ia progenitor. We also discuss the possibilities of some other WD + He star systems (e.g. V445 Pup and KPD 1930+2752) for producing SNe Ia. (research papers)

  10. Metal organoclays with compacted structure for truly physical capture of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, M. Nazir; Sennour, Radia [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Arus, Vasilica Alisa [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 (Romania); Sallam, Lamyaa M. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Roy, René, E-mail: roy.rene@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada); Azzouz, Abdelkrim, E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8 QC (Canada)

    2017-03-15

    Highlights: • Functionalization of thio-dendrons onto montmorillonite clay. • Incorporation and stabilization of PdNP in to the functionalized clays. • Role of −S:Pd and −O:Pd interactions in NP dispersion and stabilization. • Applications of PdNP incorporated modified clays for physical adsorption of H{sub 2}. - Abstract: Truly reversible capture of hydrogen was achieved at ambient conditions on Pd-loaded organo-montmorillonites obtained by photo-addition of different thiols on propargylated-TRIS cations already grafted on the clay surface. TEM insights showed that more than 90% of Pd{sup 0} incorporated occur as 0.3–0.5 nm subnanoparticles (PdSNPs). XPS and NMR analyses revealed simultaneous strong S:Pd{sup 0} and O:Pd{sup 0} interactions that ”cement” the organic moiety around PdSNPs. The significant decrease in porosity suggests a compacted structure that impedes not only metal aggregation, but also hydrogen diffusion in the metal bulk. Thus, hydrogen appears to adsorb mainly via physical condensation around PdSNPs. These thiol-clay matrices showed hydrogen surface affinity factors of up to 0.51 mmol m{sup −2} at ambient temperature and pressure. This is higher than those reported for much more sophisticated materials. DSC measurements showed very low desorption heat between 20 and 80 °C. Hydrogen release was achieved merely under vacuum or slight heating starting from 40 °C and was almost completed up to 85 °C. This provides a proof of concept of truly reversible capture of hydrogen for concentration and/or storage purposes. Such a performance has never been achieved at ambient temperature and pressure. These findings open new prospects to develop low-cost materials for reversible hydrogen storage without energy and safety constraints.

  11. Metal organoclays with compacted structure for truly physical capture of hydrogen

    International Nuclear Information System (INIS)

    Tahir, M. Nazir; Sennour, Radia; Arus, Vasilica Alisa; Sallam, Lamyaa M.; Roy, René; Azzouz, Abdelkrim

    2017-01-01

    Highlights: • Functionalization of thio-dendrons onto montmorillonite clay. • Incorporation and stabilization of PdNP in to the functionalized clays. • Role of −S:Pd and −O:Pd interactions in NP dispersion and stabilization. • Applications of PdNP incorporated modified clays for physical adsorption of H_2. - Abstract: Truly reversible capture of hydrogen was achieved at ambient conditions on Pd-loaded organo-montmorillonites obtained by photo-addition of different thiols on propargylated-TRIS cations already grafted on the clay surface. TEM insights showed that more than 90% of Pd"0 incorporated occur as 0.3–0.5 nm subnanoparticles (PdSNPs). XPS and NMR analyses revealed simultaneous strong S:Pd"0 and O:Pd"0 interactions that ”cement” the organic moiety around PdSNPs. The significant decrease in porosity suggests a compacted structure that impedes not only metal aggregation, but also hydrogen diffusion in the metal bulk. Thus, hydrogen appears to adsorb mainly via physical condensation around PdSNPs. These thiol-clay matrices showed hydrogen surface affinity factors of up to 0.51 mmol m"−"2 at ambient temperature and pressure. This is higher than those reported for much more sophisticated materials. DSC measurements showed very low desorption heat between 20 and 80 °C. Hydrogen release was achieved merely under vacuum or slight heating starting from 40 °C and was almost completed up to 85 °C. This provides a proof of concept of truly reversible capture of hydrogen for concentration and/or storage purposes. Such a performance has never been achieved at ambient temperature and pressure. These findings open new prospects to develop low-cost materials for reversible hydrogen storage without energy and safety constraints.

  12. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  13. On the evolutionary status and pulsations of the recently discovered blue large-amplitude pulsators (BLAPs)

    Science.gov (United States)

    Romero, Alejandra D.; Córsico, A. H.; Althaus, L. G.; Pelisoli, I.; Kepler, S. O.

    2018-06-01

    The blue large-amplitude pulsators (BLAPs) constitute a new class of pulsating stars. They are hot stars with effective temperatures of ˜30 000 K and surface gravities of log g ˜ 4.9, that pulsate with periods in the range 20-40 min. Until now, their origin and evolutionary state, as well as the nature of their pulsations, were not been unveiled. In this paper, we propose that the BLAPs are the hot counterpart of the already known pulsating pre-extremely low mass (pre-ELM) white dwarf (WD) stars, that are He-core low-mass stars resulting from interacting binary evolution. Using fully evolutionary sequences, we show that the BLAPs are well represented by pre-ELM WD models with high effective temperature and stellar masses ˜0.34 M⊙. From the analysis of their pulsational properties, we find that the observed variabilities can be explained by high-order non-radial g-mode pulsations or, in the case of the shortest periods, also by low-order radial modes, including the fundamental radial mode. The theoretical modes with periods in the observed range are unstable due to the κ mechanism associated with the Z-bump in the opacity at log T ˜ 5.25.

  14. Electron energy measurements in pulsating auroras

    International Nuclear Information System (INIS)

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  15. Construction of the Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei

    2012-01-01

    A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.

  16. Deep asteroseismic sounding of the compact hot B subdwarf pulsator KIC02697388 from Kepler time series photometry

    DEFF Research Database (Denmark)

    Charpinet, S.; Van Grootel, Valerie; Fontaine, G.

    2011-01-01

    of the sdBVs star KIC02697388 monitored with Kepler, using the rich pulsation spectrum uncovered during the ~27-day-long exploratory run Q2.3. Methods: We analyse new high-S/N spectroscopy of KIC02697388 using appropriate NLTE model atmospheres to provide accurate atmospheric parameters for this star. We...... also reanalyse the Kepler light curve using standard prewhitening techniques. On this basis, we apply a forward modelling technique using our latest generation of sdB models. The simultaneous match of the independent periods observed in KIC02697388 with those of models leads objectively...... that this mode can be accounted for particularly well by our optimal seismic models, both in terms of frequency match and nonadiabatic properties. The seismic analysis leads us to identify two model solutions that can both account for the observed pulsation properties of KIC02697388. Despite this remaining...

  17. First Kepler results on compact pulsators - VI. Targets in the final half of the survey phase

    DEFF Research Database (Denmark)

    Østensen, Roy H.; Silvotti, Roberto; Charpinet, S.

    2011-01-01

    We present results from the final 6 months of a survey to search for pulsations in white dwarfs (WDs) and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sdB...

  18. A 'one in a million' case of pulsating thoracoabdominal mass.

    LENUS (Irish Health Repository)

    Tan, Lay Ong

    2012-11-01

    Ectopia cordis is a rare congenital malformation in which the heart is located partially or totally outside the thoracic cavity. It comprises 0.1% of congenital heart diseases. The authors present a case of a male baby born at term by emergency caesarean section due to prolonged fetal bradycardia, who was noted to have a large pulsating mass in the thoracoabdominal area. In view of lower thoracolumbar abdominal defect, ectopic placement of the umbilicus, deficiency of the diaphragmatic pericardium, deficiency of anterior diaphragm and intracardiac abnormalities, a diagnosis of ectopia cordis-Pentalogy of Cantrell was made. He was transferred to a tertiary centre and required oxygen supplement initially. He was sent home after 1 week, on propanolol, with weekly oxygen saturation checks. He is awaiting further surgical intervention pending the required weight gain.

  19. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.

    Science.gov (United States)

    Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F

    2010-04-15

    We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.

  20. Occurrence and average behavior of pulsating aurora

    Science.gov (United States)

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  1. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Oh, Seung Jin; Ng, Kim Choon

    2018-01-01

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  2. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad

    2018-03-22

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  3. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.

    Science.gov (United States)

    Antal, Taras K; Krendeleva, Tatyana E; Rubin, Andrew B

    2011-01-01

    Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase. However, this enzyme is highly sensitive to oxygen and can be quickly inhibited when water splitting is active. A problem of incompatibility between the water splitting and hydrogenase reaction can be overcome by depletion of algal cells of sulfur which is essential element for life. In this review the mechanisms underlying sustained hydrogen photoproduction in sulfur deprived C. reinhardtii and the recent achievements in studying of this process are discussed. The attention is focused on the biophysical and physiological aspects of photosynthetic response to sulfur deficiency in green algae.

  4. Dynamical zoning within a Lagrangian mesh by use of DYN, a stellar pulsation code

    International Nuclear Information System (INIS)

    Castor, J.I.; Davis, C.G.; Davison, D.K.

    1977-02-01

    A method of dynamical zoning within a Lagrangian mesh is used to resolve the motion of the hydrogen ionization front in a time-dependent nonlinear model of a pulsating star. The resulting coupling with the radiative-transfer improves the calculated light curves. The method is described is some detail and then applied to a model of the Cepheid eta Aq1. 8 figures, 1 table

  5. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    A hydrogen based future energy scenario will use fuel cells for the conversion of chemically stored energy into electricity. Depending upon the type of fuel cell, different specifications will apply for the feedstock which is converted in the cell, ranging from very clean hydrogen for PEM-FC's to desulfurized methane for SOFC and MCFC technology. For the foreseeable future, hydrogen will be supplied by conventional reforming, however operated in compact and dynamic reformer designs. This requires that known catalyst formulations are offered in specific geometries, giving flexibility for novel reactor design options. These specific geometries can be special tablet shapes as well as monolith structures. Finally, also nonhydrocarbon feedstock might be used in special applications, e.g. bio-based methanol and ethanol. BASF offers catalysts for the full process chain starting from feedstock desulfurization via reforming, high temperature shift, low temperature shift to CO fine polishing either via selective oxidation or selective methanation. Depending upon the customer's design, most stages can be served either with precious metal based monolith solutions or base metal tablet solutions. For the former, we have taken the automobile catalyst monolith support and extended its application to the fuel cell hydrogen generation. Washcoats of precious metal supported catalysts can for example be deposited on ceramic monoliths and/or metal heat exchangers for efficient generation of hydrogen. Major advantages are high through puts due to more efficient heat transfer for catalysts on metal heat exchangers, lower pressure drop with greater catalyst mechanical and thermal stability compared to particulate catalysts. Base metal tablet catalysts on the other hand can have intrinsic cost advantages, larger fractions of the reactor can be filled with active mass, and if produced in unconventional shape, again novel reactor designs are made possible. Finally, if it comes to

  6. Four new massive pulsating white dwarfs including an ultramassive DAV

    Science.gov (United States)

    Curd, Brandon; Gianninas, A.; Bell, Keaton J.; Kilic, Mukremin; Romero, A. D.; Allende Prieto, Carlos; Winget, D. E.; Winget, K. I.

    2017-06-01

    We report the discovery of four massive (M > 0.8 M⊙) ZZ Ceti white dwarfs, including an ultramassive 1.16 M⊙ star. We obtained ground-based, time series photometry for 13 white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect monoperiodic pulsations in three of our targets (J1015, J1554 and J2038) and identify three periods of pulsation in J0840 (173, 327 and 797 s). Fourier analysis of the remaining nine objects does not indicate variability above the 4 detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass M = 1.14 ± 0.01 M⊙, hydrogen and helium envelope masses of MH = 5.8 × 10-7 M⊙ and MHe = 4.5 × 10-4 M⊙ and an expected core crystallized mass ratio of 50-70 per cent. J1015, J1554 and J2038 have masses in the range 0.84-0.91 M⊙ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass M > 0.85 M⊙, and detailed asteroseismic modelling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.

  7. New pulsating casing collar to improve cementing quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Southwest Petroleum Inst., Nanchong, Sichuan (China); He, K. [JiangHan Petroleum Administration Bureau, Qianjiang, Hubei (China); Wu, J. [Chevron Petroleum Tech. Co., Houston, TX (United States)

    1998-12-31

    This paper presents the design and test results of a new pulsating casing collar which improves cementing quality. The new pulsating casing collar (PCC) is designed according to the Helmholtz oscillator to generate a pulsating jet flow by self-excitation in the cementing process. By placing this new pulsating casing collar at the bottom of casing string, the generated pulsating jet flow transmits vibrating pressure waves up through the annulus and helps remove drilling mud in the annulus. It can therefore improve cementing quality, especially when eccentric annulus exists due to casing eccentricity where the mud is difficult to remove. The new pulsating casing collar consists of a top nozzle, a resonant chamber, and a bottom nozzle. It can be manufactured easily and is easy to use in the field. It has been tested in Jianghan oil-field, P.R. China. The field-test results support the theoretical analysis and laboratory test, and the cementing quality is shown greatly improved by using the new pulsating casing collar.

  8. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.

    Science.gov (United States)

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-11-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Pulsational stabilities of a star in thermal imbalance: comparison between the methods

    International Nuclear Information System (INIS)

    Vemury, S.K.

    1978-01-01

    The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes.For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms

  10. Magnetospheres of accreting compact objects in binary systems

    International Nuclear Information System (INIS)

    Aly, J.J.

    1985-09-01

    Bright pulsating X-ray sources (X-ray pulsars, AM Her stars,...) have been identified as strongly magnetized compact objects accreting matter from a binary companion. We give here a summary of some of the work which has been recently done to try to understand the interaction between the magnetic field of the compact object and the matter around. We examine in turn the models describing the interaction of the field with: i) a spherically symmetric accretion flow; ii) a thin keplerian accretion disk; iii) the companion itself. In all these cases, we pay particular attention to the following problems: i) how the external plasma interacting with the magnetosphere can get mixed with the field; ii) by which mechanism the magnetic field controls the mass-momentum-energy exchanges between the two stars. In conclusion, we compare the magnetosphere of an accreting compact object with that one of a planet [fr

  11. Solar wind controlled pulsations: A review

    International Nuclear Information System (INIS)

    Odera, T.J.

    1986-01-01

    Studies of the solar wind controlled Pc 3, 4 pulsations by early and recent researchers are highlighted. The review focuses on the recent observations, which cover the time during the International Magnetospheric Study (IMS). Results from early and recent observations agree on one point, that is, that the Pc 3, 4 pulsations are influenced by three main solar wind parameters, namely, the solar wind velocity V/sub 5w/, the IMF orientation theta/sub x/B, and magnitude B. The results can be interpreted, preferably, in terms of an external origin for Pc 3, 4 pulsations. This implies, essentially, the signal model, which means that the pulsations originate in the upstream waves (in the interplanetary medium) and are transported by convection to the magnetopause, where they couple to oscillations of the magnetospheric field lines

  12. A search for hot pulsators similar to PG1159-035 and the central star of K 1-16

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.; Liebert, J.; Fleming, T.; Green, R.F.

    1987-01-01

    The variations of PG1159-035 (GWVir)were discovered by McGraw et al. This object is the prototype of a anew class of pulsating stars located in an instability strip at the left-hand edge of the HR diagram. PG1159-035 and the spectroscopically similar objects PG1707+427 and PG2131+066 display complex non-radial modes with periodicities of order 10 minutes. Grauer and Bond recently discovered that the central star of the planetary nebula Kohoutek 1-16 also exhibits pulsation properties, with dominant periodicities of 25-28 minutes. These four objects display the following characteristics: High effective temperatures (--10 5 Κ) and moderately high surface gravities (log g ≅ 6-8); He II, C IV, and O VI absorption lines in the optical spectra, often reversed with emission cores; No hydrogen lines clearly detected; The pulsational instability has been attributed to partial ionization of carbon and/or oxygen

  13. Breaking the EOS-gravity degeneracy with masses and pulsating frequencies of neutron stars

    International Nuclear Information System (INIS)

    Lin, Weikang; Li, Bao-An; Chen, Lie-Wen; Wen, De-Hua; Xu, Jun

    2014-01-01

    A thorough understanding of many astrophysical phenomena associated with compact objects requires reliable knowledge about both the equation of state (EOS) of super-dense nuclear matter and the theory of strong-field gravity simultaneously because of the EOS-gravity degeneracy. Currently, variations of the neutron star (NS) mass–radius correlation from using alternative gravity theories are much larger than those from changing the NS matter EOS within known constraints. At least two independent observables are required to break the EOS-gravity degeneracy. Using model EOSs for hybrid stars and a Yukawa-type non-Newtonian gravity, we investigate both the mass–radius correlation and pulsating frequencies of NSs. While the maximum mass of NSs increases, the frequencies of the f, p 1 , p 2 , and w I pulsating modes are found to decrease with the increasing strength of the Yukawa-type non-Newtonian gravity, providing a useful reference for future determination simultaneously of both the strong-field gravity and the supranuclear EOS by combining data of x-ray and gravitational wave emissions of NSs. (paper)

  14. Narrowband Hα Imaging of Old Hydrogen-deficient Supernovae

    Science.gov (United States)

    Pooley, David A.; Vinko, Jozsef; Silverman, Jeffrey M.; Wheeler, J. Craig Craig; Szalai, Tamas; MacQueen, Phillip; Marion, Howie H.; Sárneczky, Krisztián

    2017-06-01

    We report results from our long-term observational survey aimed at discovering late-time interaction between the ejecta of hydrogen-deficient Type I supernovae and the hydrogen-rich envelope expelled from the progenitor star several decades to centuries before explosion. The expelled envelope, moving with a velocity of ˜10-100 km/s, is expected to be caught up by the fast-moving SN ejecta several years to decades after explosion depending on the history of the mass-loss process acting in the progenitor star prior to explosion. The collision between the SN ejecta and the circumstellar envelope results in net emission in the Balmer-lines, especially in Hα. For the past three years, we have been using the Direct Imaging Auxiliary Functions Instrument (DIAFI) on the 2.7m Harlan J. Smith Telescope at McDonald Observatory to look for signs of late-time Hα emission in older Type Ia/Ibc/IIb SNe having hydrogen-poor ejecta, via narrow-band imaging. Continuum-subtracted Hα emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb and 3 SN Ia events. Thirty-eight SN sites were observed on at least two epochs, from which three objects (SN 1985F, SN 2005kl, SN 2012fh) showed significant temporal variation in the strength of their Hα emission in our DIAFI data. This suggests that the variable emission is probably not due to nearby HII regions, and hence is an important additional hint that ejecta-CSM interaction may take place in these systems. Moreover, we successfully detected the late-time Hα emission from the Type Ib SN 2014C, which was recently discovered as a strongly interacting SN in other wavebands.

  15. Cepheid pulsation theory and multiperiodic cepheid variables

    International Nuclear Information System (INIS)

    Cox, A.N.; Cox, J.P.

    1975-01-01

    In this review of the multiperiodic Cepheid variables, the subject matter is divided into four parts. The first discusses general causes of pulsation of Cepheids and other variable stars, and their locations on the H-R diagram. In the second section, the linear adiabatic and nonadiabatic theory calculation of radial pulsation periods and their application to the problem of masses and double-mode Cepheids are reviewed. Periodic solutions, and their stability, of the nonlinear radial pulsation equations for Cepheids and RR Lyrae stars are considered in the third section. The last section provides the latest results on nonlinear, nonperiodic, radial pulsations for Cepheids and RR Lyrae stars. (BJG)

  16. The DB gap and a new class of pulsating white dwarfs

    Directory of Open Access Journals (Sweden)

    Shibahashi H.

    2013-03-01

    Full Text Available The recent systematic surveys providing enormously massive datasets of white dwarfs show that there is still a deficit of a factor of 2.5 in the DA/non-DA ratio within the temperature range of 30 000 K < Teff < 45 000 K, which has been regarded as the “DB gap” meaning a range with almost no helium atmosphere white dwarfs. Since all white dwarfs have to evolve through this temperature range along almost the identical sequence on the color-magnitude diagram, this implies that most of the helium atmosphere DO stars once evolve into hydrogen atmosphere hot DA stars in the temperature range of the DB gap and then back to helium atmosphere DB stars. Possible scenarios for this chameleon-like disguises of white dwarfs with helium dominant atmospheres are described and a new class of pulsating white dwarfs, named the hot-DAV stars, is predicted from these scenarios. One pulsating DA white dwarf, being consistent with the prediction, has been discovered indeed.

  17. Nonlinear pulsations of luminous He stars

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Cox, A.N.

    1986-01-01

    Radial pulsations in models of R Cor Bor stars and BD + 1 0 4381 have been studied with a nonlinear hydrodynamic pulsation code. Comparisons are made with previous calculations and with observed light and velocity curves. 13 refs., 2 tabs

  18. DO HYDROGEN-DEFICIENT CARBON STARS HAVE WINDS?

    International Nuclear Information System (INIS)

    Geballe, T. R.; Rao, N. Kameswara; Clayton, Geoffrey C.

    2009-01-01

    We present high resolution spectra of the five known hydrogen-deficient carbon (HdC) stars in the vicinity of the 10830 A line of neutral helium. In R Coronae Borealis (RCB) stars the He I line is known to be strong and broad, often with a P Cygni profile, and must be formed in the powerful winds of those stars. RCB stars have similar chemical abundances as HdC stars and also share greatly enhanced 18 O abundances with them, indicating a common origin for these two classes of stars, which has been suggested to be white dwarf mergers. A narrow He I absorption line may be present in the hotter HdC stars, but no line is seen in the cooler stars, and no evidence for a wind is found in any of them. The presence of wind lines in the RCB stars is strongly correlated with dust formation episodes so the absence of wind lines in the HdC stars, which do not make dust, is as expected.

  19. The mechanism of pulsating aurora

    International Nuclear Information System (INIS)

    Johnstone, A.D.

    1983-01-01

    New measurement using ground-based techniques, sounding-rockets and geostationary satellites show that pulsating aurora is almost certainly caused by a modulation of the precipitating electron beam. The modulation is probably imposed near the magnetic equator by an interaction with ELF waves which are observed to be modulated at the same frequency. The measured wave intensity is not strong enough to cause pulsations by variation of the rate of pitch angle diffusion so it is suggested that the pulsation is caused by a coherent interaction involving the generation of ELF chorus. The periodicity arises because the chorus is shut-off after approximately half a bounce period when the increased rate of precipitation removes most of the resonant electrons. The supply is then replenished by pitch angle diffusion

  20. TV morphology of some episodes of pulsating auroras

    International Nuclear Information System (INIS)

    Vallance Jones, A.; Gattinger, R.L.

    1981-01-01

    Sets of all-sky TV images of pulsating auroras obtained during the displays through which the sounding rockets of the Pulsating Aurora Campaign were fired are presented and discussed. It is emphasized that these displays are considerably more complex and variable than might seem to be the case on the basis of zenith photometer records. The pulsation modulation pattern was observed to be travelling westward during the first flight; later in the same display this apparent motion ceased. For the second flight the pulsation modulation pattern was almost stationary. (auth)

  1. Musical scale estimation for some multiperiodic pulsating stars

    Science.gov (United States)

    Ulaş, B.

    2009-03-01

    The agreement between frequency arrangements of some multiperiodic pulsating stars and musical scales is investigated in this study. The ratios of individual pulsation frequencies of 28 samples of various types of pulsating stars are compared to 57 musical scales by using two different methods. The residual sum of squares of stellar observational frequency ratios is chosen as the indicator of the accordance. The result shows that the arrangements of pulsation frequencies of Y Cam and HD 105458 are similar to Diminished Whole Tone Scale and Arabian(b) Scale, respectively.

  2. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery Engineer’s Guidebook for Planning, Design and Troubleshooting

    CERN Document Server

    Dörfler, Peter; Coutu, André

    2013-01-01

    Since the 1970’s, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter­disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects.   Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed  and quantitative data is provided on  normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitatio...

  3. Infrared and optical pulsations from HZ hercules and possible 3.5 second infrared pulsations from IE 2259+586

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.; Burns, M.S.

    1983-01-01

    The spectrum of the pulsed optical and infrared flux from HZ Her has been measured to be flat by simultaneous observations with the NASA IRTF 3.0 m and the Lick Crossley 91 cm telescopes. The pulsed fluxes in the 3200-7500 A bandpass and the 1.0-2.5 μm bandpass were both measured to be consistent with 27 μJy and indicate that the reprocessed pulsation spectrum may be optically thin thermal bremsstrahlung radiation, modulated in intensity. However, the temperature required for a good fit is > or =30,000 K. The results of a search for periodic infrared pulsations from other X-ray and radio pulsars, supernova remnants, and the galactic center source IRS 16, are also reported. We have possibly detected 3.5 s infrared pulsations from the X-ray binary pulsar, IE 2259+586. The 285.7 mHz infrared pulsation frequency from IE 2259+586 is consistent with the 286.6 mHz second harmonic X-ray pulsations reprocessed from a companion star in the close binary orbit whose period has been tentatively established to be approx.2300 s

  4. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    International Nuclear Information System (INIS)

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-01-01

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation

  5. Pulsations in white dwarf stars

    OpenAIRE

    Van Grootel, Valérie; Fontaine, Gilles; Brassard, Pierre; Dupret, Marc-Antoine

    2017-01-01

    I will present a description of the six distinct families of pulsating white dwarfs that are currently known. Pulsations are present at various stages of the evolution (from hot, pre-white dwarfs to cool white dwarfs), at various stellar masses, and for various atmospheric compositions. In all of them, a mechanism linked to opacity changes along the evolution drives the oscillations. The existence of these oscillations offers the opportunity to apply asteroseismology for constraining physics ...

  6. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  7. Auroral pulsations and accompanying VLF emissions

    Directory of Open Access Journals (Sweden)

    V. R. Tagirov

    Full Text Available Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions · Space plasma physics (wave-particle interactions

  8. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1989-01-01

    A general review of the pulsating δ Scuti variables is given including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Three models of these stars are discussed and used to study the nonlinear hydrodynamic behavior of these stars. The hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions are outlined. Problems of allowing for time-dependent convection and its great sensitivity to temperature and density are presented. Tentative results to date do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. It is found that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. 15 refs., 8 figs., 3 tabs

  9. Pulsations of the R Coronae Borealis stars

    International Nuclear Information System (INIS)

    Cox, J.P.; King, D.S.; Cox, A.N.; Wheeler, J.C.; Hansen, C.J.; Hodson, S.W.

    1980-01-01

    The radial pulsations of very luminous, low-mass models (L/M approx. 10 4 , solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. There are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars

  10. Double throat pressure pulsation dampener for oil-free screw compressors

    Science.gov (United States)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  11. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  12. Compressional Pc5 type pulsations in the morningside plasma sheet

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A.; Baumjohann, W.; Haerendel, G.; Nakamura, R.; Kucharek, H.; Klecker, B. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Lessard, M.R. [Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering; Kistler, L.M. [New Hampshire Univ., Durham (United States). Space Science Center; Mukai, T.; Nishida, A. [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    2001-03-01

    We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 R{sub E}, close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000-1700 UT on 9 March 1998, and 0200-0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode), and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations. (orig.)

  13. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  14. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  15. Gas compressor with side branch absorber for pulsation control

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  16. Linear radial pulsation theory. Lecture 5

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures

  17. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  18. The ionospheric signature of Pi 2 pulsations observed by STARE

    International Nuclear Information System (INIS)

    Sutcliffe, P.R.; Nielsen, E.

    1992-01-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 degree phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere

  19. Mass loss and cepheid pulsation

    International Nuclear Information System (INIS)

    Davis, C.G. Jr.

    1977-01-01

    Two purposes are served: to discuss the latest improvements in nonlinear pulsation theory indicating the ability to resolve features such as the ''Christy bump'' on the light curves and to show from the results of a bump model and recent observations that mass loss is one of the possible explanations for the mass discrepancy problem between evolutionary and pulsation theories. Recent observations by Sanford and Gow of Los Alamos and Bernat (McDonald Observatory) show that extensive mass loss has occurred in the evolution of the M supergiant α Orionis

  20. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  1. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    2001-03-01

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  2. Photometric Survey to Search for Field sdO Pulsators

    Science.gov (United States)

    Johnson, C.; Green, E.; Wallace, S.; O'Malley, C.; Amaya, H.; Biddle, L.; Fontaine, G.

    2014-04-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011) of four rapidly pulsating sdO stars in the globular cluster ω Cen, with Teff near 50,000 K, 5.4 -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in ω Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the ω Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  3. The history and development of nonlinear stellar pulsation codes

    International Nuclear Information System (INIS)

    Davis, C.G.

    1987-01-01

    This review is limited to the history and development of nonlinear stellar pulsation codes and methods. The narrative includes examples of practical interest in the application of these numerical methods to problems in stellar pulsation such as Cepheid mass discrepancy, the delineation of the RR Lyrae instability strip, and the question of the development of double-mode pulsation as observed in Cepheids, RR Lyrae and other variable stars. 15 refs

  4. High-Resolution Spectroscopy of the Hydrogen-Deficient Binary υ Sgr

    Directory of Open Access Journals (Sweden)

    Kipper Tõnu

    2012-09-01

    Full Text Available The high resolution spectra of hydrogen-deficient binary υ Sgr are analyzed. The atmospheric parameters are Teff = 12300±200 K, log g = 2:5±0:5 and ξt = 5 - 15 kms−1 depending on the element. For Fe II ξt = 9:3 ± 0:3 kms−1. Iron is slightly underabundant (-0.2 dex. Nitrogen is overabundant with [N/Fe]ͬ ≈ 1.0, carbon and oxygen are underabundant with [C/Fe] ≈ -1.6 and [O/Fe] ≈ -1.1. The s-process elements Y, Zr and Ba are overabundant about 0.5 dex. Quite large number of emission lines, both permitted and forbidden, originating from low excitation levels of neutral and ionized metals, are identified. Radial velocities of these emission lines indicate that an accretion disk in the system is present.

  5. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  6. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  7. A systematic search for new X-ray pulsators in ROSAT fields

    Science.gov (United States)

    Israel, G. L.

    1996-10-01

    possible frequency interval; the other to detect periodic signals of reduced coherence. This thesis represents the first detailed timing analysis study of a very large number of X-ray sources. So far the automated search for coherent pulsations was performed twice over the whole sample: the first time by preserving the original Fourier resolution while the second extending the search to the maximum possible Nyquist frequency (depending on the total source photon). About 500 sources were found to possess power spectrum peaks above the detection threshold (besides the spurious peaks) but so far, only for about 10 of them a detailed analysis was carried out to confirm the presence of a reliable periodic signal. A search in the same light curves sample but at different energy intervals is in progress. Among the detected peaks in the database, there is a small number of especially interesting pulsator candidates, that were extensively analysed. This led to very significant results. This is the case of the strong 13s pulsations discovered (15sigma confidence level) in the X-ray flux of HD49798 / 1WGA J0648.0-4418 (Israel et al. 1995, 1996a), a 1.55 day single-component spectroscopic binary containing a hydrogen depleted subdwarf O6 star. The source X-ray spectrum is extremely soft, with an unabsorbed 0.1-2 keV luminosity of a few 10^32 erg/s (distance of 650 pc). A higher luminosity might be hidden in the EUV. These results indicate that the companion of HD49798 is a compact star: an accreting degenerate star, a white dwarf or, more likely, a neutron star. In either case HD49798 corresponds to a previously unobserved evolutionary stage of a massive binary system, after common envelope and spiral-in. If the 13s pulsations arise directly from the rotation of the degenerate star, they would be coherent enough to make HD 49798 a ``double spectroscopic" binary; in this case the system would hold a great potential for accurate mass measurement. A further important result is the

  8. The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the δ Scuti star HD 187547

    Energy Technology Data Exchange (ETDEWEB)

    Antoci, V.; Houdek, G.; Kjeldsen, H.; Trampedach, R.; Arentoft, T. [Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Cunha, M. [Centro de Astrofísca e Faculdade de Ciências, Universidade do Porto, Rua das Estrelas 4150-762 (Portugal); Handler, G. [Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Lüftinger, T. [Institute for Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria); Murphy, S., E-mail: antoci@phys.au.dk [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2014-12-01

    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of 'pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.

  9. Clinical findings and effect of sodium hydrogen carbonate in patients with glutathione synthetase deficiency.

    Science.gov (United States)

    Gündüz, Mehmet; Ünal, Özlem; Kavurt, Sumru; Türk, Emrecan; Mungan, Neslihan Önenli

    2016-04-01

    Glutathione synthetase (GS) deficiency is a rare inborn error of glutathione (GSH) metabolism manifested by severe metabolic acidosis, hemolytic anemia, neurological problems and massive excretion of pyroglutamic acid (5-oxoproline) in the urine. The disorder has mild, moderate, and severe clinical variants. We aimed to report clinical and laboratory findings of four patients, effect of sodium hydrogen carbonate treatment and long-term follow up of three patients. Urine organic acid analysis was performed with gas chromatography-mass spectrometry. Molecular genetic analysis was performed in three patients, mutation was found in two of them. Enzyme analysis was performed in one patient. Clinical and laboratory findings of four patients were evaluated. One patient died at 4 months old, one patient's growth and development are normal, two patients have developed intellectual disability and seizures in the long term follow up period. Three patients benefited from sodium hydrogen carbonate treatment. The clinical picture varies from patient to patient, so it is difficult to predict the prognosis and the effectiveness of treatment protocols. We reported long term follow up of four patients and demonstrated that sodium hydrogen carbonate is effective for treatment of chronic metabolic acidosis in GS deficieny.

  10. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  11. Pulsating star research and the Gaia revolution

    Science.gov (United States)

    Eyer, Laurent; Clementini, Gisella; Guy, Leanne P.; Rimoldini, Lorenzo; Glass, Florian; Audard, Marc; Holl, Berry; Charnas, Jonathan; Cuypers, Jan; Ridder, Joris De; Evans, Dafydd W.; de Fombelle, Gregory Jevardat; Lanzafame, Alessandro; Lecoeur-Taibi, Isabelle; Mowlavi, Nami; Nienartowicz, Krzysztof; Riello, Marco; Ripepi, Vincenzo; Sarro, Luis; Süveges, Maria

    2017-09-01

    In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  12. Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study

    International Nuclear Information System (INIS)

    Bhadelia, R.A.; Bogdan, A.R.; Kaplan, R.F.; Wolpert, S.M.

    1997-01-01

    Our purpose in this investigation was to explain the heterogeneity in the cerebrospinal fluid (CSF) flow pulsation amplitudes. To this end, we determined the contributions of the cerebral arterial and jugular venous flow pulsations to the amplitude of the CSF pulsation. We examined 21 healthy subjects by cine phase-contrast MRI at the C2-3 disc level to demonstrate the CSF and vascular flows as waveforms. Multiple regression analysis was performed to calculate the contributions of (a) the arterial and venous waveform amplitudes and (b) the delay between the maximum systolic slopes of the arterial and venous waveforms (AV delay), in order to predict the amplitude of the CSF waveform. The contribution of the arterial waveform amplitude was positive (r = 0.61; p 0.003) to the CSF waveform amplitude and that of the venous waveform amplitude was negative (r = -0.50; p = 0.006). Both in combination accounted for 56 % of the variance in predicting the CSF waveform amplitude (p < 0.0006). The contribution of AV delay was not significant. The results show that the variance in the CSF flow pulsation amplitudes can be explained by concurrent evaluation of the CSF and vascular flows. Improvement in the techniques, and controlled experiments, may allow use of CSF flow pulsation amplitudes for clinical applications in the non-invasive assessment of intracranial dynamics by MRI. (orig.). With 3 figs., 2 tabs

  13. KEPLER ECLIPSING BINARIES WITH DELTA SCUTI/GAMMA DORADUS PULSATING COMPONENTS. I. KIC 9851944

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Hernández, Antonio García, E-mail: guo@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: rmatson@chara.gssu.edu, E-mail: agh@astro.up.pt [Instituto de Astrofísica e Ciências do Espaco, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal)

    2016-07-20

    KIC 9851944 is a short-period ( P = 2.16 days) eclipsing binary in the Kepler field of view. By combining the analysis of Kepler photometry and phase-resolved spectra from Kitt Peak National Observatory and Lowell Observatory, we determine the atmospheric and physical parameters of both stars. The two components have very different radii (2.27 R {sub ⊙}, 3.19 R {sub ⊙}) but close masses (1.76 M {sub ⊙}, 1.79 M {sub ⊙}) and effective temperatures (7026, 6902 K), indicating different evolutionary stages. The hotter primary is still on the main sequence (MS), while the cooler and larger secondary star has evolved to the post-MS, burning hydrogen in a shell. A comparison with coeval evolutionary models shows that it requires solar metallicity and a higher mass ratio to fit the radii and temperatures of both stars simultaneously. Both components show δ Scuti-type pulsations, which we interpret as p -modes and p and g mixed modes. After a close examination of the evolution of δ Scuti pulsational frequencies, we make a comparison of the observed frequencies with those calculated from MESA/GYRE.

  14. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  15. Linear nonradial pulsation theory. Lecture 7

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Many of the upper main-sequence stars pulsate in spheroidal nonradial modes. We know this to be true in numerous cases, as we have tabulated for the #betta# Cephei and delta Scuti variables in previous lectures. However, we cannot identify the actual mode for any star except for the low-order pressure p and f modes of our sun. It remains a great challenge to clearly state what really is occurring, in the process we learn more about how stars evolve and pulsate

  16. Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk

    Science.gov (United States)

    Bruce, John

    2011-01-01

    From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.

  17. Recent developments in pulsating aurora studies

    International Nuclear Information System (INIS)

    Sandahl, I.

    1985-11-01

    The field of pulsating aurora studies is reviewed. The paper begins with a short description of the characteristics of pulsating auroras and the theoretical ideas which, in view of existing experimental results, seem most important. A selection of new theoretical results and experimental results from both ground based instruments and instruments on rockets and satellites is then presented. There is now convincing evidence that the luminosity modulation is caused by a modulated flux of electron. The electron flux modulation seems to arise from a modulated resonant interaction between electrons and whistler mode waves in the equatorial plane, but the reason for the modulation is not known. Measurements concerning the drift and location of patches and the creation of Pi1 micropulsations are also deiscussed. Finally some suggestions for future research work are outlined. Optical measurements, especially with low light level TV, have proven to be of great importance in experimental studies of pulsating auroras. (author)

  18. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  19. The eclipsing system V404 Lyr: Light-travel times and γ Doradus pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Kim, Seung-Lee; Hong, Kyeongsoo; Lee, Chung-Uk; Koo, Jae-Rim, E-mail: jwlee@kasi.re.kr, E-mail: slkim@kasi.re.kr, E-mail: kshong@kasi.re.kr, E-mail: leecu@kasi.re.kr, E-mail: koojr@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2014-08-01

    We present the physical properties of V404 Lyr exhibiting eclipse timing variations and multiperiodic pulsations from all historical data including the Kepler and SuperWASP observations. Detailed analyses of 2922 minimum epochs showed that the orbital period has varied through a combination of an upward-opening parabola and two sinusoidal variations, with periods of P {sub 3} = 649 days and P {sub 4} = 2154 days and semi-amplitudes of K {sub 3} = 193 s and K {sub 4} = 49 s, respectively. The secular period increase at a rate of +1.41 × 10{sup –7} days yr{sup –1} could be interpreted as a combination of the secondary to primary mass transfer and angular momentum loss. The most reasonable explanation for both sinusoids is a pair of light-travel-time effects due to two circumbinary objects with projected masses of M {sub 3} = 0.47 M {sub ☉} and M {sub 4} = 0.047 M {sub ☉}. The third-body parameters are consistent with those calculated using the Wilson-Devinney binary code. For the orbital inclinations i {sub 4} ≳ 43°, the fourth component has a mass within the hydrogen-burning limit of ∼0.07 M {sub ☉}, which implies that it is a brown dwarf. A satisfactory model for the Kepler light curves was obtained by applying a cool spot to the secondary component. The results demonstrate that the close eclipsing pair is in a semi-detached, but near-contact, configuration; the primary fills approximately 93% of its limiting lobe and is larger than the lobe-filling secondary. Multiple frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the Kepler data. This revealed that the primary component of V404 Lyr is a γ Dor type pulsating star, exhibiting seven pulsation frequencies in the range of 1.85-2.11 day{sup –1} with amplitudes of 1.38-5.72 mmag and pulsation constants of 0.24-0.27 days. The seven frequencies were clearly identified as high-order low-degree gravity-mode oscillations which might be excited

  20. Pulsating star research and the Gaia revolution

    Directory of Open Access Journals (Sweden)

    Eyer Laurent

    2017-01-01

    Full Text Available In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  1. The Role of Turbulent Pressure as a Coherent Pulsational Driving Mechanism: The Case of the δ Scuti Star HD 187547

    DEFF Research Database (Denmark)

    Antoci, V.; Cunha, M.; Houdek, G.

    2014-01-01

    are incompatible with the nature of "pure" stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically......HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in δ Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results...... excite coherent pulsations in the chemically peculiar δ Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone....

  2. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  3. White dwarf evolution - Cradle-to-grave constraints via pulsation

    Science.gov (United States)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  4. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    International Nuclear Information System (INIS)

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios

    2016-01-01

    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec"T"M 649 and Novec"T"M 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  5. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  6. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    Science.gov (United States)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  7. Period--luminosity--color relations and pulsation modes of pulsating variable stars

    International Nuclear Information System (INIS)

    Breger, M.; Bregman, J.N.

    1975-01-01

    The periods of delta Scuti, RR Lyrae, dwarf Cepheid, and W Virginis variables have been investigated for their dependence on luminosity, color, mass, and pulsation modes. A maximum-likelihood method, which includes consideration of the observational errors in each coordinate, has been applied to obtain observational period-luminosity-color (P-L-C) relations

  8. Photometric study of the pulsating, eclipsing binary OO DRA

    International Nuclear Information System (INIS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-01-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  9. Radial Velocity Fiber-Fed Spectrographs Towards the Discovery of Compact Planets and Pulsations on M Stars

    Science.gov (United States)

    Berdiñas, Zaira M.

    2016-11-01

    This thesis is developed in the framework of the paradigm that seeks for the discovery of an Earth analog. Nowadays, low mass stars, and in particular M dwarf stars, are key targets towards achieving this goal. In this thesis, I focus on the study of the short-time domain of M dwarf stars with the aim of searching for short period planets, but also for the first detection of stellar pulsations on this spectral type. Both science goals are the primary objectives of the “Cool Tiny Beats” (CTB) survey, which has produced most of the data used in this thesis. CTB data consist in high resolution and high-cadence spectroscopic Doppler measurements taken either with HARPS or HARPS-N spectrographs. First of all, a thorough understanding of the spectrographs response in the short time domain was performed to characterize the sources of noise in our range of study. Our first approach to the goals of this thesis consisted in the design of an observational experiment to delve into the HARPS-N sub-night performance. Results unveiled variability of the spectra continuum correlated with instabilities of the spectrograph illumination associated to the airmass. Such distortions, which are wavelength and time dependent, are also present in at least one of the data-products given by the HARPS-N reduction software: the width of the mean-line profiles (i.e. the so-called FWHM index), an index commonly used as a proxy of the stellar activity. As a consequence, we searched for an alternative approach to measure the width index. In particular, we calculated the mean-line profile of the spectrum with a least-squares-deconvolution technique and we obtained the profile indices as the moments of the profile distribution. As part of this study, we also corroborated that the radial velocities calculated with our template matching algorithm TERRA are not affected by the illumination stability. This work unveiled a possible failure of the HARPS-N atmospheric dispersion corrector (or ADC) and

  10. The Cepheid mass discrepancy and pulsation-driven mass loss

    NARCIS (Netherlands)

    Neilson, H.R.; Cantiello, M.; Langer, N.

    2011-01-01

    Context. A longstanding challenge for understanding classical Cepheids is the Cepheid mass discrepancy, where theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10−20%. Aims. We study the role of pulsation-driven mass loss

  11. Formation of the honeycomb-like electrodes by the regime of pulsating overpotential in the second range

    Directory of Open Access Journals (Sweden)

    NEBOJŠA D. NIKOLIĆ

    2012-03-01

    Full Text Available In this study the honeycomb-like copper structures electrodeposited by the regime of pulsating overpotential in the second range were analyzed by the technique of scanning electron microscopy. The overpotential amplitude of 1000 mV, deposition pulse of 1 s, and pause durations of 1, 5, 10 and 15 s were selected for the production of this type of structures. The size of holes which remained upon detachment of hydrogen bubbles do not depend on the length of pause duration. On the other hand, the change in morphology of electrodeposited copper around holes from cauliflower-like agglomerates of copper grains to degenerated dendrites is observed when pause duration was increased. Effects of the application of the regime of pulsating overpotential in the second range on the formation of the honeycomb-like structures were less pronounced than the effects attained by the application of the same regime in the millisecond range. However, they were more pronounced than those attained by electrodeposition in the regime of constant potential.

  12. White dwarf evolution - Cradle-to-grave constraints via pulsation

    International Nuclear Information System (INIS)

    Kawaler, S.D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge. 44 refs

  13. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    Science.gov (United States)

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-03-01

    Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases.

  14. Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations

    Science.gov (United States)

    Liang, Jun; Donovan, E.; Reimer, A.; Hampton, D.; Zou, S.; Varney, R.

    2018-05-01

    In a recent study, Liang et al. (2017, https://doi.org/10.1002/2017JA024127) repeatedly identified strong electron temperature (Te) enhancements when Swarm satellites traversed pulsating auroral patches. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the F region plasma signatures related to pulsating auroras. On 19 March 2015 night, which contained multiple intervals of pulsating auroral activities, we identify a statistical trend, albeit not a one-to-one correspondence, of strong Te enhancements ( 500-1000 K) in the upper F region ionosphere during the passages of pulsating auroras over PFISR. On the other hand, there is no discernible and repeatable density enhancement in the upper F region during pulsating auroral intervals. Collocated optical and NOAA satellite observations suggest that the pulsating auroras are composed of energetic electron precipitation with characteristic energy >10 keV, which is inefficient in electron heating in the upper F region. Based upon PFISR observations and simulations from Liang et al. (2017) model, we propose that thermal conduction from the topside ionosphere, which is heated by precipitating low-energy electrons, offers the most likely explanation for the observed electron heating in the upper F region associated with pulsating auroras. Such a heating mechanism is similar to that underlying the "stable auroral red arcs" in the subauroral ionosphere. Our proposal conforms to the notion on the coexistence of an enhanced cold plasma population and the energetic electron precipitation, in magnetospheric flux tubes threading the pulsating auroral patch. In addition, we find a trend of enhanced ion upflows during pulsating auroral intervals.

  15. On the pulsation modes and masses of RGB OSARGs

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available OSARG (OGLE Small Amplitude Red Giants variables are RGB or AGB stars that show multi-periodic light variations with periods of about 10-100 days. Comparing linear nonadiabatic pulsation periods and period ratios with observed ones, we determined pulsation modes and masses of the RGB OSARG variables in the LMC. We found that pulsations of OSARGs involve radial 1st to 3rd overtones, p4 of l = 1, and p2 of l = 2 modes. The range of mass isfound to be 0.9-1.4M⊙ for RGB OSARGs and their mass-luminosity relation is logL/L⊙ = 0.79 M/M⊙ + 2.2.

  16. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  17. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  18. Driving and damping mechanisms in hybrid pressure-gravity modes pulsators

    Energy Technology Data Exchange (ETDEWEB)

    Dupret, M A [Observatoire de Paris, LESIA, CNRS UMR 8109, 5 place J. Janssen, 92195 Meudon (France); Miglio, A; Montalban, J; Noels, A [Institut d' Astrophysique et Geophysique, Universite de Liege (Belgium); Grigahcene, A [CRAAG - Algiers Observatory BP 63 Bouzareah 16340, Algiers (Algeria)], E-mail: MA.dupret@obspm.fr

    2008-10-15

    We study the energetic aspects of hybrid pressure-gravity modes pulsations. The case of hybrid {beta} Cephei-SPB pulsators is considered with special attention. In addition to the already known sensitivity of the driving mechanism to the heavy elements mixture (mainly the iron abundance), we show that the characteristics of the propagation and evanescent regions play also a major role, determining the extension of the stable gap in the frequency domain between the unstable low order pressure and high order gravity modes. Finally, we consider the case of hybrid {delta} Sct-{gamma} Dor pulsators.

  19. Energies of precipitating electrons during pulsating aurora events derived from ionosonde observations

    International Nuclear Information System (INIS)

    MacDougall, J.W.; Hofstee, J.; Koehler, J.A.

    1981-01-01

    The time-history of particle energies and fluxes associated with pulsating auroras in the morning sector is derived from ionosonde measurements. All the pulsating auroras studied showed a similar history with the pulsations occurring during a time interval of the order of an hour during which the average auroral Maxwellian characteristic energy stays relatively constant but the energy flux decreases progressively during the event. A possible explanation for this behaviour in terms of an injection of particles into a magnetospheric 'bottle' near the midnight meridian and the progressive precipitation out of the bottle during the pulsating event is suggested. (auth)

  20. A statistical method for draft tube pressure pulsation analysis

    International Nuclear Information System (INIS)

    Doerfler, P K; Ruchonnet, N

    2012-01-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  1. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe

    International Nuclear Information System (INIS)

    Mameli, Mauro; Marengo, Marco; Khandekar, Sameer

    2014-01-01

    A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)

  2. Stellar Pulsations, Impact of New Instrumentation and New Insights

    CERN Document Server

    Garrido, R; Balona, L; Christensen-Dalsgaard, J; 20th Stellar Pulsation Conference Series

    2013-01-01

    Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.

  3. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  4. Doubling the number of pulsating DB white dwarfs

    International Nuclear Information System (INIS)

    Nitta, Atsuko; Kleinman, S J; Krzenski, J; Kepler, S O; Metcalfe, T S; Mukadam, Anjum S; Mullally, F; Nather, R E; Winget, D E; Sullivan, D; Thompson, Susan E

    2009-01-01

    We are searching for new pulsating DB white dwarf stars (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, DAVs or ZZ Ceti stars. Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. At the time of the meeting, we reported on the nine new DBVs, doubling the number of previously known DBVs. Here we report the new nine pulsators' lightcurves and power spectra.

  5. Skeletal muscle cellularity and glycogen distribution in the hypermuscular Compact mice

    Directory of Open Access Journals (Sweden)

    T. Kocsis

    2014-07-01

    Full Text Available Normal 0 21 false false false HU X-NONE X-NONE MicrosoftInternetExplorer4 The TGF-beta member myostatin acts as a negative regulator of skeletal muscle mass. The Compact mice were selected for high protein content and hypermuscularity, and carry a naturally occurring 12-bp deletion in the propeptide region of the myostatin precursor. We aimed to investigate the cellular characteristics and the glycogen distribution of the Compact tibialis anterior (TA muscle by quantitative histochemistry and spectrophotometry. We have found that the deficiency in myostatin resulted in significantly increased weight of the investigated hindlimb muscles compared to wild type. Although the average glycogen content of the individual fibers kept unchanged, the total amount of glycogen in the Compact TA muscle increased two-fold, which can be explained by the presence of more fibers in Compact compared to wild type muscle. Moreover, the ratio of the most glycolytic IIB fibers significantly increased in the Compact TA muscle, of which glycogen content was the highest among the fast fibers. In summary, myostatin deficiency caused elevated amount of glycogen in the TA muscle but did not increase the glycogen content of the individual fibers despite the marked glycolytic shift observed in Compact mice.

  6. 2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer

    International Nuclear Information System (INIS)

    Ni Meng

    2013-01-01

    Highlights: ► A heat and mass transfer model is developed for a compact reformer. ► Hydrogen production from methane steam reforming is simulated. ► Increasing temperature greatly increases the reaction rates at the inlet. ► Temperature in the downstream is increased at higher rate of heat supply. ► Larger permeability enhances gas flow and reaction rates in the catalyst layer. - Abstract: Compact reformers (CRs) are promising devices for efficient fuel processing. In CRs, a thin solid plate is sandwiched between two catalyst layers to enable efficient heat transfer from combustion duct to the reforming duct for fuel processing. In this study, a 2D heat and mass transfer model is developed to investigate the fundamental transport phenomenon and chemical reaction kinetics in a CR for hydrogen production by methane steam reforming (MSR). Both MSR reaction and water gas shift reaction (WGSR) are considered in the numerical model. Parametric simulations are performed to examine the effects of various structural/operating parameters, such as pore size, permeability, gas velocity, temperature, and rate of heat supply on the reformer performance. It is found that the reaction rates of MSR and WGSR are the highest at the inlet but decrease significantly along the reformer. Increasing the operating temperature raises the reaction rates at the inlet but shows very small influence in the downstream. For comparison, increasing the rate of heat supply raises the reaction rates in the downstream due to increased temperature. A high gas velocity and permeability facilitates gas transport in the porous structure thus enhances reaction rates in the downstream of the reformer.

  7. Pulsation of high luminosity helium stars

    International Nuclear Information System (INIS)

    King, D.S.; Wheeler, J.C.; Cox, J.P.; Cox, A.N.; Hodson, S.W.

    1979-01-01

    Preliminary calculations are made on a systematic restudy of the linear and nonlinear pulsations of helium stars allowing for more recent and higher estimates of the effective temperature and for the high carbon abundance. Linear and nonlinear models are used. Results show qualitative agreement with earlier ones, models with sufficiently large L/M have a very hot blue edge for their instability strip, very large L/M values lead to dynamically unstable models which would appear to eject mass and therefore may not be realistic models for the pulsating RCrB stars, for the sequence studied a reasonable mass could be greater than or equal to 1.5 Msub solar. 12 references

  8. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    Science.gov (United States)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  9. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    International Nuclear Information System (INIS)

    Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν  ∼< 10 -11  μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound

  10. Structure of Alpha Virginis. III. The pulsation characteristics

    International Nuclear Information System (INIS)

    Odell, A.P.

    1980-01-01

    Stellar structure models which were generated to match the photometric and binary properties of the B1.5 IV star Spica (α Vir) are analyzed for pulsation characteristics. The pulsation computations were linear and adiabatic and included both radial and nonradial (l=2) motions. Three sets of models were tested: normal evolution using Cox-Steward opacities, normal evolution using opacities increased substantially over Cox-Stewart, and evolution models using Cox-Stewart opacities but with a nonshrinking convective core

  11. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  12. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer

    Energy Technology Data Exchange (ETDEWEB)

    Hoehlein, B [Forschungszentrum Juelich GmbH (Germany); Boe, M [H. Topsoee A/S, Lyngby (Denmark); Boegild-Hansen, J [H. Topsoee A/S, Lyngby (Denmark); Broeckerhoff, P [Forschungszentrum Juelich GmbH (Germany); Colsman, G [Forschungszentrum Juelich GmbH (Germany); Emonts, B [Forschungszentrum Juelich GmbH (Germany); Menzer, R [Forschungszentrum Juelich GmbH (Germany); Riedel, E

    1996-07-01

    On-board generation of hydrogen from methanol with a reformer in connection with the use of a proton-exchange membrane fuel cell (PEMFC) is an attractive option for a passenger car drive. Special considerations are required to obtain low weight and volume. Furthermore, the PEMFC of today cannot tolerate more than 10 ppm of carbon monoxide in the fuel. Therefore a gas conditioning step is needed after the methanol reformer. Our main research activities focus on the conceptual design of a drive system for a passenger car with methanol reformer and PEMFC: Engineering studies with regard to different aspects of this design including reformer, catalytic burner, gas conditioning, balances of the fuel cycles and basic design of a compact methanol reformer. The work described here was carried out within the framework of a JOULE II project of the European Union (1993-1995). Extensive experimental studies have been carried out at the Forschungszentrum Juelich GmbH (KFA) in Germany and at Haldor Topsoee A/S in Denmark. (orig.)

  13. γ DORADUS PULSATIONS IN THE ECLIPSING BINARY STAR KIC 6048106

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo, E-mail: jwlee@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34113 (Korea, Republic of)

    2016-12-20

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ( f {sub 2}– f {sub 6} and f {sub 10}) can be identified as high-order (17 ≤  n  ≤ 25) low-degree ( ℓ  = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352–0.506 days and 0.232–0.333 days, respectively. These values and the position on the Hertzsprung–Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  14. Pulsation properties of Mira long period variables

    International Nuclear Information System (INIS)

    Cahn, J.H.

    1980-01-01

    A matter of great interest to variable star students concerns the mode of pulsation of Mira long period variables. In this report we first give observational evidence for the pulsation constant Q. We then compare the observations with calculations. Next, we review two interesting groups of papers dealing with hydrodynamic properties of long period variables. In the first, a fully dynamic nonlinear calculation maps out the Mira instability domain. In the second, special attention is paid to shock propagation beyond the photosphere which in large measure accounts for the complex spectra from this region. (orig./WL)

  15. Nonlinear effects in Pulsations of Compact Stars and Gravitational Waves

    International Nuclear Information System (INIS)

    Passamonti, A

    2007-01-01

    Nonlinear stellar oscillations can be studied by using a multiparameter perturbative approach, which is appropriate for investigating the low and mild nonlinear dynamical regimes. We present the main properties of our perturbative framework for describing, in the time domain, the nonlinear coupling between the radial and nonradial perturbations of spherically symmetric and perfect fluid compact stars. This particular coupling can be described by gauge invariant quantities that obeys a system of partial differential equations with source terms, which are made up of product of first order radial and nonradial perturbations. We report the results of numerical simulations for both the axial and polar coupling perturbations, that exhibit in the stellar dynamics and in the associated gravitational wave signal some interesting nonlinear effects, such as combination harmonics and resonances. In particular, we concentrate on the axial case, where the linear axial perturbations describe a harmonic component of a differentially rotating neutron star. The gravitational wave signal of this stellar configuration mirrors at second perturbative order the spectral features of the linear radial normal modes. In addition, a signal amplification appears when one of the radial frequencies is close to the axial w-mode frequencies of the star

  16. GD 154: White dwarf with multi- and monoperiodic pulsation

    Directory of Open Access Journals (Sweden)

    Bognár Zs.

    2013-03-01

    Full Text Available We present the white dwarf GD 154 as an example where either monoperiodic or multiperiodic pulsation were found at different epochs. The mono-multi-monoperiodic stage seems to alternate. Many questions have been raised. Is this behaviour connected to the evolution of DAV stars? How often does it happen? Is there any regularity in this change of the pulsational behaviour or is it irregular?

  17. High Resolution Spectroscopy of the Pulsating White Dwarf G29-38

    OpenAIRE

    Thompson, Susan E.; Clemens, J. C.; van Kerkwijk, M. H.; Koester, D.

    2003-01-01

    We present the analysis of time-resolved, high resolution spectra of the cool white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha core, we detect velocity changes as large as 16.5 km/s and conclude that they are due to the horizontal motions associated with the g-mode pulsations on the star. We detect seven pulsation modes from the velocity time-series and identify the same modes in the flux variations. We discuss the properties of these modes and use the advantage ...

  18. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  19. Theory of auroral zone PiB pulsation spectra

    International Nuclear Information System (INIS)

    Lysak, R.L.

    1988-01-01

    Changes in the auroral zone current system are often accompanied by magnetic pulsations with periods of about 1 s. These so-called bursts of irregular pulsations (PiB) have been observed both on ground magnetograms and with in situ satellite observations. These pulsations can be understood as excitations of a resonant cavity in the topside ionosphere, where the Alfven speed has a strong gradient due to the exponential decrease of density above the ionosphere. These waves have a frequency which scales as the ratio of the Alfven speed at the ionosphere divided by the ionospheric scale height. For a pure exponential Alfven speed profile, the mode frequencies are related to zeros of the zeroth-order Bessel function. For other profiles of the density, and therefore Alfven speed, the frequencies are not exactly given by the simple theory, but the frequency and mode structure are similar provided the Alfven speed sharply increases above the ionosphere

  20. Optical pulsation from the HZ Her/Her X-1 system

    International Nuclear Information System (INIS)

    Chester, T.J.

    1977-01-01

    A theoretical model for the observed optical pulsation from the x-ray binary HZ Her/Her X-1 is presented. Its foundation is a general computer code for an x-ray illuminated stellar atmosphere. Detailed results are given for several atmospheres applicable to HZ Her. A formalism is developed to calculate the amount of pulsed optical radiation emergent from these atmospheres if they are exposed to pulsed x rays. This formalism is used to calculate the pulsed and unpulsed optical light curves for HZ Her. The calculated optical pulsation agrees with the observed amplitude. A nonuniform x-ray beam can cause the amplitude and velocity of the optical pulsation to vary by more than a factor of two for fixed system parameters. The presence of soft x rays (0.1 to 1 keV) can significantly affect the calculated pulsation amplitude. The model places explicit limits on the system parameters; in particular, if corotation is assumed, 0.8 M/sub sun/ less than or equal to M/sub Her X-1/ less than or equal to 1.7 M/sub sun/

  1. Modulation depth analysis in fast pulsations of solar radio emission

    International Nuclear Information System (INIS)

    Chernov, G.P.; Kurts, Yu.; Akademie der Wissenschaften der DDR, Berlin

    1990-01-01

    A model of millisecond pulsations due to a pulsation regime of a whistler spectrum is confirmed by the statistical analysis of the modulation depth in five type IV bursts; a modulation depth distribution ΔI/I versus the period (p) grows linearly (with the different slope) up to the maximum at the value ΔI/I ≅ 0.5-0.6. The same dependence ΔI/I(p) for spikes, observed during the same events, testifies also in favour of this model. The overlap on fast pulsations of fiber bursts and of sudden reductions are displayed in the ΔI/I(p) distribution by diffuse tails which are naturally explained by the known models of this fine structure

  2. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    International Nuclear Information System (INIS)

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-01-01

    We have detected 90 objects with periods and lightcurve structure similar to those of field(delta) Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude(delta) Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground(delta) Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population(delta) Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field(delta) Scuti stars and the(delta) Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude(delta) Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d(sup -1)) and the observed period ratios of(approx)0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes

  3. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  4. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  5. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  6. Massive B-type pulsators in low-metallicity environments

    Science.gov (United States)

    Karoff, C.; Arentoft, T.; Glowienka, L.; Coutures, C.; Nielsen, T. B.; Dogan, G.; Grundahl, F.; Kjeldsen, H.

    2009-07-01

    Massive B-type pulsators such as β Cep and slowly pulsating B (SPB) stars pulsate due to layers of increased opacity caused by partial ionization. The increased opacity blocks the energy flux to the surface of the stars which causes the layers to rise and the opacity to drop. This cyclical behavior makes the star act as a heat engine and the star will thus pulsate. For β Cep and SPB stars the increased opacity is believed to be caused by partial ionization of iron and these stars should therefore contain non-insignificant quantities of the metal. A good test of this theory is to search for β Cep and SPB stars in low-metallicity environments. If no stars are found the theory is supported, but, on the other hand, if a substantial number of β Cep and SPB stars are found in these environments then the theory is not supported and a %solutions solution is needed. With a growing number of identified β Cep and SPB stars in the low-metallicity Magellanic Clouds we seem to be left with the second case. We will in this context discuss recent findings of β Cep and SPB stars in the Magellanic Clouds and some possible solutions to the discrepancy between these observations and the theory. We also describe an ambitious project that we have initiated on the Small Magellanic Cloud open cluster NGC 371 which will help to evaluate these solutions.

  7. Flow effects due to pulsation in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2014-01-01

    Highlights: • Using POD analysis to identify large coherent flow structures in a complex geometry. • Flow field alters significant for constant and pulsating boundary conditions. • The discharge coefficient of the exhaust port decreases 2% with flow pulsation. • Pulsation causes a pumping mechanism due to a phase shift of pressure and momentum. - Abstract: In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the passage guiding the exhaust gasses from the combustion chamber to the energy recovering device, e.g. a turbocharger. Thus, energy losses in the course of transmission shall be reduced as much as possible. However, in one-dimensional engine models used for engine design, the exhaust port is reduced to its discharge coefficient, which is commonly measured under constant inflow conditions neglecting engine-like flow pulsation. In this present study, the influence of different boundary conditions on the energy losses and flow development during the exhaust stroke are analyzed numerically regarding two cases, i.e. using simple constant and pulsating boundary conditions. The compressible flow in an exhaust port geometry of a truck engine is investigated using three-dimensional Large Eddy Simulations (LES). The results contrast the importance of applying engine-like boundary conditions in order to estimate accurately the flow induced losses and the discharge coefficient of the exhaust port. The instantaneous flow field alters significantly when pulsating boundary conditions are applied. Thus, the induced losses by the unsteady flow motion and the secondary flow motion are increased with inflow pulsations. The discharge coefficient decreased about 2% with flow pulsation. A modal flow decomposition method, i.e. Proper Orthogonal Decomposition (POD), is used to analyze the coherent structures induced with the particular

  8. Pulsating stars in the region of Carina Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Steslicki, Marek [Astronomical Institute, University of Wroclaw (Poland)], E-mail: steslicki@astro.uni.wroc.p1

    2008-10-15

    We present the results of a search for pulsating stars in the region of Carina Nebula which includes three very young open clusters: Trumpler 14, 15 and 16. The search was made with the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope in La Silla (Chile). In total, about 16,000 stars have been analyzed using classical Fourier techniques. We found over 20 pulsating {delta}-Scuti type stars in this region. Most of them are probable members of open clusters at the pre-main sequence evolutionary stage.

  9. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1984-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. The author discusses the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of the Sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. (Auth.)

  10. Optical pulsations from 4U 0900--40: Do they exist

    International Nuclear Information System (INIS)

    Nelson, J.; Middleditch, J.; Cordova, F.

    1979-01-01

    A search for optical pulsations from 4U 0900--40 (HD 77581) was made in 1977--1978 using Hβ interference filters. No pulsations were detected above 10 -3 of the observed flux. This contrasts with Steiner's detection of pulsatons at the 2% level. Ariel 5 data covering both our observations and Steiner's show that X-ray variability does not support this decrepancy

  11. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    Science.gov (United States)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  12. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  13. The Nainital Cape Survey Project : A Search for Pulsation in Chemically Peculiar Stars

    Science.gov (United States)

    Chakradhari, Nand Kumar; Joshi, Santosh

    2018-04-01

    The Nainital-Cape Survey is a dedicated search programme initiated in 1999 in the coordination of astronomers from SAAO South Africa, ARIES Nainital and ISRO Bangalore. Over the last 17 years a total of 345 chemically peculiar stars were monitored for photometric variability, making it one of the longest ground-based survey to search for pulsation in chemically peculiar stars in terms of both time span and sample size. Under this survey, we discovered rapid pulsation in the Ap star HD12098 while δ Scuti-type pulsations were detected in seven Am stars. Those stars in which pulsations were not detected have also been tabulated along with their detailed astrophysical parameters for further investigation.

  14. Infrared study of seven possible compact H II regions

    International Nuclear Information System (INIS)

    Sibille, F.; Lunel, M.; Bergeat, J.

    1976-01-01

    We report observations of seven possible compact H II regions in the infrared with the hydrogen spectrum in order to derive extinction and emission measures. The emission measure is compared with available radio data. For two sources, agreement is found between radio and infrared data. Infrared excess is found in four sources, its origin is discussed. Two sources cannot be interpreted as compact H II regions. (orig.) [de

  15. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  16. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    International Nuclear Information System (INIS)

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-01-01

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies

  17. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements

    Science.gov (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.

    2017-11-01

    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  18. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations

    International Nuclear Information System (INIS)

    Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh

    2007-01-01

    Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method

  19. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    International Nuclear Information System (INIS)

    Wit, Julien de; Lewis, Nikole K.; Knutson, Heather A.; Batygin, Konstantin; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-01-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  20. A test of Pulsation Theory in Hot B Subdwarfs

    Science.gov (United States)

    Fontaine, Gilles

    There are currently of the order of 15 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of millimag), short-period (100-500 s), multiperiodic luminosity variations. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that, in several instances, variable and non-variable objects with similar effective temperatures and gravities may coexist in the HR diagram. This result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will i) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters; ii) provide a consistency check with our wind models; and iii) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  1. Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors

    International Nuclear Information System (INIS)

    Ramiar, A.; Mahmoudi, A.H.; Esmaili, Q.; Abdollahzadeh, M.

    2016-01-01

    In this paper, a numerical study is conducted in order to investigate the effect of pulsation of air flow at the cathode side of Proton Exchange Membrane (PEM) fuel cell with interdigitated flow field. A two dimensional, isothermal, two-phase, unsteady multi-component transport model is used in order to simulate the transport phenomena. The obtained results are discussed in terms of the influence of flow pulsation on water management and cell performance. The results prove the effectiveness of flow pulsation on improving water removal from cell, enhancing reactants transports to the reaction sites, and increasing the cell performance expressed by increment in the cell limiting current density and maximum output power. The effects of pulsation frequency (f), amplitude (Amp), and mean inlet pressure (P_i_n) on the performance and the output power of the cell, are also investigated. The performance of the cell has no dependency on the frequency range considered in this study. However, as the pulsation amplitude increases the increment in the cell performance is more obvious. Moreover, applying flow pulsation at low flow rates leads to higher efficiency in water removal and performance enhancement. - Highlights: • Mechanism of water and oxygen transport under flow pulsation are discussed. • Pulsating cathode flow increases the limiting current density and output power. • The performance of cell has no significant dependency on pulsation frequency. • The performance and output power increase with the pulsation amplitude. • Using pulsating flow at lower average pressures leads to higher water removal rate.

  2. Mecanical Properties Degradation by Hydrogen Embrittlement

    International Nuclear Information System (INIS)

    Bertolino, G; Meyer, G; Perez Ipina J

    2001-01-01

    The presence of hydrogen-rich media during nuclear plant operation motivates the study of the zirconium alloys degradation of their mechanical properties influenced by hydrogen content and temperature.In this work we study samples with a microstructure of equiaxial grains resulted from hot-rolled, and with different homogeneous hydrogen content obtained by electrochemical charge and a thermal treatment.The influence of hydrogen content and temperature was analyzed from the results of fracture-mechanical tests on CT (compact test) probes using the J-criteria

  3. The effect of tides on self-driven stellar pulsations

    Science.gov (United States)

    Balona, L. A.

    2018-06-01

    In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.

  4. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    Science.gov (United States)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  5. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    Science.gov (United States)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  6. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1990-01-01

    In this paper the authors give a general review of the pulsating δ Scuti variables, including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Then we discuss three models of these stars, and use them to study the nonlinear hydrodynamic behavior of these stars, after which the authors outline the hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions. The authors also present the problems of allowing for time-dependent convection and its great sensitivity to temperature and density. Tentative results to data do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. Finally, the authors find that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. The δ Scuti variables are the most common type of variable star in our galaxy except for the white dwarfs. This is because stars in the mass range from just over one M circle-dot up to at least several M circle-dot pass through the yellow giant instability strip in the Hertzsprung-Russell diagram as they evolve off the main sequence to the red. Actually, stars up to the maximum main sequence mass also evolve through this region at higher luminosities, but there are so few of them, and they evolve so rapidly to the red, that they are almost unknown. At the higher luminosity, they probably would be called first-instability strip-crossing Cepheids anyway. Such cepheids are difficult to separate from those that are on the second blueward instability strip crossing that is much slower. Really, the δ Scuti variables are just low-luminosity Cepheids

  7. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  8. A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Thomas M.; Barlow, Brad N.; Soto, Alan Vasquez [Department of Physics, High Point University, One University Parkway, High Point, NC 27268 (United States); Fleming, Scott W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Million, Chase [Million Concepts LLC, P.O. Box 119, 141 Mary Street, Lemont, PA 16851 (United States); Reichart, Dan E.; Haislip, Josh B.; Moore, Justin P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Linder, Tyler R. [Department of Physics, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920 (United States)

    2017-08-20

    NASA’s Galaxy Evolution Explorer ( GALEX ) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX , with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gaps between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV{sub r} class of variable stars.

  9. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  10. Numerical modelling of pulsation and convection in cepheids

    International Nuclear Information System (INIS)

    Mundprecht, E.

    2011-01-01

    In order to simulate the pulsation convection coupling in a Cepheid the ANTARES-code was equipped with a polar and moving grid. The numerical cost of a fully parallelized, sufficiently large, and fully resolved section would be immense. Thus it was not only necessary to find a suitable model, but also save to costs for parallelisation and grid refinement. The equations governing the hydrodynamics were derived for this particular grid and implemented in the code. The grey short characteristics method for the radiative transfer equation was also adjusted. Different methods of parallelisation for the radiative transfer were tested. Abstract Within ANTARES shocks are treated with an essentially non oscillatory (ENO) scheme with Marquina flux splitting. As this method is only valid for grids that are equidistant or uniformly stretched in all directions two differnt sets of ENO-coefficients were implemented and tested. It was found that the traditional approach is indeed no longer valid and the system is not conservative when the original set of coefficients is used. In the upper or hydrogen ionisation zone the gradient of density, temperature etc. is very steep, therefore a finer resolution with a minimum of additional time steps is needed. In order to resolve these few points a co-moving grid refinement was developed. Simulations in one and two dimensions were performed, a comparison between them helps to better understand the effects of convection on the e.c. light curve. Analysis of the fluxes and the work integral was done for the helium ionisation zone. The effects of subgrid modelling were tested on the hydrogen convection zone and compared with a resolved simulation of this zone. (author) [de

  11. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  12. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  13. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  14. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  15. Numerical studies of a compact gasoline reformer for fuel cell vehicle applications

    International Nuclear Information System (INIS)

    McIntyre, C.S.; Harrison, S.J.; Oosthuizen, P.H.; Peppley, B.A.

    2004-01-01

    There has been recent interest in the development of compact fuel processors to produce hydrogen for fuel cell powered vehicles. Gasoline is a promising candidate for distributed or on-board processing because of its high energy density and well-developed infrastructure. A compact fuel processor is under development which utilizes autothermal reforming (ATR) to extract hydrogen from iso-octane, which is used as a surrogate for gasoline. The processor consists of a double-pass packed-bed catalytic reactor to promote partial oxidation, steam reforming, and water-gas-shift reactions. As part of this system development, a commercial computational fluid dynamics (CFD) package was used to model flow and chemical reactions. Reformer performance is presented in terms of hydrogen content in the product stream, reformer efficiency (LHV efficiency) and iso-octane conversion. Results are compared to on-going experimental studies. (author)

  16. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  17. Stellar pulsations in beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  18. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    Science.gov (United States)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  19. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Energy Technology Data Exchange (ETDEWEB)

    Wit, Julien de [Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Knutson, Heather A.; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Antoci, Victoria [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, Gregory [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91009 (United States); Cowan, Nicolas B. [Department of Physics, Department of Earth and Planetary Sciences, McGill University, 3550 rue University, Montreal, QC H3A 2A7 (Canada); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-02-20

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  20. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  1. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    Science.gov (United States)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  2. Reasons for the appearance of pulsations in gas-lift wells and methods of eliminating them

    Energy Technology Data Exchange (ETDEWEB)

    Sibirev, A P; Grekhov, V V; Leonov, V A; Shigapov, R R

    1985-01-01

    It is shown that the main reason for pulsation in the gas-lift well output is lack of coordinated operation between the bed and the gas-lift lifter. A plan is suggested for making decisions to conduct work to detect and eliminate pulsations in the gas-lift well output which permit elimination of the pulsation in the shortest time and with the least outlays.

  3. Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow

    International Nuclear Information System (INIS)

    Targui, N.; Kahalerras, H.

    2013-01-01

    Highlights: • A double pipe heat exchanger performance is numerically studied. • Use of porous baffles and pulsating flow to enhance heat exchanger efficiency. • The governing equations are solved by the control volume method. • The efficiency increases with the amplitude and frequency of pulsation. • The highest values of are obtained when only hot fluid is pulsating (Case3). - Abstract: A numerical investigation is carried out to analyze the effect of porous baffles and flow pulsation on a double pipe heat exchanger performance. The hot fluid flows in the inner cylinder, whereas the cold fluid circulates in the annular gap. The Darcy–Brinkman–Forchheimer model is adopted to describe the flow in the porous regions and the finite volume method is used to solve the governing equations with the appropriate boundary conditions. The effects of the amplitude and frequency of pulsation, as well as the porous baffles permeability on the flow structure and the heat exchanger efficiency are analyzed. The results reveal that the addition of an oscillating component to the mean flow affects the flow structure, and enhances the heat transfer in comparison to the steady non pulsating flow. The highest heat exchanger performance is obtained when only the flow of the hot fluid is pulsating

  4. A Test of Pulsation Theory in Hot B Subdwarfs (bis)

    Science.gov (United States)

    Fontaine, G.

    There are currently 33 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of mmag), short-period (100-500 s), multiperiodic luminosity variations caused by acoustic mode instabilities. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron and other iron-peak elements) abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that variable and nonvariable objects with similar effective temperatures and gravities coexist in the log g-Teff diagram. This puzzling result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will 1) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters, 2) provide a consistency check with our wind models, and 3) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  5. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    Science.gov (United States)

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P compaction behavior of materials and detecting friction phenomena in the early stage of development.

  6. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  7. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  8. Two-colour ionization of hydrogen

    International Nuclear Information System (INIS)

    Fifirig, M.; Cionga, A.; Florescu, V.

    1995-01-01

    The studies of different radiative processes in hydrogen continue to be of interest, as they provide a comparison basis for calculations done on many electron atoms. We consider the case of the hydrogen atom interacting simultaneously with two electromagnetic fields of incommensurable frequencies. Our attention is focused on three-photon transitions between the ground state and a final state in the continuum. The existence of compact forms for the first and second-order corrections to the wave functions of a Coulomb-field electron due to the electromagnetic field leads to compact results for the matrix element of the transitions. Numerical results are presented for the total ionization rate and the angular distribution of ejected electrons in a regime in which none of the fields is able to ionize alone the atom. (author)

  9. On the role of resonances in double-mode pulsation

    International Nuclear Information System (INIS)

    Dziembowski, W.; Kovacs, G.

    1984-01-01

    Simultaneous effects of resonant coupling and non-linear saturation of linear driving mechanism on the finite amplitude solution of multi-modal pulsation problem and on its stability are investigated. Both effects are calculated in the lowest order of approximation in terms of amplitudes. It is shown that the 2:1 resonance between one of the two linearly unstable modes and a higher frequency mode causes double-mode (fundamental and first overtone) pulsation. In a certain range of parameters, such as the frequency mismatch, the linear growth and damping rates, it is the only stable solution of the problem. (author)

  10. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  11. The MACHO Project Sample of Galactic Bulge High-Amplitude {delta} Scuti Stars: Pulsation Behavior and Stellar Properties

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K. (and others)

    2000-06-20

    We have detected 90 objects with periods and light-curve structures similar to those of field {delta} Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes. (c) 2000 The American Astronomical Society.

  12. Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.

    2011-01-01

    Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...

  13. Finding the first cosmic explosions. III. Pulsational pair-instability supernovae

    International Nuclear Information System (INIS)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Woosley, S. E.; Heger, Alexander; Stiavelli, Massimo

    2014-01-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M ☉ pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z ∼ 15-20 and can probe the earliest stellar populations at cosmic dawn.

  14. Metallicism and pulsation: an analysis of the delta Delphini stars

    International Nuclear Information System (INIS)

    Kurtz, D.W.

    1976-01-01

    Fine abundance analyses of seven delta Delphini stars and one delta Scuti star relative to four comparison standards are presented. Five of the delta Del stars are shown to have abundances most similar to the evolved Am stars. It is argued that these abundances are different from the classical Am star and Ap star abundances and that similarities to the Ba II star abundances are coincidental. We suggest that the anomalous abundance delta Del stars are evolved metallic line stars on the basis of their abundances, position in the β, M/sub v/ plane, inferred rotational velocities, and perhaps their binary incidence. Some of the delta Del stars are delta Scuti pulsators. We argue that pulsation and metallicism are mutually exclusive among the classical Am stars but may coexist in other stars related to the classical Am stars. A preference for the diffusion hypothesis model for the metallic line stars is stated and supported and the implications of the coexistence of pulsation and diffusion are discussed

  15. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  16. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  17. Stellar pulsations in beyond Horndeski gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Sakstein, Jeremy [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States); Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  18. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  19. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  20. lamda 557.7 nm pulsations within quiet pre-breakup aurorae at L=8.7

    International Nuclear Information System (INIS)

    Thomas, I.L.

    1974-01-01

    Pulsations in the [OI] Λ557.7 nm emission, with a typical period of 10-20 s, were consistently observed within quiet pre-breakup auroral forms from Mawson, Antarctica (L = 8.7), during 1967. By relating these observations to the model location of the auroral oval, an indication of the parent magnetospheric region is gained. From these results, and other reports, it is concluded that optical pulsations are a basic feature of the auroral display. The occurrence of an 'optical auroral pulsation pearl necklace' is reported. (author)

  1. The propagation of pressure pulsations in the primary circuit of power plant A1

    International Nuclear Information System (INIS)

    Pecinka, L.

    1976-01-01

    A classification is made of the exciting forces of pressure pulsations in the primary coolant circuit with forced coolant circulation. A mathematical model is constructed of the propagation of pressure pulsations in the system and examples of measurements are given. The measurement methods used and the methods for the generalization of obtained data are assessed. The methods and results of the measurements of hydrodynamic pressure pulsations in a closed primary circuit with forced coolant circulation of the A-1 nuclear power plant are given. (F.M.)

  2. Micro-Channel Embedded Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  3. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    Directory of Open Access Journals (Sweden)

    D. McKay

    2018-01-01

    Full Text Available The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1–2 h. During the growth phase, an equatorward moving, east–west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10  keV and high- (>  10 keV energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  4. HET LRS2 Observations of Halpha in Old Hydrogen-deficient Supernovae

    Science.gov (United States)

    Wheeler, J. Craig Craig; Pooley, David A.; Vinko, Jozsef; Szalai, Tamas; Marion, Howie H.; Sand, David J.; McQueen, Phillip; Silverman, Jeffrey M.

    2017-06-01

    For 3 years, we have been using narrow-band filters with the DIAFI imager on the HJS 2.7 m telescope to search for evidence that hydrogen-deficient supernovae undergo delayed collision with previously ejected circumstellar material and associated excitation of Halpha (see abstract by Pooley et al.). A powerful method to determine whether detected Halpha flux is from an HII region or a supernova is to obtain spectra; broad lines (> 1000 km/s) will be a certain indicator of a supernova. We have observed about 20 events that ranged in age from about 1000 days to nearly 80 years for which we have detected Halpha in the vicinity of the supernova. So far, only SN 2014C showed the broad H that is concrete evidence of ongoing circumstellar interaction. One interesting aspect revealed by the spectra is that we often pick up the two [N II] lines that typically accompany H in H II regions. Our spectra of SN 2008ha did not show these [N II] lines. The absence of the [N II] lines might be a clue to circumstellar interaction in conditions where the shock had slowed to a point where the H is not detectably broadened.

  5. Evidence for highly processed material ejected from Abell 30

    International Nuclear Information System (INIS)

    Hazard, C.; Terlvich, R.; Ferland, G.; Sargent, W.L.W.

    1980-01-01

    The discovery of compact knots of highly processed material apparently ejected from the central star of the emission nebula Abell 30 is reported here. Spectra obtained from the compact nebulosities surrounding the central star, which indicate a remarkable enhancement of helium relative to hydrogen, are discussed. Preliminary model calculations to investigate the properties of hydrogen deficient nebulae and to study the abundances of some heavy elements have been applied to the results. (UK)

  6. Recent Results on Central Compact Objects

    Science.gov (United States)

    Halpern, Jules P.; Gotthelf, E. V.

    2011-09-01

    We will review the latest observational results and theoretical puzzles about the class of central compact objects (CCOs) in supernova remnants (SNRs), 10 isolated neutron stars (NSs) with steady, thermal X-ray emission and absence of a surrounding pulsar wind nebula. Three CCOs have detected X-ray pulsations, with periods of 0.105, 0.112, and 0.424 s. X-ray timing studies reveal that their spin-down rates are extremely small, implying dipole magnetic fields of only 3.e10-1.e11 G, which is unprecedented among the population of young pulsars. In the absence of a stronger magnetic field, it is difficult to explain the high temperatures of their surface hot spots, which may instead require a magnetic field configuration that is different from a centered dipole. While CCOs are inconspicuous relative to ordinary young pulsars and active magnetars, that they are found in SNRs in comparable numbers to other classes of NSs implies that they must represent a significant fraction of NS births. Nevertheless, they fall in a region of the P,P-dot diagram for radio pulsars that is underpopulated, so it is not clear if CCOs are intrinsically radio quiet, and what happens to their descendants, the "orphaned CCOs" whose SNRs have dissipated. It has been speculated that if their magnetic fields were initially strong but were buried by prompt fall-back of supernova debris, then the dipole field may eventually diffuse back to the surface, and CCOs could join the main population of ordinary pulsars. We will also discuss how the absence of detected pulsations from the majority of CCOs makes them difficult to distinguish from magnetars in quiescence, which have X-ray spectra and luminosities similar to those of CCOs. However, they can be distinguished with long-term monitoring, since magnetars are eventually variable, while CCOs are steady X-ray emitters.

  7. Impact of pulsations on vortex flowmeters

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Bokhorst, E. van; Limpens, C.H.L.

    1998-01-01

    The impact of imposed pulsations on the output of five 3”-industrial vortex flow meters with a triangular bluff body and various type of sensors was experimentally investigated in a gas flow over a wide range of frequencies from 20 Hz to 400 Hz and amplitudes ranging from 1% to 30% rms of the

  8. Spectral structure of Pc3–4 pulsations: possible signatures of cavity modes

    Directory of Open Access Journals (Sweden)

    P. R. Sutcliffe

    2013-04-01

    Full Text Available In this study we investigate the spectral structure of Pc3–4 pulsations observed at low and midlatitudes. For this purpose, ground-based magnetometer data recorded at the MM100 stations in Europe and at two low latitude stations in South Africa were used. In addition, fluxgate magnetometer data from the CHAMP (CHAllenging Minisatellite Payload low Earth orbit satellite were used. The results of our analysis suggest that at least three mechanisms contribute to the spectral content of Pc3–4 pulsations typically observed at these latitudes. We confirm that a typical Pc3–4 pulsation contains a field line resonance (FLR contribution, with latitude dependent frequency, and an upstream wave (UW contribution, with frequency proportional to the IMF (interplanetary magnetic field magnitude BIMF. Besides the FLR and UW contributions, the Pc3–4 pulsations consistently contain signals at other frequencies that are independent of latitude and BIMF. We suggest that the most likely explanation for these additional frequency contributions is that they are fast mode resonances (FMRs related to cavity, waveguide, or virtual modes. Although the above contributions to the pulsation spectral structure have been reported previously, we believe that this is the first time where evidence is presented showing that they are all present simultaneously in both ground-based and satellite data.

  9. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    Science.gov (United States)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  10. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  11. Non-contact method of search and analysis of pulsating vessels

    Science.gov (United States)

    Avtomonov, Yuri N.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Despite the variety of existing methods of recording the human pulse and a solid history of their development, there is still considerable interest in this topic. The development of new non-contact methods, based on advanced image processing, caused a new wave of interest in this issue. We present a simple but quite effective method for analyzing the mechanical pulsations of blood vessels lying close to the surface of the skin. Our technique is a modification of imaging (or remote) photoplethysmography (i-PPG). We supplemented this method with the addition of a laser light source, which made it possible to use other methods of searching for the proposed pulsation zone. During the testing of the method, several series of experiments were carried out with both artificial oscillating objects as well as with the target signal source (human wrist). The obtained results show that our method allows correct interpretation of complex data. To summarize, we proposed and tested an alternative method for the search and analysis of pulsating vessels.

  12. Quasi-periodic 1-hour pulsations in the Saturn's outer magnetosphere

    Science.gov (United States)

    Rusaitis, L.; Khurana, K. K.; Walker, R. J.; Kivelson, M.

    2017-12-01

    Pulsations in the Saturn's magnetic field and particle fluxes of approximately 1-hour periodicity have been frequently detected in the outer Saturnian magnetosphere by the Cassini spacecraft since 2004. These particle and magnetic field enhancements have been typically observed more often in the dusk sector of the planet, and mid to high latitudes. We investigate nearly 200 of these events as detected by the magnetometer and the Cassini Low-Energy Magnetospheric Measurement System detector (LEMMS) data during the 2004-2015 time frame to characterize these pulsations and suggest their origin. The mechanism needed to produce these observed enhancements needs to permit the acceleration of the energetic electrons to a few MeV and a variable periodicity of enhancements from 40 to 90 minutes. We examine the relation of the oscillations to the periodic power modulations in Saturn kilometric radiation (SKR), using the SKR phase model of Kurth et al. [2007] and Provan et al. [2011]. Finally, we show that similar pulsations can also be observed at 2.5-D MHD simulations of Saturn's magnetosphere.

  13. Compact, self-regulating nuclear power source

    International Nuclear Information System (INIS)

    Peterson, Otis G.; Kimpland, Robert H.

    2008-01-01

    An inherently safe nuclear power source has been designed, that is self-stabilizing and requires no moving mechanical components. Unlike conventional designs, the proposed reactor is self-regulating through the inherent properties of uranium hydride, which serves as a combination fuel and moderator. The temperature driven mobility of the hydrogen contained in the hydride will control the nuclear activity. If the core temperature increases over the set point, the hydrogen is driven out of the core, the moderation drops and the power production decreases. If the temperature drops, the hydrogen returns and the process is reversed. Thus the design is inherently fail-safe and requires only minimal human oversight. The compact nature and inherent safety opens the possibility for low-cost mass production and operation of the reactors. This design has the capability to dramatically alter the manner in which nuclear energy is harnessed for commercial use. (author)

  14. Origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    Energy Technology Data Exchange (ETDEWEB)

    Berriman, G; Bailey, J; Axon, D J; Hough, J H

    1986-12-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded.

  15. Pressure pulsation measurements in pipe and cluster flows

    International Nuclear Information System (INIS)

    Benemann, A.; Voj, P.

    1976-01-01

    Measuring and evaluation techniques of pressure pulsations in pipe and cluster flows are described. The measurements were made on a 1 m long SNR rod-cluster and its feed and drain pipes. At Reynolds numbers in the cluster of 8.9 x 10 4 flow velocities of 14 m/sec were achieved. With the aid of a block diagram recording of the measured values by piezoelectric crystal and piezo-resistive strain gange as well as data processing are explained. For the analytical treatment of the pressure pulsation signals characterizing the turbulence field computer codes of a digital computer and a fast-fourier analyzer (Hewlett-Packard 5450 A) were used. The results show good agreement with theoretical curves on the behaviour of turbulent boundary layers of cluster and pipe flows at high Reynolds numbers. (TK) [de

  16. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  17. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Science.gov (United States)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  18. ENIGMATIC RECURRENT PULSATIONAL VARIABILITY OF THE ACCRETING WHITE DWARF EQ LYN (SDSS J074531.92+453829.6)

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Townsley, D. M.; Brockett, T. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Gaensicke, B. T.; Parsons, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Southworth, J. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Harrold, S. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Tovmassian, G.; Zharikov, S. [Observatorio Astronomico Nacional SPM, Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ensenada, BC (Mexico); Drake, A. J. [Department of Astronomy and the Center for Advanced Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States); Henden, A. [American Association of Variable Star Observers, 25 Birch Street, Cambridge, MA 02138 (United States); Rodriguez-Gil, P. [Departamento de Astrofisica, Universidad de La Laguna, La Laguna, E-38204 Santa Cruz de Tenerife (Spain); Sion, E. M. [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Zola, S.; Szymanski, T. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Pavlenko, E. [Crimean Astrophysical Observatory, Crimea 98409 (Ukraine); and others

    2013-09-15

    Photometric observations of the cataclysmic variable EQ Lyn (SDSS J074531.92+453829.6), acquired from 2005 October to 2006 January, revealed high-amplitude variability in the range 1166-1290 s. This accreting white dwarf underwent an outburst in 2006 October, during which its brightness increased by at least five magnitudes, and it started exhibiting superhumps in its light curve. Upon cooling to quiescence, the superhumps disappeared and it displayed the same periods in 2010 February as prior to the outburst within the uncertainties of a couple of seconds. This behavior suggests that the observed variability is likely due to nonradial pulsations in the white dwarf star, whose core structure has not been significantly affected by the outburst. The enigmatic observations begin with an absence of pulsational variability during a multi-site campaign conducted in 2011 January-February without any evidence of a new outburst; the light curve is instead dominated by superhumps with periods in the range of 83-87 minutes. Ultraviolet Hubble Space Telescope time-series spectroscopy acquired in 2011 March reveals an effective temperature of 15,400 K, placing EQ Lyn within the broad instability strip of 10,500-16,000 K for accreting pulsators. The ultraviolet light curve with 90% flux from the white dwarf shows no evidence of any pulsations. Optical photometry acquired during 2011 and Spring 2012 continues to reflect the presence of superhumps and an absence of pulsations. Subsequent observations acquired in 2012 December and 2013 January finally indicate the disappearance of superhumps and the return of pulsational variability with similar periods as previous data. However, our most recent data from 2013 March to May reveal superhumps yet again with no sign of pulsations. We speculate that this enigmatic post-outburst behavior of the frequent disappearance of pulsational variability in EQ Lyn is caused either by heating the white dwarf beyond the instability strip due to an

  19. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency

  20. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  1. A Refined Search for Pulsations in White Dwarf Companions to Millisecond Pulsars

    Science.gov (United States)

    Kilic, Mukremin; Hermes, J. J.; Córsico, A. H.; Kosakowski, Alekzander; Brown, Warren R.; Antoniadis, John; Calcaferro, Leila M.; Gianninas, A.; Althaus, Leandro G.; Green, M. J.

    2018-06-01

    We present optical high-speed photometry of three millisecond pulsars with low-mass (<0.3 M⊙) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a M⋆ = 0.16 - 0.19M⊙ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.

  2. Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1–2 May 2014

    Directory of Open Access Journals (Sweden)

    G. Korotova

    2016-11-01

    Full Text Available We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS and Geostationary Operational Environmental Satellite system (GOES spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (RE. A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from ZSM  =  0.30 RE to ZSM  =  −0.16 RE. We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the second-mode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength. We demonstrated that higher frequencies occurred at times and locations where Alfvén velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling

  3. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  4. Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels

    International Nuclear Information System (INIS)

    Jang, Dong Soo; Lee, Joo Seong; Ahn, Jae Hwan; Kim, Dongwoo; Kim, Yongchan

    2017-01-01

    Highlights: • Flat plate pulsating heat pipes with asymmetric and aspect ratios were tested. • Flow patterns were investigated according to channel geometry and flow condition. • Heat transfer characteristics were analyzed with various heat inputs. • Optimum asymmetric and aspect ratios were suggested for maximum thermal performance. - Abstract: The thermal performance of flat plate pulsating heat pipes (PHPs) in compact electronic devices can be improved by adopting asymmetric channels with increased pressure differences and an unbalanced driving force. The objective of this study is to investigate the heat transfer characteristics of flat plate PHPs with various asymmetric ratios and aspect ratios in the channels. The thermal performance and flow pattern of the flat plate PHPs were measured by varying the asymmetric ratio from 1.0 to 4.0, aspect ratio from 2.5 to 5.0, and heat input from 2 to 28 W. The effects of the asymmetric ratio and aspect ratio on the thermal resistance were analyzed with the measured evaporator temperature and flow patterns at various heat inputs. With heat inputs of 6 W and 12 W, the optimum asymmetric ratio and aspect ratio for the flat plate PHPs were determined to be 4.0 and 2.5, respectively. With the heat input of 18 W, the optimum asymmetric ratio and aspect ratio were determined to be 1.5 and 2.5, respectively.

  5. Radioheliograph observations of a pulsating structure associated with a moving type IV burst

    International Nuclear Information System (INIS)

    Pick, M.; Trottet, G.

    1978-01-01

    Observations of a pulsating structure with the Mark II Nancay Radioheliograph are reported. These fluctuations are found to occur early in the development of a moving type IV burst. It is confirmed that the source of these fluctuations is of small extent and that it is embedded in the moving type IV continuum, plausibly at the top of an expanding arch. The observations suggest that the pulsating structure consists of recurrent enhanced pulses (mean recurrency time 1.7 s) followed by trains of periodic pulses (mean periodicity 0.37 s). The intensity of the mean enhanced pulses has a damping time of about 5 s. It is shown that previous interpretation of the pulsating structure by Rosenberg (1970) cannot account for the present observations. (Auth.)

  6. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. In this review we discuss only the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of our sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. Unfortunately, the present state of knowledge about the exact compositions; mass loss and its dependence on the mass, radius, luminosity, and composition; ;and internal mixing processes, as well as sometimes the more basic parameters such as luminosities and surface effective temperatures prevent us from applying strong constraints for every case where currently the possibility exists

  7. Test Characteristics of Neck Fullness and Witnessed Neck Pulsations in the Diagnosis of Typical AV Nodal Reentrant Tachycardia

    Science.gov (United States)

    Sakhuja, Rahul; Smith, Lisa M; Tseng, Zian H; Badhwar, Nitish; Lee, Byron K; Lee, Randall J; Scheinman, Melvin M; Olgin, Jeffrey E; Marcus, Gregory M

    2011-01-01

    Summary Background Claims in the medical literature suggest that neck fullness and witnessed neck pulsations are useful in the diagnosis of typical AV nodal reentrant tachycardia (AVNRT). Hypothesis Neck fullness and witnessed neck pulsations have a high positive predictive value in the diagnosis of typical AVNRT. Methods We performed a cross sectional study of consecutive patients with palpitations presenting to a single electrophysiology (EP) laboratory over a 1 year period. Each patient underwent a standard questionnaire regarding neck fullness and/or witnessed neck pulsations during their palpitations. The reference standard for diagnosis was determined by electrocardiogram and invasive EP studies. Results Comparing typical AVNRT to atrial fibrillation (AF) or atrial flutter (AFL) patients, the proportions with neck fullness and witnessed neck pulsations did not significantly differ: in the best case scenario (using the upper end of the 95% confidence interval [CI]), none of the positive or negative predictive values exceeded 79%. After restricting the population to those with supraventricular tachycardia other than AF or AFL (SVT), neck fullness again exhibited poor test characteristics; however, witnessed neck pulsations exhibited a specificity of 97% (95% CI 90–100%) and a positive predictive value of 83% (95% CI 52–98%). After adjustment for potential confounders, SVT patients with witnessed neck pulsations had a 7 fold greater odds of having typical AVNRT, p=0.029. Conclusions Although neither neck fullness nor witnessed neck pulsations are useful in distinguishing typical AVNRT from AF or AFL, witnessed neck pulsations are specific for the presence of typical AVNRT among those with SVT. PMID:19479968

  8. Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

    Directory of Open Access Journals (Sweden)

    Zaļeskis Genadijs

    2016-12-01

    Full Text Available This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

  9. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    Science.gov (United States)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  10. Investigation on field method using strain measurement on pipe surface to measure pressure pulsation in piping systems

    International Nuclear Information System (INIS)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Kato, Minoru

    2013-01-01

    Accurate evaluation of the occurrence location and amplitude of pressure pulsations in piping systems can lead to efficient plant maintenance by preventing fatigue failure of piping and components because the pulsations can be one of the main causes of vibration fatigue and acoustic noise in piping. A non-destructive field method to measure pressure pulsations easily and directly was proposed to replace conventional methods such as prediction using numerical simulations and estimation using locally installed pressure gauges. The proposed method was validated experimentally by measuring pulsating flow in a mock-up piping system. As a result, it was demonstrated that the method to combine strain measurement on the outer surface of pipe with the formula for thick-walled cylinders could measure amplitudes and behavior of the pressure pulsations with a practical accuracy. Factors affecting the measurement accuracy of the proposed method were also discussed. Furthermore, the applicability of the formula for thin-walled cylinders was examined for variously shaped pipes. (author)

  11. Development of a compact powdery sample negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko; Kawano, Hiroyuki

    1997-02-01

    A gas-feed-free compact negative ion source can be realized by utilizing the process of electron stimulated desorption from powdery sample. A negative ion source of this type is designed to be attached to a standard 1.33 inch copper-gasket-flange. The ion source is operated stable with LiH powder for more than 10 hours with the mass-separated negative hydrogen ion current of 1 nA. The source causes minute gas emission, and particularly suitable for ion beam applications in which a good vacuum is required. The present status of the compact ion source development is briefly described. (author)

  12. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin.

    Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  13. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin. Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  14. Radial modes of slowly rotating compact stars in the presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)

    2016-09-15

    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)

  15. Criticality and novel quantum liquid phases in Ginzburg-Landau theories with compact and non-compact gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Smiseth, Jo

    2005-07-01

    The critical properties of three-dimensional U(1)-symmetric lattice gauge theories have been studied. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. The thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions is discussed with emphasis on continuous phase transitions, critical phenomena and phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs model are presented, and the critical phenomena are discussed. Furthermore, the multicomponent Ginzburg-Landau theory and the applications to liquid metallic hydrogen are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme, including the Metropolis algorithm, error estimates, and re weighting techniques. This chapter is followed by the papers I-VIII. Paper I: Criticality in the (2+1)-Dimensional Compact Higgs Model and Fractionalized Insulators. Paper II: Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator. Paper III: Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials. Paper IV: Phase structure of Abelian Chern-Simons gauge theories. Paper V: Critical Properties of the N-Color London Model. Paper VI: Field- and temperature induced topological phase transitions in the three-dimensional N-component London superconductor. Paper VII: Vortex Sublattice Melting in a Two-Component Superconductor. Paper VIII: Observation of a metallic superfluid in a numerical experiment (ml)

  16. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    Science.gov (United States)

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the

  17. Observation of the pulsating aurora by S-520-12 rocket at Norway

    International Nuclear Information System (INIS)

    Tsuruda, K.; Hayakawa, H.; Machida, S.; Mukai, T.; Morioka, A.; Nagano, I.; Miyaoka, H.

    1991-01-01

    Particle, field an wave observations in a pulsating aurora have been carried out using the sounding rocket S-520-12, at northern polar region, Norway, on February 26, 1990. The initial analysis has disclosed two new findings, (i) precipitating low energy electrons associated with the auroral patch region, which suggests the secondary local acceleration of the auroral particles, (ii) pulsating LF wave component that is generated by periodically precipitating energetic electrons above the auroral ionosphere. (author)

  18. Genetic control over the processes of postirradiation recovery of a compact chromosome in micrococcus radiodurans

    International Nuclear Information System (INIS)

    Kudryashova, N.Yu.; Groshev, V.V.; Shestakov, S.V.

    1984-01-01

    X-irradiation of Micrococcus radiodurans cells with sublethal doses caused disturbances in the structure of a membrane-bound compact chromosome. Recovery of the compact chromosome occurred during the postirradiation incubation of the wild type cells and cells of the UVS-17 mutant deficient in DNA-polymerase. This process was blocked in cells of rec-30 mutant with the impaired system of genetic recombination: this is indicative of an important role played by rec-30 gene product in the postirradiation recovery of the compact chromosome in M. radiodurans cells

  19. On a method of numerical calculation of nonlinear radial pulsations of stars

    International Nuclear Information System (INIS)

    Kosovichev, A.G.

    1984-01-01

    Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

  20. Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations

    Science.gov (United States)

    Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.

    2017-12-01

    Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.

  1. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  2. Study on pressure pulsation and piping vibration of complex piping of reciprocating compressor

    International Nuclear Information System (INIS)

    Xu Bin; Feng Quanke; Yu Xiaoling

    2008-01-01

    This paper presents a preliminary research on the piping vibration and pressure pulsation of reciprocating compressor piping system. On the basis of plane wave theory, the calculation of gas column natural frequency and pressure pulsation in complex pipelines is done by using the transfer matrix method and stiffness matrix method, respectively. With the discretization method of FEM, a mathematical model for calculating the piping vibration and stress of reciprocating compressor piping system is established, and proper boundary conditions are proposed. Then the structural modal and stress of the piping system are calculated with CAESAR II. The comparison of measured and calculated values found that the one dimensional wave equation can accurately calculate the natural frequency and pressure pulsation in gas column of piping system for reciprocating compressor. (authors)

  3. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?

    Science.gov (United States)

    Phillips, C I; Tsukahara, S; Hosaka, O; Adams, W

    1992-01-01

    In 26 random out-patients, including 13 treated glaucoma patients and ocular hypertensives, the higher the ocular tension, the greater the pulse amplitude, by Alcon pneumotonometry, at a statistically significant level. In a single untreated hypertensive, when 2-hourly pneumotonometry was done for 24 h, the correlation was similar and significant. The higher the diastolic blood pressure, the higher the ocular pulsation, also significantly. Pulsation is suggested to be a pump, the choroid being the piston, contributing (1) to an increase in the outflow of aqueous humour and (2) to a homeostatic mechanism contributing to normalization of the intra-ocular pressure, wherein pulsation increases or decreases, as the intraocular pressure increases or decreases, respectively.

  4. Effect of target-fixture geometry on shock-wave compacted copper powders

    Science.gov (United States)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  5. Pulsating Heat Pipe for Cryogenic Fluid Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A passive Pulsating Heat Pipe (PHP) system is proposed to distribute cooling over broad areas with low additional system mass. The PHP technology takes advantage of...

  6. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  7. Are dayside long-period pulsations related to the cusp?

    Directory of Open Access Journals (Sweden)

    V. Pilipenko

    2015-03-01

    Full Text Available We compare simultaneous observations of long-period ultra-low-frequency (ULF wave activity from a Svalbard/IMAGE fluxgate magnetometer latitudinal profile covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL and narrowband Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of return signal of the Super Dual Auroral Radar Network (SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, augmented whenever possible by Defense Meteorological Satellite Program (DMSP identification of magnetospheric boundary domains. The meridional spatial structure of broadband dayside Pc5–6 pulsation spectral power has been found to have a localized latitudinal peak, not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. The earlier claims of the dayside monochromatic Pc5 wave association with the open–closed boundary also seems doubtful. Transient currents producing broadband Pc5–6 probably originate at the low-latitude boundary layer/central plasma sheet (LLBL/CPS interface, though such identification with available DMSP data is not very precise. The occurrence of broadband Pc5–6 pulsations in the dayside boundary layers is a challenge to modelers because so far their mechanism has not been firmly identified.

  8. White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: Kepler  Observations of 27 Pulsating DA White Dwarfs through K2 Campaign 8

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Fanale, S. M.; Dennihy, E.; Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Gänsicke, B. T.; Greiss, S.; Tremblay, P.-E.; Fusillo, N. P. Gentile; Raddi, R.; Chote, P.; Marsh, T. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kawaler, Steven D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Bell, Keaton J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Redfield, S., E-mail: jjhermes@unc.edu [Wesleyan University Astronomy Department, Van Vleck Observatory, 96 Foss Hill Drive, Middletown, CT 06459 (United States)

    2017-10-01

    We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs; a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode line widths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode line widths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: we identify the spherical degree of 87 out of 201 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4 m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra, we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low- and intermediate-mass stars. We find that 0.51–0.73 M {sub ⊙} white dwarfs, which evolved from 1.7–3.0 M {sub ⊙} ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at http://k2wd.org.

  9. Experimental observation of pulsating instability under acoustic field in downward-propagating flames at large Lewis number

    KAUST Repository

    Yoon, Sung Hwan

    2017-10-12

    According to previous theory, pulsating propagation in a premixed flame only appears when the reduced Lewis number, β(Le-1), is larger than a critical value (Sivashinsky criterion: 4(1 +3) ≈ 11), where β represents the Zel\\'dovich number (for general premixed flames, β ≈ 10), which requires Lewis number Le > 2.1. However, few experimental observation have been reported because the critical reduced Lewis number for the onset of pulsating instability is beyond what can be reached in experiments. Furthermore, the coupling with the unavoidable hydrodynamic instability limits the observation of pure pulsating instabilities in flames. Here, we describe a novel method to observe the pulsating instability. We utilize a thermoacoustic field caused by interaction between heat release and acoustic pressure fluctuations of the downward-propagating premixed flames in a tube to enhance conductive heat loss at the tube wall and radiative heat loss at the open end of the tube due to extended flame residence time by diminished flame surface area, i.e., flat flame. The thermoacoustic field allowed pure observation of the pulsating motion since the primary acoustic force suppressed the intrinsic hydrodynamic instability resulting from thermal expansion. By employing this method, we have provided new experimental observations of the pulsating instability for premixed flames. The Lewis number (i.e., Le ≈ 1.86) was less than the critical value suggested previously.

  10. Compaction of LiBH4-LiAlH4 nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling

    DEFF Research Database (Denmark)

    Plerdsranoy, Praohatsorn; Javadian-Deylami, Seyd Payam; Jensen, Nicholai Daugaard

    2017-01-01

    To enhance volumetric hydrogen capacity for on-board fuel cells, compaction of LiAlH4-LiBH4 nanoconfined in activated carbon nanofibers (ACNF) is for the first time proposed. Loose powders of milled and nanoconfined LiAlH4-LiBH4 samples are compacted under 976 MPa to obtain the pellet samples...... with thickness and diameter of ∼1.20–1.30 and 8.0 mm, respectively. Dehydrogenation temperature of milled LiAlH4-LiBH4 increases from 415 to 434 °C due to compaction, while those of both compacted and loose powder samples of nanoconfined LiAlH4-LiBH4 are lower at comparable temperature of 330–335 °C. Hydrogen...

  11. An Analysis of Pulsating Subdwarf B Star EPIC 203948264 Observed During Campaign 2 of K2

    Directory of Open Access Journals (Sweden)

    Ketzer Laura

    2017-01-01

    Full Text Available We present a preliminary analysis of the newly–discovered pulsating subdwarf B (sdB star EPIC 203948264. The target was observed for 83 days in short cadence mode during Campaign 2 of K2, the two–gyro mission of the Kepler space telescope. A time–series analysis of the data revealed 22 independent pulsation frequencies in the g–mode region ranging from 100 to 600 μHz (0:5 to 2:8 hours. The main method we use to identify pulsation modes is asymptotic period spacing, and we were able to assign all but one of the pulsations to either l = 1 or l = 2. The average period spacings of both sequences are 261:34 ± 0.78 s and 151:18 ± 0.34 s, respectively. The pulsation amplitudes range from 0.77 ppt down to the detection limit at 0.212 ppt, and are not stable over the duration of the campaign. We detected one possible low–amplitude, l = 2, rotationally split multiplet, which allowed us to constrain the rotation period to 46 days or longer. This makes EPIC 203948264 another slowly rotating sdB star.

  12. VizieR Online Data Catalog: 27 pulsating DA WDs follow-up observations (Hermes+, 2017)

    Science.gov (United States)

    Hermes, J. J.; Gansicke, B. T.; Kawaler, S. D.; Greiss, S.; Tremblay, P.-E.; Gentile Fusillo, N. P.; Raddi, R.; Fanale, S. M.; Bell, K. J.; Dennihy, E.; Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C.; Montgomery, M. H.; Winget, D. E.; Chote, P.; Marsh, T. R.; Redfield, S.

    2017-11-01

    All observations analyzed here were collected by the Kepler spacecraft with short-cadence exposures from 2012 to 2016. Full details of the raw and processed Kepler and K2 observations are summarized in Table2. We complemented our space-based photometry of these 27 pulsating hydrogen-atmosphere white dwarfs (DAVs) by determining their atmospheric parameters based on model-atmosphere fits to follow-up spectroscopy obtained from two 4m class, ground-based facilities. Spectra taken with the 4.2m William Herschel Telescope (WHT) on the island of La Palma cover roughly 3800-5100Å at roughly 2.0Å resolution; spanning 2013 Jun 06 to 2014 Jul 25. Spectra taken with the 4.1m Southern Astrophysical Research (SOAR) telescope on Cerro Pachon in Chile cover roughly 3600-5200Å; spanning 2014 Oct 13 to 2017 Apr 21. We detail these spectroscopic observations and their resultant fits in Table 3. (4 data files).

  13. The origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    International Nuclear Information System (INIS)

    Berriman, G.; Axon, D.J.; Hough, J.H.

    1986-01-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded. (author)

  14. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  15. Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population.

    Science.gov (United States)

    Ducrot, Arnaud; Giletti, Thomas

    2014-09-01

    In this work we study the asymptotic behaviour of the Kermack-McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile's shape is periodic in time.

  16. Synchronous observations of long-periodic geomagnetic pulsations on the ATS-6 satellite and on the Earth surface

    International Nuclear Information System (INIS)

    Barfild, Dzh.N.; Bondarenko, N.M.; Buloshnikov, A.M.; Gokhberg, M.B.; Kalisher, A.L.; Mak-Ferron, R.L.; Troitskaya, V.A.

    1977-01-01

    Geomagnetic pulsations of the Pi2 and Pc4 types recorded by the ATS-6 geostationary satellite and by observatories located near the geomagnetic longitude of the space satellite from the 24th of May, 1974 to the 1st of September, 1976 are compared. The periods of the Pi2 pulsations measured by the space satellite and on the Earth practically coincide, dynamic spectra and spectral densities are similar. The amplitude of the Pi2 pulsations recorded in auroral latitudes is several times wider than the amplitude measured by the ATS-6 while in middle latitudes the amplitude is much smaller than on the satellite. The Pc4 pulsations are not practically observed on the Earth for they are probably excited in narrow local areas of the magnitosphere. In order to arrive to the single-valued solution of the problem of the mechanism of the generation and localization of the pulsation source it is necessary to carry out simultaneous observations on the Earth and in the magnitosphere

  17. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  18. Hydrogen is inevitable: why and when (question mark)

    International Nuclear Information System (INIS)

    Scott, D.S.

    1981-01-01

    The role of hydrogen as an energy currency rather than an energy source is explained. The prediction is made that the hydrogen era will begin when nuclear and other new non-hydrocarbon energy sources produce between 12 and 23 % of the energy used (perhaps first in the F.R. of Germany). In the middle future, the main use of hydrogen will be to eke out fossil fuel reserves by making up the deficiency of hydrogen needed to convert them into liquid fuels. In the longer term, biomass may be hydrogenated. However, the use of hydrogen itself as a fuel would have environmental advantages

  19. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Froment, C.; Auchère, F.; Bocchialini, K.; Buchlin, E.; Solomon, J. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay cedex (France); Aulanier, G. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Mikić, Z., E-mail: clara.froment@astro.uio.no [Predictive Science, Inc., San Diego, CA 92121 (United States)

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  20. Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach

    2017-06-01

    The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.

  1. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    Science.gov (United States)

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  2. Hydrogen peroxide probes directed to different cellular compartments.

    Directory of Open Access Journals (Sweden)

    Mikalai Malinouski

    2011-01-01

    Full Text Available Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells.Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events.We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells.

  3. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    OpenAIRE

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-01-01

    AIMS/BACKGROUND: Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium n...

  4. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  5. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  6. Comparative pulsation calculations with OP and OPAL opacities

    Science.gov (United States)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  7. Flow control by combining radial pulsation and rotation of a cylinder in uniform flow

    Science.gov (United States)

    Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2008-11-01

    Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.

  8. Pulsation of IU Per from the Ground-based and ‘Integral’ Photometry

    Directory of Open Access Journals (Sweden)

    Kundra E.

    2013-06-01

    Full Text Available IU Per is an eclipsing semi-detached binary with a pulsating component. Using our own ground-based, as well as INTEGRAL satellite photometric observations in the B and V passbands, we derived geometrical and physical parameters of this system. We detected the short-term variations of IU Per in the residuals of brightness after the subtraction of synthetic light curves. Analysis of these residuals enabled us to characterize and localize the source of short-term variations as the pulsations of the primary component typical to δ Scuti-type stars.

  9. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  10. Optical pulsations in AM Her systems. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs.

  11. Optical pulsations in AM Her systems. Revision 1

    International Nuclear Information System (INIS)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs

  12. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    International Nuclear Information System (INIS)

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-01-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  13. Hydrogen deficient stars and related objects

    International Nuclear Information System (INIS)

    Hunger, K.; Schoenberner, D.; Kameswara Rao, N.

    1986-01-01

    The central and most startling problem in the field of helium stars is how extreme helium stars are formed and how a star of one solar mass may get rid of all its original hydrogen. A few opposed hypotheses are known, but until now none of them have been very convincing. One of the aims of this book is to explore the various paths which may lead to a solution of the above problems, both theoretically and by means of new methods of observation. One of the points discussed, therefore, is whether the Hubble Space Telescope can be used to this end. (Auth.)

  14. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  15. Storage, transmission and distribution of hydrogen

    Science.gov (United States)

    Kelley, J. H.; Hagler, R., Jr.

    1979-01-01

    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  16. Impulsively started, steady and pulsated annular inflows

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Raouf, Emad [General Field Engineer, Halliburton Energy Services 719 Hangar Dr, New Iberia, LA 70560, United States of America (United States); Sharif, Muhammad A R; Baker, John, E-mail: abdelraouf.em@gmail.com, E-mail: msharif@eng.ua.edu, E-mail: john.baker@eng.ua.edu [Aerospace Engineering and Mechanics Department, The University of Alabama, Tuscaloosa, Alabama 35487, United States of America (United States)

    2017-04-15

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies. (paper)

  17. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  18. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    International Nuclear Information System (INIS)

    Wang, Boyi; Zhu, Yong; Chen, Youping; Song, Han; Huang, Pengcheng; Dao, Dzung Viet

    2017-01-01

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  19. Seasonal and diurnal dependence of Pc 3-5 magnetic pulsation power at geomagnetically conjugate stations in the auroral zones

    International Nuclear Information System (INIS)

    Saito, Hiroaki; Sato, Natsuo; Tonegawa, Yutaka; Yoshino, Takeo; Saemundsson, T.

    1989-01-01

    Seasonal and diurnal variations of Pc 3-5 magnetic pulsation powers have been examined using 2 years of magnetic data from geomagnetically conjugate stations, Syowa in Antarctica and Husafell and Tjoernes in Iceland. The magnetic pulsation powers are found to be relatively higher at the winter hemisphere station than at the summer station. The pulsations observed during equinox show a diurnal dependence, i.e., that the power density is higher in the geomagnetic morning at the stations in Iceland than at Syowa, and this relationship is reversed in the afternoon. The power density ratio of Pc 3 pulsations between the conjugate stations, which is associated with the seasons and with local time, is higher than that of Pc 5. These characteristics can be attributed to the effects of sunlight in the ionosphere, i.e., Pc 3-5 pulsations are shielded when the waves propagate from the magnetosphere to the ground through the sunlit ionosphere

  20. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  1. An overview of hydrogen storage materials: Making a case for metal organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-04-01

    Full Text Available hydrogen needs to be stored in a safe and compact manner by combining the gas with other materials either chemically or physically. Hydrogen storage is therefore an extremely active area of research worldwide with many different materials being examined...

  2. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  3. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  4. Time-series surveys and pulsating stars: The near-infrared perspective

    Directory of Open Access Journals (Sweden)

    Matsunaga Noriyuki

    2017-01-01

    Full Text Available The purpose of this review is to discuss the advantages and problems of nearinfrared surveys in observing pulsating stars in the Milky Way. One of the advantages of near-infrared surveys, when compared to optical counterparts, is that the interstellar extinction is significantly smaller. As we see in this review, a significant volume of the Galactic disk can be reached by infrared surveys but not by optical ones. Towards highly obscured regions in the Galactic mid-plane, however, the interstellar extinction causes serious problems even with near-infrared data in understanding the observational results. After a review on previous and current near-infrared surveys, we discuss the effects of the interstellar extinction in optical (including Gaia to near-infrared broad bands based on a simple calculation using synthetic spectral energy distribution. We then review the recent results on classical Cepheids towards the Galactic center and the bulge, as a case study, to see the impact of the uncertainty in the extinction law. The extinction law, i.e. the wavelength dependency of the extinction, is not fully characterized, and its uncertainty makes it hard to make the correction. Its characterization is an urgent task in order to exploit the outcomes of ongoing large-scale surveys of pulsating stars, e.g. for drawing a map of pulsating stars across the Galactic disk.

  5. Metamodeling and optimization of the THF process with pulsating pressure

    Science.gov (United States)

    Bucconi, Marco; Strano, Matteo

    2018-05-01

    Tube hydroforming is a process used in various applications to form the tube in a desired complex shape, by combining the use of internal pressure, which provides the required stress to yield the material, and axial feeding, which helps the material to flow towards the bulging zone. In many studies it has been demonstrated how wrinkling and bursting defects can be severely reduced by means of a pulsating pressure, and how the so-called hammering hydroforming enhances the formability of the material. The definition of the optimum pressure and axial feeding profiles represent a daunting challenge in the designing phase of the hydroforming operation of a new part. The quality of the formed part is highly dependent on the amplitude and the peak value of the pulsating pressure, along with the axial stroke. In this paper, a research is reported, conducted by means of explicit finite element simulations of a hammering THF operation and metamodeling techniques aimed at optimizing the process parameters for the production of a complex part. The improved formability is explored for different factors and an optimization strategy is used to determine the most convenient pressure and axial feed profile curves for the hammering THF process of the examined part. It is shown how the pulsating pressure allows the minimization of the energy input in the process, still respecting final quality requirements.

  6. Simultaneous measurement of aurora-related, irregular magnetic pulsations at northern and southern high latitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Rajashekar, R.; Cahill, L.J. Jr.; Engebretson, M.J.; Rosenberg, T.J.; Mende, S.B.

    1987-01-01

    A dominant feature of high-latitude magnetic pulsations is large-amplitude irregular pulsations (Pi) which are closely correlated with the movement of the observing station under particle precipitation, producing the dayside auroral and the high-latitude expansion of nightside aurora. The dayside Pi-1 pulsation maximum centered about local magnetic noon has no strong seasonal dependence, indicating that the dayside aurora illuminates both hemispheres independent of the latitude of the subsolar point. The summer noon pulsation maximum has, however, a greater longitudinal extent than the winter noon maximum, as measured at 74 degree-75 degree invariant latitude. The nightside magnetic pulsations are bursts of Pi (PiB) having an average duration of 15 min. From Defense Meteorological Satellite Program photos the auroral forms related to the high-latitude PiB can be identified as the poleward discrete arc generally having a large longitudinal extent. If the auroral forms are very similar in both hemispheres, then the large longitudinal extent coupled with movement of the auroral could explain why 85% of the PiB events have onsets within 10 min at opposite hemisphere sites (South Pole, Antarctica, and Sondre Stromfjord, Greenland) separated in local magnetic time by about 1.5 hours. There is no seasonal dependence in the statistical occurrence of PiB, nor in its simultaneity in opposite hemispheres. Apparently, the seasonal distortion of the tail plasma sheet has little effect on the acceleration of high-latitude auroral beams. The actual several minute time difference in opposite hemisphere onsets of PiB is probably due to the westward/poleward motion of the longitudinally extended aurora

  7. Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2017-03-01

    Full Text Available High-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the ON and OFF periods of the pulsations. Both the energy and energy flux are found to be reduced during each OFF period compared with the ON period, and the estimates indicate that it is the number flux of foremost higher-energy electrons that is reduced. The energies are found never to drop below a few kilo-electronvolts during the OFF periods for these events. The high-resolution optical data show the occurrence of dips in brightness below the diffuse background level immediately after the ON period has ended. Each dip lasts for about a second, with a reduction in brightness of up to 70 % before the intensity increases to a steady background level again. A different kind of variation is also detected in the OFF period emissions during the second event, where a slower decrease in the background diffuse emission is seen with its brightness minimum just before the ON period, for a series of pulsations. Since the dips in the emission level during OFF are dependent on the switching between ON and OFF, this could indicate a common mechanism for the precipitation during the ON and OFF phases. A statistical analysis of brightness rise, fall, and ON times for the pulsations is also performed. It is found that the pulsations are often asymmetric, with either a slower increase of brightness or a slower fall.

  8. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  9. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2017-01-01

    Full Text Available Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject’s left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69±0.26 (p<0.05. The phase shift calculated for the maximum correlation is equal to 60±40° (p<0.05. When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p<0.3. Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases. The paper proposes an additional method for synchronizing the time of pressure measurement with the blood pulsation phase.

  10. Circumnebular neutral hydrogen in planetary nebulae

    International Nuclear Information System (INIS)

    Taylor, A.R.; Gussie, G.T.; Pottasch, S.R.

    1990-01-01

    Centimeter line observations of six compact planetary nebulae are reported. Circumnebular atomic hydrogen absorption has been observed in NGC 6790, NGC 6886, IC 418, IC 5117, and BD +30 deg 3639, while H I was not observed to a high upper limit in NGC 6741. Hydrogen was also detected in emission from BD +30 deg 3639. The expansion velocities of the circumnebular envelopes are similar to the expansion velocities observed for the ionized nebula. The optical depth of circumnebular H I appears to decrease with increasing linear radius of the ionized nebulae, indicating that these nebulae are ionization bounded and that the amount of atomic hydrogen decreases as young nebulas evolve. 28 refs

  11. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    Energy Technology Data Exchange (ETDEWEB)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L., E-mail: rosatac@gmail.com, E-mail: raquel.lucchesi@icloud.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Wendhausen, Paulo A.P.; Evangelista, Leandro L., E-mail: paulo.wendhausen@ufsc.br, E-mail: leandro.materiais@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Laboratorio de Materiais

    2015-07-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of {sup 99}Mo production {sup 99m}Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  12. Compaction and sintering of nickel powder used encapsulation of irradiation targets

    International Nuclear Information System (INIS)

    Miyano, Rosana S.L.; Guimaraes, Raquel R.F.L.; Rossi, Jesualdo L.; Wendhausen, Paulo A.P.; Evangelista, Leandro L.

    2015-01-01

    The objective of this study was to develop an alternative way to produce targets for irradiation containing uranium, for the pair of 99 Mo production 99m Tc radionuclide. These targets were obtained by powder metallurgy, the compact serving as means for encapsulation a uranium cylinder to be irradiated. The targets were compacted in an axial hydraulic press applying different pressures up to 800 MPa. The sintering temperature was 600 °C in hydrogen atmosphere and it was used two sintering cycles, one for 4 h and the for 4 h plus 8 h time. The nickel powder was of high purity, that in order to provide the sealing of the fissile content within the compacted. The bulk density of compacted was evaluated by the method geometric. The porosity was measured by mercury porosimetry technique. The microstructure was investigated by optical microscopy. The results obtained with sintering powders involving confirm the feasibility of achieving a casing for uranium targets. (author)

  13. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  14. Pulsations in M dwarf stars

    OpenAIRE

    Rodríguez-López, C.; MacDonald, J.; Moya, A.

    2011-01-01

    We present the results of the first theoretical non-radial non-adiabatic pulsational study of M dwarf stellar models with masses in the range 0.1 to 0.5M_solar. We find the fundamental radial mode to be unstable due to an \\epsilon mechanism caused by deuterium (D-) burning for the young 0.1 and 0.2M_solar models, by non-equilibrium He^3 burning for the 0.2 and 0.25M_solar models of 10^4Myr, and by a flux blocking mechanism for the partially convective 0.4 and 0.5M_solar models once they reach...

  15. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  16. Pulsations in white dwarfs: Selected topics

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available This paper presents a very brief overview of the observed properties of g-mode pulsations in variable white dwarfs. We then discuss a few selected topics: Excitation mechanisms (kappa- and convection- mechanisms, and briefly the effect of a strong magnetic field (∼ 1 MG on g-modes as recently found in a hot DQ (carbon-rich atmosphere white dwarf. In the discussion of excitation mechanisms, a simple interpretation for the convection mechanism is given.

  17. Elimination of torque pulsations in a direct drive EV wheel motor

    Energy Technology Data Exchange (ETDEWEB)

    Hredzak, B.; Gair, S. [Napier Univ., Edinburgh (United Kingdom); Eastham, J.F. [Univ. of Bath (United Kingdom)

    1996-09-01

    Double sided axial field machines are attractive for direct wheel drives in electric vehicles. This is due to the fact that stator/rotor misalignments can be accommodated. In this case the stator of the machine is envisaged mounted on the chassis of the car while the rotor directly drives the road wheel. Since the wheel is perturbed by the road surface the rotor will move vertically between the outside stator assemblies and thus give rise to torque pulsations. A vector control scheme has been implemented whereby the torque pulsations are eliminated by (i) calculation of the flux variation due to the rotor perturbation and (ii) using this signal for the modulation of the motor input current.

  18. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  19. Testing a technical-scale counterflow compact heat exchanger for the separation of uranium hexafluoride from hydrogen

    International Nuclear Information System (INIS)

    Hornberger, P.; Seidel, D.; Steinhaus, H.

    1981-07-01

    When enriching the light uranium isotope U-235 according to the separation nozzle method, UF 6 and light auxiliary gas (H 2 ) must be separated from each other at the head as well as at the shoulder of the cascade. After pre-separation at a special separation nozzle stage, fine separation is planned by means of a low-temperature separator made as a compact heat exchanger. This report describes first testing under process conditions of a representative section of the separator blocks intended for technical-scale operation. It is proved that the rated loading capacity is attained while the residual UF 6 concentration contained in the escaping hydrogen can be lowered down to values less than 1 ppm. It is further shown that the requirement of constant pressure drop at the separator, which is decisive for the smooth interplay of preseparator stage and low-temperature separator, can be imposed by direct control of the supply of the refrigerating medium through the variable to be kept constant. A concept of control is proposed for industrial application necessitating the operation of several low-temperature separators staggered in terms of time. This concept allows the relatively simple optimum utilization of the separator capacity even under variable operating conditions. (orig.) [de

  20. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage

    Directory of Open Access Journals (Sweden)

    Alexandra K. Diem

    2017-08-01

    Full Text Available Alzheimer's Disease (AD is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD.

  1. An improved arterial pulsation measurement system based on optical triangulation and its application in the traditional Chinese medicine

    Science.gov (United States)

    Wu, Jih-Huah; Lee, Wen-Li; Lee, Yun-Parn; Lin, Ching-Huang; Chiou, Ji-Yi; Tai, Chuan-Fu; Jiang, Joe-Air

    2011-08-01

    An improved arterial pulsation measurement (APM) system that uses three LED light sources and a CCD image sensor to measure pulse waveforms of artery is presented. The relative variations of the pulses at three measurement points near wrist joints can be determined by the APM system simultaneously. The height of the arterial pulsations measured by the APM system achieves a resolution of better than 2 μm. These pulsations contain useful information that can be used as diagnostic references in the traditional Chinese medicine (TCM) in the future.

  2. K2 Campaign 5 observations of pulsating subdwarf B stars: binaries and super-Nyquist frequencies

    Science.gov (United States)

    Reed, M. D.; Armbrecht, E. L.; Telting, J. H.; Baran, A. S.; Østensen, R. H.; Blay, Pere; Kvammen, A.; Kuutma, Teet; Pursimo, T.; Ketzer, L.; Jeffery, C. S.

    2018-03-01

    We report the discovery of three pulsating subdwarf B stars in binary systems observed with the Kepler space telescope during Campaign 5 of K2. EPIC 211696659 (SDSS J083603.98+155216.4) is a g-mode pulsator with a white dwarf companion and a binary period of 3.16 d. EPICs 211823779 (SDSS J082003.35+173914.2) and 211938328 (LB 378) are both p-mode pulsators with main-sequence F companions. The orbit of EPIC 211938328 is long (635 ± 146 d) while we cannot constrain that of EPIC 211823779. The p modes are near the Nyquist frequency and so we investigate ways to discriminate super- from sub-Nyquist frequencies. We search for rotationally induced frequency multiplets and all three stars appear to be slow rotators with EPIC 211696659 subsynchronous to its orbit.

  3. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application

    International Nuclear Information System (INIS)

    Clement, Jason; Wang Xia

    2013-01-01

    A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. - Highlights: ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.

  4. Container for hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-12

    A container is described for storage, shipping and and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same. The container is compact, safe against fracture or accident, and is reusable. It consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and is retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  5. Container for hydrogen isotopes

    International Nuclear Information System (INIS)

    1976-01-01

    A container is described for storage, shipping and and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same. The container is compact, safe against fracture or accident, and is reusable. It consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and is retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates

  6. Container for hydrogen isotopes

    International Nuclear Information System (INIS)

    Solomon, D.E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable is described. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates

  7. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  8. O-C analysis of the pulsating subdwarf B star PG 1219 + 534

    Science.gov (United States)

    Otani, Tomomi; Stone-Martinez, Alexander; Oswalt, Terry D.; Morello, Claudia; Moss, Adam; Singh, Dana; Sampson, Kenneth; DeAbreu, Caila; Khan, Aliyah; Seepersad, Austin; Shaikh, Mehvesh; Wilson, Linda

    2017-01-01

    PG 1219 + 534 (KY Uma) is a subdwarf B pulsating star with multiple periodicities between 120 - 175 s. So far, the most promising theory for the origin of subdwarf B (sdB) stars is that they result from binary mass transfer near the Helium Flash stage of evolution. The observations of PG 1219 +534 reported here are part of our program to constrain this evolutional theory by searching for companions and determining orbital separations around sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion or planet. If the star emits a periodic signal like pulsations, its orbital motion around the system’s center of mass causes periodic changes in the light pulse arrival times. PG 1219 + 534 was monitored for 90 hours during 2010-1 and 2016 using the 0.9m SARA-KP telescope at Kitt Peak National Observatory (KPNO), Arizona, and the 0.8 m Ortega telescope at Florida Institute of Technology in Melbourne. In this poster we present our time-series photometry and O-C analysis of this data.

  9. Analysis and development of an ethanol compact reformer for hydrogen production for fuel cell; Analise e modelagem de reformador compacto de etanol para obtencao de hidrodenio para celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, P.R.F.; Oliveira, A.A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: renzo@labcet.ufsc.br, e-mail: amirol@emc.ufsc.br

    2006-07-01

    The objective of this work is to analyze the ethanol steam reforming for hydrogen production in a compact and modular reforming unit designed for the generation of 1 kw of electrical power. For this, initially the thermodynamic limits for the steam reforming of ethanol are calculated in order to assess the limits in the production of hydrogen and other by-products and to select the best values of process stoichiometry, temperature and pressure for maximum hydrogen selectivity and minimum coke formation. In the following, a First and second Laws analysis is performed to analyze the equilibrium conditions of the main chemical reactions and to estimate the magnitude of the heat transfer required by the heating, evaporation, superheating and reforming of ethanol. Then, the catalytic reformer reactor is analyzed and sized, basing the analysis into the application of the equation for the conservation of mass of the chemical species and a model for the chemical kinetics. A basic reactor design is then proposed accompanied by the corresponding sizes and operating conditions. (author)

  10. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    International Nuclear Information System (INIS)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.; Deng, L. C.

    2012-01-01

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found δ Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three γ Dor star candidates. We found that all these stars (18 SPB and 3 γ Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the γ Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  11. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  12. Superficial evolution and compacting aptitude of uranium dioxide powders

    International Nuclear Information System (INIS)

    Danroc, J.

    1982-04-01

    Long term storage of UO 2 powder improves slightly shaping and solidity of compacted powder. The aim of this work is the study of material evolution and the increase of this evolution rate for application to industrial fabrication. Aging in wet air at different temperatures is examined. Evolution of texture and superficial composition is followed. Below 80 0 C UO 3 , 2H 2 O is formed at crystal surface and thermal decomposition gives different hydrates. Kinetics of the transformation is studied. Oxidohydratation in liquid phase is rapid with hydrogen peroxide. The aged or treated material is compacted and mechanical behaviour is examined. Improvement is explained by inter-layer water molecule of the superficial hydrate giving lubricant and pseudo-plastic properties [fr

  13. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  14. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247-25B

    Science.gov (United States)

    Istrate, A. G.; Fontaine, G.; Heuser, C.

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247-25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247-25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247-25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  15. High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS

    Science.gov (United States)

    Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.

    2017-08-01

    Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (I.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.

  16. DRhoGEF2 regulates cellular tension and cell pulsations in the Amnioserosa during Drosophila dorsal closure.

    Directory of Open Access Journals (Sweden)

    Dulce Azevedo

    Full Text Available Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction.

  17. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    the model for numerical predictions. This approach describes the material as a mixture composed of different types of reacting materials, which avoids the use of correction terms for the experimental capacities, as it is commonly done in other empirical sorption models for metal hydrides. To study cycling, kinetics and heat transfer in hydride tanks up to kg scale, a hydrogen tank station was designed and constructed. The sorption behaviour of sodium alanate storage tanks was evaluated, and it was confirmed, that the addition of expanded graphite improves the heat transfer resulting in faster hydrogenation kinetics. The hydrogen sorption process of practical systems based on hydride beds was modelled for the simultaneous sub-processes of hydrogen transport, intrinsic reaction and heat transfer. Based on the modelling equations, a comparative resistance analysis was developed in order to quantify the effect of each sub-process on the overall sorption kinetics in sodium alanate beds. It was found that large size systems are mainly heat transfer limited. Moreover, on the basis of the modelling equations, a numerical simulation was developed. The simulation was validated with the experimental results obtained in this work. Optimisation of the volumetric hydrogen storage capacity of sodium alanate based hydrogen storage tanks is experimentally demonstrated by powder compaction. Quite interesting results are discovered on the sorption behaviour of these manufactured compacts: sorption improvement and volumetric expansion of the pellets through cycling as well as enhanced volumetric and gravimetric hydrogen storage capacity of the material. To conclude the work, a tubular tank filled with sodium alanate material was theoretically optimised towards its gravimetric hydrogen storage capacity using the developed simulation and the results obtained during this investigation. The optimisation process includes the evaluation of compaction, the addition of expanded graphite and

  18. Quantitative proteomics suggests metabolic reprogramming during ETHE1 deficiency

    DEFF Research Database (Denmark)

    Sahebekhtiari, Navid; Thomsen, Michelle M.; Sloth, Jens Jørgen

    2016-01-01

    Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of t...

  19. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.

    Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  20. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    2003-12-01

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  1. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the

  2. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    Science.gov (United States)

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  3. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling.

    Science.gov (United States)

    Qin, S; Chock, P B

    2001-07-10

    Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for

  4. Study of sdO models. Pulsation Analysis

    OpenAIRE

    Rodríguez-López, C.; Moya, A.; Garrido, R.; MacDonald, J.; Oreiro, R.; Ulla, A.

    2009-01-01

    We have explored the possibility of driving pulsation modes in models of sdO stars in which the effects of element diffusion, gravitational settling and radiative levitation have been neglected so that the distribution of iron-peak elements remains uniform throughout the evolution. The stability of these models was determined using a non-adiabatic oscillations code. We analysed 27 sdO models from 16 different evolutionary sequences and discovered the first ever sdO models capable of driving h...

  5. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  6. Experimental study on transition characteristics of pulsating flow in narrow rectangular channel

    International Nuclear Information System (INIS)

    Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong

    2013-01-01

    Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)

  7. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    Energy Technology Data Exchange (ETDEWEB)

    Foster, H. M.; Reed, M. D. [Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Telting, J. H. [Nordic Optical Telescope, Rambla José Ana Fernández Pérez 7, E-38711 Breña Baja (Spain); Østensen, R. H. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Baran, A. S. [Uniwersytet Pedagogiczny, Obserwatorium na Suhorze, ul. Podchorażych 2, 30-084 Kraków (Poland)

    2015-06-01

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets of ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.

  8. Predicting phase shift effects for vibrating fluid-conveying pipes due to Coriolis forces and fluid pulsation

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel

    2011-01-01

    to improve accuracy, precision, and robustness of CFMs. A simple mathematical model of a fluid-conveying pipe is formulated and the effect of pulsating fluid flow is analyzed using a multiple time scaling perturbation analysis. The results are simple analytical predictions for the transverse pipe...... and uncontrolled during CFM operation by feedback control. The analytical predictions offer an immediate insight into how fluid pulsation affects phase shift, which is a quantity measured by CFMs to estimate the mass flow, and lead to hypotheses for more complex geometries, i.e. industrial CFMs. The validity...... displacement and approximate axial shift in vibration phase. The analytical predictions are tested against pure numerical solution using representative examples, showing good agreement. Fluid pulsations are predicted not to influence CFM accuracy, since proper signal filtering is seen to allow...

  9. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  10. Self-sustained pulsation in the oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots

    International Nuclear Information System (INIS)

    Kuzmenkov, A. G.; Ustinov, V. M.; Sokolovskii, G. S.; Maleev, N. A.; Blokhin, S. A.; Deryagin, A. G.; Chumak, S. V.; Shulenkov, A. S.; Mikhrin, S. S.; Kovsh, A. R.; McRobbie, A. D.; Sibbett, W.; Cataluna, M. A.; Rafailov, E. U.

    2007-01-01

    The authors report the observation of strong self-pulsations in molecular-beam epitaxy-grown oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. At continuous-wave operation, self-pulsations with pulse durations of 100-300 ps and repetition rates of 0.2-0.6 GHz were measured. The average optical power of the pulsations was 0.5-1.0 mW at the laser continuous-wave current values of 1.5-2.5 mA

  11. Materials for nuclear diffusion-bonded compact heat exchangers

    International Nuclear Information System (INIS)

    Li, Xiuqing; Smith, Tim; Kininmont, David; Dewson, Stephen John

    2009-01-01

    This paper discusses the characteristics of materials used in the manufacture of diffusion bonded compact heat exchangers. Heatric have successfully developed a wide range of alloys tailored to meet process and customer requirements. This paper will focus on two materials of interest to the nuclear industry: dual certified SS316/316L stainless steel and nickel-based alloy Inconel 617. Dual certified SS316/316L is the alloy used most widely in the manufacture of Heatric's compact heat exchangers. Its excellent mechanical and corrosion resistance properties make it a good choice for use with many heat transfer media, including water, carbon dioxide, liquid sodium, and helium. As part of Heatric's continuing product development programme, work has been done to investigate strengthening mechanisms of the alloy; this paper will focus in particular on the effects of nitrogen addition. Another area of Heatric's programme is Alloy 617. This alloy has recently been developed for diffusion bonded compact heat exchanger for high temperature nuclear applications, such as the intermediate heat exchanger (IHX) for the very high temperature nuclear reactors for production of electricity, hydrogen and process heat. This paper will focus on the effects of diffusion bonding process and cooling rate on the properties of alloy 617. This paper also compares the properties and discusses the applications of these two alloys to compact heat exchangers for various nuclear processes. (author)

  12. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    International Nuclear Information System (INIS)

    Shimano, Hiroyuki; Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko; Yoshida, Makoto; Horibe, Susumu

    2016-01-01

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  13. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Science.gov (United States)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  14. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    Energy Technology Data Exchange (ETDEWEB)

    Shimano, Hiroyuki, E-mail: tales-of-destiny@akane.waseda.jp [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Yoshida, Makoto [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo 169-0051 (Japan); Horibe, Susumu [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan)

    2016-01-10

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  15. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Directory of Open Access Journals (Sweden)

    A. Neska

    2018-03-01

    Full Text Available This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding. The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  16. Appraisal of electromagnetic induction effects on magnetic pulsation studies

    Directory of Open Access Journals (Sweden)

    B. R. Arora

    Full Text Available The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and phase changes that these perturbations produce, in the resultant fields at the Earth’s surface, make determination of polarization and phase of the oscillating external signals problematic. In this paper, with the help of a classical Pc5 magnetic pulsation event of 24 March 1991, recorded by dense network of magnetometers in the equatorial belt of Brazil, we document the nature and extent of the possible influence of anomalous induction effects in the wave polarization of ULF waves. The presence of anomalous induction effects at selected sites lead to an over estimation of the equatorial enhancement at pulsation period and also suggest changes in the azimuth of ULF waves as they propagate through the equatorial electrojet. Through numerical calculations, it is shown that anomalous horizontal fields, that result from induction in the lateral conductivity distribution in the study region, vary in magnitude and phase with the polarization of external source field. Essentially, the induction response is also a function of the period of external inducing source field. It is further shown that when anomalous induction fields corresponding to the magnitude and polarization of the 24 March 1991 pulsation event are eliminated from observed fields, corrected amplitude in the X and Y horizontal components allows for true characterisation of ULF wave parameters.

    Key words. Geomagnetism and paleomagnetism (geomagnetic induction – Ionosphere (equatorial ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions

  17. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    1999-03-01

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way,  m = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed.Key words. Magnetospheric physics (energetic particles , trapped

  18. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  19. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    International Nuclear Information System (INIS)

    Pintore, F.; Mereghetti, S.; Zampieri, L.; Stella, L.; Israel, G. L.; Wolter, A.

    2017-01-01

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M ⊙ black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  20. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pintore, F.; Mereghetti, S. [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Zampieri, L. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Stella, L.; Israel, G. L. [INAF—Osservatorio astronomico di Roma, Via Frascati 44, I-00078, Monteporzio Catone (Italy); Wolter, A. [INAF, Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy)

    2017-02-10

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M {sub ⊙} black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  1. A Project to Develop an Index of PC 3,4,5 Geomagnetic Pulsations and to Study Their control by Solar Wind Parameters.

    Science.gov (United States)

    1983-04-01

    source of Pc 3,4 pulsations in foreshock signals, shock pulsations, and magnetosheath turbulence, and several groups are actively exanining this...link between wavetrains in the sheath and Pc 3,4 has ever been proved, however, althugh the possibility that foreshock waves, which resemble pulsations...shock and foreshock reglons con- variations in wave correlation observable in the stitute the essential tool for distingi.shing running 12-second

  2. FUNCTIONS AND REQUIREMENTS FOR RUSSIAN PULSATING MONITOR DEPLOYMENT IN THE GUNITE AND ASSOCIATED TANKS AT OAK RIDGE NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Thomas Albert

    1999-01-01

    This document provides functions and requirements to support deployment of pulsating mixer pump technology in the Oak Ridge National Laboratory (ORNL) Gunite and Associated Tanks to mobilize and mix the settled sludge and solids in these tanks. In FY 1998 pulsating mixer pump technology, a jet mixer powered by a reciprocating air supply, was selected for FY 1999 deployment in one of the GAAT tanks to mobilize settled solids. Pulsating mixer pump technology was identified in FY 1996 during technical exchanges between the US Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the US. The pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to mobilize settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for bulk mobilization of Gunite tank sludge prior to deployment of other retrieval systems. The deployment of this device is expected to significantly reduce the costs of operation and maintenance of more expensive retrieval systems. The functions and requirements presented here were developed by evaluating the results and recommendations that resulted from the pulsating mixer pump demonstration at PNNL, and by coupling this with the remediation needs identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks

  3. ON THE POSSIBLE EXISTENCE OF SHORT-PERIOD g-MODE INSTABILITIES POWERED BY NUCLEAR-BURNING SHELLS IN POST-ASYMPTOTIC GIANT BRANCH H-DEFICIENT (PG1159-TYPE) STARS

    International Nuclear Information System (INIS)

    Corsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Gonzalez Perez, J. M.; Kepler, S. O.

    2009-01-01

    We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T eff -log g diagram characterized by short-period g-modes excited by the ε-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical κ-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ-mechanism, while the observed short-period branch below ∼300 s could correspond to modes triggered by the He-burning shell through the ε-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ-mechanism and the ε-mechanism of mode driving are simultaneously operating.

  4. Control of oxygen impurity and hydrogen recycling in the compact helical system (CHS)

    International Nuclear Information System (INIS)

    Noda, N.; Okamura, S.; Aoki, T.; Yamada, H.; Tsuzuki, K.; Matsuoka, K.; Iguchi, H.; Hosokawa, M.; Kaneko, O.; Kubo, S.; Morita, S.; Nishimura, K.; Sagara, A.; Shoji, T.; Takahashi, C.; Takeiri, Y.; Takita, Y.; Amemiya, H.; Okazaki, K.; Oyama, Y.; Shimizu, K.; Yano, K.

    1990-01-01

    In order to reduce oxygen impurity and hydrogen recycling, ECR discharge cleaning with hydrogen, glow discharge with helium, and titanium gettering have been applied. The ECR discharge cleaning was found to be effective in reducing oxygen impurities in ECRH discharges. However, it was not sufficiently effective to give a wide operational density range in NBI heated discharges. Titanium gettering is essential for this purpose, and controllable discharges have been achieved in the density range 1-10x10 19 m -3 , with discharge length more than 850 ms with the aid of titanium gettering. Both helium-glow discharge and Ti gettering are useful to control hydrogen recycling even with a stainless steel wall. (orig.)

  5. Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines

    OpenAIRE

    Thomasson, Andreas; Eriksson, Lars

    2015-01-01

    The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...

  6. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  7. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247–25B

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, A. G. [Center for Gravitation, Cosmology, and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States); Fontaine, G. [Département de Physique, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Heuser, C., E-mail: istrate@uwm.edu [Dr. Karl Remeis-Observatory and ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247−25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247−25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247−25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  8. Numerical assessment of pulsating water jet in the conical diffusers

    Science.gov (United States)

    Tanasa, Constantin; Ciocan, Tiberiu; Muntean, Sebastian

    2017-11-01

    The hydraulic fluctuations associated with partial load operating conditions of Francis turbines are often periodic and characterized by the presence of a vortex rope. Two types of pressure fluctuations associated with the draft tube surge are identified in the literature. The first is an asynchronous (rotating) pressure fluctuation due to the precession of the helical vortex around the axis of the draft tube. The second type of fluctuation is a synchronous (plunging) fluctuation. The plunging fluctuations correspond to the flow field oscillations in the whole hydraulic passage, and are generally propagated overall in the hydraulic system. The paper introduced a new control method, which consists in injecting a pulsating axial water jet along to the draft tube axis. Nevertheless, the great calling of this control method is to mitigate the vortex rope effects targeting the vortex sheet and corresponding plunging component. In this paper, is presented our 3D numerical investigations with and without pulsating axial water jet control method in order to evaluate the concept.

  9. VERY LONG-PERIOD PULSATIONS BEFORE THE ONSET OF SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin; Huang, Jing; Tan, Chengming; Zhang, Yin [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China); Yu, Zhiqiang, E-mail: bltan@nao.cas.cn [School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-12-20

    Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. It remains a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite , this work reports a new discovery of very long-periodic pulsations occurring in the preflare phase before the onset of solar flares (preflare-VLPs). These pulsations typically have periods of 8–30 min and last for about 1–2 hr. They are possibly generated from LRC oscillations of plasma loops where electric current dominates the physical process during magnetic energy accumulation in the source region. Preflare-VLPs provide essential information for understanding the triggering mechanism and origin of solar flares, and may be a convenient precursory indicator to help us respond to solar explosions and the corresponding disastrous space weather events.

  10. Composite high-pressure vessels for hydrogen storage in mobile application. Pt. 1 / Light weight composite cylinders for compressed hydrogen. Pt. 2 - custom made hydrogen storage tanks and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, C. [MCS Cylinder Systems GmbH, Dinslaken (Germany)

    2000-07-01

    Recent developments on fuel cell technology demonstrated the feasibility of propelling vehicles by converting fuel directly into electricity. Fuel cells conveniently use either compressed (CGH{sub 2}) or liquid hydrogen (LH{sub 2}) or methanol as the fuel source from a tank. Mobile storage of these fuelling will become an urgent need as this technology will come into series production expected for 2010. Due to the requirements on mobile hydrogen storage and the energy losses in the hydrogen-to-application-chain, a light-weight and energetic qualities and minimise ist bulky nature. Mobile storage of hydrogen can be realised either at high pressure values (> 20 MPa) or at deep temperatures (<-253 C). CGH{sub 2}: In the last few years, the introduction of natural gas driven vehicles has seen the development of compact mobile pressurised gas tanks in principle, this storage technique is also applicable for the compressed storage of hydrogen at filling pressures of > 20 MPa. LH{sub 2} : Storing hydrogen or natural gases in general in the liquid phase is accomplished either by applying a overpressure or keeping it below the phase transition temperature at ambient pressure in super insulated devices. (orig.)

  11. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.

    2011-01-01

    We have discovered a new rapidly oscillating Ap (roAp) star among the Kepler mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 and 18.1 min, indicating that the star is near the terminal-age main sequence...... model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 μHz, which we model as the large separation. The star is an α2 CVn...... spotted magnetic variable that shows a complex rotational light variation with a period of Prot= 5.684 59 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period, that is, a subharmonic frequency...

  12. Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave–particle interactions in the pre-midnight inner magnetosphere

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2015-08-01

    Full Text Available We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

  13. On severe accident hydrogen behaviour in Loviisa

    International Nuclear Information System (INIS)

    Okkonen, T.

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact 'back-of-the-envelope' analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.)

  14. On severe accident hydrogen behaviour in Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact `back-of-the-envelope` analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.).

  15. FOLLOW-UP OBSERVATIONS OF THE SECOND AND THIRD KNOWN PULSATING HOT DQ WHITE DWARFS

    International Nuclear Information System (INIS)

    Dufour, P.; Green, E. M.; Fontaine, G.; Brassard, P.; Francoeur, M.; Latour, M.

    2009-01-01

    We present follow-up time-series photometric observations that confirm and extend the results of the significant discovery made by Barlow et al. that the Hot DQ white dwarfs SDSS J220029.08 - 074121.5 and SDSS J234843.30 - 094245.3 are luminosity variable. These are the second and third known members of a new class of pulsating white dwarfs, after the prototype SDSS J142625.71+575218.3. We find that the light curve of SDSS J220029.08 - 074121.5 is dominated by an oscillation at 654.397 ± 0.056 s, and that the light pulse folded on that period is highly nonlinear due to the presence of the first and second harmonic of the main pulsation. We also present evidence for the possible detection of two additional pulsation modes with low amplitudes and periods of 577.576 ± 0.226 s and 254.732 ± 0.048 s in that star. Likewise, we find that the light curve of SDSS J234843.30 - 094245.3 is dominated by a pulsation with a period of 1044.168 ± 0.012 s, but with no sign of harmonic components. A new oscillation, with a low amplitude and a period of 416.919 ± 0.004 s, is also probably detected in that second star. We argue, on the basis of the very different folded pulse shapes, that SDSS J220029.08 - 074121.5 is likely magnetic, while SDSS J234843.30 - 094245.3 is probably not.

  16. HYBRID γ DORADUS-δ SCUTI PULSATORS: NEW INSIGHTS INTO THE PHYSICS OF THE OSCILLATIONS FROM KEPLER OBSERVATIONS

    International Nuclear Information System (INIS)

    Grigahcene, A.; Monteiro, M. J. P. F. G.; Antoci, V.; Handler, G.; Houdek, G.; Balona, L.; Catanzaro, G.; Daszynska-Daszkiewicz, J.; Guzik, J. A.; Kurtz, D. W.; Marconi, M.; Ripepi, V.; Moya, A.; Suarez, J.-C.; Uytterhoeven, K.; Borucki, W. J.; Brown, T. M.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Jenkins, J. M.

    2010-01-01

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M sun are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The δ Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the κ mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where 'hybrid' stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known γ Dor and δ Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure δ Sct or γ Dor pulsators, i.e., essentially all of the stars show frequencies in both the δ Sct and the γ Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as δ Sct, γ Dor, δ Sct/γ Dor or γ Dor/δ Sct hybrids.

  17. Comparison of computer codes for evaluation of double-supply-frequency pulsations in linear induction pumps

    International Nuclear Information System (INIS)

    Kirillov, Igor R.; Obukhov, Denis M.; Ogorodnikov, Anatoly P.; Araseki, Hideo

    2004-01-01

    The paper describes and compares three computer codes that are able to estimate the double-supply-frequency (DSF) pulsations in annular linear induction pumps (ALIPs). The DSF pulsations are the result of interaction of the magnetic field and induced in liquid metal currents both changing with supply-frequency. They may be of some concern for electromagnetic pumps (EMP) exploitation and need to be evaluated at their design. The results of computer simulation are compared with experimental ones for annular linear induction pump ALIP-1

  18. Device to remove hydrogen isotopes from a gas phase

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1977-01-01

    The device described here guarantees the selective removal of hydrogen isotopes from gas phases in order to prevent the occurence of explosive H 2 gas mixtures, or to separate off radioactive tritium in nuclear plants from the gas phase. It consists of a closed container whose walls are selectively penetrable by hydrogen isotopes. It is simultaneously filled compactly and presssure-resistant with a metal bulk (e.g. powder, sponges or the like of titanium or other hydrogen isotope binding metal). Walling and bulk are maintained at suitable working temperatures by means of a system according to the Peltier effect. The whole thing is safeguarded by protective walling. (RB) [de

  19. Constraining convection parameters from the light curve shapes of pulsating white dwarf stars: the cases of EC 14012-1446 and WD 1524-0030

    Energy Technology Data Exchange (ETDEWEB)

    Handler, G; Lendl, M; Beck, P [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Provencal, J L; Montgomery, M H [Mt. Cuba Observatory and Department of Physics and Astronomy, University of Delaware, 223 Sharp Laboratory, Newark, DE 19716 (Cuba); Romero-Colmenero, E [South AfricAN Astronomical Observatory, PO Box 9, Observatory 7935 (South Africa); Sanchawala, K; Chen, W-P [Graduate Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Wood, M A; Silver, I [Department of Physics and Space Sciences and SARA Observatory, Florida Institute of Technology, Melbourne, FL 32901 (United States)], E-mail: handler@astro.univie.ac.at

    2008-10-15

    Montgomery [1] developed a method to probe convection in pulsating white dwarf stars which allows the recovery of the thermal response time of the convection zone by fitting observed nonsinusoidal light curves. He applied this method to two objects; the Whole Earth Telescope (WET) observed the pulsating DB white dwarf GD 358 for just this purpose. Given this WET run's success, it is time to extend Montgomery's method to pulsating DA white dwarf (ZZ Ceti) stars. We present observations of two ZZ Ceti stars, WD 1524-0030 and EC 14012-1446, both observed from multiple sites. EC 14012-1446 seems better suited thAN WD1524-0030 for a future WET run because it has more pulsation modes excited and because it pulsation spectrum appears to be more stable in time. We call for participation in this effort to take place in April 2008.

  20. Pitch angle scattering and particle precipitation in a pulsating aurora - an experimental study

    International Nuclear Information System (INIS)

    Sandahl, I.

    1984-10-01

    A pulsating aurora occurring during the recovery phase of a substorm on January 27, 1979 was monitored by a large set of instruments. The Swedish sounding rocket S23-L2 was launched at magnetic midnight over pulsating patches, some of which exhibited 3+-1 Hz modulation. The ground based instrumentation included auroral TV cameras, all sky cameras, photometers and magnetometers. The geostationary satellite GEOS-2 was located in the equatorial plane, approximately conjugate to the rocket. The central experiment of this study is the particle experiment on the rocket. Several aspects of pulsating auroras have been investigated. The auroral luminosity variations were very well correlated to variations in the flux of precipitating hot electrons. The 1-20 second pulsations were caused by increased fluxes of 4-40 keV electrons. The 3+-1 Hz modulation was detected in 7-200 keV electrons, but the biggest energy flux modulation occurred for electrons of about 60 keV. Model calculations involving the electron distributions measured by the sounding rocket and GEOS-2, consistently show that the electrons may have been scattered into the loss cone through the Doppler shifted gyroresonance with whistler mode waves. The scattering was not a pure pitch angle scattering as in the classical Coroniti and Kennel theory, but involved also a systematic energy loss from the particles. The waves were probably hiss with some chorus elements. The equatorial plane plasma density was estimated in two independent ways to be about 2x10 6 m- 3 . The 3+-1 Hz modulation was measured both by the particle experiment on the rocket and by the wave experiment on GEOS-2. Properties of the modulated fluxes are described and a qualitative model for the cause of the modulation is proposed. (author)

  1. Evaluation of gas migration characteristics of compacted bentonite and Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of subsurface disposal and near-surface pit disposal for low level radioactive waste, compacted bentonite and Ca-bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides, respectively. Hydrogen gas can be generated inside the engineered barrier of subsurface disposal facilities mainly by anaerobic corrosion of metals used for containers, etc. Hydrogen gas can be also generated inside the engineered barrier of near-surface pit disposal facilities mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite and Ca-bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite and Ca-bentonite mixture until breakthrough occurs. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite and Ca-bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted bentonite and Ca-bentonite mixture are investigated by the gas migration tests. The applicability of the two phase flow model without considering deformability of the specimen is investigated. The applicability of the model of two phase flow through deformable porous media, which was originally developed by CRIEPI, is also investigated. Results of this study imply that : (1) Gas migration mechanism of the compacted bentonite and Ca-bentonite mixture is revealed through gas migration test. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Stress change, pore-water pressure change and volume change of the specimen during the gas migration test can be reproduced by the numerical

  2. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal.

    Science.gov (United States)

    Tong, Yunjie; Hocke, Lia M; Frederick, Blaise deB

    2014-11-01

    Recently developed simultaneous multislice echo-planar imaging (EPI) sequences permit imaging of the whole brain at short repetition time (TR), allowing the cardiac fluctuations to be fully sampled in blood-oxygen-level dependent functional MRI (BOLD fMRI). A novel low computational analytical method was developed to dynamically map the passage of the pulsation signal through the brain and visualize the whole cerebral vasculature affected by the pulse signal. This algorithm is based on a simple combination of fast BOLD fMRI and the scanner's own built-in pulse oximeter. Multiple, temporally shifted copies of the pulse oximeter data (with 0.08 s shifting step and coverage of a 1-s span) were downsampled and used as cardiac pulsation regressors in a general linear model based analyses (FSL) of the fMRI data. The resulting concatenated z-statistics maps show the voxels that are affected as the cardiac signal travels through the brain. Many voxels were highly correlated with the pulsation regressor or its temporally shifted version. The dynamic and static cardiac pulsation maps obtained from both the task and resting state scans, resembled cerebral vasculature. The results demonstrated: (i) cardiac pulsation significantly affects most voxels in the brain; (ii) combining fast fMRI and this analytical method can reveal additional clinical information to functional studies. Copyright © 2013 Wiley Periodicals, Inc.

  3. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  4. Gas migration characteristics of highly compacted bentonite ore

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  5. Pulsational instability of high-luminosity H-rich pre-white dwarf star

    Directory of Open Access Journals (Sweden)

    Calcaferro Leila M.

    2017-01-01

    Full Text Available We present a pulsational stability analysis on high-luminosity H-rich (DA white dwarf models evolved from low-metallicity progenitors. We found that the ε mechanism due to H-shell burning is able to excite low-order g modes.

  6. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging

    International Nuclear Information System (INIS)

    Lavdas, E.; Zaloni, E.; Vlychou, M.; Vassiou, K.; Fezoulidis, I.; Tsagkalis, A.; Dailiana, Z.

    2015-01-01

    To evaluate the ability of proton-density with fat-suppression BLADE (proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction in MR systems from Siemens Healthcare, PDFS BLADE) and turbo inversion recovery magnitude-BLADE (TIRM BLADE) sequences to reduce motion and pulsation artifacts in shoulder magnetic resonance examinations. Forty-one consecutive patients who had been routinely scanned for shoulder examination participated in the study. The following pairs of sequences with and without BLADE were compared: (a) Oblique coronal proton-density sequence with fat saturation of 25 patients and (b) oblique sagittal T2 TIRM-weighed sequence of 20 patients. Qualitative analysis was performed by two experienced radiologists. Image motion and pulsation artifacts were also evaluated. In oblique coronal PDFS BLADE sequences, motion artifacts have been significantly eliminated, even in five cases of non-diagnostic value with conventional imaging. Similarly, in oblique sagittal T2 TIRM BLADE sequences, image quality has been improved, even in six cases of non-diagnostic value with conventional imaging. Furthermore, flow artifacts have been improved in more than 80% of all the cases. The use of BLADE sequences is recommended in shoulder imaging, especially in uncooperative patients because it effectively eliminates motion and pulsation artifacts. (orig.)

  7. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  8. Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Pal, B.; Heilig, B.; Zieger, B.; Szendröi, J.; Verö, J.; Lühr, H.; Yumoto, K.; Tanaka, Y.; Střeštík, Jaroslav

    2007-01-01

    Roč. 42, č. 1 (2007), s. 23-58 ISSN 1217-8977 Institutional research plan: CEZ:AV0Z30120515 Keywords : field line resonance * geomagnetic pulsations * solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  9. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way, 
    m
    = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed

  10. MULTI-SITE OBSERVATIONS OF PULSATION IN THE ACCRETING WHITE DWARF SDSS J161033.64-010223.3 (V386 Ser)

    International Nuclear Information System (INIS)

    Mukadam, Anjum S.; Szkody, P.; Townsley, D. M.; Gaensicke, B. T.; Marsh, T. R.; Aungwerojwit, A.; Southworth, J.; Robinson, E. L.; For, B.-Q.; Bildsten, L.; Schreiber, M. R.; Schwope, A.; Tovmassian, G.; Zharikov, S. V.; Hidas, M. G.; Baliber, N.; Brown, T.; Woudt, P. A.; Warner, B.; O'Donoghue, D.

    2010-01-01

    Non-radial pulsations in the primary white dwarfs of cataclysmic variables can now potentially allow us to explore the stellar interior of these accretors using stellar seismology. In this context, we conducted a multi-site campaign on the accreting pulsator SDSS J161033.64-010223.3 (V386 Ser) using seven observatories located around the world in 2007 May over a duration of 11 days. We report the best-fit periodicities here, which were also previously observed in 2004, suggesting their underlying stability. Although we did not uncover a sufficient number of independent pulsation modes for a unique seismological fit, our campaign revealed that the dominant pulsation mode at 609 s is an evenly spaced triplet. The even nature of the triplet is suggestive of rotational splitting, implying an enigmatic rotation period of about 4.8 days. There are two viable alternatives assuming the triplet is real: either the period of 4.8 days is representative of the rotation period of the entire star with implications for the angular momentum evolution of these systems, or it is perhaps an indication of differential rotation with a fast rotating exterior and slow rotation deeper in the star. Investigating the possibility that a changing period could mimic a triplet suggests that this scenario is improbable, but not impossible. Using time-series spectra acquired in 2009 May, we determine the orbital period of SDSS J161033.64-010223.3 to be 83.8 ± 2.9 minutes. Three of the observed photometric frequencies from our 2007 May campaign appear to be linear combinations of the 609 s pulsation mode with the first harmonic of the orbital period at 41.5 minutes. This is the first discovery of a linear combination between non-radial pulsation and orbital motion for a variable white dwarf.

  11. Investigation of Boron addition and compaction pressure on the compactibility, densification and microhardness of 316L Stainless Steel

    Science.gov (United States)

    Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.

    2018-04-01

    Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.

  12. Hybrid γ Doradus–δ Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations

    DEFF Research Database (Denmark)

    Grigahcène, A.; Antoci, V.; Balona, L.

    2010-01-01

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2–2.5 M are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods...

  13. ISO spectroscopy of compact HII regions in the Galaxy - II. Ionization and elemental abundances

    NARCIS (Netherlands)

    Martin-Hernandez, NL; Peeters, E; Morisset, C; Tielens, AGGM; Cox, P; Roelfsema, PR; Baluteau, JP; Schaerer, D; Mathis, JS; Damour, F; Churchwell, E; Kessler, MF

    Based on the ISO spectral catalogue of compact H II regions by Peeters et al. (2002), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 H II regions located at galactocentric distances between R-Gal = 0

  14. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Arias J.P.Sánchez

    2017-01-01

    Full Text Available We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  15. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  16. Minimisation of pressure pulsations in the screw compressor discharge piping

    Energy Technology Data Exchange (ETDEWEB)

    Zaytsev, D. [Grasso GmbH Refrigeration Technology, Berlin (Germany). R and D Screw Compressors

    2006-07-01

    A problem of noise and vibration in the piping between the screw compressor and oil separator arises if the natural gas pulsations in the piping get in the resonance with the pulsations sent by the compressor. Several typical piping geometries such as a short and a long pipe with the open end and a short pipe with agglomerator have been studied to evaluate the natural frequency of the gas column. It was found that because of the wave reflection from the open pipe end the gas in such a pipe has several natural frequencies dependent on the sound speed and on the pipe length. Since the sound speed of various refrigerants differs significantly, the resonance pipe length will also vary strongly from one refrigerant to another. Hence, to avoid the resonance a separate examination for each refrigerant would be required at the compressor package design stage. Unlike open ended pipes, in the pipe with agglomerator the wave reflection at the agglomerator side is reduced. This allows using of one standard discharge pipe geometry resonance-free independent on the refrigerant. (orig.)

  17. Simplified compact containment BWR plant

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-01-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  18. Magnetic Hydrogen Atmosphere Models and the Neutron Star RX J1856.5-3754

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wynn C.G.; /MIT, MKI /KIPAC, Menlo Park; Kaplan, David L.; /MIT, MKI; Chang, Philip; /UC, Berkeley, Astron. Dept. /UC, Santa Barbara; van Adelsberg, Matthew; /Cornell; Potekhin, Alexander Y.; /Cornell U., Astron. Dept. /Ioffe Phys. Tech. Inst.

    2006-12-08

    RX J1856.5-3754 is one of the brightest nearby isolated neutron stars, and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5-3754, within the uncertainties. In our simplest model, the best-fit parameters are an interstellar column density N{sub H} {approx} 1 x 10{sup 20} cm{sup -2} and an emitting area with R{sup {infinity}} {approx} 17 km (assuming a distance to RX J1856.5-3754 of 140 pc), temperature T{sup {infinity}} {approx} 4.3 x 10{sup 5} K, gravitational redshift z{sub g} {approx} 0.22, atmospheric hydrogen column y{sub H} {approx} 1 g cm{sup -2}, and magnetic field B {approx} (3-4) x 10{sup 12} G; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the neutron star surface as well as general relativistic effects, to determine pulsations; we find there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5-3754.

  19. Performance study of a hydrogen powered metal hydride actuator

    International Nuclear Information System (INIS)

    Bhuiya, Md Mainul Hossain; Kim, Kwang J

    2016-01-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi 5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C–50 °C. Stress–strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress–strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future. (paper)

  20. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  1. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  2. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications

    International Nuclear Information System (INIS)

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-01-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 μm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 μm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  3. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, M M [Materiales Dentales, Facultad de OdontologIa, Universidad de Buenos Aires, Marcelo T de Alvear 2142 (1122), Buenos Aires (Argentina); Grana, D R; Kokubu, G A [PatologIa I. Escuela de OdontologIa, Facultad de Medicina. Asociacion Odontologica Argentina-Universidad del Salvador, Tucuman 1845 (1050) Buenos Aires (Argentina); Luppo, M I; Mintzer, S; Vigna, G, E-mail: mbarreiro@mater.odon.uba.a, E-mail: dgrana@usal.edu.a, E-mail: luppo@cnea.gov.a, E-mail: vigna@cnea.gov.a [Departamento Materiales, Comision Nacional de Energia Atomica, Gral Paz 1499 (B1650KNA), San MartIn, Buenos Aires (Argentina)

    2010-04-15

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125{mu}m in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150{mu}m. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  4. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Relation of geomagnetic pulsations to parmeters of mid-latitude lower ionosphere

    International Nuclear Information System (INIS)

    Dorokhov, V.L.; Kostrov, L.S.; Martynenko, S.I.; Piven', L.A.; Pushin, V.F.; Shemet, A.S.

    1989-01-01

    Results of experimental investigation of the effect of geomagnetic pulsations on parameters of medium-latitude lower ionosphere with the use of methods of partial reflections and Doppler probing at short waves are presented. The relation between changes in geomagnetic field and intensity of partially reflected radiosignals is detected

  6. U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    International Nuclear Information System (INIS)

    Nannipieri, P; Anichini, M; Barsocchi, L; Becatti, G; Buoni, L; Celi, F; Catarsi, A; Di Giorgio, P; Fattibene, P; Ferrato, E; Guardati, P; Mancini, E; Meoni, G; Nesti, F; Piacquadio, S; Pratelli, E; Quadrelli, L; Viglione, A S; Zanaboni, F; Mameli, M

    2017-01-01

    U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign. (paper)

  7. Bone marrow transplantation for correction of enzyme deficiency disease

    International Nuclear Information System (INIS)

    Hong, C.; Sutherland, D.E.R.; Matas, A.J.; Najarian, J.S.

    1979-01-01

    Mutant acatalasemic mice provide a prototype of congenital enzyme deficiency disease. Normal blood catalase levels were achieved permanently in congenitally acatalasemic mice by transplantation of bone marrow cells from congeneic normal catalasemic mice using relatively small numbers of cells following whole body irradiation. The increase in blood catalase activity was physiologically effective as demonstrated by the protection of the previously acatalasemic mice against the otherwise lethal effects of hydrogen peroxide injections. Bone marrow transplantation has the potential to provide a continuous source of some enzymes and may be applicable as treatment for certain congenital enzyme deficiency diseases

  8. Pulsating hydrodynamic instability and thermal coupling in an extended Landau/Levich model of liquid-propellant combustion. 2. Viscous analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  9. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  10. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  11. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    Science.gov (United States)

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  12. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  13. Outcomes of Thermal Pulsation Treatment for Dry Eye Syndrome in Patients With Sjogren Disease.

    Science.gov (United States)

    Godin, Morgan R; Stinnett, Sandra S; Gupta, Preeya K

    2018-04-26

    To evaluate the clinical outcomes of thermal pulsation treatment in patients with meibomian gland dysfunction (MGD) and dry eye secondary to Sjogren disease. Twenty-four eyes from 13 patients with previously diagnosed Sjogren disease who presented to our institution with dry eye symptoms and had thermal pulsation treatment were prospectively followed up. Patients underwent comprehensive slit-lamp examination, including MGD grading, gland oil flow, corneal and conjunctival staining scores, and tear break-up time (TBUT). Tear osmolarity was tested before and after treatment. The average patient age was 62.4 years (range, 31-78 yrs); 12 were women and 1 a man. The average meibomian gland oil flow score showed an increase from pretreatment 0.71 to 1.75 at 1 year posttreatment (range 9-15 months) (P = 0.001). The average corneal staining score decreased from a pretreatment grade of 1.04 to a posttreatment grade of 0.36 (P dry eye disease in patients with Sjogren disease and should not be overlooked when considering treatment options. Thermal pulsation is a therapeutic option for patients with Sjogren disease who have MGD and dry eye symptoms. After a single treatment, patients exhibited increased oil flow and tear break-up time with an associated decrease in corneal and conjunctival staining.

  14. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States)

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  15. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  16. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    International Nuclear Information System (INIS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M 1  = 1.84 ± 0.18  M ⊙ , M 2  = 1.73 ± 0.17  M ⊙ and radii of R 1  = 2.01 ± 0.09  R ⊙ , R 2  = 1.68 ± 0.08 R ⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  17. The correspondence between dayside long-period geomagnetic pulsations and the open-closed field line boundary

    Science.gov (United States)

    Pilipenko, V. A.; Kozyreva, O. V.; Lorentzen, D. A.; Baddeley, L. J.

    2018-05-01

    Long-period pulsations in the nominal Pc5-6 band (periods about 3-15 min) have been known to be a persistent feature of dayside high latitudes. A mixture of broadband Irregular Pulsations at Cusp Latitudes (IPCL) and narrowband P≿5 waves is often observed. The mechanism and origin of IPCL have not been firmly established yet. Magnetopause surface eigenmodes were suggested as a potential source of high-latitude ULF waves with frequencies less than 2 mHz. A ground response to these modes is expected to be beneath the ionospheric projection of the open-closed field line boundary (OCB). To unambiguously resolve a possible association of IPCL with the magnetopause surface modes, multi-instrument observation data from Svalbard have been analyzed. We examine the latitudinal structure of high-latitude pulsations in the Pc5-6 band recorded by magnetometers covering near-cusp latitudes. This structure is compared with an instant location of the equatorward boundary of the cusp aurora, assumed to be a proxy of the OCB. The optical OCB latitude has been identified by an automatic algorithm, using data from the meridian scanning photometer at Longyearbyen, Svalbard. The comparison has shown that the latitudinal maximum of the broadband IPCL maximizes about 2°-3° deeper in the magnetosphere than the OCB optical proxy. Therefore, these pulsations cannot be associated with the ground image of the magnetopause surface modes. It is likely that an essentially non-dipole geometry of field lines and a high variability of the magnetopause region may suppress the excitation efficiency. The obtained result imposes important limitations on possible mechanisms of high-latitude dayside ULF variations.

  18. Signatures of the low-latitude Pi 2 pulsations in Egypt

    Directory of Open Access Journals (Sweden)

    Essam Ghamry

    2012-06-01

    The result shows that the Pi 2 observed in the main phase of the geomagnetic storm have larger frequency than those observed in the recovery phase. These results excluded the field line resonance and the plasmapause surface as a possible generation mechanism, and suggest the cavity resonance as a possible generation mechanism of the Pi 2 pulsations at low latitude stations in Egypt.

  19. Results on (UNPublished Wet Runs on Pulsating DB White Dwarfs

    Directory of Open Access Journals (Sweden)

    Handler G.

    2003-03-01

    Full Text Available I have collected all the WET archival data on the pulsating DB white dwarf stars (DBVs and re-reduced them. In addition, the WET has recently observed three DBVs. Preliminary results on PG 1115+158, PG 1351+489, KUV 05134+2605, PG 1654+160 and PG 1456+103 are presented, and the future use of the data is outlined.

  20. Local time asymmetry of Pc 4--5 pulsations and associated particle modulations at synchronous orbit

    International Nuclear Information System (INIS)

    Kokubun, S.; Erickson, K.N.; Fritz, T.A.; McPherron, R.L.

    1989-01-01

    Magnetic field and particle flux observations on board ATS 6 at synchronous altitude are used to examine the dawn-dusk asymmetry of characteristics of Pc 4--5 waves and associated particle flux modulation. Most waves at synchronous orbit having ground correlations are polarized in the azimuthal direction (A class) and are usually detected in the dawn sector. Waves with a radially oriented polarization ellipse (R-class) are almost never observed near the subsatellite point on the ground, except for the regular pulsations known as giant pulsation Pg, observed in the early morning. R class Pc 4 waves occur at all local times and have an occurrence peak in the afternoon

  1. Decreasing of pulsation intensity levels in X-ray receivers

    CERN Document Server

    Dvoryankin, V F; Kudryashov, A A; Petrov, A G

    2002-01-01

    The low frequency filter is applied in the multichannel receiver on the basis of the GaAs epitaxial structures for decreasing the pulsations level at the signals amplifier outlet. The optimal band of the filter is determined by the transition processes by the detector scanning in the roentgen beams. The X-ray source of radiation with the medium-frequency feeding generator is used for verifying the quality of the obtained X-ray image

  2. Long-period intensity pulsations in the solar corona during activity cycle 23

    Science.gov (United States)

    Auchère, F.; Bocchialini, K.; Solomon, J.; Tison, E.

    2014-03-01

    We report on the detection (10σ) of 917 events of long-period (3 to 16 h) intensity pulsations in the 19.5 nm passband of the SOHO Extreme ultraviolet Imaging Telescope. The data set spans from January 1997 to July 2010, i.e. the entire solar cycle 23 and the beginning of cycle 24. The events can last for up to six days and have relative amplitudes up to 100%. About half of the events (54%) are found to happen in active regions, and 50% of these have been visually associated with coronal loops. The remaining 46% are localized in the quiet Sun. We performed a comprehensive analysis of the possible instrumental artefacts and we conclude that the observed signal is of solar origin. We discuss several scenarios that could explain the main characteristics of the active region events. The long periods and the amplitudes observed rule out any explanation in terms of magnetohydrodynamic waves. Thermal non-equilibrium could produce the right periods, but it fails to explain all the observed properties of coronal loops and the spatial coherence of the events. We propose that moderate temporal variations of the heating term in the energy equation, so as to avoid a thermal non-equilibrium state, could be sufficient to explain those long-period intensity pulsations. The large number of detections suggests that these pulsations are common in active regions. This would imply that the measurement of their properties could provide new constraints on the heating mechanisms of coronal loops. Movies are available in electronic form at http://www.aanda.org

  3. THE NEWLY DISCOVERED PULSATING LOW-MASS WHITE DWARFS: AN EXTENSION OF THE ZZ CETI INSTABILITY STRIP

    Energy Technology Data Exchange (ETDEWEB)

    Van Grootel, V.; Dupret, M.-A. [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, Allee du 6 Aout 17, B-4000 Liege (Belgium); Fontaine, G.; Brassard, P., E-mail: valerie.vangrootel@ulg.ac.be [Departement de Physique, Universite de Montreal, Succ. Centre-Ville, C.P. 6128, Montreal, QC H3C 3J7 (Canada)

    2013-01-01

    In light of the exciting discovery of g-mode pulsations in extremely low-mass, He-core DA white dwarfs, we report on the results of a detailed stability survey aimed at explaining the existence of these new pulsators as well as their location in the spectroscopic Hertzsprung-Russell diagram. To this aim, we calculated some 28 evolutionary sequences of DA models with various masses and chemical layering. These models are characterized by the so-called ML2/{alpha} = 1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We pulsated the models with the nonadiabatic code MAD, which incorporates a detailed treatment of time-dependent convection. On the other hand, given the failure of all nonadiabatic codes, including MAD, to account properly for the red edge of the strip, we resurrect the idea that the red edge is due to energy leakage through the atmosphere. We thus estimated the location of that edge by requiring that the thermal timescale in the driving region-located at the base of the H convection zone-be equal to the critical period beyond which l = 1 g-modes cease to exist. Using this approach, we find that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip, including the low-gravity, low-temperature regime where the three new pulsators are found. We also account for the relatively long periods observed in these stars, and thus conclude that they are true ZZ Ceti stars, but with low masses.

  4. Dose-remission of pulsating electromagnetic fields as augmentation in therapy-resistant depression

    DEFF Research Database (Denmark)

    Straasø, Birgit; Lauritzen, Lise; Lunde, Marianne

    2014-01-01

    OBJECTIVE: To evaluate to what extent a twice daily dose of Transcranial Pulsating ElectroMagnetic Fields (T-PEMF) was superior to once daily in patients with treatment-resistant depression as to obtaining symptom remission after 8 weeks of augmentation therapy. METHODS: A self-treatment set...

  5. Electromagnetic activity of a pulsating paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Podgainy, D.V.; Yang, J.; Weber, F.

    2002-01-01

    The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of nonradial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars

  6. Compact permanent magnet H⁺ ECR ion source with pulse gas valve.

    Science.gov (United States)

    Iwashita, Y; Tongu, H; Fuwa, Y; Ichikawa, M

    2016-02-01

    Compact H(+) ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.

  7. KIC 6048106: an Algol-type eclipsing system with long-term magnetic activity and hybrid pulsations - I. Binary modelling

    Science.gov (United States)

    Samadi Ghadim, A.; Lampens, P.; Jassur, M.

    2018-03-01

    The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.

  8. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001

    Energy Technology Data Exchange (ETDEWEB)

    Kars, Goekhan; Guenduez, Ufuk; Yuecel, Meral [Department of Biological Sciences, Middle East Technical University, 06531 Ankara (Turkey); Rakhely, Gabor; Kovacs, Kornel L. [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged (Hungary); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2008-06-15

    Rhodobacter sphaeroides O.U.001 is a purple non-sulfur bacterium producing hydrogen under photoheterotrophic conditions. Hydrogen is produced by Mo-nitrogenase enzyme and substantial amount of H{sub 2} is reoxidized by a membrane-bound uptake hydrogenase in the wild type strain. To improve the hydrogen producing capacity of the cells, a suicide vector containing a gentamicin cassette in the hupSL genes was introduced into R. sphaeroiodes O.U.001 and the uptake hydrogenase genes were destroyed by site directed mutagenesis. The correct integration of the construct was confirmed by uptake hydrogenase activity measurement, PCR and subsequent sequence analysis. The wild type and the mutant cells showed similar growth patterns but the total volume of hydrogen gas evolved by the mutant was 20% higher than that of the wild type strain. This result demonstrated that the hydrogen produced by the nitrogenase was not consumed by uptake hydrogenase leading to higher hydrogen production. (author)

  9. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    Science.gov (United States)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  10. Compact portable QEPAS multi-gas sensor

    Science.gov (United States)

    Dong, Lei; Kosterev, Anatoliy A.; Thomazy, David; Tittel, Frank K.

    2011-01-01

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) based multi-gas sensor was developed to quantify concentrations of carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen chloride (HCl), and carbon dioxide (CO2) in ambient air. The sensor consists of a compact package of dimensions 25cm x 25cm x 10cm and was designed to operate at atmospheric pressure. The HCN, CO2, and HCl measurement channels are based on cw, C-band telecommunication-style packaged, fiber-coupled diode lasers, while the CO channel uses a TO can-packaged Sb diode laser as an excitation source. Moreover, the sensor incorporates rechargeable batteries and can operate on batteries for at least 8 hours. It can also operate autonomously or interact with another device (such as a computer) via a RS232 serial port. Trace gas detection limits of 7.74ppm at 4288.29cm-1 for CO, 450ppb at 6539.11 cm-1 for HCN, 1.48ppm at 5739.26 cm-1 for HCl and 97ppm at 6361.25 cm-1 for CO2 for a 1sec average time, were demonstrated.

  11. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications

    International Nuclear Information System (INIS)

    Burban, G.; Ayel, V.; Alexandre, A.; Lagonotte, P.; Bertin, Y.; Romestant, C.

    2013-01-01

    This paper deals with the experimental results of an unlooped pulsating heat pipe (PHP) developed and tested in an electronic thermal management field with hybrid vehicle applications in mind. The 2.5 mm inner tube diameter device was cooled by an air heat exchanger to replicate the environment of a vehicle. In order to characterize this pulsating heat pipe, four working fluids have been tested. They are acetone, methanol, water, and n-pentane, with applied thermal power ranging from 25 W to 550 W, air temperature ranging from 10 °C to 60 °C and air velocity ranging from 0.25 m s −1 to 2 m s −1 . Three inclinations have also been tested according to their horizontal positions: +45° (condenser above the evaporator), 0° and −45° (condenser below the evaporator). Among the different results, some of the most revelatory were obtained with regard to unfavourable inclination (−45°), for which the performances were very interesting considering a terrestrial application. On the other hand, one also observed low temperature limitations for water as a working fluid and degradation of performances for n-pentane tested at 60 °C air temperature. On an overall basis, however, it should be noted that the PHP functioned with high reliability and reproducibility and without any failure during the start-up or working stage. - Highlights: ► An unlooped pulsating heat pipe (PHP) has been tested varying heat power, air velocity and temperature, inclination and fluid. ► Four working fluids have been tested and classified into two groups according to the performances of the PHP. ► Interesting water phenomena have been highlighted in this study. ► The PHP worked with a good reliability and reproducibility.

  12. Theoretical research of helium pulsating heat pipe under steady state conditions

    International Nuclear Information System (INIS)

    Xu, D; Liu, H M; Li, L F; Huang, R J; Wang, W

    2015-01-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied. (paper)

  13. Theoretical research of helium pulsating heat pipe under steady state conditions

    Science.gov (United States)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  14. Design and development of a new pulsating cardiac coronary phantom for ECG-gated CT and its experimental characteristics

    International Nuclear Information System (INIS)

    Shen, Yun; Sato, Munekuni; Kimura, Fumiko; Jinzaki, Masahiro; Kuribayashi, Sachio; Horiguchi, Jun; Ito, Katsuhide

    2005-01-01

    The optimal pulsating cardiac phantom is an important tool for the evaluation of cardiac images and cardiac applications on electrocardiogram (ECG)-gated multidetector-row CT (MDCT). The purpose of this study was to demonstrate the design and fabrication of the pulsating cardiac coronary phantom. The newly developed pulsating cardiac coronary phantom has the following five key advantages: a driver component that uses only one servomotor to move the phantom in three dimensions (X, Y, and Z directions) with 16 presets of different heart types (heartbeat: 0-120 bpm; ejection fraction: 0-90%); versatile pumping and filling phases to simulate a real heart in a cardiac cycle can be incorporated into the driver sequence including shift of patient heartbeat or irregular pulse (maximum: 200 different heart waves in one scan); a cardiac coronary component constituted of an acrylic/silicon/rubber tube (2-6 mm inner diameter) with stent/in-stent restenosis/stenosis/soft plaque/calcification parts and maximum 16 coronary arteries that can be attached to the phantom in the same scan; the complete phantom can be submerged in a tank to simulate the heart and its surrounding tissues; ECG gating can be from interior trigger and exterior trigger. It has been confirmed that the developed pulsating cardiac phantom is very useful to quantitatively assess imaging of the heart and coronary arteries during phantom experiments. (author)

  15. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  16. Copper alloys disintegration using pulsating water jet

    Czech Academy of Sciences Publication Activity Database

    Lehocká, D.; Klich, Jiří; Foldyna, Josef; Hloch, Sergej; Królczyk, J. B.; Cárach, J.; Krolczyk, G.

    2016-01-01

    Roč. 82, March 2016 (2016), s. 375-383 ISSN 0263-2241 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : pulsating water jet * generation of pulses * disintegration * surface morphology * copper alloys Subject RIV: JQ - Machines ; Tools Impact factor: 2.359, year: 2016 http://ac.els-cdn.com/S0263224116000154/1-s2.0-S0263224116000154-main.pdf?_tid=8f8d1de6-99e9-11e6-afbc-00000aacb362&acdnat=1477314089_59912e52847e91e2030d6a1afd09e7b2

  17. Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods

    International Nuclear Information System (INIS)

    Hora, H.; Aydin, M.

    1992-01-01

    The control of the very complex behavior of a plasma with laser interaction by smoothing with induced spatial incoherence or other methods was related to improving the lateral uniformity of the irradiation. While this is important, it is shown from numerical hydrodynamic studies that the very strong temporal pulsation (stuttering) will mostly be suppressed by these smoothing methods too

  18. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  19. Dependence of current density and intensity of electric field on pulsation of thermodynamic parameters of plasma in the MHD generator

    International Nuclear Information System (INIS)

    Kapron, H.

    1976-01-01

    The investigations of pulsation in the MHD generators are described. The influence of termodynamic parameters pulsation on electric parameters of the MHD generator is presented using the method of little disturbances. The results of this investigation are formulas for momentary and average values of: electrical conductivity, the Hall parameter, current density and intensity of electrical field. Analitical investigations were verified by the experiments. (author)

  20. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    Science.gov (United States)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  1. DISCOVERY OF X-RAY PULSATION FROM THE GEMINGA-LIKE PULSAR PSR J2021+4026

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. C. C. [General Education Center, China Medical University, Taichung 40402, Taiwan (China); Hui, C. Y.; Seo, K. A., E-mail: cyhui@cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Hu, C. P.; Chou, Y. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Wu, J. H. K.; Huang, R. H. H. [Institute of Astronomy, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Trepl, L. [Astrophysikalisches Institut und Universitaets-Sternwarte, Universitaet Jena, Schillergaesschen 2-3, D-07745 Jena (Germany); Takata, J.; Wang, Y.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)

    2013-06-10

    We report the discovery of an X-ray periodicity of {approx}265.3 ms from a deep XMM-Newton observation of the radio-quiet {gamma}-ray pulsar, PSR J2021+4026, located at the edge of the supernova remnant G78.2+2.1 ({gamma}-Cygni). The detected frequency is consistent with the {gamma}-ray pulsation determined by the observation of the Fermi Gamma-ray Space Telescope at the same epoch. The X-ray pulse profile resembles the modulation of a hot spot on the surface of the neutron star. The phase-averaged spectral analysis also suggests that the majority of the observed X-rays have thermal origins. This is the third member in the class of radio-quiet pulsars with significant pulsations detected from both X-ray and {gamma}-ray regimes.

  2. The effect of cushion-ram pulsation on hot stamping

    Science.gov (United States)

    Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard

    2016-10-01

    Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.

  3. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  4. Tricalcium phosphate powder: Preparation, characterization and compaction abilities

    Directory of Open Access Journals (Sweden)

    Abida Fatima

    2017-02-01

    Full Text Available In this work, we characterize tricalcium phosphate powders Ca9(HPO4(PO45(OH resulting from a reaction between calcium hydroxide and orthophosphoric acid at room temperature, without pH adjustment and in absence of ionic impurities. The prepared powder has an atomic ratio Ca/P of 1.512 ± 0.005. The real density is 2.68 ± 0.02 g/cm3 and the specific surface area is 80 ± 02 m2/g. During compression, the microstructure of Ca-deficient apatite powder with the presence of HPO4 groups seems to support the cohesion between particles. The transmission ratio is 90%, the transfer ratio is 41.8 and the ratio of the die-wall friction is 0.22. These results show that apatitic tricalcium powder gives a good aptitude to the compaction which leads to a good tensile strength (0.79 MPa. The heat treatment of the prepared powder shows the precise temperature for the formation of pyrophosphate, β-TCP and α-TCPa phases.  The purity and aptitude to compaction of the prepared powders are very promising for pharmaceutical and medical applications.

  5. Modern compact cyclotrons for nuclear medicine designed and manufactured in NIIEFA

    International Nuclear Information System (INIS)

    Bogdanov, P.V.; Vasilchenko, I.N.; Gavrish, Yu.N.; Galchuk, A.V.; Grigorenko, S.V.; Kuzhlev, A.N.; Menshov, Yu.D.; Mudroyubov, V.G.; Ponomarenko, V.I.; Strokach, A.P.

    2012-01-01

    A series of compact cyclotrons, the CC-12, CC-18/9 and MCC-30/15, intended for the production of radionuclides for diagnostics and therapy directly in medical institutions has been designed and manufactured in NIIEFA. These cyclotrons provide the acceleration of negative hydrogen and deuterium ions injected from external sources. Beams of accelerated particles are extracted by stripping negative ions to protons and deuterons by carbon foils. Shielding-type electromagnets with the vertically located median plane are applied in these cyclotrons.

  6. ASTEROSEISMOLOGY OF THE NEARBY SN II PROGENITOR RIGEL. II. {epsilon}-MECHANISM TRIGGERING GRAVITY-MODE PULSATIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Moravveji, Ehsan [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Moya, Andres [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Guinan, Edward F., E-mail: moravveji@iasbs.ac.ir [Department of Astronomy, Villanova University, 800 Lancaster Avenue, Villanova, PA (United States)

    2012-04-10

    The cores of luminous B- and A-type (BA) supergiant stars are the seeds of later core-collapse supernovae. Thus, constraining the near-core conditions in this class of stars can place tighter constraints on the size, mass, and chemical composition of supernova remnants. Asteroseismology of these massive stars is one possible approach into such investigations. Recently, Moravveji et al. in 2012 (hereafter Paper I) extracted 19 significant frequencies from a 6-year radial velocity monitoring of Rigel ({beta} Ori, B8 Ia). The periods they determined broadly range from 1.22 to 74.74 days. Based on our differentially rotating stellar structure and evolution model, Rigel, at its current evolutionary state, is undergoing core He burning and shell H burning. Linear fully non-adiabatic non-radial stability analyses result in the excitation of a dense spectrum of non-radial gravity-dominated mixed modes. The fundamental radial mode (l = 0) and its overtones are all stable. When the hydrogen-burning shell is located even partially in the radiative zone, a favorable condition for destabilization of g-modes through the so-called {epsilon}-mechanism becomes viable. Only those g-modes that have high relative amplitudes in the hydrogen-burning (radiative) zone can survive the strong radiative damping. From the entire observed range of variability periods of Rigel (found in Paper I), and based on our model, only those modes with periods ranging between 21 and 127 days can be theoretically explained by the {epsilon}-mechanism. The origin of the short-period variations (found in Paper I) still remains unexplained. Because Rigel is similar to other massive BA supergiants, we believe that the {epsilon}-mechanism may be able to explain the long-period variations in {alpha} Cygni class of pulsating stars.

  7. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  8. Linear and nonlinear theory study of Alpha Virginis

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; Clancy, S.P.

    1981-01-01

    Nonlinear radiation hydrodynamic calculations using a model for α Virginis, a β Cephei star, have been made to see if the cause of the recurrent radial pulsation epochs can be discovered. The basic observed characteristics of β Cephei variables are presented. A review of the various proposals to make these stars pulsate concludes that the excitation mechanism must be in the central convective core or variable composition regions. The envelope damps radial fundamental mode pulsations in 4 years and in even shorter periods for radial overtones. It is proposed here that the mixing of envelope hydrogen into the hydrogen depleted (or even exhausted) core can produce periodic pressure pulses which drive the pulsation amplitude up to the observed value. During the decay of the pulsations, evolution toward higher luminosities enables further episodes of mixing and driving to occur. We predict rapid amplitude increases when mixing occurs and a slow decay of radial (and nonradial modes for other β Cephei variables) between mixing episodes

  9. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  10. A THEMIS Case Study of Pi2 Pulsations in the Magnetotail and on the Ground Before a Substorm Onset

    Science.gov (United States)

    Miyashita, Y.; Angelopoulos, V.; Hiraki, Y.; Ieda, A.; Machida, S.

    2016-12-01

    Using THEMIS spacecraft and ground data, we studied low-frequency Pi2 pulsations in the magnetotail and on the ground just before a substorm onset. A case study shows that a new compressional Pi2 pulsation was observed in the plasma sheet just earthward of the near-Earth reconnection site 4 min before initial auroral brightening or 2 min before auroral fading. The ion and magnetic pressure perturbations appeared to be partly in phase at the beginning, indicating that the wave had fast mode. A similar wave was observed also tailward of the near-Earth reconnection site, although it occurred 4 min later. These waves may have been generated at the near-Earth reconnection site. On the ground, Pi2 pulsations were observed widely in the polar cap and at the auroral oval before initial auroral brightening and auroral fading, although the amplitudes were small, compared to those associated with auroral poleward expansion. There was a tendency that the waves were observed first in the polar cap near the initial auroral brightening site and then in the surrounding regions. Ionospheric convection began to be enhanced gradually 1 or 2 min after the Pi2 onsets. We discuss the causal relationship between the Pi2 pulsations in the magnetotail and on the ground as well as their role in substorm triggering.

  11. Pulsating jet-like structures in magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P. [A. M. Obukhov Institute of Atmospheric Physics RAS, 109017 Moscow (Russian Federation); Pavlov, V. I. [UFR des Mathématiques Pures et Appliquées, Univ. Lille, CNRS FRE 3723 - LML, F-59000 Lille (France)

    2016-08-15

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as “radio pulsars.” The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  12. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  13. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu

    2008-01-01

    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  14. Effect of external pulsation on kinematics of fluid particles in the field ...

    Indian Academy of Sciences (India)

    The effect of external pulsation on a pair of stationary Lamb–Oseen vortices of equal strength has been analyzed to investigate kinematic behavior of a fluid particle. The assumption of vortices being treated stationary or fixed vortex filaments is valid in a reference frame attached to the vortex system with axes along and ...

  15. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Andreas, E-mail: a.hermann@ed.ac.uk; Nelmes, Richard J.; Loveday, John S. [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, Malcolm [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); European Spallation Source AB, P.O. Box 176, SE-22100 Lund (Sweden)

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  16. Scintillating confusion: Evaluation of a technique for measuring compact structure in weak radio sources

    International Nuclear Information System (INIS)

    Spangler, S.R.; Cordes, J.M.; Meyers, K.A.

    1979-01-01

    An attractive scheme for investigating compact structure in weak radio sources is to study the scintillation properties of confusion in a large single-dish radio telescope. We have investigated the utility of this technique by observing the scintillations of 860-MHz confusion of the NRAO 300' (91 m) telescope. Analysis of these data indicated a reduction in the mean scintillation index with decreasing flux density which implied that weaker sources possessed less compact structure. More direct observations indicated that the weak sources of interest were not significantly deficient in compact structure, so the first result is probably due to properties of the IPS process in the strong scintillation regime. Our results may be due to overresolution (by the IPS process in the strong scintillation regime) of the ''hot spots'' responsible for scintillation in most strong sources at frequencies below 1000 MHz, or may indicate abnormally strong turbulence in the solar wind during August, 1977. Future applications of this method would be best conducted at lower frequencies with larger reflectors or short-spacing interferometers

  17. Multiobjective optimal design of runner blade using efficiency and draft tube pulsation criteria

    International Nuclear Information System (INIS)

    Pilev, I M; Sotnikov, A A; Rigin, V E; Semenova, A V; Cherny, S G; Chirkov, D V; Bannikov, D V; Skorospelov, V A

    2012-01-01

    In the present work new criteria of optimal design method for turbine runner [1] are proposed. Firstly, based on the efficient method which couples direct simulation of 3D turbulent flow and engineering semi empirical formulas, the combined method is built for hydraulic energy losses estimation in the whole turbine water passage and the efficiency criterion is formulated. Secondly, the criterion of dynamic loads minimization is developed for those caused by vortex rope precession downstream of the runner. This criterion is based on the finding that the monotonic increase of meridional velocity component in the direction to runner hub, downstream of its blades, provides for decreasing the intensity of vortex rope and thereafter, minimization of pressure pulsation amplitude. The developed algorithm was applied to optimal design of 640 MW Francis turbine runner. It can ensure high efficiency at best efficiency operating point as well as diminished pressure pulsations at full load regime.

  18. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  19. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    Science.gov (United States)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  20. Improving the hydrogen production capacity of Rhodobacter capsulatus by genetically modifying redox balancing pathways

    Energy Technology Data Exchange (ETDEWEB)

    Oeztuerk, Yavuz [TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Gebze Kocaeli (Turkey); Goekce, Abdulmecit [Istanbul Technical Univ. (Turkey). Dept. of Molecular Biology and Genetics; Guergan, Muazzez; Yuecel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology

    2010-07-01

    In Rhodobacter capsulatus, balancing the oxidation-reduction potential (redox-balance) is maintained via a number of inter-dependent regulatory mechanisms that enable these organisms to accommodate divergent growth modes. In order to maintain redox homeostasis, this bacterium possesses regulatory mechanisms functioning as electron sinks affecting the oxidation-reduction state of the ubiquinone pool. Under the photoheterotrophic growth conditions with reduced carbon sources, the excess reducing equivalents are primarily consumed via the reduction of CO{sub 2} through the Calvin-Benson-Bassham (CBB) pathway or by the reduction of protons into hydrogen with the use of dinitrogenase enzyme system. In this study, our aim was to develop strategies to funnel the excess reducing equivalents to nitrogenase-dependent hydrogen production by blocking the carbon-fixation pathway. To realize this purpose, CO{sub 2} fixation was blocked by inactivating the Phosphoribulokinase (PRK) of CBB pathway in wild type (MT1131), uptake-hydrogenase (YO3) and cyt cbb{sub 3} oxidase deficient (YO4) strains. The hydrogen production capacity of newly generated strains deficient in the Calvin-Benson-Bassham pathway were analyzed and compared with wild type strains. The results indicated that, the hydrogen production efficiency and capacity of R. capsulatus was further improved by directing the excess reducing equivalents to dinitrogenase-dependent hydrogen production. (orig.)

  1. Treatment for meibomian gland dysfunction and dry eye symptoms with a single-dose vectored thermal pulsation: a review.

    Science.gov (United States)

    Blackie, Caroline A; Carlson, Alan N; Korb, Donald R

    2015-07-01

    Meibomian gland dysfunction (MGD) is understood to be a highly prevalent, chronic progressive disease and the leading cause of dry eye. All available published peer-reviewed results of the novel vectored thermal pulsation therapy for patients with MGD are investigated. The PubMed and meeting abstract search revealed a total of 31 peer-reviewed reports on vectored thermal pulsation therapy at the time of the search (eight manuscripts and 23 meeting abstracts). All manuscripts evidence a significant increase in meibomian gland function (∼3×) and symptom improvement post a single 12-min treatment. Additional reported objective measures such as osmolarity, tear break-up time, or lipid layer thickness also increased as a result of the therapy; however, not all findings were statistically significant. The randomized controlled studies evidence sustained gland function and symptom relief lasting out to 12 months. The uncontrolled case series evidence significantly longer duration of effect. A single 12 minute vectored thermal pulsation treatment allows for reducing dry eye symptoms, improving meibomian gland function and other correlates of the ocular surface health.

  2. Water electrolysis for hydrogen production in Brazilian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Carvalho, Fatima M.S.; Bergamaschi, Vanderlei Sergio; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Fuel Cell and Hydrogen Center], Email: saliba@ipen.br

    2009-07-01

    Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation and distributed energy sector of Brazilian economy. Fossil fuels are polluting by carbogenic emissions from their combustion, being so co-responsible for present global warming. However, no large scale, cost-effective, environmentally non-carbogenic hydrogen production process is currently available for commercialization. There are feasible possibilities to use electrolysis as one of the main sources of hydrogen, especially thinking on combination with renewable sources of energy, mainly eolic and solar. In this work some perspectives for Brazilian energy context is presented, where electrolysis combined with renewable power source and fuel cell power generation would be a good basis to improve the distributed energy supply for remote areas, where the electricity grid is not present or is deficient. (author)

  3. 78 FR 29672 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Science.gov (United States)

    2013-05-21

    .... FDA-2013-N-0487] Cardiovascular Devices; Reclassification of External Counter- Pulsating Devices for... proposed rule (44 FR 13426, March 9, 1979), the Cardiovascular Device Classification Panel (the 1979 Panel... of Subjects in 21 CFR Part 870 Medical devices, Cardiovascular devices...

  4. Summary and Findings from the NREL/DOE Hydrogen Sensor Workshop (June 8, 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, W.; Burgess, R.; Post, M.; Rivkin, C.

    2012-07-01

    On June 8, 2011, DOE/NREL hosted a hydrogen sensor workshop attended by nearly forty participants from private organizations, government facilities, and academic institutions . The workshop participants represented a cross section of stakeholders in the hydrogen community, including sensor developers, end users, site safety officials, and code and standards developers. The goals of the workshop were to identify critical applications for the emerging hydrogen infrastructure that require or would benefit from hydrogen sensors, to assign performance specifications for sensor deployed in each application, and to identify shortcomings or deficiencies (i.e., technical gaps) in the ability of current sensor technology to meet the assigned performance requirements.

  5. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  6. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    International Nuclear Information System (INIS)

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M defl , give explosions spanning a range of kinetic energies, K ∼ (1.0-1.2) x 10 51 erg, and 56 Ni masses, M( 56 Ni) ∼ 0.6-0.8 M sun , which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  7. Asymmetry and geometry effects on the dynamic behavior of a pulsating heat pipe

    NARCIS (Netherlands)

    Gursel, G.; Frijns, A.J.H.; Homburg, F.G.A.; Steenhoven, van A.A.; Colin, S; Morini, GL; Brandner, JJ; Newport, D

    2014-01-01

    A mass-spring-damper model is developed to investigate the motion in a pulsating heat pipe (PHP). A heat transfer model is coupled to this mass-spring-damper model in order to study the effectivity of a PHP under different operating conditions. Four different configurations (one PHP with 12 turns;

  8. Geomagnetic Pc3 pulsations during the total solar eclipse on Aug 11, 1999

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav; Prikner, Karel

    2003-01-01

    Roč. 47, č. 3 (2003), s. 565-578 ISSN 0039-3169 R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic pulsations * solar eclipse * MHD waves Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.426, year: 2003

  9. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.

    1979-01-01

    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  10. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Device for removing hydrogen gas from the safety containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Stiefel, M.

    1983-01-01

    The safe processing of all concentrations of gas mixtures should be possible with such a device using a thermal recombiner of compact construction. A recombiner consisting of a metal case and diverter sheets situated in it is heated by induction. The incoming pipe for the gas mixture enriched with hydrogen and the outgoing pipe for the gas mixture with low hydrogen content are connected together by a three way valve. The third connection to the safety valve takes the larger port of the gas mixture with low hydrogen content back to the safety containment vessel. Sufficient amount of the gas mixture with low hydrogen content is taken via the three way valve to the safety containment vessel to ensure that the hydrogen content of the gas mixture taken to the recombiner remains below the 4% by volume limit. (orig./PW)

  12. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  13. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst

    International Nuclear Information System (INIS)

    Rabah, M.A.; Hewaidy, I.F.; Farghaly, F.E.

    1996-01-01

    Free powders as well as compact shapes of molybdenum and cobalt have been successfully recovered from spent hydrogenation and desulphurization catalysts. A process flow sheet was followed involving crushing, milling, particle sizing, hydrometallurgical acid leaching roasting of the obtained salts in an atmospheric oxygen to obtain the respective oxides. These were reduced by hydrogen gas at 110 degree C and 900 degree C respectively. Parameters affecting the properties of the products and the recovery efficiency value such as acid concentration, particle diameter of the solid catalyst, temperature time under a constant mass flow rate the hydrogen gas, have been investigated. A mixture of concentration.sulphuric and nitric acids (3:1 by volume) achieved adequate recovery of both metals. The latter increased with the increase in acid concentration, time up 10 3 hours and temperature: 100 degree C and with the decrease in particle diameter of the spent catalyst. The PH of the obtained filtrate was adjusted to 2 with ammonia to precipitate insoluble ammonium molybdate and a solution of cobalt sulphate. Cobalt hydroxide can be precipitate from the latter solution at a PH = 7.6 using excess ammonium hydroxide solution. The obtained results showed that the metallic products are technically pure meeting the standard specifications. Compact shapes of molybdenum acquire density values increasing with the increase of the pressing load whereby a maximum density value of 2280 kg/m 3 is attained at 0.75 MPa. Maximum recovery efficiency amounts to 96%. 10 figs., 3 tabs

  14. A mass-spring-damper model of a pulsating heat pipe with asymmetric filling

    NARCIS (Netherlands)

    Gursel, G.; Frijns, A.J.H.; Homburg, F.G.A.; van Steenhoven, A.A.; Tadrist, L.; Graur, I.

    2014-01-01

    A pulsating heat pipe (PHP) is a device that transfers heat from a hot spot to a cold side by oscillating liquid slugs and vapor plugs. Its working principle is based on interplay between convective heat transfer, evaporation of the liquid at the hot side and condensation of the vapor at the cold

  15. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  16. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore Clayton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fichtl, Christopher Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-05

    The dynamic compaction response of CeO2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  17. Studies of optical pulsations from HZ Herculis/Hercules X-1: A determination of the mass of the neutron star

    International Nuclear Information System (INIS)

    Middleditch, J.; Nelson, J.

    1976-01-01

    In 500 hours of optical observations of this binary system we have repeatedly detected optical pulsations at the 0.1--0.3 percent level. These pulsations are present only for particular well-defined values of the binary and 35-day phases. Position of the pulsation-emitting regions, projected onto the orbital plane, have been measured, and three distinct regions have been resolved. A simple model is put forth which accounts for the observed binary behavior, which gives a direct determination of the mass ratio, M/sub HZHer//M/sub HerX-/ 1 =1.68 +- 0.10 and which establishes that the spin of the pulsar is prograde. Additionally, it is shown that Hz Her fills its Roche lobe. Using the above, the known X-ray eclipse duration, and the mass function, we calculate the orbital inclination to be i=87degree +- 3degree and the masses to be M/sub HerX-/ 1 =1.30 +- 0.14 M/sub sun/ and M/sub HZHer/=2.18 +- 0.11 M/sub sun/

  18. Contribution to the study of the uranium-hydrogen system; Contribution a l'etude du systeme uranium-hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-01-01

    Previous work on uranium-hydrogen system is reviewed. The U-H{sub 2}-UH{sub n} equilibrium is then investigated at pressures below one atmosphere, i.e. at temperatures lower than 430 deg. C. The hydride obtained at equilibrium is deficient in hydrogen (UH{sub n<3}), the hydrogen deficit increasing as the temperature rises. Thermodynamic functions for the formation of non-stoichiometric hydride and of one hydrogen vacancy are derived from pressure composition isotherms, in U-H phase diagram is proposed. The hydrogenation of U-UC alloys is also examined at pressures below one atmosphere with regard to the equilibrium: (free U + UC) - H{sub 2}-UH{sub n}. The equilibrium conditions are found different from that observed for pure uranium. (author) [French] Une etude bibliographique du systeme uranium-hydrogene est exposee. L'equilibre U-H{sub 2}-UH{sub n} est ensuite etudie sous des pressions inferieures a une atmosphere, soit aux temperatures inferieures a environ 430 degs. C. L'hydrure obtenu a l'equilibre est deficitaire en hydrogene - UH{sub n<3} - et d'autant plus que la temperature s'eleve. Les grandeurs thermodynamiques relatives a la formation et a la saturation de l'hydrure, ainsi qu'a la formation d'une lacune d'hydrogene sont deduites des pressions d'equilibre. Un modele de diagramme de phases U-H est propose. L'hyduration des alliages U-UC est etudiee egalement sous des pressions inferieures a l'atmosphere, au point de vue de l'equilibre (U libre + UC) - H{sub 2}-UH{sub n}. Les conditions d'equilibre sont trouvees differentes de celles observees sur l'uranium pur. (auteur)

  19. Experimental study of Large-scale cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Barba, Maria; Bruce, Romain; Bonelli, Antoine; Baudouy, Bertrand

    2017-12-01

    Pulsating Heat Pipes (PHP) are passive two-phase heat transfer devices consisting of a long capillary tube bent into many U-turns connecting the condenser part to the evaporator part. They are thermally driven by an oscillatory flow of liquid slugs and vapor plugs coming from phase changes and pressure differences along the tube. The coupling of hydrodynamic and thermodynamic effects allows high heat transfer performances. Three closed-loop pulsating heat pipes have been developed by the DACM (Department of Accelerators, Cryogenics and Magnetism) of CEA Paris-Saclay, France. Each PHP measures 3.7 meters long (0.35 m for the condenser and the evaporator and 3 m for the adiabatic part), being almost 20 times longer than the longest cryogenic PHP tested. These PHPs have 36, 22 and 12 parallel channels. Numerous tests have been performed in horizontal position (the closest configuration to non-gravity) using nitrogen as working fluid, operating between 75 and 90 K. The inner and outer diameters of the stainless steel capillary tubes are 1.5 and 2 mm respectively. The PHPs were operated at different filling ratios (20 to 90 %), heat input powers (3 to 20 W) and evaporator and condenser temperatures (75 to 90 K). As a result, the PHP with 36 parallel channels achieves a certain level of stability during more than thirty minutes with an effective thermal conductivity up to 200 kW/m.K at 10 W heat load and during forty minutes with an effective thermal conductivity close to 300 kW/m.K at 5 W heat load.

  20. Molecular orbital calculations for the formation of GaN layers on ultra-thin AlN/6H-SiC surface using alternating pulsative supply of gaseous trimethyl gallium (TMG) and NH sub 3

    CERN Document Server

    Seong, S Y

    2001-01-01

    The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH sub 3 gases have been examined by ASED-MO calculations. We postulate that the gallium clusters was formed with the evaporation of CH sub 4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl gallium (MMG). During the injection of NH sub 3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH sub 3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH sub 3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster...

  1. 78 FR 79304 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Science.gov (United States)

    2013-12-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 870 [Docket No. FDA-2013-N-0487] Cardiovascular Devices; Reclassification of External Counter- Pulsating Devices for...--CARDIOVASCULAR DEVICES 0 1. The authority citation for 21 CFR part 870 continues to read as follows: Authority...

  2. Impingement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Vít, T.

    2015-01-01

    Roč. 85, June (2015), s. 473-487 ISSN 0017-9310 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : impinging jet * reversible pulsating jet * synthetic jet Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 2.857, year: 2015 http://www.sciencedirect.com/science/article/pii/S001793101500143X

  3. The effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 335-338 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * geomagnetic pulsations * geomagnetic observatories Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  4. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion -- I. Inviscid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis; Forman A. Williams

    1999-03-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  5. Pulsation, Mass Loss and the Upper Mass Limit

    Science.gov (United States)

    Klapp, J.; Corona-Galindo, M. G.

    1990-11-01

    RESUMEN. La existencia de estrellas con masas en exceso de 100 M0 ha sido cuestionada por mucho tiempo. Lfmites superiores para la masa de 100 M0 han sido obtenidos de teorfas de pulsaci6n y formaci6n estelar. En este trabajo nosotros primero investigamos la estabilidad radial de estrellas masivas utilizando la aproximaci6n clasica cuasiadiabatica de Ledoux, la aproximaci6n cuasiadiabatica de Castor y un calculo completamente no-adiabatico. Hemos encontrado que los tres metodos de calculo dan resultados similares siempre y cuando una pequefia regi6n de las capas externas de la estrella sea despreciada para la aproximaci6n clasica. La masa crftica para estabilidad de estrellas masivas ha sido encontrada en acuerdo a trabajos anteriores. Explicamos Ia discrepancia entre este y trabajos anteriores por uno de los autores. Discunmos calculos no-lineales y perdida de masa con respecto a) lfmite superior de masa. The existence of stars with masses in excess of 100 M0 has been questioned for a very long time. Upper mass limits of 100 Me have been obtained from pulsation and star formation theories. In this work we first investigate the radial stability of massive stars using the classical Ledoux's quasiadiabatic approximation. the Castor quasiadiabatic approximation and a fully nonadiabatic calculation. We have found that the three methods of calculation give similar results provided that a small region in outer layers of the star be neglected for the classical approximation. The critical mass for stability of massive stars is found to be in agreement with previous work. We explain the reason for the discrepancy between this and previous work by one of the authors. We discuss non-linear calculations and mass loss with regard to the upper mass limit. Key words: STARS-MASS FUNCTION - STARS-MASS LOSS - STARS-PULSATION

  6. THE PULSATION OF χ CYGNI IMAGED BY OPTICAL INTERFEROMETRY: A NOVEL TECHNIQUE TO DERIVE DISTANCE AND MASS OF MIRA STARS

    International Nuclear Information System (INIS)

    Lacour, S.; Perrin, G.; Haubois, X.; Poncelet, A.; Thiebaut, E.; Meimon, S.; Pedretti, E.; Ridgway, S. T.; Monnier, J. D.; Berger, J. P.; Schuller, P. A.; Woodruff, H.; Le Coroller, H.; Millan-Gabet, R.; Lacasse, M.; Traub, W.

    2009-01-01

    We present infrared interferometric imaging of the S-type Mira star χ Cygni. The object was observed at four different epochs in 2005-2006 with the Infrared-Optical Telescope Array optical interferometer (H band). Images show up to 40% variation in the stellar diameter, as well as significant changes in the limb darkening and stellar inhomogeneities. Model fitting gave precise time-dependent values of the stellar diameter, and reveals presence and displacement of a warm molecular layer. The star radius, corrected for limb darkening, has a mean value of 12.1 mas and shows a 5.1 mas amplitude pulsation. Minimum diameter was observed at phase 0.94 ± 0.01. Maximum temperature was observed several days later at phase 1.02 ± 0.02. We also show that combining the angular acceleration of the molecular layer with CO (Δv = 3) radial velocity measurements yields a 5.9 ± 1.5 mas parallax. The constant acceleration of the CO molecules-during 80% of the pulsation cycle-lead us to argument for a free-falling layer. The acceleration is compatible with a gravitational field produced by a 2.1 +1.5 -0.7 solar mass star. This last value is in agreement with fundamental mode pulsator models. We foresee increased development of techniques consisting in combining radial velocity with interferometric angular measurements, ultimately allowing total mapping of the speed, density, and position of the diverse species in pulsation-driven atmospheres.

  7. Masses and pulsations of BL Herculis variables

    International Nuclear Information System (INIS)

    Hodson, S.W.; Cox, A.N.; King, D.S.

    1981-01-01

    From linear results, the masses of BL Her variables must be nearer to 0.55 M /sub sun/ than 0.75 M /sub sun/ if the bump phase transition (resonance) is to be located anywhere near the observed period range of 1./sup d/5 to 1./sup d/7. The nonlinear results are consistent with the Simon resonance concept, but demonstrate that light and velocity curve shapes are a nonlinear phenomenon that require nonlinear period ratios to display the resonances only in the narrow, observed range of 1./sup d/5 to 1./sup d/7. The mass near 0.55 M /sub sun/ is in good agreement with evolution calculations (Sweigart and Gross, 1976) and nonlinear pulsation studies of Carson, Stothers, and Vemury (1981) and Stothers

  8. Limits in the application of harmonic analysis to pulsating stars

    Science.gov (United States)

    Pascual-Granado, J.; Garrido, R.; Suárez, J. C.

    2015-09-01

    Using ultra-precise data from space instrumentation, we found that the underlying functions of stellar light curves from some AF pulsating stars are non-analytic, and consequently their Fourier expansion is not guaranteed. This result demonstrates that periodograms do not provide a mathematically consistent estimator of the frequency content for this type of variable stars. More importantly, this constitutes the first counterexample against the current paradigm, which considers that any physical process is described by a continuous (band-limited) function that is infinitely differentiable.

  9. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the HR diagram

    NARCIS (Netherlands)

    Briquet, M.; Hubrig, S.; Cat, P. de; Aerts, C.C.; North, P.; Schöller, M.

    2007-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods: We carry out a comparative study

  10. RR lyrae variable pulsations and the Oosterhoff groups

    International Nuclear Information System (INIS)

    Cox, A.N.

    1981-01-01

    It is concluded that Oosterhoff group I clusters have 0.55 M/sub sun/ stars and group II clusters have 0.65 M/sub sun/ stars. The Y value is always about 0.29. Mean log L/L/sub sun/ values are 1.66 and 1.78 giving M/sub bol/ = 0.60 and 0.30 for the RR Lyrae variables in these two groups of clusters. For field RR Lyrae variables at M = approx. 0.5 M/sub sun/ or less, perhaps M/sub bol/ = 0.90 or even larger as Clube and Jones propose. Apparently all evolution is blueward for RR Lyrae variables, and the color overlap of F and 1H pulsators is not real

  11. Forty Cases of Insomnia Treated by Multi-output Electric Pulsation and Auricular Plaster Therapy

    Institute of Scientific and Technical Information of China (English)

    Liu Weizhe

    2007-01-01

    @@ The writer has treated 40 cases of insomnia by the method of multi-output electric pulsation in combination with auricular plaster therapy (with a seed of Vaccariae segetalis 王不留行 taped tightly to a particular ear point and pressed) and received satisfactory therapeutic effects. A report follows.

  12. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York (United States)

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  13. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    International Nuclear Information System (INIS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-01-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  14. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  15. Diffusion through statically compacted clay

    International Nuclear Information System (INIS)

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  16. Research and development of a compact fusion neutron source for humanitarian landmine detection

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Masuda, K.; Yamamoto, Y.; Takamatsu, T.; Toku, H.; Nagasaki, K.; Hotta, E.; Yamauchi, K.; Ohnishi, M.; Osawa, H.

    2005-01-01

    Research and development of the advanced anti-personnel landmine detection system by using a compact discharge-type D-D fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion) are described. Landmines are to be identified through increased backscattering of neutrons by the hydrogen atoms, and specific-energy capture γ-ray emission by hydrogen and nitrogen atoms with thermalized neutrons in the landmine explosives. For this purpose, improvements of the IECF device were studied for drastic enhancement of neutron production rates of more than 10 8 n/s in pulsed operation including R and D of robust power sources, as well as analyses of envisaged detection system with multi-sensors in parallel in order to show promising and practical features of this detection system for humanitarian landmine detection, particularly, in the aridic, or dry Afghanistan deserted area, where the soil moisture remains between 3-8%, which eventually enables effectively detection of hydrogen anomaly inherent in the landmine explosives. In this paper, improvements of the IECF are focused to be described. (author)

  17. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  18. Thermogravimetric study of the kinetics of lithium titanate reduction by hydrogen

    International Nuclear Information System (INIS)

    Sonak, Sagar; Rakesh, R.; Jain, Uttam; Mukherjee, Abhishek; Kumar, Sanjay; Krishnamurthy, Nagaiyar

    2014-01-01

    Highlights: • Li 2 TiO 3 powder is synthesized by the gel combustion route. • Activation energy of reduction of Li 2 TiO 3 by H 2 found out to be 27.45 kJ/mol H 2 . • Non-stoichiometric phase of Li 2 TiO 3 is formed in hydrogen atmosphere. • One-dimensional diffusion appears to be the most probable mechanism of reduction. - Abstract: The lithium titanate powder was synthesized by gel-combustion route. The mechanism and the kinetics of hydrogen interaction with lithium titanate powder were studied using non-isothermal thermogravimetric technique. Lithium titanate underwent reduction in hydrogen atmosphere which led to the formation of oxygen deficient non-stoichiometric compound in lithium titanate. One-dimensional diffusion appeared to be the most probable reaction mechanism. The activation energy for reduction of lithium titanate under hydrogen atmosphere was found to be 27.4 kJ/mol/K. Structural changes after hydrogen reduction in lithium titanate were observed in X-ray diffraction analysis

  19. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  20. Edge transport barrier formation in compact helical system

    International Nuclear Information System (INIS)

    Okamura, S; Minami, T; Oishi, T; Suzuki, C; Ida, K; Isobe, M; Yoshimura, Y; Nagaoka, K; Toi, K; Fujisawa, A; Akiyama, T; Iguchi, H; Ikeda, R; Kado, S; Matsuoka, K; Matsushita, H; Nakamura, K; Nakano, H; Nishimura, S; Nishiura, M; Ohshima, S; Shimizu, A; Takagi, S; Takahashi, C; Takeuchi, M; Yoshinuma, M

    2004-01-01

    The edge transport barrier (ETB) for particle transport is formed in the neutral beam (NB) heated hydrogen discharges in compact helical system (CHS). The transition to the ETB formation and the back transition are controlled by the heating power. The existence of the heating power threshold is confirmed and it is roughly proportional to the density. The Hα emission signal shows a clear drop at the transition (the timescale of signal decrease is ∼1 ms for the high heating power case). The ETB formation continues for the full duration of NB injection (100 ms) with a moderate level of radiation power loss. Local density profile measurement shows increase of the edge density and the movement of the density gradient region towards the edge