WorldWideScience

Sample records for hydrogen utilization project

  1. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  2. Waste hydrogen utilization project receives $12 M in federal support

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-01

    This article announced that $12.2 million dollars in federal funding support, over a 3 year period, will be made available to Sacre-Davey Innovations to support the development and demonstration of the Integrated Waste Hydrogen Utilization Project (IWHUP). The IWHUP is a clean energy project that will develop and demonstrate the feasibility of using hydrogen generated as a byproduct of a sodium chlorate manufacturing plant in North Vancouver. Greenhouse gas emissions and fossil fuels will be reduced by using purified hydrogen to fuel vehicles. The full hydrogen value chain will also be demonstrated by the IWHUP. This includes the supply, storage, distribution and use of hydrogen. Eight light-duty trucks running on hydrogen will be included in the demonstration, along with 4 public transit buses converted to run on a combination of compressed natural gas and hydrogen, and a fuel cell system operating on hydrogen while providing electrical power to a car wash. The newsletter article discussed the funding leveraged from various sources as well as the names of project participants. The article also mentioned that the IWHUP fuel station in North Vancouver will play a key role in sustainable transportation demonstrations during the 2010 Olympic and Paralympic Winter Games in Vancouver.

  3. Economic assessment of a waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Zhou, H.; Wang, L.; Zhou, W.; Wu, J.; Wang, Q.

    1993-01-01

    This article reports an economic assessment on a hydride hydrogen recovery, purification, storage, transportation and application project (HRPSTA) set for a system including a nitrogenous fertilizer plant and a float glass factory. In this project, a pretreatment unit and metal hydride containers are used to recover and purify the hydrogen from the purge gas of the ammonia fertilizer plant and to transport and use the hydrogen in the tin bath in the float glass factory. Detailed economic assessment, cost analysis and a cash flow statement are presented, and financial net present value (NPV), as well as intrinsic rate of return (IRR), is calculated. The results shows that this project, which is feasible technologically, is profitable economically. (Author)

  4. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  5. Hydrogen utilization efficiency in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Metkemeyer, R; Achard, P; Rouveyre, L; Picot, D [Ecole des Mines de Paris, Centre D' energrtique, Sophia Antipolis (France)

    1998-07-01

    In this paper, we present the work carried out within the framework of the FEVER project (Fuel cell Electric Vehicle for Efficiency and Range), an European project coordinated by Renault, joining Ecole des Mines de Paris, Ansaldo, De Nora, Air Liquide and Volvo. For the FEVER project, where an electrical air compressor is used for oxidant supply, there is no need for hydrogen spill over, meaning that the hydrogen stoichiometry has to be as close to one as possible. To determine the optimum hydrogen utilization efficiency for a 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) fed with pure hydrogen, a 4 kW prototype fuel cell was tested with and without a hydrogen recirculator at the test facility of Ecole des Mines de Paris. Nitrogen cross over from the cathodic compartment to the anodic compartment limits the hydrogen utilization of the fuel cell without recirculator to 97.4 % whereas 100% is feasible when a recirculator is used. 5 refs.

  6. Economic assessment of a waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Wang, L.; Zhou, H.; Zhou, W.; Wu, J.; Wang, Q.

    1993-01-01

    This paper reports the economic assessment on an hybrid hydrogen recovery, purification, storage, transportation and application project (HRPSTA) set for a system including a nitrogenous fertilizer plant and a float glass factory. A pretreatment unit and metal hydride containers are used to recover and purify the hydrogen from the purge gas of the ammonia fertilizer plant and to transport and use the hydrogen on the tin bath in the float glass factory. Cost analysis and cash flow statements are presented, and financial value and rate of return are calculated. The project is shown to be technologically and financially feasible. 1 fig., 4 tabs., 4 refs

  7. Yeager Airport Hydrogen Vehicle Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Williams [West Virginia University Research Corporation, Morgantown, WV (United States)

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  8. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  9. Project of CO{sub 2} fixation and utilization using catalytic hydrogenation reaction for coping with the global environment issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Discussions were given on a carbon dioxide fixing and utilizing project utilizing hydrogenating reaction by means of a catalytic method. In the discussions, development was made on such foundation technologies as CO2 separation by using Cardo type CO2 membrane, a technology to synthesize methanol through hydrogen addition by means of the catalytic method, and an electrolytic technology of membrane-electrode mixed type, as well as a methanol synthesis bench test of 50 kg/d scale. In order to develop this result into specific applications, demonstration tests are required that use methanol synthesizing pilot plants of 4 t/d and 80 t/d capacities. In addition, for the electric power to produce a huge amount of hydrogen, development is necessary on a solar energy utilizing technology of large scale and low cost. Furthermore, from the economic and social viewpoints, the achievements of this project are regarded to depend on understanding of the necessity of a policy of putting a large number of methanol fuel cell automobiles into use, and dealing with the global warming problem. Energy required to change CO2 into useful chemical substance requires five times as much energy as has been produced, hence prevention of the global warming through this channel is difficult. (NEDO)

  10. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  11. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  12. Regional hydrogen roadmap. Project development framework for the Sahara Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Benhamou, Khalid [Sahara Wind Inc., Rabat (Morocco); Arbaoui, Abdelaziz [Ecole National Superieure des Arts et Metiers ENSAM Meknes (Morocco); Loudiyi, Khalid [Al Akhawayn Univ. (Morocco); Ould Mustapha, Sidi Mohamed [Nouakchott Univ. (Mauritania). Faculte des Sciences et Techniques

    2010-07-01

    The trade winds that blow along the Atlantic coast from Morocco to Senegal represent one of the the largest and most productive wind potentials available on earth. Because of the erratic nature of winds however, wind electricity cannot be integrated locally on any significant scale, unless mechanisms are developed for storing these intermittent renewable energies. Developing distributed wind energy solutions feeding into smaller electricity markets are essential for solving energy access issues and enabling the development of a local, viable renewable energy industry. These may be critical to address the region's economic challenges currently under pressure from Sub-Saharan migrant populations. Windelectrolysis for the production of hydrogen can be used in grid stabilization, as power storage, fuel or chemical feedstock in specific industries. The objective of the NATO SfP 'Sahara Trade Winds to Hydrogen' project is to support the region's universities through an applied research framework in partnership with industries where electrolysis applications are relevant. By powering two university campuses in Morocco and Mauritania with small grid connected wind turbines and 30 kW electrolyzers generating hydrogen for power back-up as part of ''green campus concepts'' we demonstrated that wind-electrolysis for the production of hydrogen could absorb larger quantities of cheap generated wind electricity in order to maximize renewable energy uptakes within the regions weaker grid infrastructures. Creating synergies with local industries to tap into a widely available renewable energy source opens new possibilities for end users such as utilities or mining industries when processing raw minerals, whose exports generates key incomes in regions most exposed to desertification and climate change issue. Initiated by Sahara Wind Inc. a company from the private sector, along with the Al Akhawayn University, the Ecole Nationale Superieure

  13. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the

  14. Hydrogen utilization potential in subsurface sediments

    DEFF Research Database (Denmark)

    Adhikari, Rishi Ram; Glombitza, Clemens; Nickel, Julia

    2016-01-01

    Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen...

  15. Final Scientifc Report - Hydrogen Education State Partnership Project

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  16. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  17. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  18. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  19. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  20. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  1. The hydrogen 700 project - 700 Bar Co

    International Nuclear Information System (INIS)

    Gambone, L.; Webster, C.

    2004-01-01

    'Full text:' Major automotive companies, including DaimlerChrysler, Ford, Hyundai, Nissan, PSA Peugeot-Citroen, and Toyota, are co-operating in the Hydrogen 700 project at Powertech to establish a global basis for high pressure hydrogen fuel systems for vehicles. The fuel systems will store compressed hydrogen on-board at pressures up to 700 bar (10,000psi). It is anticipated that the 700 bar storage pressure will provide hydrogen powered vehicles with a range comparable to the range of petroleum-fueled vehicles. The Hydrogen 700 project has contracted world leaders in high pressure technologies to provide 700 bar fuel system components for evaluation. The data from these tests will be used as the basis for the development of relevant standards and regulations. In a development that complements the Hydrogen 700 project, Powertech Labs has established the world's first 700 bar hydrogen station for fast filling operations. This prototype station will be used to evaluate the performance of the 700 bar vehicle fuel system components. The presentation will provide an overview of the Hydrogen 700 project. Safety issues surrounding the use of compressed hydrogen gas as a vehicle fuel, as well as the use of higher storage pressures, will be reviewed. Test data involving the fire testing of vehicles containing hydrogen fuel systems will be presented. The project is intended to result in the introduction of 700 bar fuel systems in the next generation of hydrogen powered vehicles. (author)

  2. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    Energy Technology Data Exchange (ETDEWEB)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  3. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  4. Hydrogen fueling demonstration projects using compact PSA purification

    International Nuclear Information System (INIS)

    Ng, E.; Smith, T.

    2004-01-01

    'Full text:' Hydrogen fueling demonstration projects are critical to the success of hydrogen as an automotive fuel by building public awareness and demonstrating the technology required to produce, store, and dispense hydrogen. Over 75 of these demonstration projects have been undertaken or are in the planning stages world-wide, sponsored by both the public and private sectors. Each of these projects represents a unique combination of sponsors, participants, geographic location, and hydrogen production pathway. QuestAir Technologies Inc., as the industry leader in compact pressure swing adsorption equipment for purifying hydrogen, has participated in four hydrogen fueling demonstration projects with a variety of partners and in North America and Japan. QuestAir's experiences as a participant in the planning, construction, and commissioning of these demonstration projects will be presented in this paper. The unique challenges of each project and the critical success factors that must to be considered for successful deployment of high-profile, international, and multi-vendor collaborations will also be discussed. The paper will also provide insights on the requirements for hydrogen fueling demonstration projects in the future. (author)

  5. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  6. Safety assessment of envisaged systems for automotive hydrogen supply and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Landucci, Gabriele [Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali, Universita di Pisa, via Diotisalvi n.2, 56126 Pisa (Italy); Tugnoli, Alessandro; Cozzani, Valerio [Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali, Alma Mater Studiorum - Universita di Bologna, via Terracini n.28, 40131 Bologna (Italy)

    2010-02-15

    A novel consequence-based approach was applied to the inherent safety assessment of the envisaged hydrogen production, distribution and utilization systems, in the perspective of the widespread hydrogen utilization as a vehicle fuel. Alternative scenarios were assessed for the hydrogen system chain from large scale production to final utilization. Hydrogen transportation and delivery was included in the analysis. The inherent safety fingerprint of each system was quantified by a set of Key Performance Indicators (KPIs). Rules for KPIs aggregation were considered for the overall assessment of the system chains. The final utilization stage resulted by large the more important for the overall expected safety performance of the system. Thus, comparison was carried out with technologies proposed for the use of other low emission fuels, as LPG and natural gas. The hazards of compressed hydrogen-fueled vehicles resulted comparable, while reference innovative hydrogen technologies evidenced a potentially higher safety performance. Thus, switching to the inherently safer technologies currently under development may play an important role in the safety enhancement of hydrogen vehicles, resulting in a relevant improvement of the overall safety performance of the entire hydrogen system. (author)

  7. Hydrogen utilization potential in subsurface sediments

    Directory of Open Access Journals (Sweden)

    Rishi Ram Adhikari

    2016-01-01

    Full Text Available Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material.We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i increasing importance of fermentation in successively deeper biogeochemical zones and (ii adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  8. Hydrogen demonstration projects options in the Netherlands. Final report

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    Based on a survey of hydrogen demonstration projects, contacts with different actors and discussions in a sounding board for the study on the title subject, it is concluded that a conference can be organized where the possibilities of setting up hydrogen demonstration projects in the Netherlands can be discussed. The following projects offer good chances to be realized in the next few years: large-scale CO 2 storage in the underground, applying enhanced gas recovery. It appears to be a relatively cheap CO 2 emission reduction measure with a large potential. It can be combined with a hydrogen mixing project with the sale of hydrogen as a so-called eco-gas to consumers. There is little interest in the other options for CO 2 storage at coal gasification and the prompt supply of 100% H 2 to small-scale consumers. Hydrogen for cogeneration, fuel cells in the industry, hydrogen in road transport and hydrogen as a storage medium are projects in which some actors are interested. Hydrogen for air transport has a large potential to which only few parties in the Netherlands can anticipate. Hydrogen demonstration projects will show important surplus value when it is supported by a hydrogen research program. Such a program can be carried out in cooperation with several other programmes of the International Energy Agency, in Japan, Germany and a number of research programs of the Netherlands Agency for Energy and the Environment (Novem). 10 figs., 4 tabs., 33 refs

  9. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  10. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  11. Utilizing hydrogen in aqueous phase conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Baoxiang; Zhao, Chen; Li, Xuebing; Lercher, Johannes A. [Technische Univ. Muenchen, Garching (Germany). Technische Chemie II

    2010-12-30

    Hydrogen generation and selective hydrodeoxygenation of biomass are the key for the successful integration of biogenic carbon resources for energy carriers and intermediates. This includes the generation of hydrogen from biomass in the liquid phase and more importantly, for the direct utilization of the hydrogen generated into the molecules. We will outline this strategy with two groups of oxofunctionalized molecules, i.e., glycerol as example for the aliphatic group and substituted phenols as the aromatic group. (orig.)

  12. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  13. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  14. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture

  15. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  16. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 7. Survey/study on hydrogen utilization technology; 1998 nendo suiso riyo kokusai clean energy system (WE-NET). 7. Suiso riyo gijutsu ni kansuru chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of survey/study of the FY 1998 WE-NET project. In Subtask 7, survey/study have been made on the main hydrogen utilization technologies except the hydrogen combustion gas turbine since FY 1993. Based on the survey results having been obtained, study was made on conditions for introducing promising technology, future prospects, etc. in FY 1998. As to the power generation, the basic combustion test and test on hydrogen injection equipment as element test, and test on ignition equipment were carried out using rapid compression/expansion equipment. A scenario for introducing hydrogen vehicle was made, and at the same time environmental LCA was conducted by which environmental influences can be assessed. The survey of the market of pure hydrogen polymer electrolyte fuel cells were made in terms of the electric utility use, industrial use, residential/commercial use, and movement/vehicle use. Study was conducted on the combined process of oxygen production equipment and He Brayton cycle in the subzero fractionation/low-temperature VSA method. Various methods including performance, price, etc. were surveyed/studied, making it a precondition that hydrogen supply stations are installed in stand-alone distribution near places of consumption. (NEDO)

  17. Hercules project: Contributing to the development of the hydrogen infrastructure

    International Nuclear Information System (INIS)

    Arxer, Maria del Mar; Martinez Calleja, Luis E.

    2007-01-01

    A key factor in developing a hydrogen based transport economy is to ensure the establishment of a strong and reliable hydrogen fuel supply chain, from production and distribution, to storage and finally the technology to dispense the hydrogen into the vehicle. This paper describes how the industrial gas industry and, in particular, Air Products and Carburos Metalicos (Spanish subsidiary of Air Products), is approaching the new market for hydrogen as an energy carrier and vehicle fuel. Through participations in projects aiming to create enough knowledge and an early infrastructure build-up, like The Hercules Project (a project carried out in collaboration with eight partners), we contribute to the hydrogen economy becoming a reality for the next generation. (author)

  18. Optimization of Utility-Scale Wind-Hydrogen-Battery Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, L. J.

    2004-07-01

    Traditional utility-scale wind energy systems are not dispatchable; that is, the utility cannot instantaneously control their power output. Energy storage, which can come in many forms, is needed to add dispatchability to a wind farm. This study investigates two options: batteries and hydrogen.

  19. Cost estimation of hydrogen and DME produced by nuclear heat utilization system II

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2004-09-01

    Utilization and production of hydrogen has been studied in order to spread utilization of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in the world. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-ether (DME). has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced from natural gas by steam reforming. Therefore, the system would become one of the candidates of future system of nuclear heat utilization. Following the study in 2002, we performed economic evaluation of the hydrogen and DME production by nuclear heat utilization plant where heat generated by HTGR is completely consumed for the production. The results show that hydrogen price produced by nuclear was about 17% cheaper than the commercial price by increase in recovery rate of high purity hydrogen with increased in PSA process. Price of DME in indirect method produced by nuclear heat was also about 17% cheaper than the commercial price by producing high purity hydrogen in the DME producing process. As for the DME, since price of DME produced near oil land in petroleum exporting countries is cheaper than production in Japan, production of DME by nuclear heat in Japan has disadvantage economically in this time. Trial study to estimate DME price produced by direct method was performed. From the present estimation, utilization of nuclear heat for the production of hydrogen would be more effective with coupled consideration of reduction effect of CO 2 release. (author)

  20. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  1. Europe - the first hydrogen economy?

    International Nuclear Information System (INIS)

    Hart, D.

    1999-01-01

    An examination of the state of research relating to hydrogen production and utilization indicates that interest in hydrogen from major companies in Europe has increased by several orders of magnitude in recent years. Of the three major areas where a hydrogen economy could be expected to start, namely, Japan, the United States and Europe, the latter may have advantages in diversity of resources, attitudes towards environmental issues and specific fiscal and regulatory structures. Examples of ongoing research and development projects in Europe include Norway's hydrogen combustion turbine to run on hydrogen from decarbonised natural gas, a project in the Netherlands involving mixing hydrogen and methane in the natural gas grid and a variety of projects involving liquid hydrogen refuelling, hydrogen aircraft, hydrogen fuelling stations and fuel cell vehicle development. There are also ongoing projects in carbon sequestration and hydrogen production for power generation and vehicle use. The author's main contention is that the combination of natural surroundings, environmental problems and attitudes, and business and government frameworks strongly suggest that Europe may be the first to have a hydrogen-based economy. 8 refs

  2. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to

  3. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  4. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  5. Proceedings of the 1999 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-08-28

    The Proceedings of the 1999 US Department of Energy (DOE) Hydrogen Program Review serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on 60 research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 1999, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research.

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  7. Hualapai Tribal Utility Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  8. Hydrogen tomorrow: Demands and technology requirements

    Science.gov (United States)

    1975-01-01

    National needs for hydrogen are projected and the technologies of production, handling, and utilization are evaluated. Research and technology activities required to meet the projected needs are determined.

  9. MedHySol: Future federator project of massive production of solar hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mahmah, Bouziane; Harouadi, Farid; Chader, Samira; Belhamel, Maiouf; M' Raoui, Abdelhamid; Abdeladim, Kamel [CDER, BP 62, Route de l' Observatoire, Bouzareah, Alger (Algeria); Benmoussa, H. [LESEI, Universite de Batna, Batna (Algeria); Cherigui, Adel Nasser [Universite Joseph Fourier Grenoble I, BP 87, Saint-Martin-D' Heres 38400 (France); Etievant, Claude [CETH, Innov' valley Entreprises, 91460 Marcoussis (France)

    2009-06-15

    Mediterranean Hydrogen Solar (MedHySol) is a federator project for development of a massive hydrogen production starting from solar energy and its exportation within a framework of a Euro-Maghrebian Cooperation project for industrial and energetic needs in the Mediterranean basin. The proposal of this project is included in the Algiers Declaration's on Hydrogen from Renewable Origin following the organization of the first international workshop on hydrogen which was held in 2005. Algeria is the privileged site to receive the MedHySol platform. The objective of the first step of the project is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from solar energy with a significant size (10-100 kW) and to maintain the development of energetic rupture technologies. The second step of the project is to implement the most effective and less expensive technologies to pilot great projects (1-1000 MW). In this article we present the potentialities and the feasibility of MedHySol, as well as the fundamental elements for a scientific and technical supervision of this great project. (author)

  10. Cost estimation of hydrogen and DME produced by nuclear heat utilization system. Joint research

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2003-09-01

    Research of hydrogen energy has been performed in order to spread use of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in all of countries. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-either (DME) has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced by steam reforming hydrogen generation system by the use of nuclear heat. Therefore, the system would be one of the candidates of future system of nuclear heat utilization. In the present study, we focused on the production of hydrogen and DME. Economic evaluation was estimated for hydrogen and DME production in commercial and nuclear heat utilization plant. At first, heat and mass balance of each process in commercial plant of hydrogen production was estimated and commercial prices of each process were derived. Then, price was estimated when nuclear heat was used instead of required heat of commercial plant. Results showed that the production prices produced by nuclear heat were cheaper by 10% for hydrogen and 3% for DME. With the consideration of reduction effect of CO 2 release, utilization of nuclear heat would be more effective. (author)

  11. Solar Hydrogen Fuel Cell Projects at Brooklyn Tech

    Science.gov (United States)

    Fedotov, Alex; Farah, Shadia; Farley, Daithi; Ghani, Naureen; Kuo, Emmy; Aponte, Cecielo; Abrescia, Leo; Kwan, Laiyee; Khan, Ussamah; Khizner, Felix; Yam, Anthony; Sakeeb, Khan; Grey, Daniel; Anika, Zarin; Issa, Fouad; Boussayoud, Chayama; Abdeldayem, Mahmoud; Zhang, Alvin; Chen, Kelin; Chan, Kameron Chuen; Roytman, Viktor; Yee, Michael

    2010-01-01

    This article describes the projects on solar hydrogen powered vehicles using water as fuel conducted by teams at Brooklyn Technical High School. Their investigations into the pure and applied chemical thermodynamics of hydrogen fuel cells and bio-inspired devices have been consolidated in a new and emerging sub-discipline that they define as solar…

  12. Development of a national center for hydrogen technology. A summary report of activities completed at the national center hydrogen technology from 2005 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael J. [Univ. of North Dakota, Grand Forks, ND (United States)

    2011-06-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project's 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  13. Summary of the FY 1988 Sunshine Project results. Hydrogen energy; 1988 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1988 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include development of power-supplying materials for electrolysis at high current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on alloy molding/processing techniques, hydrogen-storing metallic materials, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  14. Summary of the FY 1989 Sunshine Project results. Hydrogen energy; 1989 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1989 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include those on the SPE electrolysis at high temperature and current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on hydrogen-storing metallic materials, alloy molding/processing techniques, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  15. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  16. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  17. HydroGEM, a hydrogen fuelled utility vehicle. Case study

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Kraaij, G.J.; De Bruijne, M.; Weeda, M.

    2010-02-01

    This report describes the conversion of a Global Electric Motorcars (GEM, a Chrysler company) electric utility vehicle into a Fuel Cell Vehicle called HydroGEM, at the Energy research Centre of the Netherlands (ECN). The report is prepared as a case study within the framework of Task 18 on 'Evaluation of Integrated Hydrogen Systems' of the IEA Hydrogen Implementing Agreement. The vehicle's fuel cell system was designed in 2005, manufactured and built into the vehicle in 2006 and operated from 2007 onwards. The design-choices, assembly, operation and maintenance-issues are presented and discussed.

  18. Aims and first assessments of the French hydrogen pathways project HyFrance3

    Energy Technology Data Exchange (ETDEWEB)

    Le Duigou, Alain [CEA/DEN/DANS/I-Tese, Gif-sur-Yvette (France); Quemere, Marie-Marguerite [EDF R et D, Moret sur Loing (France). Dept. EPI; Marion, Pierre [IFP, Rueil Malmaison (FR)] (and others)

    2010-07-01

    The HyFrance Group was originally formed in France to support the European project HyWays, by providing (former projects HyFrance1 and HyFrance2) the French data and possible hydrogen pathways according to national specificities. HyFrance3 is a new project that focuses on the economic competitiveness of different steps of the hydrogen chain, from the production to end usage, at the time horizon of 2030 in France. The project is coordinated by CEA with the other partners being: ADEME (co-funding), AFH2, CNRS, IFP, Air Liquide, EdF, GdF Suez, TOTAL, ALPHEA. The project is divided into 4 sub-projects, that address present and future French hydrogen industrial markets for chemical and refinery uses, the analysis of the interplay between wind energy production and storage of hydrogen for different automotive requirements (refuelling stations, BtL plants, H2/NG mix), massive hydrogen storage to balance various offer and demand characteristics, and the supply network (pipeline option competitiveness vs. trucked in supply) to distribute hydrogen in a French region for automotive applications. Technical and economical issues, as well as GHG emissions, are addressed. (orig.)

  19. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  20. NNP-LANL Utilities - Condition Assessment and Project Approach

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Grant Lorenz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    This report is a presentation on LANL Utilities & Transportation Asset Management; Utility Assets Overview; Condition Assessment; Utilities Project Nominations & Ranking; and Utilities Project Execution.

  1. Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network

    International Nuclear Information System (INIS)

    Hwangbo, Soonho; Lee, In-Beum; Han, Jeehoon

    2014-01-01

    Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network. In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network

  2. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  3. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  4. Technical Analysis of Projects Being Funded by the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Edward G. Skolnik

    2006-02-10

    In July 2000, Energetics began a project in which we performed site-visit based technical analyses or evaluations on hydrogen R&D projects for the purpose of providing in-depth information on the status and accomplishments of these projects to the public, and especially to hydrogen stakeholders. Over a three year period, 32 site-visit analyses were performed. In addition two concepts gleaned from the site visits became subjects of in depth techno-economic analyses. Finally, Energetics produced a compilation document that contains each site-visit analysis that we have performed, starting in 1996 on other contracts through the end of Year One of the current project (July 2001). This included 21 projects evaluated on previous contracts, and 10 additional ones from Year One. Reports on projects visited in Years One and Two were included in their respective Annual Reports. The Year Two Report also includes the two In-depth Analyses and the Compilation document. Reports in Year three began an attempt to perform reviews more geared to hydrogen safety. This Final Report contains a summary of the overall project, all of the 32 site-visit analyses and the two In-depth Analyses.

  5. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  6. Test Plan for Hydrogen Getters Project - Phase II

    International Nuclear Information System (INIS)

    Mroz, G.

    1999-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

  7. Conjoint utility analysis of technical maturity and project progress of construction project

    Directory of Open Access Journals (Sweden)

    Ma Wei

    2016-01-01

    Full Text Available In this paper, taking construction project as the research object, the relationship between the project maturity index calculated by the construction project technical risks with different fine degree and the project progress index is studied, and the equilibrium relationship between the Party A’s utility curve and the Party B’s cost curve of using project maturity index and project progress index as the research variables is analyzed. The results show that, when the construction project technical risk division is more precise, the conjoint utility of the project's technical maturity index and the project progress is higher, and the project’s Party A and Party B two sides are closer to the optimal equilibrium. This shows that the construction project technical risk must be finely divided, and managed and controlled respectively, which will help to improve the conjoint utility of the project Party A and Party B two sides.

  8. A comparison of hydrogen-fueled fuel cells and combustion engines for electric utility applications

    International Nuclear Information System (INIS)

    Schoenung, S.M.

    2000-01-01

    Hydrogen-fueled systems have been proposed for a number of stationary electric generation applications including remote power generation, load management, distribution system peak shaving, and reliability or power quality enhancement. Hydrogen fueling permits clean, low pollution operation. This is particularly true for systems that use hydrogen produced from electrolysis, rather than the reforming of hydrocarbon fuels. Both fuel cells and combustion engines are suitable technologies for using hydrogen in many electric utility applications. This paper presents results from several studies performed for the U.S. Department of Energy Hydrogen Program. A comparison between the two technologies shows that, whereas fuel cells are somewhat more energy efficient, combustion engine technology is less expensive. In this paper, a comparison of the two technologies is presented, with an emphasis on distributed power and power quality applications. The special case of a combined distributed generation I hydrogen refueling station is also addressed. The comparison is made on the basis of system costs and benefits, but also includes a comparison of technology status: power ratings and response time. A discussion of pollutant emissions and pollutant control strategies is included. The results show those electric utility applications for which each technology is best suited. (author)

  9. Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)

    Science.gov (United States)

    McLaughlin, Russell

    2013-01-01

    NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations

  10. Project Maghreb - Europe: Solar Production of Hydrogen. Phase I: Feasibility and opportunity study of the project; Projet Maghreb - Europe: Production d'hydrogene solaire. Phase I: Etude d'opportunite et de faisabilite du projet

    Energy Technology Data Exchange (ETDEWEB)

    Mahmah, Bouziane; Belhamel, Maiouf; Chader, Samira; M' Raoui, Abdelhamid; Harouadi, Farid; Etievant, Claude; Lechevalier, Steve; Cherigui, Abdel-Nasser

    2007-07-01

    During the 16th World Hydrogen Energy Conference which held on June 13-16, 2006, in Lyon (France), an important project appeared, the Maghreb-Europe Project for production and export of solar hydrogen, proposed in the Algiers Declaration of the hydrogen of origin renewable and directed by the researchers efforts of the Renewable Energies Development Center of Algiers (CDER) and members of the European company of Hydrogen Technologies (CETH). The present introductory communication exposes a scientific study on the appropriateness and the feasibility of the Project, as well as the objectives, missions and the fundamental elements for a scientific and technique accompaniment of this important project. (auth)

  11. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  12. Distributed H2 Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  13. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for chemical utilization); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kagaku riyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-15

    Surveys and studies were performed on chemical utilization of hydrogen regarding its status of development and utilization inside and outside the country, as well as its future prospect. This paper describes chemical utilization of hydrogen in ammonia, methanol, petroleum refining and other industries as the existing fields. It also describes chemical utilization of oxygen in iron and steel, chemical and other industries. It describes methanol as a pollution-free auxiliary fuel for electric power plants as a new type of hydrogen application. Acetic acid made by using the Monsanto method which carbonylate methanol is drawing attention in terms of economy, and is in the phase of discussing commercialization. Synthesizing ethylene glycol from carbon monoxide and hydrogen may be conceived economically. Methanol for synthesized protein depends on the possibility of future development. In the iron and steel industry, electric furnace steel makers are planning production of reduced iron, where the direct reduction process using hydrogen is considered as a complementary process, including countermeasures for scrap iron. This paper estimates hydrogen amount as a raw material for ammonia to remove NOx by using the ammonia reduction process. It also describes possibility of other types of utilization. (NEDO)

  14. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  15. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Comprehensive discussion on hydrogen utilizing subsystems); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso riyo subsystem no sogoteki kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes comprehensive discussion on hydrogen utilizing subsystems. Hydrogen combustion is characterized by how low the ignition energy is, and how fast the flame propagates. In addition, flame stability is high also in diffusion combustion. However, the diffusion combustion produces a great amount of NOx, the amount varying depending on the degree of air pre-mixture. Since it causes reverse ignition very easily in the pre-mixture degree corresponding to low NOx zone, development of a burner with drastically new mechanism is demanded. In hydrogen fuel cells, the ratio of hydrogen fuel cost accounting for in the power generation cost is very high. As an automobile fuel, very much leaner combustion is possible than in conventional internal combustion engines, and ignition energy is small. However, such abnormal combustion as reverse ignition and early ignition may occur, and their prevention is an important assignment. Issues in aircraft engines are verification of safety, and cost of liquefied hydrogen. Steam turbines have reached their limit already, but gas turbines are expected of exciting efficiency improvement. This paper describes prospects on chemical utilization of hydrogen in the existing fields and new fields. (NEDO)

  16. HyLights: Preparation of the Large-Scale Demonstration Projects on Hydrogen for Transport in Europe

    International Nuclear Information System (INIS)

    Ulrich Bunger; Volker Blandow; Volker Jaensch; Harm Jeeninga; Cristina Morte Gomez

    2006-01-01

    The strategically important project HyLights has been launched by the European Commission in preparation of the large scale demonstration projects in transition to hydrogen as a fuel and long-term renewable energy carrier. HyLights, monitors concluded/ongoing demonstration projects and assists the planning of the next demonstration project phase, putting a clear focus on hydrogen in transport. HyLights is a coordination action that comprises 5 tasks to: 1) develop an assessment framework for concluded/ongoing demonstration projects, 2) analyse individual projects and establish a project database, 3) carry out a gaps analysis and prepare a requirement profile for the next stage projects, 4) assess and identify necessary financial and legal steps in preparation of the new projects, and 5) develop a European Initiative for the Growth of Hydrogen for Transport (EIGHT). (authors)

  17. The use of hydrogen for vehicles

    International Nuclear Information System (INIS)

    Peschka, W.

    1992-01-01

    While the currently utilized or other feasible hydrocarbon fuels release about the same amount of CO 2 during combustion per amount of heat produced, hydrogen represents the only practical, technically feasible, carbon free fuel. The state of the art technology of liquid hydrogen represents a suitable base for large scale demonstration projects now. Additional aims of more intense R and D work relate to internal mixture formation and improved engine roadability as well as utility vehicle application including trucks and buses. With respect to fuel costs there will be an increased demand in developing hydrogen production processes free from CO 2 emissions even from fossil energy sources such as crude oil or natural gas. (orig.) [de

  18. Japan's New Sunshine Project. 1998 annual summary of hydrogen energy R and D; New sunshine keikaku 1998 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  19. Prospects of sugarcane milling waste utilization for hydrogen production in India

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2007-01-01

    Cane-sugar producing countries also generate sufficient waste (bagasse) that is mostly utilized ''on-site'' as a replacement to coal in specialized boilers. In addition to sugar and molasses, about 25% by-product of the cane milling is bagasse that still retains 2.5% sugar on dry wt. basis.This paper deals with the prospects of bagasse fermentation for hydrogen production. It seems relevant, as India and Brazil are the major sugarcane producers in the world. The results obtained confirm bagasse, annually generated to a tune of 40 Mt (million tons) in India, can be diverted from the conventional burning or composting to fermentative hydrogen production in a cost-effective way. The processing cost of bagasse for hydrogen production (3Nm 3 ) equivalent to 1L petrol is about half. The system optimization for accessibility of polysaccharides in bagasse and the use of genetically efficient bacterial strains for agrowaste-based hydrogen production seems the ideal option for clean energy generation

  20. Energizing Engineering Students with Hydrogen Fuel Cell Project

    Science.gov (United States)

    Cannell, Nori; Zavaleta, Dan

    2010-01-01

    At Desert Vista High School, near Phoenix, Arizona, Perkins Innovation Grant funding is being used to fund a program that is helping to prepare students for careers in engineering by giving them hands-on experience in areas like hydrogen generation and fuel cell utilization. As one enters Dan Zavaleta's automotive and engineering classroom and lab…

  1. Feasibility Study for a Hopi Utility-Scale Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  2. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    development on an enlarged scale in correspondence with the Generation IV International Forum. The second phase of the key technology development will greatly reduce the technical and economical risk in the nuclear hydrogen project. The government is also considering the construction of the NHDD plant and will start funding for a conceptual design from 2010. (authors)

  3. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    International Nuclear Information System (INIS)

    Ros, M.E.; Jeeninga, H.; Godfroij, P.

    2007-06-01

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged

  4. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M.E.; Jeeninga, H.; Godfroij, P. [ECN Policy Studies, Petten (Netherlands)

    2007-06-15

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged.

  5. WE-NET: Japanese hydrogen program

    International Nuclear Information System (INIS)

    Mitsugi, Chiba; Harumi, Arai; Kenzo, Fukuda

    1998-01-01

    The Agency of Industrial Science and Technology (AIST), in the Ministry of International Trade and Industry (MITI), started the New Sunshine Program in 1993 by unifying the Sunshine Program (R and D on new energy technology), the Moonlight Program (R and D on energy conservation technology), and the Research and Development Program for Environmental Technology. The objective of the new program is to develop innovative technologies to allow sustainable growth while solving energy and environmental issues. One of the new projects in this program is the ''International Clean Energy System Technology Utilizing Hydrogen (World Energy Network)'': WE-NET. The goal of WE-NET is to construct a worldwide energy network for effective supply, transportation and utilization of renewable energy using hydrogen. The WE-NET program extends over 28 years from 1993 to 2020. In Phase 1, we started core research in areas such as development of high efficiency technologies including hydrogen production using polymer electrolyte membrane water electrolysis, hydrogen combustion turbines, etc. (author)

  6. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  7. NRCan's hydrogen storage R and D program

    International Nuclear Information System (INIS)

    Scepanovic, V.

    2004-01-01

    'Full text:' Natural Resources Canada (NRCan) has been working in partnership with industry, other government departments and academia to expedite the development of hydrogen technologies. NRCan's Hydrogen and Fuel Cell R and D Program covers all aspects of hydrogen technologies: production, storage, utilization and codes and standards. Hydrogen storage is a key enabling technology for the advancement of fuel cell power systems in transportation, stationary, and portable applications. NRCan's storage program has been focused on developing storage materials and technologies for a range of applications with the emphasis on transportation. An overview of most recent hydrogen storage projects including pressurized hydrogen, liquid hydrogen and storage in hydrides and carbon-based materials will be given. (author)

  8. Proceedings of the 1998 U.S. DOE Hydrogen Program Review: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This document contains technical progress reports on 42 research projects funded by the DOE Hydrogen Program in Fiscal Year 1998, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research. These proceedings serve as an important technology reference for the DOE Hydrogen Program. The papers in Volume 2 are arranged under the following topical sections: Storage and separation systems; Thermal systems; and Transportation systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Hydrogen perspectives in Japan

    International Nuclear Information System (INIS)

    Furutani, H.

    2000-01-01

    Hydrogen energy is considered to present a potential effective options for achieving the greenhouse gas minimization. The MITI (Ministry of International Trade and Industry) of Japanese Government is promoting the WE-NET (World Energy Network System) Project which envisions (1) construction of a global energy network for effective supply, transportation, storage and utilization of renewable energy using hydrogen as an energy carrier as a long-term options of sustainable energy economy, and (2) promotion of market entry of hydrogen energy in near and/or mid future even before construction of a WE-NET system. In this paper, I would like to report how far the hydrogen energy technology development addressed under Phase I has progressed, and describe the outline of the Phase II Plan. (author)

  10. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  11. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  12. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kriha, Kenneth [Gas Technology Inst., Des Plaines, IL (United States); Petitpas, Guillaume [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Melchionda, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soto, Herie [Shell, Houston TX (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-11

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used to liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.

  13. FY 1992 Report on results of the survey/research project commissioned by Sunshine Project. Surveys on hydrogen-fired turbines; 1992 nendo suiso nensho turbine no chosa seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Summarized herein are results of comprehensive surveys on hydrogen energy supply/utilization systems, centered by hydrogen-fired turbines for power generation. The surveyed items include hydrogen energy supply/utilization systems on an international scale, current state of power generation techniques and utilization of hydrogen, hydrogen-fired turbines for power generation, materials techniques for hydrogen-fired turbines, studies on and evaluation of economic viability of each system, expected effects, and problems involved in development. The surveys on the hydrogen production techniques pick up electrolysis with a solid polymer electrolyte as a promising candidate, and extract the scaling-up techniques, improvement of membrane durability, etc. as the research themes. The surveys on the hydrogen storage/transportation techniques indicate that hydrogen can be carried by a chemical medium for transportation/storage at normal temperature and pressure, for which the problems associated with medium loss and safety must be studied, and that the research themes for hydrogen-occluding alloys should include increasing quantities of hydrogen occluded for bulk transportation/storage at low energy, and decreasing cost. The surveys on hydrogen-fired turbines extract a number of problems to be solved, e.g., controlling hydrogen combustion, turbine designs, materials withstanding superhigh temperature for high-temperature combustion of hydrogen, and optimization of the power generation systems. (NEDO)

  14. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  15. Projected hydrogen cost from methane reforming for North America 2015-2050

    International Nuclear Information System (INIS)

    Vanderveen, K.; Lutz, A.; Klebanoff, L.; Drennen, T.; Keller, J.; Drennen, T.; Kamery, W.

    2006-01-01

    The Hydrogen Futures Simulation Model (H 2 Sim) was used to project the cost for hydrogen at the point of sale to light duty vehicles for distributed, small-scale steam methane reforming. Projections cover the period from 2010-2050 in North America, and take into account assumptions about the quantity of recoverable natural gas remaining in North America. We conclude that there is a window for distributed reforming to play a positive role in supplying a H 2 fuel infrastructure, but this window is closing rapidly. The analysis assumes that production from natural gas reserves in North America will peak sometime before 2050 and demand will cause the price to rise after the peak of production in a manner consistent with Hotelling's model. We consider three scenarios for when the peak occurs, and evaluate the impact on the cost of hydrogen fuel produced via distributed small scale reforming in these three scenarios. (authors)

  16. A renewable energy based hydrogen demonstration park in Turkey. HYDEPARK

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan, Niluefer; Ersoez, Atilla [TUEBITAK Marmara Research Center Energy Institute, Gebze Kocaeli (Turkey); Cubukcu, Mete [Ege Univ., Bornova, Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    The main goal of this national project is to research hydrogen technologies and renewable energy applications. Solar and wind energy are utilized to obtain hydrogen via electrolysis, which can either be used in the fuel cell or stored in cylinders for further use. The management of all project work packages was carried by TUeBITAK Marmara Research Center (MRC) Energy Institute (EI) with the support of the collaborators. The aim of this paper is to present the units of the renewable energy based hydrogen demonstration park, which is in the demonstration phase now and share the experimental results. (orig.)

  17. Hydrogen utilization international clean energy system (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of combustion control technology); Suiso riyo kokusai clean energy system (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu nensho seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the fiscal 1996 developmental results of hydrogen burning turbine combustion technology in the hydrogen utilization international clean energy system (WE-NET) project. A test was conducted on an annular type combustor where oxygen is mixed with steam (inert gas) at burner and fired with hydrogen. Appropriate flame shape and cooling/dilution vapor distribution were attempted, and various data on combustion were measured for improvement. Mixture and flame holding were improved by developing a can type combustor (1) where oxygen is diluted with steam after firing oxygen and hydrogen around burner and by strengthening circulation in the combustor. Improvement such as appropriate steam distribution, etc. is needed. A can type combustor (2) was tested in which the premixed oxygen and hydrogen is supplied from scoop and fired with hydrogen. By supplying part of oxygen from the primary scoop, the residual hydrogen and oxygen concentration around the stoichiometric ratio can be reduced. Concentration of the residual oxygen can be measured by the absorption light method, but it is difficult to adopt the non-contact measuring method to hydrogen. An outlook for the gas temperature measuring method was obtained. 12 refs., 121 figs., 27 tabs.

  18. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  19. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  20. Summarized achievement report on the Sunshine Project in fiscal 1979. Hydrogen energy; 1979 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1979 for hydrogen energy research. In hydrogen manufacturing technologies, the paper describes improvement in membrane performance and discussions on electrode materials in high temperature and pressure electrolysis. In the thermo-chemical method, hydrolysis of iron bromide (II) in the iron system cycle was compared to three kinds of reaction patterns corresponding to phase change, and evaluation was given as the hydrogen generating reaction. In the iodine system the first stage oxidation and reduction reaction of MgO-I{sub 2} was subjected to a continued experiment by using a batch autoclave. Discussions were continued on device materials for the iodine cycle. In the light irradiation electrolytic method for the mixed cycle, the light intensity was experimented at a force 12 times greater than that of the solar beam, and a reaction rate of 80% was achieved. Raising the temperature causes the reaction rate to decline, but it can be supplemented by raising the light intensity. A heat diffusion column was found effective in HI decomposition (hydrogen acquisition). For hydrogen transportation and storage, researches are continued on metal hydrides. In hydrogen utilization technologies, combustion, fuel cells (using high temperature solid and alkaline aqueous solution electrolytes), and hydrogen engines are studied. This paper also describes studies on hydrogen safety assuring measures and energy systems. (NEDO)

  1. The INNOHYP-CA Project: producing Hydrogen by innovative high-temperature processes

    International Nuclear Information System (INIS)

    Giaconia, A.; Giorgiantoni, G.; Liberatore, R.; Tarquini, P.; Vignolini, M.

    2008-01-01

    The Project, financed under the 6. Framework Programme, has selected a member of innovative high-temperature processes that seem promising for large-scale production of Hydrogen. ENEA has contributed to the analysis of the status of national and regional projects in the European countries and to the definition of guidelines for the future development of these technologies [it

  2. Well-to-Wheel Analysis of Solar Hydrogen Production and Utilization for Passenger Car Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.; Meier, A.

    2006-07-01

    A well-to-wheel analysis is conducted for solar hydrogen production, transport, and usage in future passenger car transportation. Solar hydrogen production methods and selected conventional production Technologies are examined using a life cycle assessment (LCA). Utilization of hydrogen in fuel cells is compared with advanced gasoline and diesel power trains. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced fossil fuel power trains and by more than 90% if car and road infrastructure are not considered. Solar hydrogen production allows a reduction of fossil energy requirements by a factor of up to 10 compared to using conventional Technologies. Major environmental impacts are associated with the construction of the steel-intensive infrastructure for solar energy collection due to mineral and fossil resource consumption as well as discharge of pollutants related to today's steel production technology. (Author)

  3. The 10 bar hydrogen time projection chamber of the MuCap experiment

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Johny [Paul Scherrer Institute, Olga/019, CH - 5232 Villigen PSI (Switzerland); Hildebrandt, Malte, E-mail: malte.hildebrandt@psi.c [Paul Scherrer Institute, Olga/019, CH - 5232 Villigen PSI (Switzerland); Petitjean, Claude [Paul Scherrer Institute, Olga/019, CH - 5232 Villigen PSI (Switzerland)

    2011-02-01

    The experimental goal of the MuCap experiment at the Paul Scherrer Institute (PSI) is a high-precision measurement of the singlet capture rate of the nuclear muon capture on the free proton in the reaction {mu}{sup -}+p{yields}n+{nu}{sub {mu}.} The measuring principle is a lifetime measurement whereas the experimental approach is based on a specially developed Time Projection Chamber (TPC) operating with ultra-pure and deuterium-depleted hydrogen gas at a pressure of 10 bar. The TPC acts as an active muon stop detector and the 10 bar hydrogen operates as target and detector. Design, construction and operation of the Time Projection Chamber are presented.

  4. The hydrogen village: building hydrogen and fuel cell opportunities

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    fuel cells; Fuel cell powered fork lifts and refueling facilities at industrial sites; Fuel cell-based back up power system for an internet service provider; Fuel cell-based back up power system at a telecommunications switching station;Fuel cell powered delivery vehicles and hydrogen production/refueling station; Hydrogen FC powered utility vehicles and hydrogen production/refueling station in downtown core; and, Some 15 additional projects are under development representing all program areas. (author)

  5. Hydrogen by electrolysis of water

    Science.gov (United States)

    1975-01-01

    Hydrogen production by electrolytic decomposition of water is explained. Power efficiency, efficient energy utilization, and costs were emphasized. Four systems were considered: two were based on current electrolyzer technology using present efficiency values for electrical generation by fossil fired and nuclear thermal stations, and two using projected electrolyzer technology with advanced fossil and nuclear plants.

  6. Healthcare Cost and Utilization Project (HCUP)

    Science.gov (United States)

    The Healthcare Cost and Utilization Project is a family of health care databases and related software tools and products developed through a Federal-State-Industry partnership and sponsored by the Agency for Healthcare Research and Quality.

  7. Chinese Manned Space Utility Project

    Science.gov (United States)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  8. Hydrogen Fire Spectroscopy Issues Project

    Science.gov (United States)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  9. Evaluation of hydrogen demonstration systems (Task 18 of IEA Implementing Agreement on Hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J N; Carter, S

    2005-07-01

    Task 18 aims to gather information about the integration of hydrogen into society around the world. As part of subtask B (demonstration projects), EA Technology Limited collected information and data on specific UK hydrogen demonstration projects and case studies. The work involved desk research, a literature review, telephone conversations and meetings with developers and operators of hydrogen-related projects in the UK. Various examples were identified in phase 1 that were either proposed, planned, under construction, commissioned or operational. The main demonstration activities described in the report are: the Clean Urban Transport for Europe (CUTE) refuelling station at Hornchurch in Essex; the Hydrogen and Renewables Integration (HARI) project at West Beacon Farm, Leicestershire; the Promoting Unst Renewable Energy (PURE) project on Unst in the Shetland Isles; the Hunterston Hydrogen Project in North Ayrshire, Scotland; and the Tees Valley Hydrogen Project. The CUTE, HARI and PURE projects were selected for inclusion in the overall Task 18 workplan. The report also covers developments associated with the Fuel Cell House, the Hydrogen Office, INEOS Chlor, the London Hydrogen Partnership and the Wales Hydrogen Project.

  10. Hydrogen Generation from Sugars via Aqueous-Phase Reforming

    International Nuclear Information System (INIS)

    Randy D Cortright

    2006-01-01

    Virent Energy Systems, Inc. is commercializing the Aqueous Phase Reforming (APR) process that allows the generation of hydrogen-rich gas streams from biomass-derived compounds such as glycerol, sugars, and sugar alcohols. The APR process is a unique method that generates hydrogen from aqueous solutions of these oxygenated compounds in a single step reactor process compared to the three or more reaction steps required for hydrogen generation via conventional processes that utilize non-renewable fossil fuels. The key breakthrough of the APR process is that the reforming of these aqueous solutions is done in the liquid phase. The patented APR process occurs at temperatures (150 C to 270 C) where the water-gas shift reaction is favorable, making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. Furthermore, the APR process occurs at pressures (typically 15 to 50 bar) where the hydrogen-rich effluent can be effectively purified using either membrane technology or pressure swing adsorption technology. The utilization of biomass-based compounds allows the APR process to be a carbon neutral method to generate hydrogen. In the near term, the feed-stock of interest is waste glycerol that is being generated in large quantities as a byproduct in the production of bio-diesel. Virent has developed the APR system for on-demand generation of hydrogen-rich fuel gas from either glycerol or sorbitol (the sugar alcohol formed by hydrogenation of glucose) to fuel a stationary internal combustion engine driven generator (10 kW). Under a USDOE funded project, Virent is currently developing the APR process to generate high yields of hydrogen from corn-derived glucose. This project objective is to achieve the DOE 2010 cost target for distributed production from renewable liquid fuels of 3.60 dollars/gge (gasoline gallon equivalent) delivered. (authors)

  11. Hydrogen production at hydro-power plants

    Science.gov (United States)

    Tarnay, D. S.

    A tentative design for hydrogen-producing installations at hydropower facilities is discussed from technological, economic and applications viewpoints. The plants would use alternating current to electrolyze purified river water. The hydrogen would be stored in gas or liquid form and oxygen would be sold or vented to the atmosphere. The hydrogen could later be burned in a turbine generator for meeting peak loads, either in closed or open cycle systems. The concept would allow large hydroelectric plants to function in both base- and peak-load modes, thus increasing the hydraulic utilization of the plant and the capacity factor to a projected 0.90. Electrolyzer efficiencies ranging from 0.85-0.90 have been demonstrated. Excess hydrogen can be sold for other purposes or, eventually, as domestic and industrial fuel, at prices competitive with current industrial hydrogen.

  12. NEDO hydrogen, alcohol, and biomass technology subcommittee. 18th project report meeting; NEDO suiso alcohol biomass gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A report is delivered by Morio Murase, a NEDO (New Energy and Industrial Technology Development Organization) director, in which the general situation of hydrogen, alcohol, and biomass technology development is explained. Concerning the research and development of international clean energy system of hydrogen, the WE-NET (World Energy Network) project is described, in which a total system concept design and cryogenic structural materials that are the fruits of the 1st phase are mentioned. Concerning the 2nd phase, research and development to be conducted are discussed, and reports are delivered thereon. Reported concerning the development of high-efficiency refuse-fueled power generation technology are a demonstration test using a pilot plant and a superheater demonstration test. Concerning the research and development for the advanced clear energy vehicle project, a development program is reported for an energy-efficient, low-pollution vehicle which is a combination of a hybrid mechanism and clean energy. Reported also is the research and development of supercritical fluid utilization, in which the reaction of supercritical water upon addition of solvent, its oxidation and hydrogenation, and so forth, are explained. (NEDO)

  13. Hydrogen for small-scale energy consumers and CO2-storage. Feasibility study of a demonstration project in the Rijnmond, Netherlands

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    In the future natural gas can be substituted by hydrogen. In the short term hydrogen can be produced from fossil fuels. Released CO 2 can be stored. In the long run it will be possible to produce hydrogen from renewable energy sources (solar cells and wind turbines), which can be transported to the consumer. In the study on the title subject attention is paid to different methods of hydrogen production from natural gas and from residual oils, costs and problems of hydrogen distribution, hydrogen appliances, and CO 2 storage. From the results it appears that a demonstration project to use hydrogen on a small-scale is feasible, although expensive. The costs of the reconstruction of the present natural gas distribution system to a hydrogen distribution system is higher than expected. The price of hydrogen per GJ is higher than the equal energy content of natural gas, in spite of a reduction of the energy levy. The demonstration project will be 25% cheaper per GJ hydrogen when carried out in a newly built area. A demonstration project in which hydrogen is mixed with natural gas is even a factor 2 cheaper. 17 refs., 7 appendices

  14. Communicating solutions for a greener world - a case study of the Bellona Foundation's communication process within the hydrogen project

    International Nuclear Information System (INIS)

    Loene, Cecilie

    2001-01-01

    The world is facing increasing energy and global climate change problems. Facing future depletion of fossil fuels and the threat of increased temperatures on earth due to air pollution from the burning of fossil fuels, there is a need for a clean alternative. The Norwegian environmental organization The Bellona Foundation believes that hydrogen as an energy carrier coupled with hydrogen technology is the solution and the only road to a 0-emissions society-a hydrogen society. Under the slogan, ''From Talking to Walking the Hy-way,'' Bellona is through their Hydrogen Project working to achieve this green society. In a case study of Bellona's Hydrogen Project, this thesis aims to examine how Bellona communicates with the intended target groups within this project and how the organization perceives the communication process. As the slogan suggests, in order for the Hydrogen Project to be completely successful, Bellona has to not only inform people about the hydrogen solution but also convince them and get them to begin implementing hydrogen technology. This is conducted through a communication process. The communication process includes both internal and external activities and is divided into four stages: translation, strategy, channels and feedback. Through contrasting the communication process with science communication models, the need for an interactive, multi-directional approach that makes problematic the receiver and recognizes the receiver as an active participant in addition to adhering to the correlation between message and context of the receiver. The case study aims to look at how Bellona conducts and perceives the different stages in the communication process and find out whether Bellona recognizes these features in or adheres to these factors within the Hydrogen Project. (Author)

  15. Japan sunshine project 1987 annual summary of Hydrogen energy R and D

    Science.gov (United States)

    1988-04-01

    This paper presents the findings of the researches on hydrogen energy in sunshine project in FY87. A duration test of the electrolyte membrane of solid polymer fabricated by bonding Pt and Ir catalyst layers was made for seven months to produce hydrogen by the electrolysis of water. The result indicates that the electrolysis will be able to be made at high current density. The sensitivity to stress corrosion cracking of stainless steel for electrolysis of water was evaluated. Since a thin film of stabilized zirconia fabricated by sintering at a temperature of 1500 C or higher is dense and conductive, it is a promising solid electrolyte. Since an inert phase to hydrogen is developed in a high-density metallic alloy for hydrogen storage produced by sintering and partially melting Mg7Zn3-Ni, it must be improved. A heating module of hydrogenated material monolithically coated on copper tube was investigated. The application of metallic alloy for hydrogen storage to the hydrogen electrode is studied. A hydrogen-fueled prime mover system circulating an inert gas is being developed. Since the low alloy steel part is extremely embrittled by heating, the intergranular face of coarse crystal affected by the cycle of welding heat is a problem.

  16. Metrology for hydrogen energy applications: a project to address normative requirements

    Science.gov (United States)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  17. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  18. Bavarian liquid hydrogen bus demonstration project - safety, licensing and acceptability aspects

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, R.; Knorr, H.; Pruemm, W.

    1999-07-01

    A regular 12 m city bus of the MAN SL 202 type with an internal combustion engine adapted to hydrogen operation and auxiliary gasoline operation was demonstrated in the Bavarian cities of Erlangen and Munich between April 1996 and August 1998. Three bus operators, Erlanger Stadtwerke, Stadtwerke Muenchen and Autobus Oberbayern were testing the bus in three different operating schemes. In order to be able to perform this worldwide first public demonstration of a liquid hydrogen (LH{sub 2}) city bus in regular service, several requirements with respect to safety, licensing, training and acceptability had to be fulfilled. These activities were focusing mainly on the hydrogen specific issues such as (a) integration of onboard LH{sub 2} storage vessels, piping and instrumentation, (b) implementation of storage and refueling infrastructure in the operators' yards, (c) adaptation of the maintenance garages, (d) training of operating and maintenance personnel. During phase II of the demonstration activity a poll was performed on passengers traveling onboard the hydrogen-powered city bus in order to determined the level of acceptance among the users of the bus. The bus was designed and manufactured by MAN Nutzfahrzeuge Aktiengesellschaft. The cryogenic fuel storage and the refueling equipment were designed and manufactured by Linde AG. The realization of the hardware was financially supported by the European Commission (EC) within the Euro-Quebec Hydro-Hydrogen Pilot Project. The demonstration phase was financially supported by EC and the Bavarian State Government. Ludwig-Boelkow-Systemtechnik performed project monitoring for both funding organizations. The presentation will summarize the most important results of this demonstration phase and will address the measures undertaken in order to get the bus, the refueling infrastructure and the maintenance and operating procedures approved by the relevant authorities.

  19. Direction of Heavy Water Projects

    International Nuclear Information System (INIS)

    1984-07-01

    Summary of the activities performed by the Heavy Water Projects Direction of the Argentine Atomic Energy Commission from 1950 to 1983. It covers: historical data; industrial plant (based on ammonia-hydrogen isotopic exchange); experimental plant (utilizing hydrogen sulfides-water process); Module-80 plant (2-3 tons per year experimental plant with national technology) and other related tasks on research and development (E.A.C.) [es

  20. Knowledge Utilization in Projects – a Practice-based

    DEFF Research Database (Denmark)

    Thuesen, Christian

    Drawing upon Practice-based theorizing in general and Actor Network Theory and theories of Communities of Practices in particular the paper develops an analytical strategy for understanding “life” in projects. The analytical strategy is applied on empirical material from an 18-month ethnographic...... study of a construction project. The project is interpreted as constellation of networked practices, which always is in the making. Participation in this project is a learning process where existing practices are reproduced and developed. This understanding of “life” in the project, frames a concluding...... analysis and discussion of the utilization of knowledge in the project....

  1. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  2. Project risk management for development of non-utility power generators (NUGs)

    International Nuclear Information System (INIS)

    Lau, T.

    1990-01-01

    The growing Non-Utility Generation (NUG) industry has brought new opportunities and challenges for the insurance industry. There can be unique engineering and financial risks involved in the development of Non-Utility Power Generation projects. The use of new technologies to meet stringent environmental regulations and to improve project performance and efficiency presents new challenges to the project developers and designers. The lack of funding, resources and experience of some of these projects may create unusual risks that could result in failure or deficiency in the performance of the projects

  3. Test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  4. Japan's Sunshine Project

    Science.gov (United States)

    1992-07-01

    A summary report is given on the results of hydrogen energy research and development achieved during 1991 under the Sunshine Project. In hydrogen manufacturing, regenerative cells that can also generate power as fuel cells were discussed by using solid macromolecular electrolytic films for the case where no electrolysis is carried out with water electrolysis. Yttria stabilized zirconia (YSZ), an oxide solid electrolyte was used for the basic research on high-temperature steam electrolysis. Compositions of hydrogen storage alloys and their deterioration mechanisms were investigated to develop hydrogen transportation and storage technologies. High-density hydrides were searched, and fluidization due to paraffin was discussed. Electrode materials and forming technologies were discussed to develop a hydrogen to power conversion system using hydrogen storage alloys as reversible electrodes. Hydrogen-oxygen combustion was studied in terms of reactive theories, and so was the control of ignition and combustion using ultraviolet ray ignition plasma. Studies were made on hydrogen brittlement in welds on materials in hydrogen utilization and its preventive measures. Surveys were given on technical movements and development problems in high-efficiency, pollution-free hydrogen combustion turbines.

  5. On the use of hydrogen in confined spaces: Results from the internal project InsHyde

    NARCIS (Netherlands)

    Venetsanos, A.G.; Adams, P.; Azkarate, I.; Bengaouer, A.; Brett, L.; Carcassi, M.N.; Engebø, A.; Gallego, E.; Gavrikov, A.I.; Hansen, O.R.; Hawksworth, S.; Jordan, T.; Kessler, A.; Kumar, S.; Molkov, V.; Nilsen, S.; Reinecke, E.; Stöcklin, M.; Schmidtchen, U.; Teodorczyk, A.; Tigreat, D.; Versloot, N.H.A.

    2011-01-01

    The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally, InsHyde

  6. Wind farm projects as joint ventures between a Danish utility and private cooperatives

    International Nuclear Information System (INIS)

    Moerup-Petersen, V.; Pedersen, S.

    1992-01-01

    Four cases on successful cooperation between the Danish utility, NESA A/S, and private wind cooperatives are described. In two cases the utility was invited to share the projects prepared by the cooperatives. In the third case the project was developed by the utility. The fourth and most ambitious project, where construction work is just about to start, both parties are involved on a 50/50 basis. The experience gained from the different projects is described. The paper discusses the advantages and disadvantages of joint projects for both parties. Different models on cooperation are outlined. Mainly based on NESA's experience, the joint concept is recommended by the Danish Ministry of Environment. The aim is to get the optimal utilization of the limited siting possibilities in Denmark. The future perspectives of joint projects are anticipated. (au)

  7. Hydrogen production through photovoltaic processes: Italian ENEA and other research projects

    International Nuclear Information System (INIS)

    Barra, L.; Coiante, D.

    1992-01-01

    Brief arguments favouring greater emphasis by government R ampersand D strategies on commercialization efforts to further develop hydrogen production processes involving the use of renewable energy sources are presented. These include the worsening global greenhouse effect problems due to the intensified use of fossil fuels and recent technological advances being made in photovoltaic energy conversion. A world-wide review is then made of on-going research programs in hydrogen production through the use of hydroelectric and solar energy sources. This review provides outlines of project objectives, schedules and financing schemes. Attention is given to the commercialization programs and strategies of ENEA (Italian Commission for New Technologies, Energy and the Environment)

  8. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  9. The generation of molecular hydrogen by cyanobacteria. Die Gewinnung von molekularem Wasserstoff durch Cyanobakterien

    Energy Technology Data Exchange (ETDEWEB)

    Kentemich, T.; Haverkamp, G.; Bothe, H. (Koeln Univ. (Germany, F.R.). Botanisches Inst.)

    1990-01-01

    Currently there is renewed interest in projects on solar-energy conversion by microorganisms. Among all organisms, cyanobacteria are first choice for such projects. Hydrogen production by cyanobacteria is light-dependent and catalyzed by the enzyme complex nitrogenase which concomitantly catalyzes the reduction of N{sub 2} to ammonia. The cyanobacterium Anabaena variabilis can express an alternative, vanadium-containing nitrogenase which produces more hydrogen than the conventional, molybdenum-containing enzyme. In intact cells, most of the H{sub 2} produced by nitrogenase is immediatley reutilized by the hydrogenase enzymes. Maximal hydrogen production requires the genetic blockage of H{sub 2} utilization by the hydrogenases. (orig.).

  10. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Muna, Alice Baca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Groth, Katrina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  11. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate (1) high-temperature-superconductor (HTS) magnet coils, (2) cold copper RF cavities, and (3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant). The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects

  12. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  13. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  14. Main outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA parallel projects for hydrogen safety of LWR - 15357

    International Nuclear Information System (INIS)

    Paladino, D.; Kiselev, A.

    2015-01-01

    ERCOSAM and SAMARA are the acronyms for 2 parallel projects co-financed respectively by EURATOM and ROSATOM during the 2010-2014 period with the general aim to advance the knowledge on the phenomenology associated to the hydrogen and steam spreading and stratification in the LWR containment during a severe accident. The important peculiarity of the project was its experimental and analytical investigation of the impact of safety systems such as spray, coolers and PAR (Passive Autocatalytic Recombiners) on the distribution of gas species (hydrogen, steam and air). The main outcomes of the ERCOSAM-SAMARA projects are presented in this paper. The research needs, which could be considered in follow-up activities, are also identified. (authors)

  15. Interest in smart metering project surprises utility, IBM

    International Nuclear Information System (INIS)

    Horne, D.

    2006-01-01

    This article provided an outline of Hydro Ottawa and IBM's smart metering pilot project, which has resulted in high approval ratings from the public. The project features 375 participants broken down into 3 separate groups to look for potential consumption differences between customers charged according to standard time-of-use pricing; time-of-use with critical peak pricing; and time-of-use with critical peak rebates. The Ontario Smart Price Pilot project will be run for 5 months, and is expected to provide detailed energy information about usage. Past projects have indicated that customers respond quickly to smart metering, as they are able to monitor their energy usage and more effectively manage their energy consumption. Ontario plans to have all homes and small businesses using smart meters by 2010, as high seasonal demand has indicated that conservation and balanced resource use are now top priorities for many utility companies. At least 10 states in the United States have conducted smart metering pilot projects. The California Public Utilities Commissions has recently approved a $1.7 billion statewide plan to replace old meters with smart meters. In Ontario, customers have ordered 10,000 electricity monitors that Hydro One is giving away. It was concluded that research results from an earlier Hydro One demonstration project with 500 Ontario homeowners showed that real time electricity monitors can help homeowners reduce their consumption of electricity by up to 15 per cent. 4 figs

  16. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  17. Economic diversification in Sarnia-Lambton: building a hydrogen cluster

    International Nuclear Information System (INIS)

    Bugyra, W.J.; Martin, D.R.; Kinsella, J.

    2006-01-01

    Sarnia-Lambton Economic Partnership has embarked upon a novel path toward building a hydrogen cluster. Without an indigenous 'technology' star, the foundation for the cluster is the petrochemical industry and the broad spectrum of local enterprises and institutions that supply it. Hydrogen is both a by-product and feedstock for different applications in the region, resulting in the development of a large pipeline network to connect waste gas to consumers. The local capabilities developed to process, deliver and maintain this system have helped to attract new industries that require hydrogen to the area. The same capabilities are now being leveraged from chemical applications to energy applications for hydrogen. The H 2 D Project will assemble the largest fleet of hydrogen fuelled 'appliances' in North America, with 200 devices including on and off-road vehicles, and portable and stationary hydrogen applications utilizing a wide array of technologies. H 2 D is a community driven project that leverages and supports educational programs at Lambton College and the University of Western Ontario (key elements of a thriving industrial cluster), sophisticated local safety services, and support from local, provincial and federal governments, to provide a testing ground for technology providers and local suppliers in an environment with a 'gas' savvy population and supporting infrastructure. (author)

  18. Achievement report on research and development in the Sunshine Project in fiscal 1976. Research related to hydrogen combustion technologies; 1976 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Regarding the Sunshine Project, this paper describes characteristics and technologies of hydrogen combustion, problems in developing combustion devices and conceptual design thereof, catalytic combustion, hydrogen energy systems, and economic evaluation on hydrogen fuel as a heating energy. Hydrogen combustion could emit small amount of NOx if it is sufficiently pre-mixed with air, but at the same time could cause reverse ignition very easily making its practical use difficult. Abolishing the air pre-mixture would cause no fear of reverse ignition, but generate much more NOx than from hydrocarbon fuels. Even if attempting to apply conventional methods such as two-stage combustion, partial stack gas recirculation, water addition, and lean burn systems, many of them cannot be applied as they are, requiring research and development efforts. Discussions on hydrogen energy as a system included those on thermo-chemical hydrogen manufacturing using heat from high temperature gas reactors (using water as the raw material), and electrolytic hydrogen gas manufacturing utilizing surplus electric power from high speed breeder reactors. Whether these methods could be used in markets economically will depend on manufacturing efficiency and cost of hydrogen gas. As the economic evaluation on hydrogen as fuel, discussions and considerations were given on introduction priority in the industrial heating furnace field. (NEDO)

  19. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  20. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia

  1. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  2. Multikilowatt Bipolar Nickel/Hydrogen Battery

    Science.gov (United States)

    1986-01-01

    High energy densities appear feasible. Nickel/hydrogen battery utilizing bipolar construction in common pressure vessel, addressing needs for multikilowatt storage for low-Earth-orbit applications, designed and 10-cell prototype model tested. Modular-concept-design 35-kW battery projected energy densities of 20 to 24 Wh/b (160 to 190 kj/kg) and 700 to 900 Wh/ft3 (90 to 110 MJ/m3) and incorporated significant improvements over state-of-the-art storage systems.

  3. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  4. Draft test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  5. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  6. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  7. The Hawaii hydrogen plan

    International Nuclear Information System (INIS)

    Takahashi, P.K.; McKinley, K.R.; Antal, M.J. Jr.; Kinoshita, C.M.; Neill, D.R.; Phillips, V.D.; Rocheleau, R.E.; Koehler, R.L.; Huang, N.

    1990-01-01

    Hawaii is the most energy-vulnerable state in the Union. Over the last 16 years the State has undertaken programs to reduce its energy needs and to provide alternatives to current usage tapping its abundant renewable energy resources. This paper describes the long-range research and development plans in Renewable Hydrogen for the State of Hawaii with special attention to the contributions of the Hawaii Natural Energy Institute of the University of Hawaii at Manoa. Current activities in production, storage, and utilization are detailed, and projections through the year 2000 are offered

  8. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  9. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  10. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    Science.gov (United States)

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  11. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  12. Hydrogen and fuel cells: threat or opportunity to power company core business?

    International Nuclear Information System (INIS)

    Grant, A.

    2004-01-01

    'Full text:' It is noted that many utilities at this conference will discuss the problems with fuel cells (and the hydrogen economy) that revolve around interconnection of fuel cells as distributed generation resources. Interconnection details, both commercial and technical, are a major market barrier and a key problem for electric utilities as these technologies come to market. However, I would like to offer an opportunity to examine a broader subject area. Specifically, I would submit that one key issue is the need to look at the hydrogen and fuel cell market as a new opportunity for electric utilities. At BC Hydro we see that both the hydrogen market and the fuel cells market are potential threats and potential opportunities for our core business. We therefore believe it is prudent to learn more about these markets and 'learn by doing' by participating in demonstration projects with other partners where we can leverage our investments and spread the risk. In my talk I would like to explore the various elements of the BC Hydro fuel cell activities within this context of an evolving business model for a power utility. (author)

  13. Report on achievements in fiscal 1984 on research and development commissioned from Sunshine Project. Studies on hydrogen manufacturing utilizing solar beam; 1984 nendo taiyoko riyo ni yoru suiso seizo no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    Research and development has been performed on a technology to manufacture hydrogen effectively from water utilizing solar beam and using an organics oxidizing and reducing system as the intermediary, and its achievements in fiscal 1984 was reported. With regard to the process in hydrogen generation stage as the first step, water dissolvable rhodium complex was synthesized to improve the process having been developed in the previous fiscal year. Its photo-hydrogen generation capability was discussed. In the rhodium complex of ligand having sulfonic acid group for water solution, a system using only water as a solvent was discovered to show the photo-hydrogen generation capability equivalent to or greater than the system of organic solvent and water using non-water dissolvable rhodium complex. In the stage of reduction of oxidized type organics by water as the second step, discussions were given on photo-electrochemical behavior of iron oxide sintered electrodes. Photo-hydrogen generation was investigated by retaining the electrode potential to a potential generated by beam irradiation onto the iron oxide sintered electrodes, and using a system of water dissolvable rhodium complex and rhuthenium complex. As a result, a possibility of recycling the materials was discovered. (NEDO)

  14. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  15. Hydrogen Process Coupling to Modular Helium Reactors

    International Nuclear Information System (INIS)

    Shenoy, Arkal; Richards, Matt; Buckingham, Robert

    2009-01-01

    The U.S. Department of Energy (DOE) has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the concept to be used for the Next Generation Nuclear Plant (NGNP), because it is the most advanced Generation IV concept with the capability to provide process heat at sufficiently high temperatures for production of hydrogen with high thermal efficiency. Concurrently with the NGNP program, the Nuclear Hydrogen Initiative (NHI) was established to develop hydrogen production technologies that are compatible with advanced nuclear systems and do not produce greenhouse gases. The current DOE schedule for the NGNP Project calls for startup of the NGNP plant by 2021. The General Atomics (GA) NGNP pre-conceptual design is based on the GA Gas Turbine Modular Helium Reactor (GT-MHR), which utilizes a direct Brayton cycle Power Conversion System (PCS) to produce electricity with a thermal efficiency of 48%. The nuclear heat source for the NGNP consists of a single 600-MW(t) MHR module with two primary coolant loops for transport of the high-temperature helium exiting the reactor core to a direct cycle PCS for electricity generation and to an Intermediate Heat Exchanger (IHX) for hydrogen production. The GA NGNP concept is designed to demonstrate hydrogen production using both the thermochemical sulfur-iodine (SI) process and high-temperature electrolysis (HTE). The two primary coolant loops can be operated independently or in parallel. The reactor design is essentially the same as that for the GT-MHR, but includes the additional primary coolant loop to transport heat to the IHX and other modifications to allow operation with a reactor outlet helium temperature of 950 .deg. C (vs. 850 .deg. C for the GT-MHR). The IHX transfers a nominal 65 MW(t) to the secondary heat transport loop that provides the high-temperature heat required by the SI-based and HTE-based hydrogen production facilities. Two commercial nuclear hydrogen plant variations were evaluated with

  16. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    Science.gov (United States)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  17. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  18. Investigating the Chemical Reactivity for Hydrogen in Siliciclastic Sediments: two Work Packages of the H2STORE Project

    Science.gov (United States)

    De Lucia, M.; Pilz, P.

    2014-12-01

    The H2STORE ("Hydrogen to Store") collaborative project, funded by the German government, investigates the feasibility of industrial-scale hydrogen storage from excess wind energy in siliciclastic depleted gas and oil reservoirs or suitable saline aquifers. In particular, two work packages (geochemical experiments and modelling) hosted at the German Research Centre for Geosciences (GFZ) focus on the possible impact of hydrogen on formation fluids and on the mineralogical, geochemical and petrophysical properties of reservoirs and caprocks. Laboratory experiments expose core samples from several potential reservoirs to pure hydrogen or hydrogen mixtures under site-specific conditions (temperatures up to 200 °C and pressure up to 300 bar). The resulting qualitative and, whereas possible, quantitative data are expected to ameliorate the precision of predictive geochemical and reactive transport modelling, which is also performed within the project. The combination of experiments and models will improve the knowledge about: (1) solubility model and mixing rule for of hydrogen and its gas mixtures in high saline formation fluids; (2) hydrogen reactivity in a broad spectrum of P-T conditions; (3) thermodynamics and kinetics of mineral dissolution or precipitation reactions and redox processes. It is known that under specific P-T conditions reactions between hydrogen and anorganic rock components such as carbonates can occur. However these conditions have never been precisely defined to date. A precise estimation of the hydrogen impact on reservoir behavior of different siliciclastic rock types is crucial for site selection and optimization of storage depth. Enhancing the overall understanding of such systems will benefit the operational reliability, the ecological tolerance, and the economic efficiency of future energy storing plants, crucial aspects for public acceptance and for industrial investors.

  19. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on a hydrogen utilizing subsystem and research on peripheral technologies (Research on peripheral technologies for hydrogen); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes research on peripheral technologies for hydrogen. For the cost of manufacturing hydrogen from different primary energies, coal gasification could be the lowest at the present time. In the nuclear power field, the thermo-chemical method and the water electrolysing method may be assumed, but they depend greatly on future technological development. Particularly the water electrolysing method is dependent on electric power cost. In the hybrid method, hydrogen is obtained from electrolysing reaction with water of sulfur dioxide derived by paralyzing sulfuric acid (oxygen is also generated). The method requires two forms of energies, heat and electric power, whereas combination with a very high temperature reactor (VHTR) is being discussed as a heat source. This method may not be said greatly more advantageous than the direct water electrolysis, but may have future possibility. Hydrogen manufacturing utilizing living organisms is an interesting matter in terms of science and engineering, with a large number of research achievements beginning to appear. Expectation is drawn on the mechanism based on co-work of photosynthesis and a hydrogen generation system, alga and bacterium strain search, separation, cultivation, and applied research and development. Research is also under way to obtain hydrogen by converting photo-energy by using an electrochemical photo-cell utilizing semiconductor electrode to electrolyse water (color sensitizing) (NEDO)

  20. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  1. 24 CFR 245.416 - Initial submission of materials to HUD: Conversion from project-paid utilities to tenant-paid...

    Science.gov (United States)

    2010-04-01

    ... projects, and utility rate information, as obtained from the utility supplier; (iv) The estimated monthly... HUD: Conversion from project-paid utilities to tenant-paid utilities or a reduction in tenant utility... AUTHORITIES TENANT PARTICIPATION IN MULTIFAMILY HOUSING PROJECTS Procedures for Requesting Approval of a...

  2. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  3. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Kevin [Sprint, Reston, VA (United States); Bradley, Dwayne [Burns & McDonnell, Kansas City, MO (United States)

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  4. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  5. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 3) -research/study concerning international cooperation (Volume 1. research/study for promoting international cooperation); 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 3. Kokusai kyoryoku ni kansuru chosa kenkyu (1. kokusai kyoryoku suishin no tame no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Various measures were implemented with the aim of realizing the 'longterm vision for international cooperation' in connection with hydrogen utilization international clean energy system technology (WE-NET) formulated in fiscal 1996. The English version of the 1998 annual summary report on results was distributed to approximately 170 pertinent organizations overseas. To develop understanding of the WE-NET project, presentations were given in numerous international conferences. In addition, as research cooperation in IEA (International Energy Agency), specialists were dispatched to the hydrogen implementation committee, the corresponding committee to hydrogen implementation agreement, and to each annex. In international exchange of technical information, each WE-NET task exchanged information with organizations abroad through overseas survey and conducted research on European hydrogen project, for example. With the purpose of developing understanding of WE-NET project activities, a preparatory work was done for participation in HYFORUM2000 (Germany) and World Hydrogen Energy Conference (Beijing) which will be held in 2000. (NEDO)

  6. Achievement report on research and development in the Sunshine Project in fiscal 1980. Development of a hydrogen sulfide removing technology; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    As part of geothermal development promotion program in the Sunshine Project, a hydrogen sulfide removing technology development has been worked on since fiscal 1977 for the purpose of environment preservation and multi-purpose utilization. Hydrogen sulfide in downstream fluid in a turbine is removed by more than 90% (as the target value), and the removed hydrogen sulfide is converted into single sulfur having an added value. For condenser waste gas processing, selection was made in fiscal 1980 on the RET process (sulfur is obtained by removing hydrogen sulfide in a suction column and an oxidation column), and for condensate processing, the stripping process (gas having been sent into a stripping column and stripped is fed into the RET device via demister for processing). Field tests were carried out by using fluid generated in a geothermal power plant. Conclusions were reached at high accuracy on optimal process selection corresponding to conditions of the fluid on the turbine outlet side and on the hydrogen sulfide removing cost. A process to treat fluid on the turbine inlet side is available, but not as economically effective as the downstream fluid processing. Same applies to the chemical processing method. A method to measure continually hydrogen sulfide in geothermal steam has been established. (NEDO)

  7. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  8. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...... the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed...

  9. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  10. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  11. Electrolysis: Information and Opportunities for Electric Power Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  12. Reading Research Utilization Project: An RIC Project for Teachers and Other Field Personnel.

    Science.gov (United States)

    District of Columbia Public Schools, Washington, DC. Dept. of Research and Evaluation.

    This is the final report of the Reading Research Utilization Project (RUP) which was funded by the U.S. Office of Education from July, 1971 to June, 1973. The purpose of the RUP was to encourage the translation of research, particularly reading research, into practice in 16 target elementary schools in Washington, D.C. RUP was a school information…

  13. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  14. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  15. New generation of full composite vessels for 70 MPa gaseous hydrogen storage : results and achievements of the French HyBou project

    Energy Technology Data Exchange (ETDEWEB)

    Nony, F. [CEA Materials, Monts (France); Weber, M. [Air Liquide, Paris (France); Tcharkhtchi, A. [Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Lafarie-Frenot, M.C. [Ecole Nationale Superique De Mecanique et d' Aerotechnique, Poitiers (France); Perrier, O. [Raigi, Arbouville (France)

    2009-07-01

    The French collaborative Project known as HyBou explores hydrogen storage as a key enabling technology for the extensive use of hydrogen as an energy carrier. HyBou aims to develop robust, safe and efficient compressed gaseous hydrogen (CGH2) storage systems and validate innovative materials and processes suitable for storage vessel manufacturing with improved performance at low cost. The development of a new generation of type-4 70 MPa vessel was described along with a newly developed liner based on polyurethane materials. The new liner presents increased thermal stability, hydrogen barrier properties and cost effectiveness. The project also aims to evaluate the potential of new high resistance fibers and develop an improved thermosetting resin for composite winding with enhanced mechanical resistance and durability. A specific apparatus was therefore designed to characterize and evaluate coupled thermal and mechanical fatigue resistance in representative conditions.

  16. The hydrogen refuelling plant in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Giron, E.; Saez, A.; Julia, A.

    2005-07-01

    Since the late days of spring 2003, a hydrogen refuelling station is operating in Madrid to provide fuel to a set of four FC-buses running in the frame of the European demonstration projects CUTE and CITYCELLS. This station is located at one of the EMT(1) bus depot premises. The station was designed and built for the EMT by the consortium 'esH2' composed by the industrial gases manufacturer Air Liquide Espana, the energy utility Gas Natural SDG and the oil company Repsol YPF. (Author)

  17. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  18. Research and development project report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report summarizes results of research and development projects administered by NEDO for FY 1996. Overview of new energy projects and twelve chapters for individual projects are provided in the report. The new energy technology development projects administered by NEDO are classified into twelve categories, i.e., Development of technologies for solar energy utilization, Development of geothermal resources, Development of technologies for exploration and utilization of geothermal energy, Development of coal energy utilization technologies, Development of coal resources, Development of energy conversion and storage technologies, Development of hydrogen, alcohol and biomass technologies, Development of other oil-alternative energy technologies, Introduction and promotion of new energy sources, International energy-promotion activities, Promotion of development and introduction, and Activities of the NEDO Information Center. To ensure energy security and actively cope with environmental problems such as by taking carbon dioxide emission control measures, NEDO has stepped up its efforts to develop new energy- and energy saving-related technologies and introduce and diffuse them. 79 figs., 37 tabs.

  19. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  20. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States); Liu, Di-Jia [Texas A & M Univ., College Station, TX (United States)

    2017-12-01

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H2/kgsystem and volumetric capacity of 0.040 kg H2/Lsystem at a cost of $400/kg H2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL) collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal

  1. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  2. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  3. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, A. C.; Hintze, P. E.; Caraccio, A. J.; Bayliss, J. A.; Karr, L. J.; Paley, M. S.; Marone, M. J.; Gibson, T. L.; Surma, J. M.; Mansell, J. M.; hide

    2016-01-01

    The atmosphere of Mars, which is approximately 95% carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASA's Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100% of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon is under construction.

  4. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Bayliss, Jon; Karr, Laurel; Paley, Steve; Marone, Matt; Gibson, Tracy; Surma, Jan; Mansell, Matt; hide

    2016-01-01

    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results.

  5. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  6. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  7. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research related to hydrogen gas turbines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes development of hydrogen gas turbines from among the comprehensive discussions on hydrogen utilizing subsystems. Hydrogen and oxygen gas turbine cycle has varying optimal conditions of plant efficiency depending on fuel patterns. The regenerative cycle may have the turbine inlet temperature at about 1,000 degrees C. The inlet pressure would be ten and odds atmospheric pressure. It is better to keep the inlet temperature higher in order to obtain high specific power. Reduction of power generation cost in using this plant requires that construction cost be decreased, and the specific power be increased if the plant efficiency (in other words, running cost) is assumed constant. Further development is required on technologies to use higher temperatures and pressures. For that purpose, discussions should be given on material development, structural design, and inspection. Hydrogen gas turbines, which present low pollution depending on combustion methods, have great significance for such social problem as environmental contamination. In terms of economy, since hydrogen gas turbines depend on efficiency and fuel unit cost, the evaluation thereon may vary depending on how well the regenerative gas turbines have been established, in addition to future change in hydrogen price and the technologies to use higher temperatures and pressures. (NEDO)

  8. Hydrogen from Biomass for Urban Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Boone, William

    2008-02-18

    The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

  9. Develop Improved Materials to Support the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael C. Martin

    2012-07-18

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  10. System approach on solar hydrogen generation and the gas utilization; Taiyo energy ni yoru suiso no seisei oyobi sono riyo system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Hirooka, N; Deguchi, Y; Narita, D [Meiji University, Tokyo (Japan)

    1997-11-25

    An apparatus is developed to establish a system which allows utilization of hydrogen safely and easily, and its applicability to a hydrogen system for domestic purposes is tested. The system converts solar energy by the photovoltaic cell unit into power, which is used to generate hydrogen by electrolysis of water at the hydrogen generator, stores hydrogen in a metal hydride , and sends stored hydrogen to the burner and fuel cell units. It is found that a hydrogen occluding alloy of LaNi4.8Al0.2 stores hydrogen to approximately 80% when cooled to 20 to 25degC, and releases it to 10% when heated to 40degC. The fuel cell uses a solid polymer as the electrolyte. The hydrogen gas burner is a catalytic combustion burner with a Pt catalyst carried by expanded Ni-Al alloy. The optimum distance between the burner and object to be heated is 22mm. High safety and fabrication simplicity are confirmed for use for domestic purposes. The system characteristics will be further investigated. 4 refs., 8 figs.

  11. Power to gas. The final breakthrough for the hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Goldstein, Raphael [Germany Trade and Invest (GTAI), Paris (France); Rastetter, Aline [Alphea Hydrogene, Forbach (France)

    2013-04-01

    In Germany more than 20% of the energy mix is made up of renewable energy and its share is rapidly increasing. The federal government expects renewables to account for 35% of Germany's electricity consumption by 2020, 50% by 2030 and 80% by 2050. According to the German Energy Agency, multi-billion euro investments in energy storage are expected by 2020 in order to reach these goals. The growth of this fluctuating energy supply has created demand for innovative storage options in Germany and it is accelerating the development of technologies in this field. Along with batteries and smart grids, hydrogen is expected to be one of the lead technologies. 2010 a commercialization roadmap for wind hydrogen was set up by the two northern federal states of Hamburg and Schleswig-Holstein with the goal of utilizing surplus wind power for the electrolytic production of hydrogen. With the creation of the 'performing energy initiative', 2011, Brandenburg and Lower Saxony joined this undertaking. The aim of this initiative is to set up demonstration projects in order to develop and optimize wind-hydrogen hybrid systems and prepare their commercialization for the time after 2020. Beside the conversion of hydrogen into electricity and fuel for cars, further markets like raw material for the chemical, petrochemical, metallurgy and food industry are going to be addressed. Considering the fact there are over 40 caves currently used for natural gas storage with a total volume of 23.5 billion cubic meters and 400 000 km gas grid available in Germany, the German Technical and Scientific Association for Gas and Water sees opportunities for hydrogen to be fed into the existing natural gas grid network. The name of this concept is power-to-gas. According to the current DVGW-Standards natural gas in Germany can contain up to 5% hydrogen. The GERG, European Group on the Gas Research sees potential to increase this amount up to 6% to 20%. Power-to-gas could serve both for fuel and for the

  12. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  13. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  14. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  15. Hydrogen energy strategies and global stability and unrest

    International Nuclear Information System (INIS)

    Midilli, A.; Dincer, I.; Rosen, M.A.

    2004-01-01

    This paper focuses on hydrogen energy strategies and global stability and unrest. In order to investigate the strategic relationship between these concepts, two empirical relations that describe the effects of fossil fuels on global stability and global unrest are developed. These relations incorporate predicted utilization ratios for hydrogen energy from non-fossil fuels, and are used to investigate whether hydrogen utilization can reduce the negative global effects related to fossil fuel use, eliminate or reduce the possibilities of global energy conflicts, and contribute to achieving world stability. It is determined that, if utilization of hydrogen from non-fossil fuels increases, for a fixed usage of petroleum, coal and natural gas, the level of global unrest decreases. However, if the utilization ratio of hydrogen energy from non-fossil fuels is lower than 100%, the level of global stability decreases as the symptoms of global unrest increase. It is suggested that, to reduce the causes of global unrest and increase the likelihood of global stability in the future, hydrogen energy should be widely and efficiently used, as one component of plans for sustainable development. (author)

  16. A high-pressure hydrogen time projection chamber for the MuCap experiment

    Energy Technology Data Exchange (ETDEWEB)

    Egger, J.; Fahrni, D.; Hildebrandt, M.; Hofer, A.; Meier, L.; Petitjean, C. [Paul Scherrer Institute, Villigen PSI (Switzerland); Andreev, V.A.; Ganzha, V.A.; Kravtsov, P.A.; Krivshich, A.G.; Maev, E.M.; Maev, O.E.; Petrov, G.; Semenchuk, G.G.; Vasilyev, A.A.; Vorobyov, A.A.; Vznuzdaev, M.E. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Banks, T.I. [University of California, Department of Physics, Berkeley, California (United States); Clayton, S.M. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States); Gray, F.E. [University of California, Department of Physics, Berkeley, California (United States); Regis University, Department of Physics and Computational Science, Denver, Colorado (United States); University of Washington, Department of Physics, Seattle, Washington (United States); Kammel, P.; Kiburg, B.; Winter, P. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States); University of Washington, Department of Physics, Seattle, Washington (United States); Lauss, B. [Paul Scherrer Institute, Villigen PSI (Switzerland); University of California, Department of Physics, Berkeley, California (United States)

    2014-10-15

    The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, μ{sup -} + p → n + ν{sub μ}. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the μp atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail. (orig.)

  17. A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

    2012-05-01

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  18. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  19. IEA Agreement on the production and utilization of hydrogen: 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1997-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including a brief summary of hydrogen in general. The Chairman's report provides highlights for the year. Sections are included on hydrogen energy activities in the IEA Hydrogen Agreement member countries, including Canada, European Commission, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, and the US. Lastly, Annex reports are given for the following tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage.

  20. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  1. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    Science.gov (United States)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  2. Computer system requirements specification for 101-SY hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    McNeece, S.G.; Truitt, R.W.

    1994-01-01

    The system requirements specification for SY-101 hydrogen mitigation test project (HMTP) data acquisition and control system (DACS-1) documents the system requirements for the DACS-1 project. The purpose of the DACS is to provide data acquisition and control capabilities for the hydrogen mitigation testing of Tank SY-101. Mitigation testing uses a pump immersed in the waste, directed at varying angles and operated at different speeds and time durations. Tank and supporting instrumentation is brought into the DACS to monitor the status of the tank and to provide information on the effectiveness of the mitigation test. Instrumentation is also provided for closed loop control of the pump operation. DACS is also capable for being expanded to control and monitor other mitigation testing. The intended audience for the computer system requirements specification includes the SY-101 hydrogen mitigation test data acquisition and control system designers: analysts, programmers, instrument engineers, operators, maintainers. It is intended for the data users: tank farm operations, mitigation test engineers, the Test Review Group (TRG), data management support staff, data analysis, Hanford data stewards, and external reviewers

  3. Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen.

    Science.gov (United States)

    Rieu-Lesme, F; Fonty, G; Doré, J

    1995-01-01

    A new H2/CO2-utilizing acetogenic bacterium was isolated from the rumen of a mature deer. This is the first report of a spore-forming Gram-negative bacterial species from the rumen. The organism was a strictly anaerobic, motile rod and was able to grow autotrophically on hydrogen and carbon dioxide. Acetate was the major product detected. Glucose, fructose and lactate were also fermented heterotrophically. The optimum pH for growth was 7.0-7.5, and the optimum temperature was 37-42 degrees C. Yeast extract was required for growth and rumen fluid was highly stimulatory. The DNA base ratio was 52.9 +/- 0.5 mol% G+C. On the basis of these characteristics and fermentation products, the isolate was considered to be different from acetogenic bacteria described previously.

  4. Euro-Quebec Hydro-Hydrogen Pilot Project (EQHHPP). Supplementary task programme

    International Nuclear Information System (INIS)

    1992-06-01

    In the course of Phase II of the Euro-Quebec Hydro-Hydrogen Pilot Project (EQHHPP), it was found that a number of topical aspects required more detail investigations, specific tests etc. than could be cared for within Phase II, under the constraint of available time and funds. Consequently, supplementary tasks have been defined and contracted. This report is the Final Report on the results achieved during the performance of these tasks. The tasks cover a wide field for example LH 2 Airbus studies some can be associated with more than one aspect. The table following hereunder may give an overview over the tasks covered. For all 23 papers a separate subject analysis has been carried out. (orig.)

  5. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  6. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  7. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  8. Texas Hydrogen Education Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David; Bullock, Dan

    2011-06-30

    The Texas Hydrogen Education project builds on past interest in hydrogen and fuel cells to help create better informed leaders and stakeholders and thereby improve decision making and planning for inclusion of hydrogen and fuel cell technologies as energy alternatives in Texas. In past years in Texas, there was considerable interest and activities about hydrogen and fuel cells (2000-­2004). During that time, the Houston Advanced Research Center (HARC) created a fuel cell consortium and a fuel cell testing lab. Prior to 2008, interest and activities had declined substantially. In 2008, in cooperation with the Texas H2 Coalition and the State Energy Conservation Office, HARC conducted a planning process to create the Texas Hydrogen Roadmap. It was apparent from analysis conducted during the course of this process that while Texas has hydrogen and fuel cell advantages, there was little program and project activity as compared with other key states. Outreach and education through the provision of informational materials and organizing meetings was seen as an effective way of reaching decision makers in Texas. Previous hydrogen projects in Texas had identified the five major urban regions for program and project development. This geographic targeting approach was adopted for this project. The project successfully conducted the five proposed workshops in four of the target metropolitan areas: San Antonio, Houston, Austin, and the Dallas-­Ft. Worth area. In addition, eight outreach events were included to further inform state and local government leaders on the basics of hydrogen and fuel cell technologies. The project achieved its primary objectives of developing communication with target audiences and assembling credible and consistent outreach and education materials. The major lessons learned include: (1) DOE’s Clean Cities programs are a key conduit to target transportation audiences, (2) real-­world fuel cell applications (fuel cell buses, fuel cell fork lifts

  9. 4D CAD Based Method for Supporting Coordination of Urban Subsurface Utility Projects

    NARCIS (Netherlands)

    olde Scholtenhuis, Léon Luc; Hartmann, T.; Doree, Andries G.

    Coordinators of inner city utility construction works face increasing difficulty in managing their projects due to tight physical restrictions, strict deadlines and growing stakeholder fragmentation. This paper therefore presents a 4D CAD based coordination method that supports project plan scoping,

  10. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    International Nuclear Information System (INIS)

    Arnould, F.; Bachellerie, E.; Auglaire, M.; Boeck, B. de; Braillard, O.; Eckardt, B.; Ferroni, F.; Moffett, R.; Van Goethem, G.

    2001-01-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  11. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  12. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  13. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 1. Survey/research for the comprehensive evaluation and developmental plan; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 1. Sogo hyoka to kaihatsu keikaku no tame no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of the FY 1998 WE-NET project survey. WE-NET is composed of various element technologies such as hydrogen production, hydrogen transportation, storage technology, low-temperature materials, hydrogen utilization, and hydrogen combustion turbine technology. Therefore, considering the effectiveness as a total system, it is extremely important to traversally evaluate the situation of the R and D of each technology and developmental achievements and to work out developmental plans with integration, considering the effectiveness as a total system. From viewpoints of making effective promotion of the project and attempting optimization as a total system, it is necessary to make organic/comprehensive connection and adjustment among individual subtasks all the time. In this survey/research, in the case of proceeding with the above-mentioned studies, a committee having knowledgeable persons and learned persons as members was established. There, an investigational study was conducted over the whole WE-NET structural technology, and at the same time the following were attempted: the constant/mobile comprehensive adjustment of the whole project, evaluation of the developmental results, and optimization of the developmental plans. The results obtained in 6 years of Period I were evaluated traversally and comprehensively, and how to proceed with the development in Period II was proposed, which showed the developmental continuity. (NEDO)

  14. Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process

    Energy Technology Data Exchange (ETDEWEB)

    Randy Cortright

    2006-06-30

    This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.

  15. Survey research report by the hydrogen occluding alloy utilization development committee; Suiso kyuzo gokin riyo kaihatsu iinkai chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    This report summarizes the FY 1984 survey research results, issued by the hydrogen occluding alloy utilization development committee. The basic property subcommittee is responsible for collecting published data related to the basic properties of metal halides as much as possible, and pigeonholing them to have the data which can contribute to development of the new alloys for basic researches and engineering applications of hydrogen occluding alloys. The subcommittee members have collected these data. The common theme subcommittee has planned to collect the P-C-T diagrams of the hydrogen occluding alloys and new alloys as much as possible, for the designs, development, production and system designs of the hydrogen occluding alloys. The P-C-T diagrams have been collected for a total of 340 types of alloys, which fall into the broad categories of Mg-based, TiFe-based, TiMn-based, other Ti-based, rare-earth-based, Zr-based, Ca-based and others. The analytical methods have been also investigated while collecting P-C-T diagrams. (NEDO)

  16. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  17. The impact of ageing and changing utilization patterns on future cardiovascular drug expenditure: a pharmacoepidemiological projection approach

    DEFF Research Database (Denmark)

    Kildemoes, Helle Wallach; Andersen, Morten; Støvring, Henrik

    2010-01-01

    To develop a method for projecting the impact of ageing and changing drug utilization patterns on future drug expenditure.......To develop a method for projecting the impact of ageing and changing drug utilization patterns on future drug expenditure....

  18. EERC Center for Biomass Utilization 2005

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  19. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  20. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  1. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  2. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  3. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    International Nuclear Information System (INIS)

    Elam, Carolyn C.

    2001-01-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen

  4. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  5. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  6. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  7. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  8. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  9. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  10. Southern Nevada Alternative Fuels Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  11. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  12. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  13. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  14. GEO-6 project for Galileo data scientific utilization

    Science.gov (United States)

    Buresova, Dalia; Lastovicka, Jan; Boska, Josef; Sauli, Petra; Kouba, Daniel; Mosna, Zbysek

    The future GNSS Galileo system offer a number of benefits (e.g. availability of better accuracy positioning, new frequencies bands allowing the implementation of specific techniques, provable time-stamp and location data using SIS authorisation, integrity, better support ad-hoc algorithms for data analysis and other service guarantee for liability and regulated applications) are widely spread among different disciplines. Also applications which are less interesting from the commercial and market point of view could successfully contribute to the numerous social benefits and support the innovation in the international research. The aim of the GEO-6 project "Scientific research Using GNSS" is to propose and broaden scientific utilization of future GNSS Galileo system data in research. It is a joint project of seven institutions from six countries led by the Atos Origin Company from Spain. The core of the project consists from six projects in five priority areas: PA-1 Remote sensing of the ocean using GNSS reflections, PA-2a Investigating GNSS ionospheric data assimilation, PA-2b 3-D gravity wave detection and determination (both PA-2a and PA-2b are ionospheric topics), PA-3 Demonstration of capability for operational forecasting of atmospheric delays, PA-4 GNSS seismometer, PA-5 Spacecraft formation flying using global navigation satellite systems. Institute of Atmospheric Physics, Prague, Czech Republic is responsible for the project PA-2b, where we developed and tested (to the extent allowed by available data) an algorithm and computer code for the 3-D detection of gravity waves and determination of their characteristics. The main drivers of the GEO-6 project are: high levels of accuracy even with the support of local elements, sharing of solutions and results for the worldwide scientific community. The paper will present basic description of the project with more details concerning Czech participation in it.

  15. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  16. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Bachellerie, E. [Technicatome, 13 - Aix en Provence (France); Auglaire, M. [Tractebel Energy Engineering, Brussels (Belgium); Boeck, B. de [Association Vincotte Nuclear, Brussels (Belgium); Braillard, O. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Eckardt, B. [Siemens AG, Offenbach am Main (Germany); Ferroni, F. [Electrowatt Engineering Limited, Zurich (Switzerland); Moffett, R. [Atomic Energy Canada Limited, Pinawa (Canada); Van Goethem, G. [European Commission, Brussels (Belgium)

    2001-07-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  17. The business case for utilities as early adopters

    International Nuclear Information System (INIS)

    Alex Tu; Allan Grant; Darlene Clarke

    2006-01-01

    Many electric utilities look at hydrogen as having potential for long-term market opportunities. The hydrogen business is a good potential fit for electric utilities, as it has strong option value to extend their core product into new energy markets as these markets mature. Establishing the option through evaluation of technologies, accumulating hands-on technical expertise, and building a reliable supply chain also yields near-term benefits for utilities in terms of enhanced reliability and environmental performance in core business applications. BCHydroGEN, the hydrogen and fuel cell program established in BC Hydro in 2001, has prudently participated in the early hydrogen and fuel cell market to advance the strategic goals of BC Hydro while positioning BC Hydro to respond effectively to the opportunities and threats that emanate from the hydrogen economy, whenever it arrives. This paper reflects on BC Hydro's experience in the hydrogen and fuel cell market place. (authors)

  18. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  19. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  20. Transitioning to a hydrogen economy in New Zealand - An EnergyScape project

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Rob; Clemens, Tony; Gardiner, Alister; Leaver, Jonathan

    2010-09-15

    The project identifies how hydrogen could become a significant contributor to New Zealand's energy system by 2050. Future transport scenarios are modeled with a changing mix of internal combustion engine (ICE), battery electric vehicles (BEV) and fuel cell vehicles (FCV) over the period between the present day and 2050. For scenarios the model takes account of the electricity generation requirements and costs, the resources used, and the renewable content of that electricity generation. With high penetration of FCV, or a mix of FCV and BEV, NZ targets for renewable electricity generation and transport related emission reductions can be achieved.

  1. Ratiometric Sensing of Hydrogen Peroxide Utilizing Conformational Change in Fluorescent Boronic Acid Polymers

    Directory of Open Access Journals (Sweden)

    Kan Takeshima

    2017-01-01

    Full Text Available We demonstrate that the copolymers containing boronic acid and pyrene units can be utilized for the fluorometric sensing of hydrogen peroxide (H2O2 in aqueous solutions. The copolymer exists in a relatively extended conformation in the absence of H2O2, whereas the polymer chain is contracted by the reaction of boronic acid moieties with H2O2 to form phenol groups. This conformational change induces aggregation of the originally isolated pyrene groups. As a result, relative intensity of excimer emission with respect to monomer emission increases with H2O2 concentration. Accordingly, the present methodology enables us to measure H2O2 by means of ratiometric fluorescence change in the range of 0–30 μM.

  2. Report on the basic design of a hydrogen transportation system utilizing metal hydrides and the evaluation thereon; Kinzoku suisokabutsu wo riyoshita suiso yuso system no kihon sekkei to sono hyoka ni kansuru hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-26

    This paper describes a hydrogen transportation system utilizing metal hydrides. For a storage method for moving, metal hydrides having high hydrogen containing performance like Mg-based hydrides would have high portability, less weight disadvantage, and high economic performance. In the fixed location storage, metal hydrides are superior in safety and maintenance cost to the conventional high-pressure gas holder and liquefied hydrogen storage. Because of their high dependence on equilibrium pressure and temperature, the significance of development thereof is large as the source of high-pressure hydrogen generation and motive force. More effective utilization of low-level heat, and separation and refining of hydrogen may also be expected. With regard to fuel supply for hydrogen fueled automobiles, metal hydrides are better in safety and total energy cost than liquefied hydrogen, but have a number of disadvantageous points in weight demerit. Eliminating the weight demerit would be the central issue of the development. Accompanying the development of hydrogen fueled automobiles, there are a number of technological elements to be developed on fuel supply system, such as storage, moving and transportation in hydrogen manufacturing sites, and filling and storage at using sites. Arranging the related infrastructures would be the issue. (NEDO)

  3. Hydrogen and fuel cell activity report, France 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This report gathers the main highlights of 2009 in the field of hydrogen and fuel cells in France. It presents the political context (priority to a sustainable development and to renewable energies) and the main initiatives (official commitment, projects and programmes launched by different public bodies and organizations). It briefly presents the projects and programmes concerning the hydrogen: ANR programmes, national structures dedicated to hydrogen and fuel cells, fundamental research, demonstrator project (the H2E project), applications in transport (a project by Peugeot, the Althytude project coordinated by GDF, the Hychain European project, and other airborne or maritime projects), stationary applications (MYRTE). It also briefly describes the activities of some small companies (CETH, McPHY, RAIGI, PRAGMA Industries, N-GHY, SAGIM), and regional initiatives. Colloquiums, congresses and meetings are mentioned

  4. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  5. THE PHOENIX PROJECT: SHIFTING TO A SOLAR HYDROGEN ECONOMY BY 2020

    Directory of Open Access Journals (Sweden)

    HARRY BRAUN

    2008-07-01

    Full Text Available The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Artic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential “tipping point” of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth’s climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water.

  6. The Phoenix Project: Shifting to a solar hydrogen economy by 2020

    International Nuclear Information System (INIS)

    Braun, H.

    2008-01-01

    The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Arctic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential 'tipping point' of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth's climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water

  7. 41 CFR 50-204.68 - Hydrogen.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...

  8. The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2016-10-01

    Full Text Available This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition, yield and thermal demand were validated and showed conformity with reported experimental results, and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput, supercritical water refining temperature, nature of desirable coproducts, downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 °C conversion temperature allowed higher gross syngas and CHP production. However, mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case, at 450 °C reactor temperature, 18 wt. % solid content and presence of downstream indirect production recorded 66.5%, 66.2% and 57.2% energetic, fuel-equivalent and exergetic efficiencies respectively.

  9. Energy Utilization Evaluation of Carbon Performance in Public Projects by FAHP and Cloud Model

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-07-01

    Full Text Available With the low-carbon economy advocated all over the world, how to use energy reasonably and efficiently in public projects has become a major issue. It has brought many open questions, including which method is more reasonable in evaluating the energy utilization of carbon performance in public projects when the evaluation information is fuzzy; whether an indicator system can be constructed; and which indicators have more impact on carbon performance. This article aims to solve these problems. We propose a new carbon performance evaluation system for energy utilization based on project processes (design, construction, and operation. Fuzzy Analytic Hierarchy Process (FAHP is used to accumulate the indicator weights and cloud model is incorporated when the indicator value is fuzzy. Finally, we apply our indicator system to a case study of the Xiangjiang River project in China, which demonstrates the applicability and efficiency of our method.

  10. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 1. Research study on integrated evaluation and development plan; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 1. Sogo hyoka to kaihatsu keikaku no tame no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on the WE-NET project in fiscal 1996. The WE-NET project is composed of various elemental technologies such as hydrogen production, transport, storage, low-temperature material, utilization and hydrogen combustion turbine. The organic integrated cooperation and coordination between individual subtasks are indispensable for effective promotion of the project and optimization of the total system. The current R and D states of every elemental technology were surveyed, and its findings were utilized for coordination of the whole project and examination of the research project including pilot studies. Eleven important items in the total coordination including a total system cost and safety measures in a developmental stage were examined. The development results for 4 years of fiscal 1993-1996 were assessed together, and the draft working plan for fiscal 1997-1998 was also decided. The verification test plan of a hydrogen combustion turbine scheduled in Phase II was studied, and the basic plans of development step were proposed. The draft report of a transition scenario was also prepared. 6 figs., 68 tabs.

  11. Electronic Mentoring of LIS Research Utilizing BITNET: An ACRL Pilot Project.

    Science.gov (United States)

    Gregory, Vicki L.

    1992-01-01

    Describes an ACRL (American College and Research Libraries) project that utilized the electronic conferencing facility of BITNET to provide a system of mentoring for academic librarians conducting research. Results of an electronic mail survey of participants that examined experience levels, attitudes, problems, and communication patterns are…

  12. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  13. IEA Agreement on the Production and utilization of hydrogen: 1998 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1999-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including its guiding principles. The Chairman's report section includes highlights of the agreement for 1998. Annex reports are given on various tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage. Lastly, a feature article by Karsten Wurr, E3M Material Consulting, GmbH, Hamburg Germany, is included titled 'Hydrogen in Material Science and Technology: State of the Art and New Tendencies'.

  14. Policy support for large scale demonstration projects for hydrogen use in transport. Deliverable D 5.1 (Part B)

    International Nuclear Information System (INIS)

    Ros, M.E.; Jeeninga, H.; Godfroij, P.

    2007-06-01

    This research addresses the possible policy support mechanisms for hydrogen use in transport to answer the question which policy support mechanism potentially is most effective to stimulate hydrogen in transport and especially for large scale demonstrations. This is done by investigating two approaches. First, the possible policy support mechanisms for energy innovations. Second, by relating these to the different technology development stages (R and D, early market and mass market stage) and reviewing their effect on different parts of the hydrogen energy chain (production, distribution and end-use). Additionally, a comparison of the currently policy support mechanisms used in Europe (on EU level) with the United States (National and State level) is made. The analysis shows that in principle various policy support mechanisms can be used to stimulate hydrogen. The choice for a policy support mechanism should depend on the need to reduce the investment cost (euros/MW), production/use cost (euros/GJ) or increase performance (euros/kg CO2 avoided) of a technology during its development. Careful thought has to be put into the design and choice of a policy support mechanism because it can have effects on other parts of the hydrogen energy chain, mostly how hydrogen is produced. The effectiveness of a policy support mechanism greatly depends on the ability to adapt to the developments of the technology and the changing requirements which come with technological progress. In time different policy support mechanisms have to be applied. For demonstration projects there is currently the tendency to apply R and D subsidies in Europe, while the United States applies a variety of policy support mechanisms. The United States not only has higher and more support for demonstration projects but also has stronger incentives to prepare early market demand (for instance requiring public procurement and sales obligations). In order to re-establish the level playing field, Europe may

  15. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational

  16. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  17. Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, Elango [Ceramatec, Inc., West Valley City, UT (United States); Rao, Ranjeet [PARC, Palo Alto, CA (United States); Colella, Whitney [Gaia Energy Research Inst. LLC, Arlington, VA (United States)

    2017-12-20

    Production of hydrogen using an electrochemical device provides for large scale, high efficiency conversion and storage of electrical energy. When renewable electricity is used for conversion of steam to hydrogen, a low-cost and low emissions pathway to hydrogen production emerges. This project was intended to demonstrate a high efficiency High Temperature Water Splitting (HTWS) stack for the electrochemical production of low cost H2. The innovations investigated address the limitations of the state of the art through the use of a novel architecture that introduces macro-features to provide mechanical support of a thin electrolyte, and micro-features of the electrodes to lower polarization losses. The approach also utilizes a combination of unique sets of fabrication options that are scalable to achieve manufacturing cost objectives. The development of HTWS process and device is guided by techno-economic and life cycle analyses.

  18. Hydrogen activities in the European Union work-programme; Activites liees a l'hydrogene dans le programme de travail de l'Union Europeenne

    Energy Technology Data Exchange (ETDEWEB)

    Bahbout, A.; Tartaglia, G.P. [Joint Research Centre, IHCP, Ispra (Italy)

    2000-07-01

    Growing concern over urban air pollution, global climatic change allegedly caused by rising levels of greenhouse gases and future energy security requirements demand a solution: a clean and sustainable energy supply. Hydrogen is seen as a promising clean fuel when integrated into a wide and long-term vision in which it provides, in parallel with electricity, a secondary energy carrier, ultimately derived from renewable energy sources. Europe has been a pioneer in promoting the wider use of hydrogen. Already in 1991, various demonstration projects were started with funds under the Euro-Quebec Hydro-Hydrogen Pilot Project (EQHPP). The European Commission, the European Industry, the Government of Quebec and the Canadian Industry made resources available so that hydrogen, from surplus in Canada, could be applied in various end-use technologies. Under this project, about thirty European industry/research centres/universities have been involved, working on a comprehensive set of hydrogen applications/uses. Innovative public transportation means (city buses, boats) equipped with internal combustion engines (ICE) or fuel cells and using either liquid or compressed hydrogen were put into demonstration service. Cogeneration (CHP) projects based on the use of phosphoric acid fuel cells (PAFC) were realised. In joint programs, aviation combustor test activities were carried out by Daimler Benz Aerospace, Airbus Industries and Pratt and Whitney. Investigation of hydrogen storage in zeolites, carbon and nano-tubes were started. Tests on compressed hydrogen gas storage tanks were also conducted. All these projects are now terminated. As intended, the initial momentum set by the EQHPP project has now been replaced by many private initiatives, especially in Germany. Only one specific project funded by the European Commission, the European Integrated Hydrogen Project (EIHP) remains. In the EIHP project, several companies which designed and constructed prototypes and demonstration

  19. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Johansson, Sara; Boe, Kanokwan

    2012-01-01

    . The methane production rate of the reactor with H2 addition was 22% higher, compared to the control reactor only fed with manure. The CO2 content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due......The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic...

  20. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  1. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  2. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  3. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  4. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  5. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Hazem [Farmingdale State College, NY (United States)

    2017-03-10

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as well as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.

  6. The study of hydrogen removal

    International Nuclear Information System (INIS)

    Yasufuku, Katsumi; Fukuhara, Masashi; Izaki, Takashi; Nakase, Takeshi

    1979-01-01

    Two methods of hydrogen removal from the helium coolant for high temperature helium gas-cooled nuclear reactor plants were investigated; the one is the process absorbing hydrogen with titanium sponges and the other is the water removal with zeolite, after hydrogen is converted to water utilizing copper oxide (CuO). The special feature of these two hydrogen removal methods is to treat the very low hydrogen concentration in helium about 0.06 mm Hg (2 Vpm, 41 ata). As for the titanium sponge method, a preliminary experimental facility was constructed to test the temperature dependences of the quantity of equilibrium absorption of hydrogen and the diffusion velocity inside titanium sponge by the batch type constant volume process. The temperature of titanium sponge was 800 deg C, the vacuum was from 2 to 3 x 10 -7 mm Hg and hydrogen partial pressure was from 1.0 to 10 -4 mm Hg in the experiment. The measured hydrogen absorption rate and the diffusion velocity data are presented, and the experimental conditions were evaluated. After the preliminary experiment, a mini-loop was constructed to confirm the temperature and velocity dependences of overall capacity factor, and the overall capacity factor and the regenerating characteristics of titanium sponge were tested. These experimental data are shown, and were evaluated. Concerning the hydrogen removal method utilizing CuO, the experiment was carried out under the following test conditions: the temperature from 400 to 265 deg C, the linear velocity from 50.3 to 16.7 cm/sec and the hydrogen concentration from 12.0 to 1.93 mm/Hg. The hydrogen removal rate and capacity were obtained in this experiment, and the data are presented and explained. (Nakai, Y.)

  7. Estimation of Uncertainty in Risk Assessment of Hydrogen Applications

    DEFF Research Database (Denmark)

    Markert, Frank; Krymsky, V.; Kozine, Igor

    2011-01-01

    Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the ...... probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.......Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations...... the permitting authorities request qualitative and quantitative risk assessments (QRA) to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data might be established or are available in good quality causing assumptions...

  8. Japan's Sunshine Project. 1991 Annual Summary of Hydrogen Energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In the study of hydrogen production, tests and experiments were conducted concerning electrolysis of water in solid polymer electrolytes and electrolysis of high-temperature steam. In the study of hydrogen storage and transportation, use of metal hydrides for these purposes was tested with attention paid to CaNi{sub 5} degradation and metal element substitution in ZrMn{sub 2}. In the study of hydrogen application, electrodes in hydrogen storage alloy-aided energy conversion were investigated and hydrogen-oxygen combustion systems were experimented. In the study of hydrogen safety, a fracture in a heat affected weld and fatigue crack propagation therein were simulated, and the effect of hydrogen on the episode was investigated. Investigated in the study of a hydrogen-fired turbine were hydrogen combustion, hydrogen-fired power generation thermal efficiency, fuel cost, power generation cost, etc. (NEDO)

  9. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Terlip, Danny [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-20

    This report presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and matches those to cost-effective station concepts. Finally, the report contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layout studies that incorporate the setbacks required by NFPA 2, the National Fire Protection Association Hydrogen Technologies Code. This work identified those setbacks as a significant factor affecting the ability to site a hydrogen station, particularly liquid stations at existing gasoline stations. For all station types, utilization has a large influence on the financial viability of the station.

  10. Utility-Scale Solar 2015: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2016-08-17

    The utility-scale solar sector—defined here to include any ground-mounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar power (“CSP”) project that is larger than 5 MWAC in capacity—has led the overall U.S. solar market in terms of installed capacity since 2012. It is expected to maintain its market-leading position for at least another five years, driven in part by December 2015’s three-year extension of the 30% federal investment tax credit (“ITC”) through 2019 (coupled with a favorable switch to a “start construction” rather than a “placed in service” eligibility requirement, and a gradual phase down of the credit to 10% by 2022). In fact, in 2016 alone, the utility-scale sector is projected to install more than twice as much new capacity as it ever has previously in a single year. This unprecedented boom makes it difficult, yet more important than ever, to stay abreast of the latest utility-scale market developments and trends. This report—the fourth edition in an ongoing annual series—is intended to help meet this need, by providing in-depth, annually updated, data-driven analysis of the utility-scale solar project fleet in the United States. Drawing on empirical project-level data from a wide range of sources, this report analyzes not just installed project costs or prices—i.e., the traditional realm of most solar economic analyses—but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects throughout the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are also presented where appropriate.

  11. Utility-Scale Solar 2014. An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MWAC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the next few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.

  12. Evaluation tool for selection and optimisation of hydrogen demonstration projects. Application to a decentralized renewable hydrogen system

    International Nuclear Information System (INIS)

    Bracht, M.; De Groot, A.; Gregoire Padro, C.E.; Schucan, T.H.; Skolnik, E.

    1998-06-01

    As part of the International Energy Agency Hydrogen Implementing Agreement, an evaluation tool to assist in the design, operation and optimisation of hydrogen demonstration facilities is under development. Using commercially available flowsheet simulation software (ASPEN- Plus) as the integrating platform, this tool is designed to provide system developers with a comprehensive data base or library of component models and an integrating platform through which these models may be linked. By combining several energy system components a conceptual design of a integrated hydrogen energy system can be made. As a part of the tool and connected to the library are design guidelines which can help finding the optimal configuration in the design process. The component categories considered include: production, storage, transport, distribution and end use. Many component models have already been included in the initial test platform. The use of the tool will be illustrated by presenting the results of a specific sample system that has been designed and assessed with use of the tool. The system considered is a decentralized renewable hydrogen system in which the hydrogen is produced by biomass gasification or pyrolysis, the produced hydrogen is transported through a pipeline or with a tank truck. The storage options that are considered are liquid hydrogen and compressed gas. The hydrogen is dispensed through a refueling station. Several options for integration are conceivable; i.e. storage of the hydrogen can take place centrally or district heat of a gasification unit can be used to generate electricity for liquefaction, etc. With use of the tool several configurations with different components and various integration options have been examined. Both the results of the modeling effort and an assessment of the evaluation tool will be presented. 5 refs

  13. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  14. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  15. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This report compares hydrogen station cost estimates conveyed by expert stakeholders through the Hydrogen Station Cost Calculation (HSCC) to a select number of other cost estimates. These other cost estimates include projections based upon cost models and costs associated with recently funded stations.

  16. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    1992-01-01

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  17. Survey report on energy transportation systems which use hydrogen-occluding alloys; Suiso kyuzo gokin wo riyoshita energy yuso system chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-18

    Surveyed are systems which use hydrogen-occluding alloys for, e.g., storing and transporting hydrogen. This project is aimed at development of, and extraction of technical problems involved in, the concept of hydrogen energy transportation cycles for producing hydrogen in overseas countries by electrolysis using clean energy of hydraulic energy which are relatively cheap there; transporting hydrogen stored in a hydrogen-occluding alloy by sea to Japan; and converting it into electrical power to be delivered and used there. The surveyed items include current state of development/utilization of hydraulic power resources in overseas countries; pigeonholing the technical issues involved in the hydrogen transportation cycles, detailed studies thereon, and selection of the transportation cycles; current state of research, development and application of hydrogen-occluding alloys for various purposes; extraction of the elementary techniques for the techniques and systems for the hydrogen transportation systems which use hydrogen-occluding alloys; research themes of the future hydrogen-occluding alloys and the application techniques therefor, and research and development thereof; and legislative measures and safety. (NEDO)

  18. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2008

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Tachibana, Yukio; Sun Yuliang

    2009-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2008. (author)

  19. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2009

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Wang Hong

    2010-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2009. (author)

  20. Safe production and application of hydrogen at Munich airport

    Energy Technology Data Exchange (ETDEWEB)

    Szamer, R.

    2005-07-01

    At Munich International Airport the world's first public filling station for liquid and gaseous hydrogen with on-site hydrogen gas production has been installed. In order to prove the safety, liability and economic feasibility of hydrogen this pilot project examined the complete sequence of hydrogen production and application: on-site production with pressurized electrolyser and steam reformer, storage and filling of gaseous and liquid hydrogen, application of hydrogen for propelling several vehicles, e.g. airport busses in day to day operation, cars, fork lifter. TUV SUD Group, one of the largest service provider for technical safety and quality, was involved in the safety evaluation of the hydrogen project from the very beginning with the following services: safety consultancy throughout all project phases, e.g. for licensing procedures, plant design and operation safety analysis of the overall plant and of subsystems (electrolyser, filling stations, storage tanks, control systems etc.) safety assessment and acceptance testing of CH2 busses, CH2 fork lifter and LH2 passenger cars inspections and tests The challenges of this complex project relating to safety will be presented in the lecture, e.g. identification of potential hazards, safety requirements for the design and operation of the hydrogen plant as wells as for the various applications. Project description The hydrogen plant (cf. Figure 1) comprises two supply paths, one for compressed gaseous hydrogen (CH2) and one for cryogenic liquid hydrogen. Gaseous hydrogen is produced via high-pressure electrolysis at an operating pressure of 3 MPa (30 bar) and/or steam reforming process. The hydrogen will be led into a compressor, compressed to 35 MPa (350 bar) and stored in high pressure cylinders with a total geometrical storage volume of 10 m. The cylinders supply the high-pressure filling stations which refuels the 3 hydrogen buses and the fork lifter. Liquid hydrogen (LH2) is delivered in tank trucks and

  1. Fiscal 1993 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology (Subtask 8 - Development of hydrogen combustion turbine - Development of main accessories); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Subtask 8. Suiso nensho tabin no kaihatsu - Shuyo hokirui no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    In the first fiscal year 1993 of the project, surveys were conducted about current technologies relative to cold energy-utilizing oxygen production equipment and high-temperature heat exchangers for the development of main accessories for a hydrogen combustion turbine plant. Kobe Steel, Ltd., conducted surveys about very low temperature heat exchangers and cold energy utilization technology used in facilities for gasifying liquid hydrogen or liquefied gas. Daido Hoxan, Inc., in its research on the possibility of air separator performance enhancement through liquid hydrogen cold energy application, studied reduction in power unit requirement, stable power supply responding to changes in load, safety measures, and so forth. Toshiba Corporation conducted surveys and studies about heat conduction improvement techniques and about the type, structure, and materials for heat exchangers for the embodiment of a high-temperature heat exchanger excellent in performance and high in structural soundness. Mitsubishi Heavy Industries, Ltd., aiming to establish basic technologies for heat exchangers, studied efficiency enhancement with low pressure loss, improved hygroscopic moisture removing function, and new materials utilization for achieving high-temperature capability. (NEDO)

  2. [Hydrogen systems analysis, education, and outreach

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    This paper illustrates a search of web sites on the keyword, Hydrogen, and a second search combining keywords, Hydrogen and Renewable Energy. Names, addresses, and E-mail addresses or web site URLs are given for a number of companies and government or commercial organizations dealing with hydrogen fuel cells. Finally, brief summaries are given on hydrogen research projects at the National Renewable Energy Laboratory.

  3. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  4. Analysis of power balancing with fuel cells and hydrogen production plants in Denmark. Project report; CanDan 1.5

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    battery electric vehicles in the current and future energy systems. The energy system analyses conducted here represents systems with plenty of excess wind power. The results presented above are also true for the 2030 energy system with 50 per cent wind power and 100 per cent renewable energy system for 2050. In the future however, it is likely that both electrolysers and battery electric vehicles will have to compete with other technologies. The socio-economic results reveal that the battery electric vehicles have lower costs than all the configurations of hydrogen fuel cells vehicles, also in hybrid solutions. This is the case in all the energy systems analysed towards 100 per cent renewable energy systems as well as for low, medium and high fuel prices. Thus the battery electric vehicles are less vulnerable to fluctuating energy prices. This is also the case when including electricity use for the heating systems in the battery electric vehicles. According to H2 Logic and results and development trends from the major car manufacturers the difference in range between the BEV and HFCV vehicles significantly influences the analysis results from by Aalborg University. The difference in range gives the BEV vehicle a price advantage on the cost of the onboard storage compared to the HFCV. A working prototype of a stationary fuel cell system that is able to deliver power to the grid, based on a demand-signal from the utility company was developed in the project. The (re)wirering of internal relays and the programming of the PLC in a stationary fuel cell system are described. Batteries can be used both up- and down for primary reserves, for regulating and as spinning reserves. Small changes in depth of discharge (DOD) do not tear as much as deep DoD. Therefore batteries can take many shallow cycles (defined as less than 3 % change in DoD) without them being worn significantly. Batteries are therefore well suited for providing primary reserves. Electrolysers that are e

  5. Fiscal 2000 collection of manuscripts for technology development committee on hydrogen energy and the like; 2000 nendo suiso energy nado kanren gijutsu kaihatsu iinkai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-07

    The subjects listed in the collection are (1) the research and development of international clean energy system technology utilizing hydrogen (WE-NET - World Energy Network), including the outline of the project as a whole; research on system evaluation; research and development of safety measures; development of technologies for liquid hydrogen transportation and storage; research on low-temperature materials; development of hydrogen supply station and hydrogen-driven automobile system; development of supply station for hydrogen produced by electrolysis of water; development of hydrogen fuel system; development of hydrogen production technology; development of hydrogen absorbing alloys for dispersed hydrogen transportation and storage; development of polymer electrolyte fuel cell fed with pure hydrogen; and the development of power generation technology, (2) the development of closed type high-efficiency turbine technology capable of carbon dioxide recovery, and (3) the development of frontier technology of carburation using sensible heat in coke oven gas. (NEDO)

  6. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  7. The In-Situ Resource Utilization Project Under the New Exploration Enterprise

    Science.gov (United States)

    Larson, William E.; Sanders, Gerald B.

    2010-01-01

    The In Situ Resource Utilization Project under the Exploration Technology Development Program has been investing in technologies to produce Oxygen from the regolith of the moon for the last few years. Much of this work was demonstrated in a lunar analog field demonstration in February of 2010. This paper will provide an overview of the key technologies demonstrated at the field demonstration will be discussed a long with the changes expected in the ISRU project as a result of the new vision for Space Exploration proposed by the President and enacted by the Congress in the NASA Authorization Act of2010.

  8. CU-ICAR Hydrogen Infrastructure Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  9. Activation of erbium films for hydrogen storage

    International Nuclear Information System (INIS)

    Brumbach, Michael T.; Ohlhausen, James A.; Zavadil, Kevin R.; Snow, Clark S.; Woicik, Joseph C.

    2011-01-01

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  10. Hydrogen in Ecomare. Options for uses; Waterstof bij Ecomare. Opties voor inzet

    Energy Technology Data Exchange (ETDEWEB)

    Kraaij, G.J. [ECN Waterstof en Schoon Fossiel, Petten (Netherlands)

    2009-02-15

    Hydrogen is a clean fuel with very low emissions. In fuel cells the hydrogen can be converted to electricity with a high efficiency that can be used in electric transport and stationary applications. In order to promote and demonstrate this aspect ECN has investigated which applications Ecomare can use and demonstrate. Ecomare is the centre for Wadden and North Sea on Texel. The following options are investigated: Bicycles with fuel cells on hydrogen; Small utility vehicles with fuel cells on hydrogen; Back-up systems with fuel cells on hydrogen; Combined heat and power system with fuel cells on natural gas. The availability of transport systems with fuel cells is still small; from the bicycle market the cargobike from Masterflex is the best option. The cargobike will become available by mid 2009. The small utility vehicle that is potentially available is the VEM vehicle as developed in the Hychain project. For both vehicles the hydrogen logistic requires special attention since nonstandard hydrogen storage cylinders are used. For the stationary applications the demonstration aspect is less compared to the transport applications. The back-up systems are no necessity for Ecomare and the heat requirement in summertime is to small to for possible combined heat and power systems using fuel cells. Special attention is required for permits from the local authorities and fire department, and the transport of hydrogen by the ferry to Texel. [Dutch] Waterstof is bij gebruik een schone brandstof; er komen nauwelijks emissies bij vrij. Met behulp van brandstofcellen kan waterstof met een hoog rendement omgezet worden in elektriciteit, eventueel te gebruiken voor elektrisch vervoer. Om deze aspecten te promoten en tijdens het gebruik te laten zien wil Ecomare door ECN laten onderzoeken welke waterstoftoepassingen bij Ecomare ingezet kunnen worden. De volgende 4 opties zijn verder onderzocht: Fietsen met brandstofcellen op waterstof; Klein bedrijfsvoertuig met brandstofcellen

  11. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 8. Development of hydrogen burning turbines - Development of main components including turbine blades and rotors); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 8: Suiso nensho tabin no kaihatsu - tabin yoku rota tou shuyou kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Among the research and development items in relation with the 'development of hydrogen burning turbines' based on the WE-NET project, surveys have been performed on developing the main components including turbine blades and rotors. The current fiscal year has surveyed the latest trends in the existing gas turbine and rotor cooling technologies, and the technological problems were extracted from the viewpoint of application to the hydrogen fueled turbines. Since the hydrogen fueled turbines have the entrance temperature higher than that of power generation gas turbines, development of the blade cooling technology is important. Main cooling methods available are the film cooling and transpiration cooling, whose technological development is necessary in the advanced forms. Cooling method for the inner side of blades includes the impingement cooling and the pin fin cooling, whereas the V-letter shaped turbulence accelerating rib and the serpentine flow path structure are considered promising. Increasing the anti-heat temperature of blades may be realized by utilizing ceramics. As a technology close to putting it into practical use, application of heat shield coating is promising. (NEDO)

  12. Hydrogen energy system in California

    International Nuclear Information System (INIS)

    Zweig, R.M.

    1995-01-01

    Results of experiences on the use of hydrogen as a clean burning fuel in California and results of the South Coast Air Quality Management district tests using hydrogen as a clean burning environmentally safe fuel are given. The results of Solar Hydrogen Projects in California and recent medical data documentation of human lung damage of patients living in air polluted urban areas are summarized

  13. Summarized achievement report on the Sunshine Project in fiscal 1980 (Hydrogen energy); 1980 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-04-01

    This paper summarizes the achievement report on the Sunshine Project in fiscal 1980 for hydrogen energy research. In hydrogen manufacturing using the electrolytic process, improvements were made on membranes and electrodes. Solid electrolyte electrolysis is also under research. Researches are continued on reaction, separating operation, and device materials for the iodine system cycle in the thermo-chemical method. In the iron system cycle, a reaction experimenting equipment was fabricated on the trial basis, and tests and evaluation were performed on the material and heat balances. In the mixed system cycle, researches on the light irradiation electrolytic process were continued, whereas the light collecting rate was raised by using a lens to increase light intensity, having enhanced successfully the reaction rate to 60 to 80%. A heat diffusion column for HI decomposition and separation (hydrogen acquisition) was discussed in terms of chemical engineering. Development works are continued on metal hydrides for hydrogen transportation, and durability tests are also being performed. Same applies to hydrogen storage. A model burner was fabricated on the trial basis, and catalytic combustion was studied as development of a combustion technology that matches the requirements for safe hydrogen combustion and suppression of NOx emission. Searches were continued on catalysts and solid electrolyte materials for fuel cells. Thin film sold electrolyte fuel cells constructed by using the evaporation process are also being studied. The paper also describes measures for hydrogen safety assurance and researches on energy systems. (NEDO)

  14. Revamping of existent chlor-alkali plants for conversion of hydrogen to electricity, hydrogen community germination step

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, Ioan; Laurentiu, Patularu [National R and D Institute for Cryogenics and Isotopic Technologies - ICSI, Rm. Valcea (Romania); Delfrate, Alessandro [UHDENORA SpA (Italy); Iordache, Mihaela [National R and D Institute for Industrial Ecology - ECOIND, Rm. Valcea (Romania)

    2010-07-01

    The transition towards hydrogen becoming widespread in future energy systems and may be one of the greatest social and technical challenges facing society. A wide range of stakeholders will need to work together over extended periods of time to make the sustainable hydrogen ''vision'' a reality. Community-based projects are seen as a route to stimulate the start of the transformation, leading to more widespread early adoption of these new technologies. Valcea have premises to develop some local projects in order to become a Hydrogen Community. This ''Community'' fulfills both an economic-technical background and a scientifically potential. (orig.)

  15. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  16. Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liwei [Midwest Optoelectronics, LLC, Toledo, OH (United States); Deng, Xunming [Univ. of Toledo, OH (United States); Abken, Anka [Midwest Optoelectronics, LLC, Toledo, OH (United States); Cao, Xinmin [Midwest Optoelectronics, LLC, Toledo, OH (United States); Du, Wenhui [Midwest Optoelectronics, LLC, Toledo, OH (United States); Vijh, Aarohi [Xunlight Corporation, Toledo, OH (United States); Ingler, William [Univ. of Toledo, OH (United States); Chen, Changyong [Univ. of Toledo, OH (United States); Fan, Qihua [Univ. of Toledo, OH (United States); Collins, Robert [Univ. of Toledo, OH (United States); Compaan, Alvin [Univ. of Toledo, OH (United States); Yan, Yanfa [Univ. of Toledo, OH (United States); Giolando, Dean [Univ. of Toledo, OH (United States); Turner, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-10-29

    The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and has an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH

  17. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 11. Distributed transportation of hydrogen/hydrogen absorbing alloy for hydrogen storage; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Studies were conducted to find out hydrogen absorbing alloys with an effective hydrogen absorption rate of 3 mass % or more, hydrogen discharge temperature of 100 degrees C or lower, hydrogen absorbing capacity after 5,000 cycles not less than 90% of the initial capacity, applicable to stationary and mobile systems. The V-based alloy that achieved an effective hydrogen absorption rate of 2.6 mass % in the preceding fiscal year was subjected to studies relating to safety and durability. Since V is costly, efforts were exerted to develop TiCrMo alloys to replace the V-based alloy. In the search for novel high-performance alloys, endeavors centered on novel ternary alloys, novel alloys based on Mg and Ti, and novel intermetallic compounds of the Mg-4 family. In the study of guidelines for developing next-generation high-performance alloys, methods for creating hydrides with an H/M (hydrogen/metal) ratio far higher than 2 were discussed. Mentioned as techniques to produce such hydrides were the utilization of the hole regulated lattice, novel alloys based on the ultrahigh pressure hydride phase, new substances making use of the cooperative phenomenon in the coexistent multiple-phase structure, and the like. (NEDO)

  18. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  19. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  20. 2010 Annual Progress Report DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  1. Global exergetic dimension of hydrogen use in reducing fossil fuel consumption

    International Nuclear Information System (INIS)

    Adnan Midilli; Ibrahim Dincer

    2009-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for minimizing the fossil fuel based-global irreversibility coefficient of global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions such as global waste exergy factor, global irreversibility coefficient and hydrogen based-global exergetic indicator. In order to investigate the role of hydrogen use at minimizing the fossil fuel based global irreversibility, the actual fossil fuel consumption data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based-global irreversibility coefficient will decrease. (author)

  2. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  3. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  4. Hydrogen technologies and the technology learning curve

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    1998-01-01

    On their bumpy road to commercialization, hydrogen production, delivery and conversion technologies not only require dedicated research, development and demonstration efforts, but also protected niche markets and early adopters. While niche markets utilize the unique technological properties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital requirements associated with the commercialization process of several hydrogen technologies. (author)

  5. Diffractive Photon Dissociation in a High Pressure Hydrogen Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory Roy [Rockefeller Univ., New York, NY (United States)

    1983-11-01

    We have performed an experiment at the Tagged Photon Facility of Fermilab to study the diffraction dissociation of high energy photons on hydrogen y + p -+ x + p in the region 0.02 < $\\mid t \\mid$ < 0.1 $(GeV/c)^2$, $M_x$ $^2/s$ < 0.1. In this process, incident photons whose energies range from 70 to 140 GeV transform coherently to massive hadronic states in the mass range M < 5 GeV/c 2 • x We measure the inclusive differential cross section$\\frac{d^20}{dt dM_x ^2}$) The behavior of this cross section, especially when compared to the corresponding cross sections for the diffraction dissociation of incident hadrons (pions, kaons, and protons), reveals some fundamental characteristics of photon hadronic interactions. We use the Recoil Technique to determine the missing mass, $M_x$, and the square of the 4-momentum transfer, t. The recoil detector, TREAD, is a cylindrical time projection chamber filled with high pressure hydrogen gas which serves both as the target and as the drift medium for the ionization track created by recoil protons. The ionization drifts up to 75 cm in a high axial electric field. Concentric sense wires mounted on endplates sample different parts of the track, yielding the polar angle of the recoil. The energy of the recoil is determined by stopping the proton in scintillation counters located inside the high pressure vessel....

  6. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  7. Hydrogen fuel cell power system

    International Nuclear Information System (INIS)

    Lam, A.W.

    2004-01-01

    'Full text:' Batteries are typically a necessary and prime component of any DC power system, providing a source of on-demand stored energy with proven reliability. The integration of batteries and basic fuel cells for mobile and stationary utility applications poses a new challenge. For high value applications, the specification and operating requirements for this hybrid module differ from conventional requirements as the module must withstand extreme weather conditions and provide extreme reliability. As an electric utility company, BCHydro has embarked in the development and application of a Hydrogen Fuel Cell Power Supply (HFCPS) for field trial. A Proton Exchange Membrane (PEM)- type fuel cell including power electronic modules are mounted in a standard 19-inch rack that provides 48V, 24V, 12V DC and 120V AC outputs. The hydrogen supply consists of hydrogen bottles and regulating devices to provide a continuous fuel source to the power modules. Many tests and evaluations have been done to ensure the HFCPS package is robust and suitable for electric utility grade operation. A field trial demonstrating this standalone system addressed reliability, durability, and installation concerns as well as developed the overall system operating procedures. (author)

  8. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  9. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    Science.gov (United States)

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  10. New perspectives on renewable energy systems based on hydrogen

    International Nuclear Information System (INIS)

    Bose, T. K.; Agbossou, K.; Benard, P.; St-Arnaud, J-M.

    1999-01-01

    Current hydrocarbon-based energy systems, current energy consumption and the push towards the utilization of renewable energy sources, fuelled by global warming and the need to reduce atmospheric pollution are discussed. The consequences of climatic change and the obligation of Annex B countries to reduce their greenhouse gas emissions in terms of the Kyoto Protocols are reviewed. The role that renewable energy sources such as hydrogen, solar and wind energy could play in avoiding the most catastrophic consequences of rapidly growing energy consumption and atmospheric pollution in the face of diminishing conventional fossil fuel resources are examined. The focus is on hydrogen energy as a means of storing and transporting primary energy. Some favorable characteristics of hydrogen is its abundance, the fact that it can be produced utilizing renewable or non-renewable sources, and the further fact that its combustion produces three times more energy per unit of mass than oil, and six times more than coal. The technology of converting hydrogen into energy, storing energy in the form of hydrogen, and its utilization, for example in the stabilization of wind energy by way of electrolytic conversion to hydrogen, are described. Development at Hydro-Quebec's Institute of Research of a hydrogen-based autonomous wind energy system to produce electricity is also discussed. 2 tabs., 11 refs

  11. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  12. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  13. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  14. Hydrogen-based industry from remote excess hydroelectricity

    International Nuclear Information System (INIS)

    Ouellette, N.; Rogner, H.-H.; Scott, D.S.

    1997-01-01

    This paper examines synergies, opportunities and barriers associated with hydrogen and excess hydro-electricity in remote areas. The work is based on a case study that examined the techno-economic feasibility of a new hydrogen-based industry using surplus/off-peak generating capacity of the Taltson Dam and Generating Station in the Northwest Territories, Canada. After evaluating the amount and cost of hydrogen that could be produced from the excess capacity, the study investigates three hydrogen utilization scenarios: (1) merchant liquid or compressed hydrogen, (2) hydrogen as a chemical feedstock for the production of hydrogen peroxide, (3) methanol production from biomass, oxygen and hydrogen. Hydrogen peroxide production is the most promising and attractive strategy in the Fort Smith context. The study also illustrates patterns that recur in isolated sites throughout the world. (Author)

  15. Achievement report on research and development in the Sunshine Project in fiscal 1978. Research on hydrogen energy subsystems (research on hydrogen fueled automobile systems); 1978 nendo suiso energy subsystem no kenkyu seika hokokusho. Suiso jidosha system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This paper describes the result of discussions on hydrogen fueled automobiles in fiscal 1978. Hydrogen fueled automobiles have a difficulty in developing methods for transporting hydrogen, whereas the liquefied hydrogen method and the metal hydride method are being studied in parallel at the present. It is also necessary to solve such basic problems as the method for supplying hydrogen to engines, the injection method, and countermeasures for abnormal combustion. Safety assurance is also important. Very little information is available presently on methods for storing hydrogen inside a car and supplying thereof, which are required for evaluating utilization of liquefied hydrogen to automobiles. Demonstrative surveys and researches are required to acquire basic materials for hydrogen feeding methods in broader meaning including storage and control. Therefore, fiscal 1977 has begun trial fabrication of experimental liquefied hydrogen tanks, and preliminary and experimental researches on types and materials for feed pumps. Fiscal 1978 has moved forward improvements in prototype tank performance (heat insulation method to reduce evaporation loss), trial fabrication of liquid level meters, trial fabrication of feed pumps (especially selection of materials for the sliding parts), and researches on flow rate control methods. Drawings for modification and experiment of the liquefied hydrogen tanks were prepared, and the promising candidates were selected for material combination in pump sliding parts. Durability tests are continuing thereon. Flow rate control was also discussed. (NEDO)

  16. The neutron utilization and promotion program of TRR-II research reactor project in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Huang, Y.H.

    2001-01-01

    The objective of the Taiwan research reactor system improvement and utilization promotion project is to reconstruct the old Taiwan research reactor (TRR), which was operated by the Institute of Nuclear Energy Research (INER) between 1973 and 1988, into a multi-purpose medium flux research reactor (TRR-II). The project started in 1998, and the new reactor is scheduled to have its first critical in June of 2006. The estimated maximum unperturbed thermal neutron flux (E 14 n/cm 2 sec, and it is about one order of magnitude higher than other operating research reactors in Taiwan. The new reactor will equip with secondary neutron sources to provide neutrons with different energies, which will be an essential tool for advanced material researches in Taiwan. One of the major tasks of TRR-II project is to promote domestic utilization of neutrons generated at TRR-II. The traditional uses of neutrons in fuel/material research, trace element analysis, and isotope production has been carried out at INER for many years. On the other hand, it is obvious that promotions of neutron spectrometric technique will be a major challenge for the project team. The limited neutron flux from operating research reactors had discouraged domestic users in developing neutron spectrometric technique for many years, and only few researchers in Taiwan are experienced in using spectrometers. It is important for the project team to encourage domestic researchers to use neutron spectrometers provided by TRR-II as a tool for their future researches in various fields. This paper describes the current status of TRR-II neutron utilization and promotion program. The current status and future plans for important issues such as staff recruiting, personnel training, international collaboration, and promotion strategy will be described. (orig.)

  17. Key Challenges to the introduction of hydrogen - European stakeholder views

    International Nuclear Information System (INIS)

    Seymour, E. Hugo; Murray, Luke; Fernandes, Rei

    2008-01-01

    Recent hydrogen policy initiatives focus on fostering the market introduction of hydrogen technologies. These initiatives include hydrogen roadmapping projects. Stakeholder involvement in strategic planning is of key importance to the successful implementation of the strategy. Thus, the views of the stakeholder group involved in the European roadmapping project HyWays are pertinent to the introduction of hydrogen in Europe. A qualitative assessment using the Key Changes and Actor Mapping (KCAM) methodology showed that on average stakeholders expect hydrogen systems to begin to be introduced over the next 15 years. Hydrogen production is expected to be based initially on steam methane reforming of natural gas and onsite electrolysis using wind power, and any hydrogen transport is likely to be by truck. The major challenges envisaged are to do with carbon capture and storage, high-temperature hydrogen production technologies and hydrogen pipeline development. (author)

  18. 77 FR 34033 - Public Utility District No. 1 of Douglas County; Notice of Authorization for Continued Project...

    Science.gov (United States)

    2012-06-08

    ... District No. 1 of Douglas County; Notice of Authorization for Continued Project Operation On May 27, 2010, the Public Utility District No. 1 of Douglas County, licensee for the Wells Hydroelectric Project... regulations thereunder. The Wells Hydroelectric Project is located on the Columbia River in Douglas, Okanogan...

  19. An integrated approach to hydrogen economy in Sicilian islands

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Fabio V.; Sapienza, C.; Andaloro, L.; Dispensa, G.; Ferraro, M.; Antonucci, V. [Italian National Research Council, Institute of Advanced Energy Technologies ' ' Nicola Giordano' ' , salita S. Lucia sopra Contesse, 5, Messina 98126 (Italy)

    2009-08-15

    CNR-ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources. (author)

  20. Development of performance model and optimization strategy for standalone operation of CPV-hydrogen system utilizing multi-junction solar cell

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Ng, Kim Choon

    2017-01-01

    Despite highest energy potential, solar energy is only available during diurnal period with varying intensity. Therefore, owing to solar intermittency, solar energy systems need to operate in standalone configuration for steady power supply which requires reliable and sustainable energy storage. Hydrogen production has proved to be the most reliable and sustainable energy storage option for medium and long term operation. However, at the first priority, solar energy must be captured with high efficiency, in order to reduce the overall size of the system and energy storage. Multi-junction solar cells (MJCs) provide highest energy efficiency among all of the photovoltaic technologies and the concentrated photovoltaic (CPV) system concept makes their use cost effective. However, literature is lacking the performance model and optimization strategy for standalone operation of the CPV-hydrogen system. In addition, there is no commercial tool available that can analyze CPV performance, utilizing multi-junction solar cell. This paper proposes the performance model for the CPV-hydrogen systems and the multi-objective optimization strategy for its standalone operation and techno-economic analysis, using micro genetic algorithm (micro-GA). The electrolytic hydrogen production with compression storage and fuel cell, is used as energy storage system. The CPV model is verified for the experimental data of InGaP/InGaAs/Ge triple junction solar cell. An optimal CPV system design is provided for uninterrupted power supply, even under seasonal weather variations. Such approach can be easily integrated with commercial tools and the presented performance data can be used for the design of individual components of the system.

  1. Development of performance model and optimization strategy for standalone operation of CPV-hydrogen system utilizing multi-junction solar cell

    KAUST Repository

    Burhan, Muhammad

    2017-09-16

    Despite highest energy potential, solar energy is only available during diurnal period with varying intensity. Therefore, owing to solar intermittency, solar energy systems need to operate in standalone configuration for steady power supply which requires reliable and sustainable energy storage. Hydrogen production has proved to be the most reliable and sustainable energy storage option for medium and long term operation. However, at the first priority, solar energy must be captured with high efficiency, in order to reduce the overall size of the system and energy storage. Multi-junction solar cells (MJCs) provide highest energy efficiency among all of the photovoltaic technologies and the concentrated photovoltaic (CPV) system concept makes their use cost effective. However, literature is lacking the performance model and optimization strategy for standalone operation of the CPV-hydrogen system. In addition, there is no commercial tool available that can analyze CPV performance, utilizing multi-junction solar cell. This paper proposes the performance model for the CPV-hydrogen systems and the multi-objective optimization strategy for its standalone operation and techno-economic analysis, using micro genetic algorithm (micro-GA). The electrolytic hydrogen production with compression storage and fuel cell, is used as energy storage system. The CPV model is verified for the experimental data of InGaP/InGaAs/Ge triple junction solar cell. An optimal CPV system design is provided for uninterrupted power supply, even under seasonal weather variations. Such approach can be easily integrated with commercial tools and the presented performance data can be used for the design of individual components of the system.

  2. The solar-hydrogen economy: an analysis

    Science.gov (United States)

    Reynolds, Warren D.

    2007-09-01

    The 20th Century was the age of the Petroleum Economy while the 21st Century is certainly the age of the Solar-Hydrogen Economy. The global Solar-Hydrogen Economy that is now emerging follows a different logic. Under this new economic paradigm, new machines and methods are once again being developed while companies are restructuring. The Petroleum Economy will be briefly explored in relation to oil consumption, Hubbert's curve, and oil reserves with emphasis on the "oil crash". Concerns and criticisms about the Hydrogen Economy will be addressed by debunking some of the "hydrogen myths". There are three major driving factors for the establishment of the Solar-Hydrogen Economy, i.e. the environment, the economy with the coming "oil crash", and national security. The New Energy decentralization pathway has developed many progressive features, e.g., reducing the dependence on oil, reducing the air pollution and CO II. The technical and economic aspects of the various Solar-Hydrogen energy options and combinations will be analyzed. A proposed 24-hour/day 200 MWe solar-hydrogen power plant for the U.S. with selected energy options will be discussed. There are fast emerging Solar Hydrogen energy infrastructures in the U.S., Europe, Japan and China. Some of the major infrastructure projects in the transportation and energy sectors will be discussed. The current and projected growth in the Solar-Hydrogen Economy through 2045 will be given.

  3. Fiscal 1999 report on basic research for promotion of joint implementation programs. Energy saving project for West Pacific Petrochemical Co., Ltd., Dalian/West Pacific Oil Refinery; 1999 nendo Dalian Nishitaiheiyo sekiyu kako yugen koji Nishitaiheiyo seiyusho shoene project chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    An energy saving survey is conducted for the above named plant under a project expected to be linked to the clean development mechanism of COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change). Supply/demand balance is poor at various utilities in this refinery, with surplus steam in summer and with hydrogen rich surplus off gas (flare combustion, discharge into the air) from the respective devices causing numerous problems about energy efficiency. Under the project, hydrogen will be recovered from the refinery off gas for utilization, systems related to fuel, steam, and power will be improved, and a surplus gas fired turbine power generating facility will be installed. Power generation of 29MW is feasible, which elevates the percentage of private power generation to the total demand for power from 25% to 71%. The purchase of power from external coal fired power stations will decrease greatly, contributing to energy saving. A yearly amount of 136-thousand tons of CO2 will be reduced thanks to the hydrogen recovery system and the gas turbine power generating facility to be newly installed. The Chinese party, much interested in the project, intends to be a participant as a joint implementer. The Japanese party has received a request for technological and financial assistance. (NEDO)

  4. Proceedings of the DOE chemical/hydrogen energy systems contractor review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This volume contains 45 papers as well as overviews of the two main project areas: the NASA Hydrogen Energy Storage Technology Project and Brookhaven National Laboratory's program on Electrolysis-Based Hydrogen Storage Systems. Forty-six project summaries are included. Individual papers were processed for inclusion in the Energy Data Base.

  5. Biogas utilization

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M.A. [Resource Conservation Management, Inc., Berkeley, CA (United States)

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.

  6. Hydrogen producing method and device therefor

    International Nuclear Information System (INIS)

    Iwamura, Yasuhiro; Ito, Takehiko; Goto, Nobuo; Toyota, Ichiro; Tonegawa, Hiroshi.

    1997-01-01

    The present invention concerns a process for producing hydrogen from water by utilizing a γ · X ray radiation source such as spent nuclear fuels. Hydrogen is formed from water by combining a scintillator which uses a γ · X ray radiation source as an energy source to emit UV light and an optical catalyst or an optical catalyst electrode which undergoes UV light to decompose water into hydrogen and oxygen. The present invention provides a method of effectively using spent fuel assemblies which have not been used at present and capable of converting them into hydrogen as storable chemical energy. (N.H.)

  7. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  8. Annex 15 of the IEA Hydrogen Implementing Agreement : Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, P. [Uppsala Univ., Uppsala (Sweden)]|[International Energy Agency, Paris (France)

    2004-07-01

    Task 15 of the Hydrogen Implementation Agreement of the International Energy Agency is to advance the science of biophotosynthesis of hydrogen, which is the biological production of hydrogen from water and sunlight using microalgal photosynthesis. A practical process for biophotolysis would result in an innovative biological source of sustainable and environmentally benign renewable energy source. Japan, Norway, Sweden and the United States initially committed to the project. Since then Canada, the Netherlands and the United Kingdom have joined. The current task is to produce hydrogen from both green algae and cyanobacteria with focus on early-stage applied research on biophotolysis processes with intermediate carbon dioxide fixation. Significant advances have also occurred in the scientific field of cyanobacterial biohydrogen. Cyanobacteria has enzymes that metabolise hydrogen. Photosynthetic cyanobacteria have simple nutritional requirements and can grow in air, water, or mineral salts with light as the only source of energy. This research will help provide the advances needed to achieve practical efficiencies and cost objectives of biological hydrogen production. tabs., figs.

  9. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  10. Hydrogen and energy utilities

    Energy Technology Data Exchange (ETDEWEB)

    Hustadt, Daniel [Vattenfall Europe Innovation GmbH (Germany)

    2010-07-01

    Renewable electricity generation plays one major role with the biggest share being wind energy. At the end of the year 2009 a wind power plant capacity of around 26 GW was installed in Germany. Several outlooks come to the conclusion that this capacity can be doubled in ten years (compare Figure 1). Additionally the German government has set a target of 26 GW installed off-shore capacity in North and Baltic Sea until 2030. At Vattenfall only a minor percentage of the electricity production comes from wind power today. This share will be increased up to 12% until 2030 following Vattenfall's strategy 'Making Electricity Clean'. This rapid development of wind power offers several opportunities but also means some challenges to Utilities. (orig.)

  11. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  12. 18th world hydrogen energy conference 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  13. 18th world hydrogen energy conference 2010. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  14. Hydrogen: a new resource for the Venice industrial area

    International Nuclear Information System (INIS)

    Giorgio Mattiello

    2006-01-01

    Hydrogen Park is based in Marghera, inside the Venice Municipality, where it is produced the 40% of the Italian production of hydrogen, as by-product of industrial processes. This availability gives the possibility to develop and to test new technologies based on hydrogen without the gas generation constrain. The Company deal is to coordinate the partners activities to utilize the Hydrogen resources available in Marghera. (authors)

  15. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  16. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  17. Final Technical Report: Hydrogen Codes and Standards Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Karen I.

    2007-05-12

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  18. Hydrogen-bromine fuel cell advance component development

    Science.gov (United States)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  19. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  20. Research and development project reports for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper reported NEDO`s research and development project in fiscal 1995. As for the development of solar energy utilization technology, conducted were R and D of solar cells and development of the photovoltaic power generation. As to the solar heat utilization technology, R and D were carried out on the chemical energy conversion technology and high efficient solar heat space heating and cooling technology. About the geothermal energy utilization technology, developments were made of exploration techniques for fracture-type geothermal reservoirs and the binary cycle geothermal power generation technology. Concerning the coal energy utilization technology, conducted were R and D of coal liquefaction and coal gasification. Relating to the NEDOL process, a 150t/d pilot plant is under construction. As to environmental issues on coal utilization, made was a research on the basic technology of clean coal. In addition, technical developments on the following were done: efficient power generation using fuel cells, hydrogen, alcohol, biomass, wind power generation, etc. 73 figs., 56 tabs.

  1. Solar hydrogen for urban trucks

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  2. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation (standardization of hydrogen energy technology); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the basic study on standardization of hydrogen energy technology, and the research study on ISO/TC197 in fiscal 1996. As a part of the WE-NET project, the subtask 2 aims at preparation of standards necessary for practical use and promotion. Developmental states in every field of hydrogen energy technologies, current states of domestic/overseas related standards and laws, and needs and issues of standardization were surveyed. In particular, the needs and issues were clarified in relation to existing standards and laws from the viewpoint of specific hydrogen property. ISO/TC197 was established in 1989 for standardization of the systems and equipment for production, storage, transport, measurement and utilization of hydrogen energy. Four working groups are in action for the supply system and tank of liquid hydrogen fuel for automobiles, the container and ship for complex transport of liquid hydrogen, the specifications of hydrogen products for energy, and the hydrogen supply facility for airports. The draft international standards were proposed to the international conference in 1996. 16 refs., 21 figs., 41 tabs.

  3. Study on commercial HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO 2 emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m 3 in Europe and the United States and about 13 yen/m 3 in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO 2 emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m 3 if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  4. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  5. INR participation in the IAEA research project investigating the influence of hydrogen absorption on zirconium alloy behavior

    International Nuclear Information System (INIS)

    Roth, Maria; Radu, Vasile; Dobrea, Dumitru; Pitigoi, Vasile

    2003-01-01

    The paper summarizes the results obtained at INR Pitesti from its participation in the research project coordinated by IAEA Vienna in cooperation with Chalk River and AECL Canada, titled 'Hydrogen and Hydride Induced Degradation of the Mechanical and Physical Properties of Zirconium-based Alloys'. Evidenced is the contribution of INR Pitesti in the works of this project as well as the benefits of this participation for Romania as owner of CANDU type reactor. In the frame this project new results concerning the propagation rate of DHC type cracks in pressure tubes in CANDU reactors were obtained. The same method used to investigate the DHC project was adapted for determination of other quantities of interest related to structural integrity of the materials. The methodology was applied for testing the pressure tubes in Cernavoda NPP Unit 1. The contribution of INR team to statistical processing of data obtained in all the laboratories participating in this project is also highlighted. Opportunity afforded by IAEA to INR Pitesti to bring its contribution to the development of this project of international cooperation together with other well-known institutions and the support from RAAN are acknowledged. These opened ways for other fruitful international cooperation

  6. Supporting analysis and assessments quality metrics: Utility market sector

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    In FY96, NREL was asked to coordinate all analysis tasks so that in FY97 these tasks will be part of an integrated analysis agenda that will begin to define a 5-15 year R&D roadmap and portfolio for the DOE Hydrogen Program. The purpose of the Supporting Analysis and Assessments task at NREL is to provide this coordination and conduct specific analysis tasks. One of these tasks is to prepare the Quality Metrics (QM) for the Program as part of the overall QM effort at DOE/EERE. The Hydrogen Program one of 39 program planning units conducting QM, a process begun in FY94 to assess benefits/costs of DOE/EERE programs. The purpose of QM is to inform decisionmaking during budget formulation process by describing the expected outcomes of programs during the budget request process. QM is expected to establish first step toward merit-based budget formulation and allow DOE/EERE to get {open_quotes}most bang for its (R&D) buck.{close_quotes} In FY96. NREL coordinated a QM team that prepared a preliminary QM for the utility market sector. In the electricity supply sector, the QM analysis shows hydrogen fuel cells capturing 5% (or 22 GW) of the total market of 390 GW of new capacity additions through 2020. Hydrogen consumption in the utility sector increases from 0.009 Quads in 2005 to 0.4 Quads in 2020. Hydrogen fuel cells are projected to displace over 0.6 Quads of primary energy in 2020. In future work, NREL will assess the market for decentralized, on-site generation, develop cost credits for distributed generation benefits (such as deferral of transmission and distribution investments, uninterruptible power service), cost credits for by-products such as heat and potable water, cost credits for environmental benefits (reduction of criteria air pollutants and greenhouse gas emissions), compete different fuel cell technologies against each other for market share, and begin to address economic benefits, especially employment.

  7. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  8. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  9. 40 CFR 262.90 - Project XL for Public Utilities in New York State.

    Science.gov (United States)

    2010-07-01

    ... compliance history or other appropriate factors. (f) At any time, a Utility may add or remove UCCF... following information: (i) A brief description of the XL project, the intended new use of the facility, and... compliance history or other appropriate factors, the acknowledgment may impose conditions in addition to...

  10. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  11. Hydrogen plant module (HPM) and vehicle fueled by same.

    Science.gov (United States)

    2011-09-29

    The goal / objective of the project was to design and fabricate hydrogen plant module (HPM) that is capable of producing : hydrogen fuel onboard a vehicle and that obviates one or more of the present issues related to compressed hydrogen fuel : stora...

  12. DOE Hydrogen Program: 2005 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. G.

    2005-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2005 DOE Hydrogen Program Annual Merit Review, held on May 23-26, 2005, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  13. DOE Hydrogen Program: 2006 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2006-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2006 DOE Hydrogen Program Annual Merit Review, held on May 16-19, 2006, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  14. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  15. Evaluation of the Parent-Implemented Communication Strategies (PiCS) Project Using the Multiattribute Utility (MAU) Approach

    Science.gov (United States)

    Stoner, Julia B.; Meadan, Hedda; Angell, Maureen E.; Daczewitz, Marcus

    2012-01-01

    We conducted a multiattribute utility (MAU) evaluation to assess the Parent-Implemented Communication Strategies (PiCS) project which was funded by the Institute of Education Sciences (IES). In the PiCS project parents of young children with developmental disabilities are trained and coached in their homes on naturalistic and visual teaching…

  16. Development of technical marginal conditions for the application of hydrogen as storage for renewable energies. Short version of the final report

    International Nuclear Information System (INIS)

    1993-04-01

    Due to the present experiences gained in pilot projects and by the application of hydrogen in the industry it can be expected that an equivalent safety standard will be achieved for a manifold application of hydrogen as energy carrier as e.g. in the case of natural gas or liquid gas. A decentral generation and storage of hydrogen in detached houses is not recommended in conurbation because of necessary structural measurements and safety requirements. Small supply networks on the level of municipalities shall be erected instead. The use of hydrogen in the traffic seems to be useful in utility vehicles (e.g. buses) because the vehicle construction is more suitable for a safe integration of the tank system than in case of a car. The regulation shall be extended for a broader use of hydrogen and contain minimum requirements for the equipment and design of each application in terms of safety technology. (orig./MM) [de

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  18. The economic feasibility of producing hydrogen from sunlight and wind

    International Nuclear Information System (INIS)

    Mann, M. K.; Spath, P. L.; Watt, A. S.

    1999-01-01

    The feasibility of utilizing photoelectrochemical and electrolytical technologies to convert energy from the sun and wind into hydrogen was studied. In exploring opportunities to reduce the cost of hydrogen production through interaction with the electric utility grid, it was found that direct photoelectrochemical (PEC) conversion of sunlight has the economic potential to compete with direct photovoltaic/electrolysis, notwithstanding the significant stability and efficiency issues that are still awaiting solution. Interaction with the grid, while maximizing electrolizer use, makes a significant impact on the economics of producing hydrogen by photovoltaic/electrolysis, making wind-based systems also more economical. Electrolysis was found to be the optimal solution only with electricity from renewable sources or with less expensive non-peak electricity. On the other hand, the delivered cost of hydrogen was found to the lowest when electricity production was decoupled from the hydrogen production operation. Decoupled hydrogen production also has an additional benefit, i.e. it produces the hydrogen where it is needed, therefore it mitigates the need for various storage and distribution costs. 6 refs., 4 tabs., 2 figs

  19. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  20. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  1. S.1269: This Act may be cited as the Renewable Hydrogen Energy Research and Development Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 11, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The bill would require the Secretary of Energy to expedite the development of hydrogen derived from renewable energy sources as an alternative energy system for residential, industrial, utility, and motor vehicle use. The purposes of this bill are to reduce the US dependence on imported oil; accelerate the development of renewable hydrogen; accelerate research and development programs on components of a renewable hydrogen energy system; reduce emissions of greenhouse gases, acid rain, precursors to smog, and other air pollution; and establish industry and government cost shared projects to speed the development of renewable hydrogen energy systems

  2. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  3. Utility-Scale Solar 2016: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Seel, Joachim; LaCommare, Kristina Hamachi

    2017-09-19

    The utility-scale solar sector has led the overall U.S. solar market in terms of installed capacity since 2012. In 2016, the utility-scale sector installed more than 2.5 times as much new capacity as did the residential and commercial sectors combined, and is expected to maintain its dominant position for at least another five years. This report—the fifth edition in an ongoing annual series—provides data-driven analysis of the utility-scale solar project fleet in the United States. We analyze not just installed project prices, but also operating costs, capacity factors, and power purchase agreement ("PPA") prices from a large sample of utility-scale PV and CSP projects throughout the United States. Highlights from this year's edition include the following: Installation Trends: The use of solar tracking devices dominated 2016 installations, at nearly 80% of all new capacity. In a reflection of the ongoing geographic expansion of the market beyond California and the Southwest, the median long-term average insolation level at newly built project sites declined again in 2016. While new fixed-tilt projects are now seen predominantly in less-sunny regions, tracking projects are increasingly pushing into these same regions. The median inverter loading ratio has stabilized in 2016 at 1.3 for both tracking and fixed-tilt projects. Installed Prices: Median installed PV project prices within a sizable sample have fallen by two-thirds since the 2007-2009 period, to $2.2/WAC (or $1.7/WDC) for projects completed in 2016. The lowest 20th percentile of projects within our 2016 sample were priced at or below $2.0/WAC, with the lowest-priced projects around $1.5/WAC. Overall price dispersion across the entire sample and across geographic regions decreased significantly in 2016. Operation and Maintenance (“O&M”) Costs: What limited empirical O&M cost data are publicly available suggest that PV O&M costs were in the neighborhood of $18/kWAC-year, or $8/MWh, in 2016. These

  4. Adaptive polymeric nanomaterials utilizing reversible covalent and hydrogen bonding

    Science.gov (United States)

    Neikirk, Colin

    Adaptive materials based on stimuli responsive and reversible bonding moieties are a rapidly developing area of materials research. Advances in supramolecular chemistry are now being adapted to novel molecular architectures including supramolecular polymers to allow small, reversible changes in molecular and nanoscale structure to affect large changes in macroscale properties. Meanwhile, dynamic covalent chemistry provides a complementary approach that will also play a role in the development of smart adaptive materials. In this thesis, we present several advances to the field of adaptive materials and also provide relevant insight to the areas of polymer nanocomposites and polymer nanoparticles. First, we have utilized the innate molecular recognition and binding capabilities of the quadruple hydrogen bonding group ureidopyrimidinone (UPy) to prepare supramolecular polymer nanocomposites based on supramolecular poly(caprolactone) which show improved mechanical properties, but also an increase in particle aggregation with nanoparticle UPy functionalization. We also present further insight into the relative effects of filler-filler, filler-matrix, and matrix-matrix interactions using a UPy side-chain functional poly(butyl acrylate). These nanocomposites have markedly different behavior depending on the amount of UPy sidechain functionality. Meanwhile, our investigations of reversible photo-response showed that coumarin functionality in polymer nanoparticles not only facilitates light mediated aggregation/dissociation behavior, but also provides a substantial overall reduction in particle size and improvement in nanoparticle stability for particles prepared by Flash NanoPrecipitation. Finally, we have combined these stimuli responsive motifs as a starting point for the development of multiresponsive adaptive materials. The synthesis of a library of multifunctional materials has provided a strong base for future research in this area, although our initial

  5. HySTAR: the hydrogen safety training and risk workplace

    International Nuclear Information System (INIS)

    Hay, R.

    2006-01-01

    This paper shows the output of the software package HySTAR, the Hydrogen Safety, Training and Risk Workplace. This is the software output of the CTFA, Canadian Hydrogen Safety Program projects. It shows the Hydrogen Virtual Interactive Expert Workplace, a guide for permitting and code enforcement for officials and other parties involved in approving hydrogen energy facilities. It also shows the Hydrogen Codes and Standards Report (Site Level) as well as Hydrogen Distances and Clearances Report

  6. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Lecturer

    2012-05-03

    May 3, 2012 ... The main goals of this research were to use E. aerogenes ADH-43 for fermentation in order to decide the best carbon sources and ... by converting to electricity using fuel cells in 50 ml vial bottle, 2% total ... evolution compared with other biological hydrogen .... Erlenmeyer containing a solution of Ca (OH) 2.

  7. DOE Hydrogen Program: 2007 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2007-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2007 DOE Hydrogen Program Annual Merit Review, held on May 14-18, 2007, in Washington, D.C. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  8. (Carbon and hydrogen metabolism of green algae in light and dark)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The focus of this project was the elucidation of anaerobic metabolism in ecuaryotic green algae, chlamydomonas reinhardii. Chlamydomonas is a versatile organism that can grow under disparate conditions such as fresh water lakes and sewage ponds. The cell an photoassimilate CO{sub 2} aerobically and anaerobically, the latter after adaptation'' to a hydrogen metabolism. It can recall the knallgas or oxyhydrogen reaction and utilize hydrogen the simplest of all reducing agents for the dark assimilation of CO{sub 2} by the photosynthetic carbon reduction cycle. The dark reduction with hydrogen lies on the border line between autotrophic and heterotrophic carbon assimilation. Both autotrophic and heterotrophic bacteria are known in which molecular hydrogen can replace either inorganic or organic hydrogen donors. Here the dark reduction of CO{sub 2} acquires a particular importance since it occurs in the same cell that carries on photoreduction and photosynthesis. We will demonstrate here that the alga chloroplast possesses a respiratory capacity. It seems likely that Chlamydomonas may have retained the chloroplastic respiratory pathway because of the selective advantage provided to the algae under a wide range of environmental conditions that the cells experience in nature. The ability to cycle electrons and poise the reduction level of the photosynthetic apparatus under aerobic and microaerobic conditions could allow more efficient CO{sub 2} fixation and enhanced growth under unfavorable conditions or survival under more severe conditions.

  9. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    The aim of this work is to support the development of a high-profile demonstration of hydrogen generation technologies in a Swedish context. The overall objective of the demonstration is to deploy a reforming based hydrogen refilling station along the Swedish west coast; intermediate to the Malmoe refuelling station and planned stations in Goeteborg. In this way, the Norwegian hydrogen highway will be extended through the south of Sweden and down into Denmark. The aim of the project's first phase, where this constitutes the final report, was to demonstrate the ability to operate the IE reforming system on the E.On/SGC site-specific fuel. During the project, a preliminary system design has been developed, based on IE's proprietary reformer. The system has been operated at pressure, to ensure a stable operation of the downstream PSA; which has been operated without problems and with the expected hydrogen purity and recovery. The safe operation of the proposed and tested system was first evaluated in a preliminary risk assessment, as well as a full HazOp analysis. A thorough economic modelling has been performed on the viability of owning and operating this kind of hydrogen generation equipment. The evaluation has been performed from an on-site operation of such a unit in a refuelling context. The general conclusion from this modelling is that there are several parameters that influence the potential of an investment in a Hestia hydrogen generator. The sales price of the hydrogen is one of the major drivers of profitability. Another important factor is the throughput of the unit, more important than efficiency and utilization. Varying all of the parameters simultaneously introduce larger variations in the NPV, but 60% of the simulations are in the USD 90 000 to USD 180 000 interval. The chosen intervals for the parameters were: Hydrogen Sales Price (USD 5 - USD 7 per kg); Investment Cost (USD 70 000 - USD 130 000 per unit); Throughput (20 - 30 kg

  10. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  11. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    With an objective to utilize hydrogen fuel in aircraft engines, a conceptual design survey was carried out on medium size transport aircraft. Large size long-distance aircraft and SST loaded with a great amount of fuel have the jet fuel (JP) increase take-off weight, affecting largely the selection of wing area and engine thrust. If the hydrogen fuel can be liquefied, large reduction can be achieved and the economic effect can be increased. However, for short-distance transport aircraft, the fuel weight ratio is small, where no large advantage is anticipated even if hydrogen is liquefied. Nevertheless, considering oil depletion in the future, a conceptual design was performed on the YX2688 short-medium distance aircraft being discussed of development. Even the short-medium distance aircraft that can be developed and commercialized as civilian use aircraft has a number of common points with large aircraft development, such as hydrogen fuel using technologies and safety. Although the advantage of using liquefied hydrogen as fuel may of course be smaller in the short-medium distance aircraft than in larger aircraft, the trend of using hydrogen fuel is historical necessity, whose development plans should be moved forward. (NEDO)

  12. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    Sneddon, Larry G.

    2011-01-01

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH 3 BH 3 (AB), 19.6-wt% H 2 , and ammonia triborane NH 3 B 3 H 7 (AT), 17.7-wt% H 2 , were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H 2 -release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H 2 -release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H 2 -release, the tunability of both their H 2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These

  13. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  14. Hydrogen and fuel cell activity report - France 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The report gathers the main outstanding facts which occurred in France in the field of hydrogen and fuel cells in 2009. After having noticed some initiatives (French commitment in renewable energy production, new role for the CEA, cooperation between different research and industrial bodies, development of electric vehicles, research programs), the report presents several projects and programs regarding hydrogen: ANR programs, creation of a national structure, basic research by the CEA and CNRS, demonstration projects (H2E), transport applications (a hybrid 307 by Peugeot, the Althytude project by GDF and Suez, the Hychain European project by Air Liquide, a dirigible airship, an ultra-light aviation project, a submarine), some stationary applications (the Myrte project, a wind energy project), activity in small and medium-sized enterprises, regional initiatives, colloquiums and meetings.

  15. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  16. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  17. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 2); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy). The R and D on methanol energy systems involves the R and D on decomposition and synthesis catalyst of methanol and methyl formate for the waste heat sources of relatively low temperature. The R and D on high-efficiency techniques using hydrogen-occluding alloys involves development of heat exchangers of low sensible heat ratio, fabrication of double-effect type MH heat pump cycle devices, and demonstration tests for the system operation. It is found that the heat output of the hydrogen-occluding alloy for high temperature use is 0.18kW/kg at 90 degrees C, and that the alloy can be massively produced. A thermal utilization efficiency COP of 0.68 is obtained for the double-effect type MH heat pump cycles. The R and D on the heat-hydrogen recovery, transportation and utilization techniques involves designs and fabrication on a trial basis of a sensible heat recovery unit. (NEDO)

  18. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Science.gov (United States)

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A manual of recommended practices for hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  20. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov (United States)

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen Systems Integration Facility or ESIF. Research projects including H2FIRST, component testing, hydrogen

  1. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the

  2. Summary of achievement reports on the Sunshine Project in fiscal 1978 (Hydrogen energy); 1978 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-01

    This paper summarizes achievement reports on the Sunshine Project in fiscal 1978 (hydrogen energy). In hydrogen manufacturing methods, studies are described on materials of membranes and electrodes used in high temperature and pressure electrolysis. In thermo-chemical method, studies are continuing on cycles of the iron system, iodine system, and mixed system (composed by thermal, photo and electro-chemistries). For the iodine system, summary design was performed on an experimental device. For the mixed system, trial fabrication and experiments were carried out on a beam radiation type electrolytic tank that electrolyses quickly HI and Fe{sup 3+} produced in the photo-chemical reaction, and separates the products. Discussions were also given on HI decomposition (hydrogen acquisition) by means of heat diffusion. With respect to storage and transportation, development is being made on optimal metal hydrides. In combustion technologies, discussions are given on combustors and catalysts to break through the dilemma of high NOx emission and frequent occurrence of reverse ignition. For fuel cells, the paper describes developments of the materials thereof, high-temperature solid electrolyte type fuel cells and alkaline aqueous solution electrolyte type fuel cells. Regarding the non-steady hydrogen engines, the paper describes fundamental studies on non-steady jet flow behavior using shock tubes, and single cylinder engine tests. It also describes hydrogen safety assuring measures, and studies on energy systems. (NEDO)

  3. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  4. FY 1998 annual report on the hydrogen, alcohol and biomass technology working group. 19th R and D activity report; 1998 nendo suiso alcohol biomass gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by the hydrogen, alcohol and biomass technology working group, extracted from the 19th R and D activity report by NEDO. Mr. Murase, a NEDO's director, outlines R and D of techniques for hydrogen-utilizing international clean energy systems, high-efficiency power generation by wastes, reutilization of combustible wastes as fuels, high-efficiency clean energy vehicles and pioneer techniques for utilization of supercritical fluids, and commercialization of waste water treatment techniques for prevention of global warming, in the report entitled (General situations of the hydrogen, alcohol and biomass technology development group). The researchers presented the R and D results of development of externally circulating type fluidized bed, demonstration tests therefor by a pilot plant, phase 1 WE-NET project, phase 1 hydrogen-fueled turbine, phase 1 closed type high-efficiency gas turbine system equipped with a CO2 recovery system, and simple systems for cleaning up industrial wastes. (NEDO)

  5. dimensional architectures via hydrogen bonds

    Indian Academy of Sciences (India)

    Administrator

    organization and has potential applications in the field of magnetism ... The concepts of crystal engineering ... 4. However, the utilization of hydrogen bond supramolecular syn- ... sembling the coordination networks by designing the ligands ...

  6. DOE Hydrogen Program 2004 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2004-10-01

    This document summarizes the project evaluations and comments from the DOE Hydrogen Program 2004 Annual Program Review. Hydrogen production, delivery and storage; fuel cells; technology validation; safety, codes and standards; and education R&D projects funded by DOE in FY2004 are reviewed.

  7. Technical and economic analysis of hydrogen refuelling

    International Nuclear Information System (INIS)

    Nistor, Silviu; Dave, Saraansh; Fan, Zhong; Sooriyabandara, Mahesh

    2016-01-01

    Highlights: • Technical and economic models of a hydrogen station for vehicles refuelling. • Hydrogen demand from fuel cell electric vehicles modelled stochastically. • Study case based on a UK pilot project. • Operation of the H_2 station using combined energy from wind and power grid is preferred. • Return on investment of 5–10 years is possible for the hydrogen station. - Abstract: This paper focuses on technical and economic analysis of a hydrogen refilling station to provide operational insight through tight coupling of technical models of physical processes and economic models. This allows the dynamic relationships of the system to be captured and analysed to provide short/medium term analytical capability to support system design, planning, and financing. The modelling developed here highlights the need to closely link technical and economic models for technology led projects where technical capability and commercial feasibility are important. The results show that hydrogen fuel can be competitive with petrol on a GBP/KG basis if the return on investment period is over 10 years for PEM electrolysers and 5 for Alkaline electrolysers. We also show that subsidies on capital costs (as reflected by some R&D funding programs) make both PEM and Alkaline technologies cheaper than the equivalent price of petrol, which suggests more emphasis should be put on commercialising R&D funded projects as they have commercial advantages. The paper also shows that a combined wind and grid connected station is preferable so that a higher number of customers are served (i.e. minimum shortage of hydrogen).

  8. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  9. Solid-State Hydrogen Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a method for converting metals to metal hydrides at low pressures for hydrogen storage systems with high efficiency with respect to volume...

  10. Properties of large-scale methane/hydrogen jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Studer, E. [CEA Saclay, DEN, LTMF Heat Transfer and Fluid Mech Lab, 91 - Gif-sur-Yvette (France); Jamois, D.; Leroy, G.; Hebrard, J. [INERIS, F-60150 Verneuil En Halatte (France); Jallais, S. [Air Liquide, F-78350 Jouy En Josas (France); Blanchetiere, V. [GDF SUEZ, 93 - La Plaine St Denis (France)

    2009-12-15

    A future economy based on reduction of carbon-based fuels for power generation and transportation may consider hydrogen as possible energy carrier Extensive and widespread use of hydrogen might require a pipeline network. The alternatives might be the use of the existing natural gas network or to design a dedicated network. Whatever the solution, mixing hydrogen with natural gas will modify the consequences of accidents, substantially The French National Research Agency (ANR) funded project called HYDROMEL focuses on these critical questions Within this project large-scale jet fires have been studied experimentally and numerically The main characteristics of these flames including visible length, radiation fluxes and blowout have been assessed. (authors)

  11. Strategy for a sustainable development in the UAE through hydrogen energy

    Energy Technology Data Exchange (ETDEWEB)

    Kazim, Ayoub [Dubai Knowledge Village, P.O. Box 73000 Dubai (United Arab Emirates)

    2010-10-15

    Recently, it has been reported that United Arab Emirates is considered one of the highest energy consumers per capita in the world. Consequently, environmental pollution and carbon emission has been a major challenge facing the country over the past several years due to unprecedented high economic growth rate and abnormal population increase. Utilization of hydrogen energy to fulfill UAE's energy needs would be one of the key measures that the country could undertake to achieve a sustainable development and without any major environmental consequences. Hydrogen energy, which is an energy carrier, is consider by many scientists and researchers a major player in fulfilling the global energy demand due to its attractive features such as being environmentally clean, storable, transportable and inexhaustible. It can be used as a fuel in the proton exchange membrane (PEM) fuel cell, which is an electrochemical device that generates electric power and it can be utilized in various applications. Production of hydrogen energy can be carried out either through utilizing conventional resources or by renewable resources. Conventional resources such as crude oil and natural gas can produce hydrogen by steam-reformation while hydrogen can be produced from coal through gasification. On the other hand, hydrogen production through renewable resources can be achieved through biomass gasification, solar-hydrogen, wind-hydrogen and hydropower electrolysis process. Other renewable resources such as geothermal, wave, tidal and ocean thermal energy conversion (OTEC) can also contribute into hydrogen production but at a marginal level. In this report, a roadmap to achieve a sustainable development in the UAE through utilization of hydrogen energy is presented. The report highlights the potentials of energy resources that the country possesses with respect to both conventional and non-conventional energy and determines major resources that could significantly contribute to production

  12. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  13. The HyNor - hydrogen highway in Norway?; HyNor - den norske hydrogenveien?

    Energy Technology Data Exchange (ETDEWEB)

    Kaarstein, Asbjoern

    2008-07-01

    This thesis is part of the project 'Providing hydrogen for transport in Norway: A social learning approach' and is financed through RENENERGI (Clean Energy) program. The Norway HyNor Project will provide a sensible means of providing hydrogen transportation along a test strip some 350 miles in length from the years 2005 to 2008. The project will also be quite challenging because of wide variations in climate and topology including very cold seasonal temperatures, not conducive to many fuel cell vehicles. As part of the signed Kyoto Treaty, Norway realized cutting emissions from power production was not a viable option, but perhaps they could take a bold step forward in implementing the infrastructure needed for a common and accessible means of hydrogen refueling. This alternative made sense because the emissions from hydrogen vehicles is zero compared to fossil fuel based vehicles which chug 1.5 billion tons of gas emissions into the environment. The Norway HyNor Project is working with both governmental agencies as well as the private sector to produce this hydrogen corridor. The plans include the commercial feasibility of large-scale hydrogen fuel based vehicles such as cars, taxis, trucks and buses. Private vehicles will also be used in this globally anticipated study and fueling stations are slated to be completed so that a real-world test case can provide the evidence needed for a shift in the world's fuel dependence. The questions this thesis seeks to answer are - what made the involved participants want to gamble on this kind of a project in a time others meant that a break through for hydrogen as an energy carrier was thirty to forty years ahead? How was this HyNor project started? What kind of project was HyNor meant to be? What kind of visions and/or scenarios were tied to the project and of which participants? What kind of project did it turn out, and what was the main events through the years from establishing to autumn 2007. Political, cultural and

  14. The HyNor - hydrogen highway in Norway?; HyNor - den norske hydrogenveien?

    Energy Technology Data Exchange (ETDEWEB)

    Kaarstein, Asbjoern

    2008-07-01

    This thesis is part of the project 'Providing hydrogen for transport in Norway: A social learning approach' and is financed through RENENERGI (Clean Energy) program. The Norway HyNor Project will provide a sensible means of providing hydrogen transportation along a test strip some 350 miles in length from the years 2005 to 2008. The project will also be quite challenging because of wide variations in climate and topology including very cold seasonal temperatures, not conducive to many fuel cell vehicles. As part of the signed Kyoto Treaty, Norway realized cutting emissions from power production was not a viable option, but perhaps they could take a bold step forward in implementing the infrastructure needed for a common and accessible means of hydrogen refueling. This alternative made sense because the emissions from hydrogen vehicles is zero compared to fossil fuel based vehicles which chug 1.5 billion tons of gas emissions into the environment. The Norway HyNor Project is working with both governmental agencies as well as the private sector to produce this hydrogen corridor. The plans include the commercial feasibility of large-scale hydrogen fuel based vehicles such as cars, taxis, trucks and buses. Private vehicles will also be used in this globally anticipated study and fueling stations are slated to be completed so that a real-world test case can provide the evidence needed for a shift in the world's fuel dependence. The questions this thesis seeks to answer are - what made the involved participants want to gamble on this kind of a project in a time others meant that a break through for hydrogen as an energy carrier was thirty to forty years ahead? How was this HyNor project started? What kind of project was HyNor meant to be? What kind of visions and/or scenarios were tied to the project and of which participants? What kind of project did it turn out, and what was the main events through the years from establishing to autumn 2007. Political

  15. Hydrogen and fuel cell activity report - France 2010; Rapport d'activites Hydrogene et Piles a combustible - France 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The report gathers the main outstanding facts which occurred in France in the field of hydrogen and fuel cells in 2010. After having noticed some initiatives (the Grenelle II law, an investment package, the new role of the CEA, the new role of the IFP), the report presents several projects and programs regarding hydrogen: ANR programs, creation of a national structure (the HyPaC platform), regional initiatives and local actions, colloquiums and meetings in France and in the world, research projects (photo-synthesis as a new electric energy source), a technical-economic investigation (HyFrance3), demonstrator projects (the Althytude project by GDF and Suez, the Plathee hybrid locomotive by the SNCF, the H2E project, the Zero CO{sub 2} sailing boat, and the Myrte project), educational applications, activity in small and medium-sized enterprises (CETH, SAGIM, HYCAN, McPhy, N-GHY).

  16. Utility-Scale Solar 2013: An empirical analysis of project cost, performance, and pricing trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-09-17

    Other than the SEGS I-IX parabolic trough projects built in the 1980s, virtually no large-scale or "utility-scale" solar projects-defined here to include any ground-mounted photovoltaic ("PV"), concentrating photovoltaic ("CPV"), or concentrating solar power ("CSP" or solar thermal) project larger than 5 MWAC-existed in the United States prior to 2007.

  17. Laser photochemical separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Fowler, M.C.

    1979-01-01

    A method of separating isotopes of hydrogen utilizing isotopically selective photodissociation of organic acid is disclosed. Specifically acetic or formic acid containing compounds of deuterated nd hydrogenated acid is irradiated by radiation having a wavelength in the infrared spectrum between 9.2 to 10.8 microns to produce deuterium hydroxide and deuterium hydride respectively. Maintaining the acid at an elevated temperature significantly improves the yield of isotope separation

  18. EUV tools: hydrogen gas purification and recovery strategies

    Science.gov (United States)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  19. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  20. HYSOLAR an overview on the German-Saudi Arabian program on solar hydrogen

    International Nuclear Information System (INIS)

    Steeb, H.; Seeger, W.

    1993-01-01

    The first phase of HYSOLAR, which ended in 1991, was focusing mainly on investigation, test and improvement of hydrogen production technologies. This paper shortly reviews the most important results: a 2 kW test and research facility in Jeddah; fundamental research in the fields of photo-electrochemistry, advanced alkaline electrolysis and alkaline fuel cells; system studies and decentralized hydrogen utilization; program for education. An outlook into the second phase program, where more emphasis is laid on hydrogen utilization technologies, is also included. 1 tab., 93 refs

  1. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  2. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers.

    Science.gov (United States)

    Kozan, J V B; Silva, R P; Serrano, S H P; Lima, A W O; Angnes, L

    2007-05-22

    A novel unmediated hydrogen peroxide biosensor based on the incorporation of fibrous tissue of coconut fruit in carbon paste matrix is presented. Cyclic voltammetry and amperometry were utilized to characterize the main electrochemical parameters and the performance of this new biosensor under different preparation and operation conditions. The resulting H2O2-sensitive biosensors respond rapidly (7 s to attain 90% of the signal), was operated at -0.15 V, presented linear response between 2.0x10(-4) and 3.4x10(-3) mol L(-1), the detection limit was estimated as 4.0x10(-5) mol L(-1). Its operation potential was situated between -0.2 and 0.1 V and the best pH was determined as 5.2. Electrodes containing 5% (w/w) of coconut fiber presented the best signal and their lifetime was extended to 3 months. The apparent Michaelis-Menten constant KM(app) and Vmax were estimated to be 8.90 mmol L(-1) and 6.92 mmol L(-1) microA(-1), respectively. The results obtained for determination of hydrogen peroxide in four pharmaceutical products (antiseptic solution, contact lenses cleaning solution, hair coloring cream and antiseptic dental rinse solution) were in agreement with those obtained by the spectrophotometric method. An additional advantage of these biosensors is the capacity to measure hydrogen peroxide even in samples with relatively low pH. To demonstrate the enzymatic activity of the coconut tissue, a very simple way was created during this work. Coconut fibers were immersed in H2O2 solution between two glass slides. Sequential images were taken to show the rapid generation of O2, attesting the high activity of the enzymes.

  3. Hydrogen's financial and commercial challenges

    International Nuclear Information System (INIS)

    Schroeder, W. W.

    1997-01-01

    The experiences of Proton Energy Systems Inc., in commercializing PEM (Proton Exchange Membrane) technology were explored as an example of what is involved in bringing new technology to market. The venture capital market as distinct from major capital markets was described. The article pointed out the generally high risk nature of, and the low interest by venture capitalists in hydrogen projects, and the high cost of such capital in terms of ownership and control. Some of the reasons for the difficulties in finding venture capital were outlined (one of them is that hydrogen has generated a lot more 'hype' than heat). The strategies used by Proton Energy Systems to find an investor for their particular project were described

  4. Hybrid compression/absorption type heat utilization system (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Karimata, T.; Susami, S.; Ogawa, Y. [Research and Development Dept., EBARA Corp., Kanagawa pref. (Japan)

    1999-07-01

    This research is intended to develop a 'hybrid compression/absorption type heat utilization system' by combining an absorption process with a compression process in one circulation cycle. This system can produce chilling heat for ice thermal storage by utilizing low-temperature waste heat (lower than 100 C) which is impossible to treat with a conventional absorption chiller. It means that this system will be able to solve the problem of a timing mismatch between waste heat and heat demand. The working fluid used in this proposed system should be suitable for producing ice, be safe, and not damage the ozone layer. In this project, new working fluids were searched as substitutes for the existing H{sub 2}O/LiBr or NH{sub 3}/H{sub 2}O. The interim results of this project in 1997, a testing unit using NH{sub 3}/H{sub 2}O was built for demonstration of the system and evaluation of its characteristics, and R134a/E181 was found to be one of the good working fluid for this system. The COP (ratio of energy of ice produced to electric power provided) of this system using R134a/E181 is expected to achieve 5.5 by computer simulation. The testing unit with this working fluid was built recently and prepared for the tests to confirm the result of the simulation. (orig.)

  5. Model project to promote cultivation and utilization of renewable resources. Modellvorhaben zur Foerderung des Anbaus und der Verwertung nachwachsender Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This revised report on the model projects presents individual projects and measures complementary to each other, documenting, in their totality, an advanced state of development. Moreover it shows the following: that the basic challenge of a model project, especially in the field of the energetic use of biomass, can be met by marrying agriculture to power utilities. So, projects are under way where cultivation of China reed and its utilization in power-and-heat cogeneration plants will, in the future, complement each other. Further questions that are not represented in the research programme of Lower Saxonia are dealt with at the federal level, so that the field of renewable resurces may currently be considered as comprehensively covered. (orig./EF).

  6. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell

    KAUST Repository

    Call, D. F.; Wagner, R. C.; Logan, B. E.

    2009-01-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries

  7. Determination of hydrogen abundance in selected lunar soils

    Science.gov (United States)

    Bustin, Roberta

    1987-01-01

    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  8. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site.

    Science.gov (United States)

    Suzuki, Shino; Kuenen, J Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun'ichi; Wu, Angela; Sorokin, Dimitry Y; Tenney, Aaron; Meng, XianYing; Morrill, Penny L; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H

    2014-05-21

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus 'Serpentinomonas'.

  9. Transportable Hydrogen Research Plant Based on Renewable Energy

    International Nuclear Information System (INIS)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro; Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor; Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola

    2006-01-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  10. Cleaning up gasoline will increase refinery hydrogen demand

    International Nuclear Information System (INIS)

    Pretorius, E.B.; Muan, A.

    1992-01-01

    This paper reports that hydrogen needs will increase two to five times as the world turns its attention to cleaning up engine exhaust. The subject of fuel trends and hydrogen needs at Foster Wheeler USA Corp.'s Hydrogen Plant Conference, June 2--4, in Orlando was addressed. The conference was attended by more than 100 people from 12 different countries. Drawing on knowledge from over 1 billion scfd of total installed hydrogen plant capacity, Foster Wheeler experts presented papers in the fields of steam reforming, partial oxidation (with all feedstocks, from natural gas to resids and coal), and steam reformer design. Other industry specialists gave papers on refinery balances, markets, coal feedstocks, utility systems, and components for hydrogen plants

  11. Hydrogen gas getters: Susceptibility to poisoning

    International Nuclear Information System (INIS)

    Mroz, E.J.; Dye, R.C.; Duke, J.R.; Weinrach, J.

    1998-01-01

    About 40% (∼9,000) of the ∼23,000 transuranic (TRU) waste drums at Los Alamos National Laboratory (LANL) are presently unshippable because conservative calculations suggest that the hydrogen concentration may exceed the lower explosive limit for hydrogen. This situation extends across nearly all DOE sites holding and generating TRU waste. The incorporation of a hydrogen getter such as DEB into the waste drums (or the TRUPACT II shipping containers) could substantially mitigate the explosion risk. The result would be to increase the number of drums that qualify for transportation to the Waste Isolation Pilot Plant (WIPP) without having to resort to expensive re-packaging or waste treatment technologies. However, before this approach can be implemented, key technical questions must be answered. Foremost among these is the question of whether the presence of other chemical vapors and gases in the drum might poison the catalytic reaction between hydrogen and DEB. This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to obtain fundamental information on the chemical mechanism of the catalytic reaction of hydrogen with one commonly used hydrogen getter, DEB. Experiments with these materials showed that the method of exposure affects the nature of the reaction products. The results of this work contributed to the development of a mechanistic model of the reaction

  12. Property changes of some hydrogen storage alloys upon hydrogen absorption-desorption cycling

    International Nuclear Information System (INIS)

    Park, C.N.; Cho, S.W.; Choi, J.

    2005-01-01

    Hydrogen absorption-desorption cycling induced by pressure change in a closed system were carried out with LaNi 5 , La 0.7 Ce 0.3 Ni 4 Cu and TiFe 0.9 Ni 0.1 alloys. PC isotherms measured during the cycling showed some changes in hydrogen storage capacity, plateau pressure and hysteresis of the alloys. The half capacity life of LaNi 5 alloy can be projected as 70,000 cycles for room temperature pressure cycling. When La 0.7 Ce 0.3 Ni 4 Cu alloy was pressure cycled both of the plateau pressures were decreased significantly and continuously. TiFe 0.9 Ni 0.1 alloy showed a good resistance to cyclic degradation. Heat treatments of the degraded alloys under 1 atm of hydrogen gas recovered most of the hydrogen storage properties to the initial level even though they were degraded again more rapidly upon subsequent cycling. (orig.)

  13. Color Changing Material for Hydrogen Leak Detection

    Science.gov (United States)

    Victor, Megan E.

    2014-01-01

    Kennedy Space Center scientists developed a hydrogen leak sensor utilizing a combination of chemochromic pigment and polymer that can be molded or fiber spun into rigid or flexible shapes such as tape. The sensor turns a dark color when exposed to hydrogen gas. This sensor has proven to be very effective for pinpointing the exact location of leaks in hydrogen gas lines and fittings at launch pads. Kennedy Space Center exclusively licensed this technology to the University of Central Florida (UCF), who also holds patents that are complimentary to KSC's. UCF has bundled the patents and exclusively licensed the portfolio to HySense Technology LLC, a startup company founded by a UCF professor who supports the UCF Florida Solar Energy Center (FSEC). HySense has fully developed its product (known as Intellipigment"TM"), and currently has five commercial customers. The company recently won the $100,000 first-place award at the CAT5 innovation competition at the Innovation Concourse of the Southeast: Safety & Manufacturing event in Orlando, FL. Commercial production and sales of this technology by HySense Technology will make this leak sensor widely available for use by NASA, DoD, and industries that utilize hydrogen gas.

  14. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Science.gov (United States)

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  15. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  16. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  17. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  18. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  19. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-01-01

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump's ability to mitigate the SY-101 tank hydrogen gas hazard

  20. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  1. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    Science.gov (United States)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  2. Effective utilization of maintenance staff in design and implementation of major project work

    International Nuclear Information System (INIS)

    Wyman, D.; Dingle, J.; Brown, R.

    1995-01-01

    The reorganization of Pickering Nuclear Division some 2 years ago resulted in the formation of the Projects and Modifications department. This department takes an integrated approach to manage all aspects of large projects at Pickering. The integration of Design, Drafting, Procurement, Construction and Operations functions into project teams represents a fundamental change to project management at Pickering. The development of integrated teams has great potential for reducing both the time and cost associated with project implementation, while at the same time improving the quality, and maintainability of the commissioned in service project. The Pickering Rehab organization 1989-1993, established to perform the rehab / retube of Units 3 and 4 had proven that a team environment will produce effective results. The outcome was astounding, critical categories such as Safety, Quality of Work, and Timeliness, had proven the team's effectiveness. The integration of operations maintenance staff into the project work activities is still evolving, and has probably required the most adaptation to change for both the former Construction and Operations organizations. Maximizing the utilization of the maintenance staff in the design and implementation of major project work will prove to be a key to a long term operating success of these projects. This paper will focus in on the effective usage of Maintenance staff in the design and implementation phases of major project work at Pickering, and on the benefits realized using this approach. It will be divided into 5 sections as indicated. 1. Past Project Shortfalls. 2. Benefits of the inclusion of Maintenance staff in the Calandria Vault Rehab Project. 3. Maintenance involvement in the Pickering 'A' Shutdown System Enhancement (SDSE) Project. 4. Challenges resulting from the inclusion of Maintenance staff project teams. 5. Summary. (author)

  3. Climate policy, emissions trading and hydrogen : Results of a Mannesmann Pilotentwicklung study and options for the hydrogen community

    International Nuclear Information System (INIS)

    Geres, R.

    2002-01-01

    The use of emissions trading for the introduction of hydrogen technologies into the market was studied under the Mannesmann Pilotentwicklung. It was argued that the integration of environmental effects becomes part of the business planning on the revenue side, provided a scenario with environmental benefits like the reduction of greenhouse gas emissions in the atmosphere. New possibilities and opportunities are available for hydrogen technologies. It enables the definition of more detailed projects within the hydrogen community, considering factors such as economic, strategic, technological and political aims. The projects involve both mobile and stationary applications, and cover regional activities as well as international cooperation. Public institutions or the private sector can undertake them. As a result of the ratification of the Kyoto Protocol, an emissions trading scheme is scheduled to begin in 2005 inside the European Union. 2 refs., 2 tabs., 2 figs

  4. Project selection problem under uncertainty: An application of utility theory and chance constrained programming to a real case

    Directory of Open Access Journals (Sweden)

    Reza Hosnavi Atashgah

    2013-06-01

    Full Text Available Selecting from a pool of interdependent projects under certainty, when faced with resource constraints, has been studied well in the literature of project selection problem. After briefly reviewing and discussing popular modeling approaches for dealing with uncertainty, this paper proposes an approach based on chance constrained programming and utility theory for a certain range of problems and under some practical assumptions. Expected Utility Programming, as the proposed modeling approach, will be compared with other well-known methods and its meaningfulness and usefulness will be illustrated via two numerical examples and one real case.

  5. Management strategies for surplus electricity loads using electrolytic hydrogen

    International Nuclear Information System (INIS)

    Gutierrez-Martin, F.; Garcia-De Maria, J.M.; Bairi, A.; Laraqi, N.

    2009-01-01

    Management of electricity-hydrogen binomials is greatly enhanced by the knowledge of power variations, together with an optimized performance of the electrolyzers. Strategies include the regulation of current densities to minimize hydrogen costs, which depend of the energy prices, the power of installations and utilization factors. The objective is to convert the energy in distinct periods of electricity demand, taking into account the size and efficiency of the equipments; this approach indicates the possibility to reduce costs below a reference price, either by using small facilities which consume high proportions of surplus energy or larger plants for shorter off-peak periods. Thus, we study the viability of large scale production of hydrogen via electrolysis, within the context of excess electricity loads in France (estimated at 22 TWh in 2007): that gives a daily hydrogen potential of 1314 ton, from a total installed power of 5800 MW and average utilization ratios of 42.8%; the production cost approaches 1$/kg H2 , and CO 2 reduction potential amounts 6720 kton/year (if all the produced hydrogen is used to feed 3 million of new fuel-cell vehicles). This analysis serves to demonstrate the great potentials for converting the surplus energy into hydrogen carriers and for managing the power subsystem in thoroughly electrified societies. (author)

  6. Brentwood Lessons Learned Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, Carl H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caton, Melanie C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Christopher D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marcinkoski, Jason [Dept. of Energy (DOE), Washington DC (United States)

    2017-09-26

    The purpose of this report is to document lessons learned in the installation of the hydrogen fueling station at the National Park Service Brentwood site in Washington, D.C., to help further the deployment of hydrogen infrastructure required to support hydrogen and other fuel cell technologies. Hydrogen fueling is the most difficult infrastructure component to build and permit. Hydrogen fueling can include augmenting hydrogen fueling capability to existing conventional fuel fueling stations as well as building brand new hydrogen fueling stations. This report was produced as part of the Brentwood Lessons Learned project. The project consisted of transplanting an existing modular hydrogen fueling station from Connecticut to the National Park Service Brentwood site. This relocation required design and construction at the Brentwood site to accommodate the existing station design as well as installation and validation of the updated station. One of the most important lessons learned was that simply moving an existing modular station to an operating site was not necessarily straight-forward - performing the relocation required significant effort and cost. The station has to function at the selected operating site and this functionality requires a power supply, building supports connecting to an existing alarm system, electrical grounding and lighting, providing nitrogen for purging, and providing deionized water if an electrolyzer is part of the station package. Most importantly, the station has to fit into the existing site both spatially and operationally and not disrupt existing operations at the site. All of this coordination and integration requires logistical planning and project management. The idea that a hydrogen fueling station can be simply dropped onto a site and made immediately operational is generally not realistic. Other important lessons learned include that delineating the boundaries of the multiple jurisdictions that have authority over a project for

  7. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Urbaniec, K.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile

  8. Summarized achievement report on research and development in the Sunshine Project in fiscal 1979. Research on hydrogen energy total systems; 1979 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes discussions on future possibility of introducing hydrogen, by adding the latest data acquired in fiscal 1979 into a hydrogen energy total system calculation model. The critical cost of hydrogen is higher always than other secondary energies up to about 2030. Since it is a presupposition that hydrogen manufacturing is technologically feasible only by using the electrolytic manufacturing process, the hydrogen cost changes with the critical cost of electric power. Thereafter, if a hydrogen manufacturing process of mixed type utilizing heat from a high temperature gas reactor (HTGR) is introduced, the cost will be reduced. However, introduction of HTGR is governed by the nuclear power plan such as HTGR technology development, rather than simply by the economic performance. Value factors showing qualitative advantage of hydrogen have been assigned to different demand sectors, whereas acceptable economic performance may emerge from this effect from about 2010 in sectors having large value factors (such as 2.8 in aircraft fuels). Hydrogen contribution would be about 2.1% in 2020 and 5.5% in 2030 of the whole energy demand. (NEDO)

  9. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  10. Hydrogen as an energy storage; Wasserstoff als Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Christina [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft; Hustadt, Daniel; Weinmann, Oliver [Vattenfall Europe Innovation GmbH, Hamburg (Germany)

    2013-05-15

    In order to investigate hydrogen in everyday life, its utilization will be tested and optimized in different scenarios in demonstration facilities. Currently, the excess current for example from wind power plants is not yet sufficient in order to refinance the high investment costs for electrolyzers. Under what conditions do economic potentials exist for the use of hydrogen?.

  11. Project, building and utilization of a tomograph of micro metric resolution to application in soil science

    International Nuclear Information System (INIS)

    Macedo, Alvaro; Torre Neto, Andre; Cruvinel, Paulo Estevao; Crestana, Silvio

    1996-08-01

    This paper describes the project , building and utilization of a tomograph of micro metric resolution in soil science. It describes the problems involved in soil's science study and it describes the system and methodology

  12. Hydrogen and fuel cell activity report - France 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The report gathers the main outstanding facts which occurred in France in the field of hydrogen and fuel cells in 2010. After having noticed some initiatives (the Grenelle II law, an investment package, the new role of the CEA, the new role of the IFP), the report presents several projects and programs regarding hydrogen: ANR programs, creation of a national structure (the HyPaC platform), regional initiatives and local actions, colloquiums and meetings in France and in the world, research projects (photo-synthesis as a new electric energy source), a technical-economic investigation (HyFrance3), demonstrator projects (the Althytude project by GDF and Suez, the Plathee hybrid locomotive by the SNCF, the H2E project, the Zero CO 2 sailing boat, and the Myrte project), educational applications, activity in small and medium-sized enterprises (CETH, SAGIM, HYCAN, McPhy, N-GHY).

  13. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  14. Report on achievements in fiscal 1984 on surveys and studies commissioned from Sunshine Project. Surveys and studies on patent information. (Hydrogen energy); 1984 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    With an objective of smooth and efficient promotion of Sunshine Project, surveys were made on inventions related to Sunshine Project. This paper reports the survey result on patents applied for in 1984 in relation with hydrogen energy. With regard to manufacture of hydrogen using photo-chemical method, there is a number of patent applications that relate to methods to adjust semiconductors used as photo catalysts. Fossil fuel related patents were seen mainly in reforming fuels from methanol. In the electrolytic method related patents, those on electrodes and SPE are overwhelmingly great in number. However, researches on SPE are thought somewhat declining in activity. Regarding hydrogen transportation and storage, the trend differs now from the previous trend in which large increase had been continuing, and the number has hit the ceiling. Attention is given continually on new hydrogen absorbing alloys. With respect to hydrogen fuel cells, patent applications are still many in phosphoric acid fuel cells and molten salt fuel cells, and their systems. Applications for alkaline type fuel cell patent are also increasing. (NEDO)

  15. Ageing of Mg-Ni-H hydrogen storage alloys

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2012-01-01

    Roč. 37, OCT (2012), s. 14257-14264 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA106/09/0814; GA ČR(CZ) GAP108/11/0148 Institutional research plan: CEZ:AV0Z20410507 Keywords : Magnesium alloys * Hydrogen desorption * Hydrogen storage * Hydrogen-storage materials * Ageing Subject RIV: JG - Metallurgy Impact factor: 3.548, year: 2012

  16. Hydrogen Education Curriculum Path at Michigan Technological University

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Jason; Crowl, Daniel; Caspary, David; Naber, Jeff; Allen, Jeff; Mukerjee, Abhijit; Meng, Desheng; Lukowski, John; Solomon, Barry; Meldrum, Jay

    2012-01-03

    The objective of this project was four-fold. First, we developed new courses in alternative energy and hydrogen laboratory and update existing courses in fuel cells. Secondly, we developed hydrogen technology degree programs. Thirdly, we developed hydrogen technology related course material for core courses in chemical engineering, mechanical engineering, and electrical engineering. Finally, we developed fuel cell subject material to supplement the Felder & Rousseau and the Geankoplis chemical engineering undergraduate textbooks.

  17. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  18. Using EPA Tools and Data Services to Inform Changes to Design Storm Definitions for Wastewater Utilities based on Climate Model Projections

    Science.gov (United States)

    Tryby, M.; Fries, J. S.; Baranowski, C.

    2014-12-01

    Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.

  19. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy; Engel, Richard A.

    2011-09-15

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  20. Utilization of the simulators in I and C renewal project of Loviisa NPP

    International Nuclear Information System (INIS)

    Porkholm, K.; Ahonen, A.; Tiihonen, O.

    2006-01-01

    There are two VVER-440 type reactors in Loviisa Nuclear Power Plant. The first unit has been in operation since 1977 and the second since 1980. The availability of the plant as well as the operational experiences of the I and C systems are good. However it is obvious that the lifetime of the original I and C systems is not sufficient to guarantee the good availability of the plant in the future. Due to this fact a project for the renewal of the existing I and C systems has been started at Loviisa Nuclear Power Plant. In the project the analogue I and C systems will be renewed by digital I and C systems in four phases during 2005...2014. Simulators will be utilized extensively in the project to assure that the renewal of I and C systems can be realized safely and economically. An engineering simulator will be used in the design and validation of the modifications of the renewal I and C systems. A development simulator is aimed for the design, testing and acceptance of the new Man Machine Interface. A testing simulator will be used for the testing of the new I and C systems and retuning of the controllers mainly during the Factory Acceptance Tests. A training simulator will be used in training the operators and the other technical personnel in the operation of the new monitor-based control room facilities. All the simulators in the renewal project are based on APROS (Advanced PROcess Simulator) Simulation Software. Fortum Nuclear Services Ltd and the Technical Research Centre of Finland have developed APROS Simulation Software since 1986. APROS is a good example of the real multifunctional simulation software; i.e. it can be used in process and automation design, safety analysis and training simulator applications. APROS has been used extensively for various analysis and simulation tasks of the Loviisa Nuclear Power Plant in the past years. It has also been applied to various nuclear and thermal power plants elsewhere. First a short overview of Loviisa Nuclear Power

  1. A local energy market for electricity and hydrogen

    DEFF Research Database (Denmark)

    Xiao, Yunpeng; Wang, Xifan; Pinson, Pierre

    2017-01-01

    The proliferation of distributed energy resources entails efficient market mechanisms in distribution-level networks. This paper establishes a local energy market (LEM) framework in which electricity and hydrogen are traded. Players in the LEM consist of renewable distributed generators (DGs......), loads, hydrogen vehicles (HVs), and a hydrogen storage system (HSS) operated by a HSS agent (HSSA). An iterative LEM clearing method is proposed based on the merit order principle. Players submit offers/bids with consideration of their own preferences and profiles according to the utility functions...

  2. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  3. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  4. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  5. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  6. Anomalously deep penetration of hydrogen into niobium under action of pulse high temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Didyk, A.Yu.

    2011-01-01

    The method of elastic recoil detection (ERD) has been used for the study of storage and redistribution processes of hydrogen atoms under the influence of pulse high temperature hydrogen plasma obtained using the 'Plasma Focus' PF-4 set-up in three high purity niobium foils. It was established that with an increase of number of PF-4 set-up pulses there occur spreading and transfer of implanted hydrogen atoms to large depths in three Nb-foils which are significantly larger than the projected range of hydrogen ions (with the velocity ∼ 10 8 cm/s). The maximum hydrogen concentration up to 60 at. % is reached in the nearest to Ph-4 surface of the third Nb-foil at 20 impulses of the Ph-4 set-up. The observed phenomenon can be described by transfer of implanted hydrogen atoms under the action of powerful shock waves, created by pulse hydrogen plasma and (or) by accelerating hydrogen atom diffusion under the influence of compression straining wave at the front of the shock wave at redistribution of hydrogen atoms at large depths. Similar behavior was discovered and described also in series of nickel, vanadium, niobium and tantalum foils (two or three foils and more in a series) including series of foils from heterogeneous (different) materials, which were studied, too

  7. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on promotion of international cooperation in the WE-NET project in fiscal 1996. The WE-NET project aims at development of the total system for hydrogen production, transport, storage and utilization, and construction of the earth-friendly innovative global clean energy network integrating elemental technologies. Since the standpoint is different between latent resource supplying countries and technology supplying countries, the WE-NET project should be constantly promoted under international understanding and cooperation. The committee distributed the annual summary report prepared by NEDO to overseas organizations, and made positive PR activities in the 11th World Conference and others. The committee made the evaluation on the improvement effect of air pollution by introducing a hydrogen vehicle in combination with Stanford University, and preparation of PR video tapes for hydrogen energy. Preliminary arrangement of Internet home pages, establishment of a long-term vision for international cooperation, and proposal toward the practical WE-NET are also made. 9 figs., 13 tabs.

  8. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  9. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  10. National FCEV and Hydrogen Fueling Station Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian; Melaina, Marc

    2016-06-09

    This presentation provides a summary of the FY16 activities and accomplishments for NREL's national fuel cell electric vehicle (FCEV) and hydrogen fueling station scenarios project. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting on June 9, 2016, in Washington, D.C.

  11. Utilizing social media for informal ocean conservation and education: The BioOceanography Project

    Science.gov (United States)

    Payette, J.

    2016-02-01

    Science communication through the use of social media is a rapidly evolving and growing pursuit in academic and scientific circles. Online tools and social media are being used in not only scientific communication but also scientific publication, education, and outreach. Standards and usage of social media as well as other online tools for communication, networking, outreach, and publication are always in development. Caution and a conservative attitude towards these novel "Science 2.0" tools is understandable because of their rapidly changing nature and the lack of professional standards for using them. However there are some key benefits and unique ways social media, online systems, and other Open or Open Source technologies, software, and "Science 2.0" tools can be utilized for academic purposes such as education and outreach. Diverse efforts for ocean conservation and education will continue to utilize social media for a variety of purposes. The BioOceanography project is an informal communication, education, outreach, and conservation initiative created for enhancing knowledge related to Oceanography and Marine Science with an unbiased yet conservation-minded approach and in an Open Source format. The BioOceanography project is ongoing and still evolving, but has already contributed to ocean education and conservation communication in key ways through a concerted web presence since 2013, including a curated Twitter account @_Oceanography and BioOceanography blog style website. Social media tools like those used in this project, if used properly can be highly effective and valuable for encouraging students, networking with researchers, and educating the general public in Oceanography.

  12. Storage of hydrogen in advanced high pressure container. Appendices

    International Nuclear Information System (INIS)

    Bentzen, J.J.; Lystrup, A.

    2005-07-01

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  13. Proceedings of the 1994 DOE/NREL Hydrogen Program Review, April 18--21, 1994, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US Department of Energy has conducted programs of research and development in hydrogen and related technologies since 1975. The current program, conducted in accordance with the DOE Hydrogen Program Plan FY 1993--FY 1997 published in June 1992, establishes program priorities and guidance for allocating funding. The core program, currently under the Office of Energy Management, supports projects in the areas of hydrogen production, storage, and systems research. At an annual program review, each research project is evaluated by a panel of technical experts for technical quality, progress, and programmatic benefit. This Proceedings of the April 1994 Hydrogen Program Review compiles all research projects supported by the Hydrogen Program during FY 1994. For those people interested in the status of hydrogen technologies, we hope that the Proceedings will serve as a useful technical reference. Individual reports are processed separately.

  14. Embedding Systems Thinking into EWB Project Planning and Development: Assessing the Utility of a Group Model Building Approach

    Directory of Open Access Journals (Sweden)

    Kimberly Pugel

    2017-11-01

    Full Text Available Amongst growing sociotechnical efforts, engineering students and professionals both in the international development sector and industry are challenged to approach projects more holistically to achieve project goals.  Engineering service learning organizations must similarly adapt their technological projects to consider varying cultural and economic structures, ensuring more resilient social progress within development efforts.  In practice, systems thinking approaches can be utilized to model the social, economic, political, and technological implications that influence the sustainability of an engineering project. This research assesses the utility of integrating systems thinking into Engineers Without Borders (EWB project planning and development, thereby improving project impact and more effectively engaging members.  At a workshop held at an EWB-USA 2016 Regional Conference, the authors presented a planning and evaluation framework that applies group model building with system dynamics to foster systems thinking through factor diagramming and analysis. To assess the added value of the framework for EWB project planning and development, extensive participant feedback was gathered and evaluated during the workshop and through an optional post-workshop survey.  Supported by thoughtful observations and feedback provided by the EWB members, the model building workshop appeared to help participants reveal and consider project complexities by both visually and quantitatively identifying key non-technical and technical factors that influence project sustainability.  Therefore, system dynamics applied in a group model building workshop offers a powerful supplement to traditional EWB project planning and assessment activities, providing a systems-based tool for EWB teams and partner communities to build capacity and create lasting change.

  15. Challenges in the transition toward a hydrogen-based society. An in-depth study to assess the potential of a transition to a hydrogen-based energy supply in Europe

    International Nuclear Information System (INIS)

    Mourik, R.; De Groot, A.; Jeeninga, H.

    2006-12-01

    The Hysociety project, financed under the FP5 framework of the European Commission, aimed to contribute to European policies on hydrogen-related issues through the development of an action plan for the introduction of hydrogen. The geographic target was Europe, focusing on the 15 European Union member states, plus Norway and Iceland. In addition, demonstration projects in Canada, the United States, Japan, Brazil, and China were analyzed. Work package 1 addressed the technological, infrastructural, ecological, economic, political, and cultural challenges of the transition to a hydrogen-based society. The work built upon an analysis of the challenges identified in demonstration projects in all participating countries. In this article we first discuss the transition theory and the methodology used in Hysociety work package 1 and conclude with a discussion of results of the Hysociety project

  16. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  17. NASA Hydrogen Research at Florida Universities

    International Nuclear Information System (INIS)

    David L Block; Ali T-Raissi

    2006-01-01

    This paper presents a summary of the activities and results from 36 hydrogen research projects being conducted over a four-year period by Florida universities for the U. S. National Aeronautics and Space Administration (NASA). The program entitled 'NASA Hydrogen Research at Florida Universities' is managed by the Florida Solar Energy Center (FSEC). FSEC has 22 years of experience in conducting research in areas related to hydrogen technologies and fuel cells. The R and D activities under this program cover technology areas related to production, cryogenics, sensors, storage, separation processes, fuel cells, resource assessments and education. (authors)

  18. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry.

    Science.gov (United States)

    Morrison, Lindsay J; Chai, Wenrui; Rosenberg, Jake A; Henkelman, Graeme; Brodbelt, Jennifer S

    2017-08-02

    Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.

  19. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  20. Massachusetts Institute of Technology School of Chemical Engineering Practice, Brookhaven station: Summary of projects, 1983-1986

    International Nuclear Information System (INIS)

    1987-11-01

    The MIT Graduate School of Chemical Engineering Practice stresses engineering problem solving. The Practice School program, as it is commonly called, develops in a unique and particularly effective way the student's ability to apply fundamentals to problems in the chemical industry and thus accelerates one's professional development. The themes of atomization, emthanol production and utilization, hydrogen production and compression, localized electrochemical corrosion and biochemical engineering reflect some of the major programs at the Laboratory. The titles of all the projects are listed in chronological order in the index at the end of this document. Brief summaries are presented for each project with related projects grouped together

  1. Nippon oil's activities toward realization of hydrogen society

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kojiro; Okazaki, Junji; Kobori, Yoshihiro; Iki, Hideshi [Nippon Oil Corporation (Japan)

    2010-07-01

    Nippon Oil Corporation, a major Japanese energy distributor, has been devoting extensive efforts toward the establishment of hydrogen supply systems. The Council on Competitiveness-Nippon (COCN), an advisory organization which has influence on Japanese government policy, has announced that the establishment of hydrogen infrastructure should be started in 2015. By that time, we plan to have completed the development of necessary technologies for the infrastructure. It is well recognized that the storage and transportation of hydrogen is the sticking point on the path to realization of a hydrogen economy. The scope of our research covers key technologies for hydrogen storage and transportation, including carbon fiber reinforced plastic (CFRP) tanks for compressed hydrogen gas, hydrogen storage materials, and hydrogen transportation systems which utilize organic chemical hydride (OCH). This article describes Nippon Oil's strategy for realization of the hydrogen economy. (orig.)

  2. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  3. Overview of HTGR utilization system developments at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Inagaki, Y.

    1997-01-01

    JAERI has been constructing a 30-MWt HTGR, named HTTR, to develop technology and to demonstrate effectiveness of high-temperature nuclear heat utilization. A hydrogen production system by natural gas steam reforming is to be the first heat utilization system of the HTTR since its technology matured in fossil-fired plant enables to couple with HTTR in the early 2000's and technical solutions demonstrated by the coupling will contribute to all other hydrogen production systems. The HTTR steam reforming system is designed to utilize the nuclear heat effectively and to achieve hydrogen productivity competitive to that of a fossil-fired plant with operability, controllability and safety acceptable enough to commercialization, and an arrangement of key components was already decided. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test is planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions. The out-of-pile system is an approximately 1/20-1/30 scale system of the HTTR steam reforming system and simulates key components downstream from an IHX

  4. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  5. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  6. Proceedings of the 1996 U.S. DOE hydrogen program review. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The 29 papers contained in Volume 1 are related to systems analysis and hydrogen production. Papers in the systems analysis section discuss utility markets, comparison of hydrogen with other alternative fuels, hydrogen vehicles, renewable hydrogen production, storage, and detection, and hydrogen storage systems development. Hydrogen production methods include the use of algae, photosynthesis, glucose dehydrogenase, syngas, photoelectrochemical reactions, photovoltaics, water electrolysis, solar photochemical reactions, pyrolysis, catalytic steam reforming, municipal solid wastes, thermocatalytic cracking of natural gas, and plasma reformers. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. H/CNG pathway to hydrogen

    International Nuclear Information System (INIS)

    Bugyra, W.J.; Martin, D.R.

    2004-01-01

    'Full text:' The addition of hydrogen to natural gas to produce a 'premium' fuel offers an ideal bridge to the hydrogen and fuel cell era. This pathway provides many of the expected benefits of hydrogen and fuel cells, reduces cost and risk, and facilitates the transition to hydrogen incrementally through existing infrastructure, technologies and channels. The H/CNG pathway is evaluated qualitatively and quantitatively in the context of: barriers to introducing hydrogen infrastructure and how they can be addressed; potential benefits (emissions, energy security) and drawbacks (range, technical compatibility) of H/CNG blended fuels; economics; and, comparative analysis to the use of ethanol in gasoline. Leveraging the NGV industry eases the transition to fuel cells by taking advantage of existing infrastructure, technologies, skills, codes and standards, and provides for incremental change that may be more acceptable to consumers, regulators and incumbent technology providers. The greatest benefits can be achieved through a two-track pathway. One would utilize small amounts of hydrogen in existing NGVs and installed power systems - much as ethanol is added to gasoline. The second introduce products designed specifically to operate on higher levels of H/CNG, like buses, in concentrations where the greatest emission benefits can be achieved. (author)

  8. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  9. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  10. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?

    Science.gov (United States)

    Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K

    2010-04-01

    The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.

  11. OTEC to hydrogen fuel cells - A solar energy breakthrough

    Science.gov (United States)

    Roney, J. R.

    Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.

  12. Hydrogen research and nuclear safety: a utility perspective

    International Nuclear Information System (INIS)

    Lau, W.

    1982-01-01

    The main thrust of this paper is to emphasize that research efforts need to be pursued only after the following steps have been taken: 1) identify clearly what decisions are needed; 2) develop an overall decision logic chart and identify the information required for each of the decisions; 3) distinguish confirmatory research from research needed for decision-making information; 4) recognize that an optimized mitigation system is generally not the objective, neither is minimum risk required; 5) assure that the level of studies be consistent with the risk. After having taken the above steps, the authors concluded that a deliberate and distributed ignition system is a viable solution for the hydrogen problem for certain nuclear power plants

  13. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  14. Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development.

    Science.gov (United States)

    Ciriminna, Rosaria; Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-12-20

    The global utilization of hydrogen peroxide, a green oxidant that decomposes in water and oxygen, has gone from 0.5 million tonnes per year three decades ago to 4.5 million tonnes per year in 2014, and is still climbing. With the aim of expanding the utilization of this eminent green chemical across different industrial and civil sectors, the production and use of hydrogen peroxide as a green industrial oxidant is reviewed herein to provide an overview of the explosive growth of its industrial use over the last three decades and of the state of the art in its industrial manufacture, with important details of what determines the viability of the direct production from oxygen and hydrogen compared with the traditional auto-oxidation process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Demonstration of Hydrogen Energy Network and Fuel Cells in Residential Homes

    International Nuclear Information System (INIS)

    Hirohisa Aki; Tetsuhiko Maeda; Itaru Tamura; Akeshi Kegasa; Yoshiro Ishikawa; Ichiro Sugimoto; Itaru Ishii

    2006-01-01

    The authors proposed the setting up of an energy interchange system by establishing energy networks of electricity, hot water, and hydrogen in residential homes. In such networks, some homes are equipped with fuel cell stacks, fuel processors, hydrogen storage devices, and large storage tanks for hot water. The energy network enables the flexible operation of the fuel cell stacks and fuel processors. A demonstration project has been planned in existing residential homes to evaluate the proposal. The demonstration will be presented in a small apartment building. The building will be renovated and will be equipped with a hydrogen production facility, a hydrogen interchange pipe, and fuel cell stacks with a heat recovery device. The energy flow process from hydrogen production to consumption in the homes will be demonstrated. This paper presents the proposed energy interchange system and demonstration project. (authors)

  16. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 6. Development of fuel cell of pure hydrogen fueled solid polymer type; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 6. Junsuiso kyokyu kotai kobunshigata nenryo denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for research and development Task-6. The objective is to verify performance and reliability, by means of field tests, of a power generation plant using fuel cells of pure hydrogen fueled solid polymer type with power transmission terminal efficiency of 45% and output of 30 kW. The fuel cells were developed by using the cathode humidification process as a humidification method suitable for operation at high utilization rates. With a three-cell stack made by using this humidification process (having an effective area of 289 cm{sup 2}), verification was made on the current density of 0.2A/cm{sup 2}, the characteristics of 0.75V or higher, and the uniform voltage distribution performance being the immediate targets. In order to mitigate the hydrogen utilization in the fuel cells, discussions were given on the serial flow system that divides the laminated cells into two blocks. Thus, operation was found possible with the utilization rate in each block reduced to about 80% by selecting an adequate division rate even if the hydrogen utilization rate is 96% in the entire stack. Stable operation has been performed in the 5-kW class power generation test using the cathode interior humidifying system. Specifications for 30-kW class power plant, system configuration, safety, and material balance were discussed. The basic design was made on the hydrogen gas humidity adjusting system. (NEDO)

  17. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  18. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    Science.gov (United States)

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  19. Economic feasibility of hydrogen enrichment for reducing NOx emissions from landfill gas power generation alternatives: A comparison of the levelized cost of electricity with present strategies

    International Nuclear Information System (INIS)

    Kornbluth, Kurt; Greenwood, Jason; Jordan, Eddie; McCaffrey, Zach; Erickson, Paul A.

    2012-01-01

    Based on recent research showing that hydrogen enrichment can lower NO x emissions from landfill gas combustion below future NO x emission control standards imposed by both federal and California state regulations, an investigation was performed to compare the levelized cost of electricity of this technology with other options. In this cost study, a lean-burn reciprocating engine with no after-treatment was the baseline case to compare six other landfill gas-to-energy projects. These cases include a lean burn engine with selective catalytic reduction after treatment, a lean-burn microturbine, and four variations on an ultra-lean-burn engine utilizing hydrogen enrichment with each case using a different method of hydrogen production. Only hydrogen enrichment with an in-stream autothermal fuel reformer was shown to be potentially cost-competitive with current strategies for reaching the NO x reduction target in IC engines. - Highlights: ► Levelized cost of electricity for hydrogen enriched combustion was compared. ► Various ultra-lean-burn engines and microturbines with hydrogen were analyzed. ► Combustion with an autothermal fuel reformer was potentially cost-competitive.

  20. Alternative transportation fuels in the USA: government hydrogen vehicle programs

    International Nuclear Information System (INIS)

    Cannon, J.S.

    1993-01-01

    The linkage between natural gas-based transportation and hydrogen-based transportation strategies, two clean burning gaseous fuels, provides a strong policy rationale for increased government sponsorship of hydrogen vehicle research and demonstration programs. Existing federal and state government hydrogen vehicle projects are discussed in this paper: research at the NREL, alternate-fueled buses, Renewable Hydrogen for the State of Hawaii program, New York state alternative transportation fuels program, Colorado program. 9 refs

  1. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  2. Doped phosphorene for hydrogen capture: A DFT study

    Science.gov (United States)

    Zhang, Hong-ping; Hu, Wei; Du, Aijun; Lu, Xiong; Zhang, Ya-ping; Zhou, Jian; Lin, Xiaoyan; Tang, Youhong

    2018-03-01

    Hydrogen capture and storage is the core of hydrogen energy application. With its high specific surface area, direct bandgap, and variety of potential applications, phosphorene has attracted much research interest. In this study, density functional theory (DFT) is utilized to study the interactions between doped phosphorenes and hydrogen molecules. The effects of different dopants and metallic or nonmetallic atoms on phosphorene/hydrogen interactions is systematically studied by adsorption energy, electron density difference, partial density of states analysis, and Hirshfeld population. Our results indicate that the metallic dopants Pt, Co, and Ni can help to improve the hydrogen capture ability of phosphorene, whereas the nonmetallic dopants have no effect on it. Among the various metallic dopants, Pt performs very differently, such that it can help to dissociate H2 on phosphorene. Specified doped phosphorene could be a promising candidate for hydrogen storage, with behaviors superior to those of intrinsic graphene sheet.

  3. Wave power integration with a renewable hydrogen energy system. Paper no. IGEC-1-085

    International Nuclear Information System (INIS)

    St. Germain, L.; Wild, P.; Rowe, A.

    2005-01-01

    In British Columbia, approximately 90% of the electricity generated comes from hydroelectric facilities while another abundant and renewable resource, ocean wave energy, is not being utilized at all. Technologies exist that can capture and convert wave energy but there are few studies examining systemic integration of wave energy devices. This work examines the potential to use wave energy as an input into a hydrogen-based renewable energy system. A model of an oscillating water column (OWC) was developed as a module within TRNSYS where it can be coupled to other existing hydrogen-specific components such as an electrolyser, storage device, and fuel cell. The OWC model accounts for device geometry, dynamics, and generator efficiency. For this particular study, wave profiles generated from hourly average data for a location on the west coast of Vancouver Island are used as a resource input. An analysis of the potential to utilise wave energy is carried out with an emphasis on overall system efficiency and resulting device scaling. The results of the integration of wave energy with other renewable energy inputs into a hydrogen-based system are used to make recommendations regarding technical feasibility of wave power projects on Vancouver Island. (author)

  4. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  5. Basic tuning of hydrogen powered car and artificial intelligent prediction of hydrogen engine characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania, 7001 (Australia); Karri, Vishy [Australian College of Kuwait, P.O. Box 1411, Safat 13015 (Kuwait)

    2010-09-15

    Many studies of renewable energy have shown hydrogen is one of the major green energy in the future. This has lead to the development of many automotive application of using hydrogen as a fuel especially in internal combustion engine. Nonetheless, there has been a slow growth and less knowledge details in building up the prototype and control methodology of the hydrogen internal combustion engine. In this paper, The Toyota Corolla 4 cylinder, 1.8l engine running on petrol was systematically modified in such a way that it could be operated on either gasoline or hydrogen at the choice of the driver. Within the scope of this project, several ancillary instruments such as a new inlet manifold, hydrogen fuel injection, storage system and leak detection safety system were implemented. Attention is directed towards special characteristics related to the basic tuning of hydrogen engine such as: air to fuel ratio operating conditions, ignition timing and injection timing in terms of different engine speed and throttle position. Based on the experimental data, a suite of neural network models were tested to accurately predict the effect of different engine operating conditions (speed and throttle position) on the hydrogen powered car engine characteristics. Predictions were found to be {+-}3% to the experimental values for all of case studies. This work provided better understanding of the effect of hydrogen engine characteristic parameters on different engine operating conditions. (author)

  6. Thermophilic anaerobic acetate-utilizing methanogens and their metabolism

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana

    Six strains of thermophilic anaerobic acetate-utilizing methanogens were isolated from different full-scale thermophilic biogas plants in China and Denmark. The strain isolated from the Chinese biogas plant was designated KN-6P and the isolates from the Danish full-scale biogas plants were......, utilizing the substrates acetate, methanol and methylamines but not hydrogen/carbon dioxide. Strain Methanosarcina sp. SO-2P was able to grow mixotrophically on methanol and hydrogen/carbon dioxide with methane formation from hydrogen and carbon dioxide occurring after methanol depletion. All six...... designated HG-1P, LVG-4P R1-1P, SO-2P and V-1P. The isolates were characterized morphologically and physiologically, and their immunological and phylogenetic relatedness to already known isolated strains were established. All isolated strains were identified as organisms belonging to genus Methanosarcina...

  7. HSAPS market analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckner, Ronny; Aaberg, Rolf Jarle

    2006-12-15

    The H-SAPS (Hydrogen Stand-Alone Power System) project, an EU project within the ALTENER programme in the period 2002-2004, was initiated to determine the potential for the introduction of environmentally benign hydrogen technology in what is believed to be a near-term market, namely stand-alone power systems (SAPS). The objective of the project was to examine the technological, political, social and economical factors affecting the emergence of hydrogen technology in the stand-alone power system market today and in the future. The scope of the project was limited to small and medium sized stand-alone power systems, up to a few hundred kilowatts (kW) power rating and based on renewable energy as the primary energy source. The work was divided into five phases: (1) Inception, (2) Data collection and analysis, (3) Market analysis and barrier removal, (4) Dissemination, and (5) Final report. Separate reports were written on these topics, and later summarised this final report. The H-SAPS-project identified the following critical technical barriers (in prioritized order): (1) High costs of both electrolyser and fuel cell solutions, (2) Short lifetime warranties and little lifetime experience for PEM electrolysers and PEM fuel cells, (3) Low energy efficiency of the hydrogen energy system (critical for small systems), and (4) The need to develop easy-to-use and energy efficient gas and electricity control systems. One of the main conclusions from the project is that there is a need to focus on interim solutions, based on conventional energy technologies (e.g., internal combustion engines instead of fuel cells), in order for H-SAPS to compete in the near-term SAPS-market (author) (ml)

  8. HSAPS market analysis project

    International Nuclear Information System (INIS)

    Gloeckner, Ronny; Aaberg, Rolf Jarle

    2006-12-01

    The H-SAPS (Hydrogen Stand-Alone Power System) project, an EU project within the ALTENER programme in the period 2002-2004, was initiated to determine the potential for the introduction of environmentally benign hydrogen technology in what is believed to be a near-term market, namely stand-alone power systems (SAPS). The objective of the project was to examine the technological, political, social and economical factors affecting the emergence of hydrogen technology in the stand-alone power system market today and in the future. The scope of the project was limited to small and medium sized stand-alone power systems, up to a few hundred kilowatts (kW) power rating and based on renewable energy as the primary energy source. The work was divided into five phases: (1) Inception, (2) Data collection and analysis, (3) Market analysis and barrier removal, (4) Dissemination, and (5) Final report. Separate reports were written on these topics, and later summarised this final report. The H-SAPS-project identified the following critical technical barriers (in prioritized order): (1) High costs of both electrolyser and fuel cell solutions, (2) Short lifetime warranties and little lifetime experience for PEM electrolysers and PEM fuel cells, (3) Low energy efficiency of the hydrogen energy system (critical for small systems), and (4) The need to develop easy-to-use and energy efficient gas and electricity control systems. One of the main conclusions from the project is that there is a need to focus on interim solutions, based on conventional energy technologies (e.g., internal combustion engines instead of fuel cells), in order for H-SAPS to compete in the near-term SAPS-market (author) (ml)

  9. Planning your first wind power project. A primer for utilities: Everything you need to know to bring your first wind power plant on-line

    International Nuclear Information System (INIS)

    Conover, K.; Davis, E.

    1994-12-01

    This primer has been prepared to help utility personnel become familiar with some or the details relative to wind power technology and project development. It is written as a series of relatively independent chapters to address specific topics or phases of wind power evaluation and development as they might occur within a utility. The topics include: wind prospecting and the first pass analysis, resource validation, project feasibility, resource planning and evaluation, resource acquisition, project development, equipment selection, project design and construction, and plant operation and maintenance

  10. Utility-Scale Solar 2013: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    OpenAIRE

    Bolinger, M; Weaver, S

    2014-01-01

    The utility-scale solar sector has led the overall U.S. solar market in terms of installed capacity since 2012. In 2016, the utility-scale sector installed more than 2.5 times as much new capacity as did the residential and commercial sectors combined, and is expected to maintain its dominant position for at least another five years. This report—the fifth edition in an ongoing annual series—provides data-driven analysis of the utility-scale solar project fleet in the United States. We analyze...

  11. Hawaiian hydrogen mass transit system

    International Nuclear Information System (INIS)

    Russell, G.W.; Russell, A.

    1990-01-01

    This paper proposes a joint effort between the scientific and business communities; to create, make and have hydrogen fuel become the primary fuel of the future. Hawaii has abundant, unharnessed renewable resources yet imports almost all of its fuel. Initiating hydrogen production and industrial application in conjunction with a prototype pilot project such as this mass transit system would not only accomplish the joining of science and business but give an environmentally safe energy alternative to the state and people of Hawaii and hopefully the world

  12. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  13. USE OF THE MODULAR HELIUM REACTOR FOR HYDROGEN PRODUCTION

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.

    2003-01-01

    OAK-B135 A significant ''Hydrogen Economy'' is predicted that will reduce our dependence on petroleum imports and reduce pollution and greenhouse gas emissions. Hydrogen is an environmentally attractive fuel that has the potential to displace fossil fuels, but contemporary hydrogen production is primarily based on fossil fuels. The author has recently completed a three-year project for the US Department of Energy (DOE) whose objective was to ''define an economically feasible concept for production of hydrogen, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-slitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen, and to select one for further detailed consideration. They selected the Sulfur-Iodine cycle. In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this report

  14. Renewable Energy and Hydrogen System Concepts for Remote Communities in the West Nordic Region

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein; Moerkved, Andreas

    2008-02-25

    In 2003 the Nordic Council of Ministers granted the funding for the first of several studies on renewable energy and hydrogen (RE/H2) energy systems for remote communities in the West Nordic region. The objective with this report is to summarize the main findings from Phase II and III of the West Nordic project. The island Nolsoy, Faroe Islands, was selected as a case study. The main conclusion is that it makes sense to design a wind/diesel-system with thermal storage, both from a techno-economical and environmental point of view. Such systems can have close to 100% local utilization of the wind energy, and can cover up to 75% of the total annual electricity demand and 35% of the annual heat demand at a cost of energy around 0.07 - 0.09 euro/kWh. The introduction of a hydrogen system is technically feasible, but doubles the overall investment costs

  15. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  16. On severe accident hydrogen behaviour in Loviisa

    International Nuclear Information System (INIS)

    Okkonen, T.

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact 'back-of-the-envelope' analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.)

  17. On severe accident hydrogen behaviour in Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact `back-of-the-envelope` analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.).

  18. Model of diffusers / permeators for hydrogen processing

    International Nuclear Information System (INIS)

    Jacobs, W. D.; Hang, T.

    2008-01-01

    Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper. (authors)

  19. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  20. Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.

    1998-03-31

    This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that