WorldWideScience

Sample records for hydrogen utilization project

  1. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  2. Waste hydrogen utilization project receives $12 M in federal support

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-01

    This article announced that $12.2 million dollars in federal funding support, over a 3 year period, will be made available to Sacre-Davey Innovations to support the development and demonstration of the Integrated Waste Hydrogen Utilization Project (IWHUP). The IWHUP is a clean energy project that will develop and demonstrate the feasibility of using hydrogen generated as a byproduct of a sodium chlorate manufacturing plant in North Vancouver. Greenhouse gas emissions and fossil fuels will be reduced by using purified hydrogen to fuel vehicles. The full hydrogen value chain will also be demonstrated by the IWHUP. This includes the supply, storage, distribution and use of hydrogen. Eight light-duty trucks running on hydrogen will be included in the demonstration, along with 4 public transit buses converted to run on a combination of compressed natural gas and hydrogen, and a fuel cell system operating on hydrogen while providing electrical power to a car wash. The newsletter article discussed the funding leveraged from various sources as well as the names of project participants. The article also mentioned that the IWHUP fuel station in North Vancouver will play a key role in sustainable transportation demonstrations during the 2010 Olympic and Paralympic Winter Games in Vancouver.

  3. Economic assessment of a waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Wang, L.; Zhou, H.; Zhou, W.; Wu, J.; Wang, Q.

    1993-01-01

    This paper reports the economic assessment on an hybrid hydrogen recovery, purification, storage, transportation and application project (HRPSTA) set for a system including a nitrogenous fertilizer plant and a float glass factory. A pretreatment unit and metal hydride containers are used to recover and purify the hydrogen from the purge gas of the ammonia fertilizer plant and to transport and use the hydrogen on the tin bath in the float glass factory. Cost analysis and cash flow statements are presented, and financial value and rate of return are calculated. The project is shown to be technologically and financially feasible. 1 fig., 4 tabs., 4 refs

  4. Economic assessment of a waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Zhou, H.; Wang, L.; Zhou, W.; Wu, J.; Wang, Q.

    1993-01-01

    This article reports an economic assessment on a hydride hydrogen recovery, purification, storage, transportation and application project (HRPSTA) set for a system including a nitrogenous fertilizer plant and a float glass factory. In this project, a pretreatment unit and metal hydride containers are used to recover and purify the hydrogen from the purge gas of the ammonia fertilizer plant and to transport and use the hydrogen in the tin bath in the float glass factory. Detailed economic assessment, cost analysis and a cash flow statement are presented, and financial net present value (NPV), as well as intrinsic rate of return (IRR), is calculated. The results shows that this project, which is feasible technologically, is profitable economically. (Author)

  5. Project of CO{sub 2} fixation and utilization using catalytic hydrogenation reaction for coping with the global environment issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Discussions were given on a carbon dioxide fixing and utilizing project utilizing hydrogenating reaction by means of a catalytic method. In the discussions, development was made on such foundation technologies as CO2 separation by using Cardo type CO2 membrane, a technology to synthesize methanol through hydrogen addition by means of the catalytic method, and an electrolytic technology of membrane-electrode mixed type, as well as a methanol synthesis bench test of 50 kg/d scale. In order to develop this result into specific applications, demonstration tests are required that use methanol synthesizing pilot plants of 4 t/d and 80 t/d capacities. In addition, for the electric power to produce a huge amount of hydrogen, development is necessary on a solar energy utilizing technology of large scale and low cost. Furthermore, from the economic and social viewpoints, the achievements of this project are regarded to depend on understanding of the necessity of a policy of putting a large number of methanol fuel cell automobiles into use, and dealing with the global warming problem. Energy required to change CO2 into useful chemical substance requires five times as much energy as has been produced, hence prevention of the global warming through this channel is difficult. (NEDO)

  6. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  7. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  8. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  9. Hydrogen utilization efficiency in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Metkemeyer, R; Achard, P; Rouveyre, L; Picot, D [Ecole des Mines de Paris, Centre D' energrtique, Sophia Antipolis (France)

    1998-07-01

    In this paper, we present the work carried out within the framework of the FEVER project (Fuel cell Electric Vehicle for Efficiency and Range), an European project coordinated by Renault, joining Ecole des Mines de Paris, Ansaldo, De Nora, Air Liquide and Volvo. For the FEVER project, where an electrical air compressor is used for oxidant supply, there is no need for hydrogen spill over, meaning that the hydrogen stoichiometry has to be as close to one as possible. To determine the optimum hydrogen utilization efficiency for a 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) fed with pure hydrogen, a 4 kW prototype fuel cell was tested with and without a hydrogen recirculator at the test facility of Ecole des Mines de Paris. Nitrogen cross over from the cathodic compartment to the anodic compartment limits the hydrogen utilization of the fuel cell without recirculator to 97.4 % whereas 100% is feasible when a recirculator is used. 5 refs.

  10. Hydrogen and energy utilities

    Energy Technology Data Exchange (ETDEWEB)

    Hustadt, Daniel [Vattenfall Europe Innovation GmbH (Germany)

    2010-07-01

    Renewable electricity generation plays one major role with the biggest share being wind energy. At the end of the year 2009 a wind power plant capacity of around 26 GW was installed in Germany. Several outlooks come to the conclusion that this capacity can be doubled in ten years (compare Figure 1). Additionally the German government has set a target of 26 GW installed off-shore capacity in North and Baltic Sea until 2030. At Vattenfall only a minor percentage of the electricity production comes from wind power today. This share will be increased up to 12% until 2030 following Vattenfall's strategy 'Making Electricity Clean'. This rapid development of wind power offers several opportunities but also means some challenges to Utilities. (orig.)

  11. Yeager Airport Hydrogen Vehicle Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Williams [West Virginia University Research Corporation, Morgantown, WV (United States)

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  12. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  13. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  14. Hydrogen utilization potential in subsurface sediments

    DEFF Research Database (Denmark)

    Adhikari, Rishi Ram; Glombitza, Clemens; Nickel, Julia

    2016-01-01

    Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen...

  15. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  16. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  17. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the

  18. Hydrogen utilization potential in subsurface sediments

    Directory of Open Access Journals (Sweden)

    Rishi Ram Adhikari

    2016-01-01

    Full Text Available Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material.We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i increasing importance of fermentation in successively deeper biogeochemical zones and (ii adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  19. Hualapai Tribal Utility Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  20. The hydrogen 700 project - 700 Bar Co

    International Nuclear Information System (INIS)

    Gambone, L.; Webster, C.

    2004-01-01

    'Full text:' Major automotive companies, including DaimlerChrysler, Ford, Hyundai, Nissan, PSA Peugeot-Citroen, and Toyota, are co-operating in the Hydrogen 700 project at Powertech to establish a global basis for high pressure hydrogen fuel systems for vehicles. The fuel systems will store compressed hydrogen on-board at pressures up to 700 bar (10,000psi). It is anticipated that the 700 bar storage pressure will provide hydrogen powered vehicles with a range comparable to the range of petroleum-fueled vehicles. The Hydrogen 700 project has contracted world leaders in high pressure technologies to provide 700 bar fuel system components for evaluation. The data from these tests will be used as the basis for the development of relevant standards and regulations. In a development that complements the Hydrogen 700 project, Powertech Labs has established the world's first 700 bar hydrogen station for fast filling operations. This prototype station will be used to evaluate the performance of the 700 bar vehicle fuel system components. The presentation will provide an overview of the Hydrogen 700 project. Safety issues surrounding the use of compressed hydrogen gas as a vehicle fuel, as well as the use of higher storage pressures, will be reviewed. Test data involving the fire testing of vehicles containing hydrogen fuel systems will be presented. The project is intended to result in the introduction of 700 bar fuel systems in the next generation of hydrogen powered vehicles. (author)

  1. Hydrogen Fire Spectroscopy Issues Project

    Science.gov (United States)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  2. Chinese Manned Space Utility Project

    Science.gov (United States)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  3. Final Scientifc Report - Hydrogen Education State Partnership Project

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  4. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  5. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Comprehensive discussion on hydrogen utilizing subsystems); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso riyo subsystem no sogoteki kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes comprehensive discussion on hydrogen utilizing subsystems. Hydrogen combustion is characterized by how low the ignition energy is, and how fast the flame propagates. In addition, flame stability is high also in diffusion combustion. However, the diffusion combustion produces a great amount of NOx, the amount varying depending on the degree of air pre-mixture. Since it causes reverse ignition very easily in the pre-mixture degree corresponding to low NOx zone, development of a burner with drastically new mechanism is demanded. In hydrogen fuel cells, the ratio of hydrogen fuel cost accounting for in the power generation cost is very high. As an automobile fuel, very much leaner combustion is possible than in conventional internal combustion engines, and ignition energy is small. However, such abnormal combustion as reverse ignition and early ignition may occur, and their prevention is an important assignment. Issues in aircraft engines are verification of safety, and cost of liquefied hydrogen. Steam turbines have reached their limit already, but gas turbines are expected of exciting efficiency improvement. This paper describes prospects on chemical utilization of hydrogen in the existing fields and new fields. (NEDO)

  6. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  7. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  8. Utilizing hydrogen in aqueous phase conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Baoxiang; Zhao, Chen; Li, Xuebing; Lercher, Johannes A. [Technische Univ. Muenchen, Garching (Germany). Technische Chemie II

    2010-12-30

    Hydrogen generation and selective hydrodeoxygenation of biomass are the key for the successful integration of biogenic carbon resources for energy carriers and intermediates. This includes the generation of hydrogen from biomass in the liquid phase and more importantly, for the direct utilization of the hydrogen generated into the molecules. We will outline this strategy with two groups of oxofunctionalized molecules, i.e., glycerol as example for the aliphatic group and substituted phenols as the aromatic group. (orig.)

  9. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to

  10. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  11. NNP-LANL Utilities - Condition Assessment and Project Approach

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Grant Lorenz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    This report is a presentation on LANL Utilities & Transportation Asset Management; Utility Assets Overview; Condition Assessment; Utilities Project Nominations & Ranking; and Utilities Project Execution.

  12. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  13. Report on achievements in fiscal 1984 on research and development commissioned from Sunshine Project. Studies on hydrogen manufacturing utilizing solar beam; 1984 nendo taiyoko riyo ni yoru suiso seizo no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    Research and development has been performed on a technology to manufacture hydrogen effectively from water utilizing solar beam and using an organics oxidizing and reducing system as the intermediary, and its achievements in fiscal 1984 was reported. With regard to the process in hydrogen generation stage as the first step, water dissolvable rhodium complex was synthesized to improve the process having been developed in the previous fiscal year. Its photo-hydrogen generation capability was discussed. In the rhodium complex of ligand having sulfonic acid group for water solution, a system using only water as a solvent was discovered to show the photo-hydrogen generation capability equivalent to or greater than the system of organic solvent and water using non-water dissolvable rhodium complex. In the stage of reduction of oxidized type organics by water as the second step, discussions were given on photo-electrochemical behavior of iron oxide sintered electrodes. Photo-hydrogen generation was investigated by retaining the electrode potential to a potential generated by beam irradiation onto the iron oxide sintered electrodes, and using a system of water dissolvable rhodium complex and rhuthenium complex. As a result, a possibility of recycling the materials was discovered. (NEDO)

  14. Healthcare Cost and Utilization Project (HCUP)

    Science.gov (United States)

    The Healthcare Cost and Utilization Project is a family of health care databases and related software tools and products developed through a Federal-State-Industry partnership and sponsored by the Agency for Healthcare Research and Quality.

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  16. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  17. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  18. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  19. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  20. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    Energy Technology Data Exchange (ETDEWEB)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  1. HydroGEM, a hydrogen fuelled utility vehicle. Case study

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Kraaij, G.J.; De Bruijne, M.; Weeda, M.

    2010-02-01

    This report describes the conversion of a Global Electric Motorcars (GEM, a Chrysler company) electric utility vehicle into a Fuel Cell Vehicle called HydroGEM, at the Energy research Centre of the Netherlands (ECN). The report is prepared as a case study within the framework of Task 18 on 'Evaluation of Integrated Hydrogen Systems' of the IEA Hydrogen Implementing Agreement. The vehicle's fuel cell system was designed in 2005, manufactured and built into the vehicle in 2006 and operated from 2007 onwards. The design-choices, assembly, operation and maintenance-issues are presented and discussed.

  2. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for chemical utilization); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kagaku riyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-15

    Surveys and studies were performed on chemical utilization of hydrogen regarding its status of development and utilization inside and outside the country, as well as its future prospect. This paper describes chemical utilization of hydrogen in ammonia, methanol, petroleum refining and other industries as the existing fields. It also describes chemical utilization of oxygen in iron and steel, chemical and other industries. It describes methanol as a pollution-free auxiliary fuel for electric power plants as a new type of hydrogen application. Acetic acid made by using the Monsanto method which carbonylate methanol is drawing attention in terms of economy, and is in the phase of discussing commercialization. Synthesizing ethylene glycol from carbon monoxide and hydrogen may be conceived economically. Methanol for synthesized protein depends on the possibility of future development. In the iron and steel industry, electric furnace steel makers are planning production of reduced iron, where the direct reduction process using hydrogen is considered as a complementary process, including countermeasures for scrap iron. This paper estimates hydrogen amount as a raw material for ammonia to remove NOx by using the ammonia reduction process. It also describes possibility of other types of utilization. (NEDO)

  3. Hydrogen demonstration projects options in the Netherlands. Final report

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    Based on a survey of hydrogen demonstration projects, contacts with different actors and discussions in a sounding board for the study on the title subject, it is concluded that a conference can be organized where the possibilities of setting up hydrogen demonstration projects in the Netherlands can be discussed. The following projects offer good chances to be realized in the next few years: large-scale CO 2 storage in the underground, applying enhanced gas recovery. It appears to be a relatively cheap CO 2 emission reduction measure with a large potential. It can be combined with a hydrogen mixing project with the sale of hydrogen as a so-called eco-gas to consumers. There is little interest in the other options for CO 2 storage at coal gasification and the prompt supply of 100% H 2 to small-scale consumers. Hydrogen for cogeneration, fuel cells in the industry, hydrogen in road transport and hydrogen as a storage medium are projects in which some actors are interested. Hydrogen for air transport has a large potential to which only few parties in the Netherlands can anticipate. Hydrogen demonstration projects will show important surplus value when it is supported by a hydrogen research program. Such a program can be carried out in cooperation with several other programmes of the International Energy Agency, in Japan, Germany and a number of research programs of the Netherlands Agency for Energy and the Environment (Novem). 10 figs., 4 tabs., 33 refs

  4. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  5. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  6. Regional hydrogen roadmap. Project development framework for the Sahara Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Benhamou, Khalid [Sahara Wind Inc., Rabat (Morocco); Arbaoui, Abdelaziz [Ecole National Superieure des Arts et Metiers ENSAM Meknes (Morocco); Loudiyi, Khalid [Al Akhawayn Univ. (Morocco); Ould Mustapha, Sidi Mohamed [Nouakchott Univ. (Mauritania). Faculte des Sciences et Techniques

    2010-07-01

    The trade winds that blow along the Atlantic coast from Morocco to Senegal represent one of the the largest and most productive wind potentials available on earth. Because of the erratic nature of winds however, wind electricity cannot be integrated locally on any significant scale, unless mechanisms are developed for storing these intermittent renewable energies. Developing distributed wind energy solutions feeding into smaller electricity markets are essential for solving energy access issues and enabling the development of a local, viable renewable energy industry. These may be critical to address the region's economic challenges currently under pressure from Sub-Saharan migrant populations. Windelectrolysis for the production of hydrogen can be used in grid stabilization, as power storage, fuel or chemical feedstock in specific industries. The objective of the NATO SfP 'Sahara Trade Winds to Hydrogen' project is to support the region's universities through an applied research framework in partnership with industries where electrolysis applications are relevant. By powering two university campuses in Morocco and Mauritania with small grid connected wind turbines and 30 kW electrolyzers generating hydrogen for power back-up as part of ''green campus concepts'' we demonstrated that wind-electrolysis for the production of hydrogen could absorb larger quantities of cheap generated wind electricity in order to maximize renewable energy uptakes within the regions weaker grid infrastructures. Creating synergies with local industries to tap into a widely available renewable energy source opens new possibilities for end users such as utilities or mining industries when processing raw minerals, whose exports generates key incomes in regions most exposed to desertification and climate change issue. Initiated by Sahara Wind Inc. a company from the private sector, along with the Al Akhawayn University, the Ecole Nationale Superieure

  7. Test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  8. Draft test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  9. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on a hydrogen utilizing subsystem and research on peripheral technologies (Research on peripheral technologies for hydrogen); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes research on peripheral technologies for hydrogen. For the cost of manufacturing hydrogen from different primary energies, coal gasification could be the lowest at the present time. In the nuclear power field, the thermo-chemical method and the water electrolysing method may be assumed, but they depend greatly on future technological development. Particularly the water electrolysing method is dependent on electric power cost. In the hybrid method, hydrogen is obtained from electrolysing reaction with water of sulfur dioxide derived by paralyzing sulfuric acid (oxygen is also generated). The method requires two forms of energies, heat and electric power, whereas combination with a very high temperature reactor (VHTR) is being discussed as a heat source. This method may not be said greatly more advantageous than the direct water electrolysis, but may have future possibility. Hydrogen manufacturing utilizing living organisms is an interesting matter in terms of science and engineering, with a large number of research achievements beginning to appear. Expectation is drawn on the mechanism based on co-work of photosynthesis and a hydrogen generation system, alga and bacterium strain search, separation, cultivation, and applied research and development. Research is also under way to obtain hydrogen by converting photo-energy by using an electrochemical photo-cell utilizing semiconductor electrode to electrolyse water (color sensitizing) (NEDO)

  10. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  11. Hydrogen fueling demonstration projects using compact PSA purification

    International Nuclear Information System (INIS)

    Ng, E.; Smith, T.

    2004-01-01

    'Full text:' Hydrogen fueling demonstration projects are critical to the success of hydrogen as an automotive fuel by building public awareness and demonstrating the technology required to produce, store, and dispense hydrogen. Over 75 of these demonstration projects have been undertaken or are in the planning stages world-wide, sponsored by both the public and private sectors. Each of these projects represents a unique combination of sponsors, participants, geographic location, and hydrogen production pathway. QuestAir Technologies Inc., as the industry leader in compact pressure swing adsorption equipment for purifying hydrogen, has participated in four hydrogen fueling demonstration projects with a variety of partners and in North America and Japan. QuestAir's experiences as a participant in the planning, construction, and commissioning of these demonstration projects will be presented in this paper. The unique challenges of each project and the critical success factors that must to be considered for successful deployment of high-profile, international, and multi-vendor collaborations will also be discussed. The paper will also provide insights on the requirements for hydrogen fueling demonstration projects in the future. (author)

  12. Hercules project: Contributing to the development of the hydrogen infrastructure

    International Nuclear Information System (INIS)

    Arxer, Maria del Mar; Martinez Calleja, Luis E.

    2007-01-01

    A key factor in developing a hydrogen based transport economy is to ensure the establishment of a strong and reliable hydrogen fuel supply chain, from production and distribution, to storage and finally the technology to dispense the hydrogen into the vehicle. This paper describes how the industrial gas industry and, in particular, Air Products and Carburos Metalicos (Spanish subsidiary of Air Products), is approaching the new market for hydrogen as an energy carrier and vehicle fuel. Through participations in projects aiming to create enough knowledge and an early infrastructure build-up, like The Hercules Project (a project carried out in collaboration with eight partners), we contribute to the hydrogen economy becoming a reality for the next generation. (author)

  13. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research related to hydrogen gas turbines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes development of hydrogen gas turbines from among the comprehensive discussions on hydrogen utilizing subsystems. Hydrogen and oxygen gas turbine cycle has varying optimal conditions of plant efficiency depending on fuel patterns. The regenerative cycle may have the turbine inlet temperature at about 1,000 degrees C. The inlet pressure would be ten and odds atmospheric pressure. It is better to keep the inlet temperature higher in order to obtain high specific power. Reduction of power generation cost in using this plant requires that construction cost be decreased, and the specific power be increased if the plant efficiency (in other words, running cost) is assumed constant. Further development is required on technologies to use higher temperatures and pressures. For that purpose, discussions should be given on material development, structural design, and inspection. Hydrogen gas turbines, which present low pollution depending on combustion methods, have great significance for such social problem as environmental contamination. In terms of economy, since hydrogen gas turbines depend on efficiency and fuel unit cost, the evaluation thereon may vary depending on how well the regenerative gas turbines have been established, in addition to future change in hydrogen price and the technologies to use higher temperatures and pressures. (NEDO)

  14. Solar Hydrogen Fuel Cell Projects at Brooklyn Tech

    Science.gov (United States)

    Fedotov, Alex; Farah, Shadia; Farley, Daithi; Ghani, Naureen; Kuo, Emmy; Aponte, Cecielo; Abrescia, Leo; Kwan, Laiyee; Khan, Ussamah; Khizner, Felix; Yam, Anthony; Sakeeb, Khan; Grey, Daniel; Anika, Zarin; Issa, Fouad; Boussayoud, Chayama; Abdeldayem, Mahmoud; Zhang, Alvin; Chen, Kelin; Chan, Kameron Chuen; Roytman, Viktor; Yee, Michael

    2010-01-01

    This article describes the projects on solar hydrogen powered vehicles using water as fuel conducted by teams at Brooklyn Technical High School. Their investigations into the pure and applied chemical thermodynamics of hydrogen fuel cells and bio-inspired devices have been consolidated in a new and emerging sub-discipline that they define as solar…

  15. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  16. Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)

    Science.gov (United States)

    McLaughlin, Russell

    2013-01-01

    NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations

  17. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  18. Test Plan for Hydrogen Getters Project - Phase II

    International Nuclear Information System (INIS)

    Mroz, G.

    1999-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

  19. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  20. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  1. Japan's New Sunshine Project. 1998 annual summary of hydrogen energy R and D; New sunshine keikaku 1998 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  2. Energizing Engineering Students with Hydrogen Fuel Cell Project

    Science.gov (United States)

    Cannell, Nori; Zavaleta, Dan

    2010-01-01

    At Desert Vista High School, near Phoenix, Arizona, Perkins Innovation Grant funding is being used to fund a program that is helping to prepare students for careers in engineering by giving them hands-on experience in areas like hydrogen generation and fuel cell utilization. As one enters Dan Zavaleta's automotive and engineering classroom and lab…

  3. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    development on an enlarged scale in correspondence with the Generation IV International Forum. The second phase of the key technology development will greatly reduce the technical and economical risk in the nuclear hydrogen project. The government is also considering the construction of the NHDD plant and will start funding for a conceptual design from 2010. (authors)

  4. Utility-vendor partnerships for refurbishment projects

    Energy Technology Data Exchange (ETDEWEB)

    Newman, G.; Hall, H. [Bruce Power, Tiverton, Ontario (Canada)

    2012-07-01

    closely with our Vendor community to ensure that our policies, programs and procedures are rigorous, transparent and well understood such that these requirements can be implemented in a timely and cost effective manner. At Bruce Power we value the skills and products that our Vendor community brings to our business and it is our intention to work carefully through this process to ensure that we collectively achieve the quality level required to ensure safe, reliable operation of our plants. In the context of Utility – Vendor Partnerships from a commercial perspective; Bruce Power has established a Vendor Performance Management System (VPMS) to support a structured approach to identify supplier strengths and weaknesses and to assist in the selection and management of our vendor base. Utilizing field initiated Station Condition Reports (SCR’s) and Non Conformance Reports (NCR’s) to establish good, average and substandard performance data points by commodity and contract, the VPMS facilitates data mining of performance information to establish a profile of how a supplier performs. SCR’s and NCR’s are backstopped by commercially generated SCAR Supplier Corrective Action Reports which allows Bruce Power to monitor vendor corrective actions.The VPMS approach permits Bruce Power to have a data based evaluation vs. an opinion based performance scorecard. Although in it’s preliminary stages this system will eventually help Bruce Power verify by commodity how vendors are performing which will in turn allow Bruce Power to enable an exit strategy for a poor performing vendor while strategically developing vendors to fill identified gaps. This capability will act as a cornerstone segment in our approach to Utility – Vendor Partnerships for Refurbishment by establishing performance data points on cost, quality and schedule delivery. Our success in being able to strategically apply this model will depend upon stable outage, generation and capital improvement plans as well

  5. Utility-vendor partnerships for refurbishment projects

    International Nuclear Information System (INIS)

    Newman, G.; Hall, H.

    2012-01-01

    closely with our Vendor community to ensure that our policies, programs and procedures are rigorous, transparent and well understood such that these requirements can be implemented in a timely and cost effective manner. At Bruce Power we value the skills and products that our Vendor community brings to our business and it is our intention to work carefully through this process to ensure that we collectively achieve the quality level required to ensure safe, reliable operation of our plants. In the context of Utility – Vendor Partnerships from a commercial perspective; Bruce Power has established a Vendor Performance Management System (VPMS) to support a structured approach to identify supplier strengths and weaknesses and to assist in the selection and management of our vendor base. Utilizing field initiated Station Condition Reports (SCR’s) and Non Conformance Reports (NCR’s) to establish good, average and substandard performance data points by commodity and contract, the VPMS facilitates data mining of performance information to establish a profile of how a supplier performs. SCR’s and NCR’s are backstopped by commercially generated SCAR Supplier Corrective Action Reports which allows Bruce Power to monitor vendor corrective actions.The VPMS approach permits Bruce Power to have a data based evaluation vs. an opinion based performance scorecard. Although in it’s preliminary stages this system will eventually help Bruce Power verify by commodity how vendors are performing which will in turn allow Bruce Power to enable an exit strategy for a poor performing vendor while strategically developing vendors to fill identified gaps. This capability will act as a cornerstone segment in our approach to Utility – Vendor Partnerships for Refurbishment by establishing performance data points on cost, quality and schedule delivery. Our success in being able to strategically apply this model will depend upon stable outage, generation and capital improvement plans as well

  6. Adaptive polymeric nanomaterials utilizing reversible covalent and hydrogen bonding

    Science.gov (United States)

    Neikirk, Colin

    Adaptive materials based on stimuli responsive and reversible bonding moieties are a rapidly developing area of materials research. Advances in supramolecular chemistry are now being adapted to novel molecular architectures including supramolecular polymers to allow small, reversible changes in molecular and nanoscale structure to affect large changes in macroscale properties. Meanwhile, dynamic covalent chemistry provides a complementary approach that will also play a role in the development of smart adaptive materials. In this thesis, we present several advances to the field of adaptive materials and also provide relevant insight to the areas of polymer nanocomposites and polymer nanoparticles. First, we have utilized the innate molecular recognition and binding capabilities of the quadruple hydrogen bonding group ureidopyrimidinone (UPy) to prepare supramolecular polymer nanocomposites based on supramolecular poly(caprolactone) which show improved mechanical properties, but also an increase in particle aggregation with nanoparticle UPy functionalization. We also present further insight into the relative effects of filler-filler, filler-matrix, and matrix-matrix interactions using a UPy side-chain functional poly(butyl acrylate). These nanocomposites have markedly different behavior depending on the amount of UPy sidechain functionality. Meanwhile, our investigations of reversible photo-response showed that coumarin functionality in polymer nanoparticles not only facilitates light mediated aggregation/dissociation behavior, but also provides a substantial overall reduction in particle size and improvement in nanoparticle stability for particles prepared by Flash NanoPrecipitation. Finally, we have combined these stimuli responsive motifs as a starting point for the development of multiresponsive adaptive materials. The synthesis of a library of multifunctional materials has provided a strong base for future research in this area, although our initial

  7. Summary of the FY 1988 Sunshine Project results. Hydrogen energy; 1988 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1988 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include development of power-supplying materials for electrolysis at high current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on alloy molding/processing techniques, hydrogen-storing metallic materials, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  8. Summary of the FY 1989 Sunshine Project results. Hydrogen energy; 1989 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1989 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include those on the SPE electrolysis at high temperature and current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on hydrogen-storing metallic materials, alloy molding/processing techniques, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  9. Cost estimation of hydrogen and DME produced by nuclear heat utilization system. Joint research

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2003-09-01

    Research of hydrogen energy has been performed in order to spread use of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in all of countries. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-either (DME) has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced by steam reforming hydrogen generation system by the use of nuclear heat. Therefore, the system would be one of the candidates of future system of nuclear heat utilization. In the present study, we focused on the production of hydrogen and DME. Economic evaluation was estimated for hydrogen and DME production in commercial and nuclear heat utilization plant. At first, heat and mass balance of each process in commercial plant of hydrogen production was estimated and commercial prices of each process were derived. Then, price was estimated when nuclear heat was used instead of required heat of commercial plant. Results showed that the production prices produced by nuclear heat were cheaper by 10% for hydrogen and 3% for DME. With the consideration of reduction effect of CO 2 release, utilization of nuclear heat would be more effective. (author)

  10. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  11. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  12. Safety assessment of envisaged systems for automotive hydrogen supply and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Landucci, Gabriele [Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali, Universita di Pisa, via Diotisalvi n.2, 56126 Pisa (Italy); Tugnoli, Alessandro; Cozzani, Valerio [Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali, Alma Mater Studiorum - Universita di Bologna, via Terracini n.28, 40131 Bologna (Italy)

    2010-02-15

    A novel consequence-based approach was applied to the inherent safety assessment of the envisaged hydrogen production, distribution and utilization systems, in the perspective of the widespread hydrogen utilization as a vehicle fuel. Alternative scenarios were assessed for the hydrogen system chain from large scale production to final utilization. Hydrogen transportation and delivery was included in the analysis. The inherent safety fingerprint of each system was quantified by a set of Key Performance Indicators (KPIs). Rules for KPIs aggregation were considered for the overall assessment of the system chains. The final utilization stage resulted by large the more important for the overall expected safety performance of the system. Thus, comparison was carried out with technologies proposed for the use of other low emission fuels, as LPG and natural gas. The hazards of compressed hydrogen-fueled vehicles resulted comparable, while reference innovative hydrogen technologies evidenced a potentially higher safety performance. Thus, switching to the inherently safer technologies currently under development may play an important role in the safety enhancement of hydrogen vehicles, resulting in a relevant improvement of the overall safety performance of the entire hydrogen system. (author)

  13. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    Science.gov (United States)

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  14. Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network

    International Nuclear Information System (INIS)

    Hwangbo, Soonho; Lee, In-Beum; Han, Jeehoon

    2014-01-01

    Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network. In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network

  15. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  16. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  17. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  18. Cost estimation of hydrogen and DME produced by nuclear heat utilization system II

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2004-09-01

    Utilization and production of hydrogen has been studied in order to spread utilization of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in the world. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-ether (DME). has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced from natural gas by steam reforming. Therefore, the system would become one of the candidates of future system of nuclear heat utilization. Following the study in 2002, we performed economic evaluation of the hydrogen and DME production by nuclear heat utilization plant where heat generated by HTGR is completely consumed for the production. The results show that hydrogen price produced by nuclear was about 17% cheaper than the commercial price by increase in recovery rate of high purity hydrogen with increased in PSA process. Price of DME in indirect method produced by nuclear heat was also about 17% cheaper than the commercial price by producing high purity hydrogen in the DME producing process. As for the DME, since price of DME produced near oil land in petroleum exporting countries is cheaper than production in Japan, production of DME by nuclear heat in Japan has disadvantage economically in this time. Trial study to estimate DME price produced by direct method was performed. From the present estimation, utilization of nuclear heat for the production of hydrogen would be more effective with coupled consideration of reduction effect of CO 2 release. (author)

  19. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Lecturer

    2012-05-03

    May 3, 2012 ... The main goals of this research were to use E. aerogenes ADH-43 for fermentation in order to decide the best carbon sources and ... by converting to electricity using fuel cells in 50 ml vial bottle, 2% total ... evolution compared with other biological hydrogen .... Erlenmeyer containing a solution of Ca (OH) 2.

  20. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  1. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  2. Knowledge Utilization in Projects – a Practice-based

    DEFF Research Database (Denmark)

    Thuesen, Christian

    Drawing upon Practice-based theorizing in general and Actor Network Theory and theories of Communities of Practices in particular the paper develops an analytical strategy for understanding “life” in projects. The analytical strategy is applied on empirical material from an 18-month ethnographic...... study of a construction project. The project is interpreted as constellation of networked practices, which always is in the making. Participation in this project is a learning process where existing practices are reproduced and developed. This understanding of “life” in the project, frames a concluding...... analysis and discussion of the utilization of knowledge in the project....

  3. Optimization of Utility-Scale Wind-Hydrogen-Battery Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, L. J.

    2004-07-01

    Traditional utility-scale wind energy systems are not dispatchable; that is, the utility cannot instantaneously control their power output. Energy storage, which can come in many forms, is needed to add dispatchability to a wind farm. This study investigates two options: batteries and hydrogen.

  4. Conjoint utility analysis of technical maturity and project progress of construction project

    Directory of Open Access Journals (Sweden)

    Ma Wei

    2016-01-01

    Full Text Available In this paper, taking construction project as the research object, the relationship between the project maturity index calculated by the construction project technical risks with different fine degree and the project progress index is studied, and the equilibrium relationship between the Party A’s utility curve and the Party B’s cost curve of using project maturity index and project progress index as the research variables is analyzed. The results show that, when the construction project technical risk division is more precise, the conjoint utility of the project's technical maturity index and the project progress is higher, and the project’s Party A and Party B two sides are closer to the optimal equilibrium. This shows that the construction project technical risk must be finely divided, and managed and controlled respectively, which will help to improve the conjoint utility of the project Party A and Party B two sides.

  5. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  6. Hydrogen research and nuclear safety: a utility perspective

    International Nuclear Information System (INIS)

    Lau, W.

    1982-01-01

    The main thrust of this paper is to emphasize that research efforts need to be pursued only after the following steps have been taken: 1) identify clearly what decisions are needed; 2) develop an overall decision logic chart and identify the information required for each of the decisions; 3) distinguish confirmatory research from research needed for decision-making information; 4) recognize that an optimized mitigation system is generally not the objective, neither is minimum risk required; 5) assure that the level of studies be consistent with the risk. After having taken the above steps, the authors concluded that a deliberate and distributed ignition system is a viable solution for the hydrogen problem for certain nuclear power plants

  7. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  8. Feasibility Study for a Hopi Utility-Scale Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  9. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    With an objective to utilize hydrogen fuel in aircraft engines, a conceptual design survey was carried out on medium size transport aircraft. Large size long-distance aircraft and SST loaded with a great amount of fuel have the jet fuel (JP) increase take-off weight, affecting largely the selection of wing area and engine thrust. If the hydrogen fuel can be liquefied, large reduction can be achieved and the economic effect can be increased. However, for short-distance transport aircraft, the fuel weight ratio is small, where no large advantage is anticipated even if hydrogen is liquefied. Nevertheless, considering oil depletion in the future, a conceptual design was performed on the YX2688 short-medium distance aircraft being discussed of development. Even the short-medium distance aircraft that can be developed and commercialized as civilian use aircraft has a number of common points with large aircraft development, such as hydrogen fuel using technologies and safety. Although the advantage of using liquefied hydrogen as fuel may of course be smaller in the short-medium distance aircraft than in larger aircraft, the trend of using hydrogen fuel is historical necessity, whose development plans should be moved forward. (NEDO)

  10. Hydrogen tomorrow: Demands and technology requirements

    Science.gov (United States)

    1975-01-01

    National needs for hydrogen are projected and the technologies of production, handling, and utilization are evaluated. Research and technology activities required to meet the projected needs are determined.

  11. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  12. A comparison of hydrogen-fueled fuel cells and combustion engines for electric utility applications

    International Nuclear Information System (INIS)

    Schoenung, S.M.

    2000-01-01

    Hydrogen-fueled systems have been proposed for a number of stationary electric generation applications including remote power generation, load management, distribution system peak shaving, and reliability or power quality enhancement. Hydrogen fueling permits clean, low pollution operation. This is particularly true for systems that use hydrogen produced from electrolysis, rather than the reforming of hydrocarbon fuels. Both fuel cells and combustion engines are suitable technologies for using hydrogen in many electric utility applications. This paper presents results from several studies performed for the U.S. Department of Energy Hydrogen Program. A comparison between the two technologies shows that, whereas fuel cells are somewhat more energy efficient, combustion engine technology is less expensive. In this paper, a comparison of the two technologies is presented, with an emphasis on distributed power and power quality applications. The special case of a combined distributed generation I hydrogen refueling station is also addressed. The comparison is made on the basis of system costs and benefits, but also includes a comparison of technology status: power ratings and response time. A discussion of pollutant emissions and pollutant control strategies is included. The results show those electric utility applications for which each technology is best suited. (author)

  13. Interest in smart metering project surprises utility, IBM

    International Nuclear Information System (INIS)

    Horne, D.

    2006-01-01

    This article provided an outline of Hydro Ottawa and IBM's smart metering pilot project, which has resulted in high approval ratings from the public. The project features 375 participants broken down into 3 separate groups to look for potential consumption differences between customers charged according to standard time-of-use pricing; time-of-use with critical peak pricing; and time-of-use with critical peak rebates. The Ontario Smart Price Pilot project will be run for 5 months, and is expected to provide detailed energy information about usage. Past projects have indicated that customers respond quickly to smart metering, as they are able to monitor their energy usage and more effectively manage their energy consumption. Ontario plans to have all homes and small businesses using smart meters by 2010, as high seasonal demand has indicated that conservation and balanced resource use are now top priorities for many utility companies. At least 10 states in the United States have conducted smart metering pilot projects. The California Public Utilities Commissions has recently approved a $1.7 billion statewide plan to replace old meters with smart meters. In Ontario, customers have ordered 10,000 electricity monitors that Hydro One is giving away. It was concluded that research results from an earlier Hydro One demonstration project with 500 Ontario homeowners showed that real time electricity monitors can help homeowners reduce their consumption of electricity by up to 15 per cent. 4 figs

  14. Distributed H2 Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  15. Well-to-Wheel Analysis of Solar Hydrogen Production and Utilization for Passenger Car Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.; Meier, A.

    2006-07-01

    A well-to-wheel analysis is conducted for solar hydrogen production, transport, and usage in future passenger car transportation. Solar hydrogen production methods and selected conventional production Technologies are examined using a life cycle assessment (LCA). Utilization of hydrogen in fuel cells is compared with advanced gasoline and diesel power trains. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced fossil fuel power trains and by more than 90% if car and road infrastructure are not considered. Solar hydrogen production allows a reduction of fossil energy requirements by a factor of up to 10 compared to using conventional Technologies. Major environmental impacts are associated with the construction of the steel-intensive infrastructure for solar energy collection due to mineral and fossil resource consumption as well as discharge of pollutants related to today's steel production technology. (Author)

  16. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  17. FY 1999 R and D project on the global environmental industry technology. Report on the results of the R and D on the catalytic hydrogenation use CO2 fixation/effective utilization technology; 1999 nendo sesshoku suisoka hanno riyo nisanka tanso seika hokokusho. Koteika yuko riyo gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing CO2 emitting together with the consumption of fossil fuels, study was conducted on the use of CO2 by converting it to chemical substances such as methanol, etc., and the FY 1999 results were outlined. In the development of the CO2 separation membrane technology, data were obtained on effects of scaling-up by module with a membrane area of 4.9m{sup 2} and on design conditions. Further, in the experiment using mock exhaust gas, it was confirmed that the performance had been kept up for 3,000 hours or more. In the development of catalytic hydrogenation technology, the basic data for enlargement were accumulated. Moreover, the activity stabilized about 18,000 hours was confirmed, and the catalytic life was estimated at more than 3 years. In the development of large quantity hydrogen production/supply technology, assembly/operation of 7,500cm{sup 2} x 6 electrolytic cells were conducted, and it was confirmed that the hydrogen production capacity per cell was 3Nm{sup 3}/h. The final target for enlargement was achieved. In the study of the total system, the conceptual design was made for 'high concentration CO2 containing natural gas use CO2 recovery utilization system,' and 'biomass resource use methanol synthesis system.' (NEDO)

  18. FY 1999 R and D project on the global environmental industry technology. Report on the results of the R and D on the catalytic hydrogenation use CO2 fixation/effective utilization technology; 1999 nendo sesshoku suisoka hanno riyo nisanka tanso seika hokokusho. Koteika yuko riyo gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing CO2 emitting together with the consumption of fossil fuels, study was conducted on the use of CO2 by converting it to chemical substances such as methanol, etc., and the FY 1999 results were outlined. In the development of the CO2 separation membrane technology, data were obtained on effects of scaling-up by module with a membrane area of 4.9m{sup 2} and on design conditions. Further, in the experiment using mock exhaust gas, it was confirmed that the performance had been kept up for 3,000 hours or more. In the development of catalytic hydrogenation technology, the basic data for enlargement were accumulated. Moreover, the activity stabilized about 18,000 hours was confirmed, and the catalytic life was estimated at more than 3 years. In the development of large quantity hydrogen production/supply technology, assembly/operation of 7,500cm{sup 2} x 6 electrolytic cells were conducted, and it was confirmed that the hydrogen production capacity per cell was 3Nm{sup 3}/h. The final target for enlargement was achieved. In the study of the total system, the conceptual design was made for 'high concentration CO2 containing natural gas use CO2 recovery utilization system,' and 'biomass resource use methanol synthesis system.' (NEDO)

  19. On the use of hydrogen in confined spaces: Results from the internal project InsHyde

    NARCIS (Netherlands)

    Venetsanos, A.G.; Adams, P.; Azkarate, I.; Bengaouer, A.; Brett, L.; Carcassi, M.N.; Engebø, A.; Gallego, E.; Gavrikov, A.I.; Hansen, O.R.; Hawksworth, S.; Jordan, T.; Kessler, A.; Kumar, S.; Molkov, V.; Nilsen, S.; Reinecke, E.; Stöcklin, M.; Schmidtchen, U.; Teodorczyk, A.; Tigreat, D.; Versloot, N.H.A.

    2011-01-01

    The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally, InsHyde

  20. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  1. GEO-6 project for Galileo data scientific utilization

    Science.gov (United States)

    Buresova, Dalia; Lastovicka, Jan; Boska, Josef; Sauli, Petra; Kouba, Daniel; Mosna, Zbysek

    The future GNSS Galileo system offer a number of benefits (e.g. availability of better accuracy positioning, new frequencies bands allowing the implementation of specific techniques, provable time-stamp and location data using SIS authorisation, integrity, better support ad-hoc algorithms for data analysis and other service guarantee for liability and regulated applications) are widely spread among different disciplines. Also applications which are less interesting from the commercial and market point of view could successfully contribute to the numerous social benefits and support the innovation in the international research. The aim of the GEO-6 project "Scientific research Using GNSS" is to propose and broaden scientific utilization of future GNSS Galileo system data in research. It is a joint project of seven institutions from six countries led by the Atos Origin Company from Spain. The core of the project consists from six projects in five priority areas: PA-1 Remote sensing of the ocean using GNSS reflections, PA-2a Investigating GNSS ionospheric data assimilation, PA-2b 3-D gravity wave detection and determination (both PA-2a and PA-2b are ionospheric topics), PA-3 Demonstration of capability for operational forecasting of atmospheric delays, PA-4 GNSS seismometer, PA-5 Spacecraft formation flying using global navigation satellite systems. Institute of Atmospheric Physics, Prague, Czech Republic is responsible for the project PA-2b, where we developed and tested (to the extent allowed by available data) an algorithm and computer code for the 3-D detection of gravity waves and determination of their characteristics. The main drivers of the GEO-6 project are: high levels of accuracy even with the support of local elements, sharing of solutions and results for the worldwide scientific community. The paper will present basic description of the project with more details concerning Czech participation in it.

  2. Prospects of sugarcane milling waste utilization for hydrogen production in India

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2007-01-01

    Cane-sugar producing countries also generate sufficient waste (bagasse) that is mostly utilized ''on-site'' as a replacement to coal in specialized boilers. In addition to sugar and molasses, about 25% by-product of the cane milling is bagasse that still retains 2.5% sugar on dry wt. basis.This paper deals with the prospects of bagasse fermentation for hydrogen production. It seems relevant, as India and Brazil are the major sugarcane producers in the world. The results obtained confirm bagasse, annually generated to a tune of 40 Mt (million tons) in India, can be diverted from the conventional burning or composting to fermentative hydrogen production in a cost-effective way. The processing cost of bagasse for hydrogen production (3Nm 3 ) equivalent to 1L petrol is about half. The system optimization for accessibility of polysaccharides in bagasse and the use of genetically efficient bacterial strains for agrowaste-based hydrogen production seems the ideal option for clean energy generation

  3. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  4. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...... the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed...

  5. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  6. Aims and first assessments of the French hydrogen pathways project HyFrance3

    Energy Technology Data Exchange (ETDEWEB)

    Le Duigou, Alain [CEA/DEN/DANS/I-Tese, Gif-sur-Yvette (France); Quemere, Marie-Marguerite [EDF R et D, Moret sur Loing (France). Dept. EPI; Marion, Pierre [IFP, Rueil Malmaison (FR)] (and others)

    2010-07-01

    The HyFrance Group was originally formed in France to support the European project HyWays, by providing (former projects HyFrance1 and HyFrance2) the French data and possible hydrogen pathways according to national specificities. HyFrance3 is a new project that focuses on the economic competitiveness of different steps of the hydrogen chain, from the production to end usage, at the time horizon of 2030 in France. The project is coordinated by CEA with the other partners being: ADEME (co-funding), AFH2, CNRS, IFP, Air Liquide, EdF, GdF Suez, TOTAL, ALPHEA. The project is divided into 4 sub-projects, that address present and future French hydrogen industrial markets for chemical and refinery uses, the analysis of the interplay between wind energy production and storage of hydrogen for different automotive requirements (refuelling stations, BtL plants, H2/NG mix), massive hydrogen storage to balance various offer and demand characteristics, and the supply network (pipeline option competitiveness vs. trucked in supply) to distribute hydrogen in a French region for automotive applications. Technical and economical issues, as well as GHG emissions, are addressed. (orig.)

  7. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    International Nuclear Information System (INIS)

    Ros, M.E.; Jeeninga, H.; Godfroij, P.

    2007-06-01

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged

  8. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M.E.; Jeeninga, H.; Godfroij, P. [ECN Policy Studies, Petten (Netherlands)

    2007-06-15

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged.

  9. Reading Research Utilization Project: An RIC Project for Teachers and Other Field Personnel.

    Science.gov (United States)

    District of Columbia Public Schools, Washington, DC. Dept. of Research and Evaluation.

    This is the final report of the Reading Research Utilization Project (RUP) which was funded by the U.S. Office of Education from July, 1971 to June, 1973. The purpose of the RUP was to encourage the translation of research, particularly reading research, into practice in 16 target elementary schools in Washington, D.C. RUP was a school information…

  10. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  11. MedHySol: Future federator project of massive production of solar hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mahmah, Bouziane; Harouadi, Farid; Chader, Samira; Belhamel, Maiouf; M' Raoui, Abdelhamid; Abdeladim, Kamel [CDER, BP 62, Route de l' Observatoire, Bouzareah, Alger (Algeria); Benmoussa, H. [LESEI, Universite de Batna, Batna (Algeria); Cherigui, Adel Nasser [Universite Joseph Fourier Grenoble I, BP 87, Saint-Martin-D' Heres 38400 (France); Etievant, Claude [CETH, Innov' valley Entreprises, 91460 Marcoussis (France)

    2009-06-15

    Mediterranean Hydrogen Solar (MedHySol) is a federator project for development of a massive hydrogen production starting from solar energy and its exportation within a framework of a Euro-Maghrebian Cooperation project for industrial and energetic needs in the Mediterranean basin. The proposal of this project is included in the Algiers Declaration's on Hydrogen from Renewable Origin following the organization of the first international workshop on hydrogen which was held in 2005. Algeria is the privileged site to receive the MedHySol platform. The objective of the first step of the project is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from solar energy with a significant size (10-100 kW) and to maintain the development of energetic rupture technologies. The second step of the project is to implement the most effective and less expensive technologies to pilot great projects (1-1000 MW). In this article we present the potentialities and the feasibility of MedHySol, as well as the fundamental elements for a scientific and technical supervision of this great project. (author)

  12. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 7. Survey/study on hydrogen utilization technology; 1998 nendo suiso riyo kokusai clean energy system (WE-NET). 7. Suiso riyo gijutsu ni kansuru chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of survey/study of the FY 1998 WE-NET project. In Subtask 7, survey/study have been made on the main hydrogen utilization technologies except the hydrogen combustion gas turbine since FY 1993. Based on the survey results having been obtained, study was made on conditions for introducing promising technology, future prospects, etc. in FY 1998. As to the power generation, the basic combustion test and test on hydrogen injection equipment as element test, and test on ignition equipment were carried out using rapid compression/expansion equipment. A scenario for introducing hydrogen vehicle was made, and at the same time environmental LCA was conducted by which environmental influences can be assessed. The survey of the market of pure hydrogen polymer electrolyte fuel cells were made in terms of the electric utility use, industrial use, residential/commercial use, and movement/vehicle use. Study was conducted on the combined process of oxygen production equipment and He Brayton cycle in the subzero fractionation/low-temperature VSA method. Various methods including performance, price, etc. were surveyed/studied, making it a precondition that hydrogen supply stations are installed in stand-alone distribution near places of consumption. (NEDO)

  13. Health risk assessment for a MWC ash utilization demonstration project

    International Nuclear Information System (INIS)

    Roffman, H.K.

    1992-01-01

    A Health Risk Assessment (HRA) was conducted for the proposed joint Hennepin County/Municipal Services Corporation (MSC) MSW Ash Utilization Demonstration Project, in which combined HERC ash was shipped to the MSC Pilot Plan near Atlanta, Georgia and used in the production of a synthetic aggregate. The synthetic aggregate, or TAP, will serve as a partial replacement for natural aggregates in a section of bituminous pavement that is proposed to be constructed on Pioneer Trail in the City of Corcoran, Minnesota. In this paper, the assessment compares the following three scenarios: a section of roadway paved using the MSC synthetic aggregate product (TAP) as a replacement for 30 percent of the natural aggregates used in bituminous pavement; a section of regular bituminous (asphalt) pavement; and a section of unpaved road currently in place at the site

  14. The INNOHYP-CA Project: producing Hydrogen by innovative high-temperature processes

    International Nuclear Information System (INIS)

    Giaconia, A.; Giorgiantoni, G.; Liberatore, R.; Tarquini, P.; Vignolini, M.

    2008-01-01

    The Project, financed under the 6. Framework Programme, has selected a member of innovative high-temperature processes that seem promising for large-scale production of Hydrogen. ENEA has contributed to the analysis of the status of national and regional projects in the European countries and to the definition of guidelines for the future development of these technologies [it

  15. Project Maghreb - Europe: Solar Production of Hydrogen. Phase I: Feasibility and opportunity study of the project; Projet Maghreb - Europe: Production d'hydrogene solaire. Phase I: Etude d'opportunite et de faisabilite du projet

    Energy Technology Data Exchange (ETDEWEB)

    Mahmah, Bouziane; Belhamel, Maiouf; Chader, Samira; M' Raoui, Abdelhamid; Harouadi, Farid; Etievant, Claude; Lechevalier, Steve; Cherigui, Abdel-Nasser

    2007-07-01

    During the 16th World Hydrogen Energy Conference which held on June 13-16, 2006, in Lyon (France), an important project appeared, the Maghreb-Europe Project for production and export of solar hydrogen, proposed in the Algiers Declaration of the hydrogen of origin renewable and directed by the researchers efforts of the Renewable Energies Development Center of Algiers (CDER) and members of the European company of Hydrogen Technologies (CETH). The present introductory communication exposes a scientific study on the appropriateness and the feasibility of the Project, as well as the objectives, missions and the fundamental elements for a scientific and technique accompaniment of this important project. (auth)

  16. Metrology for hydrogen energy applications: a project to address normative requirements

    Science.gov (United States)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  17. Japan sunshine project 1987 annual summary of Hydrogen energy R and D

    Science.gov (United States)

    1988-04-01

    This paper presents the findings of the researches on hydrogen energy in sunshine project in FY87. A duration test of the electrolyte membrane of solid polymer fabricated by bonding Pt and Ir catalyst layers was made for seven months to produce hydrogen by the electrolysis of water. The result indicates that the electrolysis will be able to be made at high current density. The sensitivity to stress corrosion cracking of stainless steel for electrolysis of water was evaluated. Since a thin film of stabilized zirconia fabricated by sintering at a temperature of 1500 C or higher is dense and conductive, it is a promising solid electrolyte. Since an inert phase to hydrogen is developed in a high-density metallic alloy for hydrogen storage produced by sintering and partially melting Mg7Zn3-Ni, it must be improved. A heating module of hydrogenated material monolithically coated on copper tube was investigated. The application of metallic alloy for hydrogen storage to the hydrogen electrode is studied. A hydrogen-fueled prime mover system circulating an inert gas is being developed. Since the low alloy steel part is extremely embrittled by heating, the intergranular face of coarse crystal affected by the cycle of welding heat is a problem.

  18. Summarized achievement report on the Sunshine Project in fiscal 1979. Hydrogen energy; 1979 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1979 for hydrogen energy research. In hydrogen manufacturing technologies, the paper describes improvement in membrane performance and discussions on electrode materials in high temperature and pressure electrolysis. In the thermo-chemical method, hydrolysis of iron bromide (II) in the iron system cycle was compared to three kinds of reaction patterns corresponding to phase change, and evaluation was given as the hydrogen generating reaction. In the iodine system the first stage oxidation and reduction reaction of MgO-I{sub 2} was subjected to a continued experiment by using a batch autoclave. Discussions were continued on device materials for the iodine cycle. In the light irradiation electrolytic method for the mixed cycle, the light intensity was experimented at a force 12 times greater than that of the solar beam, and a reaction rate of 80% was achieved. Raising the temperature causes the reaction rate to decline, but it can be supplemented by raising the light intensity. A heat diffusion column was found effective in HI decomposition (hydrogen acquisition). For hydrogen transportation and storage, researches are continued on metal hydrides. In hydrogen utilization technologies, combustion, fuel cells (using high temperature solid and alkaline aqueous solution electrolytes), and hydrogen engines are studied. This paper also describes studies on hydrogen safety assuring measures and energy systems. (NEDO)

  19. Financial investments in fuel cells and hydrogen projects in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Brito de Matos, Maiana; Neves, Newton Pimenta Jr.; Silva, Ennio Peres da; Silva Pinto, Cristiano [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    This work aims to identify, classify and account for the investments in hydrogen and fuel cells from 1999 to 2007 made by the public and private sectors in Brazil. Two methodologies were applied to obtain the data for this study. The Top-Down methodology was used to obtain the information from the sponsoring agencies, institutions and funds that promote science and technology in Brazil, such as CNPq, FINEP, P and D ANEEL and Regional Foundations for Research Support. The Bottom-Up methodology consisted in obtaining data directly from the research groups granted by those agencies. After accounting the total Brazilian investment in the period, this was compared with the investments made by the other BRIC countries (Russia, India and China). Next, BRIC countries investment was compared with those made by the European Union, Japan and the United States. The results show that in order to participate in the market share related to equipment and services for the hydrogen economy, Brazil needs to increase the efforts in research, development and innovation in the area. It will be also necessary to apply resources in other important research issues besides ethanol reforming, polymer electrolyte and solid oxide fuel cells, which are the current technologies supported by the Brazilian funding agencies. To achieve this, resources that are already available could be used more efficiently. Another important evidence is that the total annual investment made BRIC countries together is of the same order of magnitude as the investments made separately by the European Union, Japan and the United States. (orig.)

  20. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site.

    Science.gov (United States)

    Suzuki, Shino; Kuenen, J Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun'ichi; Wu, Angela; Sorokin, Dimitry Y; Tenney, Aaron; Meng, XianYing; Morrill, Penny L; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H

    2014-05-21

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus 'Serpentinomonas'.

  1. Ratiometric Sensing of Hydrogen Peroxide Utilizing Conformational Change in Fluorescent Boronic Acid Polymers

    Directory of Open Access Journals (Sweden)

    Kan Takeshima

    2017-01-01

    Full Text Available We demonstrate that the copolymers containing boronic acid and pyrene units can be utilized for the fluorometric sensing of hydrogen peroxide (H2O2 in aqueous solutions. The copolymer exists in a relatively extended conformation in the absence of H2O2, whereas the polymer chain is contracted by the reaction of boronic acid moieties with H2O2 to form phenol groups. This conformational change induces aggregation of the originally isolated pyrene groups. As a result, relative intensity of excimer emission with respect to monomer emission increases with H2O2 concentration. Accordingly, the present methodology enables us to measure H2O2 by means of ratiometric fluorescence change in the range of 0–30 μM.

  2. Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen.

    Science.gov (United States)

    Rieu-Lesme, F; Fonty, G; Doré, J

    1995-01-01

    A new H2/CO2-utilizing acetogenic bacterium was isolated from the rumen of a mature deer. This is the first report of a spore-forming Gram-negative bacterial species from the rumen. The organism was a strictly anaerobic, motile rod and was able to grow autotrophically on hydrogen and carbon dioxide. Acetate was the major product detected. Glucose, fructose and lactate were also fermented heterotrophically. The optimum pH for growth was 7.0-7.5, and the optimum temperature was 37-42 degrees C. Yeast extract was required for growth and rumen fluid was highly stimulatory. The DNA base ratio was 52.9 +/- 0.5 mol% G+C. On the basis of these characteristics and fermentation products, the isolate was considered to be different from acetogenic bacteria described previously.

  3. Compiling Utility Requirements For New Nuclear Power Plant Project

    International Nuclear Information System (INIS)

    Patrakka, Eero

    2002-01-01

    Teollisuuden Voima Oy (TVO) submitted in November 2000 to the Finnish Government an application for a Decision-in-Principle concerning the construction of a new nuclear power plant in Finland. The actual investment decision can be made first after a positive decision has been made by the Government and the Parliament. Parallel to the licensing process, technical preparedness has been upheld so that the procurement process can be commenced without delay, when needed. This includes the definition of requirements for the plant and preliminary preparation of bid inquiry specifications. The core of the technical requirements corresponds to the specifications presented in the European Utility Requirement (EUR) document, compiled by major European electricity producers. Quite naturally, an amount of modifications to the EUR document are needed that take into account the country- and site-specific conditions as well as the experiences gained in the operation of the existing NPP units. Along with the EUR-related requirements concerning the nuclear island and power generation plant, requirements are specified for scope of supply as well as for a variety of issues related to project implementation. (author)

  4. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  5. Technical Analysis of Projects Being Funded by the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Edward G. Skolnik

    2006-02-10

    In July 2000, Energetics began a project in which we performed site-visit based technical analyses or evaluations on hydrogen R&D projects for the purpose of providing in-depth information on the status and accomplishments of these projects to the public, and especially to hydrogen stakeholders. Over a three year period, 32 site-visit analyses were performed. In addition two concepts gleaned from the site visits became subjects of in depth techno-economic analyses. Finally, Energetics produced a compilation document that contains each site-visit analysis that we have performed, starting in 1996 on other contracts through the end of Year One of the current project (July 2001). This included 21 projects evaluated on previous contracts, and 10 additional ones from Year One. Reports on projects visited in Years One and Two were included in their respective Annual Reports. The Year Two Report also includes the two In-depth Analyses and the Compilation document. Reports in Year three began an attempt to perform reviews more geared to hydrogen safety. This Final Report contains a summary of the overall project, all of the 32 site-visit analyses and the two In-depth Analyses.

  6. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Kevin [Sprint, Reston, VA (United States); Bradley, Dwayne [Burns & McDonnell, Kansas City, MO (United States)

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  7. Projected hydrogen cost from methane reforming for North America 2015-2050

    International Nuclear Information System (INIS)

    Vanderveen, K.; Lutz, A.; Klebanoff, L.; Drennen, T.; Keller, J.; Drennen, T.; Kamery, W.

    2006-01-01

    The Hydrogen Futures Simulation Model (H 2 Sim) was used to project the cost for hydrogen at the point of sale to light duty vehicles for distributed, small-scale steam methane reforming. Projections cover the period from 2010-2050 in North America, and take into account assumptions about the quantity of recoverable natural gas remaining in North America. We conclude that there is a window for distributed reforming to play a positive role in supplying a H 2 fuel infrastructure, but this window is closing rapidly. The analysis assumes that production from natural gas reserves in North America will peak sometime before 2050 and demand will cause the price to rise after the peak of production in a manner consistent with Hotelling's model. We consider three scenarios for when the peak occurs, and evaluate the impact on the cost of hydrogen fuel produced via distributed small scale reforming in these three scenarios. (authors)

  8. IEA Agreement on the production and utilization of hydrogen: 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1997-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including a brief summary of hydrogen in general. The Chairman's report provides highlights for the year. Sections are included on hydrogen energy activities in the IEA Hydrogen Agreement member countries, including Canada, European Commission, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, and the US. Lastly, Annex reports are given for the following tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage.

  9. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    Science.gov (United States)

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  10. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu (furoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    This paper introduces two out of six theses related to hydrogen fueled aircraft engines presented at the First World Hydrogen Energy Conference held in Miami in March 1976. One thesis mentions several initial prospects related to terrestrial requirements on hydrogen fueled transport aircraft. Liquefied hydrogen is attractive for large long-distance transport aircraft. Its high energy content can reduce the take-off full load weight by more than 30%, enhancing the economic effect of the aircraft. Saving fossil fuels will require national policy decisions in the near future, where introduction of liquefied hydrogen is more advantageous for long-distance aircraft. However, its introduction into wide-body transport aircraft being the major consumer requires transportation companies and airport authorities to carry out joint development with transport aircraft makers and liquefied hydrogen suppliers. The second thesis describes special natures of fuel subsystems for liquefied hydrogen fueled aircraft. Requirements to major fuel system elements and operation characteristics require evaluation as a comprehensive system, rather than as individual component criteria. In addition, hardware, experience and fuel systems as they are now in space development may not necessarily serve for the purpose. (NEDO)

  11. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  12. A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

    2012-05-01

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  13. Hydrogen production through photovoltaic processes: Italian ENEA and other research projects

    International Nuclear Information System (INIS)

    Barra, L.; Coiante, D.

    1992-01-01

    Brief arguments favouring greater emphasis by government R ampersand D strategies on commercialization efforts to further develop hydrogen production processes involving the use of renewable energy sources are presented. These include the worsening global greenhouse effect problems due to the intensified use of fossil fuels and recent technological advances being made in photovoltaic energy conversion. A world-wide review is then made of on-going research programs in hydrogen production through the use of hydroelectric and solar energy sources. This review provides outlines of project objectives, schedules and financing schemes. Attention is given to the commercialization programs and strategies of ENEA (Italian Commission for New Technologies, Energy and the Environment)

  14. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    International Nuclear Information System (INIS)

    Elam, Carolyn C.

    2001-01-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen

  15. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  16. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  17. FY 1994 report on the results of the project supplementary to the New Sunshine Project - Development of the coal utilization hydrogen production technology. Ninth year - Part 2. Study using a pilot plant (Design/construction/operation study of the pilot plant and the dismantling study); 1994 nendo New Sunshine keikaku hojo jigyo Dai 9 nenji bun seika hokokusho - 2. Sekitan riyo suiso seizo gijutsu kaihatsu - Pilot plant ni yoru kenkyu (Pilot plant no sekkei kensetsu unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    In the R and D of the high temperature coal gasification technology by the entrained bed system which is the core technology of the coal utilization hydrogen production technology, the paper carried out the dismantling study of pilot plant and the summarization of the results. About the summarization of the results, as the results of the HYCOL operation study, there were insufficiencies in expansion of the coal kind used and acquisition of scale-up data, but it was verified that the conceptual design of the HYCOL method was fully applicable to the higher gasification efficiency, higher reliability, adaptability to many kinds of coal and compactness of facilities (low construction cost) which were the final subjects for the realization of commercial plant. This was highly evaluated. Especially, the greatest characteristic of the HYCOL method is the freedom in selection of temperature difference between the upper stage and lower stage, that is, temperatures can be controlled to temperatures they want in each of the upper stage and lower stage in the one-chamber gasifier according to coal properties and slagging control. The verification of this freedom was the base of the total results. Moreover, a reputation was being made that the gasification efficiency and process reliability are at the world's highest level. (NEDO)

  18. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  19. Healthcare Cost and Utilization Project (HCUP) - National Inpatient Sample

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2001 forward. The National (Nationwide) Inpatient Sample (NIS) is part of a family of databases and software tools developed for the Healthcare Cost and Utilization...

  20. Cleveland, Toledo utilities merge to aid N-projects

    International Nuclear Information System (INIS)

    Utroska, D.

    1985-01-01

    A decision by the Cleveland Electric Illuminating Co. and Toledo Edison to merge was spurred by the need to strengthen their access to capital markets in order to complete several nuclear power plants now under construction and to possibly mitigate the impact of large rate increases on Ohio ratepayers. The two utilities will continue as local companies. If they obtain approval from the Securities and Exchange, the Ohio Public Utilities, and the Nuclear Regulatory Commissions for the $8 million affiliation, the new holding company will be among the 20 largest electric utilities in terms of the market value of its common stock. Some industry observers see this as a harbinger of more utility mergers. 1 figure

  1. PACS project management utilizing web-based tools

    Science.gov (United States)

    Patel, Sunil; Levin, Brad; Gac, Robert J., Jr.; Harding, Douglas, Jr.; Chacko, Anna K.; Radvany, Martin; Romlein, John R.

    2000-05-01

    As Picture Archiving and Communications Systems (PACS) implementations become more widespread, the management of deploying large, multi-facility PACS will become a more frequent occurrence. The tools and usability of the World Wide Web to disseminate project management information obviates time, distance, participant availability, and data format constraints, allowing for the effective collection and dissemination of PACS planning, implementation information, for a potentially limitless number of concurrent PACS sites. This paper will speak to tools, such as (1) a topic specific discussion board, (2) a 'restricted' Intranet, within a 'project' Intranet. We will also discuss project specific methods currently in use in a leading edge, regional PACS implementation concerning the sharing of project schedules, physical drawings, images of implementations, site-specific data, point of contacts lists, project milestones, and a general project overview. The individual benefits realized for the end user from each tool will also be covered. These details will be presented, balanced with a spotlight on communication as a critical component of any project management undertaking. Using today's technology, the web arguably provides the most cost and resource effective vehicle to facilitate the broad based, interactive sharing of project information.

  2. Utilizing the Project Method for Teaching Culture and Intercultural Competence

    Science.gov (United States)

    Euler, Sasha S.

    2017-01-01

    This article presents a detailed methodological outline for teaching culture through project work. It is argued that because project work makes it possible to gain transferrable and applicable knowledge and insight, it is the ideal tool for teaching culture with the aim of achieving real intercultural communicative competence (ICC). Preceding the…

  3. HyLights: Preparation of the Large-Scale Demonstration Projects on Hydrogen for Transport in Europe

    International Nuclear Information System (INIS)

    Ulrich Bunger; Volker Blandow; Volker Jaensch; Harm Jeeninga; Cristina Morte Gomez

    2006-01-01

    The strategically important project HyLights has been launched by the European Commission in preparation of the large scale demonstration projects in transition to hydrogen as a fuel and long-term renewable energy carrier. HyLights, monitors concluded/ongoing demonstration projects and assists the planning of the next demonstration project phase, putting a clear focus on hydrogen in transport. HyLights is a coordination action that comprises 5 tasks to: 1) develop an assessment framework for concluded/ongoing demonstration projects, 2) analyse individual projects and establish a project database, 3) carry out a gaps analysis and prepare a requirement profile for the next stage projects, 4) assess and identify necessary financial and legal steps in preparation of the new projects, and 5) develop a European Initiative for the Growth of Hydrogen for Transport (EIGHT). (authors)

  4. FY 1974 report on the results of the Sunshine Project. Comprehensive study of hydrogen use subsystem and study on the periphery technology (Study on the chemical utilization); 1974 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kagaku riyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    This paper reports on the present situation of the chemical use of hydrogen and oxygen, and the short-term, medium-term, and long-term forecast. The main usage of hydrogen is ammonia synthesis, petroleum refining, and methanol synthesis. In the usage of these three, there are factors of structural changes now and in future, and it is extremely difficult to predict the amount in a short term up to around 1980. In a medium term prediction, from the result of predicting the demand of ammonia, methanol and hydrodesulfurization, the total 1985 hydrogen demand is estimated at approximately 60 billion Nm{sup 3}, and approximately 67 billion Nm{sup 3} as the gross hydrogen demand. Further, judging from that synthetic protein, fuel use methanol, and reduced iron are estimated to reach a certain production size in and after 1985, new demand for hydrogen is expected to be approximately 100 billion Nm{sup 3} mostly including fuel use methanol. In a long term prediction, it is extremely hard to predict the demand because of various factors existing in Japan and abroad. As predicted in a medium term, the amount of chemical use of hydrogen is expected to increase more and more, even if calculating it only in the field of ammonia synthesis, petroleum refining, and methanol synthesis. (NEDO)

  5. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  6. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and researches on peripheral technologies (Research on fuel cell systems); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Nenryo denchi system kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper discusses hydrogen fuel cell systems. In the economic performance of fuel cells, the ratio of fuel cost accounting for in the power generation cost is as very high as 66% or higher to 82%, if hydrogen unit cost is in the range of 20 to 50 yen per Nm{sup 3}. Enhancing the power generation efficiency contributes more greatly to reduction of the power generation cost than by reducing the construction cost. There should be no much influence on the power generation cost if a system lasts four to five years. The paper also discusses the discrete type power generation system. Discussions were given on a waste heat recovering fuel cell system using as the model an office building of 16 stories above the ground, with one basement and a total floor area of 16,000 m{sup 2}. If the system can be constructed in such a way that the fuel cell capacity is made slightly larger than that corresponds to power load, and whole air conditioning load can be taken care only by waste heat by using a heat pump, the auxiliary heat source can be made smaller, and the overall fuel conservation ratio can be larger, thus the fuel was found saved by 40% than in existing systems. In using hydrogen in automobiles, weight problem will emerge if high-pressure hydrogen or metallic hydride is used for hydrogen storage. Liquefied hydrogen is light in weight, but large in volume. Development is desired on high-performance hydrogen absorbing alloys. (NEDO)

  7. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  8. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  9. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  10. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Johansson, Sara; Boe, Kanokwan

    2012-01-01

    . The methane production rate of the reactor with H2 addition was 22% higher, compared to the control reactor only fed with manure. The CO2 content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due......The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic...

  11. IEA Agreement on the Production and utilization of hydrogen: 1998 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1999-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including its guiding principles. The Chairman's report section includes highlights of the agreement for 1998. Annex reports are given on various tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage. Lastly, a feature article by Karsten Wurr, E3M Material Consulting, GmbH, Hamburg Germany, is included titled 'Hydrogen in Material Science and Technology: State of the Art and New Tendencies'.

  12. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and researches on peripheral technologies (Research related to automotive engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Jidosha engine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper discusses hydrogen fueled automotive engines. Because hydrogen has a very wide ignition mixture ratio limit for spark ignition engines, very lean combustion is possible without a need of throttling, and thermal efficiency in partial load is high. Thermal efficiency while a car is being driven is reportedly higher by 30% to 50%. Values for CO and CH in exhaust gas are negligible, while NOx is at about the same degree as in gasoline engines, which can be made extremely low during lean burn operation. The spontaneous ignition temperature is higher by about 200 degrees C than that of light oil, which presents difficulty in use for diesel engines. Because of small ignition energy and high combustion velocity, excessively early ignition and reverse ignition can occur easily. Hydrogen would be promising if new manufacturing systems are developed and production cost is reduced, and on the other hand, if petroleum price rises sharply. Hydrogen is also expected as a measure to prevent pollution, including that from soot, odor and CO2. The largest difficulty is in the transportation method, and the only possible method at the present is transportation in liquefied hydrogen form. However, practical application will have such problems as tanks, feeding devices, and cost. Development is desired on light-weight metallic hydrides. Technologies for safety and engine performance must also be developed. (NEDO)

  13. Wind farm projects as joint ventures between a Danish utility and private cooperatives

    International Nuclear Information System (INIS)

    Moerup-Petersen, V.; Pedersen, S.

    1992-01-01

    Four cases on successful cooperation between the Danish utility, NESA A/S, and private wind cooperatives are described. In two cases the utility was invited to share the projects prepared by the cooperatives. In the third case the project was developed by the utility. The fourth and most ambitious project, where construction work is just about to start, both parties are involved on a 50/50 basis. The experience gained from the different projects is described. The paper discusses the advantages and disadvantages of joint projects for both parties. Different models on cooperation are outlined. Mainly based on NESA's experience, the joint concept is recommended by the Danish Ministry of Environment. The aim is to get the optimal utilization of the limited siting possibilities in Denmark. The future perspectives of joint projects are anticipated. (au)

  14. The 10 bar hydrogen time projection chamber of the MuCap experiment

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Johny [Paul Scherrer Institute, Olga/019, CH - 5232 Villigen PSI (Switzerland); Hildebrandt, Malte, E-mail: malte.hildebrandt@psi.c [Paul Scherrer Institute, Olga/019, CH - 5232 Villigen PSI (Switzerland); Petitjean, Claude [Paul Scherrer Institute, Olga/019, CH - 5232 Villigen PSI (Switzerland)

    2011-02-01

    The experimental goal of the MuCap experiment at the Paul Scherrer Institute (PSI) is a high-precision measurement of the singlet capture rate of the nuclear muon capture on the free proton in the reaction {mu}{sup -}+p{yields}n+{nu}{sub {mu}.} The measuring principle is a lifetime measurement whereas the experimental approach is based on a specially developed Time Projection Chamber (TPC) operating with ultra-pure and deuterium-depleted hydrogen gas at a pressure of 10 bar. The TPC acts as an active muon stop detector and the 10 bar hydrogen operates as target and detector. Design, construction and operation of the Time Projection Chamber are presented.

  15. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    International Nuclear Information System (INIS)

    Arnould, F.; Bachellerie, E.; Auglaire, M.; Boeck, B. de; Braillard, O.; Eckardt, B.; Ferroni, F.; Moffett, R.; Van Goethem, G.

    2001-01-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  16. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Bachellerie, E. [Technicatome, 13 - Aix en Provence (France); Auglaire, M. [Tractebel Energy Engineering, Brussels (Belgium); Boeck, B. de [Association Vincotte Nuclear, Brussels (Belgium); Braillard, O. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Eckardt, B. [Siemens AG, Offenbach am Main (Germany); Ferroni, F. [Electrowatt Engineering Limited, Zurich (Switzerland); Moffett, R. [Atomic Energy Canada Limited, Pinawa (Canada); Van Goethem, G. [European Commission, Brussels (Belgium)

    2001-07-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  17. Energy utilization in surface mining project : with case study illustration

    International Nuclear Information System (INIS)

    Sinha, D.K.; De, Amitosh

    1992-01-01

    The importance of reducing energy consumption per tonne of output in the mining projects needs an innovative approach and style to change the behaviour and postures of the technical characteristics. The need for suitable energy policy can not be overlooked with the addition of new large size surface mining projects having a lot of technological development. But the immediate prescription to the problem is to pinpoint specific high energy consuming areas prefixed by thorough diagnosis and followed by deep scientific thought into it. To that extent this paper makes a primary attempt to characterise the various problems. (author). 7 tabs

  18. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Urbaniec, K.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile

  19. Project risk management for development of non-utility power generators (NUGs)

    International Nuclear Information System (INIS)

    Lau, T.

    1990-01-01

    The growing Non-Utility Generation (NUG) industry has brought new opportunities and challenges for the insurance industry. There can be unique engineering and financial risks involved in the development of Non-Utility Power Generation projects. The use of new technologies to meet stringent environmental regulations and to improve project performance and efficiency presents new challenges to the project developers and designers. The lack of funding, resources and experience of some of these projects may create unusual risks that could result in failure or deficiency in the performance of the projects

  20. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    International Nuclear Information System (INIS)

    Baglee, D; Knowles, M J

    2012-01-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  1. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    Science.gov (United States)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  2. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  3. A national aggregate projection of utility compliance decisions

    International Nuclear Information System (INIS)

    Molburg, J.; Hanson, D.

    1992-01-01

    Previous emission limits on electric utility boilers have taken the form of performance standards, e.g., pounds of pollutant permitted per million Btu heat input or a percent reduction from uncontrolled emission levels Growth in generation, which necessarily accompanies growth in demand, results in increasing emissions under this type of standard. The Clean Air Act Amendment (CAAA) 90 addresses this difficulty by setting an absolute cap on utility SO 2 emissions. The Act allocates emission allowances only up to the level of the cap. Owners of new capacity must purchase or otherwise obtain allowances sufficient to cover that capacity's anticipated emissions from this limited pool of available allowances. The Act includes other innovative features, such as allowance trading and banking, which are intended to minimize the cost of the prescribed emission reductions. These features are discussed

  4. Ratio Utility and Cost Analysis for Privacy Preserving Subspace Projection

    OpenAIRE

    Al, Mert; Wan, Shibiao; Kung, Sun-Yuan

    2017-01-01

    With a rapidly increasing number of devices connected to the internet, big data has been applied to various domains of human life. Nevertheless, it has also opened new venues for breaching users' privacy. Hence it is highly required to develop techniques that enable data owners to privatize their data while keeping it useful for intended applications. Existing methods, however, do not offer enough flexibility for controlling the utility-privacy trade-off and may incur unfavorable results when...

  5. Bavarian liquid hydrogen bus demonstration project - safety, licensing and acceptability aspects

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, R.; Knorr, H.; Pruemm, W.

    1999-07-01

    A regular 12 m city bus of the MAN SL 202 type with an internal combustion engine adapted to hydrogen operation and auxiliary gasoline operation was demonstrated in the Bavarian cities of Erlangen and Munich between April 1996 and August 1998. Three bus operators, Erlanger Stadtwerke, Stadtwerke Muenchen and Autobus Oberbayern were testing the bus in three different operating schemes. In order to be able to perform this worldwide first public demonstration of a liquid hydrogen (LH{sub 2}) city bus in regular service, several requirements with respect to safety, licensing, training and acceptability had to be fulfilled. These activities were focusing mainly on the hydrogen specific issues such as (a) integration of onboard LH{sub 2} storage vessels, piping and instrumentation, (b) implementation of storage and refueling infrastructure in the operators' yards, (c) adaptation of the maintenance garages, (d) training of operating and maintenance personnel. During phase II of the demonstration activity a poll was performed on passengers traveling onboard the hydrogen-powered city bus in order to determined the level of acceptance among the users of the bus. The bus was designed and manufactured by MAN Nutzfahrzeuge Aktiengesellschaft. The cryogenic fuel storage and the refueling equipment were designed and manufactured by Linde AG. The realization of the hardware was financially supported by the European Commission (EC) within the Euro-Quebec Hydro-Hydrogen Pilot Project. The demonstration phase was financially supported by EC and the Bavarian State Government. Ludwig-Boelkow-Systemtechnik performed project monitoring for both funding organizations. The presentation will summarize the most important results of this demonstration phase and will address the measures undertaken in order to get the bus, the refueling infrastructure and the maintenance and operating procedures approved by the relevant authorities.

  6. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  7. Cooperative educational project for optical technicians utilizing amateur telescope making

    Science.gov (United States)

    Williamson, Ray

    2004-01-01

    In the modern optical shop, technicians are typically skilled machine operators who work on only one phase of the manufacture for each and every component. The product is designed, specified, methodized, scheduled and integrated by people off the shop floor. Even at the component level, the people inside the shop usually see only one stage of completion. In an effort to make the relevance of their work visible; to demonstrate competence to their peers; to gain appreciation for the work of others; and to give them a meaningful connection with the functions of optical systems, I created "The Telescope Project" for my former employer. I invited those interested to participate in an after-hours, partially subsidized project to build telescopes for themselves. The ground-rules included that we would all make the same design (thus practicing consensus and configuration management); that we would all work on every phase (thus learning from each other); and that we would obtain our parts by random lot at the end (thus making quality assurance a personal issue). In the process the participating technicians learned about optical theory, design, tolerancing, negotiation, scheduling, purchasing, fabrication, coating and assembly. They developed an appreciation for each other's contributions and a broader perspective on the consequences of their actions. In the end, each obtained a high-quality telescope for his or her personal use. Several developed an abiding love for astronomy. The project generated much interest from technicians who didn"t initially choose to participate. In this paper I describe the project in detail.

  8. Hydrogen utilization international clean energy system (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of combustion control technology); Suiso riyo kokusai clean energy system (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu nensho seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the fiscal 1996 developmental results of hydrogen burning turbine combustion technology in the hydrogen utilization international clean energy system (WE-NET) project. A test was conducted on an annular type combustor where oxygen is mixed with steam (inert gas) at burner and fired with hydrogen. Appropriate flame shape and cooling/dilution vapor distribution were attempted, and various data on combustion were measured for improvement. Mixture and flame holding were improved by developing a can type combustor (1) where oxygen is diluted with steam after firing oxygen and hydrogen around burner and by strengthening circulation in the combustor. Improvement such as appropriate steam distribution, etc. is needed. A can type combustor (2) was tested in which the premixed oxygen and hydrogen is supplied from scoop and fired with hydrogen. By supplying part of oxygen from the primary scoop, the residual hydrogen and oxygen concentration around the stoichiometric ratio can be reduced. Concentration of the residual oxygen can be measured by the absorption light method, but it is difficult to adopt the non-contact measuring method to hydrogen. An outlook for the gas temperature measuring method was obtained. 12 refs., 121 figs., 27 tabs.

  9. Utilization of Relap 5 computer code for analyzing thermohydraulic projects

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1987-01-01

    This work deals with the design of a scaled test facility of a typical pressurized water reactor plant of the 1300 MW (electric) class. A station blackout has been choosen to investigate the thermohydraulic behaviour of the the test facility in comparison to the reactor plant. The computer code RELAPS/MOD1 has been utilized to simulate the blackout and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermohydraulic behaviours of the two systems. (author) [pt

  10. Project whole tree utilization. Final summary report 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The emerging shortage of wood fiber and the energy crisis in 1973 initiated this study to analyze the prospect of fuller utilization of the wood fiber resources. At a foreseen gross removal 75 million m/sup 3/sk, corresponding to around 62 million m/sup 3/ solid merchantable wood under bark, around 50 million m/sup 3/ solid volume, including needles, leaves, etc., is left in the forest, corresponding to around 30 million m/sup 3/ wood fiber. In general, these additional quantities are relatively more expensive than the normal wood, and of an inferior quality. Continued developments of machines and systems are urgent if the cost of harvesting is to be reduced. The ecological impact is varied. Stump extraction involves favorable soil preparation and diminishes the risk of insect infestations. Wood residues and stumps should not be removed on unfertile soils, poor in organic matter. On other forest soils it is unlikely that whole tree utilization will have any long term negative effect on soil fertility. However, needles, leaves, small branches, and roots should preferably be left since they are especially rich in nutrients. It was concluded that the short rotation energy forest will produce a fuel which is more expensive than available logging waste.

  11. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  12. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  13. Project, building and utilization of a tomograph of micro metric resolution to application in soil science

    International Nuclear Information System (INIS)

    Macedo, Alvaro; Torre Neto, Andre; Cruvinel, Paulo Estevao; Crestana, Silvio

    1996-08-01

    This paper describes the project , building and utilization of a tomograph of micro metric resolution in soil science. It describes the problems involved in soil's science study and it describes the system and methodology

  14. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    Science.gov (United States)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  15. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  16. Survey research report by the hydrogen occluding alloy utilization development committee; Suiso kyuzo gokin riyo kaihatsu iinkai chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    This report summarizes the FY 1984 survey research results, issued by the hydrogen occluding alloy utilization development committee. The basic property subcommittee is responsible for collecting published data related to the basic properties of metal halides as much as possible, and pigeonholing them to have the data which can contribute to development of the new alloys for basic researches and engineering applications of hydrogen occluding alloys. The subcommittee members have collected these data. The common theme subcommittee has planned to collect the P-C-T diagrams of the hydrogen occluding alloys and new alloys as much as possible, for the designs, development, production and system designs of the hydrogen occluding alloys. The P-C-T diagrams have been collected for a total of 340 types of alloys, which fall into the broad categories of Mg-based, TiFe-based, TiMn-based, other Ti-based, rare-earth-based, Zr-based, Ca-based and others. The analytical methods have been also investigated while collecting P-C-T diagrams. (NEDO)

  17. Communicating solutions for a greener world - a case study of the Bellona Foundation's communication process within the hydrogen project

    International Nuclear Information System (INIS)

    Loene, Cecilie

    2001-01-01

    The world is facing increasing energy and global climate change problems. Facing future depletion of fossil fuels and the threat of increased temperatures on earth due to air pollution from the burning of fossil fuels, there is a need for a clean alternative. The Norwegian environmental organization The Bellona Foundation believes that hydrogen as an energy carrier coupled with hydrogen technology is the solution and the only road to a 0-emissions society-a hydrogen society. Under the slogan, ''From Talking to Walking the Hy-way,'' Bellona is through their Hydrogen Project working to achieve this green society. In a case study of Bellona's Hydrogen Project, this thesis aims to examine how Bellona communicates with the intended target groups within this project and how the organization perceives the communication process. As the slogan suggests, in order for the Hydrogen Project to be completely successful, Bellona has to not only inform people about the hydrogen solution but also convince them and get them to begin implementing hydrogen technology. This is conducted through a communication process. The communication process includes both internal and external activities and is divided into four stages: translation, strategy, channels and feedback. Through contrasting the communication process with science communication models, the need for an interactive, multi-directional approach that makes problematic the receiver and recognizes the receiver as an active participant in addition to adhering to the correlation between message and context of the receiver. The case study aims to look at how Bellona conducts and perceives the different stages in the communication process and find out whether Bellona recognizes these features in or adheres to these factors within the Hydrogen Project. (Author)

  18. The impact of ageing and changing utilization patterns on future cardiovascular drug expenditure: a pharmacoepidemiological projection approach

    DEFF Research Database (Denmark)

    Kildemoes, Helle Wallach; Andersen, Morten; Støvring, Henrik

    2010-01-01

    To develop a method for projecting the impact of ageing and changing drug utilization patterns on future drug expenditure.......To develop a method for projecting the impact of ageing and changing drug utilization patterns on future drug expenditure....

  19. Transitioning to a hydrogen economy in New Zealand - An EnergyScape project

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Rob; Clemens, Tony; Gardiner, Alister; Leaver, Jonathan

    2010-09-15

    The project identifies how hydrogen could become a significant contributor to New Zealand's energy system by 2050. Future transport scenarios are modeled with a changing mix of internal combustion engine (ICE), battery electric vehicles (BEV) and fuel cell vehicles (FCV) over the period between the present day and 2050. For scenarios the model takes account of the electricity generation requirements and costs, the resources used, and the renewable content of that electricity generation. With high penetration of FCV, or a mix of FCV and BEV, NZ targets for renewable electricity generation and transport related emission reductions can be achieved.

  20. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    Science.gov (United States)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  1. 4D CAD Based Method for Supporting Coordination of Urban Subsurface Utility Projects

    NARCIS (Netherlands)

    olde Scholtenhuis, Léon Luc; Hartmann, T.; Doree, Andries G.

    Coordinators of inner city utility construction works face increasing difficulty in managing their projects due to tight physical restrictions, strict deadlines and growing stakeholder fragmentation. This paper therefore presents a 4D CAD based coordination method that supports project plan scoping,

  2. Europe - the first hydrogen economy?

    International Nuclear Information System (INIS)

    Hart, D.

    1999-01-01

    An examination of the state of research relating to hydrogen production and utilization indicates that interest in hydrogen from major companies in Europe has increased by several orders of magnitude in recent years. Of the three major areas where a hydrogen economy could be expected to start, namely, Japan, the United States and Europe, the latter may have advantages in diversity of resources, attitudes towards environmental issues and specific fiscal and regulatory structures. Examples of ongoing research and development projects in Europe include Norway's hydrogen combustion turbine to run on hydrogen from decarbonised natural gas, a project in the Netherlands involving mixing hydrogen and methane in the natural gas grid and a variety of projects involving liquid hydrogen refuelling, hydrogen aircraft, hydrogen fuelling stations and fuel cell vehicle development. There are also ongoing projects in carbon sequestration and hydrogen production for power generation and vehicle use. The author's main contention is that the combination of natural surroundings, environmental problems and attitudes, and business and government frameworks strongly suggest that Europe may be the first to have a hydrogen-based economy. 8 refs

  3. Achievement report on research and development in the Sunshine Project in fiscal 1976. Research related to hydrogen combustion technologies; 1976 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Regarding the Sunshine Project, this paper describes characteristics and technologies of hydrogen combustion, problems in developing combustion devices and conceptual design thereof, catalytic combustion, hydrogen energy systems, and economic evaluation on hydrogen fuel as a heating energy. Hydrogen combustion could emit small amount of NOx if it is sufficiently pre-mixed with air, but at the same time could cause reverse ignition very easily making its practical use difficult. Abolishing the air pre-mixture would cause no fear of reverse ignition, but generate much more NOx than from hydrocarbon fuels. Even if attempting to apply conventional methods such as two-stage combustion, partial stack gas recirculation, water addition, and lean burn systems, many of them cannot be applied as they are, requiring research and development efforts. Discussions on hydrogen energy as a system included those on thermo-chemical hydrogen manufacturing using heat from high temperature gas reactors (using water as the raw material), and electrolytic hydrogen gas manufacturing utilizing surplus electric power from high speed breeder reactors. Whether these methods could be used in markets economically will depend on manufacturing efficiency and cost of hydrogen gas. As the economic evaluation on hydrogen as fuel, discussions and considerations were given on introduction priority in the industrial heating furnace field. (NEDO)

  4. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  5. Evaluation tool for selection and optimisation of hydrogen demonstration projects. Application to a decentralized renewable hydrogen system

    International Nuclear Information System (INIS)

    Bracht, M.; De Groot, A.; Gregoire Padro, C.E.; Schucan, T.H.; Skolnik, E.

    1998-06-01

    As part of the International Energy Agency Hydrogen Implementing Agreement, an evaluation tool to assist in the design, operation and optimisation of hydrogen demonstration facilities is under development. Using commercially available flowsheet simulation software (ASPEN- Plus) as the integrating platform, this tool is designed to provide system developers with a comprehensive data base or library of component models and an integrating platform through which these models may be linked. By combining several energy system components a conceptual design of a integrated hydrogen energy system can be made. As a part of the tool and connected to the library are design guidelines which can help finding the optimal configuration in the design process. The component categories considered include: production, storage, transport, distribution and end use. Many component models have already been included in the initial test platform. The use of the tool will be illustrated by presenting the results of a specific sample system that has been designed and assessed with use of the tool. The system considered is a decentralized renewable hydrogen system in which the hydrogen is produced by biomass gasification or pyrolysis, the produced hydrogen is transported through a pipeline or with a tank truck. The storage options that are considered are liquid hydrogen and compressed gas. The hydrogen is dispensed through a refueling station. Several options for integration are conceivable; i.e. storage of the hydrogen can take place centrally or district heat of a gasification unit can be used to generate electricity for liquefaction, etc. With use of the tool several configurations with different components and various integration options have been examined. Both the results of the modeling effort and an assessment of the evaluation tool will be presented. 5 refs

  6. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  7. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  8. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, A. C.; Hintze, P. E.; Caraccio, A. J.; Bayliss, J. A.; Karr, L. J.; Paley, M. S.; Marone, M. J.; Gibson, T. L.; Surma, J. M.; Mansell, J. M.; hide

    2016-01-01

    The atmosphere of Mars, which is approximately 95% carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASA's Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100% of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon is under construction.

  9. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Bayliss, Jon; Karr, Laurel; Paley, Steve; Marone, Matt; Gibson, Tracy; Surma, Jan; Mansell, Matt; hide

    2016-01-01

    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results.

  10. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  11. NEDO hydrogen, alcohol, and biomass technology subcommittee. 18th project report meeting; NEDO suiso alcohol biomass gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A report is delivered by Morio Murase, a NEDO (New Energy and Industrial Technology Development Organization) director, in which the general situation of hydrogen, alcohol, and biomass technology development is explained. Concerning the research and development of international clean energy system of hydrogen, the WE-NET (World Energy Network) project is described, in which a total system concept design and cryogenic structural materials that are the fruits of the 1st phase are mentioned. Concerning the 2nd phase, research and development to be conducted are discussed, and reports are delivered thereon. Reported concerning the development of high-efficiency refuse-fueled power generation technology are a demonstration test using a pilot plant and a superheater demonstration test. Concerning the research and development for the advanced clear energy vehicle project, a development program is reported for an energy-efficient, low-pollution vehicle which is a combination of a hybrid mechanism and clean energy. Reported also is the research and development of supercritical fluid utilization, in which the reaction of supercritical water upon addition of solvent, its oxidation and hydrogenation, and so forth, are explained. (NEDO)

  12. Utilization of the molecular dynamic to study the effect of hydrogen in the stress corrosion

    International Nuclear Information System (INIS)

    Arnoux, P.

    2007-01-01

    Many microscopic and theoretical models of stress corrosion have been proposed, in particularly to explain the grain boundary cracking of stainless steels and nickel base. In this work calculus of molecular dynamic have been used to propose a mechanism of stress corrosion at the atomic scale. The author aims to reproduce, by molecular dynamic, the mechanism of an open crack in irradiated stainless steel in PWR reactor and show that the growth of the oxide at the crack back produce hydrogen. (A.L.B.)

  13. Energy Utilization Evaluation of Carbon Performance in Public Projects by FAHP and Cloud Model

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-07-01

    Full Text Available With the low-carbon economy advocated all over the world, how to use energy reasonably and efficiently in public projects has become a major issue. It has brought many open questions, including which method is more reasonable in evaluating the energy utilization of carbon performance in public projects when the evaluation information is fuzzy; whether an indicator system can be constructed; and which indicators have more impact on carbon performance. This article aims to solve these problems. We propose a new carbon performance evaluation system for energy utilization based on project processes (design, construction, and operation. Fuzzy Analytic Hierarchy Process (FAHP is used to accumulate the indicator weights and cloud model is incorporated when the indicator value is fuzzy. Finally, we apply our indicator system to a case study of the Xiangjiang River project in China, which demonstrates the applicability and efficiency of our method.

  14. FY 1992 Report on results of the survey/research project commissioned by Sunshine Project. Surveys on hydrogen-fired turbines; 1992 nendo suiso nensho turbine no chosa seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Summarized herein are results of comprehensive surveys on hydrogen energy supply/utilization systems, centered by hydrogen-fired turbines for power generation. The surveyed items include hydrogen energy supply/utilization systems on an international scale, current state of power generation techniques and utilization of hydrogen, hydrogen-fired turbines for power generation, materials techniques for hydrogen-fired turbines, studies on and evaluation of economic viability of each system, expected effects, and problems involved in development. The surveys on the hydrogen production techniques pick up electrolysis with a solid polymer electrolyte as a promising candidate, and extract the scaling-up techniques, improvement of membrane durability, etc. as the research themes. The surveys on the hydrogen storage/transportation techniques indicate that hydrogen can be carried by a chemical medium for transportation/storage at normal temperature and pressure, for which the problems associated with medium loss and safety must be studied, and that the research themes for hydrogen-occluding alloys should include increasing quantities of hydrogen occluded for bulk transportation/storage at low energy, and decreasing cost. The surveys on hydrogen-fired turbines extract a number of problems to be solved, e.g., controlling hydrogen combustion, turbine designs, materials withstanding superhigh temperature for high-temperature combustion of hydrogen, and optimization of the power generation systems. (NEDO)

  15. Japan's Sunshine Project. 1991 Annual Summary of Hydrogen Energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In the study of hydrogen production, tests and experiments were conducted concerning electrolysis of water in solid polymer electrolytes and electrolysis of high-temperature steam. In the study of hydrogen storage and transportation, use of metal hydrides for these purposes was tested with attention paid to CaNi{sub 5} degradation and metal element substitution in ZrMn{sub 2}. In the study of hydrogen application, electrodes in hydrogen storage alloy-aided energy conversion were investigated and hydrogen-oxygen combustion systems were experimented. In the study of hydrogen safety, a fracture in a heat affected weld and fatigue crack propagation therein were simulated, and the effect of hydrogen on the episode was investigated. Investigated in the study of a hydrogen-fired turbine were hydrogen combustion, hydrogen-fired power generation thermal efficiency, fuel cost, power generation cost, etc. (NEDO)

  16. Investigating the Chemical Reactivity for Hydrogen in Siliciclastic Sediments: two Work Packages of the H2STORE Project

    Science.gov (United States)

    De Lucia, M.; Pilz, P.

    2014-12-01

    The H2STORE ("Hydrogen to Store") collaborative project, funded by the German government, investigates the feasibility of industrial-scale hydrogen storage from excess wind energy in siliciclastic depleted gas and oil reservoirs or suitable saline aquifers. In particular, two work packages (geochemical experiments and modelling) hosted at the German Research Centre for Geosciences (GFZ) focus on the possible impact of hydrogen on formation fluids and on the mineralogical, geochemical and petrophysical properties of reservoirs and caprocks. Laboratory experiments expose core samples from several potential reservoirs to pure hydrogen or hydrogen mixtures under site-specific conditions (temperatures up to 200 °C and pressure up to 300 bar). The resulting qualitative and, whereas possible, quantitative data are expected to ameliorate the precision of predictive geochemical and reactive transport modelling, which is also performed within the project. The combination of experiments and models will improve the knowledge about: (1) solubility model and mixing rule for of hydrogen and its gas mixtures in high saline formation fluids; (2) hydrogen reactivity in a broad spectrum of P-T conditions; (3) thermodynamics and kinetics of mineral dissolution or precipitation reactions and redox processes. It is known that under specific P-T conditions reactions between hydrogen and anorganic rock components such as carbonates can occur. However these conditions have never been precisely defined to date. A precise estimation of the hydrogen impact on reservoir behavior of different siliciclastic rock types is crucial for site selection and optimization of storage depth. Enhancing the overall understanding of such systems will benefit the operational reliability, the ecological tolerance, and the economic efficiency of future energy storing plants, crucial aspects for public acceptance and for industrial investors.

  17. Preparation of Pd/γ- Al2O3 catalyst utilized in chemisorption of hydrogen isotopes

    International Nuclear Information System (INIS)

    David, Elena; Stefanescu, Doina; Stanciu, V.

    1997-01-01

    Separation and hydrogen isotope determination require packings with special properties, utilizable in separation columns. Consequently, such packings as catalysts using γ-aluminia and metallic palladium active component as holder were obtained. The γ-aluminia used as holder has been prepared starting from λ salts, easy soluble in water, such as Al 2 (NO 3 ) 3 ·9H 2 O, at a preset (6.2-6.4) controlled pH. At a first stage the Al(OH) 3 results which by calcination at controlled temperature transforms in γ-Al 2O3 . On this holder, in which the specific surface and porosity has been determined, metallic palladium has been deposed, using for impregnation a 2% PdCl 2 solution. The content of deposed palladium was determined as the difference between the content in the initial solution and solution remaining after holder impregnation. This content has been determined by atomic absorption and is within 0.5 - 1.2% Pd. After impregnation the catalyst has been dried, then granulated at the 0.16 mm size and activated by hydrogen at a flow rate of 300 vol H 2 /volume

  18. The Phoenix Project: Shifting to a solar hydrogen economy by 2020

    International Nuclear Information System (INIS)

    Braun, H.

    2008-01-01

    The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Arctic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential 'tipping point' of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth's climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water

  19. THE PHOENIX PROJECT: SHIFTING TO A SOLAR HYDROGEN ECONOMY BY 2020

    Directory of Open Access Journals (Sweden)

    HARRY BRAUN

    2008-07-01

    Full Text Available The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Artic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential “tipping point” of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth’s climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water.

  20. A high-pressure hydrogen time projection chamber for the MuCap experiment

    Energy Technology Data Exchange (ETDEWEB)

    Egger, J.; Fahrni, D.; Hildebrandt, M.; Hofer, A.; Meier, L.; Petitjean, C. [Paul Scherrer Institute, Villigen PSI (Switzerland); Andreev, V.A.; Ganzha, V.A.; Kravtsov, P.A.; Krivshich, A.G.; Maev, E.M.; Maev, O.E.; Petrov, G.; Semenchuk, G.G.; Vasilyev, A.A.; Vorobyov, A.A.; Vznuzdaev, M.E. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Banks, T.I. [University of California, Department of Physics, Berkeley, California (United States); Clayton, S.M. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States); Gray, F.E. [University of California, Department of Physics, Berkeley, California (United States); Regis University, Department of Physics and Computational Science, Denver, Colorado (United States); University of Washington, Department of Physics, Seattle, Washington (United States); Kammel, P.; Kiburg, B.; Winter, P. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States); University of Washington, Department of Physics, Seattle, Washington (United States); Lauss, B. [Paul Scherrer Institute, Villigen PSI (Switzerland); University of California, Department of Physics, Berkeley, California (United States)

    2014-10-15

    The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, μ{sup -} + p → n + ν{sub μ}. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the μp atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail. (orig.)

  1. Diffractive Photon Dissociation in a High Pressure Hydrogen Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory Roy [Rockefeller Univ., New York, NY (United States)

    1983-11-01

    We have performed an experiment at the Tagged Photon Facility of Fermilab to study the diffraction dissociation of high energy photons on hydrogen y + p -+ x + p in the region 0.02 < $\\mid t \\mid$ < 0.1 $(GeV/c)^2$, $M_x$ $^2/s$ < 0.1. In this process, incident photons whose energies range from 70 to 140 GeV transform coherently to massive hadronic states in the mass range M < 5 GeV/c 2 • x We measure the inclusive differential cross section$\\frac{d^20}{dt dM_x ^2}$) The behavior of this cross section, especially when compared to the corresponding cross sections for the diffraction dissociation of incident hadrons (pions, kaons, and protons), reveals some fundamental characteristics of photon hadronic interactions. We use the Recoil Technique to determine the missing mass, $M_x$, and the square of the 4-momentum transfer, t. The recoil detector, TREAD, is a cylindrical time projection chamber filled with high pressure hydrogen gas which serves both as the target and as the drift medium for the ionization track created by recoil protons. The ionization drifts up to 75 cm in a high axial electric field. Concentric sense wires mounted on endplates sample different parts of the track, yielding the polar angle of the recoil. The energy of the recoil is determined by stopping the proton in scintillation counters located inside the high pressure vessel....

  2. Euro-Quebec Hydro-Hydrogen Pilot Project (EQHHPP). Supplementary task programme

    International Nuclear Information System (INIS)

    1992-06-01

    In the course of Phase II of the Euro-Quebec Hydro-Hydrogen Pilot Project (EQHHPP), it was found that a number of topical aspects required more detail investigations, specific tests etc. than could be cared for within Phase II, under the constraint of available time and funds. Consequently, supplementary tasks have been defined and contracted. This report is the Final Report on the results achieved during the performance of these tasks. The tasks cover a wide field for example LH 2 Airbus studies some can be associated with more than one aspect. The table following hereunder may give an overview over the tasks covered. For all 23 papers a separate subject analysis has been carried out. (orig.)

  3. System approach on solar hydrogen generation and the gas utilization; Taiyo energy ni yoru suiso no seisei oyobi sono riyo system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Hirooka, N; Deguchi, Y; Narita, D [Meiji University, Tokyo (Japan)

    1997-11-25

    An apparatus is developed to establish a system which allows utilization of hydrogen safely and easily, and its applicability to a hydrogen system for domestic purposes is tested. The system converts solar energy by the photovoltaic cell unit into power, which is used to generate hydrogen by electrolysis of water at the hydrogen generator, stores hydrogen in a metal hydride , and sends stored hydrogen to the burner and fuel cell units. It is found that a hydrogen occluding alloy of LaNi4.8Al0.2 stores hydrogen to approximately 80% when cooled to 20 to 25degC, and releases it to 10% when heated to 40degC. The fuel cell uses a solid polymer as the electrolyte. The hydrogen gas burner is a catalytic combustion burner with a Pt catalyst carried by expanded Ni-Al alloy. The optimum distance between the burner and object to be heated is 22mm. High safety and fabrication simplicity are confirmed for use for domestic purposes. The system characteristics will be further investigated. 4 refs., 8 figs.

  4. Summarized achievement report on the Sunshine Project in fiscal 1980 (Hydrogen energy); 1980 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1980 for hydrogen energy research. In hydrogen manufacturing using the electrolytic process, improvements were made on membranes and electrodes. Solid electrolyte electrolysis is also under research. Researches are continued on reaction, separating operation, and device materials for the iodine system cycle in the thermo-chemical method. In the iron system cycle, a reaction experimenting equipment was fabricated on the trial basis, and tests and evaluation were performed on the material and heat balances. In the mixed system cycle, researches on the light irradiation electrolytic process were continued, whereas the light collecting rate was raised by using a lens to increase light intensity, having enhanced successfully the reaction rate to 60 to 80%. A heat diffusion column for HI decomposition and separation (hydrogen acquisition) was discussed in terms of chemical engineering. Development works are continued on metal hydrides for hydrogen transportation, and durability tests are also being performed. Same applies to hydrogen storage. A model burner was fabricated on the trial basis, and catalytic combustion was studied as development of a combustion technology that matches the requirements for safe hydrogen combustion and suppression of NOx emission. Searches were continued on catalysts and solid electrolyte materials for fuel cells. Thin film sold electrolyte fuel cells constructed by using the evaporation process are also being studied. The paper also describes measures for hydrogen safety assurance and researches on energy systems. (NEDO)

  5. 75 FR 60093 - Record of Decision for the United States Marine Corps Basewide Utilities Infrastructure Project...

    Science.gov (United States)

    2010-09-29

    ... Basewide Utilities Infrastructure Project at Marine Corps Base Camp Pendleton, CA AGENCY: Department of the... Environmental Policy Act (NEPA) of 1969, 42 United States Code (U.S.C.) Section 4332(2)(c), the regulations of the Council on Environmental Quality (CEQ) for Implementing the Procedural Provisions of NEPA (40 Code...

  6. 40 CFR 262.90 - Project XL for Public Utilities in New York State.

    Science.gov (United States)

    2010-07-01

    ... compliance history or other appropriate factors. (f) At any time, a Utility may add or remove UCCF... following information: (i) A brief description of the XL project, the intended new use of the facility, and... compliance history or other appropriate factors, the acknowledgment may impose conditions in addition to...

  7. Electronic Mentoring of LIS Research Utilizing BITNET: An ACRL Pilot Project.

    Science.gov (United States)

    Gregory, Vicki L.

    1992-01-01

    Describes an ACRL (American College and Research Libraries) project that utilized the electronic conferencing facility of BITNET to provide a system of mentoring for academic librarians conducting research. Results of an electronic mail survey of participants that examined experience levels, attitudes, problems, and communication patterns are…

  8. Effective utilization of maintenance staff in design and implementation of major project work

    International Nuclear Information System (INIS)

    Wyman, D.; Dingle, J.; Brown, R.

    1995-01-01

    The reorganization of Pickering Nuclear Division some 2 years ago resulted in the formation of the Projects and Modifications department. This department takes an integrated approach to manage all aspects of large projects at Pickering. The integration of Design, Drafting, Procurement, Construction and Operations functions into project teams represents a fundamental change to project management at Pickering. The development of integrated teams has great potential for reducing both the time and cost associated with project implementation, while at the same time improving the quality, and maintainability of the commissioned in service project. The Pickering Rehab organization 1989-1993, established to perform the rehab / retube of Units 3 and 4 had proven that a team environment will produce effective results. The outcome was astounding, critical categories such as Safety, Quality of Work, and Timeliness, had proven the team's effectiveness. The integration of operations maintenance staff into the project work activities is still evolving, and has probably required the most adaptation to change for both the former Construction and Operations organizations. Maximizing the utilization of the maintenance staff in the design and implementation of major project work will prove to be a key to a long term operating success of these projects. This paper will focus in on the effective usage of Maintenance staff in the design and implementation phases of major project work at Pickering, and on the benefits realized using this approach. It will be divided into 5 sections as indicated. 1. Past Project Shortfalls. 2. Benefits of the inclusion of Maintenance staff in the Calandria Vault Rehab Project. 3. Maintenance involvement in the Pickering 'A' Shutdown System Enhancement (SDSE) Project. 4. Challenges resulting from the inclusion of Maintenance staff project teams. 5. Summary. (author)

  9. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  10. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers.

    Science.gov (United States)

    Kozan, J V B; Silva, R P; Serrano, S H P; Lima, A W O; Angnes, L

    2007-05-22

    A novel unmediated hydrogen peroxide biosensor based on the incorporation of fibrous tissue of coconut fruit in carbon paste matrix is presented. Cyclic voltammetry and amperometry were utilized to characterize the main electrochemical parameters and the performance of this new biosensor under different preparation and operation conditions. The resulting H2O2-sensitive biosensors respond rapidly (7 s to attain 90% of the signal), was operated at -0.15 V, presented linear response between 2.0x10(-4) and 3.4x10(-3) mol L(-1), the detection limit was estimated as 4.0x10(-5) mol L(-1). Its operation potential was situated between -0.2 and 0.1 V and the best pH was determined as 5.2. Electrodes containing 5% (w/w) of coconut fiber presented the best signal and their lifetime was extended to 3 months. The apparent Michaelis-Menten constant KM(app) and Vmax were estimated to be 8.90 mmol L(-1) and 6.92 mmol L(-1) microA(-1), respectively. The results obtained for determination of hydrogen peroxide in four pharmaceutical products (antiseptic solution, contact lenses cleaning solution, hair coloring cream and antiseptic dental rinse solution) were in agreement with those obtained by the spectrophotometric method. An additional advantage of these biosensors is the capacity to measure hydrogen peroxide even in samples with relatively low pH. To demonstrate the enzymatic activity of the coconut tissue, a very simple way was created during this work. Coconut fibers were immersed in H2O2 solution between two glass slides. Sequential images were taken to show the rapid generation of O2, attesting the high activity of the enzymes.

  11. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate (1) high-temperature-superconductor (HTS) magnet coils, (2) cold copper RF cavities, and (3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant). The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects

  12. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  13. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  14. The In-Situ Resource Utilization Project Under the New Exploration Enterprise

    Science.gov (United States)

    Larson, William E.; Sanders, Gerald B.

    2010-01-01

    The In Situ Resource Utilization Project under the Exploration Technology Development Program has been investing in technologies to produce Oxygen from the regolith of the moon for the last few years. Much of this work was demonstrated in a lunar analog field demonstration in February of 2010. This paper will provide an overview of the key technologies demonstrated at the field demonstration will be discussed a long with the changes expected in the ISRU project as a result of the new vision for Space Exploration proposed by the President and enacted by the Congress in the NASA Authorization Act of2010.

  15. 24 CFR 245.416 - Initial submission of materials to HUD: Conversion from project-paid utilities to tenant-paid...

    Science.gov (United States)

    2010-04-01

    ... projects, and utility rate information, as obtained from the utility supplier; (iv) The estimated monthly... HUD: Conversion from project-paid utilities to tenant-paid utilities or a reduction in tenant utility... AUTHORITIES TENANT PARTICIPATION IN MULTIFAMILY HOUSING PROJECTS Procedures for Requesting Approval of a...

  16. Main outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA parallel projects for hydrogen safety of LWR - 15357

    International Nuclear Information System (INIS)

    Paladino, D.; Kiselev, A.

    2015-01-01

    ERCOSAM and SAMARA are the acronyms for 2 parallel projects co-financed respectively by EURATOM and ROSATOM during the 2010-2014 period with the general aim to advance the knowledge on the phenomenology associated to the hydrogen and steam spreading and stratification in the LWR containment during a severe accident. The important peculiarity of the project was its experimental and analytical investigation of the impact of safety systems such as spray, coolers and PAR (Passive Autocatalytic Recombiners) on the distribution of gas species (hydrogen, steam and air). The main outcomes of the ERCOSAM-SAMARA projects are presented in this paper. The research needs, which could be considered in follow-up activities, are also identified. (authors)

  17. Hydrogen for small-scale energy consumers and CO2-storage. Feasibility study of a demonstration project in the Rijnmond, Netherlands

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    In the future natural gas can be substituted by hydrogen. In the short term hydrogen can be produced from fossil fuels. Released CO 2 can be stored. In the long run it will be possible to produce hydrogen from renewable energy sources (solar cells and wind turbines), which can be transported to the consumer. In the study on the title subject attention is paid to different methods of hydrogen production from natural gas and from residual oils, costs and problems of hydrogen distribution, hydrogen appliances, and CO 2 storage. From the results it appears that a demonstration project to use hydrogen on a small-scale is feasible, although expensive. The costs of the reconstruction of the present natural gas distribution system to a hydrogen distribution system is higher than expected. The price of hydrogen per GJ is higher than the equal energy content of natural gas, in spite of a reduction of the energy levy. The demonstration project will be 25% cheaper per GJ hydrogen when carried out in a newly built area. A demonstration project in which hydrogen is mixed with natural gas is even a factor 2 cheaper. 17 refs., 7 appendices

  18. Experimental Assessment of Water Sprays Utilization for Controlling Hydrogen Sulfide Releases in Confined Space

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhao

    2015-01-01

    Full Text Available This paper reported the utilization of water spray for controlling H2S release in a confined space, which is especially important in industry. A typical spray tower was modified to simulate the confined space for people's enterable routine operation (e.g., pump room, in which the dilution capacity of water sprays can also be evaluated. This work consists of two parts: the first part focuses on the influences of different operating conditions on chemical dilution capacities of water sprays in mechanisms; the second one is comparison between two nozzle configurations for evaluating their feasibilities of practical application. Water sprays express eligible performance for H2S release control even though their dilution capacity was weakened at high gaseous concentrations and rates of releases. The presence of Na2CO3 can significantly improve absorption effectiveness of H2S in water and the optimal Na2CO3 additive was found to be 1.0 g·L−1 in this test. Compared with Na2CO3, adjusting water flow rate may be an effective strategy in enhancing dilution capacity of water sprays due to the fact that larger flow rate led to both less dilution time (TD and dilution concentration (CD. Furthermore, multinozzle configuration is more efficient than single-nozzle configuration under the same water consumption.

  19. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  20. The neutron utilization and promotion program of TRR-II research reactor project in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Huang, Y.H.

    2001-01-01

    The objective of the Taiwan research reactor system improvement and utilization promotion project is to reconstruct the old Taiwan research reactor (TRR), which was operated by the Institute of Nuclear Energy Research (INER) between 1973 and 1988, into a multi-purpose medium flux research reactor (TRR-II). The project started in 1998, and the new reactor is scheduled to have its first critical in June of 2006. The estimated maximum unperturbed thermal neutron flux (E 14 n/cm 2 sec, and it is about one order of magnitude higher than other operating research reactors in Taiwan. The new reactor will equip with secondary neutron sources to provide neutrons with different energies, which will be an essential tool for advanced material researches in Taiwan. One of the major tasks of TRR-II project is to promote domestic utilization of neutrons generated at TRR-II. The traditional uses of neutrons in fuel/material research, trace element analysis, and isotope production has been carried out at INER for many years. On the other hand, it is obvious that promotions of neutron spectrometric technique will be a major challenge for the project team. The limited neutron flux from operating research reactors had discouraged domestic users in developing neutron spectrometric technique for many years, and only few researchers in Taiwan are experienced in using spectrometers. It is important for the project team to encourage domestic researchers to use neutron spectrometers provided by TRR-II as a tool for their future researches in various fields. This paper describes the current status of TRR-II neutron utilization and promotion program. The current status and future plans for important issues such as staff recruiting, personnel training, international collaboration, and promotion strategy will be described. (orig.)

  1. General and preliminary thermohydraulic, hydrogen and aerosol instrumentation plan for the Phebus Fp-project

    International Nuclear Information System (INIS)

    Hampel, G.; Poss, G.; Frohlich, H.K.

    1989-10-01

    The objective of the project was to draw up an instrumentation plan for the French core melting programme PHEBUS FP. This instrumentation plan essentially was to include proven and reliable instruments for recording various thermohydraulic, aerosol and hydrogen phenomena. The candidate measuring methods, which are known mainly from reactor safety programmes, have been described and examined for their usefulness in PHEBUS. Each method and instrument has been described in detail under various aspects such as measuring principle, measuring range, technical design, evaluation model, calibration procedure, accuracy, previous experience, commercial availability, etc. Special attention has been paid to the behaviour of the measuring transducers when exposed to radiation. First, the performance of the instruments was compared with the requirements of PHEBUS. The results of this comparison served as the basis for a measuring concept in tabular form, giving the locations of the measurements, the measuring tasks, and the number and kind of instruments that are recommended. Redundancy and cost-benefit aspects have been taken into account in qualitative terms

  2. Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.

    1998-03-31

    This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that

  3. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Hazem [Farmingdale State College, NY (United States)

    2017-03-10

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as well as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.

  4. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 11. Distributed transportation of hydrogen/hydrogen absorbing alloy for hydrogen storage; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studies were conducted to find out hydrogen absorbing alloys with an effective hydrogen absorption rate of 3 mass % or more, hydrogen discharge temperature of 100 degrees C or lower, hydrogen absorbing capacity after 5,000 cycles not less than 90% of the initial capacity, applicable to stationary and mobile systems. The V-based alloy that achieved an effective hydrogen absorption rate of 2.6 mass % in the preceding fiscal year was subjected to studies relating to safety and durability. Since V is costly, efforts were exerted to develop TiCrMo alloys to replace the V-based alloy. In the search for novel high-performance alloys, endeavors centered on novel ternary alloys, novel alloys based on Mg and Ti, and novel intermetallic compounds of the Mg-4 family. In the study of guidelines for developing next-generation high-performance alloys, methods for creating hydrides with an H/M (hydrogen/metal) ratio far higher than 2 were discussed. Mentioned as techniques to produce such hydrides were the utilization of the hole regulated lattice, novel alloys based on the ultrahigh pressure hydride phase, new substances making use of the cooperative phenomenon in the coexistent multiple-phase structure, and the like. (NEDO)

  5. Hydrogen perspectives in Japan

    International Nuclear Information System (INIS)

    Furutani, H.

    2000-01-01

    Hydrogen energy is considered to present a potential effective options for achieving the greenhouse gas minimization. The MITI (Ministry of International Trade and Industry) of Japanese Government is promoting the WE-NET (World Energy Network System) Project which envisions (1) construction of a global energy network for effective supply, transportation, storage and utilization of renewable energy using hydrogen as an energy carrier as a long-term options of sustainable energy economy, and (2) promotion of market entry of hydrogen energy in near and/or mid future even before construction of a WE-NET system. In this paper, I would like to report how far the hydrogen energy technology development addressed under Phase I has progressed, and describe the outline of the Phase II Plan. (author)

  6. Summary of achievement reports on the Sunshine Project in fiscal 1978 (Hydrogen energy); 1978 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-01

    This paper summarizes achievement reports on the Sunshine Project in fiscal 1978 (hydrogen energy). In hydrogen manufacturing methods, studies are described on materials of membranes and electrodes used in high temperature and pressure electrolysis. In thermo-chemical method, studies are continuing on cycles of the iron system, iodine system, and mixed system (composed by thermal, photo and electro-chemistries). For the iodine system, summary design was performed on an experimental device. For the mixed system, trial fabrication and experiments were carried out on a beam radiation type electrolytic tank that electrolyses quickly HI and Fe{sup 3+} produced in the photo-chemical reaction, and separates the products. Discussions were also given on HI decomposition (hydrogen acquisition) by means of heat diffusion. With respect to storage and transportation, development is being made on optimal metal hydrides. In combustion technologies, discussions are given on combustors and catalysts to break through the dilemma of high NOx emission and frequent occurrence of reverse ignition. For fuel cells, the paper describes developments of the materials thereof, high-temperature solid electrolyte type fuel cells and alkaline aqueous solution electrolyte type fuel cells. Regarding the non-steady hydrogen engines, the paper describes fundamental studies on non-steady jet flow behavior using shock tubes, and single cylinder engine tests. It also describes hydrogen safety assuring measures, and studies on energy systems. (NEDO)

  7. Achievement report on research and development in the Sunshine Project in fiscal 1980. Development of a hydrogen sulfide removing technology; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    As part of geothermal development promotion program in the Sunshine Project, a hydrogen sulfide removing technology development has been worked on since fiscal 1977 for the purpose of environment preservation and multi-purpose utilization. Hydrogen sulfide in downstream fluid in a turbine is removed by more than 90% (as the target value), and the removed hydrogen sulfide is converted into single sulfur having an added value. For condenser waste gas processing, selection was made in fiscal 1980 on the RET process (sulfur is obtained by removing hydrogen sulfide in a suction column and an oxidation column), and for condensate processing, the stripping process (gas having been sent into a stripping column and stripped is fed into the RET device via demister for processing). Field tests were carried out by using fluid generated in a geothermal power plant. Conclusions were reached at high accuracy on optimal process selection corresponding to conditions of the fluid on the turbine outlet side and on the hydrogen sulfide removing cost. A process to treat fluid on the turbine inlet side is available, but not as economically effective as the downstream fluid processing. Same applies to the chemical processing method. A method to measure continually hydrogen sulfide in geothermal steam has been established. (NEDO)

  8. Achievement report on research and development in the Sunshine Project in fiscal 1978. Research on hydrogen energy subsystems (research on hydrogen fueled automobile systems); 1978 nendo suiso energy subsystem no kenkyu seika hokokusho. Suiso jidosha system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This paper describes the result of discussions on hydrogen fueled automobiles in fiscal 1978. Hydrogen fueled automobiles have a difficulty in developing methods for transporting hydrogen, whereas the liquefied hydrogen method and the metal hydride method are being studied in parallel at the present. It is also necessary to solve such basic problems as the method for supplying hydrogen to engines, the injection method, and countermeasures for abnormal combustion. Safety assurance is also important. Very little information is available presently on methods for storing hydrogen inside a car and supplying thereof, which are required for evaluating utilization of liquefied hydrogen to automobiles. Demonstrative surveys and researches are required to acquire basic materials for hydrogen feeding methods in broader meaning including storage and control. Therefore, fiscal 1977 has begun trial fabrication of experimental liquefied hydrogen tanks, and preliminary and experimental researches on types and materials for feed pumps. Fiscal 1978 has moved forward improvements in prototype tank performance (heat insulation method to reduce evaporation loss), trial fabrication of liquid level meters, trial fabrication of feed pumps (especially selection of materials for the sliding parts), and researches on flow rate control methods. Drawings for modification and experiment of the liquefied hydrogen tanks were prepared, and the promising candidates were selected for material combination in pump sliding parts. Durability tests are continuing thereon. Flow rate control was also discussed. (NEDO)

  9. 77 FR 34033 - Public Utility District No. 1 of Douglas County; Notice of Authorization for Continued Project...

    Science.gov (United States)

    2012-06-08

    ... District No. 1 of Douglas County; Notice of Authorization for Continued Project Operation On May 27, 2010, the Public Utility District No. 1 of Douglas County, licensee for the Wells Hydroelectric Project... regulations thereunder. The Wells Hydroelectric Project is located on the Columbia River in Douglas, Okanogan...

  10. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  11. Utilization of the simulators in I and C renewal project of Loviisa NPP

    International Nuclear Information System (INIS)

    Porkholm, K.; Ahonen, A.; Tiihonen, O.

    2006-01-01

    There are two VVER-440 type reactors in Loviisa Nuclear Power Plant. The first unit has been in operation since 1977 and the second since 1980. The availability of the plant as well as the operational experiences of the I and C systems are good. However it is obvious that the lifetime of the original I and C systems is not sufficient to guarantee the good availability of the plant in the future. Due to this fact a project for the renewal of the existing I and C systems has been started at Loviisa Nuclear Power Plant. In the project the analogue I and C systems will be renewed by digital I and C systems in four phases during 2005...2014. Simulators will be utilized extensively in the project to assure that the renewal of I and C systems can be realized safely and economically. An engineering simulator will be used in the design and validation of the modifications of the renewal I and C systems. A development simulator is aimed for the design, testing and acceptance of the new Man Machine Interface. A testing simulator will be used for the testing of the new I and C systems and retuning of the controllers mainly during the Factory Acceptance Tests. A training simulator will be used in training the operators and the other technical personnel in the operation of the new monitor-based control room facilities. All the simulators in the renewal project are based on APROS (Advanced PROcess Simulator) Simulation Software. Fortum Nuclear Services Ltd and the Technical Research Centre of Finland have developed APROS Simulation Software since 1986. APROS is a good example of the real multifunctional simulation software; i.e. it can be used in process and automation design, safety analysis and training simulator applications. APROS has been used extensively for various analysis and simulation tasks of the Loviisa Nuclear Power Plant in the past years. It has also been applied to various nuclear and thermal power plants elsewhere. First a short overview of Loviisa Nuclear Power

  12. Hydrogen by electrolysis of water

    Science.gov (United States)

    1975-01-01

    Hydrogen production by electrolytic decomposition of water is explained. Power efficiency, efficient energy utilization, and costs were emphasized. Four systems were considered: two were based on current electrolyzer technology using present efficiency values for electrical generation by fossil fired and nuclear thermal stations, and two using projected electrolyzer technology with advanced fossil and nuclear plants.

  13. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  14. The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2016-10-01

    Full Text Available This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition, yield and thermal demand were validated and showed conformity with reported experimental results, and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput, supercritical water refining temperature, nature of desirable coproducts, downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 °C conversion temperature allowed higher gross syngas and CHP production. However, mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case, at 450 °C reactor temperature, 18 wt. % solid content and presence of downstream indirect production recorded 66.5%, 66.2% and 57.2% energetic, fuel-equivalent and exergetic efficiencies respectively.

  15. Hybrid compression/absorption type heat utilization system (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Karimata, T.; Susami, S.; Ogawa, Y. [Research and Development Dept., EBARA Corp., Kanagawa pref. (Japan)

    1999-07-01

    This research is intended to develop a 'hybrid compression/absorption type heat utilization system' by combining an absorption process with a compression process in one circulation cycle. This system can produce chilling heat for ice thermal storage by utilizing low-temperature waste heat (lower than 100 C) which is impossible to treat with a conventional absorption chiller. It means that this system will be able to solve the problem of a timing mismatch between waste heat and heat demand. The working fluid used in this proposed system should be suitable for producing ice, be safe, and not damage the ozone layer. In this project, new working fluids were searched as substitutes for the existing H{sub 2}O/LiBr or NH{sub 3}/H{sub 2}O. The interim results of this project in 1997, a testing unit using NH{sub 3}/H{sub 2}O was built for demonstration of the system and evaluation of its characteristics, and R134a/E181 was found to be one of the good working fluid for this system. The COP (ratio of energy of ice produced to electric power provided) of this system using R134a/E181 is expected to achieve 5.5 by computer simulation. The testing unit with this working fluid was built recently and prepared for the tests to confirm the result of the simulation. (orig.)

  16. Computer system requirements specification for 101-SY hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    McNeece, S.G.; Truitt, R.W.

    1994-01-01

    The system requirements specification for SY-101 hydrogen mitigation test project (HMTP) data acquisition and control system (DACS-1) documents the system requirements for the DACS-1 project. The purpose of the DACS is to provide data acquisition and control capabilities for the hydrogen mitigation testing of Tank SY-101. Mitigation testing uses a pump immersed in the waste, directed at varying angles and operated at different speeds and time durations. Tank and supporting instrumentation is brought into the DACS to monitor the status of the tank and to provide information on the effectiveness of the mitigation test. Instrumentation is also provided for closed loop control of the pump operation. DACS is also capable for being expanded to control and monitor other mitigation testing. The intended audience for the computer system requirements specification includes the SY-101 hydrogen mitigation test data acquisition and control system designers: analysts, programmers, instrument engineers, operators, maintainers. It is intended for the data users: tank farm operations, mitigation test engineers, the Test Review Group (TRG), data management support staff, data analysis, Hanford data stewards, and external reviewers

  17. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

    Science.gov (United States)

    Kwon, Young-Tae; Lee, Young-In; Kim, Seil; Lee, Kun-Jae; Choa, Yong-Ho

    2017-02-01

    Low temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 μΩ cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics.

  18. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  19. Utilizing social media for informal ocean conservation and education: The BioOceanography Project

    Science.gov (United States)

    Payette, J.

    2016-02-01

    Science communication through the use of social media is a rapidly evolving and growing pursuit in academic and scientific circles. Online tools and social media are being used in not only scientific communication but also scientific publication, education, and outreach. Standards and usage of social media as well as other online tools for communication, networking, outreach, and publication are always in development. Caution and a conservative attitude towards these novel "Science 2.0" tools is understandable because of their rapidly changing nature and the lack of professional standards for using them. However there are some key benefits and unique ways social media, online systems, and other Open or Open Source technologies, software, and "Science 2.0" tools can be utilized for academic purposes such as education and outreach. Diverse efforts for ocean conservation and education will continue to utilize social media for a variety of purposes. The BioOceanography project is an informal communication, education, outreach, and conservation initiative created for enhancing knowledge related to Oceanography and Marine Science with an unbiased yet conservation-minded approach and in an Open Source format. The BioOceanography project is ongoing and still evolving, but has already contributed to ocean education and conservation communication in key ways through a concerted web presence since 2013, including a curated Twitter account @_Oceanography and BioOceanography blog style website. Social media tools like those used in this project, if used properly can be highly effective and valuable for encouraging students, networking with researchers, and educating the general public in Oceanography.

  20. NRCan's hydrogen storage R and D program

    International Nuclear Information System (INIS)

    Scepanovic, V.

    2004-01-01

    'Full text:' Natural Resources Canada (NRCan) has been working in partnership with industry, other government departments and academia to expedite the development of hydrogen technologies. NRCan's Hydrogen and Fuel Cell R and D Program covers all aspects of hydrogen technologies: production, storage, utilization and codes and standards. Hydrogen storage is a key enabling technology for the advancement of fuel cell power systems in transportation, stationary, and portable applications. NRCan's storage program has been focused on developing storage materials and technologies for a range of applications with the emphasis on transportation. An overview of most recent hydrogen storage projects including pressurized hydrogen, liquid hydrogen and storage in hydrides and carbon-based materials will be given. (author)

  1. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    Science.gov (United States)

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary

  2. Utilization and acceptance of virtual patients in veterinary basic sciences – the vetVIP-project

    Directory of Open Access Journals (Sweden)

    Kleinsorgen, Christin

    2017-05-01

    Full Text Available Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project “vetVIP”, to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin.Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire.Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70% using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations

  3. Evaluation of the Parent-Implemented Communication Strategies (PiCS) Project Using the Multiattribute Utility (MAU) Approach

    Science.gov (United States)

    Stoner, Julia B.; Meadan, Hedda; Angell, Maureen E.; Daczewitz, Marcus

    2012-01-01

    We conducted a multiattribute utility (MAU) evaluation to assess the Parent-Implemented Communication Strategies (PiCS) project which was funded by the Institute of Education Sciences (IES). In the PiCS project parents of young children with developmental disabilities are trained and coached in their homes on naturalistic and visual teaching…

  4. Policy support for large scale demonstration projects for hydrogen use in transport. Deliverable D 5.1 (Part B)

    International Nuclear Information System (INIS)

    Ros, M.E.; Jeeninga, H.; Godfroij, P.

    2007-06-01

    This research addresses the possible policy support mechanisms for hydrogen use in transport to answer the question which policy support mechanism potentially is most effective to stimulate hydrogen in transport and especially for large scale demonstrations. This is done by investigating two approaches. First, the possible policy support mechanisms for energy innovations. Second, by relating these to the different technology development stages (R and D, early market and mass market stage) and reviewing their effect on different parts of the hydrogen energy chain (production, distribution and end-use). Additionally, a comparison of the currently policy support mechanisms used in Europe (on EU level) with the United States (National and State level) is made. The analysis shows that in principle various policy support mechanisms can be used to stimulate hydrogen. The choice for a policy support mechanism should depend on the need to reduce the investment cost (euros/MW), production/use cost (euros/GJ) or increase performance (euros/kg CO2 avoided) of a technology during its development. Careful thought has to be put into the design and choice of a policy support mechanism because it can have effects on other parts of the hydrogen energy chain, mostly how hydrogen is produced. The effectiveness of a policy support mechanism greatly depends on the ability to adapt to the developments of the technology and the changing requirements which come with technological progress. In time different policy support mechanisms have to be applied. For demonstration projects there is currently the tendency to apply R and D subsidies in Europe, while the United States applies a variety of policy support mechanisms. The United States not only has higher and more support for demonstration projects but also has stronger incentives to prepare early market demand (for instance requiring public procurement and sales obligations). In order to re-establish the level playing field, Europe may

  5. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    International Nuclear Information System (INIS)

    Tabassum, Rana; Gupta, Banshi D

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO (1−x) Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO (1−x) Pd x )  are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO (1−x) Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H 2 and 4% H 2 in N 2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO (1−x) Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO (1−x) Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas. (paper)

  6. A Barrier Options Approach to Modeling Project Failure : The Case of Hydrogen Fuel Infrastructure

    NARCIS (Netherlands)

    Engelen, P.J.; Kool, C.J.M.; Li, Y.

    2016-01-01

    Hydrogen fuel cell vehicles have the potential to contribute to a sustainable transport system with zero tailpipe emissions. This requires the construction of a network of fuel stations, a long-term, expensive and highly uncertain investment. We contribute to the literature by including a knock-out

  7. INR participation in the IAEA research project investigating the influence of hydrogen absorption on zirconium alloy behavior

    International Nuclear Information System (INIS)

    Roth, Maria; Radu, Vasile; Dobrea, Dumitru; Pitigoi, Vasile

    2003-01-01

    The paper summarizes the results obtained at INR Pitesti from its participation in the research project coordinated by IAEA Vienna in cooperation with Chalk River and AECL Canada, titled 'Hydrogen and Hydride Induced Degradation of the Mechanical and Physical Properties of Zirconium-based Alloys'. Evidenced is the contribution of INR Pitesti in the works of this project as well as the benefits of this participation for Romania as owner of CANDU type reactor. In the frame this project new results concerning the propagation rate of DHC type cracks in pressure tubes in CANDU reactors were obtained. The same method used to investigate the DHC project was adapted for determination of other quantities of interest related to structural integrity of the materials. The methodology was applied for testing the pressure tubes in Cernavoda NPP Unit 1. The contribution of INR team to statistical processing of data obtained in all the laboratories participating in this project is also highlighted. Opportunity afforded by IAEA to INR Pitesti to bring its contribution to the development of this project of international cooperation together with other well-known institutions and the support from RAAN are acknowledged. These opened ways for other fruitful international cooperation

  8. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Tae [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Lee, Young-In [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811 (Korea, Republic of); Kim, Seil [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 31116 (Korea, Republic of); Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of)

    2017-02-28

    Highlights: • Hydrogen thermally- and plasma- treatments are applied to reduce and sinter the inkjet-printed copper patterns at low temperature. • Plasma sintered Cu patterns have fully densified microstructure with the resistivity of 3.23 μW cm. • Cu conductive track with dense microstructure remains its electrical resistivity after 1 month. • Thermal sintered Cu patterns show a relatively poor microstructure and high resistivity. - Abstract: Low temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 μΩ cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics.

  9. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  10. Utility-Scale Solar 2013: An empirical analysis of project cost, performance, and pricing trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-09-17

    Other than the SEGS I-IX parabolic trough projects built in the 1980s, virtually no large-scale or "utility-scale" solar projects-defined here to include any ground-mounted photovoltaic ("PV"), concentrating photovoltaic ("CPV"), or concentrating solar power ("CSP" or solar thermal) project larger than 5 MWAC-existed in the United States prior to 2007.

  11. Seasonal Patterns in Hydrogen Isotopes of Claws from Breeding Wood-Warblers (Parulidae: Utility for Estimating Migratory Origins

    Directory of Open Access Journals (Sweden)

    Kevin C. Fraser

    2008-06-01

    Full Text Available The global decline in many species of migratory birds has focused attention on the extent of migratory connectivity between breeding and wintering populations. Stable-hydrogen isotope (δD analysis of feathers is a useful technique for measuring connectivity, but is constrained by features of molt location and timing. Claws are metabolically inert, keratinous tissues that grow continuously and can be sampled at any point in the annual cycle, thus providing potentially useful clues about an individual's previous movements. However, variation in the rate at which claws incorporate local δD values is not well described. We measured δD values in claws of two species of Neotropical-Nearctic migrant wood-warblers (Golden-winged Warbler and Cerulean Warbler breeding in eastern Ontario, Canada to investigate the rate of δD change through the breeding season and the utility of claw δD values for estimating migratory origins. δD values of claw tips from 66 different individuals, each sampled once during the breeding season, showed an average change of -0.3‰ to -0.4‰ per day in the direction of the expected local Ontario value. There were no significant sex or species differences in the rate of change. These results suggest δD values of claw tips in Parulids may reflect those of the non-breeding area for 3-7 weeks after arrival on the breeding grounds, and are useful estimators of non-breeding migratory origin. Our results also suggest that these species may leave the breeding ground before claw tips fully incorporate a local δD signature, as claws sampled at the end of the breeding season did not match locally grown feather and claw δD values. This is the first study to examine the seasonal rate of the change in δD values of claws in long-distance, insectivorous, migratory birds.

  12. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-01-01

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump's ability to mitigate the SY-101 tank hydrogen gas hazard

  13. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture

  14. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  15. City/industry/utility partnership leads to innovative combined heat and power project

    Energy Technology Data Exchange (ETDEWEB)

    Savage, J. [Savage and Associates, Quesnel, BC (Canada)

    2010-07-01

    This presentation discussed a combined heat and power (CHP) project that was launched in Quesnel, British Columbia. The CHP is being developed in phases in which new components will enter the system, providing added benefits. Hot oil from a sawmill bioenergy system will be used to heat lumber kilns, generate electricity at an Organic Rankine Cycle co-generation plant, and heat water for a District Energy Loop (DEL) to heat up to 22 existing buildings in the city as well as sawmill and planer buildings. The DEL piping would comprise a 5 kilometre loop. The energy would come from recovered sawmill space heating, recovered stack energy, and additional biomass energy. All of the district heating and 41 per cent of the power would be from heat recovered from the existing industrial operation. This bio-economy vision ultimately involves incorporating a biogas digester into the system to process food, regional organic waste, and pulp mill residuals, relying on bio-solids and heat from the mill. The fertilizer from the digester would then be used in a biomass plantation, which would provide materials to industry for many products, including bio-refining. This project evolved in response to concerns about the ecological effects and long-term economics of aggressive utilization of forest biomass. 15 figs.

  16. International cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes an international cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity. In June, 1994, NEDO and NASA reached a basic agreement with each other about this cooperative R and D on combustion under microgravity conditions. In fiscal 2000, Japan proposed an experiment using the drop tower facilities and parabolic aircraft at NASA Glen Research Center and at JAMIC (Japan Microgravity Center). In other words, the proposals from Japan included experiments on combustion of droplets composed of diversified fuels under different burning conditions (vaporization), flame propagation in smoldering porous materials and dispersed particles under microgravity conditions, and control of interactive combustion of two droplets by acoustical and electrical perturbations. Additionally proposed were experiments on effect of low external air flow on solid material combustion under microgravity, and sooting and radiation effects on the burning of large droplets under microgravity conditions. This report gives an outline of the results of these five cooperative R and D projects. The experiments were conducted under ordinary normal gravity and microgravity conditions, with the results compared and examined mutually. (NEDO)

  17. Utility-Scale Solar 2015: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2016-08-17

    The utility-scale solar sector—defined here to include any ground-mounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar power (“CSP”) project that is larger than 5 MWAC in capacity—has led the overall U.S. solar market in terms of installed capacity since 2012. It is expected to maintain its market-leading position for at least another five years, driven in part by December 2015’s three-year extension of the 30% federal investment tax credit (“ITC”) through 2019 (coupled with a favorable switch to a “start construction” rather than a “placed in service” eligibility requirement, and a gradual phase down of the credit to 10% by 2022). In fact, in 2016 alone, the utility-scale sector is projected to install more than twice as much new capacity as it ever has previously in a single year. This unprecedented boom makes it difficult, yet more important than ever, to stay abreast of the latest utility-scale market developments and trends. This report—the fourth edition in an ongoing annual series—is intended to help meet this need, by providing in-depth, annually updated, data-driven analysis of the utility-scale solar project fleet in the United States. Drawing on empirical project-level data from a wide range of sources, this report analyzes not just installed project costs or prices—i.e., the traditional realm of most solar economic analyses—but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects throughout the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are also presented where appropriate.

  18. Utility-Scale Solar 2014. An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MWAC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the next few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.

  19. New generation of full composite vessels for 70 MPa gaseous hydrogen storage : results and achievements of the French HyBou project

    Energy Technology Data Exchange (ETDEWEB)

    Nony, F. [CEA Materials, Monts (France); Weber, M. [Air Liquide, Paris (France); Tcharkhtchi, A. [Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Lafarie-Frenot, M.C. [Ecole Nationale Superique De Mecanique et d' Aerotechnique, Poitiers (France); Perrier, O. [Raigi, Arbouville (France)

    2009-07-01

    The French collaborative Project known as HyBou explores hydrogen storage as a key enabling technology for the extensive use of hydrogen as an energy carrier. HyBou aims to develop robust, safe and efficient compressed gaseous hydrogen (CGH2) storage systems and validate innovative materials and processes suitable for storage vessel manufacturing with improved performance at low cost. The development of a new generation of type-4 70 MPa vessel was described along with a newly developed liner based on polyurethane materials. The new liner presents increased thermal stability, hydrogen barrier properties and cost effectiveness. The project also aims to evaluate the potential of new high resistance fibers and develop an improved thermosetting resin for composite winding with enhanced mechanical resistance and durability. A specific apparatus was therefore designed to characterize and evaluate coupled thermal and mechanical fatigue resistance in representative conditions.

  20. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume III. Preferred utilization options

    International Nuclear Information System (INIS)

    1978-11-01

    The technical, economic, environmental, and institutional considerations that must be resolved before implementing options to recover energy from the heated SRP effluent are examined. Detailed hypothetical siting options and expected economic returns are examined for power generation, prawn production, and one industrial park scenario. The likely indirect effects on regional population, income, taxes, and infrastructure requirements if the industrial park scenario is implemented are also projected. Recommendations for follow-on studies to make possible an informed go/no-go decision for implementing attractive waste heat options using reject SRP effluent are included

  1. Project selection problem under uncertainty: An application of utility theory and chance constrained programming to a real case

    Directory of Open Access Journals (Sweden)

    Reza Hosnavi Atashgah

    2013-06-01

    Full Text Available Selecting from a pool of interdependent projects under certainty, when faced with resource constraints, has been studied well in the literature of project selection problem. After briefly reviewing and discussing popular modeling approaches for dealing with uncertainty, this paper proposes an approach based on chance constrained programming and utility theory for a certain range of problems and under some practical assumptions. Expected Utility Programming, as the proposed modeling approach, will be compared with other well-known methods and its meaningfulness and usefulness will be illustrated via two numerical examples and one real case.

  2. Model project to promote cultivation and utilization of renewable resources. Modellvorhaben zur Foerderung des Anbaus und der Verwertung nachwachsender Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This revised report on the model projects presents individual projects and measures complementary to each other, documenting, in their totality, an advanced state of development. Moreover it shows the following: that the basic challenge of a model project, especially in the field of the energetic use of biomass, can be met by marrying agriculture to power utilities. So, projects are under way where cultivation of China reed and its utilization in power-and-heat cogeneration plants will, in the future, complement each other. Further questions that are not represented in the research programme of Lower Saxonia are dealt with at the federal level, so that the field of renewable resurces may currently be considered as comprehensively covered. (orig./EF).

  3. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara Denise.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  4. Reduction of sulfate by hydrogen in natural systems: A literature review: Salt Repository Project

    International Nuclear Information System (INIS)

    Mahoney, J.J.; Strachan, D.M.

    1988-01-01

    The results of this literature search indicate that the reduction of sulfate by hydrogen gas can occur in nature, but that temperature appears to be a key factor in the rate of this reaction. At temperatures below 200/degree/C, the key factor in the rate of reaction appears to be extremely slow. At low pH the rate of reaction is faster than at high pH. The solution composition also influences the reaction rate; the most recent research available (Yanisagawa 1983) suggests that the concentration of sulfide in solution influences the rate of this reaction. The reduction reaction appears to proceed through a thiosulfate intermediate, so the presence and distribution of other sulfur species will influence the reaction rate. If the reaction mechanism proposed by Yanisagawa is correct, then higher concentrations of sulfide will result in faster rates of sulfate reduction. In conclusion, the reduction of sulfate by hydrogen to form significant amounts of sulfide is a function of temperature, sulfate and sulfide concentrations, pH, and solution composition. The rate of this reaction appears to be very slow under the conditions anticipated in this repository, but given the length of time required to maintain the integrity of the containers (300 to 1000 years) and the unusual solution compositions present, a better understanding of the reaction mechanism is needed. 16 refs., 1 tab

  5. Utility-Scale Solar 2013: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    OpenAIRE

    Bolinger, M; Weaver, S

    2014-01-01

    The utility-scale solar sector has led the overall U.S. solar market in terms of installed capacity since 2012. In 2016, the utility-scale sector installed more than 2.5 times as much new capacity as did the residential and commercial sectors combined, and is expected to maintain its dominant position for at least another five years. This report—the fifth edition in an ongoing annual series—provides data-driven analysis of the utility-scale solar project fleet in the United States. We analyze...

  6. Simultaneous hydrogen and ethanol production from cascade utilization of mono-substrate in integrated dark and photo-fermentative reactor.

    Science.gov (United States)

    Liu, Bing-Feng; Xie, Guo-Jun; Wang, Rui-Qing; Xing, De-Feng; Ding, Jie; Zhou, Xu; Ren, Hong-Yu; Ma, Chao; Ren, Nan-Qi

    2015-01-01

    Integrating hydrogen-producing bacteria with complementary capabilities, dark-fermentative bacteria (DFB) and photo-fermentative bacteria (PFB), is a promising way to completely recover bioenergy from waste biomass. However, the current coupled models always suffer from complicated pretreatment of the effluent from dark-fermentation or imbalance between dark and photo-fermentation, respectively. In this work, an integrated dark and photo-fermentative reactor (IDPFR) was developed to completely convert an organic substrate into bioenergy. In the IDPFR, Ethanoligenens harbinese B49 and Rhodopseudomonas faecalis RLD-53 were separated by a membrane into dark and photo chambers, while the acetate produced by E. harbinese B49 in the dark chamber could freely pass through the membrane into the photo chamber and serve as a carbon source for R. faecalis RLD-53. The hydrogen yield increased with increasing working volume of the photo chamber, and reached 3.38 mol H2/mol glucose at the dark-to-photo chamber ratio of 1:4. Hydrogen production by the IDPFR was also significantly affected by phosphate buffer concentration, glucose concentration, and ratio of dark-photo bacteria. The maximum hydrogen yield (4.96 mol H2/mol glucose) was obtained at a phosphate buffer concentration of 20 mmol/L, a glucose concentration of 8 g/L, and a ratio of dark to photo bacteria of 1:20. As the glucose and acetate were used up by E. harbinese B49 and R. faecalis RLD-53, ethanol produced by E. harbinese B49 was the sole end-product in the effluent from the IDPFR, and the ethanol concentration was 36.53 mmol/L with an ethanol yield of 0.82 mol ethanol/mol glucose. The results indicated that the IDPFR not only circumvented complex pretreatments on the effluent in the two-stage process, but also overcame the imbalance of growth and metabolic rate between DFB and PFB in the co-culture process, and effectively enhanced cooperation between E. harbinense B49 and R. faecalis RLD-53. Moreover

  7. Report on the basic design of a hydrogen transportation system utilizing metal hydrides and the evaluation thereon; Kinzoku suisokabutsu wo riyoshita suiso yuso system no kihon sekkei to sono hyoka ni kansuru hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-26

    This paper describes a hydrogen transportation system utilizing metal hydrides. For a storage method for moving, metal hydrides having high hydrogen containing performance like Mg-based hydrides would have high portability, less weight disadvantage, and high economic performance. In the fixed location storage, metal hydrides are superior in safety and maintenance cost to the conventional high-pressure gas holder and liquefied hydrogen storage. Because of their high dependence on equilibrium pressure and temperature, the significance of development thereof is large as the source of high-pressure hydrogen generation and motive force. More effective utilization of low-level heat, and separation and refining of hydrogen may also be expected. With regard to fuel supply for hydrogen fueled automobiles, metal hydrides are better in safety and total energy cost than liquefied hydrogen, but have a number of disadvantageous points in weight demerit. Eliminating the weight demerit would be the central issue of the development. Accompanying the development of hydrogen fueled automobiles, there are a number of technological elements to be developed on fuel supply system, such as storage, moving and transportation in hydrogen manufacturing sites, and filling and storage at using sites. Arranging the related infrastructures would be the issue. (NEDO)

  8. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 1. Survey/research for the comprehensive evaluation and developmental plan; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 1. Sogo hyoka to kaihatsu keikaku no tame no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of the FY 1998 WE-NET project survey. WE-NET is composed of various element technologies such as hydrogen production, hydrogen transportation, storage technology, low-temperature materials, hydrogen utilization, and hydrogen combustion turbine technology. Therefore, considering the effectiveness as a total system, it is extremely important to traversally evaluate the situation of the R and D of each technology and developmental achievements and to work out developmental plans with integration, considering the effectiveness as a total system. From viewpoints of making effective promotion of the project and attempting optimization as a total system, it is necessary to make organic/comprehensive connection and adjustment among individual subtasks all the time. In this survey/research, in the case of proceeding with the above-mentioned studies, a committee having knowledgeable persons and learned persons as members was established. There, an investigational study was conducted over the whole WE-NET structural technology, and at the same time the following were attempted: the constant/mobile comprehensive adjustment of the whole project, evaluation of the developmental results, and optimization of the developmental plans. The results obtained in 6 years of Period I were evaluated traversally and comprehensively, and how to proceed with the development in Period II was proposed, which showed the developmental continuity. (NEDO)

  9. Proceedings of the 1999 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-08-28

    The Proceedings of the 1999 US Department of Energy (DOE) Hydrogen Program Review serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on 60 research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 1999, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research.

  10. Analysis of power balancing with fuel cells and hydrogen production plants in Denmark. Project report; CanDan 1.5

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    battery electric vehicles in the current and future energy systems. The energy system analyses conducted here represents systems with plenty of excess wind power. The results presented above are also true for the 2030 energy system with 50 per cent wind power and 100 per cent renewable energy system for 2050. In the future however, it is likely that both electrolysers and battery electric vehicles will have to compete with other technologies. The socio-economic results reveal that the battery electric vehicles have lower costs than all the configurations of hydrogen fuel cells vehicles, also in hybrid solutions. This is the case in all the energy systems analysed towards 100 per cent renewable energy systems as well as for low, medium and high fuel prices. Thus the battery electric vehicles are less vulnerable to fluctuating energy prices. This is also the case when including electricity use for the heating systems in the battery electric vehicles. According to H2 Logic and results and development trends from the major car manufacturers the difference in range between the BEV and HFCV vehicles significantly influences the analysis results from by Aalborg University. The difference in range gives the BEV vehicle a price advantage on the cost of the onboard storage compared to the HFCV. A working prototype of a stationary fuel cell system that is able to deliver power to the grid, based on a demand-signal from the utility company was developed in the project. The (re)wirering of internal relays and the programming of the PLC in a stationary fuel cell system are described. Batteries can be used both up- and down for primary reserves, for regulating and as spinning reserves. Small changes in depth of discharge (DOD) do not tear as much as deep DoD. Therefore batteries can take many shallow cycles (defined as less than 3 % change in DoD) without them being worn significantly. Batteries are therefore well suited for providing primary reserves. Electrolysers that are e

  11. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control Systemm (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable

  12. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    Science.gov (United States)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for

  13. Development of performance model and optimization strategy for standalone operation of CPV-hydrogen system utilizing multi-junction solar cell

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Ng, Kim Choon

    2017-01-01

    Despite highest energy potential, solar energy is only available during diurnal period with varying intensity. Therefore, owing to solar intermittency, solar energy systems need to operate in standalone configuration for steady power supply which requires reliable and sustainable energy storage. Hydrogen production has proved to be the most reliable and sustainable energy storage option for medium and long term operation. However, at the first priority, solar energy must be captured with high efficiency, in order to reduce the overall size of the system and energy storage. Multi-junction solar cells (MJCs) provide highest energy efficiency among all of the photovoltaic technologies and the concentrated photovoltaic (CPV) system concept makes their use cost effective. However, literature is lacking the performance model and optimization strategy for standalone operation of the CPV-hydrogen system. In addition, there is no commercial tool available that can analyze CPV performance, utilizing multi-junction solar cell. This paper proposes the performance model for the CPV-hydrogen systems and the multi-objective optimization strategy for its standalone operation and techno-economic analysis, using micro genetic algorithm (micro-GA). The electrolytic hydrogen production with compression storage and fuel cell, is used as energy storage system. The CPV model is verified for the experimental data of InGaP/InGaAs/Ge triple junction solar cell. An optimal CPV system design is provided for uninterrupted power supply, even under seasonal weather variations. Such approach can be easily integrated with commercial tools and the presented performance data can be used for the design of individual components of the system.

  14. Development of performance model and optimization strategy for standalone operation of CPV-hydrogen system utilizing multi-junction solar cell

    KAUST Repository

    Burhan, Muhammad

    2017-09-16

    Despite highest energy potential, solar energy is only available during diurnal period with varying intensity. Therefore, owing to solar intermittency, solar energy systems need to operate in standalone configuration for steady power supply which requires reliable and sustainable energy storage. Hydrogen production has proved to be the most reliable and sustainable energy storage option for medium and long term operation. However, at the first priority, solar energy must be captured with high efficiency, in order to reduce the overall size of the system and energy storage. Multi-junction solar cells (MJCs) provide highest energy efficiency among all of the photovoltaic technologies and the concentrated photovoltaic (CPV) system concept makes their use cost effective. However, literature is lacking the performance model and optimization strategy for standalone operation of the CPV-hydrogen system. In addition, there is no commercial tool available that can analyze CPV performance, utilizing multi-junction solar cell. This paper proposes the performance model for the CPV-hydrogen systems and the multi-objective optimization strategy for its standalone operation and techno-economic analysis, using micro genetic algorithm (micro-GA). The electrolytic hydrogen production with compression storage and fuel cell, is used as energy storage system. The CPV model is verified for the experimental data of InGaP/InGaAs/Ge triple junction solar cell. An optimal CPV system design is provided for uninterrupted power supply, even under seasonal weather variations. Such approach can be easily integrated with commercial tools and the presented performance data can be used for the design of individual components of the system.

  15. Embedding Systems Thinking into EWB Project Planning and Development: Assessing the Utility of a Group Model Building Approach

    Directory of Open Access Journals (Sweden)

    Kimberly Pugel

    2017-11-01

    Full Text Available Amongst growing sociotechnical efforts, engineering students and professionals both in the international development sector and industry are challenged to approach projects more holistically to achieve project goals.  Engineering service learning organizations must similarly adapt their technological projects to consider varying cultural and economic structures, ensuring more resilient social progress within development efforts.  In practice, systems thinking approaches can be utilized to model the social, economic, political, and technological implications that influence the sustainability of an engineering project. This research assesses the utility of integrating systems thinking into Engineers Without Borders (EWB project planning and development, thereby improving project impact and more effectively engaging members.  At a workshop held at an EWB-USA 2016 Regional Conference, the authors presented a planning and evaluation framework that applies group model building with system dynamics to foster systems thinking through factor diagramming and analysis. To assess the added value of the framework for EWB project planning and development, extensive participant feedback was gathered and evaluated during the workshop and through an optional post-workshop survey.  Supported by thoughtful observations and feedback provided by the EWB members, the model building workshop appeared to help participants reveal and consider project complexities by both visually and quantitatively identifying key non-technical and technical factors that influence project sustainability.  Therefore, system dynamics applied in a group model building workshop offers a powerful supplement to traditional EWB project planning and assessment activities, providing a systems-based tool for EWB teams and partner communities to build capacity and create lasting change.

  16. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Science.gov (United States)

    2010-04-06

    ... regarding Class II wells under section 1425 of the Safe Drinking Water Act, DOGGR has responsibility for... is also invited to learn more about the proposed project at an informal session at this location... space left by the extracted oil is occupied by the injected CO 2 , sequestering it in the geologic...

  17. Early hydrogen water chemistry project review, improvement opportunities and conceptural design options at Exelon boiling water reactors

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Intergranular Stress Corrosion Cracking (IGSCC) and its impacts have been a major concern to the BWR fleet since the mid-70's. Several alternative strategies have been employed to reduce the negative impacts, however, the newest being Early Hydrogen Water Chemistry (EHWC). The Electric Power Research Institute (EPRI) and the BWRVIP (Vessel Internals Project) has strongly supported the development of EHWC, including laboratory testing and a demonstration program that was performed at Peach Bottom Atomic Power Station in October 2011. This paper will review the impacts of a 'Special Test Program' on a BWR plant including: Project management findings; technical reviews and documents required to support such a demonstration program; temporary equipment design, installation and testing; keeping the demonstration progressing along with the plant return from a refuel outage; and lessons learned that can be applied to EHWC implementation during future start-ups. Details will be compared between various Exelon BWRs in support of conceptual designs for EHWC systems and operation. Some comparisons on operational impacts will be provided between various types of BWR plants with differing 'Balance of Plant' designs. (authors)

  18. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  19. Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Allochthony in Two Shallow Eutrophic Lakes.

    Directory of Open Access Journals (Sweden)

    Jari Syväranta

    Full Text Available Hydrogen stable isotopes (δ2H have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton, with the exception of aquatic vascular plants (23%, referred to as macrophytes. The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter, particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.

  20. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  1. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  2. The Hawaii hydrogen plan

    International Nuclear Information System (INIS)

    Takahashi, P.K.; McKinley, K.R.; Antal, M.J. Jr.; Kinoshita, C.M.; Neill, D.R.; Phillips, V.D.; Rocheleau, R.E.; Koehler, R.L.; Huang, N.

    1990-01-01

    Hawaii is the most energy-vulnerable state in the Union. Over the last 16 years the State has undertaken programs to reduce its energy needs and to provide alternatives to current usage tapping its abundant renewable energy resources. This paper describes the long-range research and development plans in Renewable Hydrogen for the State of Hawaii with special attention to the contributions of the Hawaii Natural Energy Institute of the University of Hawaii at Manoa. Current activities in production, storage, and utilization are detailed, and projections through the year 2000 are offered

  3. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  4. Hydrogen production at hydro-power plants

    Science.gov (United States)

    Tarnay, D. S.

    A tentative design for hydrogen-producing installations at hydropower facilities is discussed from technological, economic and applications viewpoints. The plants would use alternating current to electrolyze purified river water. The hydrogen would be stored in gas or liquid form and oxygen would be sold or vented to the atmosphere. The hydrogen could later be burned in a turbine generator for meeting peak loads, either in closed or open cycle systems. The concept would allow large hydroelectric plants to function in both base- and peak-load modes, thus increasing the hydraulic utilization of the plant and the capacity factor to a projected 0.90. Electrolyzer efficiencies ranging from 0.85-0.90 have been demonstrated. Excess hydrogen can be sold for other purposes or, eventually, as domestic and industrial fuel, at prices competitive with current industrial hydrogen.

  5. Japan's Sunshine Project

    Science.gov (United States)

    1992-07-01

    A summary report is given on the results of hydrogen energy research and development achieved during 1991 under the Sunshine Project. In hydrogen manufacturing, regenerative cells that can also generate power as fuel cells were discussed by using solid macromolecular electrolytic films for the case where no electrolysis is carried out with water electrolysis. Yttria stabilized zirconia (YSZ), an oxide solid electrolyte was used for the basic research on high-temperature steam electrolysis. Compositions of hydrogen storage alloys and their deterioration mechanisms were investigated to develop hydrogen transportation and storage technologies. High-density hydrides were searched, and fluidization due to paraffin was discussed. Electrode materials and forming technologies were discussed to develop a hydrogen to power conversion system using hydrogen storage alloys as reversible electrodes. Hydrogen-oxygen combustion was studied in terms of reactive theories, and so was the control of ignition and combustion using ultraviolet ray ignition plasma. Studies were made on hydrogen brittlement in welds on materials in hydrogen utilization and its preventive measures. Surveys were given on technical movements and development problems in high-efficiency, pollution-free hydrogen combustion turbines.

  6. The utility of three-dimensional optical projection tomography in nerve injection injury imaging

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Čapek, Martin; Damjanovska, M.; Reina, M. A.; Eržen, I.; Stopar-Pintarič, T.

    2015-01-01

    Roč. 70, č. 8 (2015), s. 939-947 ISSN 0003-2409 R&D Projects: GA ČR(CZ) GA13-12412S; GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : optical projection tomography * 3D nerve visualization * nerve disruption Subject RIV: EA - Cell Biology Impact factor: 3.794, year: 2015

  7. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  8. Outline of operation and control system and analytical investigation of transient behavior of an out-of-pile hydrogen production system for HTTR heat utilization system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hada, Kazuhiko; Nishihara, Tetsuo; Takeda, Tetsuaki; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    The hydrogen production system by steam reforming of natural gas is to be constructed to demonstrate effectiveness of high-temperature nuclear heat utilization systems with the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test system is planned to investigate the system characteristics, to develop high-temperature components such as a reformer, a high-temperature isolation valve and so on, and to verify operation and control technologies and safety technology at accidents. This paper presents outline of operation and control systems and analytical review of transient behavior of the out-of-pile hydrogen production system. Main function of the operation and control systems is made not to give disturbance to the HTTR at transient state under start-up and stop operations. The operation modes are separated into two ones, namely normal and accident operation modes, and operation sequences are made for each operation mode. The normal operation sequence includes start-up, steady operation and stop of the out-of-pile system. The accident one deals with accident conditions at which supply of feed gas is stopped and helium gas is cooled passively by the steam generator. Transient behavior of the out-of-pile system was analyzed numerically according as the operation sequences. As the results, it was confirmed that the designed operation and control systems are adequate to the out-of-pile system. (author)

  9. The hydrogen village: building hydrogen and fuel cell opportunities

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    fuel cells; Fuel cell powered fork lifts and refueling facilities at industrial sites; Fuel cell-based back up power system for an internet service provider; Fuel cell-based back up power system at a telecommunications switching station;Fuel cell powered delivery vehicles and hydrogen production/refueling station; Hydrogen FC powered utility vehicles and hydrogen production/refueling station in downtown core; and, Some 15 additional projects are under development representing all program areas. (author)

  10. Utility-Scale Solar 2016: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Seel, Joachim; LaCommare, Kristina Hamachi

    2017-09-19

    The utility-scale solar sector has led the overall U.S. solar market in terms of installed capacity since 2012. In 2016, the utility-scale sector installed more than 2.5 times as much new capacity as did the residential and commercial sectors combined, and is expected to maintain its dominant position for at least another five years. This report—the fifth edition in an ongoing annual series—provides data-driven analysis of the utility-scale solar project fleet in the United States. We analyze not just installed project prices, but also operating costs, capacity factors, and power purchase agreement ("PPA") prices from a large sample of utility-scale PV and CSP projects throughout the United States. Highlights from this year's edition include the following: Installation Trends: The use of solar tracking devices dominated 2016 installations, at nearly 80% of all new capacity. In a reflection of the ongoing geographic expansion of the market beyond California and the Southwest, the median long-term average insolation level at newly built project sites declined again in 2016. While new fixed-tilt projects are now seen predominantly in less-sunny regions, tracking projects are increasingly pushing into these same regions. The median inverter loading ratio has stabilized in 2016 at 1.3 for both tracking and fixed-tilt projects. Installed Prices: Median installed PV project prices within a sizable sample have fallen by two-thirds since the 2007-2009 period, to $2.2/WAC (or $1.7/WDC) for projects completed in 2016. The lowest 20th percentile of projects within our 2016 sample were priced at or below $2.0/WAC, with the lowest-priced projects around $1.5/WAC. Overall price dispersion across the entire sample and across geographic regions decreased significantly in 2016. Operation and Maintenance (“O&M”) Costs: What limited empirical O&M cost data are publicly available suggest that PV O&M costs were in the neighborhood of $18/kWAC-year, or $8/MWh, in 2016. These

  11. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Survey on the R and D of technologies for hydrogen transport and storage by hydrogen absorbing alloys (V. Development of the distributed transport/storage use hydrogen absorbing alloys); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 5. Suiso yuso chozo gijutsu no kaihatsu (V. bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the FY 1998 results of the development of hydrogen distributed transport/storage use absorbing alloys in the WE-NET project. Study was made of improvement of hydrogen desorption characteristics by substituting Ca for part of Mg of Mg-Ni alloys and substituting Cr for part of Ni. It is necessary to shift the state of atomic bond by H atom and metal atom in alloys from the ionic bond to the metallic bond, and to change from the amorphous state to the BCC type crystal structure. It was found out that it was possible to do it by improving the composition and heat treatment. The addition of Cu to LaMg{sub 2} alloys shifts the bond with hydrogen to the bond with metal. Easy hydrogen desorption and large absorbing capacity can be expected. It was found out that LaMg{sub 2}Cu{sub 2} synthesized by the reaction sintering method has reversible hydrogen absorbing desorption characteristics. The absorbing amount is 2.4 wt%, the desorption amount 1.2 wt%, and the desorption temperature 190 degrees C. Those are still far from WE-NET targeted values, but a clue to the search was obtained. It was found out that by applying doping technology by Ti, etc. to NaAlH{sub 4}, characteristics can be expected of the desorption amount, 4.5 wt%, of the hydrogen desorption starting temperature from 100 degrees C to 200 degrees C. (NEDO)

  12. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 3) -research/study concerning international cooperation (Volume 1. research/study for promoting international cooperation); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 3. Kokusai kyoryoku ni kansuru chosa kenkyu (1. kokusai kyoryoku suishin no tame no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Various measures were implemented with the aim of realizing the 'longterm vision for international cooperation' in connection with hydrogen utilization international clean energy system technology (WE-NET) formulated in fiscal 1996. The English version of the 1998 annual summary report on results was distributed to approximately 170 pertinent organizations overseas. To develop understanding of the WE-NET project, presentations were given in numerous international conferences. In addition, as research cooperation in IEA (International Energy Agency), specialists were dispatched to the hydrogen implementation committee, the corresponding committee to hydrogen implementation agreement, and to each annex. In international exchange of technical information, each WE-NET task exchanged information with organizations abroad through overseas survey and conducted research on European hydrogen project, for example. With the purpose of developing understanding of WE-NET project activities, a preparatory work was done for participation in HYFORUM2000 (Germany) and World Hydrogen Energy Conference (Beijing) which will be held in 2000. (NEDO)

  13. Alternate bidding strategies for asphalt and concrete pavement projects utilizing life cycle cost analysis (LCCA).

    Science.gov (United States)

    2012-07-01

    Recent changes in pavement materials costs have impacted the competitive environment relative to the : determination of the most cost effective pavement structure for a specific highway project. In response, State : highway agencies have renewed thei...

  14. A renewable energy based hydrogen demonstration park in Turkey. HYDEPARK

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan, Niluefer; Ersoez, Atilla [TUEBITAK Marmara Research Center Energy Institute, Gebze Kocaeli (Turkey); Cubukcu, Mete [Ege Univ., Bornova, Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    The main goal of this national project is to research hydrogen technologies and renewable energy applications. Solar and wind energy are utilized to obtain hydrogen via electrolysis, which can either be used in the fuel cell or stored in cylinders for further use. The management of all project work packages was carried by TUeBITAK Marmara Research Center (MRC) Energy Institute (EI) with the support of the collaborators. The aim of this paper is to present the units of the renewable energy based hydrogen demonstration park, which is in the demonstration phase now and share the experimental results. (orig.)

  15. Proposing a Conceptual Framework to Utilize Storytelling Mechanism into Project Management Life Cycle

    Directory of Open Access Journals (Sweden)

    mahdi shami zanjani

    2013-10-01

    Full Text Available It is rather difficult to exploit knowledge in project organizations due to their unique characteristics and temporal behavior of activities. Therefore, development of knowledge management capability among projects is accounted for an important source to gain competitive advantage. This paper tries to provide a conceptual framework in order to introduce applications of storytelling as an effective and inexpensive mechanism for projects knowledge management. At first, a conceptual framework was designed including 58 story applications in activities of project life cycle by studying and analyzing the related literature. Then, validation of this conceptual framework was investigated and verified by relevant experts. Finally, application of storytelling was assessed within the projects of Sanam industrial and commercial company, using the framework designed. Analysis of data demonstrates that out of 58 applications introduced, this company benefit from just 28 applications. Research method in this section was survey. According to the available information, this paper is one of the first researches which have adopted to introduce applications of storytelling in the life cycle of project management by providing a conceptual framework.

  16. Basic survey project for joint implementation, etc. for associated gas utilization project at Kokdumalak Gas Field in Republic of Uzbekistan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a survey was conducted of the recovery/utilization of the associated gas in the Kokdumalak gas field in the Republic of Uzbekistan. In this area, crude oil and natural gas are produced, but the associated gas, etc. are released burning in the atmospheric air. This plan aims to recover LPG, NGL, etc. from these. In the plan, studies were made on the installation in the Karaulbazar area of production facilities of LPG of 369t/d and NGL of 107t/d by the feed of raw gas of 5,748,000 Sm{sup 3}/d and of LPG storage facilities, and on the installation of a 80km-LPG pipeline. The construction work will start in April, 2001 and is planned to be completed in 33 months. The investment required is estimated at approximately 82,003M US$. The substituting energy generated in this plan will be 168,418 toe/y and will total 5,052,546 toe in the term. Moreover, the reduction in greenhouse effect gas emissions will be 4.52 million t/y in CO2 and will total 135 million t in CO2 in the term. (NEDO)

  17. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats.

    Science.gov (United States)

    Yamada, Yasutomo; Mokudai, Takayuki; Nakamura, Keisuke; Hayashi, Eisei; Kawana, Yoshiko; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-01-01

    The present study aimed to evaluate the acute locally injurious property of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by a test device utilizing the photolysis of H(2)O(2) was confirmed by applying an electron spin resonance (ESR)-spin trapping technique. Secondly, the bactericidal effect of the device was examined under a simulant condition in which Staphylococcus aureus suspended in 1 M H(2)O(2) was irradiated with laser light emitted from the test device, resulting in substantial reduction of the colony forming unit of the bacteria within a short time as 2 min. Finally, acute topical effect of the disinfection system on rat oral mucosa and wounded skin was evaluated by histological examination. No abnormal findings were observed in the buccal mucosal region treated three times with 1 M H(2)O(2) and irradiation. Similarly, no abnormal findings were observed during the healing of skin treated with 1 M H(2)O(2) and irradiation immediately after wounding. Since topical treatment with the novel disinfection technique utilizing the photolysis of H(2)O(2) had no detrimental effect on the oral mucosa and the healing of full thickness skin wounds in rats, it is expected that the acute locally injurious property of the disinfection technique is low.

  18. Delays help German utilities maintain self-financing ratios. [Financing nuclear power projects

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, G [Dresden Bank, AG (Germany, F.R.)

    1979-05-01

    Estimates of electricity consumption have been substantially reduced and nuclear plant is now expected to be 22% of total generating capacity in 1985 instead of the earlier forecast of 36%. The decline in the ordering of new plant has benefited the financial position of the electricity utilities and the expected fall in self-financing ratios has not occurred.

  19. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States); Liu, Di-Jia [Texas A & M Univ., College Station, TX (United States)

    2017-12-01

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H2/kgsystem and volumetric capacity of 0.040 kg H2/Lsystem at a cost of $400/kg H2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL) collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal

  20. Reaching for 100% participation in a utility conservation programme: the Hood River project

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, Eric

    1989-04-01

    The Hood River Conservation Project (HRCP) was a major residential retrofit demonstration project. The project was intended to install as many cost-effective retrofit measures in all electrically heated homes in Hood River, OR, USA. To achieve 100% participation, HRCP offered a package of 'super' retrofit measures and paid for installation of these measures. Almost all (91%) of the eligible households participated, in stark contrast to the much lower participation levels achieved in other residential conservation programmes. Also, unlike other programmes, HRCP attracted larger fractions of traditionally hard-to-reach groups: low-income households; occupants of multifamily units; and renters. The key factors leading to this phenomenal success include: the offer of free retrofits; determination on the part of staff to enlist every eligible household; the use of community-based marketing approaches; and reliance on extensive word-of-mouth among Hood River residents. (author).

  1. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Case Western Reserve Univ., Cleveland, OH (United States); Loparo, Kenneth A. [Case Western Reserve Univ., Cleveland, OH (United States); D' Aquila, Robert [General Electric (GE), Albany, NY (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waligorski, Joseph G. [FirstEnergy, Akron, OH (United States); Baker, Scott [PJM Interconnection, Audubon, PA (United States)

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  2. Overview of implementing a project control system in the nuclear utility industry

    International Nuclear Information System (INIS)

    Cooprider, D.H.

    1994-01-01

    During the late 1980s, a metamorphosis began at Florida Power and Light Company (FPL). A strategic step in nuclear engineering's efforts to become more cost effective began in January 1990. A project control department was formed. The initial mission was to provide support for nuclear engineering design activities associated with FPL's two twin-unit nuclear power generation facilities - Turkey Point and St. Lucie. Later, the goal expanded to include the division's materials management, nuclear licensing, and information management departments. The project control group was organized along the lines of the organizations served. Separate dedicated groups were established for each plant. Since most engineering activity was based at the Juno Beach headquarters, the project control staff also was based there

  3. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  4. West Valley Demonstration Project facilities utilization plan for the existing facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Skillern, C.G.

    1986-05-01

    In 1980, Congress passed Public Law 96-368, the West Valley Demonstration Project (WVDP) Act. As a primary objective, the Act authorized the US Department of Energy (DOE) to solidify the high-level waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC) into a form suitable for transportation and disposal in a federal repository. This report will describe how WVDP proposes to use the existing WNYNSC Facilities in an efficient and technically effective manner to comply with Public Law 96-368. In support of the above cited law, the DOE has entered into a ''Cooperative agreement between the United States Department of Energy and the New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York.'' The state-owned areas turned over to the DOE for use are as follows: Process Plant, Waste Storage, Low-Level Waste Treatment Facility, Service Facilities, Plant Security, and Additional Facilities. The Facilities Utilization Plan (FUP) describes how the state-owned facilities will be utilized to complete the Project; it is divided into five sections as follows: Executive Summary - an overview; Introduction - the WVDP approach to utilizing the WNYNSC Facilities; WVDP Systems - a brief functional description of the system, list of equipment and components to be used and decontamination and decommissioning (D and D) support; WVDP Support Facilities; and Caveats that could effect or change the potential usage of a particular area

  5. Cost/schedule performance measurement system utilized on the Fast Flux Test Facility project

    International Nuclear Information System (INIS)

    Brown, R.K.; Frost, R.A.; Zimmerman, F.M.

    1976-01-01

    An Earned Value-Integrated Cost/Schedule Performance Measurement System has been applied to a major nonmilitary nuclear design and construction project. This system is similar to the Department of Defense Cost/Schedule Performance Measurement System. The project is the Fast Flux Test Facility (a Fuels and Materials test reactor for the Liquid Metal Fast Breeder Reactor Program) being built at the Hanford Engineering Development Laboratory, Richland, Washington, by Westinghouse Hanford Company for the U. S. Energy Research and Development Administration. Because the project was well into the construction phase when the Earned Value System was being considered, it was decided that the principles of DOD's Cost/Schedule Control System Criteria would be applied to the extent possible but no major changes in accounting practices or management systems were imposed. Implementation of this system enabled the following questions to be answered: For work performed, how do actual costs compare with the budget for that work. What is the impact of cost and schedule variances at an overall project level composed of different kinds of activities. Without the Earned Value system, these questions could be answered in a qualitative, subjective manner at best

  6. The Projected Utilization of Initial Public Offer (IPO Proceeds in Nigeria

    Directory of Open Access Journals (Sweden)

    Bamidele M. Ilo

    2015-08-01

    Full Text Available Most young private firms use the Initial Public Offer (IPO method to raise additional external equity fund to finance their growth and later create a secondary market for stocks. This study analysed the projected utilisation of IPO cash proceeds by Nigerian firms with a view to providing investors with information on the most critical areas that firms intend to channel those funds. The study used the cross-sectional data collected by Ilo (2012 on firms that issued IPOs from 1999 to 2009 on the Nigerian Stock Exchange (NSE. The data were analyzed using descriptive statistics such as, the means and percentage and analysis of variance. The results show that the average of IPO price is N19.09 per share. About 51% of the net proceeds is projected to be expended on business growth/ expansion and facility acquisition while 20 % is reserved for working capital needs to support the expansion. The initial investors are to enjoy a promoters’ cash-out of about 24% of the net cash raised. These projections are laudable investors should interpret the findings with caution since actual deployment of such funds may not necessarily conform with the projections except they are able to ensure adequate monitoring of the managers.

  7. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Indianapolis Manpower Utilization Project of Flanner House. Phase II (February 1, 1968-April 30, 1968).

    Science.gov (United States)

    Flanner House, Inc., Indianapolis, IN.

    A private agency, Flanner House of Indianapolis, combined efforts with the Federal government, the Indiana State Employment Service, and private industry to provide upward job mobility for undereducated individuals who are either unemployed or underemployed. The project was designed to show that: (1) Private industry is willing to finance an…

  10. South African hydrogen infrastructure (HySA infrastructure) for fuel cells and energy storage: Overview of a projects portfolio

    CSIR Research Space (South Africa)

    Bessarabov, D

    2017-05-01

    Full Text Available The paper provides brief introduction to the National South African Program, branded HySA (Hydrogen South Africa) as well as discusses potential business cases for deployment of hydrogen and fuel cell technology in South Africa. This paper also...

  11. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  12. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  13. Design, Utility, and History of the Colorado Adoption Project: Examples Involving Adjustment Interactions1

    OpenAIRE

    Rhea, Sally Ann; Bricker, Josh B.; Corley, Robin P.; DeFries, John C.; Wadsworth, Sally J.

    2013-01-01

    This paper describes the Colorado Adoption Project (CAP), a longitudinal study in behavioral development, and discusses how adoption studies may be used to assess genetic and environmental etiologies of individual differences for important developmental outcomes. Previous CAP research on adjustment outcomes in childhood and adolescence which found significant interactions, including gene-environment interactions, is reviewed. New research suggests mediating effects of menarche and religiosity...

  14. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1993-06-01

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  15. Direction of Heavy Water Projects

    International Nuclear Information System (INIS)

    1984-07-01

    Summary of the activities performed by the Heavy Water Projects Direction of the Argentine Atomic Energy Commission from 1950 to 1983. It covers: historical data; industrial plant (based on ammonia-hydrogen isotopic exchange); experimental plant (utilizing hydrogen sulfides-water process); Module-80 plant (2-3 tons per year experimental plant with national technology) and other related tasks on research and development (E.A.C.) [es

  16. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 8. Development of hydrogen burning turbines - Development of main components including turbine blades and rotors); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 8: Suiso nensho tabin no kaihatsu - tabin yoku rota tou shuyou kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Among the research and development items in relation with the 'development of hydrogen burning turbines' based on the WE-NET project, surveys have been performed on developing the main components including turbine blades and rotors. The current fiscal year has surveyed the latest trends in the existing gas turbine and rotor cooling technologies, and the technological problems were extracted from the viewpoint of application to the hydrogen fueled turbines. Since the hydrogen fueled turbines have the entrance temperature higher than that of power generation gas turbines, development of the blade cooling technology is important. Main cooling methods available are the film cooling and transpiration cooling, whose technological development is necessary in the advanced forms. Cooling method for the inner side of blades includes the impingement cooling and the pin fin cooling, whereas the V-letter shaped turbulence accelerating rib and the serpentine flow path structure are considered promising. Increasing the anti-heat temperature of blades may be realized by utilizing ceramics. As a technology close to putting it into practical use, application of heat shield coating is promising. (NEDO)

  17. Removal of uranium and priority pollutant metals from Fernald Environmental Management Project wastewater utilizing potassium ferrate

    International Nuclear Information System (INIS)

    Hampshire, Lyle H.; Potts, Michael E.

    1992-01-01

    A side-by-side treatment comparison between calcium hydroxide and TRU/Clear '4', a potassium ferrate based wastewater treatment chemical, was performed in a process wastewater and stormwater treatment facility. Results from the full-scale plant testing demonstrated that potassium ferrate could achieve the same treatment levels as calcium hydroxide while generating 55% less sludge than the calcium hydroxide treatment. The testing also showed that utilization of potassium ferrate would minimize the volume of sludge generated and assist in the reduction of total waste management costs associated with storage, monitoring, transportation, and final disposition of generated sludge. (author)

  18. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  19. Thorium utilization as a Pu-burner: proposal of Plutonium-Thorium Mixed Oxide (PT-MOX) Project

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    2000-01-01

    In this paper, a Pu-Th mixed oxide (PT-MOX) project is proposed for a thorium utilization and a plutonium burning. None of plutonium can be newly produced from PT-MOX fuel, and the plutonium mass of about 1 ton can be consumed with one reactor (total heavy metal assumed: 100 tons) for 1 year. In order to consume plutonium produced from usual Light Water Reactor, it should be better to operate one PT-MOX reactor for three to five Light Water Reactors. (author)

  20. Virginia Solar Pathways Project: Economic Study of Utility-Administered Solar Programs: Soft Costs, Community Solar, and Tax Normalization Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mercer, Megan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-23

    This report presents economic considerations for solar development in support of the Virginia Solar Pathways Project (VSPP), an effort funded by the U.S. Department of Energy (DOE) SunShot Initiative that seeks to develop a collaborative utility-administered solar strategy for the Commonwealth of Virginia. The results presented are intended to be considered alongside the results of other studies conducted under the VSPP that evaluate the impacts of solar energy on the electric distribution, transmission, and generation systems in Virginia.

  1. A VAX/VMS mapped section/virtual memory utility package: Yucca Mountain Project

    International Nuclear Information System (INIS)

    Yarrington, L.

    1990-02-01

    A VAX/VMS Mapped Section/Virtual Memory Utility Package is a collection of FORTRAN subprograms that allocate virtual memory and, optionally, map that memory to a file. The subprograms use VMS system services and run-time libraries for allocating and mapping memory; therefore, the utility package is system dependent and functional on that platform only. FORTRAN-77 is one of the most widely used languages for computer programming. Languages have been developed in the past few decades that provide more powerful tools than FORTRAN and overcome some of its limitations. Two limitations addressed by this paper which have been a source of frustration to many programmers are that (1) FORTRAN does not provide dynamic array allocation and (2) FORTRAN file input-output is very slow. The solutions presented here are for the VAX/VMS operating system and use system services that are not part of the standard FORTRAN language description. Also discussed in this paper are dynamic array allocation, mapped sections of the program memory, and support modules. 3 refs

  2. Project financing consequences on cogeneration: industrial plant and municipal utility co-operation in Sweden

    International Nuclear Information System (INIS)

    Sundberg, Gunnel; Sjoedin, J.Joergen

    2003-01-01

    The liberalisation of the European electricity market influences investment decisions in combined heat and power plants. Energy companies modify their business strategies and their criteria for investments in power generation capacity. In this paper, the gains from a co-operation between a paper mill and municipal utility are studied. We find that a widened system boundary, including both the industrial plant and the district heating company, increases cost-effectiveness by 7-11%, compared to a situation with two separately optimised systems. Furthermore, optimal investments are strongly influenced by the actors' different required returns. With a relatively low required rate of return on energy investments, typical for a municipally owned utility, the most profitable investment is a wood chips-fuelled cogeneration plant. With a higher rate of return on capital, typical for a competitive industry, the optimal investment is mainly a heat-only steam boiler. Finally, some general influences on required rate of return caused by electricity market deregulation are observed. Whilst tending to increase companies' required returns, deregulation may, besides extending the outlet for locally generated electricity, also obstruct long-term high-cost investments such as cogeneration based on conventional technology

  3. THE IMPROVEMENT OF ESTIMATION TECHNIQUE FOR EFFECTIVENESS OF INVESTMENT PROJECTS ON WASTE UTILIZATION

    Directory of Open Access Journals (Sweden)

    V.V. Krivorotov

    2008-06-01

    Full Text Available The main tendencies of the waste products formation and recycling in the Russian Federation and in the Sverdlovsk region have been analyzed and the principal factors restraining the inclusion of anthropogenic formations into the economic circulation have been revealed in the work. A technical approach to the estimation of both ecological and economic integral efficiency of the recycling projects that, in autors, opinion, secures higher objectivity of this estimation as well as the validity of the made decisions on their realization.

  4. Utilization of paleoclimate results to validate projections of a future greenhouse warming

    International Nuclear Information System (INIS)

    Crowley, T.J.

    1990-01-01

    Paleoclimate data provide a rich source of information for testing projections of future greenhouse trends. This paper summarizes the present state-of-the-art as to assessments of two important climate problems. (1) Validation of climate models - The same climate models that have been used to make greenhouse forecasts have also been used for paleoclimate simulations. Comparisons of model results and observations indicate some impressive successes but also some cases where there are significant divergences between models and observations. However, special conditions associated with the impressive successes could lead to a false confidence in the models; disagreements are a topic of greater concern. It remains to be determined whether the disagreements are due to model limitations or uncertainties in geologic data. (2) Role of CO 2 as a significant climate feedback: Paleoclimate studies indicate that the climate system is generally more sensitive than our ability to model it. Addition or subtraction of CO 2 leads to a closer agreement between models and observations. In this respect paleoclimate results in general support the conclusion that CO 2 is an important climate feedback, with the magnitude of the feedback approximately comparable to the sensitivity of present climate models. If the CO 2 projections are correct, comparison of the future warming with past warm periods indicate that there may be no geologic analogs for a future warming; the future greenhouse climate may represent a unique climate realization in earth history

  5. Planning your first wind power project. A primer for utilities: Everything you need to know to bring your first wind power plant on-line

    International Nuclear Information System (INIS)

    Conover, K.; Davis, E.

    1994-12-01

    This primer has been prepared to help utility personnel become familiar with some or the details relative to wind power technology and project development. It is written as a series of relatively independent chapters to address specific topics or phases of wind power evaluation and development as they might occur within a utility. The topics include: wind prospecting and the first pass analysis, resource validation, project feasibility, resource planning and evaluation, resource acquisition, project development, equipment selection, project design and construction, and plant operation and maintenance

  6. Effects of Dietary Supplementation of Magnesium Hydrogen Phosphate (MgHPO as an Alternative Phosphorus Source on Growth and Feed Utilization of Juvenile Far Eastern Catfish (

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Yoon

    2014-08-01

    Full Text Available The present study was conducted to investigate a supplemental effect of magnesium hydrogen phosphate (MHP, MgHPO4 as an alternative phosphorus (P source on growth and feed utilization of juvenile far eastern catfish (Silurus asotus in comparison with three conventional P additives (monocalcium phosphate (MCP, dicalcium phosphate (DCP and tricalcium phosphate [TCP] as positive controls. A basal diet as a negative control was prepared without P supplementation and four supplemental P sources were added at the level of 2%. Five groups of 450 fish having mean body weight of 11.3 g following 24 h fasting after three week adaptation period were randomly distributed into each of 15 tanks (30 fish/tank. Fish were hand-fed to apparent satiety twice a day for 8 weeks. Fish fed MHP had weight gain (WG, protein efficiency ratio and specific growth rate comparable to those fed MCP. Fish fed MHP and MCP had feed efficiency (FE significantly higher (p0.05 among treatments. Fish fed control had the lowest hematocrit, which was significantly different (p<0.05 from that of fish fed MHP. Fish fed MCP and MHP had plasma P higher (p<0.05 than fish fed the other diets. Relative efficiencies of MCP, DCP and TCP to MHP were found to be 100.5 and 101.3%, 92.0 and 91.6%, and 79.1 and 80.9% for WG and FE, respectively. P availability was determined to be 88.1%, 75.2%, 8.7%, and 90.9% for MCP, DCP, TCP, and MHP, respectively. Consequently, MHP recovered from wastewater stream showed that as an alternative P source its performance was comparative with MCP on growth and feed utilization of juvenile far eastern catfish.

  7. Advances of the low enriched uranium utilization project in CNA-1 during 1998 and 1999

    International Nuclear Information System (INIS)

    Fink, Jose M.; Higa, Manabu; Sidelnik, Jorge I.; Perez, Ramon A.; Casario, Jose A.; Alvarez, Luis A.

    1999-01-01

    In this work, a general description of advances of the Enriched Fuel Introduction Project in CNA-1 and the main tasks performed during 1998 and 1999 are presented. The program is being satisfactorily developed and during that period the number of slightly enriched fuels (LEU) introduced had significantly increased in relation to previous years. At present, there are 181 LEU fuel elements in the core and 125 LEU fuel elements have been extracted. The number of full power burnt fuel elements per day decreased from 1.31 FE/dpp in 1994 (when all fuel was natural) to 0.92 in 1998 and 0.83 in 1999, reaching the predicted value for homogeneous LEU core of 0.7. The cost of burnt fuel in 1998 was 25% lower that if only natural fuel would have been used. (author)

  8. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.

    Science.gov (United States)

    Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra

    2018-08-01

    A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE  = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The use of hydrogen for vehicles

    International Nuclear Information System (INIS)

    Peschka, W.

    1992-01-01

    While the currently utilized or other feasible hydrocarbon fuels release about the same amount of CO 2 during combustion per amount of heat produced, hydrogen represents the only practical, technically feasible, carbon free fuel. The state of the art technology of liquid hydrogen represents a suitable base for large scale demonstration projects now. Additional aims of more intense R and D work relate to internal mixture formation and improved engine roadability as well as utility vehicle application including trucks and buses. With respect to fuel costs there will be an increased demand in developing hydrogen production processes free from CO 2 emissions even from fossil energy sources such as crude oil or natural gas. (orig.) [de

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  11. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 6. Development of fuel cell of pure hydrogen fueled solid polymer type; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 6. Junsuiso kyokyu kotai kobunshigata nenryo denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for research and development Task-6. The objective is to verify performance and reliability, by means of field tests, of a power generation plant using fuel cells of pure hydrogen fueled solid polymer type with power transmission terminal efficiency of 45% and output of 30 kW. The fuel cells were developed by using the cathode humidification process as a humidification method suitable for operation at high utilization rates. With a three-cell stack made by using this humidification process (having an effective area of 289 cm{sup 2}), verification was made on the current density of 0.2A/cm{sup 2}, the characteristics of 0.75V or higher, and the uniform voltage distribution performance being the immediate targets. In order to mitigate the hydrogen utilization in the fuel cells, discussions were given on the serial flow system that divides the laminated cells into two blocks. Thus, operation was found possible with the utilization rate in each block reduced to about 80% by selecting an adequate division rate even if the hydrogen utilization rate is 96% in the entire stack. Stable operation has been performed in the 5-kW class power generation test using the cathode interior humidifying system. Specifications for 30-kW class power plant, system configuration, safety, and material balance were discussed. The basic design was made on the hydrogen gas humidity adjusting system. (NEDO)

  12. Fiscal 2000 collection of manuscripts for technology development committee on hydrogen energy and the like; 2000 nendo suiso energy nado kanren gijutsu kaihatsu iinkai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-07

    The subjects listed in the collection are (1) the research and development of international clean energy system technology utilizing hydrogen (WE-NET - World Energy Network), including the outline of the project as a whole; research on system evaluation; research and development of safety measures; development of technologies for liquid hydrogen transportation and storage; research on low-temperature materials; development of hydrogen supply station and hydrogen-driven automobile system; development of supply station for hydrogen produced by electrolysis of water; development of hydrogen fuel system; development of hydrogen production technology; development of hydrogen absorbing alloys for dispersed hydrogen transportation and storage; development of polymer electrolyte fuel cell fed with pure hydrogen; and the development of power generation technology, (2) the development of closed type high-efficiency turbine technology capable of carbon dioxide recovery, and (3) the development of frontier technology of carburation using sensible heat in coke oven gas. (NEDO)

  13. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  14. The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoffman, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-11

    We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double from 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast

  15. The future of utility customer-funded energy efficiency programs in the USA. Projected spending and savings to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, G.L.; Goldman, C.A.; Hoffman, I.M.; Billingsley, M. [Ernest Orlando Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 90R4000, Berkeley, CA 94720-8136 (United States)

    2013-08-15

    We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the USA, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). Key findings from the analysis are as follows: (1) By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double from 2010 levels to USD 9.5 billion in the medium case, compared to USD 15.6 billion in the high case and USD 6.5 billion in the low case; (2) Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning; (3) Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70 % of total USA spending in 2010 to slightly more than 50 % in 2025, and the South and Midwest splitting the remainder roughly evenly; (4) Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the USA (which is about 0.5 % of electric utility retail sales) to 28.8 TWh in 2025 (0.8 % of retail sales); (5) These savings would offset the majority of load growth in the Energy Information Administration's most recent reference case forecast, given specific assumptions about the extent to which future

  16. Effective utilization of disadvantaged business enterprises (DBE) in alternative delivery projects: strategies and resources to support the achievement of DBE goals : Georgia DOT research project 14-42 : final report.

    Science.gov (United States)

    2016-04-01

    This synthesis is a comprehensive review of the best knowledge and practices for stimulating effective : utilization of Disadvantaged Business Enterprises (DBE) in the procurement and execution of : transportation projects, using design-build and oth...

  17. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  18. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-05-13

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  19. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    International Nuclear Information System (INIS)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-01-01

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  20. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project alternative energy sources: solar, eolic, shale, ocean, hydrogen, organic wastes, peat and lignite

    International Nuclear Information System (INIS)

    1993-07-01

    Several aspects of solar, eolic and ocean energy and shale, peat lignite, hydrogen and organic waste in Brazil are described, including reserves, potential, technology economy and environment. Based in data and information presented in this report, the necessity of a more detailed survey with the potential of alternative energy sources in Brazil, emphasizing the more promiser regions is also mentioned. (C.G.C.)

  1. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  2. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  3. Project GeoPower: Basic subsurface information for the utilization of geothermal energy in the Danish-German border region

    DEFF Research Database (Denmark)

    Kirsch, Reinhard; Balling, Niels; Fuchs, Sven

    and require reliable cross-border management and planning tools. In the framework of the Interreg4a GeoPower project, fundamental geological and geophysical information of importance for the planning of geothermal energy utilization in the Danish-German border region was compiled and analyzed. A 3D geological......Information on both hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. This is paramount in particular for densely populated international border regions, where different subsurface applications may introduce conflicts of use...... on potential geothermal reservoirs, and a new 3D structural geological model was developed. The interpretation of petrophysical data (core data and well logs) allows to evaluate the hydraulic and thermal rock properties of geothermal formations and to develop a parameterized 3D thermal conductive subsurface...

  4. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hori, Hiroaki; Deguchi, Shinguo; Yano, Junya; Sakai, Shinichi

    2010-01-01

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x10 6 t-wet/ yr (0.14x10 6 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  5. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  6. Activities of research-reactor-technology project in FNCA from FY2005 to FY2007. Sharing neutronics calculation technique for core management and utilization of research reactors

    International Nuclear Information System (INIS)

    2010-07-01

    RRT project (Research-Reactor-Technology Project) was carried out with the theme of 'sharing neutronics calculation technique for core management and utilization of research reactors' in the framework of FNCA (Forum for Nuclear Cooperation in Asia) from FY2005 to FY2007. The objective of the project was to improve and equalize the level of neutronics calculation technique for the reactor core management among participating countries to assure the safe and stable operation of research reactors and the promotion of the effective utilization. Neutronics calculation codes, namely SRAC code system and MVP code, were adopted as common codes. Participating countries succeeded in applying the common codes to analyzing the core of each domestic research reactor. Some participating countries succeeded in applying the common codes to analyzing for utilization of own research reactors. Activities of RRT project have improved and equalized the level of neutronics calculation technique among participating countries. (author)

  7. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  8. Cost Benefit Analysis of Performing a Pilot Project for Hydrogen-Powered Ground Support Equipment at Lemoore Naval Air Station

    Science.gov (United States)

    2006-12-01

    34 Bullnet eCommerce Solutions, Bull Group. http://www.bullnet.co.uk/ (accessed November 25, 2006). 13 Philip Baxley, Cynthia Verdugo-Peralta, and Wolfgang...Benefits of Fuel Cells." Bullnet eCommerce Solutions, Bull Group. http://www.bullnet.co.uk/ (accessed November 25, 2006). "Hydrogen Production and

  9. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinskey, Anthony J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worden, Robert Mark [Michigan State Univ., East Lansing, MI (United States); Brigham, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lu, Jingnan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Quimby, John Westlake [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gai, Claudia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Speth, Daan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Elliott, Sean [Boston Univ., MA (United States); Fei, John Qiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bernardi, Amanda [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Sophia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grunwald, Stephan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grousseau, Estelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maiti, Soumen [Michigan State Univ., East Lansing, MI (United States); Liu, Chole [Michigan State Univ., East Lansing, MI (United States)

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  10. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    Energy Technology Data Exchange (ETDEWEB)

    Ewy, Ann; Hays, David [U.S. Army Corps of Engineers (United States)

    2013-07-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  11. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    International Nuclear Information System (INIS)

    Ewy, Ann; Hays, David

    2013-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  12. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  13. Promoting the Utilization of Science in Healthcare (PUSH) Project: A Description of the Perceived Barriers and Facilitators to Research Utilization Among Pediatric Nurses.

    Science.gov (United States)

    Cline, Genieveve J; Burger, Kristina J; Amankwah, Ernest K; Goldenberg, Neil A; Ghazarian, Sharon R

    The purpose of this descriptive study was to identify the perceived barriers and facilitators to research utilization and evidence-based practice among nurses employed in a tertiary care children's hospital. Results revealed seven facilitator and six barrier themes that contribute to the understanding of the problem. The themes can be utilized by nursing professional development specialists to customize organizational infrastructure and educational programs.

  14. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  15. Report on the research achievements in the Sunshine Project in fiscal 1990. Studies on coal liquefying reaction, and reforming and utilization of the products; 1990 nendo sekitan no ekika hanno to seiseibutsu no kaishitsu riyo no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1990 on research of coal liquefying reaction. The research contributes to developing a coal liquefaction technology as one of the methods for manufacturing clean energy and chemical raw materials from coal. In the fundamental study on the liquefaction, primarily liquefied heavy constituents in different types of coals were divided into such constituents as HI, TI, and THFI to discuss the performance and coking behavior of each constituent as solvent. Furthermore, effects of hydrogenation treatment were also elucidated. Decomposing reaction was performed on different heavy products to discuss effects of the reaction conditions. In the liquefying reaction using petroleum-based heavy oil as solvent, different shale oils were used in experiments for comparison with the case of using tar sand bitumen. In the study of reforming the product, comparison was carried out on reactions in hydrogenation treatment and contact decomposition of medium to heavy fractions of liquefied oil. A separation experiment was made on hetero compounds by means of solvent extraction and pressure crystallization of liquefied oil naphtha and light oil fraction. Effects of additive were investigated in an engine test on the stabilized and balanced light oil fraction. Discussions were given on high level utilization of heat treated oil recovered from residues in liquefaction distillation. (NEDO)

  16. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  17. Functional design criteria for SY-101 hydrogen mitigation test project Data Acquisition and Control System (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-09-01

    Early in 1990, the potential for a large quantity of hydrogen and nitrous oxide to exist as an explosive mixture within some Hanford waste tanks was declared an unreviewed safety question. The waste tank safety task team was established at that time to carry out safety evaluations and plan the means for mitigating this potential hazard. Action was promptly taken to identify those tanks with the highest hazard and to implement interim operating requirements to minimize ignition sources

  18. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  19. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    Science.gov (United States)

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  20. Development of a national center for hydrogen technology. A summary report of activities completed at the national center hydrogen technology from 2005 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael J. [Univ. of North Dakota, Grand Forks, ND (United States)

    2011-06-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project's 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  1. Towards a framework for evaluation of renewable energy storage projects: A study case of hydrogen and fuel cells in Denmark

    DEFF Research Database (Denmark)

    Tambo, Torben; Enevoldsen, Peter

    2015-01-01

    worldwide, and market potentials are projected as immense. RES is complicated, and projects persistently fail to present operational scale of operations except for a few “classical” storage technologies: Variants of lead-acid batteries and pumped hydro-power reservoirs. Most RES projects are relying...... trajectories as done today. The papers findings contribute to improved assessment of RES technologies by emphasizing risk reduction and operational viability....

  2. Biogas utilization

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M.A. [Resource Conservation Management, Inc., Berkeley, CA (United States)

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.

  3. Summarized achievement report on research and development in the Sunshine Project in fiscal 1979. Research on hydrogen energy total systems; 1979 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes discussions on future possibility of introducing hydrogen, by adding the latest data acquired in fiscal 1979 into a hydrogen energy total system calculation model. The critical cost of hydrogen is higher always than other secondary energies up to about 2030. Since it is a presupposition that hydrogen manufacturing is technologically feasible only by using the electrolytic manufacturing process, the hydrogen cost changes with the critical cost of electric power. Thereafter, if a hydrogen manufacturing process of mixed type utilizing heat from a high temperature gas reactor (HTGR) is introduced, the cost will be reduced. However, introduction of HTGR is governed by the nuclear power plan such as HTGR technology development, rather than simply by the economic performance. Value factors showing qualitative advantage of hydrogen have been assigned to different demand sectors, whereas acceptable economic performance may emerge from this effect from about 2010 in sectors having large value factors (such as 2.8 in aircraft fuels). Hydrogen contribution would be about 2.1% in 2020 and 5.5% in 2030 of the whole energy demand. (NEDO)

  4. The generation of molecular hydrogen by cyanobacteria. Die Gewinnung von molekularem Wasserstoff durch Cyanobakterien

    Energy Technology Data Exchange (ETDEWEB)

    Kentemich, T.; Haverkamp, G.; Bothe, H. (Koeln Univ. (Germany, F.R.). Botanisches Inst.)

    1990-01-01

    Currently there is renewed interest in projects on solar-energy conversion by microorganisms. Among all organisms, cyanobacteria are first choice for such projects. Hydrogen production by cyanobacteria is light-dependent and catalyzed by the enzyme complex nitrogenase which concomitantly catalyzes the reduction of N{sub 2} to ammonia. The cyanobacterium Anabaena variabilis can express an alternative, vanadium-containing nitrogenase which produces more hydrogen than the conventional, molybdenum-containing enzyme. In intact cells, most of the H{sub 2} produced by nitrogenase is immediatley reutilized by the hydrogenase enzymes. Maximal hydrogen production requires the genetic blockage of H{sub 2} utilization by the hydrogenases. (orig.).

  5. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  6. Specialized software utilities for gamma ray spectrometry. Final report of a co-ordinated research project 1996-2000

    International Nuclear Information System (INIS)

    2002-03-01

    A Co-ordinated Research Project (CRP) on Software Utilities for Gamma Ray Spectrometry was initiated by the International Atomic Energy Agency in 1996 for a three year period. In the CRP several basic applications of nuclear data handling were assayed which also dealt with the development of PC computer codes for various spectrometric purposes. The CRP produced several software packages: for the analysis of low level NaI spectra; user controlled analysis of gamma ray spectra from HPGe detectors; a set of routines for the definition of the detector resolution function and for the unfolding of experimental annihilation spectra; a program for the generation of gamma ray libraries for specific applications; a program to calculate true coincidence corrections; a program to calculate full-energy peak efficiency calibration curve for homogenous cylindrical sample geometries including self-attenuation correction; and a program for the library driven analysis of gamma ray spectra and for the quantification of radionuclide content in samples. In addition, the CRP addressed problems of the analysis of naturally occurring radioactive soil material gamma ray spectra, questions of quality assurance and quality control in gamma ray spectrometry, and verification of the expert system SHAMAN for the analysis of air filter spectra obtained within the framework of the Comprehensive Nuclear Test Ban Treaty. This TECDOC contains 10 presentations delivered at the meeting with the description of the software developed. Each of the papers has been indexed separately

  7. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  8. Estimation of hydrogen bondings in coal utilizing FTir and differential scanning calorimetry (DSC); FTir to DSC wo mochiita sekitannai suiso ketsugo no teiryoteki hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Mae, K.; Miura, K. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-28

    With an objective to know coal condensation structure which has influence on coal conversion reaction, an attempt was made on quantitative evaluation of hydrogen bonding in coal. Using as test samples the VDC made from Taiheiyo coal swollen by tetralin and vacuum-dried, and its pyrolyzed char, DSC measurement and Fourier transform infrared spectroscopy (FT) were performed. An FT spectrum comparison revealed that the VDC swollen at 220{degree}C has the hydrogen bonding relaxed partly from the original coal. However, since the change is in a huge coal molecular structure restraining space, it has stopped at relaxation of the bonding energy without causing separation as far as free radicals. On the other hand, the DSC curve shows that the VDC has slower endothermic velocity than the original coal. In other words, the difference in heat absorption amounts in both materials is equivalent to the difference of enthalpy ({Delta} H) of both materials, which corresponds to the relaxation of the hydrogen bonding. Therefore, the {Delta} H was related to wavenumber shift of the FT spectra (which corresponds to change in the hydrogen bonding condition). By using this relationship, a method for evaluating hydrogen bonding distribution was proposed from an O-H contracting vibration change that can be measured by using the FT spectra and a thermal change that can be measured by using the DSC. 3 refs., 7 figs.

  9. Achievement report on research and development in the Sunshine Project in fiscal 1977. Surveys and studies on patent information (Hydrogen energy); 1977 nendo tokkyo joho chosa kenkyu shosa seika hokokusho, Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    This paper describes achievements in fiscal 1977 of patent information surveys and studies on hydrogen energy (the Sunshine Project). In the thermo-chemical hydrogen manufacturing process, the basic cycles that have had been applied for patents started to go for searching efficient and feasible cycles such as in auxiliary reactions and catalysts, from the stage at which the efficiency of the basic cycles has not been considered so much. Developments have also been performed on devices and operating conditions. Worth mentioning in the electrolytic method is that patents on electrodes have been released. In the fields of hydrides for storage and transportation, patents on alloys for storage are the most in number. In safety assurance technologies, few patents deal with hydrogen itself, whereas further studies on liquefied hydrogen is especially desired. For hydrogen fuel cells, patent applications for phosphoric acid type fuel cells were found. There are few patents tackling squarely with hydrogen fueled engines. However, their levels of the contents were found higher than those in the previous fiscal year. Patents applied for from private corporations are concentrated on low-pollution engines using hydrogen as sub-fuel. No patents were found applied for measures to solve the dilemma of NOx generation and reverse ignition in hydrogen combustion. (NEDO)

  10. Using EPA Tools and Data Services to Inform Changes to Design Storm Definitions for Wastewater Utilities based on Climate Model Projections

    Science.gov (United States)

    Tryby, M.; Fries, J. S.; Baranowski, C.

    2014-12-01

    Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.

  11. Assessment of thermochemical hydrogen production. Project 61010 (formerly 8994) final report, July 1, 1977-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Lee, T.S.; Schreiber, J.D.

    1979-05-01

    The Institute of Gas Technology's (IGT) assessment of thermochemical water-splitting processes is given. Eight tasks were performed: evaluation of load-line efficiencies; hydrogen bromide electrolysis; maximum attainable thermal efficiency on a specific bromide hybrid cycle; development of electrolyzer elements for H/sub 2/SO/sub 3/; feasibility of high-temperature reference-state thermochemical cycles; interfacing characteristics - solar high-temperature heat sources; analysis of solar and solar hybrid heat sources; and laboratory assessment of cycle with high-temperature step. Engineering analyses were done on two thermochemical hydrogen production cycles - IGT's cycles B-1 and H-5. The load line efficiency for B-1 was 18.1% and for H-5 37.4%. The electrolysis of HBr (aq) on three substrates: platinum, porous graphite, and vitreous graphite was investigated. Platinum proved to be the most efficient electrode surface, with vitreous graphite showing no promise, and porous graphite showing only slightly better results. On platinum, cell voltages of under 1.0 volt were obtained at current densities up to 200 mA/cm/sup 2/. Five new members of the metal-metal oxide class of cycles were derived. The maximum attainable efficiencies of these high-temperature, two-step cycles range from 64 to 86%. Six high-temperature metal oxide-metal sulfate cycles were derived. Performance and capital costs data for a wide range of solar primary heat sources were tabulated.

  12. Nano Structured Activated Carbon for Hydrogen Storge. Project Final Technical Report (May 2, 2005-Dec. 31, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Cabasso, Israel; Yuan, Youxin

    2013-02-27

    Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

  13. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  14. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  15. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  16. Utilizando o monitoramento ambiental para o ensino da química: pedagogia de projeto Utilizing the environmental monitoring to the teaching of chemistry: the pedagogy of project

    Directory of Open Access Journals (Sweden)

    Helvécio Costa Menezes

    2003-03-01

    Full Text Available The article shows how the monitoring of the water quality can be utilized in an inter-disciplinary pedagogical project involving Analytical Chemistry, Biochemistry and Microbiology making the apprenticeship more dynamic and consolidating the link between the student and the community.

  17. The Impact of Head Start on Children, Families and Communities. Final Report of the Head Start Evaluation, Synthesis and Utilization Project.

    Science.gov (United States)

    McKey, Ruth Hubbell; And Others

    Including all Head Start research (both published and unpublished) and using, when possible, the statistical technique of meta-analysis, this final report of the Head Start Evaluation, Synthesis, and Utilization Project presents findings on the impact of Head Start on children's cognitive and socioemotional development, on child health and health…

  18. Hydrogen energy system in California

    International Nuclear Information System (INIS)

    Zweig, R.M.

    1995-01-01

    Results of experiences on the use of hydrogen as a clean burning fuel in California and results of the South Coast Air Quality Management district tests using hydrogen as a clean burning environmentally safe fuel are given. The results of Solar Hydrogen Projects in California and recent medical data documentation of human lung damage of patients living in air polluted urban areas are summarized

  19. Hydrogen Generation from Sugars via Aqueous-Phase Reforming

    International Nuclear Information System (INIS)

    Randy D Cortright

    2006-01-01

    Virent Energy Systems, Inc. is commercializing the Aqueous Phase Reforming (APR) process that allows the generation of hydrogen-rich gas streams from biomass-derived compounds such as glycerol, sugars, and sugar alcohols. The APR process is a unique method that generates hydrogen from aqueous solutions of these oxygenated compounds in a single step reactor process compared to the three or more reaction steps required for hydrogen generation via conventional processes that utilize non-renewable fossil fuels. The key breakthrough of the APR process is that the reforming of these aqueous solutions is done in the liquid phase. The patented APR process occurs at temperatures (150 C to 270 C) where the water-gas shift reaction is favorable, making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. Furthermore, the APR process occurs at pressures (typically 15 to 50 bar) where the hydrogen-rich effluent can be effectively purified using either membrane technology or pressure swing adsorption technology. The utilization of biomass-based compounds allows the APR process to be a carbon neutral method to generate hydrogen. In the near term, the feed-stock of interest is waste glycerol that is being generated in large quantities as a byproduct in the production of bio-diesel. Virent has developed the APR system for on-demand generation of hydrogen-rich fuel gas from either glycerol or sorbitol (the sugar alcohol formed by hydrogenation of glucose) to fuel a stationary internal combustion engine driven generator (10 kW). Under a USDOE funded project, Virent is currently developing the APR process to generate high yields of hydrogen from corn-derived glucose. This project objective is to achieve the DOE 2010 cost target for distributed production from renewable liquid fuels of 3.60 dollars/gge (gasoline gallon equivalent) delivered. (authors)

  20. KEA-144: Final Results of the Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) Project

    Science.gov (United States)

    Notardonato, William; Fesmire, James; Swanger, Adam; Jumper, Kevin; Johnson, Wesley; Tomsik, Thomas

    2017-01-01

    GODU-LH2 system has successfully met all test objectives at the 33%, 67%, and 100% tank fill level. Complete control over the state of the fluid has been demonstrated using Integrated Refrigeration and Storage (IRAS). Almost any desired point along the H2saturation curve can essentially be "dialed in" and maintained indefinitely. System can also be used to produce densified hydrogen in large quantities to the triple point. Exploring multiple technology infusion paths. Studying implementation of IRAS technology into new LH2sphere for EM-2 at LC39B. Technical interchange also occurring with STMD, LSP, ULA, DoE, KIST, Kawasaki, Shell Oil, SpaceX, US Coast Guard, and Virgin Galactic.

  1. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    Ermi, A.M.

    1997-01-01

    Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status

  2. Work plan for transition of SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    McClees, J.; Truitt, R.W.

    1994-01-01

    The purpose of this effort is to transfer operating and maintenance responsibility for the 241-SY-101 data acquisition and control system (DACS-1) from Los Alamos National Laboratory to Westinghouse Hanford Company. This work plan defines the tasks required for a successful turnover. It identifies DACS-1 transition, deliverables, responsible organizations and individuals, interfaces, cost, and schedule. The transition plan will discuss all required hardware, software, documentation, maintenance, operations, and training for use at Hanford Waste Tank 241-SY-101. The transfer of responsibilities for DACS-1 to WHC is contingent on final approval of applicable Acceptance for Beneficial Use documentation by Waste Tank Operations. The DACS-1 was designed to provide data monitoring, display, and storage for Tank 241-SY-101. The DACS-1 also provides alarm and control of all the hydrogen mitigation testing systems, as well as ancillary systems and equipment (HVAC, UPS, etc.) required to achieve safe and reliable operation of the testing systems in the tank

  3. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kriha, Kenneth [Gas Technology Inst., Des Plaines, IL (United States); Petitpas, Guillaume [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Melchionda, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soto, Herie [Shell, Houston TX (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-11

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used to liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.

  4. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  5. Achievement report on research and development in the Sunshine Project in fiscal 1980. Research on a hydrogen energy total system; 1980 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper describes research on a hydrogen energy total system. Fiscal 1980 has surveyed R/D technologies in the sectors anticipated to have large possibility of introducing hydrogen in Japan's energy systems in the future (ammonia/methanol industries, automobiles and aircraft fuel), and discussed the possibility of the introduction. The value factors (VF) applied to them are 1.7 for the ammonia industry, 1.1 to 1.6 for the methanol industry, 1.4 for gasoline as automobile and jet fuel, and 2.8 for jet fuel. Whether hydrogen would be introduced in all of these sectors depends on conditions of introducing hydrogen utilizing HTGR heat, and the VF of hydrogen against competing energies. Therefore, case studies were performed by using these factors as the parameters. If the VF is fixed and HTGR introduction speed is accelerated, introduction of hydrogen will be accelerated in the fields of chemical materials, air conditioning and process heat. On the other hand, the introduction will decrease in the automobile and aircraft fuel fields. If the methanol VF is made smaller, hydrogen introduction will be decelerated in the chemical industry field (methanol), and that in the air conditioning, automobiles and aircraft fuel fields will be accelerated. (NEDO)

  6. Achievement report for fiscal 2000 on the phase II research and development for the hydrogen utilizing international clean energy system technology (WE-NET). Task 1. Investigations and researched on system assessment; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-1. Technologies drawing attentions relate to fuel cell driven automobiles and hybrid automobiles in the field of utilizing hydrogen derived from reproducible energies and fossil energies, and fuel cell co-generation and micro gas turbine co-generation in the field of electric power generation. Hydrogen reformed from gasoline on board the automobile as the fuel for fuel cell driven automobiles, hydrogen as a by-product of coke furnace off-gas (COG), and reproducible energy hydrogen have the same fuel consumption performance as in the hybrid automobiles. Particularly the COG is low in cost, and has large supply potential. Liquefied hydrogen is as promising as compressed hydrogen in view of the cost for automotive hydrogen supply stations. What has high economic performance as the self-sustaining systems for islands are photovoltaic and wind power generation, and the system using hydrogen as the secondary energy. Since much of the reproducible energies is used for electric power demand in Japan, the by-product hydrogen and the reformed hydrogen in an amount of 9.3 billion Nm{sup 3}/year would take care of majority of the demand in view of the short time period. For a longer time span, hydrogen originated from the reproduced energies in the Pan-Pacific Region should be introduced. (NEDO)

  7. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  8. Evaluation of Conditions for Hydrogen Induced Degradation of Zirconium Alloys during Fuel Operation and Storage. Final Report of a Coordinated Research Project 2011-2015

    International Nuclear Information System (INIS)

    2015-12-01

    This publication reports on the work carried out in 2011–2015 in the coordinated research project (CRP) on the evaluation of conditions for hydrogen induced degradation of zirconium alloys during fuel operation and storage. The CRP was carried out to evaluate the threshold condition for delayed hydride cracking (KIH) in pressurized water reactors and zircaloy-4 and E635M fuel claddings, with application to in-pile operation and spent fuel storage. The project consisted of adding hydrogen to samples of cladding and measuring K IH by one of four methods. The CRP was the third in the series, of which the results of the first two were published in IAEA-TECDOC-1410 and IAEA-TECDOC-1649, in 2004 and 2010, respectively. This publication includes all of the research work performed in the framework of the CRP, including details of the experimental procedures that led to a set of data for tested materials. The research was conducted by representatives from 13 laboratories from all over the world. In addition to the basic goal to transfer the technology of the testing techniques from experienced laboratories to those unfamiliar with the methods, the CRP was set up to develop experimental procedures to produce consistent sets of data, both within a single laboratory and among different laboratories. The material condition and temperature history were prescribed, and laboratories chose one or two of four methods of loading that were recommended in an attempt to develop standard sets of experimental protocols so that consistent results could be obtained. Experimental discrepancies were minimized through careful attention to details of microstructure, temperature history and stress state in the samples, with the main variation being the mode of loading

  9. Conflict free implementation of strategic project management office at the Entitie level utilizing “Evaporated cloud” diagram

    OpenAIRE

    Oganov, A.; Gogunsky, V.

    2015-01-01

    The analysis of reports on the last researches in area of project management office (PMO) in the organizations is carried out. Comparison of approaches in project management at the entities with PMO of different levels of a maturity and without it is executed. It is shown that the effectiveness of organizations orientation determined by the level of activity on project approaches, implemented with the help of Project Management Office through continuous improvement of design processes and ope...

  10. Research and development in second term of hydrogen utilizing international clean energy system technology (WE-NET) in fiscal 1999. Task 2. Hydrogen absorbing alloys for discrete hydrogen transportation and storage; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Developmental researches have been performed on hydrogen absorbing alloys intended to be applied to stationary and moving objects. This paper summarizes the achievements in fiscal 1999. As a method for evaluating effective hydrogen absorption amount, proposals were made on definition and measuring method for effective hydrogen absorption amount assuming hydrogen absorption at 20 degrees C, and 10 and 30 atmospheric pressures, and hydrogen discharge at 100 degrees C and one atmospheric pressure. In the research of an Mg-Ni based alloy, the Mg based alloy having the Laves composition, treated by mechanical grinding was found to discharge hydrogen of 0.2 to 0.35% by mass at 423K. This discharge temperature is the lowest among the Mg based alloys having been developed to date. In the research of the V based hydrogen absorbing alloy, the V-Ti-Cr-Mn alloy was developed successfully that discharges hydrogen of 2.64% by mass when hydrogen absorbed at 273 K and 3.3 MPa is discharged at 373 K and 0.01 MPa. Furthermore, development has been made on the V-Ti-Cr-Mn-Ni alloy that shows high effective hydrogen absorption amount without being treated by heat. This alloy has as high effective hydrogen absorption amount as 2.47% by mass under the above described conditions. (NEDO)

  11. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  12. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  13. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Muna, Alice Baca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Groth, Katrina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  14. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  15. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen combustion technology); 1975 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This research mainly aims at establishment of various conditions necessary for using hydrogen fuel. The research includes (1) properties of hydrogen-methane mixture gas, and the proposal to future R and D, (2) extraction of various problems in practical use of home or industrial combustors, and evaluation of existing technologies, (3) the environmental impact of hydrogen fuel and its reduction measures, and (4) estimation of energy structures in cities and placing of hydrogen fuel in 2000. Detailed study items are as follows. In (1), general and proper combustion characteristics of and combustion technology for hydrogen- methane mixture system. In (2), problems for every use of various gas equipment, application of various gas equipment to hydrogen, peripheral technologies, conversion from natural gas, problems of heating furnaces and hydrogen burners, combustion safety/control equipment for various combustors, water content recovery combustion system, hydrogen embrittlement, and sealing. In (3), NO{sub x} generation in hydrogen combustion and its reduction measures. In (4), problems in introduction of a hydrogen-electric power energy system to an assumed model city in 2000. (NEDO)

  16. Fiscal 2000 strategic surveys for respective technical fields. Hydrogen-based energy working group (Analysis of project results relating to hydrogen technology); 2000 nendo bun'yabetsu senryaku chosa hokokusho. Suisokei energy WG (Suiso kanren gijutsu ni kakawaru jigyo seika tou bunseki chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Attention is focused on the molten carbonate fuel cell (MCFC) technology which has enjoyed the largest number of industrial property applications out of hydrogen-related technologies under development by NEDO (New Energy and Industrial Technology Development Organization). The patent application is utilized as a tool for analysis, and endeavors are made to systematize and then analyze the correlations between the tasks to discharge and the results of studies in the process of MCFC development. Findings are described below. It is quite difficult to specify the technology involved by the study of patent abstracts. Since an applicant for patent is inclined to describe the application so that it will cover an extensive scope (or, so that the patent will be taken in a broad sense), it takes much time for researchers other than the applicant to specify the field of technological studies where the application originates. Such being the case, it cannot be easily determined whether or not a patent applied for by a private-sector corporation has its origin in a NEDO-implemented project. In addition, it is found that there is not necessarily a correlationship between the importance of a research and development goal and the number of patents generated. (NEDO)

  17. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    The aim of this work is to support the development of a high-profile demonstration of hydrogen generation technologies in a Swedish context. The overall objective of the demonstration is to deploy a reforming based hydrogen refilling station along the Swedish west coast; intermediate to the Malmoe refuelling station and planned stations in Goeteborg. In this way, the Norwegian hydrogen highway will be extended through the south of Sweden and down into Denmark. The aim of the project's first phase, where this constitutes the final report, was to demonstrate the ability to operate the IE reforming system on the E.On/SGC site-specific fuel. During the project, a preliminary system design has been developed, based on IE's proprietary reformer. The system has been operated at pressure, to ensure a stable operation of the downstream PSA; which has been operated without problems and with the expected hydrogen purity and recovery. The safe operation of the proposed and tested system was first evaluated in a preliminary risk assessment, as well as a full HazOp analysis. A thorough economic modelling has been performed on the viability of owning and operating this kind of hydrogen generation equipment. The evaluation has been performed from an on-site operation of such a unit in a refuelling context. The general conclusion from this modelling is that there are several parameters that influence the potential of an investment in a Hestia hydrogen generator. The sales price of the hydrogen is one of the major drivers of profitability. Another important factor is the throughput of the unit, more important than efficiency and utilization. Varying all of the parameters simultaneously introduce larger variations in the NPV, but 60% of the simulations are in the USD 90 000 to USD 180 000 interval. The chosen intervals for the parameters were: Hydrogen Sales Price (USD 5 - USD 7 per kg); Investment Cost (USD 70 000 - USD 130 000 per unit); Throughput (20 - 30 kg

  18. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.

    Science.gov (United States)

    Yuan, Jipei; Guo, Weiwei; Wang, Erkang

    2008-02-15

    In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

  19. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    International Nuclear Information System (INIS)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M and O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky

  20. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    projects to improve fish habitat. In 1998, the ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. Therefore, ACCD contracted with WDFW's Snake River Lab (SRL) to take pre- and post-construction measurements of the habitat (i.e., pools, LOD, width, depth) at each site, and to evaluate fish use within some of the altered sites. These results have been published annually as progress reports to the ACCD (Bumgarner et al. 1999, Wargo et al. 2000, and Bumgarner and Schuck 2001). The ACCD also contracted with the WDFW SRL to conduct other evaluation and monitoring in the stream such as: (1) conduct snorkel surveys at habitat alteration sites to document fish usage following construction, (2) deploy temperature monitors throughout the basin to document summer water temperatures, and (3) attempt to document adult fish utilization by documenting the number of steelhead redds associated with habitat altered areas. This report provides a summary of pre-construction measurements taken on three proposed Charley Creek habitat sites during 2001, two sites in main Asotin Creek, and one site in George Creek, a tributary that enters in the lower Asotin Creek basin. Further, it provides a comparison of measurements taken pre- and post-construction on three 1999 habitat sites taken two years later, but at similar river flows. It also presents data collected from snorkel surveys, redd counts, and temperature monitoring

  1. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  2. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 3. Survey and research on international cooperation (Hydrogen energy technology standardization); 2000 nendo suiro riyo kokusai clean energy sytem gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. 3. Kokusai kyoryoku ni kansuru chosa kenkyu (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts were made to establish standards necessary to promote the research and development of hydrogen energy technology and the practical application and popularization of the technology. In the study of the base of hydrogen energy technology standardization, research was conducted about Japan's difference from other countries and tasks to discharge and problems to solve in this country, relative to laws and regulations governing the construction of 'hydrogen supply stations' constituting the core of studies in the above-mentioned phase II research and development efforts. Studies conducted toward diffusion into the general public included rules and regulations over the size of hydrogen storage and the distance between dangerous matters and fire. ISO/TC197 (hydrogen technology) was established with the aim of achieving standardization of the system and equipment pertaining to the production, storage, transportation, measurement, and utilization of hydrogen for energy purposes. In fiscal 2000, Working Group 1 registered an 'interface for automated liquid hydrogen fuel delivery system' and 'hydrogen product specifications.' Moreover, Working Groups 2 through 7 were also engaged in their activities, respectively. (NEDO)

  3. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 3. Survey and research on international cooperation (Hydrogen energy technology standardization); 2000 nendo suiro riyo kokusai clean energy sytem gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. 3. Kokusai kyoryoku ni kansuru chosa kenkyu (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts were made to establish standards necessary to promote the research and development of hydrogen energy technology and the practical application and popularization of the technology. In the study of the base of hydrogen energy technology standardization, research was conducted about Japan's difference from other countries and tasks to discharge and problems to solve in this country, relative to laws and regulations governing the construction of 'hydrogen supply stations' constituting the core of studies in the above-mentioned phase II research and development efforts. Studies conducted toward diffusion into the general public included rules and regulations over the size of hydrogen storage and the distance between dangerous matters and fire. ISO/TC197 (hydrogen technology) was established with the aim of achieving standardization of the system and equipment pertaining to the production, storage, transportation, measurement, and utilization of hydrogen for energy purposes. In fiscal 2000, Working Group 1 registered an 'interface for automated liquid hydrogen fuel delivery system' and 'hydrogen product specifications.' Moreover, Working Groups 2 through 7 were also engaged in their activities, respectively. (NEDO)

  4. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  5. WE-NET: Japanese hydrogen program

    International Nuclear Information System (INIS)

    Mitsugi, Chiba; Harumi, Arai; Kenzo, Fukuda

    1998-01-01

    The Agency of Industrial Science and Technology (AIST), in the Ministry of International Trade and Industry (MITI), started the New Sunshine Program in 1993 by unifying the Sunshine Program (R and D on new energy technology), the Moonlight Program (R and D on energy conservation technology), and the Research and Development Program for Environmental Technology. The objective of the new program is to develop innovative technologies to allow sustainable growth while solving energy and environmental issues. One of the new projects in this program is the ''International Clean Energy System Technology Utilizing Hydrogen (World Energy Network)'': WE-NET. The goal of WE-NET is to construct a worldwide energy network for effective supply, transportation and utilization of renewable energy using hydrogen. The WE-NET program extends over 28 years from 1993 to 2020. In Phase 1, we started core research in areas such as development of high efficiency technologies including hydrogen production using polymer electrolyte membrane water electrolysis, hydrogen combustion turbines, etc. (author)

  6. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  7. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov (United States)

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen Systems Integration Facility or ESIF. Research projects including H2FIRST, component testing, hydrogen

  8. Socio-economic status and health care utilization in rural Zimbabwe: findings from Project Accept (HPTN 043).

    Science.gov (United States)

    Kevany, Sebastian; Murima, Oliver; Singh, Basant; Hlubinka, Daniel; Kulich, Michal; Morin, Stephen F; Sweat, Michael

    2012-03-07

    Zimbabwe's HIV epidemic is amongst the worst in the world, and disproportionately effects poorer rural areas. Access to almost all health services in Zimbabwe includes some form of cost to the client. In recent years, the socio-economic and employment status of many Zimbabweans has suffered a serious decline, creating additional barriers to HIV treatment and care. We aimed to assess the impact of i) socio-economic status (SES) and ii) employment status on the utilization of health services in rural Zimbabwe. Data were collected from a random probability sample household survey conducted in the Mutoko district of north-western Zimbabwe in 2005. We selected variables that described the economic status of the respondent, including: being paid to work, employment status, and SES by assets. Respondents were also asked about where they most often utilized healthcare when they or their family was sick or hurt. Of 2,874 respondents, all forms of healthcare tended to be utilized by those of high or medium-high SES (65%), including private (65%), church-based (61%), traditional (67%), and other providers (66%) (P=0.009). Most respondents of low SES utilized government providers (74%) (P=0.009). Seventy-one percent of respondents utilizing health services were employed. Government (71%), private (72%), church (71%), community-based (78%) and other (64%) health services tended to be utilized by employed respondents (P=0.000). Only traditional health services were equally utilized by unemployed respondents (50%) (P=0.000). A wide range of health providers are utilized in rural Zimbabwe. Utilization is strongly associated with SES and employment status, particularly for services with user fees, which may act as a barrier to HIV treatment and care access. Efforts to improve access in low-SES, high HIV-prevalence settings may benefit from the subsidization of the health care payment system, efforts to improve SES levels, political reform, and the involvement of traditional

  9. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  10. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  11. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  12. Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.

    1995-08-01

    Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of these programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.

  13. Utilizing assumption for project of stand for solid state targets activation on inner beams of AIC-144 cyclotron

    International Nuclear Information System (INIS)

    Petelenz, B.

    1997-09-01

    General assumptions for project of target activation stand at AIC-144 cyclotron are presented. The project predicts production of 67 Ga, 111 In, 201 Tl, 139 Ce, 88 Y, 123 I and 211 At isotopes using various target backings. Directions concerning target cooling and beam parameters are also described

  14. Law project on the gas utility modernization and gas industries development. Law project synthesis on the gas utility modernization and gas industries development; Projet de loi relatif a la modernisation du service public du gaz naturel et au developpement des entreprises gazieres.Synthese du projet de loi sur la modernisation du service public du gaz et le developpement des entreprises gazieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The french government would like to develop a law concerning the gas utility modernization and gas industries development, which completes the today system, more particularly, the law of 1946. This project specifies and comforts the gas utility, it gives to the energy policy tools adapted to the new european context. It helps the natural gas industry to become more competitive. The method chosen by the government is presented and discussed in these three documents. (A.L.B.)

  15. Report on achievements in research and development in Sunshine Project - Hydrogen energy. Studies on prevention of hydrogen explosion disasters (Fiscal 1974 through fiscal 1983); 1974 - 1983 nendo suiso no bakuhatsu saigai boshi no kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    Experimental studies have been performed on prevention of hydrogen explosion disasters in attempting practical use of hydrogen energy. Regarding the prevention of disasters caused by high-pressure hydrogen, elucidation was made on causes of the fire, and estimation expression was introduced on size of fire caused by ignition. Measurements were also made on explosion limit and explosion pressure of low-temperature hydrogen gas. Furthermore, a flame arrester for hydrogen was developed. In studies on prevention of explosion of liquefied hydrogen, investigations were given on physical and chemical natures of a system mixed with air and oxygen, and on explosion causing sensitivity against impact to have elucidate danger of impurities in liquefied hydrogen. An experiment verified the effectiveness of carbon dioxide or powder extinguishing agent in the case of liquefied hydrogen fire. With regard to metal hydrides, elucidation was given on their ignitability in atmosphere and danger of dust explosion. In addition, it was made clear that containers may break down due to rise in internal pressure as a result of temperature rise, whereas safety valves were discussed, and models were decided. (NEDO)

  16. Report on achievements in fiscal 1984 on surveys and studies commissioned from Sunshine Project. Surveys and studies on patent information. (Hydrogen energy); 1984 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    With an objective of smooth and efficient promotion of Sunshine Project, surveys were made on inventions related to Sunshine Project. This paper reports the survey result on patents applied for in 1984 in relation with hydrogen energy. With regard to manufacture of hydrogen using photo-chemical method, there is a number of patent applications that relate to methods to adjust semiconductors used as photo catalysts. Fossil fuel related patents were seen mainly in reforming fuels from methanol. In the electrolytic method related patents, those on electrodes and SPE are overwhelmingly great in number. However, researches on SPE are thought somewhat declining in activity. Regarding hydrogen transportation and storage, the trend differs now from the previous trend in which large increase had been continuing, and the number has hit the ceiling. Attention is given continually on new hydrogen absorbing alloys. With respect to hydrogen fuel cells, patent applications are still many in phosphoric acid fuel cells and molten salt fuel cells, and their systems. Applications for alkaline type fuel cell patent are also increasing. (NEDO)

  17. Achievement report on surveys and researches in the Sunshine Project in fiscal 1979. Surveys and researches on patent information (Hydrogen energy); 1979 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes surveys in fiscal 1979 on patent information related to hydrogen energy. For the hydrogen manufacturing cycle based on the thermo-chemical method, many patents are related to HI decomposition and separation. A number of technologically superior patents were found in the electrolytic method, but those applicable directly to water decomposition development in the Sunshine Project are not many. The number of patents on metal hydrides in relation with hydrogen storage and transportation has shown some increase, but no change in the qualitative aspect. In safety assurance, many proposals were seen relating to earthquakes. Patents on hydrogen fuel cells decreased in number as a whole, while half of the domestic patent applications is for alkaline electrolyte type fuel cells. In contrast in other countries, many patents are related to the second and third generation fuel cells, not to speak of the first generation, indicating that Japan is standing behind. Technologies to use hydrogen engines practically are concentrated on establishment of hydrogen storage and transportation methods and development of systems with high total energy efficiency, which are reflected in patent applications. Combustion device related problems are in NOx emission suppressing technologies and reverse ignition preventing measures, but trend is lacking in applying for patents that endorse technological progress in this respect. (NEDO)

  18. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  19. Management and Beneficial Reuse of Overburden Material - Linde Formerly Utilized Sites Remedial Action Program (FUSRAP) Remediation Project

    International Nuclear Information System (INIS)

    Boyle, J.D.; Schwippert, M.; Lorenz, W.D.

    2009-01-01

    This paper outlines three separate and distinct situations where the proper management of overburden material allows for the beneficial reuse of overburden material. Beneficial reuse of overburden material at the Linde Project was made possible by a simultaneous combination of physical conditions at the site in conjunction with collaborative planning and cooperation between U.S. Army Corps of Engineers - Buffalo District, New York State Department of Energy and Conservation, the Owner and Shaw Environmental and Infrastructure. Efforts by the project team focused on maintaining compliance with project plan requirements, communicating the plan to all parties, executing the plan safely and efficiently, and emphasizing fiscal responsibility to ensure maximum cost savings. (authors)

  20. Economic diversification in Sarnia-Lambton: building a hydrogen cluster

    International Nuclear Information System (INIS)

    Bugyra, W.J.; Martin, D.R.; Kinsella, J.

    2006-01-01

    Sarnia-Lambton Economic Partnership has embarked upon a novel path toward building a hydrogen cluster. Without an indigenous 'technology' star, the foundation for the cluster is the petrochemical industry and the broad spectrum of local enterprises and institutions that supply it. Hydrogen is both a by-product and feedstock for different applications in the region, resulting in the development of a large pipeline network to connect waste gas to consumers. The local capabilities developed to process, deliver and maintain this system have helped to attract new industries that require hydrogen to the area. The same capabilities are now being leveraged from chemical applications to energy applications for hydrogen. The H 2 D Project will assemble the largest fleet of hydrogen fuelled 'appliances' in North America, with 200 devices including on and off-road vehicles, and portable and stationary hydrogen applications utilizing a wide array of technologies. H 2 D is a community driven project that leverages and supports educational programs at Lambton College and the University of Western Ontario (key elements of a thriving industrial cluster), sophisticated local safety services, and support from local, provincial and federal governments, to provide a testing ground for technology providers and local suppliers in an environment with a 'gas' savvy population and supporting infrastructure. (author)

  1. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the

  2. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  3. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  4. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  5. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 1. Survey/study concerning system evaluation); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With the aim of formulating a strategy for introducing hydrogen, assessment was carried out on the energy consumption, environmental impacts and cost effiectiveness concerning various hydrogen utilization systems. In regard to soda-electrolysis by-product hydrogen and coke-oven by-product hydrogen, hydrogen supply capacity and cost effectiveness were evaluated. As a result, the two systems were found to have an annual hydrogen supply capacity of 11.52 GNm{sup 3} in total. As to the cost effectiveness, transportation by pipeline was 34 yen/Nm{sup 3}-H{sub 2} in the case of soda-electrolysis by-product hydrogen, and 40 yen/Nm{sup 3}-H{sub 2} in the case of coke-oven by-product hydrogen. An estimated cost of power generation showed 56 yen to 67 yen/kWh in such a system on remote islands as replacing diesel power generation by wind power generation, storing part of the electric energy produced in the form of hydrogen through water electrolysis, and using it as fuel for power generation by the fuel cell unit if wind conditions are unfavorable. Power generation cost on remote islands at present is sometimes in excess of 50 yen/kWh; therefore, this combined system showed promising results. The cost of using wooden biomass was estimated to be 51,000 yen/TOE , whose competitiveness is uncertain. (NEDO)

  6. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  7. The cost and performance of utility commercial lighting programs. A report from the Database on Energy Efficiency Programs (DEEP) project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, J.; Vine, E.; Shown, L.; Sonnenblick, R.; Payne, C. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

    1994-05-01

    The objective of the Database on Energy Efficiency Programs (DEEP) is to document the measured cost and performance of utility-sponsored, energy-efficiency, demand-side management (DSM) programs. Consistent documentation of DSM programs is a challenging goal because of problems with data consistency, evaluation methodologies, and data reporting formats that continue to limit the usefulness and comparability of individual program results. This first DEEP report investigates the results of 20 recent commercial lighting DSM programs. The report, unlike previous reports of its kind, compares the DSM definitions and methodologies that each utility uses to compute costs and energy savings and then makes adjustments to standardize reported program results. All 20 programs were judged cost-effective when compared to avoided costs in their local areas. At an average cost of 3.9{cents}/kWh, however, utility-sponsored energy efficiency programs are not ``too cheap to meter.`` While it is generally agreed upon that utilities must take active measures to minimize the costs and rate impacts of DSM programs, the authors believe that these activities will be facilitated by industry adoption of standard definitions and reporting formats, so that the best program designs can be readily identified and adopted.

  8. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  9. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  10. Andromede project: Surface analysis and modification with probes from hydrogen to nano-particles in the MeV energy range

    International Nuclear Information System (INIS)

    Eller, Michael J.; Cottereau, Evelyne; Rasser, Bernard; Verzeroli, Elodie; Agnus, Benoit; Gaubert, Gabriel; Donzel, Xavier; Delobbe, Anne; Della-Negra, Serge

    2015-01-01

    The Andromede project is the center of a multi-disciplinary team which will build a new instrument for surface modification and analysis using the impact of probes from hydrogen to nano-particles (Au 400 +4 ) in the MeV range. For this new instrument a series of atomic, polyatomic, molecular and nano-particle ion beams will be delivered using two ion sources in tandem, a liquid metal ion source and an electron cyclotron resonance source. The delivered ion beams will be accelerated to high energy with a 4 MeV van de Graaff type accelerator. By using a suite of probes in the MeV energy range, ion beam analysis techniques, MeV atomic and cluster secondary ion mass spectrometry can all be performed in one location. A key feature of the instrument is its ability to produce an intense beam for injection into the accelerator. The commissioning of the two sources shows that intense beams from atomic ions to nano-particles can be delivered for subsequent acceleration. The calculations and measurements for the two sources are presented.

  11. Assessment of thermochemical hydrogen production. Project 8994 mid-contract progress report, July 1--November 1, 1977. [Iron chloride and copper sulfate cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Schreiber, J.D.

    1977-12-01

    We have completed the base-case (first-cut) flowsheet analysis for two thermochemical water-splitting cycles that have been under study at the Institute of Gas Technology: a four-step iron chloride cycle (denoted B-1) and a four-step copper sulfate cycle (denoted H-5). In the case of Cycle B-1, an energy balance has located the worst problem areas in the cycle, and flowsheet modifications have begun. Calculations of equilibrium effects due to the hydrolysis of ferrous chloride at pressures high enough to interface with projected hydrogen transmission systems will, apparently, necessitate higher temperature process heat input for this step. Higher pressure operation of some critical separation processes yields more favorable heat balances. For Cycle H-5, the unmodified (base-case) flowsheet indicates that reaction product separations will be relatively simple with respect to Cycle B-1. Work of Schuetz and others dealing with the electrolysis and thermodynamics of HBr/H/sub 2/O/SO/sub 2/ systems is being extensively reviewed. Work plans for this part of the contract are currently being reviewed.

  12. Achievement report on research and development in the Sunshine Project in fiscal 1978. Studies on a hydrogen energy total system; 1978 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Analysis was made on timing, patterns and scales of introducing hydrogen energy into the Japan's total energy system, and case studies were made on transfer of the comprehensive systems that can be realized in the years of 1985, 2000 and 2025. The basic conception for the analytic method employed a method to analyze and present theoretically the conditions in which prerequisites or results of the estimation can be established, rather than intending elucidation of the estimation itself. An energy model was used for the theoretical means thereof. The objective function to be optimized was assumed to maximize (estimate over the planned period of time) the total effectiveness of the hydrogen energy system converted into the present value being given appropriate discount. The economic performance measures for different secondary energies working as the comparison measures are the limiting production cost of each energy. A consideration was given to the point that the electrolytic hydrogen cannot compete with that made by using the thermo-chemical method (if developed successfully) using heat from high-temperature gas reactor if the fossil fuel price rises sharply. Considerations are also required in replaceability of hydrogen energy with other energies, and hydrogen utilization in petroleum refining. (NEDO)

  13. 2010 Annual Progress Report DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  14. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  15. Multikilowatt Bipolar Nickel/Hydrogen Battery

    Science.gov (United States)

    1986-01-01

    High energy densities appear feasible. Nickel/hydrogen battery utilizing bipolar construction in common pressure vessel, addressing needs for multikilowatt storage for low-Earth-orbit applications, designed and 10-cell prototype model tested. Modular-concept-design 35-kW battery projected energy densities of 20 to 24 Wh/b (160 to 190 kj/kg) and 700 to 900 Wh/ft3 (90 to 110 MJ/m3) and incorporated significant improvements over state-of-the-art storage systems.

  16. The hydrogen refuelling plant in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Giron, E.; Saez, A.; Julia, A.

    2005-07-01

    Since the late days of spring 2003, a hydrogen refuelling station is operating in Madrid to provide fuel to a set of four FC-buses running in the frame of the European demonstration projects CUTE and CITYCELLS. This station is located at one of the EMT(1) bus depot premises. The station was designed and built for the EMT by the consortium 'esH2' composed by the industrial gases manufacturer Air Liquide Espana, the energy utility Gas Natural SDG and the oil company Repsol YPF. (Author)

  17. Hydrogen from Biomass for Urban Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Boone, William

    2008-02-18

    The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

  18. Achievement report on research and development in the Sunshine Project in fiscal 1979. Research hydrogen energy subsystems (Research on hydrogen fueled automobiles); 1979 nendo suiso energy subsystem no kenkyu seika hokokusho. Suiso jidosha system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes research achievements in fiscal 1979 in research on hydrogen fueled automobiles as a research on hydrogen energy subsystems. The previous fiscal year has researched heat insulation methods to reduce evaporation loss from a hydrogen tank, prototype liquid level meters, prototype feed pumps (especially material selection for sliding parts) and a flow rate control method. Fiscal 1979 performed measurements of temperatures in different parts in the tank to elucidate how the heat makes invasion. Measurements were performed for the pump on suction valve behavior, internal pump compression force, liner temperatures, and leakage amount. The status of operation was identified and a high performance pump for use in very low temperatures was developed successfully. The pump has high delivery pressure, good durability, and capability of fine adjustment in the delivery quantity. This made the direct injection system for hydrogen fuel possible. Injection of hydrogen into an engine was possible by vaporizing liquefied hydrogen and supplying it as a low temperature gas used at 0 to -40 degrees C. The system has high efficiency. Fuel feed control was possible at the same level as in the existing automobiles. The prototype direct injection system can handle stably the load in actual cars. Material for the fuel tank is an important problem in terms of weight, whose solution is urged. (NEDO)

  19. Pilot research project of risk communication on nuclear technology and its utilization. Toward communication and collaboration with community

    International Nuclear Information System (INIS)

    Tsuchiya, Tomoko

    2003-01-01

    Although the importance of risk communication has been pointed out over the last decade in nuclear community, both public authorities and nuclear industry have not conducted the definite actions yet. It will be reflected in the public eye that nuclear community's attitude toward communication and consultation with the public about risk issues is half-hearted, comparing with chemical and food safety fields which recently launched their risk communication activities. In this study, we conduct risk communication experiments on some risk issues associated with nuclear technology and its utilization in Tokai village, for the purpose of establishment of risk communication in our society that might be one of the new relationships between science and technology and society. The outcomes of FY2002 study are the following threefold; 1) preparation of risk communication experiments on nuclear technology and its utilization, 2) assessment of social effects of risk communication activities, 3) preparation of practical guidebook for risk communication experiments. (J.P.N.)

  20. Research Project Control System (RPCS); research results utilization data as of 06/30/81. Status summary report

    International Nuclear Information System (INIS)

    1981-09-01

    The report on 'Research Results Utilization' provides status and control information concerning the utilization of research results in the regulatory policies and practices of the NRC. Research Information Letters (RILs) are prepared by RES to transmit research results to NRC user offices upon completion of a substantial, coherent and reasonably complete body of experimental and/or analytical research work. Section 3.0 of this report lists the RILs issued to date, together with an identification of the research program manager and the research program element which generated the RIL. The potential applicability of each RIL to the regulatory process is also identified, and comments from the cognizant RES and user office staff are summarized which relate to the expected impact of the reported RILs on the regulatory process

  1. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  2. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume II. Options for capturing the waste heat

    International Nuclear Information System (INIS)

    1978-11-01

    Options for utilizing the heated SRP effluent are investigated. The temperature and availability characteristics of the heated effluent are analyzed. Technical options for energy recovery are discussed. A number of thermodynamic cycles that could generate electrical power using the energy in the heated SRP effluent are described. Conceptual designs for SRP application of two attractive options are presented. Other direct uses for the heated effluent, as heat sources for agriculture and aquaculture options are discussed

  3. Comorbidity, Pain, Utilization, and Psychosocial Outcomes in Older versus Younger Sickle Cell Adults: The PiSCES Project

    Directory of Open Access Journals (Sweden)

    Donna K. McClish

    2017-01-01

    Full Text Available Background. Patients with SCD now usually live well into adulthood. Whereas transitions into adulthood are now often studied, little is published about aging beyond the transition period. We therefore studied age-associated SCD differences in utilization, pain, and psychosocial variables. Methods. Subjects were 232 adults in the Pain in Sickle Cell Epidemiology Study (PiSCES. Data included demographics, comorbidity, and psychosocial measures. SCD-related pain and health care utilization were recorded in diaries. We compared 3 age groups: 16–25 (transition, 26–36 (younger adults, and 37–64 (older adults years. Results. Compared to the 2 adult groups, the transition group reported fewer physical challenges via comorbidities, somatic complaints, and pain frequency, though pain intensity did not differ on crisis or noncrisis pain days. The transition group utilized opioids less often, made fewer ambulatory visits, and had better quality of life, but these differences disappeared after adjusting for pain and comorbidities. However, the transition group reported more use of behavioral coping strategies. Conclusion. We found fewer biological challenges, visits, and better quality of life, in transition-aged versus older adults with SCD, but more behavioral coping. Further study is required to determine whether age-appropriate health care, behavioral, or other interventions could improve age-specific life challenges of patients with SCD.

  4. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    International Nuclear Information System (INIS)

    Szpunar, C.B.

    1993-01-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ''major'' sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ''an ample margin of safety,'' the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country's economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern

  5. Economic Feasibility Analysis for Renewable Energy Project Using an Integrated TFN–AHP–DEA Approach on the Basis of Consumer Utility

    Directory of Open Access Journals (Sweden)

    Lu Gan

    2017-12-01

    Full Text Available A renewable energy (RE project has been brought into focus in recent years. Although there is quite a lot of research to assist investors in assessing the economic feasibility of the project, because of the lack of consideration of consumer utility, the existing approaches may still cause a biased result. In order to promote further development, this study focuses on the economic feasibility analysis of the RE project on the basis of consumer utility in the whole life cycle. Therefore, an integrated approach is proposed, which consists of triangular fuzzy numbers (TFNs, an analytic hierarchy process (AHP and data envelopment analysis (DEA. The first step is to determine the comprehensive cost index weights of DEA by TFN–AHP. Secondly, to solve the problem, the first DEA model, which is proposed by A. Charnes, W. W. Cooper and E. Rhodes (C2R, is established to calculate the DEA effectiveness. Then, the third task involves designing a computer-based intelligent interface (CBII to simplify realistic application and ensure performance efficiency. Finally, a solar water heater case study is demonstrated to validate the effectiveness of the entire method’s system. The study shows that this could make investors’ lives easier by using the CBII scientifically, reasonably and conveniently. Moreover, the research results could be easily extended to more complex real-world applications.

  6. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  7. dimensional architectures via hydrogen bonds

    Indian Academy of Sciences (India)

    Administrator

    organization and has potential applications in the field of magnetism ... The concepts of crystal engineering ... 4. However, the utilization of hydrogen bond supramolecular syn- ... sembling the coordination networks by designing the ligands ...

  8. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia

  9. Proceedings of the 1998 U.S. DOE Hydrogen Program Review: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This document contains technical progress reports on 42 research projects funded by the DOE Hydrogen Program in Fiscal Year 1998, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research. These proceedings serve as an important technology reference for the DOE Hydrogen Program. The papers in Volume 2 are arranged under the following topical sections: Storage and separation systems; Thermal systems; and Transportation systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Fiscal 1997 survey report. Subtask 3 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (conceptual design of the total system/city-level energy estimation and assessment); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask zentai system gainen sekkei (toshi kibo deno yosoku hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the fiscal 1997 result of the study of scenarios for introducing hydrogen to the urban area. In the case of studying it in London, it was found that hythane (mixture of hydrogen into town gas) was effective, but in the case of doing in Tokyo, it was found that the scenario was undesirable because of the increasing infracost. Accordingly, another scenario was studied. It was assessed from the aspects of environmental advantages, infracosts, and potential advantageous values in urban areas associated with hydrogen utilization (hydrogen premium). It is most effective to use hydrogen as a fuel of transportation means from the aspect of environmental merits as the decrease in external cost. In Tokyo, the dependence upon electric power is large, and therefore it is attractive to introduce highly efficient fuel cells which enable the dispersed cogeneration using hydrogen. The value of hydrogen is determined by the avoidance of environmentally influential substances and the surplus generated output by fuel cells (substitution for the existing natural gas). When the high external cost can be assumed, the value of hydrogen becomes large. The paper also considered the arrangement of infrastructures in Tokyo. 187 refs., 14 figs., 18 tabs.

  11. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  12. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    Science.gov (United States)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  13. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  14. Hydrogen Process Coupling to Modular Helium Reactors

    International Nuclear Information System (INIS)

    Shenoy, Arkal; Richards, Matt; Buckingham, Robert

    2009-01-01

    The U.S. Department of Energy (DOE) has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the concept to be used for the Next Generation Nuclear Plant (NGNP), because it is the most advanced Generation IV concept with the capability to provide process heat at sufficiently high temperatures for production of hydrogen with high thermal efficiency. Concurrently with the NGNP program, the Nuclear Hydrogen Initiative (NHI) was established to develop hydrogen production technologies that are compatible with advanced nuclear systems and do not produce greenhouse gases. The current DOE schedule for the NGNP Project calls for startup of the NGNP plant by 2021. The General Atomics (GA) NGNP pre-conceptual design is based on the GA Gas Turbine Modular Helium Reactor (GT-MHR), which utilizes a direct Brayton cycle Power Conversion System (PCS) to produce electricity with a thermal efficiency of 48%. The nuclear heat source for the NGNP consists of a single 600-MW(t) MHR module with two primary coolant loops for transport of the high-temperature helium exiting the reactor core to a direct cycle PCS for electricity generation and to an Intermediate Heat Exchanger (IHX) for hydrogen production. The GA NGNP concept is designed to demonstrate hydrogen production using both the thermochemical sulfur-iodine (SI) process and high-temperature electrolysis (HTE). The two primary coolant loops can be operated independently or in parallel. The reactor design is essentially the same as that for the GT-MHR, but includes the additional primary coolant loop to transport heat to the IHX and other modifications to allow operation with a reactor outlet helium temperature of 950 .deg. C (vs. 850 .deg. C for the GT-MHR). The IHX transfers a nominal 65 MW(t) to the secondary heat transport loop that provides the high-temperature heat required by the SI-based and HTE-based hydrogen production facilities. Two commercial nuclear hydrogen plant variations were evaluated with

  15. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  16. 41 CFR 50-204.68 - Hydrogen.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...

  17. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  18. Complete Analysis of a Biologically Active Tetrapeptide: A Project Utilizing Thin-Layer Chromatography and Tandem Quadrupole Mass Spectrometry

    Science.gov (United States)

    Lefevre, Joseph W.; Dodsworth, David W.

    2000-04-01

    The biologically active tetrapeptide d-Ala-Gly-l-Phe-d-Leu ([des-Tyr1-d-Ala2-d-Leu5]enkephalin) was analyzed for its amino acid content and stereochemistry by normal and reversed-phase thin-layer chromatography (TLC), and its sequence was determined by tandem quadrupole mass spectrometry. The project involved sequential N-dansylation of a portion of the tetrapeptide, hydrolysis, isolation, and identification of the N-terminal amino acid as dansyl-alanine by comparison with standards using normal-phase TLC. A second portion of the tetrapeptide was hydrolyzed and the resulting four free amino acids were converted to their corresponding dansyl derivatives and purified by preparative normal-phase TLC. The three dansyl amino acids not identified previously were identified by TLC. The stereochemistry of each was determined by comparison with dansyl-dl-amino acid standards using reversed-phase TLC in the presence of ß-cyclodextrin, a chiral mobile phase additive. Finally, the correct amino acid sequence was determined by tandem quadrupole mass spectrometry. This project gives students valuable experience in microscale synthesis, both normal and reversed-phase TLC, stereochemical analysis, and mass spectrometry.

  19. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  20. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  1. Evaluation of Project P.A.T.H.S. in Hong Kong: Utilization of Student Weekly Diary

    Directory of Open Access Journals (Sweden)

    Daniel T. L. Shek

    2008-01-01

    Full Text Available Four schools participating in the experimental implementation phase of the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes (Secondary 1 level were randomly selected and invited to join this research study. After completion of the Tier 1 Program, Secondary 1 students in the participating schools were invited to write a reflective journal in the form of a weekly diary in order to reveal their perceptions and feelings regarding the Tier 1 Program and the related benefits. Results of the qualitative data analyses showed that most of the respondents (a had positive views on the program, (b had positive views on the instructors, and (c stated that they had acquired competencies at societal, familial, interpersonal, and personal levels after joining the program. The present qualitative findings based on students' weekly diaries provide additional support for the effectiveness of the Tier 1 Program of P.A.T.H.S. in Hong Kong.

  2. Long-term effects of adolescent marijuana use prevention on adult mental health services utilization: the midwestern prevention project.

    Science.gov (United States)

    Riggs, Nathaniel R; Pentz, Mary Ann

    2009-01-01

    Evaluated were effects of a drug abuse(1) prevention program, previously shown to prevent marijuana use in adolescence, on adulthood mental health service use. Analyses were conducted on 961 6th (41%) and 7th (59%) grade participants randomly assigned to intervention or control groups at baseline in 1984. These participants were followed-up through 2003 representing 15 waves of data collection. Eighty-five percent of participants were Caucasian and 56% were female. The hypothesis was that direct program effects on early adulthood mental health service use would be mediated by program effects on high school marijuana use trajectories. Structural equation models, imputing for missing data, demonstrated that MPP (Midwestern Prevention Project) program effects on mental health were mediated by the marijuana use growth curve intercept. Findings support the role of early adolescent drug use prevention programs in impacting later mental health problems. The study's limitations are noted.

  3. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  4. The utility and dynamics of salivary sex hormone measurements in the National Social Life, Health, and Aging Project, Wave 2.

    Science.gov (United States)

    Kozloski, Michael J; Schumm, L Philip; McClintock, Martha K

    2014-11-01

    Sex hormones affect physical, mental, and social health, yet their role in mediating social effects on aging is understudied. To facilitate such analyses with the National Social Life, Health & Aging Project Wave 2, we summarize the conceptual background, collection protocols, laboratory assays, and data analysis strategies for biologically active (free) levels of testosterone, estradiol, progesterone, and dehydroepiandrosterone (DHEA). Saliva from passive drool was collected from returning Wave 1 respondents and non-respondents as well as their partners during an in-home interview. Specimens were frozen and sent to Dresden LabService GmbH for duplicate assays of biologically active steroids using identical assay kits from National Social Life, Health, and Aging Project (NSHAP) Wave 1 (SaliCap, Catalog No. RE69995). Overall, 2,772 testosterone, 2,504 estradiol, 2,714 progesterone, and 2,800 DHEA measurements are publically available for Wave 2 analyses. Through a series of weighted linear regressions, all 4 steroids are compared by gender and age and to Wave 1 measurements. Men had higher levels of both free testosterone and progesterone than women; women and men had the same levels of estradiol and DHEA. Both free testosterone and DHEA decreased with age. We also found significant wave effects for all 4 sex hormones. NSHAP Waves 1 and 2 are the first U.S. probability sample studies to measure these 4 salivary sex hormones simultaneously, providing individual profiles 5 years apart. Wave 2 data demonstrate differences by gender and trends by age that are similar to those found in other saliva-based and serum-based studies of free steroid levels. The differences between waves arising from the change in assay laboratory need to be adjusted in future longitudinal analyses using NSHAP Wave 1 and Wave 2 steroid data. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e

  5. Air Force standards for nickel hydrogen battery

    Science.gov (United States)

    Hwang, Warren; Milden, Martin

    1994-01-01

    The topics discussed are presented in viewgraph form and include Air Force nickel hydrogen standardization goals, philosophy, project outline, cell level standardization, battery level standardization, and schedule.

  6. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 8. Research and development of hydrogen combustion turbines (development of ultra-high temperature materials); Suiso riyo kokusai clean energy system (WE-NET). Subtask 8. Suiso nensho turbine no kenkyu kaihatsu chokoon zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the result of the fiscal 1996 development of ultra-high temperature materials for parts of hydrogen combustion turbines, as part of the hydrogen utilization technology, which have excellent environmental protectivity and remarkably high efficiency. By the optimized solution heat treatment of monocrystal alloy developed in the previous fiscal year, obtained was strength property the same as the existing super alloys. As to FRC, pore size and strength property of SiC organic hybrid were made clear. ODS alloy cooling blades and heat insulation coating were studied, and YSZ was found to be most excellent as coating material. Concerning intermetallic compounds, the applicability to ultra-high temperatures up to 1700degC was not obtained. For improvement of heat resistance and environment resistance, adopted were highly compacting SiC matrix and BN coatings. Al2O3 was excellent in long-time stability. In the 1600degC steam corrosion test on multiplex structural materials with Al2O3 as surface material, chemical stability was confirmed. Three-dimensional woven fiber reinforced composite materials of C/C{center_dot}CMC were trially produced by changing the fiber orientation, and improvement in ultra-high temperature thermal shock resistance was confirmed. A study was made of spot observation of the specimen surface by laser microscope, and development was conducted of a temperature measuring method with no influence of radiant heat. 44 refs., 250 figs., 40 tabs.

  7. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of the main component devices such as turbine blades and rotors); Suiso riyo kokusai clean energy system gijutsu (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu (turbine yoku, rotor nado shuyo kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the result of the fiscal 1996 development relating to hydrogen combustion turbines, as one of the hydrogen utilization technologies, which have excellent environmentality and are expected of remarkably high efficiency. In the film cooling system of first-stage moving/stationary blades, the smaller the pitch of film pore is, the higher the mean cooling efficiency becomes, indicating 0.7 at maximum. As compared with the conventional shower head type, the metal temperature can be reduced 30-40degC. In the recovery type inner (convection) cooling system, by reducing the blade number, the consumption amount of coolant can be reduced 6% in stationary blade and 13% in moving blade, as compared with the result of the preceding year. In the element test of the hybrid cooling system, film cooling efficiency was actually measured by the porous module test equipment, and the result well agreed with the calculation result. In the water cooling system, studied were water (stationary blade) and vapor (moving blade) of the closed cooling structure for realization of a cycle efficiency of 60%. In rotor/disk cooling, analyses were made of seal characteristic grasp tests and characteristics of the rotor. The effect of deflection in the mainstream was small. Besides, proper value of the seal overlapping amount could be obtained. 6 refs., 368 figs., 55 tabs.

  8. Solid-State Hydrogen Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a method for converting metals to metal hydrides at low pressures for hydrogen storage systems with high efficiency with respect to volume...

  9. Scaling Critical Zone analysis tasks from desktop to the cloud utilizing contemporary distributed computing and data management approaches: A case study for project based learning of Cyberinfrastructure concepts

    Science.gov (United States)

    Swetnam, T. L.; Pelletier, J. D.; Merchant, N.; Callahan, N.; Lyons, E.

    2015-12-01

    Earth science is making rapid advances through effective utilization of large-scale data repositories such as aerial LiDAR and access to NSF-funded cyberinfrastructures (e.g. the OpenTopography.org data portal, iPlant Collaborative, and XSEDE). Scaling analysis tasks that are traditionally developed using desktops, laptops or computing clusters to effectively leverage national and regional scale cyberinfrastructure pose unique challenges and barriers to adoption. To address some of these challenges in Fall 2014 an 'Applied Cyberinfrastructure Concepts' a project-based learning course (ISTA 420/520) at the University of Arizona focused on developing scalable models of 'Effective Energy and Mass Transfer' (EEMT, MJ m-2 yr-1) for use by the NSF Critical Zone Observatories (CZO) project. EEMT is a quantitative measure of the flux of available energy to the critical zone, and its computation involves inputs that have broad applicability (e.g. solar insolation). The course comprised of 25 students with varying level of computational skills and with no prior domain background in the geosciences, collaborated with domain experts to develop the scalable workflow. The original workflow relying on open-source QGIS platform on a laptop was scaled to effectively utilize cloud environments (Openstack), UA Campus HPC systems, iRODS, and other XSEDE and OSG resources. The project utilizes public data, e.g. DEMs produced by OpenTopography.org and climate data from Daymet, which are processed using GDAL, GRASS and SAGA and the Makeflow and Work-queue task management software packages. Students were placed into collaborative groups to develop the separate aspects of the project. They were allowed to change teams, alter workflows, and design and develop novel code. The students were able to identify all necessary dependencies, recompile source onto the target execution platforms, and demonstrate a functional workflow, which was further improved upon by one of the group leaders over

  10. Report on the achievements in the Sunshine Project in fiscal 1986. Studies on coal liquefying reactions, and product reforming and utilization; 1981 nendo sekitan no ekika hanno to seiseibutsu no kaishitsu riyo no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The study items for the current fiscal year are as follows: (1) fundamental studies on coal liquefying reactions, (2) studies on product reforming, and (3) studies on product utilization. In Item 1, investigations were given on effects of hydrogenation treatment for a heavy circulation solvent in the coal liquefying reactions imposed on yield and nature of the product oil. Liquefying reactions were carried out under the presence of various heavy solvents having different hydrogen donating performances, or iron-based and oil soluble solvents. Liquefaction rates, yields and natures of different products were analyzed to discuss the degree of hydrogen donating performance of the solvents, the using conditions for the catalysts in the primary liquefying reaction, and the reaction conditions to enhance the product oil yield. In Item 2, hydrogenation treatment was given on the heavy oil fraction of the product oil obtained from the liquefying reaction using a heavy circulating solvent. The result was compared with the result on the medium oil fraction. Light oil fraction obtained from brown coal liquefaction was reformed to manufacture the reformed oil for engine tests. In Item 3, nature analysis and combustion tests were performed on the light oil fraction of the liquefied oil using brown coal as the material, and on the hydrogenated oil as a diesel engine fuel. The reforming effects were discussed from the amount and nature of the exhaust gas. (NEDO)

  11. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  12. Fiscal 1975 Sunshine Project research report. Technology assessment on hydrogen energy technology. Part 2; 1975 nendo suiso energy gijutsu no technology assessment seika hokokuksho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research assesses the impact of development of practical hydrogen energy technology on the economy, society and environment in Japan, and proposes some effective countermeasures, the required technical development target and a promising promotion system. The example of technology assessment assuming practical technology several tens years after is hardly found. Hydrogen energy technology is in the first stage among (1) initial planning stage, (2) technical research and development stage, (3) practical technology stage and (4) service operation stage. In the first fiscal year, as the first stage of determination of the communication route between society and technology, study was made on the concrete system image of practical technology. In this fiscal year, study was made entirely on preparation of the scenario for imaging the future economy and society concretely, modifying the planning of the hydrogen energy system. Through comparison of the scenario and system, the meaning and problem of the hydrogen energy technology were clarified. (NEDO)

  13. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  14. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  15. A collaborative project on the effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, H.A.; O`Connor, M.; Stephenson, P.L.; Whitehouse, M.; Richards, D.G.; Hesselmann, G.; MacPhail, J.; Lockwood, F.C.; Williamson, J.; Williams, A.; Pourkashanian, M. [ETSU, Harwell (United Kingdom)

    1998-12-01

    This paper describes a UK Department of Trade and Industry-supported collaborative project entitled `The Effects of Coal Quality on Emission of Oxides of Nitrogen (NO{sub x}) and Carbon Burnout in Pulverised Coal-fired Utility Boilers`. The project involved extensive collaboration between the UK power generators, boiler and burner manufacturers and research groups in both industry and academia, together with several of the world`s leading computational fluid dynamics (CFD) `software houses`. The prime objectives of the project were to assess the relationship between NO{sub x} emissions and carbon burnout and to develop and validate predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon-in-ash. Results showed good correlations for NO{sub x} and carbon burnout when comparing data from full-scale and large-scale rig trials. Laboratory-scale tests were found to be useful but the influence of burner aerodynamics was more difficult to quantify. Modelling showed that predicted NO{sub x} emissions were encouragingly close to measured emissions but predicting carbon burnout was less successful. 24 refs., 4 figs., 6 tabs.

  16. [Physiological and biochemical characteristics and capacity for polyhydroxyalkanoates synthesis in a glucose-utilizing strain of hydrogen-oxidizing bacteria, Ralstonia eutropha B8562].

    Science.gov (United States)

    Volova, T G; Kozhevnikov, I V; Dolgopolova, Iu B; Trusova, M Iu; Kalacheva, G S; Aref'eva, Iu V

    2005-01-01

    The physiological, biochemical, genetic, and cultural characteristics of the glucose-utilizing mutant strain Ralstonia eutropha B8562 were investigated in comparison with the parent strain R. eutropha B5786. The morphological, cultural, and biochemical characteristics of strain R. eutropha B8562 were similar to those of strain R. eutropha B5786. Genetic analysis revealed differences between the 16S rRNA gene sequences of these strains. The growth characteristics of the mutant using glucose as the sole carbon and energy source were comparable with those of the parent strain grown on fructose. Strain B8562 was characterized by high yields of polyhydroxyalkanoate (PHA) from different carbon sources (CO2, fructose, and glucose). In batch culture with glucose under nitrogen limitation, PHA accumulation reached 90% of dry weight. In PHA, beta-hydroxybutyrate was predominant (over 99 mol %); beta-hydroxyvalerate (0.25-0.72 mol %) and beta-hydroxyhexanoate (0.008-1.5 mol %) were present as minor components. The strain has prospects as a PHA producer on glucose-containing media.

  17. Achievement report on research and development in the Sunshine Project in fiscal 1977. Studies on hydrogen energy total systems and the safety assuring technologies thereon (Studies on hydrogen energy total systems); 1977 nendo suiso energy total system to sono hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso energy total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    A numerical model was prepared to express fields and size of hydrogen energy introduction in Japan's energy systems in the future. Dividing Japan into 13 weather sections, one to two energy bases (import and secondary production bases in coastal areas) were assumed on each section. Secondary energies produced in these energy bases are transported to intermediate bases, from which the energies are distributed into cities and consumed. For the purpose of simplification, final consumption departments are hypothesized to exist in these intermediate bases. Parameters that characterize the flows on networks in the processes of supply, distribution, production, storage, transportation and utilization are divided largely into energy efficiency and cost of the processes. The amount of energy demand in each final consumption department was defined as an amount to maximize the expected effects as a result of having satisfied the demand. The result of trial calculations revealed that, as long as the hydrogen to be introduced is limited to hydrogen produced via electrolysis using thermally generated power, the hydrogen introduction into the future energy systems is difficult in terms of economic performance. (NEDO)

  18. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 12. Search and assessment of innovative and leading technologies; Suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 12. Kakushinteki sendoteki kenkyu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Search and assessment were carried out on innovative and leading technologies which are outside the development objects at the present, but are promising for the future. This paper describes the achievements in fiscal 2000. In the hydrogen manufacturing method using natural gas as the raw material, but not generating carbon dioxide, a method using plasma has the hydrogen conversion rate of more than 90%, capable of providing carbon black with added value. On a hydrogen selective enzyme hydrogenase sensor, verification was given on its sensitivity and response speed, but the discussion was interrupted because of difficulty in obtaining the enzyme. Naphthenic hydrogen storage and transportation media (easy in hydrogenation and dehydrogenation) were discussed, whereas the reaction promoting effect was identified in both of the super heating liquid film process and the membrane reactor system. Enhancement in output and efficiency may be anticipated if hydrogen-rich reformed gas is obtained by reforming methane (natural gas) by utilizing waste heat from a gas turbine of several MW capacity. Hydrogen liquefaction technologies using the magnetic freezing process was discussed as the fundamental research assignment, wherein fiscal 2000 has studied the basic design and optimal magnetic materials. (NEDO)

  19. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  20. Hydrogen technologies and the technology learning curve

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    1998-01-01

    On their bumpy road to commercialization, hydrogen production, delivery and conversion technologies not only require dedicated research, development and demonstration efforts, but also protected niche markets and early adopters. While niche markets utilize the unique technological properties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital requirements associated with the commercialization process of several hydrogen technologies. (author)

  1. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  2. FY 1974 report on the results of the Sunshine Project. Technology assessment of hydrogen energy technology; 1974 nendo suiso energy gijutsu no technology assessment seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-30

    This is aimed at studying the relation between the technology development of hydrogen energy and the society. In Chapter 1, a meaning of technology assessment was examined. When applying it to the hydrogen energy technology, the paper presented what content it has. In Chapter 2, the needs for hydrogen energy in society were made clear in comparison with the energy supply/demand structure in Japan and characteristics of hydrogen energy. In Chapter 3, the paper showed what kinds of technology are being developed to meet the needs in this society and arranged viewpoints for evaluating the effectiveness of the technology. In Chapter 4, the paper studied the positioning of hydrogen energy technology in the future society, and presented as examples more than one hydrogen energy/system plans which become the base to describe the impact of the technology on the society. If taking technology assessment as a part of the communication activities between the technology development and the society as did in this study, these system plans are something like the ring for people in each field to talk with. In Chapter 5, the study made from each aspect was arranged. (NEDO)

  3. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  4. Environmentally friendly type coal utilization technology transfer project. Downstream field; Kankyo chowagata sekitan riyo gijutsu iten jigyo. Karyu bun`ya

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper arranged the result of the clean coal technology transfer project carried out during October to December, 1996. For the purpose of supporting introduction/spread of clean coal technology (CCT) in Asian and Pacific countries, the project invited engineers of the countries to Japan, aiming at fermentation of the understanding of CCT and improvement in ability. The project was held by NEDO and managed by Center for Coal Utilization, Japan. The manager course is for policy decision makers, management and senior management (plant manager class). By taking up CCT assessment and a menu of economical efficiency, prepared was the environment to which CCT is introduced in case of working out policy and planning plant/equipment investment. Moreover, the engineer course is for policy planners, medium-class management (section chief class), senior engineers (planners), and takes up materials for judgment in case of planning CCT facilities and proposing measures to reduce environmental loads by management and improvement of facilities at the same time. Fifteen engineers were invited: 6 from China, 3 from Indonesia, 3 from the Philippines, and 3 from Thailand

  5. Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides.

    Science.gov (United States)

    Kamlage, B; Gruhl, B; Blaut, M

    1997-05-01

    Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts.

  6. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    1992-01-01

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  7. Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on liquefying reaction in coal, and reforming and utilization of the products; 1992 nendo sekitan no ekika hanno to seiseibutsu no kaishitsu riyo no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1992 in studies on liquefying reaction in coal, and reforming of the products. High conversion rate was attained in the co-treatment of bitumen and Taiheiyo coals by using highly dispersing oil soluble solvent without performing coking, even if the asphaltene concentration is high. When a very highly acidic trifluoromethane sulfonic acid catalyst is used, hydrogenation and conversion to solubilized low molecules is possible even with a solvent having low affinity with coal. Swelling effect by tetralin is remarkable in pulverized coal, and the conversion rate was improved greatly under high-pressure hydrogen. When naphtha of the Wandoan coal liquefied oil is given extraction treatment with base and acid/base, the gas production decreases noticeably when hydrogenating and refining the extracts, resulting in reduced hydrogen consumption and improved oil recovery rate. Furthermore, when the extraction treated naphtha is hydrogenated, denitrification can be achieved completely. Kerosene and light oil liquefied from the Wandoan coal were cracked by fluidity contact, whereas the light gravity product yield due to the decomposition was found low because of containing a great amount of two-ring aromatics. The pressure crystal deposition method using solvent is effective in separation of high-melting point compounds including anthracene from heavy gravity oil. (NEDO)

  8. Prevalence of Fibromyalgia: A Population-Based Study in Olmsted County, Minnesota, Utilizing the Rochester Epidemiology Project

    Science.gov (United States)

    Vincent, Ann; Lahr, Brian D; Wolfe, Frederick; Clauw, Daniel J; Whipple, Mary O; Oh, Terry H; Barton, Debra L; St Sauver, Jennifer

    2014-01-01

    Objective Our objective was to estimate and compare the prevalence of fibromyalgia by two different methods, in Olmsted County, Minnesota. Methods The first method was a retrospective review of medical records of potential cases of fibromyalgia in Olmsted County using Rochester Epidemiology Project (from January 1, 2005, to December 31, 2009) to estimate the prevalence of diagnosed fibromyalgia in clinical practice. The second method was a random survey of adults in Olmsted County using the fibromyalgia research survey criteria to estimate the percentage of responders who met fibromyalgia research survey criteria. Results Of the 3,410 potential patients identified by the first method, 1,115 had a fibromyalgia diagnosis documented in the medical record by a health care provider. The age- and sex-adjusted prevalence of diagnosed fibromyalgia by this method was 1.1%. By the second method, of the 2,994 people who received the survey by mail, 830 (27.6%) responded and 44 (5.3%) met fibromyalgia research survey criteria. The age- and sex-adjusted prevalence of fibromyalgia in the general population of Olmsted County by this method was estimated at 6.4%. Conclusion To the best of our knowledge, this is the first report of the rate at which fibromyalgia is being diagnosed in a community. This is also the first report of prevalence as assessed by the fibromyalgia research survey criteria. Our results suggest that patients, particularly men, who meet the fibromyalgia research survey criteria are unlikely to have been given a diagnosis of fibromyalgia. PMID:23203795

  9. Utilizing a Post-discharge Telephone Call in Outpatient Parenteral Antimicrobial Therapy (OPAT): Findings from a Quality Improvement Project

    Science.gov (United States)

    Felder, Kimberly; Vaz, Louise; Barnes, Penelope; Varley, Cara

    2017-01-01

    Abstract Background Transitions of care from hospitals to outpatient settings, especially for patients requiring outpatient parenteral antimicrobial therapy (OPAT) are complex. OPAT complications, such as adverse antimicrobial reactions, vascular access problems, and hospital readmissions are common. Data from transitions of care literature suggest that post-discharge telephone calls (TCs) may significantly decrease re-hospitalization but no studies have assessed the utility of post-discharge TCs as an OPAT program quality improvement process. Methods Adult OPAT patients discharged from our hospital between April 1, 2015 and May 31, 2016 were queried for post-discharge concerns. TCs to patients or their caregivers were administered by trained medical assistants within the Department of Infectious Diseases using a standardized script and documented in the electronic medical record (EMR). Feasibility was assessed using call completion rate. The type and frequency of reported issues were analyzed by retrospective chart review. Results 636 of 689 eligible adult OPAT patients or their caregivers received a TC with responses to scripted questions documented in the EMR (92% completion rate). 302 patients (47%) reported 319 issues, including 293 (92%) relevant to OPAT. Antimicrobial issues included diarrhea/stool changes (58; 9%); nausea/vomiting (27; 4%); and missed antimicrobial doses (22; 3%). Vascular access issues included line patency concerns (21; 3%); vascular access dressing problems (17; 2.6%) and arm pain/swelling (6; 1%). OPAT vendor issues included delays in lab or line care services (23; 4%) and OPAT orders reported as lost/not received (21; 3%). Other ID-related issues included fevers/chills/sweats (27; 4%), wound concerns (16; 2.5%), and pain (15; 2.5%). Conclusion Adding a post-discharge TC to an OPAT program was feasible and resulted in frequent and early identification of significant OPAT patient and caregiver concerns. Findings suggest potential high

  10. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  11. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  12. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  13. HySTAR: the hydrogen safety training and risk workplace

    International Nuclear Information System (INIS)

    Hay, R.

    2006-01-01

    This paper shows the output of the software package HySTAR, the Hydrogen Safety, Training and Risk Workplace. This is the software output of the CTFA, Canadian Hydrogen Safety Program projects. It shows the Hydrogen Virtual Interactive Expert Workplace, a guide for permitting and code enforcement for officials and other parties involved in approving hydrogen energy facilities. It also shows the Hydrogen Codes and Standards Report (Site Level) as well as Hydrogen Distances and Clearances Report

  14. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  15. [Hydrogen systems analysis, education, and outreach

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    This paper illustrates a search of web sites on the keyword, Hydrogen, and a second search combining keywords, Hydrogen and Renewable Energy. Names, addresses, and E-mail addresses or web site URLs are given for a number of companies and government or commercial organizations dealing with hydrogen fuel cells. Finally, brief summaries are given on hydrogen research projects at the National Renewable Energy Laboratory.

  16. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 3. development of liquid hydrogen storage equipment); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 3 hen ekitai suiso chozo setsubi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the WE-NET development of large capacity liquid hydrogen storage technology, a study has been continued with a target of 50000 m{sup 3} storage development. As to the result of conceptual design and various types of the thermal insulating structure, to confirm the performance, studies were made on the thermal insulating performance test and the strength test on thermal insulating materials to be started in fiscal 1998. The large-capacity common testing equipment for thermal insulation performance to be used in and after fiscal 1998 was fabricated, and the basic performance of the equipment was confirmed by the preliminary cooling test. Further, the test pieces simulated of various thermal insulating structures were designed to study the thermal insulation performance, reformation during the test, strength, etc. It is required to solve problems s