WorldWideScience

Sample records for hydrogen transfer reaction

  1. Transfer hydrogenation reactions catalyzed by chiral half-sandwich ...

    Indian Academy of Sciences (India)

    oxidoreductases catalyze transfer hydrogenation of car- ... ruthenium(II) complexes containing (S)-N-substituted- ... 2. Experimental. 2.1 Materials and methods. All reactions and manipulations were routinely per- formed under a nitrogen atmosphere using standard. Schlenk techniques in oven-dried glassware. L-Proline,.

  2. Hydrogen transfer reaction of cyclohexanone with 2-propanol ...

    Indian Academy of Sciences (India)

    Unknown

    Addition of ceria into zinc oxide was found to increase the catalytic activity for hydrogen transfer reaction. The catalytic activity also depended on the method of preparation. Citrate process results in uniformly dispersed mixed oxide with higher catalytic activity. Keywords. Cyclohexanone; ceria; ZnO; diffuse reflectance; EPR.

  3. Hydrogen atom transfer reactions of imido manganese(V) corrole: one reaction with two mechanistic pathways.

    Science.gov (United States)

    Zdilla, Michael J; Dexheimer, Jennifer L; Abu-Omar, Mahdi M

    2007-09-19

    Hydrogen atom transfer (HAT) reactions of (tpfc)MnNTs have been investigated (tpfc = 5,10,15-tris(pentafluorophenyl)corrole and Ts = p-toluenesulfonate). 9,10-Dihydroanthracene and 1,4-dihydrobenzene reduce (tpfc)MnNTs via HAT with second-order rate constants 0.16 +/- 0.03 and 0.17 +/- 0.01 M(-1) s(-1), respectively, at 22 degrees C. The products are the respective arenes, TsNH(2) and (tpfc)Mn(III). Conversion of (tpfc)MnNTs to (tpfc)Mn by reaction with dihydroanthracene exhibits isosbestic behavior, and formation of 9,9',10,10'-tetrahydrobianthracene is not observed, suggesting that the intermediate anthracene radical rebounds in a second fast step without accumulation of a Mn(IV) intermediate. The imido complex (tpfc)Mn(V)NTs abstracts a hydrogen atom from phenols as well. For example, 2,6-di-tert-butyl phenol is oxidized to the corresponding phenoxyl radical with a second-order rate constant of 0.32 +/- 0.02 M(-1) s(-1) at 22 degrees C. The other products from imido manganese(V) are TsNH(2) and the trivalent manganese corrole. Unlike reaction with dihydroarenes, when phenols are used isosbestic behavior is not observed, and formation of (tpfc)Mn(IV)(NHTs) is confirmed by EPR spectroscopy. A Hammett plot for various p-substituted 2,6-di-tert-butyl phenols yields a V-shaped dependence on sigma, with electron-donating substituents exhibiting the expected negative rho while electron-withdrawing substituents fall above the linear fit (i.e., positive rho). Similarly, a bond dissociation enthalpy (BDE) correlation places electron-withdrawing substituents above the well-defined negative slope found for the electron-donating substituents. Thus two mechanisms are established for HAT reactions in this system, namely, concerted proton-electron transfer and proton-gated electron transfer in which proton transfer is followed by electron transfer.

  4. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions

    KAUST Repository

    Chen, Tao

    2012-08-01

    Well-defined P NN CN pincer ruthenium complexes bearing both strong phosphine and weak oxazoline donors were developed. These easily accessible complexes exhibit significantly better catalytic activity in transfer hydrogenation of ketones compared to their PN 3P analogs. These reactions proceed under mild and base-free conditions via protonation- deprotonation of the \\'NH\\' group in the aromatization-dearomatization process. © 2012 Elsevier Ltd. All rights reserved.

  5. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  6. Termolecular proton transfer reactions assisted by ionic hydrogen bond formation: Reactions of aromatic cations with polar molecules

    Science.gov (United States)

    Daly, G. M.; Meot-Ner, M.; Pithawalla, Y. B.; El-Shall, M. S.

    1996-05-01

    We present a new method that applies resonant-two-photon ionization to generate reactant ions selectively in the source of a high-pressure mass spectrometer (R2PI-HPMS) for kinetic and equilibrium studies. Applications to reactions that would be obscured otherwise in a complex system are illustrated in mixtures of benzene with polar solvent molecules (S). We observe a novel type of proton transfer reactions from C6H6+• to two S molecules where S=CH3CN, CH3OH, C2H5OH and CH3COOC2H5, and from C6H5CH3+• to two S molecules where S=CH3OH and C2H5OH to form protonated solvent S2H+ dimers. The reactions are driven by the strong hydrogen bonds in the S2H+ dimers and therefore require the formation of the hydrogen bond concertedly with proton transfer, to make the process energetically feasible. The adducts (C6H6+•)S are observed with blocked solvent molecules where the subsequent switching reaction to yield S2H+ is slow, but not with alcohol reactants that can form hydrogen-bonded chains that facilitate fast subsequent proton extraction. Correspondingly, kinetic simulations suggest that the mechanism proceeds through (C6H6+•)S+S→S2H++C6H5• and C6H6+•+2S→S2H++C6H5• reactions, respectively. The rate coefficients of these reactions are in the range 10-13-10-12 cm3 s-1 for the reaction through a bimolecular switching channel and in the range 10-26-10-28 cm6 s-1 for reaction through a direct termolecular proton extraction mechanism. The relation to energetics and reactant structure is examined.

  7. Barrier heights of hydrogen-transfer reactions with diffusion quantum monte carlo method.

    Science.gov (United States)

    Zhou, Xiaojun; Wang, Fan

    2017-04-30

    Hydrogen-transfer reactions are an important class of reactions in many chemical and biological processes. Barrier heights of H-transfer reactions are underestimated significantly by popular exchange-correlation functional with density functional theory (DFT), while coupled-cluster (CC) method is quite expensive and can be applied only to rather small systems. Quantum Monte-Carlo method can usually provide reliable results for large systems. Performance of fixed-node diffusion quantum Monte-Carlo method (FN-DMC) on barrier heights of the 19 H-transfer reactions in the HTBH38/08 database is investigated in this study with the trial wavefunctions of the single-Slater-Jastrow form and orbitals from DFT using local density approximation. Our results show that barrier heights of these reactions can be calculated rather accurately using FN-DMC and the mean absolute error is 1.0 kcal/mol in all-electron calculations. Introduction of pseudopotentials (PP) in FN-DMC calculations improves efficiency pronouncedly. According to our results, error of the employed PPs is smaller than that of the present CCSD(T) and FN-DMC calculations. FN-DMC using PPs can thus be applied to investigate H-transfer reactions involving larger molecules reliably. In addition, bond dissociation energies of the involved molecules using FN-DMC are in excellent agreement with reference values and they are even better than results of the employed CCSD(T) calculations using the aug-cc-pVQZ basis set. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  9. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  10. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    Science.gov (United States)

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for

  11. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  12. Proton transfer reactions and hydrogen-bond networks in protein environments.

    Science.gov (United States)

    Ishikita, Hiroshi; Saito, Keisuke

    2014-02-06

    In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein-protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.

  13. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  14. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  15. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Brett Kimball [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to

  16. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  17. Control of interspecies electron transfer flow during anaerobic digestion: dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs.

    Science.gov (United States)

    Ozturk, S S; Palsson, B O; Thiele, J H

    1989-02-05

    Dynamic reaction diffusion models were used to analyze the consequences of aggregation for syntrophic reactions in methanogenic ecosystems. Flocs from a whey digestor were used to measure all model parameters under the in situ conditions of a particular defined biological system. Fermentation simulations without adjustable parameters could precisely predict the kinetics of H(2) gas production of digestor flocs during syntrophic methanogenesis from ethanol. The results demonstrated a kinetic compartmentalization of H(2) metabolism inside the flocs. The interspecies electron transfer reaction was mildly diffusion controlled. The H(2) gas profiles across the flocs showed high H (2) concentrations inside the flocs at any time. Simulations of the syntrophic metabolism at low substrate concentrations such as in digestors or sediments showed that it is impossible to achieve high H(2) gas turnovers at simultaneously low steady-state H(2) concentrations. This showed a mechanistic contradiction in the concept of postulated low H(2) microenvironments for the anaerobic digestion process. The results of the computer experiments support the conclusion that syntrophic H(2) production may only be a side reaction of H(2) independent interspecies electron transfer in methanogenic ecosystems.

  18. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  19. Isotope Effects as Probes for Enzyme Catalyzed Hydrogen-Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Amnon Kohen

    2013-05-01

    Full Text Available Kinetic Isotope effects (KIEs have long served as a probe for the mechanisms of both enzymatic and solution reactions. Here, we discuss various models for the physical sources of KIEs, how experimentalists can use those models to interpret their data, and how the focus of traditional models has grown to a model that includes motion of the enzyme and quantum mechanical nuclear tunneling. We then present two case studies of enzymes, thymidylate synthase and alcohol dehydrogenase, and discuss how KIEs have shed light on the C-H bond cleavages those enzymes catalyze. We will show how the combination of both experimental and computational studies has changed our notion of how these enzymes exert their catalytic powers.

  20. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation

    Science.gov (United States)

    Hill, Christopher K.; Hartwig, John F.

    2017-12-01

    Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.

  1. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  2. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity.

    Science.gov (United States)

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo

    2014-07-03

    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  3. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  4. Transfer reactions with HELIOS

    Science.gov (United States)

    Wuosmaa, Alan H.

    2011-04-01

    Nucleon-transfer reactions have formed the backbone of nuclear-structure studies for several decades, providing a wealth of information about the energies, quantum numbers, and wave functions of single-particle states in nuclei throughout the nuclear chart. Current trends in nuclear-structure physics and the modern emphasis on properties of neutron-rich nuclei far from stability have renewed interest in such transfer reactions with radioactive beams. Here, the usual combination of light beam and heavy target cannot be used, and measurements must be performed in ``inverse kinematics,'' with a heavy, unstable beam incident on a light target. This arrangement introduces several technical difficulties, including the identification of the reaction products and the resolution of the states of interest in the residual nuclei. A new device, HELIOS (the HELIcal Orbit Spectrometer) at the ATLAS facility at Argonne National Laboratory, solves many of the problems encountered with inverse kinematics including particle identification and energy resolution in the center-of-mass frame. The device utilizes the uniform magnetic field of a large, superconducting solenoid to transport light reaction products from the target to a linear array of position-sensitive silicon detectors. The properties of HELIOS will be described, and examples from the initial research program that focuses on neutron transfer with the (d,p) reaction, using both stable and unstable beams with mass A = 11 to 136, will be presented. Work supported by the U. S. Department of Energy, Office of Nuclear Physics under contract numbers DE-FG02-04ER41320 (WMU) and DE-AC02-06CH11357 (ANL).

  5. Mass Transfer with Chemical Reaction.

    Science.gov (United States)

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  6. Deformed transition-state theory: Deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime.

    Science.gov (United States)

    Carvalho-Silva, Valter H; Aquilanti, Vincenzo; de Oliveira, Heibbe C B; Mundim, Kleber C

    2017-01-30

    A formulation is presented for the application of tools from quantum chemistry and transition-state theory to phenomenologically cover cases where reaction rates deviate from Arrhenius law at low temperatures. A parameter d is introduced to describe the deviation for the systems from reaching the thermodynamic limit and is identified as the linearizing coefficient in the dependence of the inverse activation energy with inverse temperature. Its physical meaning is given and when deviation can be ascribed to quantum mechanical tunneling its value is calculated explicitly. Here, a new derivation is given of the previously established relationship of the parameter d with features of the barrier in the potential energy surface. The proposed variant of transition state theory permits comparison with experiments and tests against alternative formulations. Prescriptions are provided and implemented to three hydrogen transfer reactions: CH 4  + OH → CH 3  + H 2 O, CH 3 Cl + OH → CH 2 Cl + H 2 O and H 2  + CN → H + HCN, widely investigated both experimentally and theoretically. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Versatile cooperative ligand effects in group 9 transition metal catalysis: Applications in transfer hydrogenation & hydrogen autotransfer reactions, ketene & ketene imine synthesis and hydroformylation

    NARCIS (Netherlands)

    Tang, Z.

    2015-01-01

    Cooperative ligand effects of transition metal complexes have a profound impact on the reaction outcome of catalytic reactions, and development of (new) cooperative metal-ligand systems is a hot topic in current catalysis research. Conventional ligands with hydride-accepting/delivering activities

  8. Catalytic transfer-hydrogenations of olefins in glycerol

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2010-11-01

    Full Text Available Glycerol has been successfully employed as a green solvent and hydrogen donor in the biphasic catalytic transfer-hydrogenation of olefins over Pd/C to yield the corresponding paraffins and dihydroxyacetone, respectively. The use of glycerol eased product separation and catalyst recycling and allowed for microwave-assisted reactions.

  9. SUPPORTING INFORMATION Transfer hydrogenation reactions ...

    Indian Academy of Sciences (India)

    1. Mass spectra of C1, C2, C3 and C4 S2-S5. 2. Mass spectrum of hydride complex of C1 S6. 3. NMR spectra of L2, L3, C2 and C3 S7-S19. 4. 1H and 2H NMR spectra of 1-phenylethanol-1-2H1 and 1-phenylethanol S20-S27. employing C1, C2, C3 and C4. 5. HPLC Chromatogram S28-S42. Figure S1: Mass spectrum of C4.

  10. Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction

    KAUST Repository

    Chua, Ming Hui

    2015-08-17

    The straightforward synthesis of 3,5-di(triphenylethylenyl) BODIPYs 1–3 from the condensation of 2-(triphenylethylenyl) pyrrole with aryl aldehydes are surprisingly found to produce side products that are hydrogenated at one of the two triphenylethylene substituents. It was also observed that the subsequent Scholl type reaction of 1 resulted in a “1,2-migratory shift” of one triphenylethylene substituent in addition to a ring closing reaction. Preliminary investigations, including DFT calculations and isolation of intermediates, were conducted to study these unusual observations on BODIPY chemistry.

  11. Transfer reactions in nuclear astrophysics

    Science.gov (United States)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  12. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Boudier, Ariane; Tournebize, Juliana [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France); Bartosz, Grzegorz [Department of Molecular Biophysics, University of Lodz, Lodz (Poland); El Hani, Safae; Bengueddour, Rachid [Laboratoire de Nutrition et Sante, Biology Department, Faculty of Sciences, Ibn Tofail University, Kenitra (Morocco); Sapin-Minet, Anne [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France); Leroy, Pierre, E-mail: pierre.leroy@pharma.uhp-nancy.fr [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Both 1,1-diphenyl-2-picrylhydrazyl radical and its product measurement by HPLC. Black-Right-Pointing-Pointer Lowest limit of detection by monitoring 1,1-diphenyl-2-picryl-hydrazine. Black-Right-Pointing-Pointer Adsorption problem of the radical on HPLC parts have been pointed out. - Abstract: 1,1-Diphenyl-2-picrylhydrazyl (DPPH{center_dot}) is a stable nitrogen centred radical widely used to evaluate direct radical scavenging properties of various synthetic or natural antioxidants (AOs). The bleaching rate of DPPH{center_dot} absorbance at 515 nm is usually monitored for this purpose. In order to avoid the interference of complex coloured natural products used as antioxidant supplements or cosmetics, HPLC systems have been reported as alternative techniques to spectrophotometry. They also rely upon measurement of DPPH{center_dot} quenching rate and none of them permits to identify and measure 1,1-diphenyl-2-picryl-hydrazine (DPPH-H), the reduced product of DPPH{center_dot} resulting from hydrogen atom transfer (HAT), which is the main mechanism of the reaction between DPPH{center_dot} and AOs. We presently report an HPLC method devoted to the simultaneous measurement of DPPH{center_dot} and DPPH-H. Both were fully separated on a C18 column eluted with acetonitrile-10 mM ammonium citrate buffer pH 6.8 (70:30, v/v) and detected at 330 nm. Adsorption process of DPPH{center_dot} onto materials of the HPLC system was pointed out. Consequently, the linearity range observed for DPPH{center_dot} was restricted, thus a much lower limit of detection was obtained for DPPH-H than for DPPH{center_dot} using standards (0.02 and 14 {mu}M, respectively). The method was applied to three commonly used AOs, i.e. Trolox{sup Registered-Sign }, ascorbic acid and GSH, and compared with spectrophotometry. Further application to complex matrices (cell culture media, vegetal extracts) and nanomaterials demonstrated (i) its usefulness because of

  13. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile.

    Science.gov (United States)

    Zhu, Xiao-Qing; Zhang, Ming-Tian; Yu, Ao; Wang, Chun-Hua; Cheng, Jin-Pei

    2008-02-27

    weak one-electron oxidation agents. The energies of the intramolecular hydrogen bond in 3H, 3H+*, and 3* with a hydroxyl group at ortho-position on the 2-phenyl ring were estimated by using experimental method, the results disclose that the hydrogen bond energy is 3.2, 2.8-3.0, and 3.9-4.0 kcal/mol for 3H, 3H+*, and 3* in acetonitrile, respectively, which is favorable for hydrogen atom transfer but unfavorable for hydride transfer from 3H. The relative effective charges on the active center in ZH, ZH+*, Z*, and Z+, which is an efficient measurement of electrophilicity or nucleophilicity as well as dimerizing ability of a chemical species, were estimated by using experimental method; the results indicate that 1*-5* belong to electron-sufficient carbon-radicals, 6*-7* belong to electron-deficient carbon radicals, they are all difficult to dimerize, and that 1+-5+ belong to weak electrophilic agents, 6+-7+ belong to strong electrophilic agents. All these information disclosed in this work could not only supply a gap of the chemical thermodynamics of the five-membered heterocyclic compounds as organic hydride donors, but also strongly promote the fast development of the chemistry and applications of the five-membered heterocyclic organic hydrides.

  14. Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.

    Science.gov (United States)

    Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J

    2010-12-01

    The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.

  15. Abnormal reactions in ethylene hydrogenation process

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhashi, Kazuaki; Urano, Yokichi; Iwasaka, Masaji; Horiguchi, Sadashige; Kondo, Shigeo; Hashiguchi, Yukio

    1987-11-19

    Ethylene hydrogenation under a commercial acethylene hydrogenation catalyst(palladium catalyst supported in cylindrical alumina) and polymerization and/or pyrolysis of ethylene in a higher temperature range were experimentally studied to get basic data and to prevent the abnormal reactions in chemical plants. The danger of ethylene hydrogenation was studied under conditions of hydrogen concentration of 1.5 to 28.6% in the hydrogen-ethylene gas mixture, constant flow rate, temperature of 63/sup 0/C and pressure of 25.5kg/cm/sup 2/. The catalyst had high activity to the ethylene hydrogenation and the temperature of catalyst was easily raised by the reaction heat of ethylene hydrogenation. Both hydrogenation and pyrolysis took place actively at 400/sup 0/C or higher temperature. The outlet temperature of catalyst layer increased with the increase of ethylene flow rate owing to the accumulation of the reaction heat, so that the possibility of runaway reaction became higher. (11 figs, 4 refs)

  16. The rate of second electron transfer to QB(-) in bacterial reaction center of impaired proton delivery shows hydrogen-isotope effect.

    Science.gov (United States)

    Maróti, Ágnes; Wraight, Colin A; Maróti, Péter

    2015-02-01

    The 2nd electron transfer in reaction center of photosynthetic bacterium Rhodobacter sphaeroides is a two step process in which protonation of QB(-) precedes interquinone electron transfer. The thermal activation and pH dependence of the overall rate constants of different RC variants were measured and compared in solvents of water (H2O) and heavy water (D2O). The electron transfer variants where the electron transfer is rate limiting (wild type and M17DN, L210DN and H173EQ mutants) do not show solvent isotope effect and the significant decrease of the rate constant of the second electron transfer in these mutants is due to lowering the operational pKa of QB(-)/QBH: 4.5 (native), 3.9 (L210DN), 3.7 (M17DN) and 3.1 (H173EQ) at pH7. On the other hand, the proton transfer variants where the proton transfer is rate limiting demonstrate solvent isotope effect of pH-independent moderate magnitude (2.11±0.26 (WT+Ni(2+)), 2.16±0.35 (WT+Cd(2+)) and 2.34±0.44 (L210DN/M17DN)) or pH-dependent large magnitude (5.7 at pH4 (L213DN)). Upon deuteration, the free energy and the enthalpy of activation increase in all proton transfer variants by about 1 kcal/mol and the entropy of activation becomes negligible in L210DN/M17DN mutant. The results are interpreted as manifestation of equilibrium and kinetic solvent isotope effects and the structural, energetic and kinetic possibility of alternate proton delivery pathways are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-04-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated.

  18. Modelling and simulations of a Monolith Reactor for three-phase hydrogenation reactions – Rules and recommendations for mass transfer analysis

    OpenAIRE

    Duran-Martinez, Freddy; Julcour-Lebigue, Carine; Billet, Anne-Marie; Larachi, Faïçal

    2016-01-01

    International audience; A strategy for the scale-up of a monolith reactor dedicated to gas-liquid catalytic reactions is worked out; focus is made on the crucial step of gas-liquid mass transfer modelling via a steady-state numerical study based on a single channel and single unit cell representation, using a frame moving with the bubble and solving the liquid phase only. The relevance of this simplified approach is assessed through a specific case (given bubble shape, channel diameter and fl...

  19. Quantum chemical investigation of the intra- and intermolecular proton transfer reactions and hydrogen bonding interactions in 4-amino-5-(2-hydroxyphenyl)-2H-1,2,4-triazole-3(4H)-thione.

    Science.gov (United States)

    Özdemir, Namık

    2013-01-01

    The intramolecular thione-thiol tautomerism and intermolecular double proton transfer reaction of the hydrogen-bonded thione and thiol dimers in the title triazole compound were studied at the B3LYP level of theory using 6-311++G(d,p) basis function. The influence of the solvent on the single and double proton transfer reactions was examined in three solvents (chloroform, methanol and water) using the polarizable continuum model (PCM) approximation. The computational results show that the thione tautomer is the most stable isomer with a very high tautomeric energy barrier both in the gas phase and in solution phase, indicating a quite disfavored process. The solvent effect is found to be sizable with increasing polarity. In the double proton transfer reaction, the thione dimer is found to be more stable than thiol dimer both in the gas phase and in solution phase. The energetic and thermodynamic parameters of the double proton transfer process show that the double proton exchange from thione dimer to thiol dimer is thermodynamically unfavored. However, the exchange from thiol dimer to thione dimer for the gas phase and water phase seems to be feasible with a low barrier height and with a negative value in enthalpy and free energy changes. In addition, the hydrogen bonding interactions were analyzed in the gas phase regarding their geometries and energies. It is found that all complex formations are enthalpically favored, and the stability of the H-bonds comes in the order of S1-H2···N2>N2-H2···S1>N3-H3B···O1. Finally, non-linear optical properties were carried out at the same calculation level in the gas phase.

  20. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  1. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Ternary alloy nanocatalysts for hydrogen evolution reaction. SOUMEN SAHA1, SONALIKA VAIDYA2, KANDALAM V RAMANUJACHARY3,. SAMUEL E LOFLAND4 and ASHOK K GANGULI1,2,∗. 1Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. 2Institute of Nano Science and ...

  2. Organocatalytic asymmetric transfer hydrogenation of imines

    NARCIS (Netherlands)

    de Vries, Johannes G.; Mrsic, Natasa; Mršić, Nataša

    2011-01-01

    The asymmetric organocatalytic transfer hydrogenation of imines can be accomplished in good yields with high enantioselectivities through the use of BINOL-derived phosphoric acids as catalysts and Hantzsch esters or benzothiazoles as the hydride source. The same method can also be applied to the

  3. Recent Developments in Electron Transfer Reactions

    OpenAIRE

    Marcus, Rudolph A.

    1987-01-01

    Earlier results and more recent developments in electron transfer reactions are reviewed. The more recent results include inverted behavior, electronic orientation effects on reaction rates, solvent dynamics, early steps in photosynthesis, and light emission from metal electrodes.

  4. Transfer hydrogenation of olefin from alcohol using a hydrogen-absorbing alloy (CaNi{sub 5}) catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, H.; Tanaka, T.; Sakata, Y.; Tsuchiya, S. [Yamaguchi Univ., Ube (Japan). Faculty of Engineering

    1999-12-20

    Gas-phase reactions between 2-butene and 2-propanol on a hydrogen-absorbing alloy CaNi{sub 5} have been studied in the temperature range of 393 to 473 K. CaNi{sub 5} showed interesting characteristics as an active catalyst for the transfer hydrogenation of butene from propanol as a hydrogen donor. 2-Propanol was effectively dehydrogenated to yield acetone, in which the dissociated hydrogen was completely absorbed by CaNi{sub 5} to form the metal hydride. When the alloy was hydrided to some extent, butene was effectively hydrogenated by the absorbed hydrogen in the metal hydride to produce butane. The overall reaction was expressed as catalytic transfer hydrogenation through the formation of metal hydride intermediates (CaNi{sub 5}H{sub n}). Catalytic transfer hydrogenation on CaNi{sub 5} occurred at 423 K via hydriding of CaNi{sub 5} by 2-propanol dehydrogenation with subsequent dehydriding for the hydrogenation of 2-butene, rather than the direct reaction between 2-butene and 2-propanol on the alloy. (orig.)

  5. Hydrogen generation from low-temperature water-rock reactions

    Science.gov (United States)

    Mayhew, L. E.; Ellison, E. T.; McCollom, T. M.; Trainor, T. P.; Templeton, A. S.

    2013-06-01

    Hydrogen is commonly produced during the high-temperature hydration of mafic and ultramafic rocks, owing to the oxidation of reduced iron present in the minerals. Hydrothermal hydrogen is known to sustain microbial communities in submarine vent and terrestrial hot-spring systems. However, the rates and mechanisms of hydrogen generation below temperatures of 150°C are poorly constrained. As such, the existence and extent of hydrogen-fuelled ecosystems in subsurface terrestrial and oceanic aquifers has remained uncertain. Here, we report results from laboratory experiments in which we reacted ground ultramafic and mafic rocks and minerals--specifically peridotite, pyroxene, olivine and magnetite--with anoxic fluids at 55 and 100°C, and monitored hydrogen gas production. We used synchrotron-based micro-X-ray fluorescence and X-ray absorption near-edge structure spectroscopy to identify changes in the speciation of iron in the materials. We report a strong correlation between molecular hydrogen generation and the presence of spinel phases--oxide minerals with the general formula [M2+M23+]O4 and a cubic crystal structure--in the reactants. We also identify Fe(III)-(hydr)oxide reaction products localized on the surface of the spinel phases, indicative of iron oxidation. We propose that the transfer of electrons between Fe(II) and water adsorbed to the spinel surfaces promotes molecular hydrogen generation at low temperatures. We suggest that these localized sites of hydrogen generation in ultramafic aquifers in the oceanic and terrestrial crust could support hydrogen-based microbial life.

  6. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron-phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  7. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    Directory of Open Access Journals (Sweden)

    B. A. López de Mishima

    2000-03-01

    Full Text Available The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  8. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  9. Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs

    Science.gov (United States)

    Hanson, R. W.

    1997-04-01

    A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction. The reduction of aryl carbonyl compounds to the corresponding methylene derivatives by ammonium formate in the presence of 10% Pd/C at 110°C is compared to their reductive ammonation which occurs at higher temperatures in the absence of the catalyst (the Leuckart reaction). It is suggested that the low cost and simplicity of CTH reactions using ammonium formate as the hydrogen donor, together with the high yields obtained in many cases, make them excellent candidates for inclusion in undergraduate practical programmes. Laboratory instructions are given for the reduction of nitrobenzene to aniline (isolated as benzanilide), benzophenone to diphenylmethanol and fluorenone to fluorene, in all cases using ammonium formate as the hydrogen donor and 10% Pd/C as the catalyst. Thin layer chromatography shows that in each case the product is homogeneous; the yields are essentially quantitative.

  10. Thermally-generated reactive intermediates: Trapping of the parent ferrocene-based o-quinodimethane and reactions of diradicals generated by hydrogen-atom transfers

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, John Michael [Iowa State Univ., Ames, IA (United States)

    1993-09-01

    Ferrocenocyclobutene is prepared by flash vacuum pyrolysis (FVP) of the N-amino-2-phenylaziridine hydrazone of 2-methylferrocenealdehyde. In the second section of this dissertation, a series of hydrocarbon rearrangements were observed. FVP of o-allyltoluene at 0.1 Torr (700--900 C) gives 2-methylindan and indene, accompanied by o-propenyltoluene. FVP of 2-methyl-2`-vinylbiphenyl gives 9-methyl-9,10-dihydrophenanthrene, which fits the proposed mechanism. However, FVP of 2-(o-methylbenzyl)styrene gives mainly anthracene and 1-methylanthracene. This cyclization reaction was also successful with o-allylphenol and o-(2-methylallyl)phenol.

  11. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    With electrocatalysts it is important to be able to distinguish between the effects of mass transport and reaction kinetics on the performance of the catalyst. When the hydrogen evolution reaction (HER) is considered, an additional and often neglected detail of mass transport in liquid...... the gas volume fraction is sufficiently high to facilitate H2 transfer to bubbles within a distance shorter than the diffusion layer thickness. At current densities below about 40 mA/cm2 the model reduces to an analytical approximation that has characteristics similar to the diffusion of H2. At higher...... current densities the increase in the gas volume fraction makes the H2 surface concentration nonlinear with respect to the current density. Compared to the typical diffusion layer model, our model is an extension that allows more detailed studies of reaction kinetics and mass transport in the electrolyte...

  12. Antioxidant activity of wine pigments derived from anthocyanins: hydrogen transfer reactions to the dpph radical and inhibition of the heme-induced peroxidation of linoleic acid.

    Science.gov (United States)

    Goupy, Pascale; Bautista-Ortin, Ana-Belen; Fulcrand, Helene; Dangles, Olivier

    2009-07-08

    The consumption of red wine can provide substantial concentrations of antioxidant polyphenols, in particular grape anthocyanins (e.g., malvidin-3-O-beta-d-glucoside (1)) and specific red wine pigments formed by reaction between anthocyanins and other wine components such as catechin (3), ethanol, and hydroxycinnamic acids. In this work, the antioxidant properties of red wine pigments (RWPs) are evaluated by the DPPH assay and by inhibition of the heme-induced peroxidation of linoleic acid in acidic conditions (a model of antioxidant action in the gastric compartment). RWPs having a 1 and 3 moieties linked via a CH(3)-CH bridge appear more potent than the pigment with a direct 1-3 linkage. Pyranoanthocyanins derived from 1 reduce more DPPH radicals than 1 irrespective of the substitution of their additional aromatic ring. Pyranoanthocyanins are also efficient inhibitors of the heme-induced lipid peroxidation, although the highly hydrophilic pigment derived from pyruvic acid appears less active.

  13. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution

    Science.gov (United States)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming

    2013-06-01

    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  14. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    Science.gov (United States)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  15. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Zieliński, Grzegorz Krzysztof; Samojłowicz, Cezary; Wdowik, Tomasz; Grela, Karol

    2015-03-07

    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity.

  16. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    In this thesis the unimolecular hydrogen transfer reactions (H-shift) in peroxy and acyl peroxy radicals derived from the atmospheric oxidation of volatile organic compounds (VOC) have been investigated. A unimolecular isomerization reaction where a hydrogen atom is moved internally within...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...

  17. Understanding Hydrogen Atom Transfer: from Bond Strengths to Marcus Theory

    Science.gov (United States)

    MAYER, JAMES M.

    2010-01-01

    CONSPECTUS Hydrogen atom transfer (HAT) is one of the most fundamental chemical reactions: A–H + B → A + H–B. It is a key step in a wide range of chemical, environmental, and biological processes. Traditional HAT involves p-block radicals such as tBuO• abstracting H• from organic molecules. More recently, it has been recognized that many transition metal species undergo HAT. This has led to a broader perspective, with HAT viewed as one type of proton-coupled electron transfer (PCET). When transition metal complexes oxidize substrates by removing H• (≡ e– and H+), typically the electron transfers to the metal and the proton transfers to a ligand. Two examples are shown in the Figure: iron-imidazolinate and vanadium-oxo complexes. Although such reagents do not “look like” main group radicals, they have the same pattern of reactivity. For instance, their HAT rate constants parallel the A–H bond strengths within a series of similar reactions. Just like main group radicals, they abstract H• much faster from O–H bonds than from C–H bonds of the same strength. This shows that driving force is not the only determinant of reactivity. We have found that HAT reactivity is well described using a Marcus-theory approach. In the simplest model, the cross relation, kAH/B = (kAH/AkBH/BKeqf)½, predicts the rate constant for AH + B in terms of the self-exchange rate constants (kAH/A for AH + A) and the equilibrium constant. For a variety of transition metal oxidants, kAH/B is predicted within one or two orders of magnitude with only a few exceptions. For 36 organic reactions of oxyl radicals, kAH/B is predicted with an average deviation of a factor of 3.8, and within a factor of 5 for all but six of the reactions. These reactions involve both O–H or C–H bonds, occur either in water or organic solvents, and over a range of 1028 in Keq and 1013 in kAH/B. The treatment of organic reactions of O–H bonds includes the well-established kinetic solvent

  18. Main reaction process simulation of hydrogen gas discharge in a ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... ... reactions of hydrogen discharge in small electric vacuum components at low pressure and weak ionization were confirmed. Among the 21 types of reactions in hydrogen discharge process, 11 of them play importnat roles under low pressure and weak ionization in cold cathode electric vacuum device.

  19. Effect of vegetable oil oxidation on the hydrogenation reaction process

    OpenAIRE

    Kalantari, Faranak; Bahmaei, Manochehr; Ameri, Majid; Shoaei, Ehsan

    2010-01-01

    Hydrogenation has been carried out in a batch reactor with three different oxidized bleached oils in order to discover the effect of oxidation on the hydrogenation reaction process. Specifications of hydrogenated oils such as melting point, Iodine value, solid fat content and fatty acid composition of the oxidized oils were compared with their un-oxidized reference oils. Oxidized bleached sunflower oil was hydrogenated to target melting points (34, 39 and 42°C) at higher iodine values vs. its...

  20. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  1. Mechanism of electron transfer reaction of ternary ...

    Indian Academy of Sciences (India)

    The rate of the reaction increases with increasing pH due to the deprotonation equilibria of the complex. The experimental rate law is consistent with a mechanism in which the deprotonated form [CrIII(DPA)(OX)(OH)]2− is more reactive than the conjugated acid. It is proposed that electron transfer proceeds through an ...

  2. Common Hydrogen Bond Interactions in Diverse Phosphoryl Transfer Active Sites

    Science.gov (United States)

    Summerton, Jean C.; Martin, Gregory M.; Evanseck, Jeffrey D.; Chapman, Michael S.

    2014-01-01

    Phosphoryl transfer reactions figure prominently in energy metabolism, signaling, transport and motility. Prior detailed studies of selected systems have highlighted mechanistic features that distinguish different phosphoryl transfer enzymes. Here, a top-down approach is developed for comparing statistically the active site configurations between populations of diverse structures in the Protein Data Bank, and it reveals patterns of hydrogen bonding that transcend enzyme families. Through analysis of large samples of structures, insights are drawn at a level of detail exceeding the experimental precision of an individual structure. In phosphagen kinases, for example, hydrogen bonds with the O3β of the nucleotide substrate are revealed as analogous to those in unrelated G proteins. In G proteins and other enzymes, interactions with O3β have been understood in terms of electrostatic favoring of the transition state. Ground state quantum mechanical calculations on model compounds show that the active site interactions highlighted in our database analysis can affect substrate phosphate charge and bond length, in ways that are consistent with prior experimental observations, by modulating hyperconjugative orbital interactions that weaken the scissile bond. Testing experimentally the inference about the importance of O3β interactions in phosphagen kinases, mutation of arginine kinase Arg280 decreases kcat, as predicted, with little impact upon KM. PMID:25238155

  3. Hydrogen-atom transfer in reactions of organic radicals with [Co-II(por)](center dot) (por = porphyrinato) and in subsequent addition of [Co(H)(por)] to olefins

    NARCIS (Netherlands)

    de Bruin, B.; Dzik, W.I.; Li, S.; Wayland, B.B.

    2009-01-01

    The mechanisms for hydrogen-atom transfer from the cyanoisopropyl radical C-center dot(CH3)(2)CN to [Co-II(por)](center dot) (yielding [Co-III(H)(por)] and CH2=C(CH3)(CN); por = porphyrinato) and the insertion of vinyl acetate (CH2=CHOAc) into the Co-H bond of [Co(H)(por)] (giving

  4. Magnetic resonance studies of photo-induced electron transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    van Willigen, H.

    1992-11-01

    Fourier Transform Electron Paramagnetic Resonance (FT EPR) is useful in study of photochemical reactions: a microwave pulse rotates the electron spin magnetization vector from z (magnetic field) into xy plane ([pi]/2 pulse); the time evolution of magnetization in xy plane, the free induction decay (FID), is sampled. Fourier transform of FID gives the frequency domain EPR spectrum of the free radicals, and the method is ideal for time-resolved studies of free radicals produced by pulsed-laser excitation. Investigations of electron transfer reactions focused on porphyrin (donor) - quinone (acceptor) systems. First, two hydrogen abstraction reactions were studied with FT EPR: photoreduction of acetone with 2-propanol, yielding the acetone ketyl radical, and the reaction of 2-propanol with t-butoxy radicals. Then, the FT EPR study of benzoquinone or duroquinone anion radicals generated by pulsed-laser induced electron transfer from zinc tetraphenylporphyrin (ZnTPP) or tetrasulfonated Zn(TPP), was carried out in homogeneous solution, micellar solutions, and silica gel. Finally, FT EPR was used to study electron transfer quenching of triplet C[sub 60] by electron donors.

  5. The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic flux

    Energy Technology Data Exchange (ETDEWEB)

    Cortés-Arriagada, Diego, E-mail: dcortesr@uc.cl; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Soto, Karla; Toro-Labbé, Alejandro [Nucleus Millennium Chemical Processes and Catalysis, Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago (Chile)

    2014-10-07

    At the PBE-D3/cc-pVDZ level of theory, the hydrogen chemisorption on graphene was analyzed using the reaction force and reaction electronic flux (REF) theories in combination with electron population analysis. It was found that chemisorption energy barrier is mainly dominated by structural work (∼73%) associated to the substrate reconstruction whereas the electronic work is the greatest contribution of the reverse energy barrier (∼67%) in the desorption process. Moreover, REF shows that hydrogen chemisorption is driven by charge transfer processes through four electronic events taking place as H approaches the adsorbent surface: (a) intramolecular charge transfer in the adsorbent surface; (b) surface reconstruction; (c) substrate magnetization and adsorbent carbon atom develops a sp{sup 3} hybridization to form the σC-H bond; and (d) spontaneous intermolecular charge transfer to reach the final chemisorbed state.

  6. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    Science.gov (United States)

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A simple setup for transfer hydrogenations in flow chemistry

    OpenAIRE

    Wirth, Thomas; Hutchings, Matthew

    2016-01-01

    By using a packed-bed reactor with a palladium/charcoal catalyst and ammonium formate or triethylsilane as hydrogen/hydride source, various functional groups including nitro groups, azides and alkenes can be efficiently reduced by a transfer hydrogenation process under mild conditions in a simple flow system.

  8. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  9. Thermophysicochemical Reaction of ZrCo-Hydrogen-Helium System

    Science.gov (United States)

    Jung, Kwangjin; Kang, Hee-Seok; Yun, Sei-Hun; Chung, Hongsuk

    2017-11-01

    Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo-H2-He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which ZrCoHx is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which ZrCoHx decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.

  10. An S-N2-model for proton transfer in hydrogen-bonded systems

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism of proton transfer in donor-acceptor complexes with long hydrogen bonds is suggested. The transition is regarded as totally adiabatic. Two closest water molecules that move synchronously by hindered translation to and from the reaction complex are crucial. The water molecules induce...... a shift of the proton from the donor to the acceptor with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. Expressions for the activation barrier and kinetic hydrogen isotope effect are derived. The general scheme is illustrated with the use...

  11. Transfer Hydrogenation in Open-Shell Nucleotides — A Theoretical Survey

    Directory of Open Access Journals (Sweden)

    Florian Achrainer

    2014-12-01

    Full Text Available The potential of a larger number of sugar models to act as dihydrogen donors in transfer hydrogenation reactions has been quantified through the calculation of hydrogenation energies of the respective oxidized products. Comparison of the calculated energies to hydrogenation energies of nucleobases shows that many sugar fragment radicals can reduce pyrimidine bases such as uracil in a strongly exothermic fashion. The most potent reducing agent is the C3' ribosyl radical. The energetics of intramolecular transfer hydrogenation processes has also been calculated for a number of uridinyl radicals. The largest driving force for such a process is found for the uridin-C3'-yl radical, whose rearrangement to the C2'-oxidized derivative carrying a dihydrouracil is predicted to be exothermic by 61.1 kJ/mol in the gas phase.

  12. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    Science.gov (United States)

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  13. Computational Approach to Electron Charge Transfer Reactions

    DEFF Research Database (Denmark)

    Jónsson, Elvar Örn

    -molecular mechanics scheme, and tools to analyse statistical data and generate relative free energies and free energy surfaces. The methodology is applied to several charge transfer species and reactions in chemical environments - chemical in the sense that solvent, counter ions and substrate surfaces are taken...... statistics and a simple post-sampling scheme used to generate free energy surfaces - which compare to full ab initio calculations. In the last part both the molecular dynamics and hybrid classical and quantum mechanics method are used to generate a vast data set for the accurate analysis of dynamical...... in to account - which directly influence the reactants and resulting reaction through both physical and chemical interactions. All methods are though general and can be applied to different types of chemistry. First, the basis of the various theoretical tools is presented and applied to several test systems...

  14. Diels-Alder reactions onto fluorinated and hydrogenated graphene

    Science.gov (United States)

    Denis, Pablo A.

    2017-09-01

    We studied Diels-Alder (DA) reactions onto functionalized graphene. When fluorine, hydrogen or oxygen functional groups are present on one side of the sheet, the DA cycloadditions become significantly more exergonic when performed on the opposite side. Hydrogen is more effective than fluorine and oxygen to promote these cycloadditions. In contrast with the results obtained for perfect graphene, the functionalization with H, F or O turns the DA reactions exergonic, with ΔG°298 = -127.2 kcal/mol. The reaction barriers are expected to be considerably lowered with respect to perfect graphene because the functional groups significantly reduce the distortion energy.

  15. Enantioselective synthesis of alcohols and amines by iridium-catalyzed hydrogenation, transfer hydrogenation, and related processes.

    Science.gov (United States)

    Bartoszewicz, Agnieszka; Ahlsten, Nanna; Martín-Matute, Belén

    2013-06-03

    The preparation of chiral alcohols and amines by using iridium catalysis is reviewed. The methods presented include the reduction of ketones or imines by using hydrogen (hydrogenations), isopropanol, formic acid, or formate (transfer hydrogenations). Also dynamic and oxidative kinetic resolutions leading to chiral alcohols and amines are included. Selected literature reports from early contributions to December 2012 are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, September 26, 1989--December 26, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1989-12-31

    To gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  17. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, December 26, 1989--March 26, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1990-12-31

    To gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  18. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer

    Science.gov (United States)

    Pan, Hui

    2016-02-01

    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.

  19. Microwave-assisted chemoselective hydrogenation reactions incorporating hydrogen as reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Schmoeger, C.; Gallert, T.; Stolle, A.; Ondruschka, B. [Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller University Jena, Jena (Germany); Bonrath, W. [R and D Chemical Process Technology, DSM Nutritional Products, Basel (Switzerland)

    2011-03-15

    The use of modern microwave equipment affords an easy and safe handling in the laboratory routine. The described quartz reactor system was tested in different reaction types to show its versatile applications. Various liquid-phase hydrogenations were carried out successfully. The construction of the reactor allows the direct introduction of gases into the reaction mixture so that the reduction can be performed with gaseous hydrogen. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Hydrogen-bond dynamics and proton transfer in nanoconfinement

    NARCIS (Netherlands)

    van der Loop, T.H.

    2015-01-01

    Proton transfer is of fundamental importance to both biology and chemistry. Much is known about proton transfer in large water volumes but often proton transfer reactions take place in very small nanometer sized volumes for example between lipid layers and in proton channels in mitochondria and

  1. Hydrogen transport membranes for dehydrogenation reactions

    Science.gov (United States)

    Balachandran,; Uthamalingam, [Hinsdale, IL

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  2. Silicon Nanowires with MoSx and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    S. H. Hsieh

    2016-01-01

    Full Text Available A convenient method was used for synthesizing Pt-nanoparticle/MoSx/silicon nanowires nanocomposites. Obtained Pt-MoSx/silicon nanowires electrocatalysts were characterized by transmission electron microscopy (TEM. The hydrogen evolution reaction efficiency of the Pt-MoSx/silicon nanowire nanocomposite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-MoSx/silicon nanowire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-MoSx/silicon nanowires is also comparable to MoSx/silicon nanowires and Pt/silicon nanowires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-MoSx/silicon nanowires can be attributed to the fast electron transfer between Pt-MoSx/silicon nanowire electrodes and electrolyte interfaces.

  3. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wang, Jiankang; Farrell, James

    2003-09-01

    Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.

  4. Sorption enhanced reaction process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, S.; Anand, M.; Carvill, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  5. Hydrogen Chloride Reaction with Lime and Limestone

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Jensen, Peter I.; Dam-Johansen, Kim

    1992-01-01

    The capacity of solid slaked lime and limestone for binding HCl from a gas phase has been investigated in the temperature range 60-1000 °C. The binding capacity is largest in the range 500-600 °C. However, for slaked lime in the presence of water, a large binding capacity is observed also below 1...... on specific surface area. The kinetics of the binding reaction is governed by diffusion in the solid phase which is proved to follow an unreacted grain-core model. Diffusion coefficient for mass transport in the grain is reported for the temperature range 80-250 °C....

  6. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    Science.gov (United States)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  7. Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode.

    Science.gov (United States)

    Rodenas, Pau; Zhu, Fangqi; Ter Heijne, Annemiek; Sleutels, Tom; Saakes, Michel; Buisman, Cees

    2017-12-01

    Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m-2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m-2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE). With the GDE, hydrogen was oxidized to produce a current density of 2.9 A m-2 at an anode potential of -0.2 V. Addition of bicarbonate to the influent led to production of acetate, in addition to current. At a bicarbonate concentration of 50 mmol L-1, current density increased to 10.7 A m-2 at an anode potential of -0.2 V. This increase in current density could be due to oxidation of formed acetate in addition to oxidation of hydrogen, or enhanced growth of hydrogen oxidizing bacteria due to the availability of acetate as carbon source. The effect of mass transfer was further assessed through enhanced mixing and in combination with the addition of bicarbonate (50 mmol L-1) current density increased further to 17.1 A m-2. Hydrogen gas may offer opportunities as electron donor for bioanodes, with acetate as potential intermediate, at locations where excess hydrogen and no organics are available. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  8. Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg

    2017-01-01

    We have used quantum mechanical chemical calculations (CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ) to investigate the hydrogen shift (H-shift) reactions in acyl peroxy and hydroperoxy acyl peroxy radicals. We have focused on the H-shift reactions from a hydroperoxy group (OOH) (1,X-OOH H...

  9. Heat of reaction and amount of hydrogen needed

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1943-02-17

    This report included tables giving comparative data in several categories for five different catalytic processes: ammonia synthesis, methanol synthesis, liquid-phase in (bituminous) coal hydrogenation (300 atm.), vapor-phase prehydrogenation (catalyst 5058) in coal hydrogenation, and vapor-phase splitting (catalyst 6434) in coal hydrogenation, always in that order. One table gave data standardized to production of one kg of the end product of each process, one gave data standardized to one operating chamber of each process, and one gave data standardized to one operating chamber of each process, and one gave data standardized to production of 25 (metric) tons/hr of end product. Temperature rise with the oven (during the reaction) had to be strictly controlled during hydrogenation in order to minimize undesirable side reactions and to avoid runaway reactions. If the temperature were not controlled, the rise would have been 165/sup 0/C or 150/sup 0/C, compared to 90/sup 0/C or 100/sup 0/C for ammonia or methanol synthesis. Yields per liter of reaction volume were smaller for hydrogenation, so much larger reactors were used, giving larger total yields. Some particular data from the tables (in the order above) were the following: heat of reaction in kcal/kg product: 800, 900, 650, 350, 230; heat of reaction in kcal/hr/chamber: 1.2 to 1.6 x 10/sup 6/, 4.5 x 10/sup 6/, 6 x 10/sup 6/, 8 x 10/sup 6/, 4.5 x 10/sup 6/; no. of chambers necessary for 25 tons/hr: 58,000, 70,000 (of CO and H2), 46,000, 16,500, 9,000. 3 tables.

  10. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  11. Current Topics in the Asymmetric Transfer Hydrogenation of Imines

    Czech Academy of Sciences Publication Activity Database

    Januščák, J.; Václavík, Jiří; Šot, P.; Pecháček, J.; Vilhanová, B.; Kuzma, Marek; Kačer, P.

    2015-01-01

    Roč. 109, č. 7 (2015), s. 492-498 ISSN 0009-2770 R&D Projects: GA ČR GAP106/12/1276; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : asymmetric transfer hydrogenation * ruthenium * isoquinoline Subject RIV: EE - Microbiology, Virology Impact factor: 0.279, year: 2015

  12. palladium-catalysed transfer hydrogenation of alkenes in the ...

    African Journals Online (AJOL)

    ABSTRACT. Catalytic transfer hydrogenation using palladiumfll) chloride, zinc powder and various organic acids proved effective for the reduction of a variety of alkenes at ambient temperature and atmospheric pressure. The method was found to be convenient, economical and uses a stable nonpyrophoric catalyst.

  13. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Corma, Avelino; García-García, Pilar; Rojas-Buzo, Sergio

    2017-11-15

    A series of highly crystalline, porous, hafnium-based metal-organic frameworks (MOFs) have shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone using isopropanol as hydrogen donor and the results are compared with the zirconium-based counterparts. The role of the metal center in Hf-MOFs has been identified and reaction parameters optimized. NMR studies with isotopically labeled isopropanol evidences that the transfer hydrogenation occurs via a direct intermolecular hydrogen transfer route. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity. Generality of the procedure was shown by accomplishing the transformation with aldehydes, ketones and α,β-unsaturated carbonyl compounds. The combination of Hf-MOF-808 with the Brønsted acidic Al-Beta zeolite gives the four-step one-pot transformation of furfural to γ-valerolactone in good yield of 72%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Single-collision studies of energy transfer and chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, J.J. [Columbia Univ., New York, NY (United States)

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  15. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    With electrocatalysts it is important to be able to distinguish between the effects of mass transport and reaction kinetics on the performance of the catalyst. When the hydrogen evolution reaction (HER) is considered, an additional and often neglected detail of mass transport in liquid is the evo......With electrocatalysts it is important to be able to distinguish between the effects of mass transport and reaction kinetics on the performance of the catalyst. When the hydrogen evolution reaction (HER) is considered, an additional and often neglected detail of mass transport in liquid...... current densities the increase in the gas volume fraction makes the H2 surface concentration nonlinear with respect to the current density. Compared to the typical diffusion layer model, our model is an extension that allows more detailed studies of reaction kinetics and mass transport in the electrolyte...

  16. Osmium pyme complexes for fast hydrogenation and asymmetric transfer hydrogenation of ketones.

    Science.gov (United States)

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Siega, Katia; Magnolia, Santo; Rigo, Pierluigi

    2008-01-01

    The osmium compound trans,cis-[OsCl2(PPh3)2(Pyme)] (1) (Pyme=1-(pyridin-2-yl)methanamine), obtained from [OsCl2(PPh3)3] and Pyme, thermally isomerizes to cis,cis-[OsCl2(PPh3)(2)(Pyme)] (2) in mesitylene at 150 degrees C. Reaction of [OsCl2(PPh3)3] with Ph2P(CH2)(4)PPh2 (dppb) and Pyme in mesitylene (150 degrees C, 4 h) leads to a mixture of trans-[OsCl2(dppb)(Pyme)] (3) and cis-[OsCl2(dppb)(Pyme)] (4) in about an 1:3 molar ratio. The complex trans-[OsCl2(dppb)(Pyet)] (5) (Pyet=2-(pyridin-2-yl)ethanamine) is formed by reaction of [OsCl2(PPh3)3] with dppb and Pyet in toluene at reflux. Compounds 1, 2, 5 and the mixture of isomers 3/4 efficiently catalyze the transfer hydrogenation (TH) of different ketones in refluxing 2-propanol and in the presence of NaOiPr (2.0 mol %). Interestingly, 3/4 has been proven to reduce different ketones (even bulky) by means of TH with a remarkably high turnover frequency (TOF up to 5.7 x 10(5) h(-1)) and at very low loading (0.05-0.001 mol %). The system 3/4 also efficiently catalyzes the hydrogenation of many ketones (H2, 5.0 atm) in ethanol with KOtBu (2.0 mol %) at 70 degrees C (TOF up to 1.5 x 10(4) h(-1)). The in-situ-generated catalysts prepared by the reaction of [OsCl2(PPh3)3] with Josiphos diphosphanes and (+/-)-1-alkyl-substituted Pyme ligands, promote the enantioselective TH of different ketones with 91-96 % ee (ee=enantiomeric excess) and with a TOF of up to 1.9 x 10(4) h(-1) at 60 degrees C.

  17. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  18. Density Functional Reactivity Theory Characterizes Charge Separation Propensity in Proton-Coupled Electron Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shubin [Univ. of North Carolina, Chapel Hill, NC (United States); Ess, Daniel H. [Brigham Young Univ., Provo, UT (United States); Univ. of North Carolina, Chapel Hill, NC (United States); Schauer, Cynthia [Univ. of North Carolina, Chapel Hill, NC (United States)

    2011-04-20

    Proton-coupled electron transfer (PCET) reactions occur in many biological and artificial solar energy conversion processes. In these reactions the electron is often transferred to a site distant to the proton acceptor site. In this work, we employ the dual descriptor and the electrophilic Fukui function from density functional reactivity theory (DFRT) to characterize the propensity for an electron to be transferred to a site other than the proton acceptor site. The electrophilic regions of hydrogen bond or van der Waal reactant complexes were examined using these DFRT descriptors to determine the region of space to which the electron is most likely to be transferred. This analysis shows that in PCET reactions the electrophilic region of the reactant complex does not include the proton acceptor site.

  19. Application of Moessbauer Spectroscopy to the Carbon Oxides Hydrogenation Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cubeiro, M. L. [UCV, Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica (Venezuela, Bolivarian Republic of)], E-mail: mcubeiro@strix.ciens.ucv.ve; Gonzalez-Jimenez, F.; Goldwasser, M. R.; Perez-Zurita, M. J.; Pietri, E.; Garcia, L. [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, UCV (Venezuela, Bolivarian Republic of)

    2001-05-15

    Iron-based catalysts have favorable activity and selectivity properties for the CO and CO{sub 2} hydrogenation reactions. Several Fe phases (oxides and carbides) can be present in these catalysts. The interaction of Fe with the other components of the catalyst (support, promoters) can affect the ease of reduction and also its transformation during the reactions. In this work, the relationship between catalytic behavior in the CO and CO{sub 2} hydrogenation reactions and the Fe phase composition of fresh and reacted catalysts was studied. Two types of catalysts were tested: a laterite and the other one made of iron supported on alumina, both unpromoted and promoted with K and Mn. Only those Fe species which can be reduced-carburized, by means of a pretreatment or by an in situ transformation under the reaction, seem to be able to perform the CO or CO{sub 2} hydrogenation. The reoxidation of the Fe carbide to magnetite was not associated to deactivation. The selectivity seems to be more affected by Fe species difficult to reduce than by magnetite produced by reoxidation.

  20. Studies on electron transfer reactions of Keggin-type mixed ...

    Indian Academy of Sciences (India)

    [PVIVW11O40]5- and [PVIVVVW10O40]6-. Oxygraph measurements show that there is no uptake of molecular oxygen during the course of reaction. The reaction proceeds through multi-step electron-proton-electron transfer mechanism, with rate limiting initial one electron transfer from NADH to HPA by outer sphere ...

  1. Enantioselective synthesis of anti-β-hydroxy-α-amido esters by asymmetric transfer hydrogenation in emulsions.

    Science.gov (United States)

    Seashore-Ludlow, Brinton; Villo, Piret; Somfai, Peter

    2012-06-04

    Herein, we present two methods for an asymmetric transfer hydrogenation through the dynamic kinetic resolution of α-amido-β-ketoesters. These procedures yield the corresponding anti-β-hydroxy-α-amido esters in good yields and with good diastereo- and enantioselectivities. First, the scope of the reduction of α-amido-β-ketoesters by using triethylammonium formate azeotrope is examined. Then, an emulsion technology with sodium formate is explored, which allows for broader substrate scope, faster reaction times, and lower catalyst loading. Furthermore, these reactions are operationally simple and can be set up in air. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Heavy ion transfer reactions: Status and perspectives

    Indian Academy of Sciences (India)

    2015-11-27

    array (CLARA), extensive investigations of nuclear structure and reaction dynamics have been carried out. In the present paper aspects of these studies will be presented, focussing more closely on the reaction mechanism, ...

  3. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    Science.gov (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  4. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank

    Science.gov (United States)

    Werkheiser, Arthur

    2015-01-01

    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  5. A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Crisci, Anthony J; Gunther, William R; Michaelis, Vladimir K; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-08-01

    Hf-, Zr- and Sn-Beta zeolites effectively catalyze the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural with primary and secondary alcohols into 2,5-bis(alkoxymethyl)furans, thus making it possible to generate renewable fuel additives without the use of external hydrogen sources or precious metals. Continuous flow experiments reveal nonuniform changes in the relative deactivation rates of the transfer hydrogenation and etherification reactions, which impact the observed product distribution over time. We found that the catalysts undergo a drastic deactivation for the etherification step while maintaining catalytic activity for the transfer hydrogenation step. (119) Sn and (29) Si magic angle spinning (MAS) NMR studies show that this deactivation can be attributed to changes in the local environment of the metal sites. Additional insights were gained by studying effects of various alcohols and water concentration on the catalytic reactivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of vegetable oil oxidation on the hydrogenation reaction process

    Directory of Open Access Journals (Sweden)

    Kalantari, Faranak

    2010-12-01

    Full Text Available Hydrogenation has been carried out in a batch reactor with three different oxidized bleached oils in order to discover the effect of oxidation on the hydrogenation reaction process. Specifications of hydrogenated oils such as melting point, Iodine value, solid fat content and fatty acid composition of the oxidized oils were compared with their un-oxidized reference oils. Oxidized bleached sunflower oil was hydrogenated to target melting points (34, 39 and 42°C at higher iodine values vs. its reference oil with the same reaction time. Oxidized bleached soybean and canola oils were hydrogenated to target melting points (34, 39 and 42°C at higher iodine values as well, but reaction times were longer than their reference oils. The resulting solid fat content and total trans fatty acids of all hydrogenated oils were less than their references. A peroxide value above 0.5meq O2/kg for non auto-oxidized oils and above 5meq O2/kg for auto-oxidized oils will significantly change the hydrogenation process.

    La hidrogenación fue llevada cabo en un reactor discontinuo con tres aceites decoloradas y oxidadas con objeto de estudiar el efecto de la oxidación en el proceso de hidrogenación. Las especificaciones de los aceites hidrogenados tales como el punto de fusión, índice de yodo, contenido de grasa sólida y composición de ácidos grasos de los aceites oxidados fueron comparados con sus correspondientes aceites de referencia sin oxidar. El aceite de girasol decolorado y oxidado fue hidrogenado hasta alcanzar un punto de fusión (34, 39 and 42°C con altos índices de yodo versus su aceite de referencia con el mismo tiempo de reacción. Aceites decolorado y oxidado de soja y de canola fueron hidrogenados hasta alcanzar puntos de fusión (34,39 y 42°C con altos valores de yodo, pero los tiempo de reacción fueron más largos que en sus aceites de referencia. Los resultados del contenido de grasa sólida y ácidos grasos

  7. Excited state intramolecular charge transfer reaction in non-aqueous ...

    Indian Academy of Sciences (India)

    concentration dependent reaction rate constant of a. TICT reaction already measured in bulk electrolyte solutions.44–46 Here, we report such a study where photo-induced intramolecular charge transfer reaction has been investigated in AOT/heptane non-aqueous reverse micelles at different Ws values, and also in.

  8. Studies on electron transfer reactions: Reduction of heteropoly 10 ...

    Indian Academy of Sciences (India)

    Rates of electron transfer reaction of thioglycolic acid with vanadium(V) substituted Keggintype heteropolyanion, [PVVVVW10O40]5-, in acetate-acetic acid buffers have been measured spectrophotometrically at 25°C. The order of the reaction with respect to substrate and oxidant is unity. The reaction shows simple second ...

  9. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several.

  10. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other ...

  11. Geometric phase effects in ultracold hydrogen exchange reaction

    Science.gov (United States)

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, N.

    2016-10-01

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2 (v=4,j=0) \\to HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. Experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.

  12. Dynamics of competitive reactions: endothermic proton transfer and exothermic substitution.

    Science.gov (United States)

    Ren, Jianhua; Brauman, John I

    2004-03-03

    Dynamics of an endothermic proton-transfer reaction, F(-) with dimethyl sulfoxide, and an endothermic proton-transfer reaction with a competing exothermic substitution (S(N)2) channel, F(-) with borane-methyl sulfide complex, were investigated using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) and kinetic modeling. The two proton-transfer reactions have slightly positive and a small negative overall free energy changes, respectively. Energy-dependent rate constants were measured as a function of F(-) ion translational energy, and the resulting kinetics were modeled with the RRKM (Rice-Ramsperger-Kassel-Marcus) theory. The observed rate constants for the proton-transfer reactions of F(-) with dimethyl sulfoxide and with borane-methyl sulfide complex are identical, with a value of 0.17 x 10(-9) cm(3) molecule(-1) s(-1); for the S(N)2 reaction, k = 0.90 x 10(-9) cm(3) molecule(-1) s(-1) at 350 K. Both proton-transfer reactions have positive entropy changes in the forward direction and show positive energy dependences. The competing S(N)2 reaction exhibits negative energy dependence and becomes less important at higher energies. The changes of the observed rate constants agree with RRKM theory predictions for a few kcal/mol of additional kinetic energy. The dynamic change of the branching ratio for the competing proton transfer and the substitution reactions results from the competition between the microscopic rate constants associated with each channel.

  13. Reaction path sampling of the reaction between iron(II) and hydrogen peroxide in aqueous solution

    NARCIS (Netherlands)

    Ensing, B.; Baerends, E.J.

    2002-01-01

    Previously, we have studied the coordination and dissociation of hydrogen peroxide with iron(II) in aqueous solution by Car-Parrinello molecular dynamics at room temperature. We presented a few illustrative reaction events, in which the ferryl ion ([Fe(IV)O

  14. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.

    Science.gov (United States)

    Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T

    2017-12-20

    We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.

  15. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  16. Kinematical coincidence method in transfer reactions

    CERN Document Server

    Acosta, L; Auditore, L; Berceanu, I; Cardella, G; Chatterjiee, M B; De Filippo, E; FrancalanzA, L; Gianì, R; Grassi, L; Grzeszczuk, A; La Guidara, E; Lanzalone, G; Lombardo, I; Loria, D; Minniti, T; Pagano, E V; Papa, M; Pirrone, S; Politi, G; Pop, A; Porto, F; Rizzo, F; Rosato, E; Russotto, P; Santoro, S; Trifirò, A; Trimarchi, M; Verde, G; Vigilante, M

    2012-01-01

    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematic is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of 10Be+p-->9Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained.

  17. Metal-organic frameworks as selectivity regulators for hydrogenation reactions

    Science.gov (United States)

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-01

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe3+, Cr3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design

  18. Proton-transfer in hydrogenated guanine-cytosine trimer neutral species, cations, and anions embedded in B-form DNA.

    Science.gov (United States)

    Lin, Yuexia; Wang, Hongyan; Wu, Yingxi; Gao, Simin; Schaefer, Henry F

    2014-04-14

    The neutral DNA trimers with the hydrogen atom added to the C8 site of the middle guanine-cytosine (GC) base pair, the DNA trimers protonated at the N7 site of the middle GC base pair, and the anionic species resulting from hydride addition to the C6 site of the middle GC base pair are investigated using theoretical methods. The canonical Watson-Crick structures (WC), transition state structures (TS) and proton-transferred structures (PT) of each relevant system are optimized in the gas phase and in aqueous solution, in order to understand the processes of proton transfer. The proton transfer reactions of the DNA trimers are compared with the corresponding isolated hydrogenated GC base pairs to explore the influence of the surrounding molecules and the base sequence. The proton transfer reactions of the neutral species, cations, and anions are compared, aiming to clarify the effects of the system's total charge. The results reveal that the surrounding molecules decrease the reaction energies of proton-transfer in aqueous solution. The structures with the dATGCAT and dGCGCGC sequences facilitate proton H4a transfer, but hinder proton H1 transfer. The structures with the dCGGCCG and dTAGCTA sequences facilitate proton H1 transfer. The net charge on the system plays an important role in determining the single and double proton-transfer patterns. Anions are more likely to experience proton-transfer reactions than neutral species and cations, and all the proton-transfer reactions of the anions are exothermic.

  19. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  20. Controlling factors of tunneling reactions in solid hydrogen at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo E-mail: miyamiya@apchem.nagoya-u.ac.jp; Kumagai, Jun; Kumada, Takayuki

    2001-07-01

    The recent studies on tunneling reactions of our group are auto-reviewed. The local structure around reactants, the new temperature effect, and the impurity effect are pointed out as important controlling factors of tunneling reactions in the solid phase. The distances between H(D) atoms and H{sub 2}(HD, D{sub 2}) molecules in solid hydrogen and solid argon were estimated by ESR, electron nuclear double resonance (ENDOR), and electron spin echo (ESE). The new temperature effects on tunneling reaction were observed in a reaction D+HD{yields}D{sub 2}+H in solid HD. A mechanism of a vacancy-assisted tunneling reaction has been proposed to account for the temperature effect. The strange temperature dependence of a tunneling electron-transfer-reaction H{sub 2}{sup -}+H{sub 2}{yields}H{sub 2}+H{sub 2}{sup -} was explained in terms of the phonon-scattering effect and the impurity effect on the tunneling reaction. The rate constant for a tunneling reaction H+p-H{sub 2}{yields}p-H{sub 2}+H in solid para-H{sub 2} (p-H{sub 2}) decreases with the increase in the concentration of ortho-H{sub 2} (o-H{sub 2}). The results were explained by the model that the orientational defects by o-H{sub 2} molecules affect the tunneling reaction H+p-H{sub 2}. A tunneling reaction at very low temperature gives a surprising example in control of a reaction that a small amount of energy as such 2 cal mol{sup -1} can affect the rate of a reaction. The tunneling reaction in the solid phase, which can be considered as a multidimensional tunneling phenomenon, is affected significantly by the condition surrounding reactants. (author)

  1. Facile Hydrogen Evolution Reaction on WO3Nanorods

    Directory of Open Access Journals (Sweden)

    Rajeswari Janarthanan

    2007-01-01

    Full Text Available AbstractTungsten trioxide nanorods have been generated by the thermal decomposition (450 °C of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3 nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart.

  2. Acid-Base Bifunctional Zirconium N-Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides

    DEFF Research Database (Denmark)

    Li, Hu; He, Jian; Riisager, Anders

    2016-01-01

    Catalytic transfer hydrogenation (CTH) reactions are efficient transformation routes to upgrade biobased chemicals. Herein, we report a facile and template-free route to synthesize a series of heterogeneous nitrogen-containing alkyltriphosphonate-metal hybrids with enhancive Lewis acid and base...... of Lewis basic sites adjacent to acid sites with an appropriate base/acid site ratio (1:0.7) in ZrPN significantly improved the yield of FFA. Mechanistic studies for the transformation of FUR to FFA with ZrPN in 2-propanol-d(8) evidently indicate CTH reaction proceeding via a direct intermolecular hydrogen...

  3. Catalytic Asymmetric Transfer Hydrogenation of Imines: Recent Advances.

    Science.gov (United States)

    Foubelo, Francisco; Yus, Miguel

    2015-10-01

    In this review article recent developments in the asymmetric transfer hydrogenation of imines from 2008 up to today are presented. The main methodology involves either metal-catalyzed procedures in the presence of a chiral ligand or organocatalyzed technologies using a Hantzsch ester and a chiral BINOL-derived phosphoric acid. The most important procedures are collected, paying special attention to the application of this methodology in synthetic organic chemistry. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transfer reactions at the neutron dripline with triton target

    CERN Document Server

    Borge, M J G; Fynbo, H O U; Gomez Camacho, J; Johansen, J; Johansson, H T; Jonson, B; Krücken, R; Kurcewicz, J; Martel, I; Moro, A; Mücher, D; Nilsson, T; Nyman, G; Raabe, R; Randisi, G; Riisager, K; Sambi, S; Sanchez-Benitez, AM; Tengblad, O

    2012-01-01

    Two-neutron transfer to $^{9}$Li will populate the ground state of $^{11}$Li as well as low-lying resonances in a way that is complementary to studies of these states performed at higher beam energies. We aim at detecting the charged particles from the transfer reactions as well as neutrons coming from the decay of possible $^{11}$Li resonances.

  5. Transfer reactions at the neutron dripline with triton target

    CERN Multimedia

    Two-neutron transfer to $^{9}$Li will populate the ground state of $^{11}$Li as well as low-lying resonances in a way that is complementary to studies of these states performed at higher beam energies. We aim at detecting the charged particles from the transfer reactions as well as neutrons coming from the decay of possible $^{11}$Li resonances.

  6. Parallel proton transfer pathways in aqueous acid-base reactions

    NARCIS (Netherlands)

    Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using

  7. Excited state intramolecular charge transfer reaction of 4 ...

    Indian Academy of Sciences (India)

    Administrator

    We will use the twisted intramolecular charge transfer (TICT) model to explain the photo-induced charge transfer ..... full width at half maxima (Γ) are expressed in 103 cm–1. –ΔGr are in kJ mol–1 units. PFH: per- ..... incorrect values of thermodynamic and kinetic parameters calculated using these reaction times, leading to ...

  8. Theory of reversible electron transfer reactions in a condensed phase.

    Science.gov (United States)

    Dhole, Kajal; Modak, Brindaban; Samanta, Alok; Ghosh, Swapan K

    2010-07-01

    We have derived an exact analytical expression for the average forward rate of a reversible electron transfer reaction, modeled through a reaction coordinate undergoing diffusive motion in arbitrary potential wells of the reactant and the product in presence of a localized sink of arbitrary location and strength. The dynamics of diffusive motion is described by employing two coupled generalized diffusion reaction (Smoluchowski) equations with coordinate dependent diffusivity and delta sink. The average forward electron transfer rate constant obtained here for the system, with equilibrium or nonequilibrium distributions as initial condition, is determined by the forward and backward rate constants calculated based on the transition state theory and the weighted average rate for the well dynamics. We also discuss various limiting cases for the rate of electron transfer reactions corresponding to the different experimental situations. As an illustrative example, we have considered back electron transfer (ET) reaction and shown that the present theory can explain the non-Marcus free energy gap dependence of the rate of ET reactions. More importantly, the approach presented here can easily be extended to systems describing the dynamics of diffusive motion in coupled multipotential surfaces associated with electron transfer reactions.

  9. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling...... which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between...... quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment...

  10. Heavy ion transfer reactions: Status and perspectives

    Indian Academy of Sciences (India)

    respond to the transfer of two neutrons in the p3/2 orbital, and we remind that the single-particle form-factors for the p3/2 orbital is much larger than the one for the .... trajectory. The imaginary potential W(r), that describes the depopulation of the entrance channel, at very low energies is dominated by the single-nucleon ...

  11. Proton-transfer reactions in "super" photoacids and supramolecular assemblies

    NARCIS (Netherlands)

    Kumpulainen, T.S.

    2015-01-01

    Transfer of a proton is undoubtedly one of the most elementary and yet one of the most significant reactions in chemical and biological processes and have received great attention during the last 60 years. Surprisingly, the exact mechanism of this elementary reaction is still not fully understood

  12. Studies on electron transfer reactions of Keggin-type mixed ...

    Indian Academy of Sciences (India)

    Administrator

    (PV2) in aqueous phosphate buffer of pH 6 at ambient temperature. Electrochemical and optical studies show that the stoichiometry of the reaction is 1: 2 (NADH : HPA). EPR and optical studies show that HPA act as one electron acceptor and the products of electron transfer reactions are one elec- tron reduced heteropoly ...

  13. Concerted hydrogen atom and electron transfer mechanism for catalysis by lysine-specific demethylase.

    Science.gov (United States)

    Yu, Tao; Higashi, Masahiro; Cembran, Alessandro; Gao, Jiali; Truhlar, Donald G

    2013-07-18

    We calculate the free energy profile for the postulated hydride transfer reaction mechanism for the catalysis of lysine demethylation by lysine-specific demethylase LSD1. The potential energy surface is obtained by using combined electrostatically embedded multiconfiguration molecular mechanics (EE-MCMM) and single-configuration molecular mechanics (MM). We employ a constant valence bond coupling term to obtain analytical energies and gradients of the EE-MCMM subsystem, which contains 45 quantum mechanics (QM) atoms and which is parametrized with density functional calculations employing specific reaction parameters obtained by matching high-level wave function calculations. In the MM region, we employ the Amber ff03 and TIP3P force fields. The free energy of activation at 300 K is calculated by molecular dynamics (MD) umbrella sampling on a system with 102,090 atoms as the maximum of the free energy profile along the reaction coordinate as obtained by the weighted histogram analysis method with 17 umbrella sampling windows. This yields a free energy of activation of only 10 kcal/mol, showing that the previously postulated direct hydride transfer reaction mechanism is plausible, although we find that it is better interpreted as a concerted transfer of a hydrogen atom and an electron.

  14. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  15. High Intrinsic Catalytic Activity of Two-Dimensional Boron Monolayers for Hydrogen Evolution Reaction

    CERN Document Server

    Shi, Li; Ouyang, Yixin; Wang, Jinlan

    2016-01-01

    Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.

  16. Biooxidation of Primary Alcohols to Aldehydes through Hydrogen Transfer Employing Janibacter terrae

    NARCIS (Netherlands)

    Orbegozo, Thomas; Vries, Johannes G. de; Kroutil, Wolfgang

    2010-01-01

    Chemoselective oxidations still represent a challenge for chemists. Lyophilized cells of Janibacter terrae were employed for the chemoselective oxidation of primary alcohols to the corresponding aldehydes by hydrogen transfer with the use of acetaldehyde as the hydrogen acceptor. Secondary alcohol

  17. Transfer reactions below the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D.R.; Stefanini, A.M.; Million, B.; Narayanasamy, M.; Prete, G.; Spolaore, P.; Li Zichang (INFN, Legnaro (Italy) Lab. Nazionali, Legnaro (Italy)); Moreno Gonzalez, H. (INFN, Legnaro (Italy) Lab. Nazionali, Legnaro (Italy) Dept. de Fisica Atomica y Nuclear, Univ. Sevilla (Spain)); Pollarolo, G. (Univ. Turin (Italy) INFN, Turin (Italy)); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; Signorini, C.; Soramel, F. (Univ. Padua (Italy) INFN, Padua (Italy)); Rapisarda, A. (INFN, Catania (Italy))

    1993-03-01

    We report here on the measurements of one-particle transfer cross sections and quasi-elastic scattering of [sup 32]Si+[sup 64]Ni at energies around and well below the Coulomb barrier. The experiment has been performed with the Legnaro Recoil Mass Spectrometer. We have measured the excitation function at [theta][sub cm]=170deg from E[sub lab]=68.3 to 92.4 MeV and the angular distribution at E[sub lab]=81.3 MeV from [theta][sub cm]=120deg to 170deg. The results have been analysed in the framework of the complex WKB theory and the semiclassical approach based on Coulomb trajectories. (orig.).

  18. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis [Columbia Univ., New York, NY (United States)

    2017-01-31

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are going to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I3- and I5- , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.

  19. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    Science.gov (United States)

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  20. The reactions of ground and excited state sodium atoms with hydrogen halide molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1988-10-01

    The reactions of ground and excited state Na atoms with hydrogen halide (HX) molecules have been studied using the crossed molecular beams method. With both increasing translational and increasing electronic energy, the reactive cross sections increase in the reactions of HCl and HBr. From product angular and velocity distributions detailed center-of-mass information is derived. For the reactions of Na (3 2S 1/2, 3 2P 1/2, 4 2D 5/2, 5 2S 1/2) with HCl, the product NaCl is back-scattered with respect to the incoming Na atom in the center-of-mass frame of reference. The reaction of each Na state studied with HCl is direct and proceeds via collinear and near-collinear Na-Cl-H approach geometries. For the Na (3 2P 3/2) and Na (4 2D 5/2) reactions with HCl the predominant transition state symmetry is 2Σ in a collinear (C ∞ν) Na-Cl-H geometry. This is consistent with the reaction proceeding via electron transfer from the Na atom to the halide atom. Absolute reactive cross sections for each state of Na studied with HCl were determined by comparison with both small and large angle elastic scattering. We were unable to observe Na atoms with over 4 eV of electronic energy react with HF up to collision energies of 13 kcal/mole.

  1. Intra- and interspecies transfer and expression of Rhizobium japonicum hydrogen uptake genes and autotrophic growth capability.

    Science.gov (United States)

    Lambert, G R; Cantrell, M A; Hanus, F J; Russell, S A; Haddad, K R; Evans, H J

    1985-05-01

    Cosmids containing hydrogen uptake genes have previously been isolated in this laboratory. Four new cosmids that contain additional hup gene(s) have now been identified by conjugal transfer of a Rhizobium japonicum 122DES gene bank into a Tn5-generated Hup(-) mutant and screening for the acquisition of Hup activity. The newly isolated cosmids, pHU50-pHU53, contain part of the previously isolated pHU1 but extend as far as 20 kilobases beyond its border. pHU52 complements five of six Hup(-) mutants and confers activity on several Hup(-) wild-type R. japonicum strains in the free-living state and where tested in nodules. Transconjugants obtained from interspecies transfer of pHU52 to Rhizobium meliloti 102F28, 102F32, and 102F51 and Rhizobium leguminosarum 128C53 showed hydrogen-dependent methyleneblue reduction, performed the oxyhydrogen reaction, and showed hydrogen-dependent autotrophic growth by virtue of the introduced genes. The identity of the presumptive transconjugants was confirmed by antibiotic-resistance profiles and by plant nodulation tests.

  2. Kinetic study of the reactions between chloramine disinfectants and hydrogen peroxide: temperature dependence and reaction mechanism.

    Science.gov (United States)

    McKay, Garrett; Sjelin, Brittney; Chagnon, Matthew; Ishida, Kenneth P; Mezyk, Stephen P

    2013-09-01

    The temperature-dependent kinetics for the reaction between hydrogen peroxide and chloramine water disinfectants (NH2Cl, NHCl2, and NCl3) have been determined using stopped flow-UV/Vis spectrophotometry. Rate constants for the mono- and dichloramine-peroxide reaction were on the order of 10(-2)M(-1)s(-1) and 10(-5)M(-1)s(-1), respectively. The reaction of trichloramine with peroxide was negligibly slow compared to its thermal and photolytically-induced decomposition. Arrhenius expressions of ln(kH2O2-NH2Cl)=(17.3±1.5)-(51500±3700)/RT and ln(kH2O2-NHCl2)=(18.2±1.9)-(75800±5100)/RT were obtained for the mono- and dichloramine peroxide reaction over the temperature ranges 11.4-37.9 and 35.0-55.0°C, respectively. Both monochloramine and hydrogen peroxide were first-order in the rate-limiting kinetic step and concomitant measurements made using a chloride ion selective electrode showed that the chloride was produced quantitatively. These data will aid water utilities in predicting chloramine concentrations (and thus disinfection potential) throughout the water distribution system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Geometric Phase Appears in the Ultracold Hydrogen Exchange Reaction.

    Science.gov (United States)

    Kendrick, B K; Hazra, Jisha; Balakrishnan, N

    2015-10-09

    Quantum reactive scattering calculations for the hydrogen exchange reaction H+H_{2}(v=4,j=0)→H+H_{2}(v^{'}, j^{'}) and its isotopic analogues are reported for ultracold collision energies. Because of the unique properties associated with ultracold collisions, it is shown that the geometric phase effectively controls the reactivity. The rotationally resolved rate coefficients computed with and without the geometric phase are shown to differ by up to 4 orders of magnitude. The effect is also significant in the vibrationally resolved and total rate coefficients. The dynamical origin of the effect is discussed and the large geometric phase effect reported here might be exploited to control the reactivity through the application of external fields or by the selection of a particular nuclear spin state.

  4. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  5. Effect of pairing on transfer and fusion reactions

    Directory of Open Access Journals (Sweden)

    Scamps Guillaume

    2015-01-01

    Full Text Available In the present contribution, the effect of pairing on nuclear transfer and fusion reactions close to the Coulomb barrier is discussed. A Time-Dependent Hartree-Fock + BCS (TDHF+BCS microscopic theory has been developed to incorporate pairing. One- and two-particle transfer probabilities can be obtained showing the importance of pairing. The calculated transfer probabilities are compared with the recent experimental results obtained for the 96Zr+40Ca. Reactions involving the 18O with lead isotopes are also presented, that are also of current experimental interest. Finally, a study of the fusion barrier height predicted with the TDHF+BCS theory is compared with the experimental values for the 40,44,48Ca+40Ca reactions

  6. Study of charge transfer reactions in a microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique; National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.; Tartakovsky, B. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2008-07-01

    Electron transfer reactions in a microbial fuel cell (MFC) were evaluated. The MFC was inoculated with anaerobic mesophilic sludge and operated with carbon felt, carbon cloth, and platinum (Pt) coated carbon cloth. The MFC was then fed with either acetate or glucose as a source of fuel and operated at a temperature of 25 degrees C and a pH of 7. Scanning electron microscopy (SEM) micrographs demonstrated that the micro-organisms colonized the anodes. Cyclic voltammetry and polarization tests were conducted using different fractions of the anodophilic biofilm in order to determine charge transfer routes. The study characterized the electron transfer mechanisms used by the exoelectrogenic micro-organisms to produce electricity. It was concluded that further research is needed to characterize reaction transfer routes. 2 refs., 1 fig.

  7. An approach to quantum chemical consideration of "hydride" transfer reactions

    Directory of Open Access Journals (Sweden)

    BORIS I. DREVKO

    2004-06-01

    Full Text Available An approach to the quantum chemical study of "hydride ion" transfer has been proposed, according to which the sequences of changes in ionization potentials, enthalpies and free energies of the affinities to the hydride ion, to the hydrogen atom and to the proton of substrates molecules and their derivatives (cations, radicals, anions, are compared with the experimentally substantiated series of "hydride" mobility. It has been established that the experimental series of "hydride" mobility for six chalcogenopyrans based on "semicyclic" 1,5-diketones is in conformity with the computed ionization potentials of the molecules, and with the affinity of the corresponding radicals to the hydrogen atom involved in the transfer. The direct splitting-out of the hydride ion and the primary deprotonation of the substrates followed by the withdrawal of two electrons was elucidated to be unlikely. Feasible are the mechanisms of "hydride" mobility, the first step of which consists of electron or hydrogen atom transfer from the chalcogenopyrans molecules.

  8. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  9. Selective conversion of polyenes to monoenes by RuCl(3) -catalyzed transfer hydrogenation: the case of cashew nutshell liquid.

    Science.gov (United States)

    Perdriau, Sébastien; Harder, Sjoerd; Heeres, Hero J; de Vries, Johannes G

    2012-12-01

    Cardanol, a constituent of cashew nutshell liquid (CNSL), was subjected to transfer hydrogenation catalyzed by RuCl(3) using isopropanol as a reductant. The side chain of cardanol, which is a mixture of a triene, a diene, and a monoene, was selectively reduced to the monoene. Surprisingly, it is the C8-C9 double bond that is retained with high selectivity. A similar transfer hydrogenation of linoleic acid derivatives succeeded only if the substrate contained an aromatic ring, such as a benzyl ester. TEM and a negative mercury test showed that the catalyst was homogeneous. By using ESI-MS, ruthenium complexes were identified that contained one, two, or even three molecules of substrate, most likely as allyl complexes. The interaction between ruthenium and the aromatic ring determines selectivity in the hydrogenation reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Performance of Frozen Density Embedding for Modeling Hole Transfer Reactions

    CERN Document Server

    Ramos, Pablo; Pavanello, Michele

    2015-01-01

    We have carried out a thorough benchmark of the FDE-ET method for calculating hole transfer couplings. We have considered 10 exchange-correlation functionals, 3 non-additive kinetic energy functionals and 3 basis sets. Overall, we conclude that with a 7% mean relative unsigned error, the PBE functional coupled with the PW91k non-additive Kinetic energy functional and a TZP basis set constitutes the most stable, and accurate level of theory for hole-transfer coupling calculations. The FDE-ET method is found to be an excellent tool for computing diabatic couplings for hole transfer reactions.

  11. Structured catalysts and reactors for three phase catalytic reactions: manipulating activity and selectivity in nitrite hydrogenation

    NARCIS (Netherlands)

    Brunet Espinosa, Roger

    2016-01-01

    This work aimed at fabricating structured catalytic reactors for fast multiphase reactions, namely, nitrite hydrogenation and H2O2 decomposition. These reactors allowed a better understanding of these reactions and an improvement in terms of catalytic activity and selectivity.

  12. Saponification reaction system: a detailed mass transfer coefficient determination.

    Science.gov (United States)

    Pečar, Darja; Goršek, Andreja

    2015-01-01

    The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.

  13. Photoinduced intramolecular charge-transfer reactions in 4-amino-3 ...

    Indian Academy of Sciences (India)

    Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester (AMBME) have been investigated spectroscopically. AMBME, with its weak charge donor primary amino group, shows dual emission in polar solvents. Absorption and emission measurements in the condensed phase ...

  14. Towards Neutron Drip Line via Transfer-Type Reactions

    CERN Document Server

    Penionzhkevich, Yu E; Antonenko, N V

    2005-01-01

    Possibilities of production of light neutron-rich isotopes $^{24,26}$O, $^{32}$Ne, $^{36,38}$Mg, $^{42}$Si and $^{56,58,60}$Ca in transfer-type reactions are analyzed. The optimal conditions for their production are suggested. The measurement of the excitation function can allow us to estimate the binding energy of exotic nuclei.

  15. Variation of kinetic isotope effect in multiple proton transfer reactions

    Indian Academy of Sciences (India)

    Variation of kinetic isotope effect in multiple proton transfer reactions. #. B SARITHA and M DURGA PRASAD. ∗. School of Chemistry, University of Hyderabad, Hyderabad 500 046, India e-mail: mdpsc@uohyd.ernet.in. Abstract. Recently, we had suggested that the motion along the promoter mode in the first part of the IRC.

  16. Two-dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Directory of Open Access Journals (Sweden)

    Jung-Sik Choi

    2015-06-01

    Full Text Available The operating characteristics of hydrogen iodide (HI decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  17. Mechanisms for control of biological electron transfer reactions.

    Science.gov (United States)

    Williamson, Heather R; Dow, Brian A; Davidson, Victor L

    2014-12-01

    Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Esboui, Mounir, E-mail: mounir.esboui@fst.rnu.tn [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, 2092 Tunis (Tunisia); Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441 (Saudi Arabia)

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  19. 16O-induced transfer reactions on 90Zr

    Science.gov (United States)

    Jha, V.; Roy, B. J.; Chatterjee, A.; Patel, H. S.; Srinivasan, B.; Betigeri, M. G.; Machner, H.

    Cross-section for transfer reactions 90Zr(16O, X) have been measured at an incident energy of 90 MeV. The angular distribution of the elastic scattering 90Zr(16O,16O)90Zr, the inelastic scattering to excited states of 90Zr, the one-nucleon transfer reactions 90Zr(16O,15N)91Nb (g.s., 0.104 and 3.37 MeV states), 90Zr(16O,15O)91Zr (g.s. and 2.17 MeV state) 90Zr(16O,17O)91Zr (g.s.) and the two-nucleon transfer reactions 90Zr(16O,14C)92Mo (ground and 1st excited states) are analyzed in the coupled-reaction-channel (CRC) formalism. Starting with a double-folded real potential, the elastic-scattering angular distribution is calculated using the CRC code FRESCO. The absorptive potential is then generated through the coupling of various inelastic and transfer processes that occur at the nuclear surface. Addition of a short-range imaginary potential in the coupling scheme, whose purpose was to take into account the effect due to loss of flux in fusion channel, reproduces the measured elastic-scattering angular distribution. A good description of all the quasi-elastic data has been achieved and the absolute magnitudes are reproduced without any arbitrary normalization. The relative importance of the one-step cluster transfer of two protons vs. the two-step successive transfer has been studied.

  20. Reactions of hydrogen with V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.; DeVan, J.H.; Chitwood, L.D. [Oak Ridge National Lab., TN (United States); Roehrig, D.H. [Forschungszentrum Karlsruhe (Germany). Projekleitung Kernfusion

    1998-09-01

    In the absence of increases in oxygen concentration, additions of up to 400 ppm hydrogen to V-4 Cr-4 Ti did not result in significant embrittlement as determined by room temperature tensile tests. However, when hydrogen approached 700 ppm after exposure at 325 C, rapid embrittlement occurred. In this latter case, hydride formation is the presumed embrittlement cause. When oxygen was added during or prior to hydrogen exposure, synergistic effects led to significant embrittlement by 100 ppm hydrogen.

  1. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  2. Comparing the temperature dependence of photosynthetic electron transfer in Chloroflexus aurantiacus and Rhodobactor sphaeroides reaction centers.

    Science.gov (United States)

    Guo, Zhi; Lin, Su; Xin, Yueyong; Wang, Haiyu; Blankenship, Robert E; Woodbury, Neal W

    2011-09-29

    The process of electron transfer from the special pair, P, to the primary electron donor, H(A), in quinone-depleted reaction centers (RCs) of Chloroflexus (Cf.) aurantiacus has been investigated over the temperature range from 10 to 295 K using time-resolved pump-probe spectroscopic techniques. The kinetics of the electron transfer reaction, P* → P(+)H(A)(-), was found to be nonexponential, and the degree of nonexponentiality increased strongly as temperature decreased. The temperature-dependent behavior of electron transfer in Cf. aurantiacus RCs was compared with that of the purple bacterium Rhodobacter (Rb.) sphaeroides . Distinct transitions were found in the temperature-dependent kinetics of both Cf. aurantiacus and Rb. sphaeroides RCs, at around 220 and 160 K, respectively. Structural differences between these two RCs, which may be associated with those differences, are discussed. It is suggested that weaker protein-cofactor hydrogen bonding, stronger electrostatic interactions at the protein surface, and larger solvent interactions likely contribute to the higher transition temperature in Cf. aurantiacus RCs temperature-dependent kinetics compared with that of Rb. sphaeroides RCs. The reaction-diffusion model provides an accurate description for the room-temperature electron transfer kinetics in Cf. aurantiacus RCs with no free parameters, using coupling and reorganization energy values previously determined for Rb. sphaeroides , along with an experimental measure of protein conformational diffusion dynamics and an experimental literature value of the free energy gap between P* and P(+)H(A)(-). © 2011 American Chemical Society

  3. The effect of organic molecules adsorption on hydrogen absorption in relation to the hydrogen evolution reaction

    Directory of Open Access Journals (Sweden)

    LJILJANA VRACAR

    2001-12-01

    Full Text Available The competitive adsorption of organic molecules (2,7-naphthalenedisulfonic acid and adsorbed H is of interest in relation to its influence on H absorption into a Pd-Ni electrodeposited alloy. The experimental results, in acid solution, show an enhancement of the coverage of the electrode surface with adosrbed H due to the competitive adsorption of organic molecules that interfere with H atoms, through lateral attractive interactions between the adsorbed species and communal electronic effects, leading supposedly to a decreased probability of H entry into the alloy. Chemisorbed H is, on the other hand, an intermediate in the HER, so the enhancement of the electrode coverage in the presence of co-adsorbed organic molecules promotes the hydrogen evolution reaction.

  4. Hydrogen transfer on USY zeolites during gas oil cracking: Influence of the adsorption characteristics of the zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Corma, A.; Faraldos, M.; Martinez, A.; Mifsud, A. (CSIC, Madrid (Spain))

    1990-04-01

    In this work, the hydrogen transfer activity of two series of HY zeolites dealuminated by steam and by SiCl{sub 4} (24.47-24.24 {angstrom} unit cell) has been measured from the butene/butane ratio in the products obtained during the cracking of a vacuum gas oil at 756 K. With the steam-dealuminated zeolites, a sharp decrease in the ratio of hydrogen transfer to cracking is observed when the number of Al atoms per unit cell falls below 10. On the other hand, in samples dealuminated by SiCl{sub 4}, this ratio changes very little with dealumination. These results cannot be explained assuming the need for adjacent acid sites for the hydrogen transfer. The authors have found, by adsorption measurements of n-butane and 1-butene, that the changes in the relative rates of bimolecular (hydrogen transfer) to monomolecular (cracking) reactions, observed with dealuminated HY zeolites, can be explained by the changes in the adsorption capacity and adsorption selectivity which occur on zeolites dealuminated at different levels by different dealumination procedures, and which are due to changes in the electric fields inside the pores.

  5. Tem holder for sample transfer under reaction conditions

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Zandbergen, Henny W.; Wagner, Jakob Birkedal

    and temperature, which usually are far from the operando conditions of e.g. heterogeneous catalysis. Our efforts focus on bridging these gaps by establishing in situ sample transfer between complementary measurement techniques. To fully exploit the capabilities of ETEM complementary experiments...... and characterization techniques are beneficial. Normally, the complementary measurements are done in parallel with experiments separated in time and space [3] or by mimicking a reactor bed by changing the feed gas composition according to reactivity and conversion measured in dedicated catalyst set-ups [4......]. Furthermore, dedicated transfer holders have been used to transfer catalyst samples between reactor set-ups and TEM at room temperature in inert atmosphere [5]. To take the full advantage of complementary in situ techniques, transfer under reactions conditions is essential. This study introduces the in situ...

  6. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst

    Science.gov (United States)

    Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.

    2017-08-01

    A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.

  7. Temperature Effect on Hydrogen Evolution Reaction at Au Electrode

    Science.gov (United States)

    Tang, Zhi-qiang; Liao, Ling-wen; Zheng, Yong-li; Kang, Jing; Chen, Yan-xia

    2012-08-01

    The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HClO4 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HClO4 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea=37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with η. The pre-exponential factor (A) in 0.1 mol/L HClO4 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HClO4 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with η. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.

  8. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  9. A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr

    Energy Technology Data Exchange (ETDEWEB)

    Masud, J; Nguyen, TV; Singh, N; McFarland, E; Ikenberry, M; Hohn, K; Pan, CJ; Hwang, BJ

    2015-01-13

    Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600 degrees C to 850 degrees C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H2SO4 and HBr solutions. The thermally treated catalysts show high activity for the hydrogen reactions. The exchange current densities (i(o)) of the synthesized RhxSy catalysts in H-2-saturated 1M H2SO4 and 1M HBr for HER and HOR were 0.9 mA/cm(2) to 1.0 mA/cm(2) and 0.8 to 0.9 mA/cm(2), respectively. The lower i(o) values obtained in 1M HBr solution compared to in H2SO4 might be due to the adsorption of Br- on the active surface. Stable electrochemical active surface area (ECSA) of RhxSy catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements. (C) The Author(s) 2015. Published by ECS. All rights reserved.

  10. Ultrasound assisted selective catalytic transfer hydrogenation of soybean oil using 5% Pd/C as catalyst under ambient conditions in water.

    Science.gov (United States)

    Sancheti, Sonam V; Gogate, Parag R

    2017-09-01

    Catalytic transfer hydrogenation (CTH) is an alternative approach that does not require the use of potentially dangerous hydrogen gas. Pd/C is the most favoured catalyst for the selective hydrogenation of soybean oil yielding lower extent of formation of stearic acid and trans-isomer, which have adverse health effects. The present work deals with intensification of catalytic transfer hydrogenation of soybean oil in the presence of 5wt.% Pd/C using ultrasound under ambient reaction conditions. The effect of important operating parameters such as ultrasound power, temperature, type of hydrogen donor, catalyst loading and donor concentration on the progress of reaction has been investigated. It was established that the maximum extent of hydrogenation as indicated by reduction in iodine value from 135 to 95 was observed under optimized conditions of irradiation power as 100W, 22kHz frequency, 90% duty cycle, ammonium formate concentration of 0.32mol/50ml water and 2% (w/w) Pd/C loading at ambient temperature and pressure in the presence of water as solvent. The approach also offered excellent selectivity with much lower trans-isomer formation as compared to the conventional approach of high pressure hydrogenation. Overall, the work has successfully demonstrated process intensification benefits due to the use of ultrasound for the Pd/C catalyzed transfer hydrogenation of soybean oil. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transfer reactions in the investigation of light-nuclei nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, V.; Camargo, O.; Lichtenthaler, R.; Scarduelli, V. [Instituto de Fisica, Universidade de Sao Paulo, P. O. Box 66318, 05389-970 Sao Paulo (Brazil); Kolata, J. J. [Department of Physics, University of Notre Dame, Notre Dame, 46556 Indiana (United States); Amro, H.; Becchetti, F. D.; Jiang, H. [Department of Physics, University of Michigan, Ann Arbor, 48109-1120 Michigan (United States); Aguilera, E. F.; Lizcano, D.; Martinez Q, E.; Garcia, H. [ININ, La Marquesa, 52750 Estado de Mexico (Mexico)

    2008-12-15

    Cross sections for the {sup 6}Li(p,{gamma}){sup 7}Be, {sup 7}Li(n,{gamma}){sup 8}Li{sup 8}Li(n,{gamma}){sup 9}Li and {sup 8}Li(p,{gamma}){sup 9}Be capture reactions have been investigated in the framework of the potential model. The main ingredients of the potential model are the potentials used to generate the continuum and bound-state wave functions and spectroscopic factors of the corresponding bound systems. The spectroscopic factors for the {sup 7}Lin={sup 8}Li{sub gs}, {sup 8}Lin={sup 9}Li{sub gs} bound systems were obtained from a FR-DWBA analysis of neutron transfer reactions induced by {sup 8}Li radioactive beam on a {sup 9}Be target, while spectroscopic factor for the {sup 8}Lip={sup 9}Be{sub gs} bound system were obtained from a proton transfer reaction. From the obtained capture reaction cross section, reaction rate for the {sup 8}Li(n,{gamma}){sup 9}Li and {sup 8}Li(p,{gamma}){sup 9}Be direct neutron and proton capture were determined and compared with other experimental and calculated values. (Author)

  12. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  13. Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields

    NARCIS (Netherlands)

    Kiryutin, A.S.; Yurkovskaya, A.V.; Kaptein, R.|info:eu-repo/dai/nl/074334603; Vieth, H.-M.; Ivanov, K.L.

    2013-01-01

    We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is,

  14. Excited state charge transfer reaction in (mixed solvent + electrolyte ...

    Indian Academy of Sciences (India)

    charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in two sets of mixed solvents, (1-propanol + ethyl acetate) and (propylene ...... Harun Al Rasid Gazi and Ranjit Biswas. PrOH+EA. Normalized F.I.. 0. 1. Normalized F.I.. 0. 1. -3. 0. 3. 3000. 4000. 5000. 6000. Residual. -3. 0. 3. Residual. -3. 0. 3. Time(ps). 3000. 4000.

  15. Chemical utilization of hydrogen from fluctuating energy sources – Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems

    OpenAIRE

    Geburtig, Denise; Preuster, Patrick; Bösmann, Andreas; Müller, Karsten; Wasserscheid, Peter

    2016-01-01

    Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way for storing and distributing hydrogen from electrolysis using excess energies from solar or wind power plants. In this contribution, an alternative, high-value utilization of such hydrogen is proposed namely its use in steady-state chemical hydrogenation processes. We here demonstrate that the hydrogen-rich form of the LOHC system dibenzyltoluene/perhydro-dibenzyltoluene can be directly applied as sole source of hydrog...

  16. Numerical Radiative Transfer and the Hydrogen Reionization of the Universe

    Science.gov (United States)

    Petkova, M.

    2011-03-01

    ) simulation code GADGET. It is based on a fast, robust and photon-conserving integration scheme where the radiation transport problem is approximated in terms of moments of the transfer equation and by using a variable Eddington tensor as a closure relation, following the "OTVET"-suggestion of Gnedin & Abel. We derive a suitable anisotropic diffusion operator for use in the SPH discretization of the local photon transport, and we combine this with an implicit solver that guarantees robustness and photon conservation. This entails a matrix inversion problem of a huge, sparsely populated matrix that is distributed in memory in our parallel code. We solve this task iteratively with a conjugate gradient scheme. Finally, to model photon sink processes we consider ionization and recombination processes of hydrogen, which is represented with a chemical network that is evolved with an implicit time integration scheme. We present several tests of our implementation, including single and multiple sources in static uniform density fields with and without temperature evolution, shadowing by a dense clump, and multiple sources in a static cosmological density field. All tests agree quite well with analytical computations or with predictions from other radiative transfer codes, except for shadowing. However, unlike most other radiative transfer codes presently in use for studying reionization, our new method can be used on-the-fly during dynamical cosmological simulations, allowing simultaneous treatments of galaxy formation and the reionization process of the Universe. We carry out hydrodynamical simulations of galaxy formation that simultaneously follow radiative transfer of hydrogen-ionizing photons, based on the optically-thin variable Eddington tensor approximation as implemented in the GADGET code. We consider only star-forming galaxies as sources and examine to what extent they can yield a reasonable reionization history and thermal state of the intergalactic medium at redshifts

  17. Reaction mechanism of an intramolecular oxime transfer reaction: a computational study.

    Science.gov (United States)

    Moilanen, Jani; Neuvonen, Antti; Pihko, Petri

    2014-03-07

    Density functional theory (PBE0/def2-TZVPP) calculations in conjunction with a polarizable continuum model were used to assess the mechanism of the intramolecular oxime transfer reaction that leads to the formation of isoxazolines. Different diastereomers of the intermediates as well as different oximes (formaldehyde and acetone oxime) were considered. The computed reaction profile predicts the water-addition and -expulsion steps as the highest barriers along the pathway, a conclusion that is in line with the experimental evidence obtained previously for these reactions.

  18. Hydrogen transfer reaction of cyclohexanone with 2-propanol ...

    Indian Academy of Sciences (India)

    O mixed oxides were prepared by amorphous citrate process and decomposition of the corresponding acetate precursors. The resulting materials were characterised by TGA, XRD, UV-Vis-DRS, EPR, SEM and surface area measurements.

  19. Quantum dot-based FRET for sensitive determination of hydrogen peroxide and glucose using tyramide reaction.

    Science.gov (United States)

    Huang, Xiangyi; Wang, Jinjie; Liu, Heng; Lan, Tao; Ren, Jicun

    2013-03-15

    In this paper, we report a new strategy for detection of hydrogen peroxide and glucose using quantum dot (QD)-based fluorescence resonance energy transfer (FRET) and tyramide reaction. The principle of FRET is based on highly sensitive reaction of a carbocyanine dye (Cy5) labeled tyramide and hydrogen peroxide catalyzed by horseradish peroxidase (HRP), and the fluorescence spectrum of QDs (EXmax 605 nm) partially overlaps with the absorption bands of Cy5. We firstly conjugated HRP to QDs, and then demonstrated an efficient FRET between HRP conjugated QDs (as energy donors) and tyramide labeled Cy5 (as energy acceptors) due to the formation of Cy5-labeled HRP-QDs assemblies in the presence of H₂O₂. We observed that the fluorescence Cy5 depended linearly on the H₂O₂ concentration within a range of concentration from 10 to 100 nM and the detection limit of this assay was 10 nM. Based on the principle for determination of H₂O₂, we develop a new strategy for assay of glucose by coupling with glucose oxidase-mediated reaction. The established methods were successfully used for determination of glucose levels in human sera, and the results obtained were in good agreement with commercially available method. Our method is at least 1 order of magnitude more sensitive than in the commercially available method. More importantly, our method described here can be extended to other assay designs using different oxidase enzymes, energy donors and energy acceptors, such as near-infrared (NIR)-to-visible upconversion nanoparticles and silicon and carbon QDs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. New determination of proton spectroscopic factors and reduced widths for 8Be states in the 16.5-18.0 MeV excitation energy region via the study of the 7Li(3He,d )8Be transfer reaction at Elab=20 MeV: Implication for the 7Li(p ,α )4He hydrogen burning reaction

    Science.gov (United States)

    Belhout, A.; Ouichaoui, S.; Beaumevieille, H.; Bouchemha, A.; Bogaert, G.; Fortier, S.; Kiener, J.; Lefebvre-Schuhl, A.; Maison, J. M.; Rosier, L.; Rotbard, J.; Tatischeff, V.; Thibaud, J. P.; Vernotte, J.

    2017-11-01

    The angular distributions of 8Be states in the excitation energy region Ex˜(16.5 -18.2 ) MeV produced in the 7Li(3He,d )8Be proton transfer reaction have been measured at the Orsay 14.8 -MV tandem accelerator for 2+3He ion bombarding energy, Elab=20 MeV, and forward angular range, θlab=5 ∘-50 ∘ . A high energy resolution detection system composed of a split-pole magnetic spectrometer and a Δ E -E , position-sensitive drift chamber was used to record the energy spectra of outgoing deuterons. The measured cross section data for the direct reaction component have been separated from the compound nucleus one, then analyzed in the framework of the nonlocal, finite-range (FR)-distorted-wave Born approximation (DWBA) theory. New values of the C2S and (Sp 1 /2,Sp 3 /2) proton absolute and partial spectroscopic factors and related γp2(a ) proton reduced widths versus the p +7Li channel radius have been extracted for the 2+(16.626 ) and 2+(16.922 ) ,T =0 +1 isospin-mixed loosely bound states of astrophysical interest and the 1+(17.640 ) , T =1 unbound state of 8Be. They are compared to sparse earlier experimental values and to shell-model-predicted ones from the literature, and are discussed. In particular, the status of the spectroscopic information on the 2+ isospin-mixed doublet is reviewed and updated. The application in nuclear astrophysics of the DWBA derived results is emphasized.

  1. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes.

    Science.gov (United States)

    Metin, Önder; Can, Hasan; Şendil, Kıvılcım; Gültekin, Mehmet Serdar

    2017-07-15

    Addressed herein is a facile seed-mediated synthesis of Ag/Pd core/shell nanoparticles (NPs) and their assembly on reduced graphene oxide (rGO) to catalyze the transfer hydrogenation of nitroarenes to anilines using ammonia borane (AB) as a hydrogen donor under ambient conditions. Monodisperse Ag/Pd core/shell NPs with controllable Pd shell-thickness were synthesized by the means of thermal decomposition of palladium(II) bromide over as-prepared Ag NPs in the mixture of oleylamine and oleic acid at 220°C. As-synthesized Ag/Pd core/shell NPs were characterized by TEM, HR-TEM, XRD, XPS, UV-Vis spectroscopy and ICP-MS and then they were assembled on reduced graphene oxide (rGO). Next, rGO@Ag/Pd catalysts were tested in the transfer hydrogenation of nitroarenes in which ammonia borane (AB) was used as a hydrogen donor at room temperature. It was demonstrated that the thickness of the Pd shell has a significant effect on the catalytic activity of rGO@Ag/Pd catalysts and the 1.75nm Pd shell provided the highest performance in the transfer hydrogenation reactions. The rGO@Ag/Pd catalyzed transfer hydrogenation reactions were tested over a variety of nitroarenes (total 16 examples) and they were all converted to the corresponding aniline derivatives with high yields in 5-15min under ambient conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Role of intramolecular hydrogen bonding in the excited-state intramolecular double proton transfer (ESIDPT of calix[4]arene: A TDDFT study

    Directory of Open Access Journals (Sweden)

    Wang Se

    2016-01-01

    Full Text Available The time-dependent density functional theory (TDDFT method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT reaction of calix[4]arene (C4A and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1 were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.

  3. Theoretical study on water-mediated excited-state multiple proton transfer in 7-azaindole: significance of hydrogen bond rearrangement.

    Science.gov (United States)

    Yu, Xue-fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2012-11-01

    Excited-state multiple proton transfer (ESMPT) in the cluster of 7-azaindole with three water molecules [7-azaindole(H(2)O)(3)] is theoretically investigated by the TDDFT, CASPT2, and CC2 methods. Examination of the potential energy surface in the first excited state indicates that ESMPT in 7-azaindole(H(2)O)(3) proceeds initially with the rearrangement of hydrogen bond structure of water molecules from a bridged-planar isomer to a cyclic-nonplanar isomer, followed by triple proton transfer in the latter. This reaction is found to be energetically more favorable than quadruple proton transfer in the bridged-planar isomer without hydrogen bond reorganization. It is also shown that all proton-transfer processes follow a concerted mechanism rather than a stepwise mechanism. The computational results show good consistency with the unexpected experimental observations as to the electronic spectra and excited-state lifetime. In particular, the barrier of the hydrogen bond rearrangement is found to be less than 1 kcal/mol, consistent with the missing vibronic bands for 7-azaindole(H(2)O)(3) with an excess energy of more than 200 cm(-1) in the S(1) state.

  4. Catalysts for initiating the hydrogen-oxygen reaction at 78 K.

    Science.gov (United States)

    Jennings, T. J.; Voge, H. H.; Armstrong, W. E.

    1972-01-01

    Catalysts for initiating reaction of hydrogen with oxygen in gas mixtures at temperatures down to 78 K (-195 C) were sought. A rising-temperature reactor was used for detecting onset of reaction. The platinum metals, especially iridium, platinum, and ruthenium, were the most active. With high concentrations of iridium on an alumina support, reaction initiation was observed at -195 C for a helium stream containing 3% hydrogen and 1% oxygen. Best results were obtained when the catalyst had been preheated in hydrogen and cooled in a hydrogen environment before being contacted with oxygen-containing gas. The initiation is interpreted to be the result of transient phenomena which occur when a hydrogen-oxygen mixture contacts an active catalyst. Chemisorption of oxygen and formation of some water, along with water adsorption on the support, serve to raise the temperature to a point where true catalysis can proceed.

  5. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    Science.gov (United States)

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Notheisz, F.; Klusoň, Petr; Zsigmond, A.

    2015-01-01

    Roč. 29, JAN 2015 (2015), s. 45-49 ISSN 0268-2605 Institutional support: RVO:67985858 Keywords : heterogenized complexes * catalytic transfer hydrogenation * reusable catalyst Subject RIV: CC - Organic Chemistry Impact factor: 2.452, year: 2015

  7. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    reaction to generate hydrogen gas to inflate lighter-than-air vehicles . RESULTS When using CoCl2 as a catalyst, we discovered that distilled or...driving prices up. Consequently, the use of hydrogen gas to inflate LTA vehicles is gaining greater acceptance; many countries (military and commercial...due to leakage, safety, and size concerns. Hydrogen is less flammable than gasoline. In summary, the demand to use LTA vehicles for military and

  8. Charge Transfer Interaction and Hydrogen Bonding between Vitamine K1 and Dihydrovitamine K1

    Science.gov (United States)

    Nagahira, Yukio; Matsuki, Kazunori; Fukutome, Hideo

    1981-01-01

    We studied visible and infrared spectra, in particular their temperature dependence, of Vitamine K1 oil dissolving dihydrovitamine K1. Vitamine K1 and dihydrovitamine K1 were found to form charge transfer complexes and hydrogen bonds in the mixture. A co-crystal of Dihydrovitamine K1 and Vitamine K1 with charge transfer interaction and hydrogen bonding was shown to grow in a narrow temperature range near -20°C.

  9. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    OpenAIRE

    Zhang, Xiaoqing; Xu, Bingqing; Xu, Yan; Shang, Shuyong; Yin, Yongxiang

    2013-01-01

    An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energ...

  10. Noncatalytic hydrogenation of naphthalene in nanosized membrane reactors with accumulated hydrogen and controlled adjustment of their reaction zone volumes

    Science.gov (United States)

    Soldatov, A. P.

    2017-05-01

    As part of ongoing studies aimed at designing the next generation of nanosized membrane reactors (NMRs) with accumulated hydrogen, the noncatalytic hydrogenation of naphthalene in pores of ceramic membranes (TRUMEM ultrafiltration membranes with D av = 50 and 90 nm) is performed for the first time, using hydrogen preadsorbed in a hybrid carbon nanostructure: mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) that form on inner pore surfaces. In this technique, the reaction proceeds in the temperature range of 330-390°C at contact times of 10-16 h. The feedstock is an 8% naphthalene solution in decane. The products are analyzed via chromatography on a quartz capillary column coated with polydimethylsiloxane (SE-30). It is established for the first time that in NMRs, the noncatalytic hydrogenation of naphthalene occurs at 370-390°C, forming 1,2,3,4-tetrahydronaphthalene in amounts of up to 0.61%. The rate constants and activation energy (123.5 kJ/mol) of the noncatalytic hydrogenation reaction are determined for the first time. The possibility of designing an NMR with an adjustable reaction zone volume is explored. Changes in the pore structure of the membranes after their modification with pyrocarbon nanosized crystallites (PNCs) are therefore studied as well. It is shown that lengthening the process time reduces pore size: within 23 h after the deposition of PNCs, the average pore radius ( r av) falls from 25 to 3.1 nm. The proposed approach would allow us to design nanoreactors of molecular size and conduct hydrogenation reactions within certain guidelines to synthesize new chemical compounds.

  11. Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding.

    Science.gov (United States)

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2012-12-07

    A kinetic study on hydrogen abstraction from strong hydrogen bond acceptors such as DMSO, HMPA, and tributylphosphine oxide (TBPO) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out in acetonitrile. The reactions with CumO(•) were described in terms of a direct hydrogen abstraction mechanism, in line with the kinetic deuterium isotope effects, k(H)/k(D), of 2.0 and 3.1 measured for reaction of this radical with DMSO/DMSO-d(6) and HMPA/HMPA-d(18). Very large increases in reactivity were observed on going from CumO(•) to BnO(•), as evidenced by k(H)(BnO(•))/k(H)(CumO(•)) ratios of 86, 4.8 × 10(3), and 1.6 × 10(4) for the reactions with HMPA, TBPO, and DMSO, respectively. The k(H)/k(D) of 0.91 and 1.0 measured for the reactions of BnO(•) with DMSO/DMSO-d(6) and HMPA/HMPA-d(18), together with the k(H)(BnO(•))/k(H)(CumO(•)) ratios, were explained on the basis of the formation of a hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the oxygen atom of the substrates followed by hydrogen abstraction. This is supported by theoretical calculations that show the formation of relatively strong prereaction complexes. These observations confirm that in alkoxyl radical reactions specific hydrogen bond interactions can dramatically influence the hydrogen abstraction reactivity, pointing toward the important role played by structural and electronic effects.

  12. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde ...

    Indian Academy of Sciences (India)

    The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart's unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the ...

  13. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  14. Quantum simulation of nuclear rearrangement in electron transfer reactions

    OpenAIRE

    Zheng, Chong; McCammon, J. Andrew; Wolynes, Peter G.

    1989-01-01

    A quantum simulation scheme based on the path integral molecular dynamics technique has been used to calculate the effective activation energies associated with nuclear rearrangement in the electron transfer reactions Co(NH3)62+ + Co(NH3)63+ → Co(NH3)63+ + Co(NH3)62+ and Ru(NH3)62+ + Ru(NH3)63+ → Ru(NH3)63+ + Ru(NH3)62+. Even with a simple Hamiltonian and short time dynamic simulations, the results are in satisfactory agreement with other theoretical calculations. This simulation approach can...

  15. Advances in interactive supported electro-catalysis for hydrogen and oxygen electrode reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljko V Krstajic; Ljiljana M Vracar; Jelena M Jaksic; Milan M Jaksic [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia and Montenegro (Yugoslavia); Stelios G Neophytides; Miranda Labou; Jelena M Jaksic; Milan M Jaksic [Institute of Chemical Engineering and High Temperature Chemical Processes FORTH, and Department of Chemistry, University of Patras, 26500 Patras, (Greece); Reidar Tunold [University of Trondheim, NTNU, Institute of Industrial Electrochemistry, Trondheim, (Norway); Polycarpos Falaras [Institute of Physical Chemistry, NCSR Demokritos, Attikis, Athens, (Greece)

    2006-07-01

    Magneli phases have been introduced as an unique electron conductive and interactive support for electro-catalysis both in hydrogen (HELR) and oxygen (OELR) electrode reactions in water electrolysis and Low Temperature PEM Fuel Cells (LT PEM FC). The Strong Metal-Support Interaction (SMSI) that imposes the former implies: (i) the hypo-hyper-d inter-bonding effect and its catalytic consequences, and (ii) the interactive primary oxide (M-OH) spillover from the hypo-d-oxide support as a dynamic electrocatalytic contribution. The stronger the bonding, the more strained appear d-orbitals, thereby the less strong the intermediate adsorptive strength in the rate determining step (RDS), and consequently, the faster the facilitated catalytic electrode reaction arises. At the same time the primary oxide spillover transferred from the hypo-d-oxide support directly interferes and reacts either individually and directly to contribute to finish the oxygen reduction, or with other interactive species, like CO to contribute to the CO tolerance. In such a respect, the conditions to provide Au to act as the reversible hydrogen electrode have been proved either by its potentiodynamic surface reconstruction in a heavy water solution, or by the nano-structured SMSI Au on anatase titania with characteristic strained d-orbitals in such a hypo-hyper-d-interactive bonding (Au/TiO{sub 2}). In the same context, the monoatomic network dispersion of Pt upon Magneli phases makes it possible to produce an advanced interactive supported electro-catalyst for cathodic oxygen reduction (ORR). The strained hypo-hyper-d-inter-electronic and inter-d-orbital metal/hypo-d-oxide support bonding relative to the strength of the latter, has been inferred to be the basis of the synergistic electrocatalytic effect both in the HELR and ORR. (authors)

  16. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Benjamin Joel [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in ~240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH2I2 and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a ~350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  17. Pathway of proton transfer in bacterial reaction centers: replacement of serine-L223 by alanine inhibits electron and proton transfers associated with reduction of quinone to dihydroquinone.

    Science.gov (United States)

    Paddock, M L; McPherson, P H; Feher, G; Okamura, M Y

    1990-01-01

    The pathway of proton transfer in the reaction center (RC) from Rhodobacter sphaeroides was investigated by site-directed mutagenesis. Ser-L223, a putative proton donor that forms a hydrogen bond with the secondary quinone acceptor QB, was replaced with Ala and Thr. RCs with Ala-L223 displayed reduced electron transfer and proton uptake rates in the reaction QA-QB- + 2H+----QAQBH2. The rate constant for this reaction, k(2)AB, was found to be reduced approximately 350-fold to 4.0 +/- 0.2 s-1. Proton uptake measurements using a pH indicator dye showed a rapid uptake of 1 H+ per RC followed by a slower uptake of 1 H+ per RC at a rate of 4.1 +/- 0.1 s-1; native RCs showed a rapid uptake of 2H+ per RC. Evidence is provided that these changes were not due to gross structural changes in the binding site of QB. RCs with Thr-L223 showed little reduction in the rates of electron and proton transfer. These results indicate that proton transfer from the hydroxyl group of Ser-L223 or Thr-L223 is required for fast electron and proton transfer associated with the formation of the dihydroquinone QH2. In contrast, previous work showed that replacing Glu-L212, another putative proton donor to QB, with Gln slowed proton uptake from solution without significantly altering electron transfer. We propose a model that involves two distinct proton transfer steps. The first step occurs prior to transfer of the second electron to QB and involves proton transfer from Ser-L223. The second step occurs after this electron transfer through a pathway involving Glu-L212. PMID:2168561

  18. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  19. Electron transfer reactions in condensed phase: effect of reversibility.

    Science.gov (United States)

    Dhole, Kajal; Jena, Naresh K; Samanta, Alok; Ghosh, Swapan K

    2012-02-01

    We propose a generalized one-dimensional kinetic equation for multidimensional reversible electron transfer (ET) reaction with a nonequilibrium situation as the initial condition. The rate constant for the forward reversible ET reaction obtained here consists of the rate for the corresponding irreversible ET reaction, and an extra term due to reversibility of the ET process which includes the rates of diffusion dynamics in the reactant and product wells. In order to understand the effect of reversibility, we consider back ET reaction in a system consisting of an electron donor-acceptor pair in a solvent modeled through low frequency solvent collective coordinates (multidimensional) characterized by the orientational polarization and slowly relaxing one-dimensional vibrational mode. We propose here a new generalized polarization energy functional corresponding to the extension of the continuum version for the same, which has opened up the possibility of inclusion of molecular nature of the solvent into the solvent reorganization energy. We then derive an exact expression for the ET rate for this model system. The numerical results calculated by using the proposed one-dimensional approach are shown to be in good agreement with the available experimental results. Non-Marcus free energy gap dependence of the rates observed here for the reversible and irreversible ET reactions are very close to each other in the barrierless region, while for other situations, the rate for the former process is found to be less than the latter. The extra term, which makes the difference between the rate constants for irreversible and reversible ET reactions, is found to be contributed by the diffusion dynamics from both reactant and product wells but the dominating contribution is provided mainly by the product well.

  20. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  1. Coumarin or benzoxazinone bearing benzimidazolium and bis(benzimidazolium) salts; involvement in transfer hydrogenation of acetophenone derivatives and hCA inhibition

    OpenAIRE

    Mert Olgun Karataş; Serkan Dayan; Nilgün Kayacı; Çiğdem Bilen; Emre Yavuz; Nahit Gencer; Bülent Alıcı; Nilgün Ozpozan Kalaycıoğlu; Oktay Arslan

    2015-01-01

    Four new salts of benzimidazolium and bis(benzimidazolium) which include coumarin or benzoxazinone moieties were synthesized and the structures of the newly synthesized compounds were elucidated on the basis of spectral analyses such as 1H-NMR, 13C-NMR, HSQC, IR, LC-MS and elemental analysis. Benzimidazolium salts were used intensively as N-heterocyclic carbene (NHC) precursors in the various catalytic reactions such as transfer hydrogenation (TH), C-H bond activation, Heck, Suzuki reaction e...

  2. Heat transfer comparison between methane and hydrogen in a spark ignited engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, Roger; Demuynck, Joachim; Paepe, Michel de; Verhelst, Sebastian [Ghent Univ. (Belgium)

    2010-07-01

    Hydrogen is one of the alternative fuels which are being investigated at Ghent University. NO{sub x} emissions will occur at high engine loads and they are a constraint for power and efficiency optimization. The formation of NO{sub x} emissions is temperature dependent. Consequently, the heat transfer from the burning gases to the cylinder walls has to be accurately modelled if precise computer calculations of the emissions are wanted. Several engine heat transfer models exist but they have been cited to be inaccurate for hydrogen. We have measured the heat flux in a spark ignited engine with a commercially available heat flux sensor. This paper investigates the difference between the heat transfer of hydrogen and a fossil fuel, in this case methane. Measurements with the same indicated power output are compared and the effect of the heat loss on the indicated efficiency is investigated. The power output of hydrogen combustion is lowered by burning lean in contrast to using a throttle in the case of methane. Although the peak in the heat flux of hydrogen is 3 times higher compared to methane for a high engine power output, the indicated efficiency is only 3% lower. The heat loss for hydrogen at a low engine load is smaller than that of methane which results in a higher indicated efficiency. The richness of the hydrogen-air mixture has a great influence on the heat transfer process in contrast to the in-cylinder mass in the case of methane. (orig.)

  3. Monitoring of hydrogen generated by corrosion reactions of steel

    Energy Technology Data Exchange (ETDEWEB)

    Abbassi, A.; Mihi, A.; Benbouta, R. [Corrosion Laboratory, Department of Mechanical Engineering, Faculty of Engineering Science, University of Batna, 05000 Batna (Algeria)

    2008-12-15

    A solid-state sensor has been constructed and used for the detection of hydrogen generated during corrosion of steel in pH2 solutions. In addition to that, weight loss, AC impedance measurements and selected slow strain rate tests were performed under the same conditions as the hydrogen measurements in order to ascertain the degree of embrittlement of steel. The use of such a device in cathodic protection by impressed current in artificial seawater was also investigated. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1991-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  5. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1991-07-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  6. Transfer reactions in inverse kinematics at REX-ISOLDE

    CERN Document Server

    Tengborn, E

    Research on the structure of exotic nuclei is one of the most intriguing topics in present day nuclear physics. With the use of facilities for isotope separation on-line, such as ISOLDE at CERN, short-lived isotopes can be studied experimentally. Since 2002, the REX-ISOLDE facility enables radioactive ions produced by ISOLDE to be post-accelerated, increasing the energy of the ions enough to do nuclear transfer reactions in inverse kinematics. In this thesis, transfer reactions are used to study the structure of neutron-rich lithium isotopes through a series of experiments at REX-ISOLDE. The first experiment used a 9Li beam at 2.36 MeV/u impinging on a deuterated polyethylene target to study 10Li, 9Li and 8Li. For the (d,p)-channel the resonance ground state and a first excited state are observed and the results agree with theoretical calculations. The elastic channel agrees with Optical Model, OM, calculations. For the (d,t)-channel the shape of the angular distribution agrees with Distorted Wave Born Approx...

  7. Probing the pairing interaction through two-neutron transfer reactions

    Directory of Open Access Journals (Sweden)

    Margueron J.

    2012-12-01

    Full Text Available The treatment of the pairing interaction in mean-field-based models is addressed. In particular, the possibility to use pair transfers as A tool to better constrain this interaction is discussed. First, pairing inter-actions with various density dependencies (surface/volume mixing are used in the microscopic Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation model to generate the form factors to be used in reaction calculations. Cross sections for (p,t two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for some Tin isotopes and for incident proton energies from 15 to 35 MeV. Three different surface/volume mixings of A zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Differences among the three different theoretical predictions are found espacially for the nucleus 136Sn and they are more important at the incident proton energy of 15 MeV. We thus indicate (p,t two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed. In the second part of the manuscript, ground-state to ground-state transitions are investigated. Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A±2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A±2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis

  8. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  9. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  10. Diels-Alder reactions in water : Enforced hydrophobic interaction and hydrogen bonding

    NARCIS (Netherlands)

    Engberts, Jan B.F.N.

    1995-01-01

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  11. DIELS-ALDER REACTIONS IN WATER - ENFORCED HYDROPHOBIC INTERACTION AND HYDROGEN-BONDING

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  12. Measuring one nucleon transfer reaction 24Mg( p, d)23Mg for astrophysical reaction rates

    Science.gov (United States)

    Lee, E. J.; Chae, K. Y.

    2017-12-01

    The level structure of a radionuclide 23Mg has been studied by using the 24Mg( p, d)23Mg one nucleon transfer reaction measurement for the astrophysical 19Ne(α, γ)23Mg reaction rate. A 41 MeV proton beam was produced and accelerated at the 25 MV tandem accelerator of the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory in the United States. The beam particles impinged on an isotopically-enriched 24Mg solid target. Angular distributions of recoiling deuterons were extracted by using a large area silicon strip detector array. By comparing the experimentally-obtained angular distributions with zero range distorted wave Born approximation calculations, spins and parities of three energy levels of 23Mg could be constrained for the first time, which is very important information needed to understand the 19Ne(α, γ)23Mg reaction rate.

  13. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part II: Operational applications

    Science.gov (United States)

    Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik

    2016-08-01

    This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.

  14. Structure and Reactions of Carbon and Hydrogen on Ru(0001): A Scanning Tunneling Microscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge; Salmeron, Miquel

    2008-09-09

    The interaction between carbon and hydrogen atoms on a Ru(0001) surface was studied using scanning tunneling microscopy (STM), Density Functional Theory (DFT) and STM image calculations. Formation of CH species by reaction between adsorbed H and C was observed to occur readily at 100 K. When the coverage of H increased new complexes of the form CH+nH (n = 1, 2 and 3) were observed. These complexes, never observed before, might be precursors for further hydrogenation reactions. DFT analysis reveals that a considerable energy barrier exists for the CH+H {yields} CH{sub 2} reaction.

  15. Muon transfer from muonic hydrogen to heavier atoms; Transfert de charge muonique

    Energy Technology Data Exchange (ETDEWEB)

    Dupays, A

    2004-06-01

    This work concerns muon transfer from muonic hydrogen to heavier atoms. Recently, a method of measurement of the hyperfine structure of ground-state muonic hydrogen based on the collision energy dependence of the muon transfer rate to oxygen has been proposed. This proposal is based on measurements which where performed at the Paul Scherrer Institute in the early nineties which indicate that the muon transfer from muonic hydrogen to oxygen increases by a factor of 4 going from thermal to 0.12 eV energies. The motivation of our calculations was to confirm this behaviour. To study the collision energy dependence of the muon transfer rate, we have used a time-independent close-coupling method. We have set up an hyperspherical elliptic formalism valid for nonzero total angular momentum which allows accurate computations of state-to-state reactive and charge exchange processes. We have applied this formalism to muon-transfer process to oxygen and neon. The comparison with experimental results is in both cases excellent. Finally, the neon transfer rate dependence with energy suggests to use neon instead of oxygen to perform a measurement of the hyperfine structure of muonic hydrogen. The results of accurate calculations of the muon transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen and neon are also reported. Very good agreement with measured rates is obtained and for the three systems, the isotopic effect is perfectly reproduced. (author)

  16. Hydrophilic pyrazine-based phosphane ligands: synthesis and application in asymmetric hydride transfer and H2-hydrogenation of acetophenone

    NARCIS (Netherlands)

    Nikishkin, N.; Huskens, Jurriaan; Verboom, Willem

    2013-01-01

    Pyrazine-based hydrophilic phosphanes are useful ligands for the ruthenium- and rhodium-catalyzed hydrogenations of acetophenone under hydride transfer and dihydrogen conditions. The effect of alcohol additives on the catalytic, enantioselective aqueous hydrogenation of acetophenone is examined with

  17. Reactions of zirconium and hafnium fluoride hydrates with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimova, S.O.; Polishchuk, S.A.; Avkhutskii, L.M.; Kalennik, V.M. (AN SSSR, Vladivostok. Inst. Khimii)

    1981-01-01

    Zirconium peroxofluoride of ZrO/sub 2/F/sub 2/x2H/sub 2/O composition is prepared by interaction of zirconium tetrafluoride trihydrate with hydrogen peroxide at pH 2-3. Hafnium peroxofluoride compound is not formed under similar conditions. It can be caused by their structural peculiarities for the compounds are not isostructural IR, PMR and NMR spectra for Zr peroxofluoride are presented.

  18. Rate constant for reaction of atomic hydrogen with germane

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  19. Incremental Identification of Reaction and Mass-Transfer Kinetics Using the Concept of Extents

    OpenAIRE

    Bhatt, Nirav; Amrhein, Michael; Bonvin, Dominique

    2011-01-01

    This paper proposes a variation of the incremental approach to identify reaction and mass-transfer kinetics (rate expressions and the corresponding rate parameters) from concentration measurements for both homogeneous and gas-liquid reaction systems. This incremental approach proceeds in two steps: (i) computation of the extents of reaction and mass transfer from concentration measurements without explicit knowledge of the reaction and mass-transfer rate expressions, and (ii) estimation of ...

  20. Effect of odd hydrogen on ozone depletion by chlorine reactions

    Science.gov (United States)

    Donahue, T. M.; Cicerone, R. J.; Liu, S. C.; Chameides, W. L.

    1976-01-01

    The present paper discusses how the shape of the ozone layer changes under the influence of injected ClX for several choices of two key HOx reaction rates. The two HOx reactions are: OH + HO2 yields H2O + O2 and O + HO2 yields OH + O2. Results of calculations are presented which show that the two reaction rates determine the stratospheric concentrations of OH and HO2, and that these concentrations regulate the amount by which the stratospheric ozone column can be reduced due to injections of odd chlorine. It is concluded that the amount of ozone reduction by a given mixing ratio of ClX will remain very uncertain until the significance of several possible feedback effects involving HOx in a chlorine-polluted atmosphere are determined and measurements of the reaction rates and HOx concentrations are made at the relevant temperatures.

  1. Theoretical investigation of hydrogen atom transfer in the cytosine-guanine base pair and its coupling with electronic rearrangement. Concerted vs stepwise mechanism.

    Science.gov (United States)

    Villani, Giovanni

    2010-07-29

    The transformation of the DNA base pairs from the Watson-Crick (WC) structures to its tautomers having imino-enol form can be achieved via two types of hydrogen atom transfer processes: (i) concerted, and/or (ii) stepwise (step by step). Here, we have studied and compared these two mechanisms in the cytosine-guanine (C-G) system. In the first mechanism there is the concerted movement of two hydrogen atoms along two of the three H-bridges that bond the bases, one from the cytosine to guanine and the other in the opposite direction. This movement must be coupled to an electronic reorganization, with some bond orders that pass from single to double and vice versa, in order to preserve the neutrality of these new structures. In the stepwise mechanism the movement of the hydrogen atoms and the electronic reorganization are not concerted, and it implicates the movement of a hydrogen atom at a time with the identification of two or more steps in this reaction. There are two possible neutral imino-enol structures in the C-G system, and both have been considered here. The principal result from this paper is that a different behavior is observed if the hydrogen transfer begins with a H of the guanine or of the cytosine and that a concerted (synchronic in the N-N and asynchronic in the N-O) double-hydrogen transfer can be activated only when the first H atom to move is that of the guanine, in particular. This is different from the A-T system(1) studied previously where the movement in a N-N bridge produces a zwitterionic structure and that in the N-O the concerted double-hydrogen transfer. In both cases a general conclusion can be given: the concerted double-hydrogen process begins with a hydrogen atom of a purinic base.

  2. Mass transfer in porous media with heterogeneous chemical reaction

    Directory of Open Access Journals (Sweden)

    Souza S.M.A.G.Ulson de

    2003-01-01

    Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.

  3. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  4. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Final report, September 26, 1989--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1993-12-31

    The key results obtained from this research project are given: (1) Hydrogen transfer from naphthenes to aromatics, coal and resid occurred at coprocessing temperatures and in a N{sub 2} atmosphere; (2) Hydrogen donors ranked in reactivity as cyclic olefins (nonaromatic hydroaromatic compounds) > hydroaromatic compounds > naphthenes. This ranking held regardless of the type of atmosphere, hydrogen or nitrogen, used; (3) Resids reduced by the Birch method transferred substantially more hydrogen to the aromatic acceptor than did the parent resids under coprocessing conditions; (4) Hydropretreatment of resids resulted in enhanced coal conversion compared to the parent resid; (5) Addition of hydrogen donors such as cyclic olefins or hydroaromatic donors increased the amount of coal conversion during coprocessing. Cyclic olefins and the active hydroaromatic donor, dihydroanthracene, showed the highest level of hydrogen donability. Tetralin and octahydroanthracene showed low reactivity; (6) Reduced resids were more effective in coprocessing than the parent resids, in terms of enhanced coal conversion; (7) Thermal and catalytic reactivity of cyclic olefins under nitrogen and hydrogen atmospheres was much higher than conventional hydroaromatic donors when no aromatic acceptor was present; (8) Reactivity of hydrogen donors was dependent upon the reactivity of the acceptor as well as that of the donors; (9) Three-ring hydrogen donors, dihydroanthracene and hexahydroanthracene, were most effective for transferring hydrogen to the Argonne coals while octahydroanthracene was the least reactive; (10) The kinetics data obtained for thermal and catalytic reactions involving cyclic olefins and hydroaromatic donors were adequately modeled by pseudo-first order kinetics; and (11) {Delta}G values calculated for cyclic olefins and hydroaromatic donors based on kinetics data adequately represented the reactivity observed experimentally.

  5. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  6. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    Directory of Open Access Journals (Sweden)

    Feng Li

    2017-05-01

    Full Text Available Carbon nanotubes (CNTs-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs. The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent, compared with either pure medium, decreased the catalytic activity toward phenol hydrogenation and selectivity of cyclohexanone over Pt–in/CNTs, but significantly improved the catalytic activity toward phenol hydrogenation and selectivity of cyclohexanone over Pt–out/CNTs.

  7. Hydrogenation of O and OH on Pt(111): a comparison between the reaction rates of the first and the second hydrogen addition steps.

    Science.gov (United States)

    Näslund, L-Å

    2014-03-14

    The formation of water through hydrogenation of oxygen on platinum occurs at a surprisingly low reaction rate. The reaction rate limited process for this catalytic reaction is, however, yet to be settled. In the present work, the reaction rates of the first and the second hydrogen addition steps are compared when hydrogen is obtained through intense synchrotron radiation that induces proton production in a water overlayer on top of the adsorbed oxygen species. A substantial amount of the produced hydrogen diffuses to the platinum surface and promotes water formation at the two starting conditions O/Pt(111) and (H2O+OH)/Pt(111). The comparison shows no significant difference in the reaction rate between the first and the second hydrogen addition steps, which indicates that the rate determining process of the water formation from oxygen on Pt(111) is neither the first nor the second H addition step or, alternatively, that both H addition steps exert rate control.

  8. Hot hydrogen atom reactions moderated by H2 and He

    Science.gov (United States)

    Aronowitz, S.; Scattergood, T.; Flores, J.; Chang, S.

    1986-01-01

    Photolysis experiments were performed on the H2-CD4-NH3 and He-CD4-NH3 systems. The photolysis (1849 A) involved only NH3. Mixtures of H2:CD4:NH3 included all combinations of the ratios (200,400,800):(10,20,40):4. Two He:CD4:NH3 mixtures were examined where the ratios equalled the combinations 100:(10,20):4. Abstraction of a D from CD4 by the photolytically produced hot hydrogen from ammonia was monitored by mass spectrometric determination of HD. Both experiment and semiempirical hot-atom theory show that H2 is a very poor thermalizer of hot hydrogens with excess kinetic energy of about 2 eV. Applications of the hard-sphere collision model to the H2-CD4-NH3 system resulted in predicted ratios of net HD production to NH3 decomposition that were two orders of magnitude smaller than the experimental ratios. On the other hand, helium is found to be a very efficient thermalizer; here, the classical model yields reasonable agreement with experiments. Application of a semiempirical hot-atom program gave quantitative agreement with experiment for either system.

  9. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  10. Theoretical Investigation of Intramolecular Hydrogen Shift Reactions in 3-Methyltetrahydrofuran (3-MTHF) Oxidation.

    Science.gov (United States)

    Parab, Prajakta R; Sakade, Naoki; Sakai, Yasuyuki; Fernandes, Ravi; Heufer, K Alexander

    2015-11-05

    3-Methyltetrahydrofuran (3-MTHF) is proposed to be a promising fuel component among the cyclic oxygenated species. To have detailed insight of its combustion kinetics, intramolecular hydrogen shift reactions for the ROO to QOOH reaction class are studied for eight ROO isomers of 3-MTHF. Rate constants of all possible reaction paths that involve formation of cyclic transition states are computed by employing the CBS-QB3 composite method. A Pitzer-Gwinn-like approximation has been applied for the internal rotations in reactants, products, and transition states for the accurate treatment of hindered rotors. Calculated relative barrier heights highlight that the most favorable reaction channel proceeds via a six membered transition state, which is consistent with the computed rate constants. Comparing total rate constants in ROO isomers of 3-MTHF with the corresponding isomers of methylcyclopentane depicts faster kinetics in 3-MTHF than methylcyclopentane reflecting the effect of ring oxygen on the intramolecular hydrogen shift reactions.

  11. Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS2.

    Science.gov (United States)

    Lazar, Petr; Otyepka, Michal

    2017-04-06

    Molybdenum disulfide, in particular its edges, has attracted considerable attention as possible substitute for platinum catalysts in the hydrogen evolution reaction (HER). The complex nature of the reaction complicates its detailed experimental investigations, which are mostly indirect and sample dependent. Therefore, density functional theory calculations were employed to study how the properties of the MoS2 Mo-edge influence the thermodynamics of hydrogen adsorption onto the edge. The effect of the computational model (one-dimensional nanostripe), border symmetry imposed by its length, sulfur saturation of the edge, and dimensionality of the material are discussed. Hydrogen adsorption was found to depend critically on the coverage of extra sulfur at the Mo edge. The bare Mo-edge and fully sulfur-covered Mo-edge are catalytically inactive. The most favorable hydrogen binding towards HER was found for the Mo-edge covered by sulfur monomers. This edge provides hydrogen adsorption free energies positioned around -0.25 eV at up to 50 % hydrogen coverage, close to the experimental values of overpotential needed for the HER reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hollow Pd/MOF Nanosphere with Double Shells as Multifunctional Catalyst for Hydrogenation Reaction.

    Science.gov (United States)

    Wan, Mingming; Zhang, Xinlu; Li, Meiyan; Chen, Bo; Yin, Jie; Jin, Haichao; Lin, Lin; Chen, Chao; Zhang, Ning

    2017-10-01

    A new type of hollow nanostructure featured double metal-organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST-1/Pd@ZIF-8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, inductively coupled plasma, and N 2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST-1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF-8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular-size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid-phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size-selectivity of Void@HKUST-1/Pd@ZIF-8. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction

    Science.gov (United States)

    Cao, Pengfei; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2017-04-01

    Molybdenum disulfide (MoS2) is a promising electrocatalyst for hydrogen evolution reaction (HER), however, the catalytic activity of reported MoS2-based materials towards HER still can't satisfy the requirement of practical application. Herein, highly conductive carbon black (CB) supported amorphous MoS2 nanocomposite is synthesized by a facile one-pot hydrothermal process. XRD and TEM analysis proves the amorphous morphology of MoS2. XPS further confirms both hexagonal and orthorhombic S ligands exist in the amorphous MoS2. Compared with crystalline MoS2, amorphous MoS2/CB shows an onset overpotential of 78 mV and current density of 470 mA cm-2 at the overpotential of 200 mV, which is even 50% higher than that of the commercial 20% Pt/C catalyst. Furthermore, a fairly stable performance can be achieved even after 5000 CV cycles. The outstanding HER activity and stability of the amorphous MoS2/CB nanocomposite can be attributed to these advantages: (1) amorphous structure offers more active sites in MoS2; (2) highly conductive CB reduces the charge transfer resistance (RCT); (3) relative hydrophilic CB can largely reduce the resistance between catalyst/electrolyte interface and allows rapid mass transport; (4) electron penetration effect between amorphous MoS2 and CB increases the intrinsic activity of amorphous MoS2 by two orders of magnitude.

  14. Ground state isomerism in betacarboline hydrogen bond complexes: The charge transfer nature of its large Stokes shifted emission

    Science.gov (United States)

    Sánchez-Coronilla, Antonio; Balón, Manuel; Muñoz, María A.; Hidalgo, José; Carmona, Carmen

    2008-07-01

    The hydrogen bonding and excited state proton transfer reactions between betacarboline, 9 H-pyrido[3,4- b]indole, BC, and 1,1,1,3,3,3-hexafluoropropan-2-ol, HFIP, have been studied in the aprotic solvents cyclohexane and toluene by absorption, steady state and time resolved fluorescence measurements. On the basis of these results and those of previous works (Refs. [A. Sánchez-Coronilla, C. Carmona, M.A. Muñoz, M. Balón, Chem. Phys., 327 (2006) 70] and [A. Sánchez-Coronilla, M. Balón, M.A. Muñoz, C. Carmona, Chem. Phys. 344 (2008) 72]) two main fundamental conclusions can be drawn on the photophysical behaviour of BC. Thus, it is shown, for the first time, that the non-cyclic double hydrogen bond complexes formed through both nitrogen atoms of BC, DHB, can suffer, in their ground state, an isomerisation process. These adducts acquire a quinoid structure in cyclohexane, but maintain a dipolar zwitterionic structure in toluene. Moreover, it is concluded that the observed large Stokes shifted emission, around 520 nm, is not due, as it has been so far generally accepted, to the emission of a BC zwitterionic phototautomer, but to the intramolecular charge transfer, ICT, excited state emissions of the DHB hydrogen bond adducts.

  15. reaction process simulation of hydrogen gas discharge in a cold ...

    Indian Academy of Sciences (India)

    In the cold cathode electric vacuum device, under low pressure and weak ionization, elastic collision reaction is encountered by most electrons, that is, e + H2 → H2 + e and e + H → H + e, but the inelastic collision is the key method for ionizing the working gas and constituting plasma [10]. The inelastic collision has four ...

  16. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.

    Science.gov (United States)

    Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for

  17. Wagging motion of hydrogen-bonded wire in the excited-state multiple proton transfer process of 7-hydroxyquinoline·(NH3)3 cluster.

    Science.gov (United States)

    Liu, Yu-Hui; Lan, Sheng-Cheng; Li, Chun-Ran

    2013-08-01

    In this work, the dynamics of hydrogen bonds (as well as the hydrogen-bonded wire) in excited-state tautomerization of 7-hydroxyquinoline·(NH3)3 (7HQ·(NH3)3) cluster has been investigated by using time-dependent density functional theory (TDDFT). It shows that upon an excitation, the hydrogen bond between -OH group in 7-hydroxyquinoline (7HQ) and NH3 moiety would extremely strengthened in S1 state, which could effectively facilitate the releasing of the proton from the phenolic group of 7HQ moiety to the hydrogen-bonded wire and the forming an Eigen-like cationic wire (NH3···NH4(+)···NH3) in the cluster. To fulfill the different optimal angles of NH4(+) in the wire, a wagging motion of hydrogen-bonded wire would occur in excited state. Moreover, the wagging motion of the hydrogen-bonded wire would effectively promote excited-state proton transfer reaction. As the results, an excited-state multiple proton transfer (ESMPT) mechanism containing two concerted and asymmetrical processes has been proposed for the proton transfer dynamics of 7HQ·(NH3)3 cluster. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Assuring process safety in the transfer of hydrogen cyanide manufacturing technology.

    Science.gov (United States)

    Maxwell, Gary R; Edwards, Victor H; Robertson, Mark; Shah, Kamal

    2007-04-11

    This paper outlines the critical issues to be addressed in the transfer of hydrogen cyanide (HCN) manufacturing technology to a licensee. Process safety management (PSM) is of critical importance because of the toxicity, flammability and reactivity of HCN. The critical issues are based on experience that DuPont has gained (1) while safely manufacturing hydrogen cyanide for over 50 years, and (2) while DuPont has safely licensed HCN technology to other firms at locations around the world. DuPont's HCN experience has been combined with Aker Kvaerner's project engineering experience to insure the safe transfer of HCN technology to a licensee.

  19. External Mass Transfer Model for Hydrogen Peroxide Decomposition by Terminox Ultra Catalase in a Packed-Bed Reactor

    Directory of Open Access Journals (Sweden)

    Grubecki Ireneusz

    2017-06-01

    Full Text Available It is known that external diffusional resistances are significant in immobilized enzyme packed-bed reactors, especially at large scales. Thus, the external mass transfer effects were analyzed for hydrogen peroxide decomposition by immobilized Terminox Ultra catalase in a packed-bed bioreactor. For this purpose the apparent reaction rate constants, kP, were determined by conducting experimental works at different superficial velocities, U, and temperatures. To develop an external mass transfer model the correlation between the Colburn factor, JD, and the Reynolds number, Re, of the type JD = K Re(n-1 was assessed and related to the mass transfer coefficient, kmL. The values of K and n were calculated from the dependence (am kp-1 - kR-1 vs. Re-1 making use of the intrinsic reaction rate constants, kR, determined before. Based on statistical analysis it was found that the mass transfer correlation JD = 0.972 Re-0.368 predicts experimental data accurately. The proposed model would be useful for the design and optimization of industrial-scale reactors.

  20. Domination of thermodynamically demanding oxidative processes in reaction of iodine with hydrogen peroxide

    Science.gov (United States)

    Stevanović, Kristina Z.; Bubanja, Itana Nuša M.; Stanisavljev, Dragomir R.

    2017-09-01

    We investigated the degree of isothermal iodine conversion to iodate as one of the most intriguing steps of the Bray-Liebhafsky oscillator. The amount of the produced iodate, in the presence of hydrogen peroxide, was determined by the stopped-flow titration with iodide ions. From five different experiments, high degree of iodine conversion to iodate (95.4 ± 0.6)% is obtained. It confirmed that, after the induction period of spontaneous hydrogen peroxide catalytic decomposition, reaction dynamics is dominated by thermodynamically demanding oxidative processes. Isothermal change of the reaction dynamics introduces some specific energy redistribution as a possible initiator of oxidizing radicals.

  1. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde ...

    Indian Academy of Sciences (India)

    Abstract. The kinetics of the reaction between pinonaldehyde (C10H16O2) and Cl atom were studied using high level ab initio G3(MP2) and DFT based MPWB1K/6-31+G(d) and MPW1K/6-31+G(d) levels of theo- ries coupled with Conventional Transition State Theory in the temperature range between 200 and 400 K. The.

  2. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    Science.gov (United States)

    Gil, Michał; Kijak, Michał; Piwoński, Hubert; Herbich, Jerzy; Waluk, Jacek

    2017-03-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters. We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donor-acceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  3. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  4. Phenomena and significance of intermediate spillover in electrocatalysis of oxygen and hydrogen electrode reactions

    Directory of Open Access Journals (Sweden)

    Jakšić Jelena M.

    2012-01-01

    Full Text Available Altervalent hypo-d-oxides of transition metal series impose spontaneous dissociative adsorption of water molecules and pronounced membrane spillover transferring properties instantaneously resulting with corresponding bronze type (Pt/HxWO3 under cathodic, and/or its hydrated state (Pt/W(OH6 responsible for the primary oxide (Pt-OH effusion, under anodic polarization, this way establishing instantaneous reversibly revertible alterpolar bronze features (Pt/H0.35WO3 Pt/W(OH6, and substantially advanced electrocatalytic properties of these composite interactive electrocatalysts. As the consequence, the new striking and unpredictable prospects both in law and medium temperature proton exchange membrane fuell cell (L&MT PEMFC and water electrolysis (WE have been opened by the interactive supported individual (Pt, Pd, Ni or prevailing hyper-d-electronic nanostructured intermetallic phase clusters (WPt3, NbPt3, HfPd3, ZrNi3, grafted upon and within high altervalent capacity hypo-d-oxides (WO3, Nb2O5, Ta2O5, TiO2 and their proper mixed valence compounds, to create a novel type of alterpolar interchangeable composite electrocatalysts for hydrogen and oxygen electrode reactions. Whereas in aqueous media Pt (Pt/C features either chemisorbed catalytic surface properties of H-adatoms (Pt-H, or surface oxide (Pt=O, missing any effusion of other interacting species, new generation and selection of composite and interactive strong metal-support interaction (SMSI electrocatalysts in condensed wet state primarily characterizes interchangeable extremely fast reversible spillover of either H-adatoms, or the primary oxides (Pt-OH, Au-OH, or the invertible bronze type behavior of these significant interactive electrocatalytic ingredients. Such nanostructured type electrocatalysts, even of mixed hypo-d-oxide structure (Pt/H0.35WO3/TiO2/C, Pt/HxNbO3/TiO2/C, have for the first time been synthesized by the sol-gel methods and shown rather high stability, electron

  5. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    Science.gov (United States)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  6. Synthesis of 3-Alkenyl-1-azaanthraquinones via Diels-Alder and Electron Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Patrice Vanelle

    2002-12-01

    Full Text Available A convenient route to 3-alkenyl-1-azaanthraquinones via a hetero Diels-Alder reaction between an azadiene and naphthoquinone, a free radical chlorination and an electron transfer reaction is reported.

  7. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  8. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  9. The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2001-01-01

    The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1) and the activa...

  10. Spectroscopic determination of hydrogenation rates and intermediates during carbonyl hydrogenation catalyzed by Shvo's hydroxycyclopentadienyl diruthenium hydride agrees with kinetic modeling based on independently measured rates of elementary reactions.

    Science.gov (United States)

    Casey, Charles P; Beetner, Sharon E; Johnson, Jeffrey B

    2008-02-20

    The catalytic hydrogenation of benzaldehyde and acetophenone with the Shvo hydrogenation catalysts were monitored by in situ IR spectroscopy in both toluene and THF. The disappearance of organic carbonyl compound and the concentrations of the ruthenium species present throughout the hydrogenation reaction were observed. The dependence of the hydrogenation rate on substrate, H2 pressure, total ruthenium concentration, and solvent were measured. In toluene, bridging diruthenium hydride 1 was the only observable ruthenium species until nearly all of the substrate was consumed. In THF, both 1 and some monoruthenium hydride 2 were observed during the course of the hydrogenation. A full kinetic model of the hydrogenation based on rate constants for individual steps in the catalysis was developed. This kinetic model simulates the rate of carbonyl compound hydrogenation and of the amounts of ruthenium species 1 and 2 present during hydrogenations.

  11. Efficient Energy Transfer in Supramolecular, Hydrogen-Bonded Polypyridylruthenium-Osmium Complexes

    NARCIS (Netherlands)

    Rau, Sven; Schäfer, Bernhard; Schebesta, Sebastian; Grüßing, André; Poppitz, Wolfgang; Walther, Dirk; Duati, Marco; Browne, Wesley R.; Vos, Johannes G.

    Hydrogen bond association between ruthenium bibenzimidazole and carboxylated polypyridylosmium complexes results in stable supramolecular aggregates. The determined stability constant of logK approximate to 6 +/- 0.3 allows efficient energy transfer from the ruthenium to the osmium moiety. (C)

  12. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  13. Energy Transfer with Hydrogen and Superconductivity - The Review of the First Experimental Results

    Science.gov (United States)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    The transfer of massive amounts of both electrical and chemical power over long distances will present a major challenge for the global energy enterprise in future. Attraction of hydrogen is apparent as a chemical energy agent, possessing among the highest energy density content of various common fuels, whose combustive "waste" is simply water. The usage of "gratis" cold to cool a superconducting cable made of proper superconductor permits to deliver extra electrical power with the same line. This, rather old theoretical idea recently found its experimental realization. The team of Russian institutes and organizations with using Italian-produced MgB2 wire has made and successfully tested two hybrid energy transfer lines with liquid hydrogen as a chemical source of power and superconducting cable as a source of electricity. The first line has been tested in 2011. It has length ∼10 m, maximum liquid hydrogen flow ∼250 g/s and maximum current of MgB2 superconducting cable 2600 A @ 20K. This test was the first experimental proof of conception of the hybrid energy transfer line. The second line has been tested in October 2013. It has length ∼30 m. The new MgB2 cable has critical current at 21 K ∼3500 A and successfully passed high voltage DC test of 50 kV. New hydrogen cryostat has three sections with different types of thermal insulation in each section. The idea of hybrid energy transfer is formulated and details of first experiments are reviewed.

  14. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    Science.gov (United States)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  15. Spillover Phenomena and Its Striking Impacts in Electrocatalysis for Hydrogen and Oxygen Electrode Reactions

    Directory of Open Access Journals (Sweden)

    Georgios D. Papakonstantinou

    2011-01-01

    Full Text Available The core subject of the present paper represents the interrelated spillover (effusion phenomena both of the primary oxide and the H-adatoms, their theory and practice, causes, appearances and consequences, and evidences of existence, their specific properties, and their alterpolar equilibria and kinetic behavior, structural, and resulting catalytic, and double layer charging features. The aim is to introduce electron conductive and d-d interactive individual and composite (mixed valence hypo-d-oxide compounds, of increased altervalent capacity, or their suboxides (Magnéli phases, as the interactive catalytic supports and therefrom provide (i the strong metal-support interaction (SMSI catalytic effect and (ii dynamic spillover interactive transfer of primary oxides (M-OH and free effusional H-adatoms for further electrode reactions and thereby advance the overall electrocatalytic activity. Since hypo-d-oxides feature the exchange membrane properties, the higher the altervalent capacity, the higher the spillover effect. In fact, altervalent hypo-d-oxides impose spontaneous dissociative adsorption of water molecules and then spontaneously pronounced membrane spillover transferring properties instantaneously resulting with corresponding bronze type (Pt/HxWO3 under cathodic and/or its hydrated state (Pt/W(OH6, responsible for Pt-OH effusion, under anodic polarization, this way establishing instantaneous reversibly revertible alterpolar bronze features (Pt/H0.35WO3⇔ Pt/W(OH6 and substantially advanced electrocatalytic properties of these composite interactive electrocatalysts. Such nanostructured-type electrocatalysts, even of mixed-valence hypo-d-oxide structures (Pt/H0.35WO3/TiO2/C, Pt/HxNbO3/TiO2/C, have for the first time been synthesized by the sol-gel methods and shown rather high stability, electron conductivity, and nonexchanged initial pure monobronze spillover and catalytic properties. Such a unique electrocatalytic system, as the

  16. Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes.

    Science.gov (United States)

    Lomoth, Reiner; Ott, Sascha

    2009-12-07

    The light-driven splitting of water into its constituting elements gives access to a valuable fuel from an abundant substrate, using sunlight as the only energy source. Synthetic diiron complexes as functional models of the [FeFe] hydrogenase H2ase enzyme active site have moved into the centre of focus as potentially viable catalysts for the reductive side of this process, i.e. the reduction of protons to molecular hydrogen. The active site of the enzyme, as well as its mimics in an artificial system, are required to accumulate two electrons from single electron transfer events and to combine them with two protons to form hydrogen. Whereas in biology this reaction is not coupled to photosynthesis and thus proceeds in the dark, additional aspects need to be considered when designing a functional artificial system for the light-driven reduction of protons. Suitable photosensitizers have to be chosen that not only provide sufficient driving force for the reduction of the synthetic diiron catalyst, but also allow for selective excitation to minimize photodegradation. Electron transfer efficiencies have to be optimized for all steps and the sequential nature of the catalyst reduction requires a sufficient stability of potentially labile intermediates of the catalytic cycle. In this perspective, systems for the light-driven conversion of protons to molecular hydrogen are discussed where the catalyst is based on model complexes of the [FeFe] H2ase active site. Covalently linked dyads, supramolecular assemblies and multi-component systems will be examined with an emphasis on mechanistic electron transfer schemes, the properties of the individual components, their scope and their potential limitations.

  17. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    Science.gov (United States)

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  18. Visible-light-induced hydrogen evolution reaction with WSxSe2−x

    Indian Academy of Sciences (India)

    planes are catalytically active due to the low Gibbs free energy for hydrogen evolution reaction (HER) [11,12]. Var- ious strategies have been employed to improve the HER either by creating much active edge sites [13–17] or by chemical modification .... after 3 h, suggesting that it will not be an optimal choice as a long-term ...

  19. Hydrogen- Bond- Assisted Activation of Allylic Alcohols for Palladium- Catalyzed Coupling Reactions

    NARCIS (Netherlands)

    Gumrukcu, Y.; de Bruin, B.; Reek, J.

    2014-01-01

    We report direct activation of allylic alcohols using a hydrogen-bond-assisted palladium catalyst and use this for alkylation and amination reactions. The novel catalyst comprises a palladium complex based on a functionalized monodentate phosphoramidite ligand in combination with urea additives and

  20. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    Science.gov (United States)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  1. The Photochemical Oxidation of Siderite That Drove Hydrogen Based Microbial Redox Reactions in The Archean Biosphere

    Science.gov (United States)

    Kim, J. D.; Yee, N.; Falkowski, P. G.

    2012-12-01

    Hydrogen is the most abundant element in the universe and molecular hydrogen (H2) is a rich source of electron in a mildly reducing environment for microbial redox reactions, such as anoxygenic photosynthesis and methanogenesis. Subaerial volcanoes, ocean crust serpentinization and mid-ocean ridge volcanoes have been believed to be the major source of the hydrogen flux to the atmosphere. Although ferrous ion (Fe2+) photooxidation has been proposed as an alternative mechanism by which hydrogen gas was produced, ferruginous water in contact with a CO2-bearing atmosphere is supersaturated with respect to FeCO3 (siderite), thus the precipitation of siderite would have been thermodynamically favored in the Archean environment. Siderite is the critical mineral component of the oldest fossilized microbial mat. It has also been inferred as a component of chemical sedimentary protolith in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada and the presence of siderite in the protolith suggests the occurrence of siderite extends to Hadean time. Analyses of photooxidation of siderite suggest a significant flux of hydrogen in the early atmosphere. Our estimate of the hydrogen production rate under Archean solar flux is approximately 50 times greater than the estimated hydrogen production rate by the volcanic activity based on a previous report (Tian et al. Science 2005). Our analyses on siderite photooxidation also suggest a mechanism by which banded iron formation (BIF) was formed. The photooxidation transforms siderite to magnetite/maghemite (spinnel iron oxide), while oxygenic oxidation of siderite leads to goethite, and subsequently to hematite (Fe3+2O3) upon dehydration. We will discuss the photochemical reaction, which was once one of the most ubiquitous photochemical reactions before the rise of oxygen in the atmosphere. Photooxidation of siderite over time by UV light From left to right: UV oxidized siderite, pristine siderite, oxidized siderite by oxygen

  2. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  3. A kinetic study on the adsorption and reaction of hydrogen over silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    VanderWiel, David P. [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Although the catalytic hydrogenation of carbon monoxide has been a subject of considerable investigation for many years, its increasing economical attractiveness as an industrial source of hydrocarbons has recently led to a search for more active and selective catalysts. A fundamental problem in the development of such catalysts is an incomplete knowledge of the operative surface processes, due in large part to the inability to accurately measure surface concentrations of reactant species during reaction. Specifically, the concentration of surface hydrogen proves difficult to estimate using normally revealing techniques such as transient isotopic exchange due to kinetic isotope effects. Knowledge of such concentrations is essential to the determination of the mechanisms of adsorption and reaction, since many kinetic parameters are concentration dependent. It is the aim of this research to investigate the mechanism and kinetics of the adsorption and reaction of hydrogen on silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide. By preadsorbing carbon monoxide onto the surface of ruthenium and silver-ruthenium catalysts, the kinetics of hydrogen adsorption and reaction can be monitored upon exposure of this surface to ambient hydrogen gas. This is accomplished by conducting identical experiments on two separate systems. First, the formation of methane is monitored using mass spectroscopy, and specific reaction rates and apparent activation energies are measured. Next, in situ 1H-NMR is used to monitor the amount of hydrogen present on the catalyst surface during adsorption and reaction. The results for these two sets of experiments are then combined to show a correlation between the rate of reaction and the surface hydrogen concentration. Finally, transition state theory is applied to this system and is used to explain the observed change in the apparent activation energy. The structure sensitivity of hydrogen

  4. Magnetic resonance studies of photo-induced electron transfer reactions. Final report, June 1, 1990--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    van Willigen, H.

    1992-11-01

    Fourier Transform Electron Paramagnetic Resonance (FT EPR) is useful in study of photochemical reactions: a microwave pulse rotates the electron spin magnetization vector from z (magnetic field) into xy plane ({pi}/2 pulse); the time evolution of magnetization in xy plane, the free induction decay (FID), is sampled. Fourier transform of FID gives the frequency domain EPR spectrum of the free radicals, and the method is ideal for time-resolved studies of free radicals produced by pulsed-laser excitation. Investigations of electron transfer reactions focused on porphyrin (donor) - quinone (acceptor) systems. First, two hydrogen abstraction reactions were studied with FT EPR: photoreduction of acetone with 2-propanol, yielding the acetone ketyl radical, and the reaction of 2-propanol with t-butoxy radicals. Then, the FT EPR study of benzoquinone or duroquinone anion radicals generated by pulsed-laser induced electron transfer from zinc tetraphenylporphyrin (ZnTPP) or tetrasulfonated Zn(TPP), was carried out in homogeneous solution, micellar solutions, and silica gel. Finally, FT EPR was used to study electron transfer quenching of triplet C{sub 60} by electron donors.

  5. Theoretical aspects of electron transfer reactions of complex molecules

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    2001-01-01

    Features of electron transfer involving complex molecules are discussed. This notion presently refers to molecular reactants where charge transfer is accompanied by large molecular reorganization, and commonly used displaced harmonic oscillator models do not apply. It is shown that comprehensive ...

  6. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  7. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schmehl, Russell H. [Tulane Univ., New Orleans, LA (United States)

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods were used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.

  8. Note: Charge transfer in a hydrated peptide group is determined mainly by its intrinsic hydrogen-bond energetics

    Energy Technology Data Exchange (ETDEWEB)

    Mirkin, Noemi G.; Krimm, Samuel [LSA Biophysics, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055 (United States)

    2014-01-28

    Charge transfer in a hydrogen-bonded N-methylacetamide(H{sub 2}O){sub 3} system is obtained from ωB97X-D/6-31++G** and CHelpG atomic charge calculations of individual peptide-water interactions as well as that of the entire complex. In the latter, the electron transfer to water is 0.19 e, influenced primarily by the hydrogen bonds to the C=O group. The values of such charge transfer are paralleled by the corresponding intrinsic hydrogen-bond energies. These results support the desirability of incorporating charge transfer in molecular mechanics energy functions.

  9. The effect of moderators on the reactions of hot hydrogen atoms with methane

    CERN Document Server

    Estrup, Peder J.

    1960-01-01

    The reaction of recoil tritium with methane has been examined in further detail. The previous hypothesis that this system involves a hot displacement reaction of high kinetic energy hydrogen to give CH$_{3}$T, CH$_{2}$T and HT is confirmed. The effect of moderator on this process is studied by the addition of noble gases. As predicted these gases inhibit the hot reaction action, their efficiency in this respect being He > Ne > A > Se. The data are quantitatively in accord with a theory of hot atom kinetics. The mechanism of the hot displacement process is briefly discussed.

  10. MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Burt, Scott Russell [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The power of magnetic resonance imaging (MRI) is its ability to image the internal structure of optically opaque samples and provide detailed maps of a variety of important parameters, such as density, diffusion, velocity and temperature. However, one of the fundamental limitations of this technique is its inherent low sensitivity. For example, the low signal to noise ratio (SNR) is particularly problematic for imaging gases in porous materials due to the low density of the gas and the large volume occluded by the porous material. This is unfortunate, as many industrially relevant chemical reactions take place at gas-surface interfaces in porous media, such as packed catalyst beds. Because of this severe SNR problem, many techniques have been developed to directly increase the signal strength. These techniques work by manipulating the nuclear spin populations to produce polarized} (i.e., non-equilibrium) states with resulting signal strengths that are orders of magnitude larger than those available at thermal equilibrium. This dissertation is concerned with an extension of a polarization technique based on the properties of parahydrogen. Specifically, I report on the novel use of heterogeneous catalysis to produce parahydrogen induced polarization and applications of this new technique to gas phase MRI and the characterization of micro-reactors. First, I provide an overview of nuclear magnetic resonance (NMR) and how parahydrogen is used to improve the SNR of the NMR signal. I then present experimental results demonstrating that it is possible to use heterogeneous catalysis to produce parahydrogen-induced polarization. These results are extended to imaging void spaces using a parahydrogen polarized gas. In the second half of this dissertation, I demonstrate the use of parahydrogen-polarized gas-phase MRI for characterizing catalytic microreactors. Specifically, I show how the improved SNR allows one to map parameters important for characterizing the heat and mass

  11. Hydrogen Generation from Ammonia Borane and Water Through the Combustion Reactions with Mechanically Alloyed Al/Mg Powder

    Science.gov (United States)

    2014-08-11

    Mostly all hydrogen (around 95%) is produced from natural gas. Steam at high temperatures (700 C to 1000 C) is used to split methane to carbon... catalysts have been studied. Ruthenium catalysts are the most commonly used, which allows 80% conversion of NH3 to hydrogen at 673 K. Ammonia could be...Different catalysts have been added to the reaction such as Pt-LiCoO2 which is the most promising catalyst for this reaction. Hydrogen generation from the

  12. Isomeric Differentiation of Green Tea Catechins using Gas-Phase Hydrogen/Deuterium Exchange Reactions

    Science.gov (United States)

    Niemeyer, Emily D.; Brodbelt, Jennifer S.

    2007-01-01

    Hydrogen/deuterium exchange reactions in a quadrupole ion trap mass spectrometer are used to differentiate galloylated catechin stereoisomers (catechin gallate and epicatechin gallate; gallocatechin gallate and epigallocatechin gallate) and the non-galloylated analogs (catechin and epicatechin, gallocatechin and epigallocatechin). Significant differences in the hydrogen/deuterium exchange behavior of the four pairs of deprotonated catechin stereoisomers are observed upon reaction with D2O. Interestingly, the non-galloylated catechins undergo H/D exchange to a much greater extent than the galloylated species, incorporating deuterium at both aromatic/allylic and active phenolic sites. Non-galloylated catechin isomers are virtually indistinguishable by their H/D exchange kinetics over a wide range of reaction times (0.05 to 10 s). Our experimental results are explained using high-level ab initio calculations to elucidate the subtle structural variations in the catechin stereoisomers that lead to their differing H/D exchange kinetics. PMID:17702600

  13. Evaluation of a commercial packed bed flow hydrogenator for reaction screening, optimization, and synthesis

    Directory of Open Access Journals (Sweden)

    Marian C. Bryan

    2011-08-01

    Full Text Available The performance of the ThalesNano H-Cube®, a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube® reactor for screening and reaction optimization is discussed.

  14. Influence of plastic strain on the hydrogen evolution reaction on nickel (100) single crystal surfaces to improve hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Lekbir, C., E-mail: choukri.lekbir@univ-lr.fr; Creus, J.; Sabot, R.; Feaugas, X.

    2013-08-20

    Hydrogen-induced embrittlement can be accountable for premature failure of structure in relation with physical and/or chemical processes occurring on material's surface or in the bulk of the material. Hydrogen Evolution Reaction (HER) corresponding to the early step of hydrogen ingress in the material is explored in present study in relation with plastic strain. HER on nickel (100) single crystal in sulphuric acid medium can be related by a Volmer–Heyrovsky mechanism. The corresponding elementary kinetic parameters as symmetry coefficients, activation enthalpies, and number of active sites have been identified via a thermokinetic model using experimental data. These parameters can be affected by defects associated with plastic strain. Irreversible plastic strain modifies the density and the distribution of storage dislocations affecting the surface roughness at atomic scale and generating additional active adsorption sites. Furthermore, surface emergence of mobile dislocations induces the formation of slip bands, which modify the surface roughness and the electronic state of the surface and increases the (111) surface density. The consequence of plastic strain on HER is explored and discussed in relation with both processes.

  15. Reaction engineering for materials processing in space: Reduction of ilmenite by hydrogen and carbon monoxide

    Science.gov (United States)

    Zhao, Y.; Shadman, F.

    1991-01-01

    Oxygen is a consumable material which needs to be produced continuously in most space missions. Its use for propulsion as well as life support makes oxygen one of the largest volume chemicals to be produced in space. Production of oxygen from lunar materials is of particular interest and is very attractive possibility. The kinetics and mechanism of reduction of ilmenite by carbon monoxide and hydrogen at 800 to 1100 C were investigated. The temporal profiles of conversion for carbon monoxide have a sigmoidal shape and indicate the presence of three different stages (induction, acceleration, and deceleration) during the reduction reaction. The apparent activation energy decreases from 18 kcal/mole at 10 percent conversion to 10 kcal/mole at 50 percent conversion. The reaction is first order with respect to carbon monoxide under the experimental conditions studied. Both SEM and EDX analysis show that the diffusion of Fe product away from the reaction front and through the TiO2 phase, followed by the nucleation and growth of a separate Fe phase are important steps affecting the process kinetics. The results from hydrogen reduction show that the mechanism of ilmenite reduction by hydrogen is similar to that by carbon monoxide. However, the titanium dioxide can be further reduced by hydrogen at 800 to 1000 C. The detailed comparison and theoretical modeling of both reduction processes is presented.

  16. The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction

    Science.gov (United States)

    Li, Ruchun; Zhou, Dan; Luo, Jiaxian; Xu, Weiming; Li, Jingwei; Li, Shuoshuo; Cheng, Pengpeng; Yuan, Dingsheng

    2017-02-01

    Electrochemical water splitting has attracted great interest because of the growing demand for sustainable energy and increasing concerns for the environment. We present a facile strategy to design the three-dimensional (3D) urchin-like sphere arrays Co3O4 as an effective bifunctional catalyst for electrochemical water splitting. The 3D urchin-like Co3O4 was directly grown on Ni foam by a hydrothermal reaction and annealing treatment at a low temperature. This process offers several advantages including facile synthesis, binder-free, and low cost. The 3D urchin-like Co3O4 as a catalyst for hydrogen evolution reaction exhibits a low onset potential (-130 mV vs. RHE) and good cycling stability in an alkaline electrolyte. When urchin-like Co3O4 is used as a catalyst for oxygen evolution reaction, the onset potential is at 1.46 V (vs. RHE) with a low overpotential of only 230 mV. The good catalytic activity can be attributed to the unique urchin-like nanostructure, abundant mesopores, and low charge-transfer resistance (compared with Co3O4 NPs). In addition, H2 and O2 generation was performed using Co3O4 as both cathode and anode catalysts with a potential of 1.64 V to reach a current density of 10 mA cm-2.

  17. TD-DFT study on electron transfer mobility and intramolecular hydrogen bond of substituted indigo derivatives

    Science.gov (United States)

    Ma, Chi; Li, Hui; Yang, Yonggang; Li, Donglin; Liu, Yufang

    2015-10-01

    The density functional theory (DFT) and time-dependent density functional theory (TDDFT) method were carried out to investigate the ground and excited states of indigo and its derivative molecules. The results demonstrate that the intramolecular hydrogen bond I is weakened and the intramolecular hydrogen bond II is strengthened upon photo-excitation to the S1 state. In the absorption spectra, the substitution at R4R4, of indigo causes a significant redshift. In addition, the halogen substitution obviously increases the electron transfer mobility of indigo. It is proved that the halogen substitution may be a new method to design high performance organic semiconductors.

  18. Antiproton Annihilation in Hydrogen at Rest. I. Reaction p-bar+p-->K+K-bar+ pi

    CERN Document Server

    Kirsch, L; Franzini, P; Miller, D; Tan, T H; Steinberger, J; Plano, R; Yaeger, P

    1965-01-01

    In a study of 735 000 antiproton annihilations at rest in the hydrogen bubble chamber, 182 examples of the reaction K1K1 pi 0 and 851 examples of the reaction K1K± pi ± were recorded. The distributions in the internal variables of these reactions are presented. A substantial fraction of the latter reaction proceeds through an intermediate K* state; p-bar+p-->K+K*. The theory of the interference effects in this reaction is presented and compared with the experimental result. It is concluded that the KK* annihilation proceeds dominantly from the 3S, I=1 state of the N-barN system. The fraction of p-barp annihilations into KK* is given as fKK*=(2.1±0.3) x 10-3.

  19. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  20. Metallic Iron-Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media.

    Science.gov (United States)

    Long, Xia; Li, Guixia; Wang, Zilong; Zhu, HouYu; Zhang, Teng; Xiao, Shuang; Guo, Wenyue; Yang, Shihe

    2015-09-23

    We report on the synthesis of iron-nickel sulfide (INS) ultrathin nanosheets by topotactic conversion from a hydroxide precursor. The INS nanosheets exhibit excellent activity and stability in strong acidic solutions as a hydrogen evolution reaction (HER) catalyst, lending an attractive alternative to the Pt catalyst. The metallic α-INS nanosheets show an even lower overpotential of 105 mV at 10 mA/cm(2) and a smaller Tafel slope of 40 mV/dec. With the help of DFT calculations, the high specific surface area, facile ion transport and charge transfer, abundant electrochemical active sites, suitable H(+) adsorption, and H2 formation kinetics and energetics are proposed to contribute to the high activity of the INS ultrathin nanosheets toward HER.

  1. Phosphonium salts as chiral phase-transfer catalysts: asymmetric Michael and Mannich reactions of 3-aryloxindoles.

    Science.gov (United States)

    He, Rongjun; Ding, Changhua; Maruoka, Keiji

    2009-01-01

    It's a PTC: A highly efficient reaction of 3-aryloxindoles in an asymmetric Michael addition was achieved by using a quaternary tetraalkylphosphonium salt as a chiral phase-transfer catalyst (PTC). The products were obtained in quantitative yields high ee values. The reaction of 3-aryloxindoles in an asymmetric Mannich reaction using the same catalyst also proved to be feasible.

  2. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  3. Photoinduced electron transfer in hydrogen bonded donor--acceptor systems. Free energy and distance dependence studies and an analysis of the role of diffusion.

    Science.gov (United States)

    Smitha, M A; Prasad, E; Gopidas, K R

    2001-02-14

    The free energy dependence of electron transfer in a few small-molecule donor--acceptor systems having hydrogen-bonding appendages was studied to evaluate the role of diffusion in masking the inverted region in bimolecular PET reactions. A small fraction of the probe molecules associate and this led to the simultaneous observation of unimolecular and diffusion-mediated quenching of the probe fluorescence. Free energy dependence studies showed that the unimolecular electron transfer obeys Marcus behavior and the diffusion-mediated electron transfer obeys Rehm--Weller behavior. The absence of an inverted region in bimolecular PET reactions is thus attributed to diffusion. The results of the free energy dependence studies suggest that distance dependence of electron transfer plays a role in masking the inverted region. To ascertain this aspect we have carried out a study of the distance dependence of electron transfer in the hydrogen-bonded donor--acceptor systems. For a system in the normal region an exponential rate decrease was observed. For a system in the inverted region it was observed that the rate depends very feebly on distance. Thus distance dependence studies did not confirm the prediction of enhanced rates at larger distances in the inverted region.

  4. An analysis of the explosion limits of hydrogen/oxygen mixtures with nonlinear chain reactions.

    Science.gov (United States)

    Liang, Wenkai; Law, Chung K

    2018-01-03

    The ignition boundary of hydrogen/oxygen mixtures is a Z-shaped curve in the pressure-temperature space, demonstrating the existence of three explosion limits. In this study, a general analysis governing all the three explosion limits in an isothermal environment is performed by considering both linear chain reactions (reactant-radical reactions) and nonlinear chain reactions (radical-radical reactions), in addition to the zeroth-order reactant-reactant reactions. For the nonlinear reactions, it is further shown that the linear-nonlinear coupling has the major influence, while the effect of nonlinear-nonlinear coupling is negligible. Phenomenologically, at low pressures, the competition between linear branching and linear termination as well as wall destruction determines the first and second explosion limits, while the nonlinear chain reactions are unimportant because of the small radical concentrations under these conditions. However, at higher pressures, both linear and nonlinear chain reactions are needed to accurately describe the third limit, which would be underpredicted by considering the linear chain reactions alone. For intermediate and high pressures, the dominant species are HO2 and H2O2, respectively. Mechanistically, the concentration of HO2 becomes higher at higher pressures due to the three-body recombination reaction, H + O2 + M → HO2 + M, such that the radical-radical reactions involving HO2 become important, while the reaction HO2 + HO2 → H2O2 + O2 renders HO2 nonessential at the third limit, with the H2O2 radical generated by the nonlinear chain reactions becoming the controlling species.

  5. Theoretical study on the excited-state intramolecular proton-transfer reaction of 10-hydroxybenzo[h]quinoline in methanol and cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng [Department of Chemistry, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao, Jinfeng [Department of Physics, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cui, Yanling; Wang, Qianyu [Department of Physics, Liaoning University, Shenyang 110036 (China); Dai, Yumei [Normal College, Shenyang University, Shenyang 110044 (China); Song, Peng, E-mail: songpeng@lnu.edu.cn [Department of Physics, Liaoning University, Shenyang 110036 (China); Xia, Lixin, E-mail: lixinxia@lnu.edu.cn [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2015-05-15

    The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 10-hydroxybenzoquinoline (HBQ) in different solvents, have been investigated based on the time-dependent density functional theory (TD-DFT) in detail. Upon excitation, the intramolecular hydrogen bond between the hydroxyl and phenanthrene functionality is significantly strengthened in the S{sub 1} state, which can be used as a reasonable tendency for facilitating the ESIPT process. In addition, the calculated vertical excitation energies in the S{sub 0} state and S{sub 1} state reproduce the experimental UV–vis absorbance and fluorescence emission spectra well. Through calculating the fluorescence spectra of the HBQ chromophore, two outcomes for this chromophore were found in the S{sub 1} state, which demonstrates that the ESIPT process occurs. The potential energy curves have been calculated to account for the mechanism of the proton-transfer process in the excited-state. As a result, the barrierless ESIPT process can occur in the S{sub 1} state with proton transfer from the O atom to the N atom. And maybe the ESIPT process is easier in methanol solvent due to the higher potential energy difference. - Highlights: • The hydrogen bond between the hydroxyl and phenanthrene is strengthened. • The hydrogen bond facilitates the proton transfer from the hydroxyl group to the N atom. • The spontaneous excited-state intramolecular proton transfer reaction can be observed.

  6. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu{sub 2}ZnSnS{sub 4} (CZTS) Electrocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Digraskar, Renuka V.; Mulik, Balaji B. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MH (India); Walke, Pravin S. [National Centre for Nanosciences and Nanotechnology, University of Mumbai, Mumbai 400098, MH (India); Ghule, Anil V. [Department of Chemistry, Shivaji University, Kolhapur, 416004, MH (India); Sathe, Bhaskar R., E-mail: bhaskarsathe@gmail.com [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MH (India)

    2017-08-01

    Graphical abstract: CZTS nano-electrocatalyst (2.6 ± 0.4 nm) for HER is synthesized by one step sonochemical method with uniform size distribution, which shows promisingly lower onset potential with higher current density and longer stability. - Highlights: • The nanostructured Cu{sub 2}ZnSnS{sub 4} (CZTS; ∼3 nm) based electrocatalytic systems were developed by facile sonochemical method. • The novel Cu{sub 2}ZnSnS{sub 4} based nanoclustered cathode improves the electrocatalytic performance toward hydrogen generation reaction (HER). • The electrocatalytic result exhibits lower Tafel slope, higher exchange current density, excellent current stability and lower charge transfer resistance. • The high activity due to synergetic effect of Cu, Zn, Sn and S from their internal cooperative supports. - Abstract: A novel and facile one-step sonochemical method is used to synthesize Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer−Emmett−Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density −130 mA/cm{sup 2}, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm{sup 2}, excellent

  7. Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling.

    Science.gov (United States)

    Poux, T; Bonnefont, A; Ryabova, A; Kéranguéven, G; Tsirlina, G A; Savinova, E R

    2014-07-21

    Hydrogen peroxide has been identified as a stable intermediate of the electrochemical oxygen reduction reaction on various electrodes including metal, metal oxide and carbon materials. In this article we study the hydrogen peroxide oxidation and reduction reactions in alkaline medium using a rotating disc electrode (RDE) method on oxides of the perovskite family (LaCoO3, LaMnO3 and La0.8Sr0.2MnO3) which are considered as promising electrocatalytic materials for the cathode of liquid and solid alkaline fuel cells. The experimental findings, such as the higher activity of Mn-compared to that of Co-perovskites, the shape of RDE curves, and the influence of the H2O2 concentration, are rationalized with the help of a microkinetic model.

  8. Synthesis of novel platinum-on-flower-like nickel catalysts and their applications in hydrogenation reaction

    Science.gov (United States)

    Zhu, Lihua; Zheng, Tuo; Zheng, Jinbao; Yu, Changlin; Zhou, Qiongyu; Hua, Jingrong; Zhang, Nuowei; Shu, Qing; Chen, Bing H.

    2017-11-01

    Without any capping agent, surfactant or external magnetic field, hierarchical nickel was successfully prepared via a simple hydrothermal reduction method by using hydrazine hydrate as reducing agent. The structure and morphology of the products (for instance, flower-like, column-like and spherical-like) were controlled by adjusting hydrothermal conditions including reaction temperature and solvent. The morphology transformation mechanism was proposed and discussed. Corresponding platinum/nickel catalysts (Pt/Ni) were obtained by the galvanic replacement reaction method. And the catalytic activity of the platinum/nickel samples was evaluated by using selective hydrogenation of nitrobenzene. It was found that platinum/flower-like nickel showed the most excellent catalytic performance among the as-synthesized catalysts in this work, with good stability as well. Moreover, reasons for the enhancement of platinum/flower-like nickel for nitrobenzene hydrogenation were investigated.

  9. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Showkat H. [Centre for Nano Science, Central University of Gujarat, Gandhinagar 382030 (India); Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Jha, Prakash C., E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in [School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Soni, Himadri [Lehrstuhl für Theoretische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany); Jha, Prafulla K. [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002 (India); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Department of Materials and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm (Sweden)

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  10. Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A. [Physical; Favaro, Marco [Advanced; Joint; Chemical; Ross, Philip N. [Materials; Yano, Junko [Joint; Molecular; Liu, Zhi [State; Division; Hussain, Zahid [Advanced; Crumlin, Ethan J. [Advanced; Joint Center

    2017-11-02

    Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assess the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline brings insight into the nature of the rate limiting step, the extent of H ad/absorption and it’s persistence at more anodic potentials.

  11. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    Science.gov (United States)

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site

    Science.gov (United States)

    Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel

    2013-01-01

    Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390

  13. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides

    DEFF Research Database (Denmark)

    He, Jian; Li, Hu; Riisager, Anders

    2017-01-01

    A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties and morpho......A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties...... with a Al3+/Zr4+/Fe3O4 molar ratio of 21:9:3 was found to exhibit a high furfuryl alcohol yield of 90.5 % in the CTH from furfural at 180 °C after 4 h with a comparatively low activation energy of 45.3 kJ mol−1, as calculated from the Arrhenius equation. Moreover, leaching and recyclability tests confirmed...

  14. Direct time-resolved spectroscopic investigation of intramolecular hydrogen atom transfer of deoxyblebbistatin

    Science.gov (United States)

    Li, Ming-De; Zhu, Ruixue; Lee Phillips, David

    2017-09-01

    The photophysics and photochemistry of deoxyblebbistatin was investigated using femtosecond time-resolved transient absorption spectroscopy. An ultrafast intramolecular hydrogen atom transfer (IHAT) appears to take place via the first singlet excited state of deoxyblebbistatin within 8 ps. Absorption and fluorescence photochemical results indicate the IHAT process leads to mainly conversion of deoxyblebbistatin into an enol form final product which was observed and characterized by resonance Raman spectroscopy.

  15. Three-dimensional simulation of an argon–hydrogen DC non-transferred arc plasma torch

    OpenAIRE

    Guo, Z; Yin, S; Liao, H; Gu, S

    2014-01-01

    Simulations of a DC non-transferred arc plasma torch operating with argon–hydrogen have been performed by using a three-dimensional model. An artificially high electrical conductivity layer is employed to allow the current passing through the low temperature region near the anode wall. A new way by using two equations to describe the current density distribution is developed. Besides, a new method for determining the location of the arc-root attachment is proposed, in which the minimum total ...

  16. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  17. The role of hydrogen bonding in the enzymatic reaction catalyzed by HIV-1 protease

    OpenAIRE

    Trylska, Joanna; Grochowski, Paweł; McCammon, J. Andrew

    2004-01-01

    The hydrogen-bond network in various stages of the enzymatic reaction catalyzed by HIV-1 protease was studied through quantum-classical molecular dynamics simulations. The approximate valence bond method was applied to the active site atoms participating directly in the rearrangement of chemical bonds. The rest of the protein with explicit solvent was treated with a classical molecular mechanics model. Two possible mechanisms were studied, general-acid/general-base (GA/GB) with Asp 25 protona...

  18. Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L.G.; Moeller, E.; Purohit, S.N.

    1966-03-15

    The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used.

  19. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    Science.gov (United States)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  20. Hydrogen Atom Transfer (HAT) Processes Promoted by the Quinolinimide-N-oxyl Radical. A Kinetic and Theoretical Study.

    Science.gov (United States)

    DiLabio, Gino A; Franchi, Paola; Lanzalunga, Osvaldo; Lapi, Andrea; Lucarini, Fiorella; Lucarini, Marco; Mazzonna, Marco; Prasad, Viki Kumar; Ticconi, Barbara

    2017-06-16

    A kinetic study of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the quinolinimide-N-oxyl radical (QINO) was performed in CH3CN. The HAT rate constants are significantly higher than those observed with the phthalimide-N-oxyl radical (PINO) as a result of enthalpic and polar effects due to the presence of the N-heteroaromatic ring in QINO. The relevance of polar effects is supported by theoretical calculations conducted for the reactions of the two N-oxyl radicals with toluene, which indicate that the HAT process is characterized by a significant degree of charge transfer permitted by the π-stacking that occurs between the toluene and the N-oxyl aromatic rings in the transition state structures. An increase in the HAT reactivity of QINO was observed in the presence of 0.15 M HClO4 and 0.15 M Mg(ClO4)2 due to the protonation or complexation with the Lewis acid of the pyridine nitrogen that leads to a further decrease in the electron density in the N-oxyl radical. These results fully support the use of N-hydroxyquinolinimide as a convenient substitute for N-hydroxyphthalimide in the catalytic aerobic oxidations of aliphatic hydrocarbons characterized by relatively high C-H bond dissociation energies.

  1. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

  2. The H2 + + He proton transfer reaction: quantum reactive differential cross sections to be linked with future velocity mapping experiments

    Science.gov (United States)

    Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio

    2018-01-01

    We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.

  3. Manipulating the reaction path of the CO2 hydrogenation reaction in molecular sieves

    OpenAIRE

    Borgschulte A.; Callini E.; Stadie N.; Arroyo Y.; Rossell M. D.; Erni R.; Geerlings H.; Zuettel A.; Ferri D.

    2015-01-01

    We demonstrate that the kinetics of the Sabatier reaction catalysed by sorption catalysts depends on the nanostructure of the catalyst–sorbent system. The catalysts are prepared by ion exchange of a nickel nitrate solution in two zeolites with different pore sizes. Besides their different pore sizes — which enables or hinders the adsorption of the reactants intermediates and products in the inner of the crystallites — the catalyst systems have slightly different size distributions of the Ni p...

  4. Geometric phase and quantum interference in photosynthetic reaction center: Regulation of electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuming, E-mail: ymsun@ytu.edu.cn; Su, Yuehua; Dai, Zhenhong; Wang, WeiTian

    2016-10-20

    Photosynthesis is driven by electron transfer in reaction centers in which the functional unit is composed of several simple molecules C{sub 2}-symmetrically arranged into two branches. In view of quantum mechanism, both branches are possible pathways traversed by the transferred electron. Due to different evolution of spin state along two pathways in transmembrane electric potential (TEP), quantum state of the transferred electron at the bridged site acquires a geometric phase difference dependent on TEP, the most efficient electron transport takes place in a specific range of TEP beyond which electron transfer is dramatically suppressed. What’s more, reaction center acts like elaborately designed quantum device preparing polarized spin dependent on TEP for the transferred electron to regulate the reduction potential at bridged site. In brief, electron transfer generates the TEP, reversely, TEP modulates the efficiency of electron transfer. This may be an important approach to maintaining an appreciable pH environment in photosynthesis.

  5. Geometric phase and quantum interference in photosynthetic reaction center: Regulation of electron transfer

    Science.gov (United States)

    Sun, Yuming; Su, Yuehua; Dai, Zhenhong; Wang, WeiTian

    2016-10-01

    Photosynthesis is driven by electron transfer in reaction centers in which the functional unit is composed of several simple molecules C2-symmetrically arranged into two branches. In view of quantum mechanism, both branches are possible pathways traversed by the transferred electron. Due to different evolution of spin state along two pathways in transmembrane electric potential (TEP), quantum state of the transferred electron at the bridged site acquires a geometric phase difference dependent on TEP, the most efficient electron transport takes place in a specific range of TEP beyond which electron transfer is dramatically suppressed. What's more, reaction center acts like elaborately designed quantum device preparing polarized spin dependent on TEP for the transferred electron to regulate the reduction potential at bridged site. In brief, electron transfer generates the TEP, reversely, TEP modulates the efficiency of electron transfer. This may be an important approach to maintaining an appreciable pH environment in photosynthesis.

  6. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  7. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer

    OpenAIRE

    Dostál, Lubomír; Shao, Sichen; Schildbach, Joel F.

    2010-01-01

    Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5′-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3′-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is tran...

  8. Measurement of Proton-Induced Transfer Reactions with JENSA

    Science.gov (United States)

    Chatterjee, Sidharth; Chipps, Kelly; Pain, Steven; Cizewski, Jolie; Jensa Collaboration

    2017-09-01

    Reaction measurements of radioactive nuclei on light targets are important to understanding the origin of and the trends in the structure of nuclei. To efficiently measure nuclear reactions, measurements require highly localized and pure light targets and need to accommodate arrays of light charged particles, gamma rays, and recoiling heavy ions. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) jet target system was designed to facilitate high resolution, low background nuclear reaction studies. To demonstrate the capability of the JENSA system, the 20Ne(p,3He)18F reaction was studied during the commissioning phase. The radioisotope 18F is one of the galactic gamma-ray sources targeted by next-generation space-based telescopes. In addition, the 20Ne(p,3He) reaction has not been previously used for the spectroscopic study of 18F. The JENSA system gives us the opportunity to study this reaction with high resolution and low background. The measurement was performed with a proton beam from the Holifield Radioactive Ion Beam Facility tandem on a neon jet of natural isotopic abundance from JENSA. The experimental setup of JENSA and preliminary results will be discussed. Oak Ridge National Laboratory; Rutgers University Department of Physics and Astronomy.

  9. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal.

    Science.gov (United States)

    Ueda, Akira; Yamada, Shota; Isono, Takayuki; Kamo, Hiromichi; Nakao, Akiko; Kumai, Reiji; Nakao, Hironori; Murakami, Youichi; Yamamoto, Kaoru; Nishio, Yutaka; Mori, Hatsumi

    2014-08-27

    A hydrogen bond (H-bond) is one of the most fundamental and important noncovalent interactions in chemistry, biology, physics, and all other molecular sciences. Especially, the dynamics of a proton or a hydrogen atom in the H-bond has attracted increasing attention, because it plays a crucial role in (bio)chemical reactions and some physical properties, such as dielectricity and proton conductivity. Here we report unprecedented H-bond-dynamics-based switching of electrical conductivity and magnetism in a H-bonded purely organic conductor crystal, κ-D3(Cat-EDT-TTF)2 (abbreviated as κ-D). This novel crystal κ-D, a deuterated analogue of κ-H3(Cat-EDT-TTF)2 (abbreviated as κ-H), is composed only of a H-bonded molecular unit, in which two crystallographically equivalent catechol-fused ethylenedithiotetrathiafulvalene (Cat-EDT-TTF) skeletons with a +0.5 charge are linked by a symmetric anionic [O···D···O](-1)-type strong H-bond. Although the deuterated and parent hydrogen systems, κ-D and κ-H, are isostructural paramagnetic semiconductors with a dimer-Mott-type electronic structure at room temperature (space group: C2/c), only κ-D undergoes a phase transition at 185 K, to change to a nonmagnetic insulator with a charge-ordered electronic structure (space group: P1). The X-ray crystal structure analysis demonstrates that this dramatic switching of the electronic structure and physical properties originates from deuterium transfer or displacement within the H-bond accompanied by electron transfer between the Cat-EDT-TTF π-systems, proving that the H-bonded deuterium dynamics and the conducting TTF π-electron are cooperatively coupled. Furthermore, the reason why this unique phase transition occurs only in κ-D is qualitatively discussed in terms of the H/D isotope effect on the H-bond geometry and potential energy curve.

  10. Proton Transfer and Low-Barrier Hydrogen Bonding: a Shifting Vibrational Landscape Dictated by Large Amplitude Tunneling

    Science.gov (United States)

    Vealey, Zachary; Foguel, Lidor; Vaccaro, Patrick

    2017-06-01

    Our fundamental understanding of synergistic hydrogen-bonding and proton-transfer phenomena has been advanced immensely by studies of model systems in which the coherent transduction of hydrons is mediated by two degenerate equilibrium configurations that are isolated from one another by a potential barrier of substantial height. This topography advantageously affords unambiguous signatures for the underlying state-resolved dynamics in the form of tunneling-induced spectral bifurcations, the magnitudes of which encode both the overall efficacy and the detailed mechanism of the unimolecular transformation. As a prototypical member of this class of compounds, 6-hydroxy-2-formylfulvene (HFF) supports an unusual quasi-linear O-H...O \\leftrightarrow O...H-O reaction coordinate that presents a minimal impediment to proton migration - a situation commensurate with the concepts of low-barrier hydrogen bonding (which are characterized by great strength, short distance, and a vanishingly small barrier for hydron migration). A variety of fluorescence-based, laser-spectroscopic probes have been deployed in a cold supersonic free-jet expansion to explore the vibrational landscape and anomalously large tunneling-induced shifts that dominate the ˜{X}^{1}A_{1} potential-energy surface of HFF, thus revealing the most rapid proton tunneling ever reported for a molecular ground state (τ_{pt}≤120fs). The surprising efficiency of such tunneling-mediated processes stems from proximity of the zero-point level to the barrier crest and produces a dramatic alteration in the canonical pattern of vibrational features that reflects, in part, the subtle transition from quantum-mechanical barrier penetration to classical over-the-barrier dynamics. The ultrafast proton-transfer regime that characterizes the ˜{X}^{1}A_{1} manifold will be juxtaposed against analogous findings for the lowest-lying singlet excited state ˜{A}^{1}B_{2} (π*←π), where a marked change in the nature of the

  11. Production of hydrogen bromide by bromine-methane reactions at elevated temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.; Larson, Richard S.

    2003-05-01

    Hydrogen bromide is a potentially useful intermediate for hydrogen production by electrolysis because it has a low cell potential and is extremely soluble in water. Processes have been proposed to exploit these properties, but among the important issues to be resolved is the efficiency of HBr production from hydrocarbon precursors. This investigation evaluated a fundamental facet of such a technology by studying the reaction of methane and bromine at elevated temperature to determine the yield and kinetics of HBr formation. Laboratory experimentation and computational chemistry were combined to provide a description of this reaction for possible application to reactor design at a larger scale. Experimental studies with a tubular flow reactor were used to survey a range of reactant ratios and reactor residence times at temperatures between 500 C and 800 C. At temperatures near 800 C with excess methane, conversions of bromine to HBr exceeded 90% and reaction products included solid carbon (soot) in stoichiometric amounts. At lower temperatures, HBr conversion was significantly reduced, the products included much less soot, and the formation of bromocarbon compounds was indicated qualitatively. Calculations of chemical equilibrium behavior and reaction kinetics for the experimental conditions were performed using the Sandia CHEMKIN package. An elementary multistep mechanism for the gas-phase chemistry was used together with a surface mechanism that assumed facile deposition of radical species at the reactor walls. Simulations with the laminar-flow boundary-layer code of the CHEMKIN package gave reasonable agreement with experimental data.

  12. Liquid oxygen/liquid hydrogen boost/vane pump for the advanced orbit transfer vehicles auxiliary propulsion system

    Science.gov (United States)

    Gluzek, F.; Mokadam, R. G.; To, I. H.; Stanitz, J. D.; Wollschlager, J.

    1979-01-01

    A rotating, positive displacement vane pump with an integral boost stage was designed to pump saturated liquid oxygen and liquid hydrogen for auxiliary propulsion system of orbit transfer vehicle. This unit is designed to ingest 10% vapor by volume, contamination free liquid oxygen and liquid hydrogen. The final pump configuration and the predicted performance are included.

  13. Kinetics of hydrogen evolution reaction on Zr0⋅ 5Ti0⋅ 5V0⋅ 6Cr0 ...

    Indian Academy of Sciences (India)

    A hydrogen-storage alloy of the composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 has been investigated for corrosion resistance and hydrogen-evolution reaction (HER) in KOH electrolyte of varying concentrations. Activation of the electrode by absorption of hydrogen takes place after prolonged cathodic polarization in the potential ...

  14. Chemical reaction on MHD flow and heat transfer of a nanofluid ...

    African Journals Online (AJOL)

    DR OKE

    Keywords: Stagnation point flow; Chemical reaction; Heat transfer; Stretching ..... combined effects of the strength of the Brownian motion and thermophoresis .... J. and Hu W., 2005, Nanofluid coolants for advanced nuclear power plants”.

  15. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation

    Science.gov (United States)

    Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  16. Kinetics of hydrogen evolution reaction on Zr0⋅5Ti0⋅5V0⋅6Cr0 ...

    Indian Academy of Sciences (India)

    Unknown

    2Ni1⋅2 has been investigated for corro- sion resistance and hydrogen-evolution reaction (HER) in KOH electrolyte of varying concentrations. Acti- vation of the electrode by absorption of hydrogen takes place after prolonged cathodic polarization ...

  17. Kinetic study of the 7-endo selective radical cyclization of N-tert-butyl-o-bromobenzylmethacryl amides: kinetic investigation of the cyclization and 1,7-hydrogen transfer of aromatic radicals.

    Science.gov (United States)

    Kamimura, Akio; Kotake, Tomoko; Ishihara, Yuriko; So, Masahiro; Hayashi, Takahiro

    2013-04-19

    A kinetic investigation of the radical cyclization of N-tert-butyl-o-bromobenzylmethacryl amides to give 2-benzazepines via 7-endo selective cyclization was undertaken. The aryl radical generated from the amide precursor by treatment with Bu3SnH gave the three compounds, which are a 7-endo cyclized adduct, a 6-exocyclized adduct, and a reduced product. The cyclization reactions under various Bu3SnH concentrations were traced by GC analysis. The 7-endo/6-exo selectivity was constant irrespective of variation in Bu3SnH concentration. These results revealed that regioselectivity is controlled in a kinetic manner and that there is no possibility of a neophyl rearrangement. The use of Bu3SnD revealed that 1,7-hydrogen transfer, in which an aryl radical abstracts a hydrogen atom from the methallylic methyl group, occurs during the reaction. Hydrogen abstraction from toluene, the reaction solvent, was also observed. The 1,7-transfer rate depended on the Bu3SnX (X = H or D), and the reaction kinetics was examined. The k(H)/k(D) value for the hydrogen abstraction of aryl radical from Bu3SnX (X = H or D) was estimated using 4-bromoanisol. The utilization of these values revealed the overall reaction kinetics and relative rates for the cyclization and reduction by Bu3SnX (X = H or D). Kinetic parameters for hydrogen abstraction from toluene by aryl radicals were also estimated.

  18. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation. [Spiropyrans

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, B.J.

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in [approximately]240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH[sub 2]I[sub 2] and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a [approximately]350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  19. Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC Techniques

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Sayed

    2014-01-01

    Full Text Available Phase transfer catalysts (PTCs have been widely used for the synthesis of organic compounds particularly in both liquid-liquid and solid-liquid heterogeneous reaction mixtures. They are known to accelerate reaction rates by facilitating formation of interphase transfer of species and making reactions between reagents in two immiscible phases possible. Application of PTC instead of traditional technologies for industrial processes of organic synthesis provides substantial benefits for the environment. On the basis of numerous reports it is evident that phase-transfer catalysis is the most efficient way for generation and reactions of many active intermediates. In this review we report various uses of PTC in syntheses and reactions of five-membered heterocycles compounds and their multifused rings.

  20. MoS2@HKUST-1 Flower-like Nanohybrids for Efficient Hydrogen Evolution Reaction.

    Science.gov (United States)

    Wang, Chengli; Su, Yingchun; Zhao, Xiaole; Tong, Shanshan; Han, Xiaojun

    2017-10-12

    A novel MoS2-based flower-like nanohybrids for hydrogen evolution was fabricated through coating the Cu-containing metal-organic framework (HKUST-1) onto MoS2 nanosheets. It is the first time that MoS2@HKUST-1 nanohybrids were reported for the enhanced electrochemical performance of HER. The morphologies and components of the MoS2@HKUST-1 flower-like nanohybrids were characterized by scanning electron microscopy, X-ray diffraction instrument and Fourier Transform Infrared Spectrometer. Compared with the pure MoS2, the MoS2@HKUST-1 hybrids exhibit enhanced performance on hydrogen evolution reaction with an onset potential of -99 mV, a smaller Tafel slope of 69 mV dec-1, and a Faradaic efficiency of nearly 100 %. The MoS2@HKUST-1 flower-like nanohybrids possess an excellent stability in the acidic media. This design opens up new possibilities to effectively synthesize non-noble metal catalysts with high performance of hydrogen evolution reaction (HER). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene.

    Science.gov (United States)

    Wang, Xiao-Li; Tang, Yu-Jia; Huang, Wei; Liu, Chun-Hui; Dong, Long-Zhang; Li, Shun-Li; Lan, Ya-Qian

    2017-06-09

    Efficient hydrogen evolution reaction (HER) from water by electrocatalysis using cost-effective materials is critical to realize the clean hydrogen production. Herein, with controlling the structure and composition of polyoxotungstate/conductive polypyrrole/graphene (PCG) precursor precisely and followed by a temperature-programmed reaction, we developed a highly active and stable catalyst: NC@Wx C/NRGO (NC: nitrogen-doped porous carbon, NRGO: nitrogen-doped reduced graphene oxide). The composite presents splendid performance towards HER in acidic media, with a small onset overpotential of 24 mV versus RHE (reversible hydrogen electrode), a low Tafel slope of 58.4 mV dec(-1) , a low overpotential of 100 mV at 10 mA cm(-2) , and remarkable long-term cycle stability. This is one of the highest HER catalysts among the tungsten carbide-based materials ever reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Proton transfer reaction-mass spectrometry applications in medical research.

    Science.gov (United States)

    Herbig, Jens; Amann, Anton

    2009-06-01

    Gathering information about a subject's physiological and pathophysiological condition from the `smell' of breath is an idea that dates back to antiquity. This intriguing concept of non-invasive diagnosis has been revitalized by `exhaled breath analysis' in recent decades. A main driving force was the development of sensitive and versatile gas-chromatographic and mass-spectrometric instruments for trace gas analysis. Ironically, only non-smelling constituents of breath, such as O(2), CO(2), H(2), and NO have so far been included in routine clinical breath analysis. The `smell' of human breath, on the other hand, arises through a combination of volatile organic compounds (VOCs) of which several hundred have been identified to date. Most of these volatiles are systemic and are released in the gas-exchange between blood and air in the alveoli. The concentration of these compounds in the alveolar breath is related to the respective concentrations in blood. Measuring VOCs in exhaled breath allows for screening of disease markers, studying the uptake and effect of medication (pharmacokinetics), or monitoring physiological processes. There is a range of requirements for instruments for the analysis of a complex matrix, such as human breath. Mass-spectrometric techniques are particularly well suited for this task since they offer the possibility of detecting a large variety of interesting compounds. A further requirement is the ability to measure accurately in the concentration range of breath VOCs, i.e. between parts-per-trillion (pptv) and parts-per-million (ppmv) range. In the mid 1990's proton transfer reaction-mass spectrometry (PTR-MS) was developed as a powerful and promising tool for the analysis of VOCs in gaseous media. Soon thereafter these instruments became commercially available to a still growing user community and have now become standard equipment in many fields including environmental research, food and flavour science, as well as life sciences. Their

  3. Mass transfer. Liquid-liquid extraction with chemical reaction; Transfert de matiere. Extraction liquide-liquide avec reaction chimique

    Energy Technology Data Exchange (ETDEWEB)

    Buch, A.; Rakib, M.; Stambouli, M. [Ecole Centrale de Paris, 75 (France)

    2009-06-15

    The coupling between the mass transfer and the chemical reaction is in the heart of the processes carried out in liquid-liquid extraction called reactive extraction. This coupling is in particular used in industrial applications such as nuclear industry (Purex process..). (O.M.)

  4. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.

    Science.gov (United States)

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R; Alvarez, Beatriz

    2015-11-06

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS(-), is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS(-) toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS(-) is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Efficient Synthesis of Functionalized 1-oxo-1-phenyl-2-acetic Acids through Ru(II)-catalyzed Transfer Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaowei; Gong, Binwei; Meng, Yanqiu [Shenyang Univ. of Chemical Technology, Shenyang (Korea, Republic of); Yan, Yunnan [Gannan Medical Univ., Ganzhou (Korea, Republic of); Tang, Xiaobo; Eric Xu, H.; Yi, Wei [Chinese Academy of Sciences, Shanghai (China); Li, Qiu [Univ. of Science and Technology of China, Suzhou (China)

    2013-10-15

    A new and alternative method for the efficient synthesis of indanylacetic acid 2 has been developed. The methodology used RuCl(p-cymene)[(R,R)-TsDPEN] as the catalyst and formic acid-triethylamine as the hydrogen source at room temperature under solvent-free conditions, and the reactions have excellent chemoselectivity and good compatibility of substrates. Used our developed method as the starting step, gram scale synthesis of GR24 was achieved smoothly with an overall yield of 72%. All the results suggested that further development of such methodology may be of interest. Further work to establish the mechanistic reasons for selectivity and to further explore the synthetic scope of this mode of transfer hydrogenation is in progress. The synthetic SL analog, GR24 is a very potent germination stimulant, which is widely used in parasitic weed research to stimulate germination and as a standard for comparison of new germinating agents. Owing to the prevalence of GR24, its total synthesis constitutes a hot area of research. So far all known synthetic routes of GR24 used indanylacetic acid 2 as a key intermediate, for which very few methods of building compound 2 have been reported.

  6. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer.

    Science.gov (United States)

    Dostál, Lubomír; Shao, Sichen; Schildbach, Joel F

    2011-04-01

    Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5'-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3'-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3'-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3'-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.

  7. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Frutos, Luis Manuel, E-mail: luisma.frutos@uah.es [Departamento de Química Física, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Acuña, A. Ulises [Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, 28006 Madrid (Spain)

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  8. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    Science.gov (United States)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A. Ulises; Frutos, Luis Manuel

    2014-01-01

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  9. The 2H(e, e' p)n reaction at large energy transfers

    NARCIS (Netherlands)

    Willering, Hendrik Willem

    2003-01-01

    At the ELSA accelerator facillity in Bonn, Germany, we have measured the deutron "breakup" reaction 2H(e,e' p)n at four-momentum transfers around Q2 = -0 .20(GeV/c)2 with an electron beam energy of E0 = 1.6 GeV. The cross section has been determined for energy transfers extending from the

  10. Theoretical studies on proton transfer reaction of 3(5)-substituted ...

    Indian Academy of Sciences (India)

    Abstract. The inter and intra molecular proton transfer reactions of a series of pyrazole derivatives have been studied by using density functional theory (DFT) and MP2 methods implementing 6-311++G(d,p) atomic basis set. The substituents have been selected to cover a wide range of electronic effects. Proton transfer ...

  11. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vrakking, Marcus Johannes Jacobus [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The hydrogen exchange reaction H + H2 → H2 + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H2 reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H2 molecules. DH molecules formed in the D + H2 reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 103 molecules/cc. This thesis does not contain experimental results for the D + H2 reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  12. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  13. C-C bond formation and related reactions at the CNC backbone in (smif)FeX (smif = 1,3-di-(2-pyridyl)-2-azaallyl): dimerizations, 3 + 2 cyclization, and nucleophilic attack; transfer hydrogenations and alkyne trimerization (X = N(TMS)2, dpma = (di-(2-pyridyl-methyl)-amide)).

    Science.gov (United States)

    Frazier, Brenda A; Williams, Valerie A; Wolczanski, Peter T; Bart, Suzanne C; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B

    2013-03-18

    Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(μ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(μ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

  14. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    Science.gov (United States)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  15. Muon molecular formation and transfer rate in solid hydrogen-deuterium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Jacot-Guillarmod, R. [Fribourg Univ. (Switzerland); Bailey, J.M. [Chester Technology (United Kingdom); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. [Victoria Univ., BC (Canada); Beveridge, J.L.; Marshall, G.M.; Mulhauser, F. [British Columbia Univ., Vancouver, BC (Canada). TRIUMF Facility; Fujiwara, M.C. [British Columbia Univ., Vancouver, BC (Canada); Huber, T.M. [Gustavus Adolphus Coll., St. Peter, MN (United States); Kammel, P.; Zmeskal, J. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria); Kunselman, A.R. [Wyoming Univ., Laramie, WY (United States); Martoff, C.J. [Temple Univ., Philadelphia, PA (United States); Petitjean, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wozniak, J. [Akademia Gorniczo-Hutnicza, Cracow (Poland). Inst. of Physics and Nuclear Technology

    1996-10-01

    In an experiment at TRIUMF to study muon-catalyzed fusion and associated atomic and molecular effects, negative muons were stopped in a solid protium hydrogen layer containing a small amount of deuterium. Most of the resulting {mu}H atoms disappeared by formation of HH{mu} molecules or by muon transfer to a deuteron. The {mu}D can drift almost freely through the hydrogen layer due to the Ramsauer-Townsend effect and may even leave the layer. If a thin neon layer is frozen atop the hydrogen, the exiting muonic atoms will very rapidly release their muon to a neon atom. The analysis of the time structure of the neon X-rays is used to determine the rates of the slower processes involved in the evolution of the {mu}H. This analysis has been performed with the help of Monte Carlo calculations, which simulate the kinetics of both {mu}H and {mu}D atoms in the hydrogen mixtures. (orig.). 23 refs.

  16. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen.

    Science.gov (United States)

    Ruzi, Mahmut; Anderson, David T

    2015-12-17

    Our group has been working to develop parahydrogen (pH2) matrix isolation spectroscopy as a method to study low-temperature condensed-phase reactions of atomic hydrogen with various reaction partners. Guided by the well-defined studies of cold atom chemistry in rare-gas solids, the special properties of quantum hosts such as solid pH2 afford new opportunities to study the analogous chemical reactions under quantum diffusion conditions in hopes of discovering new types of chemical reaction mechanisms. In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photoinduced chemistry of nitric oxide (NO) isolated in solid pH2 over the 1.8 to 4.3 K temperature range. Upon short-term in situ irradiation the NO readily undergoes photolysis to yield HNO, NOH, NH, NH3, H2O, and H atoms. We map the postphotolysis reactions of mobile H atoms with NO and document first-order growth in HNO and NOH reaction products for up to 5 h after photolysis. We perform three experiments at 4.3 K and one at 1.8 K to permit the temperature dependence of the reaction kinetics to be quantified. We observe Arrhenius-type behavior with a pre-exponential factor of A = 0.036(2) min(-1) and Ea = 2.39(1) cm(-1). This is in sharp contrast to previous H atom reactions we have studied in solid pH2 that display definitively non-Arrhenius behavior. The contrasting temperature dependence measured for the H + NO reaction is likely related to the details of H atom quantum diffusion in solid pH2 and deserves further study.

  17. Hydrogen abstraction mechanisms and reaction rates of toluene+NO3.

    Science.gov (United States)

    Ma, Yongmei; Su, Kehe; Zhang, Jin; Wang, Yanli; Wang, Xin; Liu, Yan

    2015-08-01

    The hydrogen abstraction reaction mechanisms of toluene molecule by NO3 radical were investigated theoretically with quantum chemistry and reaction kinetics. All the molecular structures, vibrational properties, and the intrinsic reaction coordinates were determined with B3LYP/6-311G(d,p). The non-dynamic electronic correlations were examined with the CASSCF dominant configurations. The energies and the potential energy profiles were refined with accurate model chemistry G3(MP2). Rate constants were determined using the CVT method over the temperature range 200-2000 K. It was found that in addition to the side chain H-abstraction, the ring H-abstraction reactions are also possible. The side chain H-abstraction rate constant is in very good agreement with the available experiments and has a non-Arrhenius characteristic. Nevertheless, all the ring H-abstractions follow the Arrhenius behavior well. The over-all reaction was found to have a complex reaction mechanism in which the side chain H-abstraction is dominant below 700 K while the ring H-abstractions are competitive above 800 K. The approximate apparent activation energies E app are 15.5 and 66.4 kJ mol(-1) at 300-700 K and 800-2000 K, respectively. Graphical Abstract The calculation of the reaction rate indicates that the over-all reaction has a complex mechanism. The reaction proceeds mainly by the side chain H-abstraction at temperatures lower than 700 K and is nearly irreversible, while the competition of the ring H-abstractions becomes observable at higher temperatures and is reversible.

  18. Electrospun MnCo2O4 nanofibers for efficient hydrogen evolution reaction

    Science.gov (United States)

    Wu, Cong; Li, Chuang; Yang, Boyu; Zhou, Siyuan; Shi, Dingcong; Wang, Yanbo; Yang, Guocheng; He, Jin; Shan, Yuping

    2016-09-01

    MnCo2O4 nanofibers (MCNFs) were successfully synthesized by electrospinning followed by a calcination process under mild conditions. The structural and morphological characterizations of MCNFs were performed by x-ray powder diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical method was used to measure the electrocatalytic hydrogen evolution reaction (HER) properties of MCNFs. Electrochemical studies show that the developed MCNFs possess excellent electroactivity towards HER with low hydrogen-evolution overpotential and a small Tafel slope. In addition, electrospinning can promote the materials into nano-sized architectures with large surface area, which can effectively enhance the electrocatalytic HER properties of MCNFs.

  19. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    Science.gov (United States)

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong; Chen, Wei-Fu

    2017-03-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  20. Modeling of mass transfer in combination with a homogeneously catalyzed reaction

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Versteeg, G. F.

    The mass transfer rates of a gaseous reactant into a liquid where the reactions are catalyzed by homogeneous catalysts have been evaluated by the numerical solution of the diffusion-reaction equations according to Higbie's penetration theory. The concentration profiles as well as enhancement factors

  1. Excited states populated via nucleon transfer in the reaction [sup 32]S+[sup 208]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, L.; Petrache, C.M.; Ackermann, D.; De Angelis, G.; Moreno, H.; Napoli, D.R.; Spolaore, P.; Stefanini, A.M. (INFN, Lab. Nazionali di Legnaro (Italy)); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; Signorini, C. (Padua Univ. (Italy). Dipt. di Fisica INFN, Padua (Italy)); Pollarolo, G. (Turin Univ. (Italy). Dipt. di Fisica INFN, Turin (Italy))

    1993-01-01

    The population strengths of excited states in nuclei produced via transfer reactions in the 185 MeV[sup 32]S+[sup 208]Pb reaction have been investigated by heavy-ion-[gamma] coincidence techniques. The cross sections extracted from the [gamma] spectra, have been analyzed in the framework of the Complex WKB approximation theory. (orig.).

  2. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  3. Novel Hydrophobic Pt/Inorganic Catalyst Used in Hydrogen Isotope Exchange Reaction

    Directory of Open Access Journals (Sweden)

    JIA Qing-qing1;HU Shi-lin1;FENG Xiao-yan2;LIU Ya-ming1

    2016-11-01

    Full Text Available To improve the performance of hydrophobic catalyst and extend its using range, this research adopted the porous columnar inorganic carriers (ø=5 mm to prepare the hydrophobic catalyst used in hydrogen isotopes exchange reaction, the hydrophilic carriers became hydrophobic with the nanostructured CeO2 coating and the catalyst were then fabricated by convenient impregnation method. The samples were characterized by XRD、SEM、EDX、XPS and CO adsorption. The catalytic activity were tested through catalytic exchange reaction between hydrogen and saturated water vapor to investigate the effect of micro structured CeO2 on the catalyst properties. It turned out that the nano-CeO2 coating could build favorable hydrophobic environment for the catalysts and had almost no influence on the pore structure properties of carriers. Although the hydrophobic coating would lead to the decrease of Pt particle dispersion and metallic Pt content, it could make the Pt particles mostly deposit on the surface layer of the catalysts, which would make more Pt particle participate in the reaction at the same time. The catalytic activity of the novel Pt/inorganic catalyst could reach to 80% of the mature Pt/organic catalyst. After being flushed by water for 12 weeks, the catalytic activity of Pt/inorganic catalyst decreased less than 5%. The novel hydrophobic catalyst with good activity and stability was practical and had great application prospects.

  4. Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions.

    Science.gov (United States)

    Chen, Zhao-Yang; Duan, Long-Fa; Sheng, Tian; Lin, Xiao; Chen, Ya-Feng; Chu, You-Qun; Sun, Shi-Gang; Lin, Wen-Feng

    2017-06-21

    Core-shell composites with strong phase-phase contact could provide an incentive for catalytic activity. A simple, yet efficient, H2O-mediated method has been developed to synthesize a mesoscopic core-shell W@WC architecture with a dodecahedral microstructure, via a one-pot reaction. The H2O plays an important role in the resistance of carbon diffusion, resulting in the formation of the W core and W-terminated WC shell. Density functional theory (DFT) calculations reveal that adding W as core reduced the oxygen adsorption energy and provided the W-terminated WC surface. The W@WC exhibits significant electrocatalytic activities toward hydrogen evolution and nitrobenzene electroreduction reactions, which are comparable to those found for commercial Pt/C, and substantially higher than those found for meso- and nano-WC materials. The experimental results were explained by DFT calculations based on the energy profiles in the hydrogen evolution reactions over WC, W@WC, and Pt model surfaces. The W@WC also shows a high thermal stability and thus may serve as a promising more economical alternative to Pt catalysts in these important energy conversion and environmental protection applications. The current approach can also be extended or adapted to various metals and carbides, allowing for the design and fabrication of a wide range of catalytic and other multifunctional composites.

  5. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions.

    Science.gov (United States)

    Krapf, Sebastian; Koslowski, Thorsten; Steinbrecher, Thomas

    2010-08-28

    DNA Photolyases are light sensitive oxidoreductases present in many organisms that participate in the repair of photodamaged DNA. They are capable of electron transfer between a bound cofactor and a chain of tryptophan amino acid residues. Due to their unique mechanism and important function, photolyases have been subject to intense study in recent times, with both experimental and computational efforts. In this work, we present a novel application of classical molecular dynamics based free energy calculations, combined with quantum mechanical computations, to biomolecular charge transfer. Our approach allows for the determination of all reaction parameters in Marcus' theory of charge transport. We were able to calculate the free energy profile for the movement of a positive charge along protein sidechains involved in the biomolecule's function as well as charge-transfer rates that are in good agreement with experimental results. Our approach to simulate charge-transfer reactions explicitly includes the influence of protein flexibility and solvent dynamics on charge-transfer energetics. As applied here to a biomolecular system of considerable scientific interest, we believe the method to be easily adaptable to the study of charge-transfer phenomena in biochemistry and other fields.

  6. On the Study of the Transfer Ionization Reactions at Super Small Scattering Angles

    CERN Document Server

    Popov, Yu V; Vinitsky, S I; Ancarani, L U; Dal Cappello, C; Vinitsky, P S

    2002-01-01

    The hypothesis that the reaction p + He\\to H + He^{++} + e at super small scattering angles of hydrogen can be used for purposes of the angular spectroscopy of electron-electron correlations in the target is considered. It is shown that this hypothesis is insolvent.

  7. The Kinetics of Heterogeneous Electron Transfer Reactions in Polar Solvents

    Science.gov (United States)

    1994-04-20

    exp(-vei/ 2Vn )J (10) 2-exp(-vel/ 2Vn ) When Yel >> yn, jS is unity and the reaction is adiabatic. However, when ye, << yn, the expression for E becomes IC...approximation, IL is given by [31] TL - Em TD (13)Es where f, is the high frequency relative solvent permittivity and ID, the Debye relaxation time

  8. Hydrogen transfer hydrocracking of C. procera latex under ambient pressure conditions to get value added chemicals and fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K.; Behera, B.K.; Arora, M. (Indian Institute of Technology, New Delhi (India). Fuels and Biofuels Engineering Lab.)

    1994-01-01

    Biomass is renewable source of energy while the reserves of petroleum are being depleted. The latex of a potential petrocrop, Calotropis procera, a laticifer, arid-plant which is rich in hydrocarbon type triterpene compounds etc. was found to be a better feed stock for thermal hydrocracking as compared to whole plant biomass in terms of liquid product yield. Studies of chemical reaction dynamics of the thermal cracking of latex at 200-400[degree]C showed that the process should be termed as hydrogen-transfer (H-T) hydrocracking of latex under ambient pressure conditions. The hydrogen rich cracked triterpenoids act as the H-donors in this process, where nascent hydrogen atoms and free radicals chemically plug the cracked moieties to stabilise these. Latex was also coagulated and the H-T hydrocracking of the feedstock coagulum gave a higher yield of cracked oil in comparison to that from the dried latex. The temperature for hydrocracking of latex has been optimized to 350[degree]C and molecular sieve was found to catalyse the H-T hydrocracking process to yield more liquid product. The distillation range of cracked latex oil (CLO) obtained from H-T hydrocracking of C. procera latex indicated that it can be used as fuel oil or substitute for diesel fuel. Moreover, CLO resembled diesel fuels and was predominantly paraffinic in nature as characterised by NMR and FTIR spectral analysis. A process has been recommended for getting value added fuels and chemicals from C. procera latex. 29 refs., 5 figs., 3 tabs.

  9. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems.

    Science.gov (United States)

    Zhang, Wei; Lai, Wenzhen; Cao, Rui

    2017-02-22

    Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.

  10. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee; Kozub, R. L. [Tennessee Technological University; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Adekola, Aderemi S [ORNL; Allen, J. [Rutgers University; Bardayan, Daniel W [ORNL; Becker, J. [Lawrence Livermore National Laboratory (LLNL); Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee; Chipps, K. [Colorado School of Mines, Golden; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Jandel, M. [Los Alamos National Laboratory (LANL); Johnson, Micah [ORNL; Kapler, R. [University of Tennessee; Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Matthews, C. [Rutgers University; Moazen, Brian [University of Tennessee; Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Patterson, N. P. [University of Surrey, UK; Paulauskas, Stanley [University of Tennessee; Pelham, T. [University of Surrey, UK; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Radford, David C [ORNL; Rogers, J. [Tennessee Technological University; Schmitt, Kyle [University of Tennessee; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Thomas, J. S. [Rutgers University; Vieira, D. J. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Wilson, Gemma L [ORNL

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  11. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Quarterly summary, June 1, 1991--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1991-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  12. Reaction rates of Criegee intermediates with water vapor and hydrogen sulfide

    Science.gov (United States)

    Smith, M. C.; Boering, K. A.

    2016-12-01

    Criegee intermediates are byproducts of the reaction of alkenes with ozone. Bimolecular reactions of Criegee intermediates can lead to the production of low-volatility organic compounds and acids in the atmosphere, which in turn play a role in determining the concentration, size, and optical properties of aerosols. Recently, a novel method for producing measurable quantities of stabilized Criegee intermediates in the laboratory paved the way for the development of new experimental techniques to study their chemical properties and predict their importance in the atmosphere. Our lab uses transient UV absorption spectroscopy to measure the formation and decay of Criegee intermediates in a flow cell, using 8-pass absorption of a bright plasma light source combined with sensitive balanced photodiode detection. Here we measured the transient absorption of CH2OO and obtained rate coefficients for its reaction with water dimer from 283 to 324 K. The fast reaction of CH2OO with water dimer is thought to dominate CH2OO removal in the atmosphere, but reaction rates can vary considerably under different conditions of temperature, humidity, and pressure. The rate of the reaction of CH2OO with water dimer was found to exhibit a strong negative temperature dependence. Due to the strong temperature dependence, and shifting competition between water dimer and water monomer (which has a positive temperature dependence), the effective loss rate of CH2OO by reaction with water vapor is highly sensitive to atmospheric conditions. We also present the first measurements of the reaction rate between CH2OO and hydrogen sulfide, which is analogous to the water molecule and may have significance in areas with volcanic activity.

  13. Outer-sphere 2 e{sup -}/2 H{sup +} transfer reactions of ruthenium(II)-amine and ruthenium(IV)-amido complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, Mauricio [Department of Chemistry, University of Washington (United States); INQUINOA-CONICET, Universidad Nacional de Tucuman, San Miguel de Tucuman (Argentina); Ryken, Scott A. [Department of Chemistry, University of Washington (United States); Mayer, James M. [Department of Chemistry, University of Washington (United States); Department of Chemistry, Yale University, New Haven, CT, 06520 (United States)

    2017-03-20

    A diverse set of 2 e{sup -}/2 H{sup +} reactions are described that interconvert [Ru{sup II}(bpy)(en*){sub 2}]{sup 2+} and [Ru{sup IV}(bpy)(en-H*){sub 2}]{sup 2+} (bpy=2,2'-bipyridine, en*=H{sub 2}NCMe{sub 2}CMe{sub 2}NH{sub 2}, en*-H=H{sub 2}NCMe{sub 2}CMe{sub 2}NH{sup -}), forming or cleaving different O-H, N-H, S-H, and C-H bonds. The reactions involve quinones, hydrazines, thiols, and 1,3-cyclohexadiene. These proton-coupled electron transfer reactions occur without substrate binding to the ruthenium center, but instead with precursor complex formation by hydrogen bonding. The free energies of the reactions vary over more than 90 kcal mol{sup -1}, but the rates are more dependent on the type of X-H bond involved than the associated ΔG . There is a kinetic preference for substrates that have the transferring hydrogen atoms in close proximity, such as ortho-tetrachlorobenzoquinone over its para-isomer and 1,3-cyclohexadiene over its 1,4-isomer, perhaps hinting at the potential for concerted 2 e{sup -}/2 H{sup +} transfers. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Transfer reaction experiments with radioactive beams: from halos to the r-process

    CERN Document Server

    Jones, Kate L

    2013-01-01

    Transfer reactions are a powerful probe of the properties of atomic nuclei. When used in inverse kinematics with radioactive ion beams they can provide detailed information on the structure of exotic nuclei and can inform nucleosynthesis calculations. There are a number of groups around the world who use these reactions, usually with particle detection in large silicon arrays. Sometimes these arrays are coupled to gamma-ray detectors, and occasionally smaller arrays of silicon detectors are mounted within a solenoid magnet. Modern techniques using transfer reactions in inverse kinematics are covered, with specific examples, many from measurements made with beams from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory.

  15. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...

  16. Activating and tuning basal planes of MoO₂, MoS₂, and MoSe₂ for hydrogen evolution reaction.

    Science.gov (United States)

    Lin, Shi-Hsin; Kuo, Jer-Lai

    2015-11-21

    We investigated the defected two-dimensional materials MoX2 (X = O, S, Se) for hydrogen evolution reaction by first principles calculations. While the basal plane is inert for pristine MoX2, we found that the defected MoX2 can adsorb hydrogen atoms at defect sites, with appropriate adsorption energies for hydrogen evolution. By analyzing density of states and charge density, we showed that a dangling bond state slightly below the Fermi energy emerges when a defect is created. We proposed that this state is responsible for hybridizing with the hydrogen atom 1s state and hence the adsorption. Knowing the mechanism, we further considered tuning the reaction using adatoms (several first-row transition metals, B, C, N, O). We found that C and O adatoms can make defected MoX2 ideal for hydrogen evolution at higher defect levels (H coverage).

  17. Synthesis of new transuranium isotopes in multinucleon transfer reactions using a velocity filter

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S.; Beliuskina, O. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Devaraja, H.M.; Gupta, M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Comas, V.; Hofmann, S.; Muenzenberg, G.; Ackermann, D.; Kindler, B.; Lommel, B.; Mann, R.; Maurer, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hornung, C. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Henderson, R.A.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hessberger, F.P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Nishio, K. [Japan Atomic Energy Agency, Tokai Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-09-15

    Recently, we reported the observation of several new isotopes with proton numbers Z ≥ 92 in low-energy collisions of {sup 48}Ca + {sup 248}Cm. The peculiarity is that the nuclei were produced in multinucleon transfer reactions, a method which is presently discussed as a possible new way to enter so far unknown regions in the upper part of the Chart of Nuclides. For separation of the transfer products we used a velocity filter, the Separator for Heavy Ion Reaction Products SHIP at GSI. The resulting strong background suppression allowed us to detect nuclei with cross-sections down to the sub-nanobarn scale. Beside the new isotopes we identified about 100 further target-like transfer products and determined their cross-sections. The results together with previous measurements strongly indicate that multinucleon transfer reactions are a viable pathway to the production of new transuranium isotopes. (orig.)

  18. Recent aspects of the proton transfer reaction in H-bonded complexes

    Science.gov (United States)

    Szafran, Mirosław

    1996-07-01

    Proton transfer processes cover a very wide range of situations and time scales and they are of great interest from the viewpoint of chemical reactions in solution. These processes can occur via thermally activated crossing or tunneling. This review considers various aspects of this many-faceted field. Spectroscopic, dielectric, colligative and energetic properties and structures of various species with H-bonds are examined. Proton transfer reactions in water and organic solvents, and the contribution of various H-bonded species and ions to these processes are discussed. Among other topics, this survey includes the effects of solvent, acid-base stoichiometry, concentration, temperature and impurity on proton transfer reactions in complexes of phenols and carboxylic acids with amines, pyridines and pyridine N-oxides. The contribution of the nonstoichiometric acid-base complexes and ionic species to the reversible proton transfer mechanism is discussed.

  19. Electronic state selectivity in dication-molecule single electron transfer reactions: NO(2+) + NO.

    Science.gov (United States)

    Parkes, Michael A; Lockyear, Jessica F; Schröder, Detlef; Roithová, Jana; Price, Stephen D

    2011-11-07

    The single-electron transfer reaction between NO(2+) and NO, which initially forms a pair of NO(+) ions, has been studied using a position-sensitive coincidence technique. The reactivity in this class of collision system, which involves the interaction of a dication with its neutral precursor, provides a sensitive test of recent ideas concerning electronic state selectivity in dicationic single-electron transfer reactions. In stark contrast to the recently observed single-electron transfer reactivity in the analogous CO(2)(2+)/CO(2) and O(2)(2+)/O(2) collision systems, electron transfer between NO(2+) and NO generates two product NO(+) ions which behave in an identical manner, whether the ions are formed from NO(2+) or NO. This observed behaviour is in excellent accord with the recently proposed rationalization of the state selectivity in dication-molecule SET reactions using simple propensity rules involving one-electron transitions. This journal is © the Owner Societies 2011

  20. Pt-Rh/g Al2O3 Benzene Hydrogenation Reaction as a Characterization Technique

    Directory of Open Access Journals (Sweden)

    N.M. da Fonseca

    1998-06-01

    Full Text Available Pt-Rh/Al2O3 catalysts prepared by successive incipient impregnations and coimpregnation were characterized by H2 chemisorption, temperature programmed reduction and benzene hydrogenation reaction in the vapor phase. The results showed that Rh plays the role of Pt reducting agent, which is very different from the effects of metal-metal interaction which appear mainly in solids with the highest metal contents. The most important parameter that results in bimetallic particles in the catalyst prepared by successive impregnation is the sequence of metal addition.

  1. Measurement of muon transfer from proton to triton and {ital pp}{mu} molecular formation in solid hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mulhauser, F.; Beveridge, J.L.; Marshall, G.M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (CANADA); Bailey, J.M. [Chester Technology, Chester (England); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. [University of Victoria, Victoria, British Columbia, V8W 2Y2 (CANADA); Fujiwara, M.C. [University of British Columbia, Vancouver, British Columbia, V6T 2A6 (CANADA); Huber, T.M. [Gustavus Adolphus College, St. Peter, Minnesota 56082 (United States); Jacot-Guillarmod, R. [Institut de Physique, Universite de Fribourg, CH-1700 Fribourg (Switzerland); Kammel, P.; Zmeskal, J. [Austrian Academy of Sciences, A-1090 Vienna (Austria); Kim, S.K. [Jeonbuk National University, Jeonju City 560-756, South (Korea); Kunselman, A.R. [University of Wyoming, Laramie, Wyoming 82071 (United States); Markushin, V.E. [Russian Research Center, Kurchatov Institute, Moscow 123182 (Russia); Martoff, C.J. [Temple University, Philadelphia, Pennsylvania 19122 (United States); Petitjean, C. [Paul Scherrer Institute, PSI, CH-5232 Villigen (Switzerland)

    1996-05-01

    An alternate approach was used to study the reactions of muonic atoms and molecules in solid layers of hydrogen isotopes. Muons stopped in a protium layer with a small admixture of tritium producing {mu}{ital p} atoms. Muon transfer from a proton to a triton generated {mu}{ital t} atoms, which were emitted into a deuterium layer. Subsequent epithermal {ital dt}{mu} molecular formation followed by {ital dt} fusion gave a prompt signal for the {mu}{ital t} emission. Fusion time spectra at various tritium concentrations were measured by detecting neutrons and {alpha} particles and the {mu}{ital p} disappearance rates were determined. The rates of {mu}{ital p}{r_arrow}{mu}{ital t} transfer and {ital pp}{mu} formation were measured to be {lambda}{sub {ital pt}}=[5.86{plus_minus}(0.10){sub {ital stat}}{plus_minus}(0.15){sub {ital syst}}({sub {minus}0}{sup +0.30}){sub {ital model}}]{times}10{sup 9} s{sup {minus}1} and {lambda}{sub {ital pp}}{sub {mu}}=[3.21 {plus_minus}(0.10){sub {ital stat}}{plus_minus}(0.14){sub {ital syst}}({sub {minus}0.06}{sup +0}){sub {ital model}(}]{times}10{sup 6} s{sup {minus}1}, respectively. Comparisons are made with the most recent theoretical values. {copyright} {ital 1996 The American Physical Society.}

  2. Mesoporous Silica-Supported Sulfonyldiamine Ligand for Microwave-Assisted Transfer Hydrogenation

    Directory of Open Access Journals (Sweden)

    Shaheen M. Sarkar

    2015-01-01

    Full Text Available N-Sulfonyl-1,2-diamine ligands, derived from 1,2-diaminocyclohexane and 1,2-diaminopropane, were immobilized onto mesoporous SBA-15 silica. The SBA-15-supported sulfonyldiamine-Ru complex was prepared in situ under microwave heating at 60 W for 3 min. The prepared sulfonyldiamine-Ru complex was used as an efficient catalyst for the transfer hydrogenation of ketones to the corresponding secondary alcohols. The heterogeneous complex showed extremely high catalytic activity with 99% conversion rate under microwave heating condition. The complexes were regenerated by simple filtration and reused two times without significant loss of activity.

  3. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Hong Li

    2018-02-01

    Full Text Available The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal−organic framework nanosheets, denoted as CoP-NS/C, has been developed through a facile one-step low-temperature phosphidation process. The as-prepared CoP-NS/C has large specific surface area and ultrathin nanosheets morphology providing rich catalytic active sites. It shows excellent electrocatalytic performances for hydrogen evolution reaction (HER and oxygen evolution reaction (OER in acidic and alkaline media, with the Tafel slopes of 59 and 64 mV/dec and a current density of 10 mA/cm2 at the overpotentials of 140 and 292 mV, respectively, which are remarkably superior to those of CoP/C, CoP particles, and comparable to those of commercial noble-metal catalysts. In addition, the CoP-NS/C also shows good durability after a long-term test.

  4. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  5. One-dimensional description of multidimensional electron transfer reactions in condensed phase.

    Science.gov (United States)

    Dhole, Kajal; Samanta, Alok; Ghosh, Swapan K

    2008-06-05

    We derive a one-dimensional energy diffusion equation for describing the dynamics of multidimensional electron transfer reactions in condensed phase, which is conceptually simpler and computationally more economic than the conventional approaches. We also obtain an analytical expression for the rate of electron transfer reactions for a general one-dimensional effective potential as well as an energy dependent diffusitivity. As an illustrative example, we consider application to electron transfer in a contact ion pair system modeled through harmonic potentials consisting of two slow classical modes and a high frequency vibrational mode for which the numerical results calculated using the proposed one-dimensional approach are shown to be in good agreement with experimental results. The energy diffusion equation and the rate expression for electron transfer obtained from the present theory, therefore, open up the possibility of describing the dynamics of electron transfer in complex systems, through a simpler approach.

  6. On the influence of hydronium and hydroxide ion diffusion on the hydrogen and oxygen evolution reactions in aqueous media

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Arenz, Matthias

    2015-01-01

    We present a study concerning the influence of the diffusion of H+ and OH- ions on the hydrogen and oxygen evolution reactions (HER and OER) in aqueous electrolyte solutions. Using a rotating disk electrode (RDE), it is shown that at certain conditions the observed current, i.e., the reaction rate...

  7. Hydrothermal synthesis of 2D MoS 2 nanosheets for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-10-20

    Nanostructured molybdenum disulfide (MoS) is a very promising catalyst for producing molecular hydrogen by electrochemical methods. Herein, we have designed and synthesized highly electocatalytically active 2D MoS nanosheets (NS) from molybdenum trioxide (MoO) by a facile hydrothermal method and have compared their electrocatalytic activities for hydrogen evolution reaction (HER). The electrochemical characterization was performed using linear sweep voltammetry (LSV) in acidic medium. The MoS NS show a HER onset potential at about 80 mV vs. reversible hydrogen electrode (RHE) which is much lower than MoO (300 mV). The MoS NS and MoO show a current density of 25 mA cm and 0.3 mA cm, respectively at an overpotential of 280 mV vs. RHE. The MoS NS showed an 83 times higher current density when compared to MoO. The Tafel slopes of the MoS NS and MoO were about 90 mV per dec and 110 mV per dec respectively. This suggests that MoS NS are a better electrocatalyst when compared to MoO and follow the Volmer-Heyrovsky mechanism for HER.

  8. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Chen, Yanli; Yu, Guangtao; Chen, Wei; Liu, Yipu; Li, Guo-Dong; Zhu, Pinwen; Tao, Qiang; Li, Qiuju; Liu, Jingwei; Shen, Xiaopeng; Li, Hui; Huang, Xuri; Wang, Dejun; Asefa, Tewodros; Zou, Xiaoxin

    2017-09-13

    Developing nonprecious hydrogen evolution electrocatalysts that can work well at large current densities (e.g., at 1000 mA/cm2: a value that is relevant for practical, large-scale applications) is of great importance for realizing a viable water-splitting technology. Herein we present a combined theoretical and experimental study that leads to the identification of α-phase molybdenum diboride (α-MoB2) comprising borophene subunits as a noble metal-free, superefficient electrocatalyst for the hydrogen evolution reaction (HER). Our theoretical finding indicates, unlike the surfaces of Pt- and MoS2-based catalysts, those of α-MoB2 can maintain high catalytic activity for HER even at very high hydrogen coverage and attain a high density of efficient catalytic active sites. Experiments confirm α-MoB2 can deliver large current densities in the order of 1000 mA/cm2, and also has excellent catalytic stability during HER. The theoretical and experimental results show α-MoB2's catalytic activity, especially at large current densities, is due to its high conductivity, large density of efficient catalytic active sites and good mass transport property.

  10. Carbon cryogel as support of platinum nano-sized electrocatalyst for the hydrogen oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Babic, B.M. [Vinca Institute of Nuclear Sciencies, P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); Vracar, Lj.M. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia and Montenegro); Radmilovic, V. [National Center for Electron Microscopy, LBLN University of California, Berkeley (United States); Krstajic, N.V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia and Montenegro)]. E-mail: nedeljko@tmf.bg.ac.yu

    2006-05-05

    The kinetics of hydrogen oxidation reaction was studied in perchloric acid solution on carbon-supported Pt nanoparticles using the rotating disk electrode technique. Carbon cryogel and commercial carbon black. Vulcan XC-72 were used as catalyst supports. Pt/C catalysts were prepared by a modified polyol synthesis method in an ethylene glycol (EG) solution. Considerable effect has been observed for the specific surface area of carbon support on the fundamental properties of Pt/C catalyst, such as catalyst particle size distribution and dispersion as well as catalytic activity for the oxidation of hydrogen. X-ray diffraction (XRD) and transmission electron microscopy (TEM) images show that the particle size of the catalyst decreases with the increase of specific surface area of carbon support. Cyclic voltammetry (CV) was used for determination of the actual exposed surface area of catalyst particles. It was found that Pt catalyst prepared by using the novel carbon material displayed better hydrogen electrochemical oxidation activity than the catalyst prepared by using Vulcan XC-72.

  11. NI (II AND PB (II INHIBIT THE ENZYMATIC ACTIVITY OF DNA IN AN ELECTRON TRANSFER REACTION

    Directory of Open Access Journals (Sweden)

    B FARZAMI

    2002-03-01

    Full Text Available Introduction. Ni and Pb are metals with several suggested mechanisms for their toxicity on the biological systems. We have recently investigated involvement of DNA in an electron transfer reaction as an enzyme. In this reaction non- fluorescent dichlorofluorescin (LDCF is converted to the dichlorofluorescein (DCF in the presence of peroxides and hematin. Methods. The fluorometric technique was used in this study. The pH effect on the reaction rate was investigated. The results showed that DCF has the maximum emission on tris buffer 0.05 Mat pH 8.4. Results. DNA and carnosine catalyze the reaction, which proceeds by the electron transfer mechanism. The presence of carnosine is necessary for the catalytic action of DNA as a cofactor. Ni (II and Pb (11 are the potent inhibitors of the reaction. The kinetic parameters and determined in the presence and absence of the above ligands. Discussion. DNA, which has the electrical properties only in the double helical forms, acts as a catalyst in the conversion of LDCF to DCF. The existence of the carnosine, an endogenous dipeptide with antioxidant and free radical scavenging roles, is an important factor for the progress of the reaction. Both Ni (11 and Pb (II inhibit the reaction. These metals could act as the electron pool to cause inhibition in such electron transfer reaction. This phenomenon could be related to the carcinogenic effect of these metals.

  12. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  13. Determination of radiative capture cross-section for astrophysics from transfer reaction using radioactive ion beams

    CERN Document Server

    Beaumel, D

    2002-01-01

    Thermonuclear reactions are a source of stellar energy and play a crucial role for the nucleosynthesis in astrophysical sites. Among these reactions, the radiative capture process defined as: x + A -> B + gamma is a key reaction involved in all the basic astrophysical processes over the nuclear chart. In the case of the capture of charged particles like (p,gamma) reactions, cross-sections are strongly weakened due to the low incident energies as compared to the Coulomb barrier. Their measurement in laboratories is even more complicate when the capturing nucleus is radioactive, difficult or even impossible to be used as a target. Such radioactive nuclei are involved essentially in 'explosive' environments where capture reactions are fast enough to compete with the beta-decay process. Even in non-explosive situations, unstable nuclei are sometimes important as we shall see for the hydrogen burning in the sun. To circumvent the difficulties of direct measurements with radioactive nuclei, indirect methods have be...

  14. Chemically Induced Dynamic Nuclear Polarization during the Thermolysis of Alkoxyamines: A New Approach to Detect the Occurrence of H-Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Elena Bagryanskaya

    2010-09-01

    Full Text Available Thermal decomposition of alkoxyamines in the presence of scavengers was found to proceed with the formation of chemically induced nuclear polarization detected by 1H NMR. The distinctive Chemically Induced Dynamic Nuclear Polarization (CIDNP features were studied using the example of three alkoxyamines: 4-nitrophenyl 2-(2,2,6,6-tetramethylpiperidin-1-yloxy-2-methylpropanoate (1a, 4-nitrophenyl 2-(2,2-diphenyl-3-phenylimino-2,3-dihydroindol-1-yloxy-2-methylpropanoate (2a and 4-nitrophenyl 2-(2,2,5,5-tetramethyl-4-phenyl-2H-imidazol-1-oxy-2-methylpropanoate (3a in the presence of PhSH. The analysis of CIDNP signs of methacrylate protons allows us to conclude on the occurrence of hydrogen atom transfer reaction in geminate radical pair formed in alkoxyamine thermolysis. Thus, CIDNP is a fast and sensitive method to detect the occurrence of intra/intermolecular hydrogen transfer in alkoxyamine thermolysis.

  15. Does excited-state proton-transfer reaction contribute to the emission behaviour of 4-aminophthalimide in aqueous media?

    Science.gov (United States)

    Khara, Dinesh Chandra; Banerjee, Sanghamitra; Samanta, Anunay

    2014-06-23

    4-Aminophthalimide (AP) is an extensively used molecule both for fundamental studies and applications primarily due to its highly solvent-sensitive fluorescence properties. The fluorescence spectrum of AP in aqueous media was recently shown to be dependent on the excitation wavelength. A time-dependent blue shift of its emission spectrum is also reported. On the basis of these findings, the excited-state solvent-mediated proton-transfer reaction of the molecule, which was proposed once but discarded at a later stage, is reintroduced. We report on the fluorescence behaviour of AP and its imide-H protected derivative, N-BuAP, to prove that a solvent-assisted excited-state keto-enol transformation does not contribute to the steady-state and time-resolved emission behaviour of AP in aqueous media. Our results also reveal that the fluorescence of AP in aqueous media arises from two distinct hydrogen-bonded species. The deuterium isotope effect on the fluorescence quantum yield and lifetime of AP, which was thought to be a reflection of the excited-state proton-transfer reaction in the system, is explained by considering the difference in the influence of H(2)O and D(2)O on the nonradiative rates and ground-state exchange of the proton with the solvent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells.

    Science.gov (United States)

    Cheng, Tao; Goddard, William A; An, Qi; Xiao, Hai; Merinov, Boris; Morozov, Sergey

    2017-01-25

    The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e(-) water formation is: first, *OOH formation; second, *OOH reduction to H2O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley-Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.

  17. Symmetry and the geometric phase in ultracold hydrogen-exchange reactions.

    Science.gov (United States)

    Croft, J F E; Hazra, J; Balakrishnan, N; Kendrick, B K

    2017-08-21

    Quantum reactive scattering calculations are reported for the ultracold hydrogen-exchange reaction and its non-reactive atom-exchange isotopic counterparts, proceeding from excited rotational states. It is shown that while the geometric phase (GP) does not necessarily control the reaction to all final states, one can always find final states where it does. For the isotopic counterpart reactions, these states can be used to make a measurement of the GP effect by separately measuring the even and odd symmetry contributions, which experimentally requires nuclear-spin final-state resolution. This follows from symmetry considerations that make the even and odd identical-particle exchange symmetry wavefunctions which include the GP locally equivalent to the opposite symmetry wavefunctions which do not. It is shown how this equivalence can be used to define a constant which quantifies the GP effect and can be obtained solely from experimentally observable rates. This equivalence reflects the important role that discrete symmetries play in ultracold chemistry and highlights the key role that ultracold reactions can play in understanding fundamental aspects of chemical reactivity more generally.

  18. Solutions for a mass transfer process governed by fractional diffusion equations with reaction terms

    Science.gov (United States)

    Lenzi, E. K.; dos Santos, M. A. F.; Lenzi, M. K.; Menechini Neto, R.

    2017-07-01

    We investigate the behavior of a mass transfer process governed by a set of fractional diffusion equations coupled by appropriate reaction terms. The presence of memory effects in the diffusive term is also considered. For this set of equations, we obtain solutions and analyze the influence of the reaction terms on the spreading of these solutions. Particularly, we observe that for reversible reaction processes the reaction terms play an important role for intermediate times and for long times the processes are essentially governed by the bulk equations. These results show a rich class of behaviors which can be connected to sub- or superdiffusive regime.

  19. The nucleus 198Au investigated with neutron capture and transfer reactions. I. Experiments and evaluation.

    Science.gov (United States)

    Mayerhofer, Ulrich; von Egidy, Till; Klora, Jörg; Lindner, Helmut; Börner, Hans G.; Judge, Stephen; Krusche, Bernd; Robinson, Stephen; Schreckenbach, Klaus; Sukhovoj, Anatoly M.; Khitrov, Valery A.; Boneva, Stefka T.; Paar, Vladimir; Brant, Slobodan; Pezer, Robert

    The transfer reaction 197Au(d,p)198Au was measured at the Tandem Accelerator in Munich. The 197Au(n,g)198Au and 197Au(n,e)198Au reactions were performed at the High Flux Reactor of ILL, Grenoble. Up to 1560 keV a total of 111 levels were observed by the (d,p) reaction and 125 by the (n,g) reaction. For many of the levels, spins and parities were assigned. Additional information was obtained from summed (n,gg) coincidences measured in Dubna.

  20. High throughput engineering to revitalize a vestigial electron transfer pathway in bacterial photosynthetic reaction centers.

    Science.gov (United States)

    Faries, Kaitlyn M; Kressel, Lucas L; Wander, Marc J; Holten, Dewey; Laible, Philip D; Kirmaier, Christine; Hanson, Deborah K

    2012-03-09

    Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.

  1. Effect of oxide supports in stabilizing desirable Pt-Ni bimetallic structures for hydrogenation and reforming reactions.

    Science.gov (United States)

    Wang, Tiefeng; Mpourmpakis, Giannis; Lonergan, William W; Vlachos, Dionisios G; Chen, Jingguang G

    2013-08-07

    Previous surface science studies have shown that bimetallic surfaces often show unique activity for reactions involving the consumption and production of hydrogen, such as hydrogenation and reforming reactions, respectively. These two types of reactions require different bimetallic configurations. For example, for the Pt-Ni bimetallic system, the desirable structure is Pt-terminated for hydrogenation while Ni-terminated for reforming. In the current study, 1,3-butadiene hydrogenation and ethanol reforming were used as probe reactions to investigate the effect of oxide supports (γ-Al2O3 and TiO2) on the structural and catalytic properties of Pt-Ni catalysts. The supported catalysts were characterized by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). The reactions were carried out in a batch reactor equipped with a Fourier transform infrared (FTIR) spectrometer. For ethanol reforming, Pt-Ni/TiO2 showed higher activity than Pt-Ni/γ-Al2O3, and the Pt-Ni bimetallic catalyst outperformed the monometallic catalysts on TiO2 but not on γ-Al2O3. In contrast, for 1,3-butadiene hydrogenation, Pt-Ni/TiO2 showed much lower activity than Pt-Ni/γ-Al2O3. Density functional theory (DFT) calculations of Pt-Ni nanoparticles on γ-Al2O3 and TiO2 were performed to provide possible explanations for the different modification effects of the two oxide supports.

  2. Quantum Coherence as a Witness of Vibronically Hot Energy Transfer in Bacterial Reaction Centre

    CERN Document Server

    Paleček, David; Westenhoff, Sebastian; Zigmantas, Donatas

    2016-01-01

    Photosynthetic proteins have evolved over billions of years so as to undergo optimal energy transfer to the sites of charge separation. Based on spectroscopically detected quantum coherences, it has been suggested that this energy transfer is partially wavelike. This conclusion critically depends on assignment of the coherences to the evolution of excitonic superpositions. Here we demonstrate for a bacterial reaction centre protein that long-lived coherent spectroscopic oscillations, which bear canonical signatures of excitonic superpositions, are essentially vibrational excited state coherences shifted to the ground state of the chromophores . We show that appearance of these coherences is brought about by release of electronic energy during the energy transfer. Our results establish how energy migrates on vibrationally hot chromophores in the reaction centre and they call for a re-examination of claims of quantum energy transfer in photosynthesis.

  3. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  4. Deceleration of the electron transfer reaction in the photosynthetic reaction centre as a manifestation of its structure fluctuations

    Directory of Open Access Journals (Sweden)

    Knox P. P.

    2010-07-01

    Full Text Available Aim. To extract information on the nature of protein structural relaxation from the kinetics of electron transfer reaction in the photosynthetic reaction centre (RC. Methods. The kinetic curves obtained by absorption spectroscopy are processed by a maximum entropy method to get the spectrum of relaxation times. Results. A series of distinctive peaks of this spectrum in the interval from 0.1 s to hundreds of seconds is revealed. With the time of exposure of the sample to actinic light increasing, the positions of the peak maxima grow linearly. Conclusions. Theoretical analysis of these results reveals the formation of several structural states of the RC protein. Remarkably, in each of these states the slow reaction kinetics follow the same fractional power law that reflects the glass-like properties of the protein.

  5. Evidence of 9Be  +  p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas

    Science.gov (United States)

    Krasilnikov, A. V.; Kiptily, V.; Lerche, E.; Van Eester, D.; Afanasyev, V. I.; Giroud, C.; Goloborodko, V.; Hellesen, C.; Popovichev, S. V.; Mironov, M. I.; contributors, JET

    2018-02-01

    The intensity of 9Be  +  p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be  +  p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.

  6. Near-barrier transfer reactions in the sup 36 S+ sup 144,154 Sm systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Niello, J.O.; Testoni, J.E.; di Tada, M.; Pacheco, A.J. (TANDAR, Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250, 1429 Buenos Aires (Argentina)); Napoli, D.R.; Stefanini, A.M.; Corradi, L.; Million, B.; Narayanasamy, M.; Spolaore, P. (Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Padova (Italy)); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; Signorini, C.; Soramel, F. (Dipartimento di Fisica, Universita e Istituto Nazionale di Fisica Nucleare, Padova (Italy))

    1992-02-01

    Angular distributions and {ital Q}-value spectra for transfer reactions in the systems {sup 36}S+{sup 144,154}Sm have been measured at two energies close to the Coulomb barrier. Mass and charge identification was achieved using a time-of-flight system followed by an ionization chamber. Transfer probabilities were analyzed considering direct and sequential barrier penetration mechanisms. The dependence of the cross sections on the static quadrupole deformation of the targets was compared with the predictions of a semiclassical approach. The relative yields of the different channels were analyzed in the light of a random-walk approach based on the reaction {ital Q} values.

  7. Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183.

    Science.gov (United States)

    Joung, Joonyoung F; Kim, Sangin; Park, Sungnam

    2015-12-17

    Coumarin 183 (C183) was used as a photoacid to study excited-state proton transfer (ESPT) reactions. Here, we studied the effect of ions on the ESPT of C183 in aqueous NaCl solutions using a steady-state fluorescence spectroscopy and time-correlated single photon counting (TCSPC) method. The acid dissociation equilibrium of excited-state C183 and the activation energy for the ESPT of C183 were determined as a function of NaCl concentration. The change in the equilibrium constant was found to be correlated with the solvation energy of deprotonated C183. Frequency-resolved TCSPC signals measured at several temperatures were analyzed by using a global fitting analysis method which enabled us to extract all the rate constants involving the ESPT reaction and the spectra of individual species. The activation energy for the ESPT reaction of C183 was highly dependent on NaCl concentration. Quantum chemical calculations were used to calculate the local hydrogen-bond (H-bond) configurations around C183 in aqueous NaCl solutions. It was found that the activation energy for the ESPT was determined by the local H-bond configurations around C183 which were significantly influenced by the dissolved ions.

  8. Decoupling diffusion from the bimolecular photoinduced electron transfer reaction: a combined ultrafast spectroscopic and kinetic analysis.

    Science.gov (United States)

    Mukherjee, Puspal; Sen, Pratik

    2017-05-10

    We have studied the bimolecular photoinduced electron transfer (PET) reaction between benzophenone (Bp) and DABCO using femtosecond broadband transient absorption spectroscopy in different compositions of acetonitrile/1-butanol binary solvent mixtures. With the increase in the 1-butanol percentage in the mixture, we have observed an increase in the onset delay time of Bp˙(-), which is the product of the reaction. As 1-butanol is more viscous than acetonitrile, we related the onset time to the change in medium viscosity. Moreover, we undertook a complete kinetic analysis of the bimolecular PET reaction under different conditions to show that from transient absorption spectroscopy, we can get the exact rate of electron transfer. This kind of kinetic analysis along with the experimental data is the first of its kind to prove that transient absorption spectroscopy is probably the most useful tool in studying the PET reaction.

  9. Theoretical and computational study of the energy dependence of the muon transfer rate from hydrogen to higher-Z gases

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Adamczak, Andrzej [Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Stoilov, Mihail [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Vacchi, Andrea [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via A. Valerio 2, 34127 Trieste (Italy)

    2015-01-23

    The recent PSI Lamb shift experiment and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen as an alternative possibility for comparing ordinary and muonic hydrogen spectroscopy data on proton electromagnetic structure. This measurement critically depends on the energy dependence of the muon transfer rate to heavier gases in the epithermal range. The available data provide only qualitative information, and the theoretical predictions have not been verified. We propose a new method by measurements of the transfer rate in thermalized target at different temperatures, estimate its accuracy and investigate the optimal experimental conditions. - Highlights: • Method for measuring the energy dependence of muon transfer rate to higher-Z gases. • Thermalization and depolarization of muonic hydrogen studied by Monte Carlo method. • Optimal experimental conditions determined by Monte Carlo simulations. • Mathematical model and for estimating the uncertainty of the experimental results.

  10. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide

    Science.gov (United States)

    Song, Yang; Buettner, Garry R.

    2010-01-01

    The quinone/semiquinone/hydroquinone triad (Q/SQ•−/H2Q) represents a class of compounds that has great importance in a wide range of biological processes. The half-cell reduction potentials of these redox couples in aqueous solutions at neutral pH, E°′, provide a window to understanding the thermodynamic and kinetic characteristics of this triad and their associated chemistry and biochemistry in vivo. Substituents on the quinone ring can significantly influence the electron density “on the ring” and thus modify E°′ dramatically. E°′ of the quinone governs the reaction of semiquinone with dioxygen to form superoxide. At near-neutral pH the pKa's of the hydroquinone are outstanding indicators of the electron density in the aromatic ring of the members of these triads (electrophilicity) and thus are excellent tools to predict half-cell reduction potentials for both the one-electron and two-electron couples, which in turn allow estimates of rate constants for the reactions of these triads. For example, the higher the pKa's of H2Q, the lower the reduction potentials and the higher the rate constants for the reaction of SQ•− with dioxygen to form superoxide. However, hydroquinone autoxidation is controlled by the concentration of di-ionized hydroquinone; thus, the lower the pKa's the less stable H2Q to autoxidation. Catalysts, e.g., metals and quinone, can accelerate oxidation processes; by removing superoxide and increasing the rate of formation of quinone, superoxide dismutase can accelerate oxidation of hydroquinones and thereby increase the flux of hydrogen peroxide. The principal reactions of quinones are with nucleophiles via Michael addition, for example, with thiols and amines. The rate constants for these addition reactions are also related to E°′. Thus, pKa's of a hydroquinone and E°′ are central to the chemistry of these triads. PMID:20493944

  11. Synergistic Effect of MoS2 Nanosheets and VS2 for the Hydrogen Evolution Reaction with Enhanced Humidity-Sensing Performance.

    Science.gov (United States)

    Chen, Xiaofan; Yu, Ke; Shen, Yuhao; Feng, Yu; Zhu, Ziqiang

    2017-11-17

    As a typical transition-metal dichalcogenides, MoS2 has been a hotspot of research in many fields. In this work, the MoS2 nanosheets were compounded on 1T-VS2 nanoflowers (VS2@MoS2) successfully by a two-step hydrothermal method for the first time, and their hydrogen evolution properties were studied mainly. The higher charge-transfer efficiency benefiting from the metallicity of VS2 and the greater activity due to more exposed active edge sites of MoS2 improve the hydrogen evolution reaction performance of the nanocomposite electrocatalyst. Adsorption and transport of an intermediate hydrogen atom by VS2 also enhances the hydrogen evolution efficiency. The catalyst shows a low onset potential of 97 mV, a Tafel slope as low as 54.9 mV dec(-1), and good stability. Combining the electric conductivity of VS2 with the physicochemical stability of MoS2, VS2@MoS2 also exhibits excellent humidity properties.

  12. Electron transfer reaction of butane -1,3-diol and cr(vi) in aqueous ...

    African Journals Online (AJOL)

    Kinetic and mechanistic studies of electron transfer reaction of butane-1,3-diol and Cr(VI) ion in aqueous acidic medium have been carried out in aqueous medium at 271°C, I = 1.0 mol dm-3 (NaCl), [H +] = 0.5mol dm-3 (HCl). The reaction was inhibited by added anions and showed negative salt effect. Spectroscopic ...

  13. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction

    Science.gov (United States)

    Seo, Bora; Joo, Sang Hoon

    2017-07-01

    Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts.

  14. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3)-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    Science.gov (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim Abdul Mutalib

    2010-08-01

    Full Text Available Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.

  16. Study of Hydrogen and Oxygen and Its Reaction With Host Elements in Sandstone by Laser-Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    Suyanto, Hery

    2017-05-01

    A study of hydrogen and oxygen and its reaction with host elements in a sandstone has been done by laser-induced breakdown spectroscopy (LIBS). The sandstone was irradiated by Nd-YAG laser (1064 nm, 7 ns) with varied energy of 60 mJ till 140 mJ in surrounding air gas pressure of 1 atm and produced plasma. The emission intensities of hydrogen H I 656.2 nm and oxygen O I 777.2 nm in the plasma were captured by HR 2500+ spectrometer and displayed in intensity as a function of wavelength. The data show that the emission intensities of hydrogen and oxygen increase with increasing laser energy at a gradient of 5.4 and 11.8 respectively every increasing laser energy of 20 mJ. To characterize the reaction process between hydrogen and oxygen with the host elements of the sandstone, a 0.2 ml demineralized water was dropped on the sandstone surface and was analyzed as a function of delay time reaction and temperature. The data show that the oxidation reaction between host elements and oxygen occurred after 25 minutes that the oxygen emission intensity increases and the hydrogen emission intensity decreases. Another data also show that the increasing temperature of sandstone until 80 C increased intermolecular bond between oxygen and host element and dehydrogenation took place after reaching this temperature

  17. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  18. Editors' Choice Growth of Layered WS2Electrocatalysts for Highly Efficient Hydrogen Production Reaction

    KAUST Repository

    Alsabban, Merfat M.

    2016-08-18

    Seeking more economical alternative electrocatalysts without sacrificing much in performance to replace precious metal Pt is one of the major research topics in hydrogen evolution reactions (HER). Tungsten disulfide (WS2) has been recognized as a promising substitute for Pt owing to its high efficiency and low-cost. Since most existing works adopt solution-synthesized WS2 crystallites for HER, direct growth of WS2 layered materials on conducting substrates should offer new opportunities. The growth of WS2 by the thermolysis of ammonium tetrathiotungstate (NH4)(2)WS4 was examined under various gaseous environments. Structural analysis and electrochemical studies show that the H2S environment leads to the WS2 catalysts with superior HER performance with an extremely low overpotential (eta(10) = 184 mV). (C) The Author(s) 2016. Published by ECS. All rights reserved.

  19. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun

    2017-12-27

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  20. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction

    KAUST Repository

    Chang, Yunghuang

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo5+ and S2 2- species in the MoSx, especially with S2 2- serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g-1 cm-2 h-1 (286 mmol g-1 cm-2 h-1) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  1. Study of Thermodynamic Vent and Screen Baffle Integration for Orbital Storage and Transfer of Liquid Hydrogen

    Science.gov (United States)

    Cady, E. C.

    1973-01-01

    A comprehensive analytical and experimental program was performed to determine the feasibility of integrating an internal thermodynamic vent system and a full wall-screen liner for the orbital storage and transfer of liquid hydrogen (LH2). Ten screens were selected from a comprehensive screen survey. The experimental study determined the screen bubble point, flow-through pressure loss, and pressure loss along rectangular channels lined with screen on one side, for the 10 screens using LH2 saturated at 34.5 N/cm2 (50 psia). The correlated experimental data were used in an analysis to determine the optimum system characteristics in terms of minimum weight for 6 tanks ranging from 141.6 m3 (5,000 ft3) to 1.416 m3 (50 ft3) for orbital storage times of 30 and 300 days.

  2. Evaluation of hydroconverted residues. Rationalization of analytical data through hydrogen transfer balance

    Energy Technology Data Exchange (ETDEWEB)

    Bacaud, Robert; Rouleau, Loiec [Institut de Recherches sur la Catalyse, CNRS, 2 Avenue Albert Einstein, 69626 Villeurbanne (France); Cebolla, Vicente L.; Membrado, Luis; Vela, Jesus [Departamento de Procesos Quimicos, Instituto de Carboquimica, CSIC, Calle Poeta Luciano Gracia 5, 50015 Zaragoza (Spain)

    1998-08-27

    Analytical evaluation of petroleum based materials and processed feeds is a complex task relying on a compromise between tedious in-depth characterizations and fast responding tools for process control. In the present paper, a large number of hydroprocessed vacuum residues, obtained either under catalytic or thermal conditions, have been submitted to the following analytical techniques: Simulated distillation, coupled Simdist/MS, UV spectroscopy, {sup 13}C NMR, quantitative thin-layer chromatography/FID, vapor phase osmometry. A confrontation of analytical data in the light of correlations with hydrogen transfer evaluation is proposed, which accounts for observed variations in aromatic content. Conradson carbon residue largely influences the results obtained with some of the examined techniques. Apparent discrepancies are rationalized and a strategy for a comprehensive analytical evaluation of hydroprocessed feeds is proposed

  3. Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems.

    Science.gov (United States)

    Brückner, Nicole; Obesser, Katharina; Bösmann, Andreas; Teichmann, Daniel; Arlt, Wolfgang; Dungs, Jennifer; Wasserscheid, Peter

    2014-01-01

    Liquid organic hydrogen carrier (LOHC) systems offer a very attractive method for the decentralized storage of renewable excess energy. In this contribution, industrially well-established heat-transfer oils (typically sold under trade names, e.g., Marlotherm) are proposed as a new class of LOHC systems. It is demonstrated that the liquid mixture of isomeric dibenzyltoluenes (m.p. -39 to -34 °C, b.p. 390 °C) can be readily hydrogenated to the corresponding mixture of perhydrogenated analogues by binding 6.2 wt% of H2. The liquid H2 -rich form can be stored and transported similarly to diesel fuel. It readily undergoes catalytic dehydrogenation at temperatures above 260 °C, which proves its applicability as a reversible H2 carrier. The presented LOHC systems are further characterized by their excellent technical availability at comparably low prices, full registration of the H2 -lean forms, and excellent thermal stabilities. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen bonded charge transfer molecular salt (4-chloro anilinium-3-nitrophthalate) for photophysical and pharmacological applications

    Science.gov (United States)

    Singaravelan, K.; Chandramohan, A.; Saravanabhavan, M.; Muthu Vijayan Enoch, I. V.; Suganthi, V. S.

    2017-09-01

    Radical scavenging activity against DPPH radical and binding properties of a hydrogen bonded charge transfer molecular salt 4-chloro anilinium-3-nitrophthalate(CANP) with calf thymus DNA has been studied by electronic absorption and emission spectroscopy. The molecular structure and crystallinity of the CANP salt have been established by carried out powder and single crystal X-ray diffraction analysis which indicated that cation and anion are linked through strong N+sbnd H…O- type of hydrogen bond. FTIR spectroscopic study was carried out to know the various functional groups present in the crystal. 1H and 13C NMR spectra were recorded to further confirm the molecular structure of the salt crystal. The thermal stability of the title salt was established by TG/DTA analyses simultaneously on the powdered sample of the title crystal. Further, the CANP salt was examined against various bacteria and fungi strains which showed a remarkable antimicrobial activity compared to that of the standards Ciproflaxin and Clotrimazole. The results showed that the CANP salt could interact with CT-DNA through intercalation. Antioxidant studies of the substrates alone and synthesized CANP salt showed that the latter has been better radical scavenging activity than that of the former against DPPH radical. The third order nonlinear susceptibility of the CANP salt was established by the Z-scan study.

  5. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    Science.gov (United States)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  6. Marcus Theory: Thermodynamics CAN Control the Kinetics of Electron Transfer Reactions

    Science.gov (United States)

    Silverstein, Todd P.

    2012-01-01

    Although it is generally true that thermodynamics do not influence kinetics, this is NOT the case for electron transfer reactions in solution. Marcus Theory explains why this is so, using straightforward physical chemical principles such as transition state theory, Arrhenius' Law, and the Franck-Condon Principle. Here the background and…

  7. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads

    NARCIS (Netherlands)

    Niemi, Marja; Tkachenko, Nikolai V.; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge

    2008-01-01

    Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C-60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results

  8. Production of Neutron-Rich Ca Isotopes in Transfer-Type Reactions

    CERN Document Server

    Penionzhkevich, Yu E; Antonenko, N V

    2005-01-01

    Possibilities of production of neutron-rich isotopes $^{56,58,60}$Ca in transfer-type reactions are analyzed. The optimal conditions for their production are suggested. The neutron separation energies in nuclei near the neutron drip line can be estimated by measuring the excitation functions.

  9. Analysis of coupled mass transfer and sol-gel reaction in a two-phase system

    NARCIS (Netherlands)

    Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.

    2006-01-01

    The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons

  10. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  11. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  12. The Synthesis and Electrocatalytic Activities of Molybdenum Sulfide for Hydrogen Evolution Reaction

    KAUST Repository

    Li, Zhengxing

    2014-07-01

    In the context of the future hydrogen economy, effective production of hydrogen (H2) from readily available and sustainable resources is of crucial importance. Hydrogen generation via water splitting by solar energy or electricity has attracted great attention in recent years. In comparison with photocatalytic water-splitting directly using solar light, which is ideal but the relevant technologies are not yet mature, electrolysis of water with catalyst is more practical at the current stage. The Pt-group noble metals are the most effective electrocatalysts for hydrogen evolution reaction (HER) from water, but their high costs limit their applications. Due to the earth-abundance and low price, MoS2 is expected to be a good alternative of the Pt-group metals for HER. Plenty of researches have been conducted for improving the HER activities of MoS2 by optimizing its synthesis method. However, it remains challenging to prepare MoS2 catalysts with high and controllable activity, and more investigations are still needed to better understand the structure-performance correlation in this system. In this thesis, we report a new strategy for fabricating MoS2 eletrocatalysts which gives rise to much improved HER performance and allows us to tune the electrocatalytic activity by varying the preparation conditions. Specifically, we sulfurized molybdenum oxide on the surface of a Ti foil electrode via a facile chemical vapor deposition (CVD) method, and directly used the electrode for HER testing. Depending on the CVD temperature, the MoO2-MoS2 nanocomposites show different HER activities. Under the optimal synthesis condition (400ºC), the resulting catalyst exhibited excellent HER activity: an onset potential (overpotential) of 0.095 V versus RHE and the Tafel slope of 40 mv/dec. Such a performance exceeds those of most reported MoS2 based HER electrocatalysts. We demonstrated that the CVD temperature has significant influence on the catalysts in crystallinity degree, particle

  13. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.

    Science.gov (United States)

    Mushrif, Samir H; Varghese, Jithin J; Krishnamurthy, Chethana B

    2015-02-21

    Hydride transfer changes the charge structure of the reactant and thus, may induce reorientation/reorganization of solvent molecules. This solvent reorganization may in turn alter the energetics of the reaction. In the present work, we investigate the intramolecular hydride transfer by taking Lewis acid catalyzed glucose to fructose isomerization as an example. The C2-C1 hydride transfer is the rate limiting step in this reaction. Water and methanol are used as solvents and hydride transfer is simulated in the presence of explicit solvent molecules, treated quantum mechanically and at a finite temperature, using Car-Parrinello molecular dynamics (CPMD) and metadynamics. Activation free energy barrier for hydride transfer in methanol is found to be 50 kJ mol(-1) higher than that in water. In contrast, in density functional theory calculations, using an implicit solvent environment, the barriers are almost identical. Analysis of solvent dynamics and electronic polarization along the molecular dynamics trajectory and the results of CPMD-metadynamics simulation of the hydride transfer process in the absence of any solvent suggest that higher barrier in methanol is a result of non-equilibrium solvation. Methanol undergoes electronic polarization during the hydride transfer step. However, its molecular orientational relaxation is a much slower process that takes place after the hydride transfer, over an extended timescale. This results in non-equilibrium solvation. Water, on the other hand, does not undergo significant electronic polarization and thus, has to undergo minimal molecular reorientation to provide near equilibrium solvation to the transition state and an improved equilibrium solvation to the post hydride shift product state. Hence, the hydride transfer step is also observed to be exergonic in water and endergonic in methanol. The aforementioned explanation is juxtaposed to enzyme catalyzed charge transfer reactions, where the enhanced solvation of the

  14. Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide

    DEFF Research Database (Denmark)

    Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons

    2012-01-01

    Knowledge of the phase behaviour and composition is of paramount importance for understanding multiphase reactions. We have investigated the effect of the phase behaviour in the palladium-catalysed selective hydrogenation of 2-butenal to saturated butanal in dense carbon dioxide. The reactions were...... cell. The results of the catalytic experiments showed that small amounts of carbon dioxide added to the system significantly decrease the conversion, whereas at higher loadings of CO2 the reaction rate gradually increases reaching a maximum. The CPA calculations revealed that this maximum is achieved...... in the so-called “expanded liquid” region, which is located near the critical point of the reacting mixture. It was also found that in this point the hydrogen concentration achieved its maximum in the CO2-expanded phase. Furthermore, the pressure – temperature regions where the multicomponent reaction...

  15. Theoretical investigation of the coupling between hydrogen-atom transfer and stacking interaction in adenine-thymine dimers.

    Science.gov (United States)

    Villani, Giovanni

    2013-04-15

    Three different dimers of the adenine-thymine (A-T) base pair are studied to point out the changes of important properties (structure, atomic charge, energy and so on) induced by coupling between the movement of the atoms in the hydrogen bonds and the stacking interaction. The comparison of these results with those for the A-T monomer system explains the role of the stacking interaction in the hydrogen-atom transfer in this biologically important base pair. The results support the idea that this coupling depends on the exact dimer considered and is different for the N-N and N-O hydrogen bonds. In particular, the correlation between the hydrogen transfer and the stacking interaction is more relevant for the N-N bridge than for the N-O one. Also, the two different mechanisms of two-hydrogen transfer (step by step and concerted) can be modified by the stacking interaction between the base pairs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task.

    Science.gov (United States)

    Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco

    2011-02-01

    Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.

  17. The simulation of a hydrogen-bubble reaction due to shock ignition

    Science.gov (United States)

    Grenga, Temistocle; Paolucci, Samuel

    2012-11-01

    We simulate the combustion of a hydrogen bubble in air ignited by a shock wave. The three dimensional compressible model includes detailed chemical kinetics, multi-component diffusion, Soret and Dufour effects, and state dependent transport properties. The reaction mechanism involves 9 species and 19 reversible reactions. The possibility of using a reduced chemical kinetics mechanism obtained through the G-Scheme is also explored. Results are compared with other numerical and experimental studies. The simulation is challenging since the physical and chemical phenomena lead to a large multiscale problem, which we solve using the parallel Wavelet Adaptive Multiresolution Representation (pWAMR) method. The method exhibits an impressive compression of the solution when compared to other methods. The algorithm is parallelized using a domain decomposition approach based on a Hilbert space-filling curve. pWAMR is able to capture all structures of O(μm) required for an accurate solution. The method is able to capture all scales using a relatively small number of degrees of freedom by adapting refinements to local demands of the solution. In addition, since the amplitudes of the wavelet transform provide a direct measure of the local error, we are able to produce a verified solution.

  18. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    Science.gov (United States)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  19. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions.

    Science.gov (United States)

    Kramer, David M; Avenson, Thomas J; Edwards, Gerald E

    2004-07-01

    Plant photosynthesis performs the remarkable feat of converting light energy into usable chemical forms, which involves taming highly reactive intermediates without harming plant cells. This requires an apparatus that is not only efficient and robust but also flexible in its responses to changing environmental conditions. It also requires that the output of the energy-storing reactions be matched with the demands of metabolism. This article addresses the mechanisms by which this flexibility is achieved for short-term environmental changes. We argue that chloroplasts need two types of flexible mechanisms: one for modulating the output ratio of ATP:NADPH, which involves cyclic electron flux around photosystem I; and another for changing the regulatory sensitivity of the light-harvesting antenna to electron (and proton) flow.

  20. Reactions of Yttrium-Carbon Bonds with Active Hydrogen-Containing Molecules. A Useful Synthetic Method for Permethylyttrocene Derivatives

    NARCIS (Netherlands)

    Haan, Klaas H. den; Wielstra, Ytsen; Teuben, Jan H.

    1987-01-01

    Reactions of the permethylyttrocene compounds Cp*2YCH(SiMe3)2 (1) and Cp*2YMe·THF (2) with a variety of active hydrogen-containing substrates are reported. With HCl the known complexes (Cp*2YCl)2 and Cp*2YCl·THF are formed. Reaction with 2,4-pentadione gives Cp*2Y(acac) (3). Alcoholysis of 1 in Et2O

  1. Homolytic N-H activation of ammonia: hydrogen transfer of parent iridium ammine, amide, imide, and nitride species

    NARCIS (Netherlands)

    Scheibel, M.G.; Abbenseth, J.; Kinauer, M.; Heinemann, F.W.; Würtele, C.; de Bruin, B.; Schneider, S.

    2015-01-01

    The redox series [Ir-n(NH(x))(PNP)] (n = II-IV, x = 3-0; PNP = N(CHCHPtBu(2))(2)) was examined with respect to electron, proton, and hydrogen atom transfer steps. The experimental and computational results suggest that the Ir-III imido species [Ir(NH) (PNP)] is not stable but undergoes to the

  2. Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts : On the Way to a Tandem Process

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    Herein, we report the successful transformation of a 1(st) generation Grubbs metathesis catalyst into an asymmetric transfer hydrogenation (ATH) catalyst. Upon addition of a chiral amine ligand, an alcohol and a base, the 1(st) generation Hoveyda-Grubbs catalyst (HG-I) was found to promote the

  3. Single crystal to single crystal transformation and hydrogen-atom transfer upon oxidation of a cerium coordination compound.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; Lewis, Andrew J; DeGregorio, Patrick T; Carroll, Patrick J; Schelter, Eric J

    2013-04-15

    Trivalent and tetravalent cerium compounds of the octamethyltetraazaannulene (H2omtaa) ligand have been synthesized. Electrochemical analysis shows a strong thermodynamic preference for the formal cerium(IV) oxidation state. Oxidation of the cerium(III) congener Ce(Homtaa)(omtaa) occurs by hydrogen-atom transfer that includes a single crystal to single crystal transformation upon exposure to an ambient atmosphere.

  4. Ni3S2@MoO3 core/shell arrays on Ni foam modified with ultrathin CdS layer as a superior electrocatalyst for hydrogen evolution reaction.

    Science.gov (United States)

    Lu, Wenqing; Song, Ye; Dou, Meiling; Ji, Jing; Wang, Feng

    2018-01-16

    An ultrathin CdS layer-modified MoO3/Ni3S2 hierarchical nanoarray on Ni foam exhibits ultrahigh electrocatalytic activity towards the hydrogen evolution reaction with a small overpotential of 30 mV at -10 mA cm-2 due to the synergistic effect of easy electron transfer among CdS, MoO3 and Ni3S2/NF and the well-designed structure, which outperforms the current non-noble electrocatalysts.

  5. Direct simulation of proton-coupled electron transfer reaction dynamics and mechanisms

    Science.gov (United States)

    Kretchmer, Joshua S.; Miller, Thomas F., III

    2014-03-01

    Proton-coupled electron transfer (PCET) reactions, in which both an electron and an associated proton undergo reactive transfer, play an important role in many chemical and biological systems. Due to the complexity of this class of reactions, a variety of different mechanisms fall under the umbrella of PCET. However, the physical driving forces that determine the preferred mechanism in a given system still remain poorly understood. Towards this end, we extend ring polymer molecular dynamics (RPMD), a path-integral quantum dynamics method, to enable the direct simulation and characterization of PCET reaction dynamics in both fully atomistic and system-bath models of organometallic catalysts. In addition to providing validation for the simulation method via extensive comparison with existing PCET rate theories, we analyze the RPMD trajectories to investigate the competition between the concerted and sequential reaction mechanisms for PCET, elucidating the large role of the solvent in controlling the preferred mechanism. We further employ RPMD to determine the kinetics and mechanistic features of concerted PCET reactions across different regimes of electronic and vibrational coupling, providing evidence for a new and distinct PCET reaction mechanism.

  6. Multinucleon transfer reactions of {sup 40}Ca+{sup 90,96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Montagnoli, G.; Beghini, S.; Scarlassara, F.; Segato, G.F. [Dipartimento di Fisica, Universita di Padova, and INFN, Padova, Via Marzolo 8, I-35135 (Italy); Corradi, L.; Lin, C.J.; Stefanini, A.M. [INFN, Laboratori Nazionali di Legnaro (Italy)

    1997-10-01

    The experimental investigation of multi-nucleon transfer channels of {sup 40}Ca+{sup 90,96}Zr has been triggered by the very different fusion excitation functions recently observed in these two systems. The cross sections of the transfer reactions in the two systems have been measured at two energies close to the Coulomb barrier. The time-of-flight spectrometer PISOLO allowed us to identify a multitude of transfer channels, even very weak ones, with high resolution and efficiency. Especially for the neutron pick-up channels, the cross sections are much larger for the target {sup 96}Zr than for {sup 90}Zr with evidence, in the Q-value spectra, of large energy losses (20-30 MeV) involved in the transfer mechanism at forward angles. (author)

  7. The Reaction between Sodium Hydroxide and Atomic Hydrogen in Atmospheric and Flame Chemistry.

    Science.gov (United States)

    Gómez Martín, J C; Seaton, C; de Miranda, M P; Plane, J M C

    2017-10-12

    We report the first direct kinetic study of the gas-phase reaction NaOH + H → Na + H2O, which is central to the chemistry of sodium in the upper atmosphere and in flames. The reaction was studied in a fast flow tube, where NaOH was observed by multiphoton ionization and time-of-flight mass spectrometry, yielding k(NaOH + H, 230-298 K) = (3.8 ± 0.8) × 10(-11) cm(3) molecule (-1) s(-1) (at 2σ confidence level), showing no significant temperature dependence over the indicated temperature range and essentially in agreement with previous estimates of the rate constant in hydrogen-rich flames. We show, using theoretical trajectory calculations, that the unexpectedly slow, yet T-independent, rate coefficient for NaOH + H is explained by severe constraints in the angle of attack that H can make on NaOH to produce H2O. This reaction is also central to explaining Na-catalyzed flame inhibition, which has been proposed to occur via the sequence Na + OH (+ M) → NaOH followed by NaOH + H → Na + H2O, thereby effectively recombinating H and OH to H2O. RRKM calculations for the recombination of Na and OH yield k(Na + OH + N2, 300-2400 K) = 2.7 × 10(-29) (300/T)(1.2) cm(6) molecule(-2) s(-1), in agreement with a previous flash photolysis measurement at 653 K and Na-seeded flame studies in the 1800-2200 K range. These results therefore provide strong evidence to support the mechanism of flame inhibition by Na.

  8. Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2.

    Science.gov (United States)

    Zhang, Jing; Wu, Jingjie; Guo, Hua; Chen, Weibing; Yuan, Jiangtan; Martinez, Ulises; Gupta, Gautam; Mohite, Aditya; Ajayan, Pulickel M; Lou, Jun

    2017-11-01

    Here, the hydrogen evolution reaction (HER) activities at the edge and basal-plane sites of monolayer molybdenum disulfide (MoS2 ) synthesized by chemical vapor deposition (CVD) are studied using a local probe method enabled by selected-area lithography. Reaction windows are opened by e-beam lithography at sites of interest on poly(methyl methacrylate) (PMMA)-covered monolayer MoS2 triangles. The HER properties of MoS2 edge sites are obtained by subtraction of the activity of the basal-plane sites from results containing both basal-plane and edge sites. The catalytic performances in terms of turnover frequencies (TOFs) are calculated based on the estimated number of active sites on the selected areas. The TOFs follow a descending order of 3.8 ± 1.6, 1.6 ± 1.2, 0.008 ± 0.002, and 1.9 ± 0.8 × 10(-4) s(-1) , found for 1T'-, 2H-MoS2 edges, and 1T'-, 2H-MoS2 basal planes, respectively. Edge sites of both 2H- and 1T'-MoS2 are proved to have comparable activities to platinum (≈1-10 s(-1) ). When fitted into the HER volcano plot, the MoS2 active sites follow a trend distinct from conventional metals, implying a possible difference in the reaction mechanism between transition-metal dichalcogenides (TMDs) and metal catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrafast Dynamics of Chemical Reactions in Condensed Phase ...

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond. Dipak K. Palit Radaition & Photochemistry Division Bhabha Atomic Research Centre Mumbai 400 085, India.

  10. Hydrogen-Bond Strength of CC and GG Pairs Determined by Steric Repulsion: Electrostatics and Charge Transfer Overruled.

    Science.gov (United States)

    van der Lubbe, Stephanie C C; Fonseca Guerra, Célia

    2017-08-01

    Theoretical and experimental studies have elucidated the bonding mechanism in hydrogen bonds as an electrostatic interaction, which also exhibits considerable stabilization by charge transfer, polarization, and dispersion interactions. Therefore, these components have been used to rationalize the differences in strength of hydrogen-bonded systems. A completely new viewpoint is presented, in which the Pauli (steric) repulsion controls the mechanism of hydrogen bonding. Quantum chemical computations on the mismatched DNA base pairs CC and GG (C=cytosine, G=guanine) show that the enhanced stabilization and shorter distance of GG is determined entirely by the difference in the Pauli repulsion, which is significantly less repulsive for GG than for CC. This is the first time that evidence is presented for the Pauli repulsion as decisive factor in relative hydrogen-bond strengths and lengths. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    Science.gov (United States)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  12. Development of New Barrel Array Design for Transfer Reactions with Fast Beams

    Science.gov (United States)

    Corrado, F.; Walter, D.; Pain, S. D.; Cizewski, J. A.

    2017-09-01

    Single-nucleon transfer reactions allow for extraction of spectroscopic information on unstable and exotic nuclei, providing details for understanding the rapid neutron capture process (r-process). To study exotic, neutron-rich isotopes, inverse kinematics is needed with light targets and beams of heavy projectiles. Measurement of the 84Se(d,p)85Se reaction at 45 MeV/u will be conducted at the NSCL in December 2017 to extract spectroscopic information on the 85Se nucleus. Single-particle transfer reactions in inverse kinematics at high energy - such as that for the 84Se(d,p) - are uncommon and require new designs and techniques to be developed. A modification to the current ORRUBA barrel design is needed to accommodate such changes. Features of this design include: a modular barrel able to cover a large desired angular range and detector coverage at backward angles in the lab, as well as allow for easy access to detectors without affecting the rest of the configuration. Improvements to the current design will be presented, including discussion of use in future transfer reactions with fast beams. This work is supported in part by the National Science Foundation and U.S. D.O.E.

  13. Probing the critical residues for intramolecular fructosyl transfer reaction of a levan fructotransferase.

    Science.gov (United States)

    Moon, Keum-Ok; Choi, Kyoung-Hwa; Kang, Ho-Young; Oh, Jeong-Il; Jang, Se Bok; Park, Cheon-Seok; Lee, Jong-Hoon; Cha, Jaeho

    2008-06-01

    Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose- 2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.

  14. Optimized expanding of interlayer distance for molybdenum disulfide towards enhanced hydrogen evolution reaction

    Science.gov (United States)

    Chai, Yong-Ming; Shang, Xiao; Hu, Wen-Hui; Dong, Bin; Liu, Zi-Zhang; Chi, Jing-Qi; Yan, Kai-Li; Gao, Wen-Kun; Liu, Chen-Guang

    2018-01-01

    Adjusting the hydrogen-binding free energy (ΔGH*) of two dimensional (2D) MoS2 by changing the interlayer distance has been an effective strategy to improve the intrinsic activity for hydrogen evolution reaction (HER). Herein, a facile solvothermal access via various ratio of N, N-dimethylformamide (DMF)/H2O has been used to modulate interlayer distance of nanostructured MoS2. With increasing of DMF, the interlayer distance of MoS2 can be expanded to 9.4 Å with smaller sizes, which may be derived from intercalation effect of DMF. The certain ratio of DMF/H2O (volume ratio of 19/1, MoS2-D19H1) leads to the largest interlayer distances of 10.0 Å and the smallest size of nanospheres with less stacking than counterparts synthesized at other ratios of DMF/H2O. The expanded interlayer distance of MoS2-D19H1 may change electronic structure of active sites for HER, implying the improved ΔGH* and the intrinsic activity of MoS2. The smallest size also suggests the more exposure of active sites for HER. The electrochemical measurements demonstrate that MoS2-D19H1 shows the best electrocatalytic performances than MoS2 samples synthesized at other ratio of DMF/H2O. This work may provide a promising strategy to tune the interlayer distance of 2D-layered transition metal dichalcogenide for efficient HER.

  15. Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lun [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, Xinglong, E-mail: hkxlwu@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Department of Physics, NingBo University, NingBo 315001 (China); Zhu, Xiaoshu [Center for Analysis and Testing, Nanjing Normal University, Nanjing 210093 (China); He, Chengyu; Meng, Ming; Gan, Zhixing [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-06-30

    Graphical abstract: - Highlights: • Amorphous nickel/cobalt tungsten sulfides were synthesized by a thermolytic process. • Amorphous NiWS and CoWS could realize hydrogen evolution efficiently. • Ni/Co promotion and annealing alter the porous structure and chemical bonding states. • Active sites on the surface of amorphous WS{sub x} are increased with Ni or Co doping. • Amorphous NiWS and CoWS have immense potentials in water splitting devices. - Abstract: The hydrogen evolution reaction (HER), an appealing solution for future energy supply, requires efficient and inexpensive electrocatalysts with abundant active surface sites. Although crystalline MoS{sub 2} and WS{sub 2} are promising candidates, their activity is dominated by edge sites. Amorphous tungsten sulfide prepared so far lacks the required active sites and its application has thus been hampered. In this work, nickel and cobalt incorporated amorphous tungsten sulfide synthesized by a thermolytic process is demonstrated to enhance the HER efficiency dramatically. The amorphous nickel tungsten sulfide (amorphous NiWS) annealed at 210 °C delivers the best HER performance in this system boasting a Tafel slope of 55 mV per decade and current density of 8.6 mA cm{sup −2} at 250 mV overpotential in a sustained test for 24 h. The introduction of Ni or Co into the catalyst and subsequent thermal treatment alters the porous structure and chemical bonding states thereby increasing the density of active sites on the surface.

  16. The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions

    DEFF Research Database (Denmark)

    Ulstrup, Jens; Jortner, Joshua

    1975-01-01

    -frequency intramolecular degrees of feedom on the free energy relationship for series of closely related reactions was investigated for various model systems involving displacement of potential energy surfaces, frequency shift, and anharmonicity effects. The free energy plots are generally found to pass through a maximum...... and to be asymmetric with a slower decrease in the transition probability with increasing energy of reaction. For high-frequency intramolecular modes this provides a rationalization of the experimental observation of ''activationless'' regions. Isotope effects are discussed as also are the oscillatory free energy......A general quantum mechanical description of exothermic electron transfer reactions is formulated by treating such reactions as the nonradiative decay of a ''supermolecule'' consisting of the electron donor, the electron acceptor, and the polar solvent. In particular, the role of the high...

  17. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    Science.gov (United States)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-12-22

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  18. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    Science.gov (United States)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  19. Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Taieb J.

    2010-03-01

    Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.

  20. A combined experimental, theoretical, and Van't Hoff model study for identity methyl, proton, hydrogen atom, and hydride exchange reactions. Correlation with three-center four-, three-, and two-electron systems

    Science.gov (United States)

    Buck, Henk M.

    We have studied carbon transfer reactions following an SN2 reaction profile. With ab initio calculations and experimental geometries concerning the nature of the various complexes indicated as stable, intermediate, and transition state we were able to show the additional value of van't Hoff's tetrahedral configuration by changing its geometry via a trigonal pyramid into a trigonal bipyramid. The ratio of the apical bond and corresponding tetrahedral bond distances is then nearly 1.333. The relevance of this approach has also been shown for identity proton-(hydrogen atom-, and hydride-) in-line reactions. The use of this geometrical transmission will be demonstrated for the hydrogen bonding distances in e.g., DNA duplexes and other biological (supra) molecular systems.

  1. Hydrogen production by the high temperature combination of the water gas shift and CO{sub 2} absorption reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bretado, M.A.E.; Vigil, M.D.D.; Gutierrez, J.S.; Ortiz, A.L.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    Hydrogen is an important raw material for the chemical and petroleum industry. An important research field has surfaced, dealing with the production of high purity hydrogen for power generation purposes through fuel cells. Industrial technologies for hydrogen production are based on the use of fossil fuels, with catalytic steam methane reforming being the most important process together with partial oxidation of hydrocarbons and the integrated combined coal gasification cycle. Hydrogen production through the water gas shift (WGS) reaction requires two consecutive catalytic steps followed by carbon dioxide (CO{sub 2}) separation. However, combination of the WGS reaction and CO{sub 2} capture by a solid absorbent opens the opportunity to produce high purity hydrogen in one single step called absorption enhanced WGS or AEWGS. In theory, this process would not require a catalyst. This paper presented an experimental study of AEWGS using a quartz-made fixed bed reactor. The CO{sub 2} absorbents tested in this study were calcined dolomite, (CaOMgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}). The paper described the experimental study, with particular reference to the thermodynamic analysis that determined the equilibrium conditions of the systems CO/H{sub 2}O (WGS) and CO/absorbent/H{sub 2} (AEWGS); synthesis and characterization; and the fixed bed reaction system. Results were determined by X-ray diffraction, BET surface area and crystallite size, and reaction evaluation. It was concluded that at reaction conditions, dolomite can efficiently remove CO{sub 2} at partial pressures three times lower than with the use of Na{sub 2}ZrO{sub 3} as absorbent. 24 refs., 1 tab., 6 figs.

  2. Heavy-ion transfer reactions at large internuclear distances using the PRISMA magnetic spectrometer

    Directory of Open Access Journals (Sweden)

    Montanari D. J.

    2013-12-01

    Full Text Available We measured excitation functions for the main transfer channels in the 116Sn+60Ni reaction at different bombarding energies from above to well below the Coulomb barrier. The experiment has been performed in inverse kinematics, detecting the lighter (target-like ions with the magnetic spectrometer PRISMA at very forward angles. Good mass, nuclear charge and kinetic energy resolutions have been achieved. The comparison between the data and microscopic calculations for the present case and for the previously measured 96Zr+40Ca system, namely superfluid and near closed shells nuclei, should significantly improve our understanding of nucleon-nucleon correlation properties in multinucleon transfer processes.

  3. Tunable excited-state intramolecular proton transfer reactions with Nsbnd H or Osbnd H as a proton donor: A theoretical investigation

    Science.gov (United States)

    Li, Yuanyuan; Wen, Keke; Feng, Songyan; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Guo, Xugeng; Zhang, Jinglai

    2017-12-01

    Excited-state intramolecular proton transfer (ESIPT) reactions occurring in the S1 state for five molecules, which possess five/six-membered ring intramolecular Nsbnd H···N or Osbnd H···N hydrogen bonds bearing quinoline or 2-phenylpyridine moiety, have been described in detail by the time-dependent density functional theory (TD-DFT) approach using the B3LYP hybrid functional. For the five molecules, the constrained potential energy profiles along the ESIPT reactions show that proton transfer is barrierless in molecules possessing six-membered ring intramolecular H-bonds, which is smoother than that with certain barriers in five-membered ring H-bonding systems. For the latter, chemical modification by a more strong acid group can lower the ESIPT barrier significantly, which harnesses the ESIPT reaction from a difficult type to a fast one. The energy barrier of the ESIPT reaction depends on the intensity of the intramolecular H-bond, which can be measured with the topological descriptors by topology analysis of the bond critical point (BCP) of the intramolecular H-bond. It is found that when the value of electron density ρ(r) at BCP is bigger than 0.025 a.u., the corresponding molecule might go through an ultrafast and barrierless ESIPT process, which opens a new scenario to explore the ESIPT reactions.

  4. Hydrogen transfer in the formation and destruction of retrograde products in coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R. [SRI International, Menlo Park, CA (United States)

    2006-06-01

    The conversion of coals to volatiles or liquids during pyrolysis and liquefaction is notoriously limited by the formation of retrograde products. Analysis of literature data for coals with grafted structures and for polymeric coal models demonstrates that the formation of volatile products from these materials does not correlate primarily with the weakness of the original bonding but correlates with the facility for retrogressive reaction. This analysis suggests further that simple recombination of resonance-stabilized radicals does not tend to yield true retrograde products, except in the case of aryloxy radicals. For pure hydrocarbon structural elements, radical addition to aromatic systems appears to be a key class of retrograde reactions, where the key factor is the kinetics of radical or H-atom loss from a cyclohexadienyl intermediate. We have used a mechanistic numerical model with a detailed set of radical reactions and thermochemically based kinetic parameters operating on a limited set of hydrocarbon structures to delineate important factors in mitigating retrograde processes. This showed that, not only the cleavage of critical bonds in the original coal structures but also the net prevention of retrogression may be due to the H-transfer-induced cleavage of strong bonds.

  5. Dynamics of the reaction of the N/sup +/ ion with hydrogen isotopes and helium

    Energy Technology Data Exchange (ETDEWEB)

    Ruska, W.E.W.

    1976-06-28

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H/sub 2/ and HD targets. Non-reactive scattering was observed from H/sub 2/ and D/sub 2/ targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a /sup 3/A/sub 2/ - /sup 3/PI surface, the other, a /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. Collinear approaches are expected to be most reactive on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface; noncollinear, on the /sup 3/A/sub 1/ - /sup 3/PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D/sub 2/ target.

  6. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    Science.gov (United States)

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  7. Theoretical and kinetic study of the hydrogen atom abstraction reactions of unsaturated C6 methyl esters with hydroxyl radical

    Science.gov (United States)

    Wang, Quan-De; Ni, Zhong-Hai

    2016-04-01

    This work reports a systematic ab initio and chemical kinetic study of the rate constants for hydrogen atom abstraction reactions by hydroxyl radical (OH) on typical isomers of unsaturated C6 methyl esters at the CBS/QB3 level of theory. The high-pressure limit rate constants at different reaction sites for all the methyl esters in the temperature range from 500 to 2000 K are calculated via transition-state theory with the Wigner method for quantum tunneling effect and fitted to the modified three parameters Arrhenius expression using least-squares regression. Further, a branching ratio analysis for each reaction site has been performed.

  8. High spin levels populated in multinucleon-transfer reactions with 480 MeV /sup 12/C

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, L.; Boucenna, A.; Linck, I.; Lott, B.; Rebmeister, R.; Schulz, N.; Sens, J.C.; Mermaz, M.C.; Berthier, B.; Lucas, R.; and others

    1988-06-01

    Two- and three-nucleon stripping reactions induced by 480 MeV /sup 12/C have been studied on /sup 12/C, /sup 16/O, /sup 28/Si, /sup 40/Ca, and /sup 54/Fe target nuclei. Discrete levels are fed with cross sections up to 1 mbsr for d-transfer reactions and 1 order and 2 orders of magnitude less for 2p- and /sup 3/He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus.

  9. Nanoscale Layer Transfer by Hydrogen Ion-Cut Processing: A Brief Review Through Recent U.S. Patents.

    Science.gov (United States)

    Lee, Benjamin T-H

    2017-01-01

    A hydrogen-based Ion-Cut layer-transfer technique, the so-called Ion-Cut or Smart-Cut processing, has been used in transferring a semiconductor membrane onto a desired substrate to reveal unique characteristics on a nanoscale size and to build functional electronic and photonic devices that are used for specific purposes. For example, the sub-100 nm thick silicon membrane transferred onto an insulator became a key substrate for fabricating nanoscale integrated circuit (IC) devices. Recent U.S. patents have exhibited integration of various thinning approaches requiring precision of a few nanometers in fabricating large-area semiconductor nanomembranes, especially for silicon. This paper reviews published patents and work on fabricating sub-100 nm silicon membranes with welldefined features without a chemical-mechanical polishing (CMP) thinning process. This included material analysis leads to ultraprecision thickness in the sub-100 nm region. This paper combines an analysis of peer-reviewed articles and issued patents using focused review keywords of hydrogen implantation, wafer bonding, and layer splitting. The quality of selected patents was appraised based on the authors' 20-year research experience in the field of ultrathin silicon layer-transfer technology. The paper covered more than 10 U.S. patents that have been filed on hydrogen-based Ion-Cut layer-transfer techniques. These patents described approaches for inserting hydrogen ions to split at a well-defined location and then transfer the as-split silicon membrane at the nanoscale thickness onto a desired substrate. Hydrogen-trap sites, implantation energy, and interface of the distinct doped regions could define the layer-split location. The insertion of high-dose hydrogen ions could be thoroughly achieved by ion implantation, plasma ion immersion implantation (PIII), plasma diffusion, and electrolysis. The article concludes with the discussion of the patent-orientated review of layer-transfer techniques

  10. Thermodynamyc modeling of hydrogenation reactions of aromatic hydrocarbons in various environments

    Directory of Open Access Journals (Sweden)

    A. Gyulmaliev

    2013-09-01

    Full Text Available The hydrogenation of aromatic structures in different environments (molecular hydrogen, H2S, NH3 (NH4OH, CO + H2O, methane + water steam with the active hydrogen formation were investigated by methods of chemical thermodynamics for model compounds of benzene and naphthalene.

  11. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  12. Composition-Dependent Reaction Pathways and Hydrogen Storage Properties of LiBH₄/Mg(AlH₄)₂ Composites.

    Science.gov (United States)

    Pang, Yuepeng; Liu, Yongfeng; Zhang, Xin; Li, Qian; Gao, Mingxia; Pan, Hongge

    2015-11-01

    Herein, an initial attempt to understand the relationships between hydrogen storage properties, reaction pathways, and material compositions in LiBH4-x Mg(AlH4)2 composites is demonstrated. The hydrogen storage properties and the reaction pathways for hydrogen release from LiBH4-x Mg(AlH4)2 composites with x=1/6, 1/4, and 1/2 were systematically investigated. All of the composites exhibit a four-step dehydrogenation event upon heating, but the pathways for hydrogen desorption/absorption are varied with decreasing LiBH4/Mg(AlH4)2 molar ratios. Thermodynamic and kinetic investigations reveal that different x values lead to different enthalpy changes for the third and fourth dehydrogenation steps and varied apparent activation energies for the first, second, and third dehydrogenation steps. Thermodynamic and kinetic destabilization caused by the presence of Mg(AlH4)2 is likely to be responsible for the different hydrogen desorption/absorption performances of the LiBH4-x Mg(AlH4)2 composites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mechanistic Study of Nitric Oxide Reduction by Hydrogen on Pt(100) (I): A DFT Analysis of the Reaction Network.

    Science.gov (United States)

    Bai, Yunhai; Mavrikakis, Manos

    2017-05-08

    Periodic, self-consistent density functional theory (DFT-GGA, PW91) calculations are used to study the reaction mechanism for nitric oxide (NO) reduction by hydrogen (H2) on Pt(100). Energetics of various N-O activation paths, including both direct and hydrogen-assisted N-O bond-breaking paths, and the formation of three different N-containing products (N2, N2O, and NH3), are systematically studied. On the basis of our analysis, NO* dissociation has a lower barrier than NO* hydrogenation to HNO* or NOH*, and therefore, the direct NO dissociation path is predicted to dominate N-O activation on clean Pt(100). The reaction of atomic N* with N* and NO* is proposed as the mechanism for N2 and N2O formation, respectively. NH3 formation from N* via three successive hydrogenation steps is also studied and is found to be kinetically more difficult than N2 and N2O formation from N*. Finally, NO adsorption phase diagrams on Pt(100) are constructed, and these phase diagrams suggest that, at low temperatures (e.g., 400 K), the Pt(100) surface may be covered by half a monolayer of NO. We propose that high NO coverage might affect the NO + H2 reaction mechanism, and therefore, one should explicitly take the NO coverage into consideration in first-principles studies to determine the reaction mechanism on catalyst surfaces under reaction conditions. A detailed analysis of high NO coverage effects on the reaction mechanism will be presented in a separate contribution.

  14. The role of interspecies hydrogen transfer on thermophilic protein and amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Oerlygsson, J.

    1994-09-01

    The dynamics of thermophilic protein (peptone) degradation to fatty acids was followed in small-scale, semi-continuous, steady state, thermophilic enrichment cultures under methanogenic conditions. Although only 4-9% of the carbon was recovered in methane, methanogenesis was crucial both for the complete hydrolysis of peptone and the degradation of the amino acids released. Under non-methanogenic conditions, the degradation of the branched-chain amino acids alanine, methionine and phenylalanine, all known to be deaminated oxidatively, was partly inhibited. The degradation under these conditions was probably due to the Stickland reaction. During the degradation of several different amino acids with these peptone enrichment cultures, large differences were found in both deamination rates and in amounts degraded between methanogenic and non-methanogenic conditions. Leucine, valine and alanine were completely degraded only under methanogenic conditions and at relatively low rates. Serine, threonine, cysteine and methionine were degraded under both methanogenic and non-methanogenic conditions. However, deamination rates were 1.3 to 2.2 times higher during methanogenesis. A Clostridium sp. strain P2, was isolated from one of the semi-continuously peptone-fed enrichment cultures. Like in mixed cultures, the degradation of the branched-chain amino acids by this isolate was dependent on hydrogen removal. During growth on glucose, fructose and mannose, strain P2 produced substantial amounts of L-alanine as a fermentation product. Pyruvate was the source of alanine, and the formation of the latter was strongly influenced by ammonium. The partial pressure of hydrogen was of less importance for the formation of alanine than was the concentration of ammonia. 101 refs, 4 figs, 1 tab

  15. Multinucleon transfer reactions in {sup 40}Ca+{sup 124}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, L.; He, J.H.; Ackermann, D.; Stefanini, A.M.; Pisent, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Via Romea 4, I-35020 Legnaro, Padova (Italy); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F. [Dipartimento di Fisica, Universita di Padova, and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pollarolo, G. [Dipartimento di Fisica Teorica, Universita di Torino, and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Dasso, C.H.; Winther, A. [The Niels Bohr Institute, Blegdamsvej 17,2100 Copenhagen O/ (Denmark)

    1996-07-01

    Angular and {ital Q}-value distributions for a large variety of charge and mass partitions populated in the reaction {sup 40}Ca + {sup 124}Sn have been measured at 170 MeV with a new time-of-flight magnetic spectrometer. Reaction channels involving the net transfer of up to six protons and six neutrons have been detected. Population patterns, cross sections, and energy-loss distributions are compared with results of theoretical calculations based on independent single-nucleon transfer modes. The overall agreement is good, but more complex mechanisms may be needed to account for the larger drift towards neutron stripping revealed by the experimental data. {copyright} {ital 1996 The American Physical Society.}

  16. Engineering design elements of a two-phase thermosyphon to transfer nuclear thermal energy to a hydrogen plant

    Science.gov (United States)

    Sabharwall, Piyush

    Two hydrogen production processes, both powered by Next Generation Nuclear Plant (NGNP), are currently under investigation at the Idaho National Laboratory. The first is high-temperature steam electrolysis utilizing both heat and electricity and the second is thermo-chemical production through the sulfur-iodine process primarily utilizing heat. Both processes require high temperature (>850°C) for enhanced efficiency; temperatures indicative of NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100m. There are several options to transferring multi-megawatt thermal power over such a distance. One option is simply to produce only electricity, transfer by wire to the hydrogen plant, and then reconvert the electric energy to heat via Joule or induction heating. Electrical transport, however, suffers energy losses of 60-70% due to the thermal to electric conversion inherent in the Brayton cycle. A second option is thermal energy transport via a single-phase forced convection loop where a fluid is mechanically pumped between heat exchangers at the nuclear and hydrogen plants. High temperatures, however, present unique materials and pumping challenges. Single phase, low pressure helium is an attractive option for NGNP, but is not suitable for a single purpose facility dictated to hydrogen production because low pressure helium requires higher pumping power and makes the process very inefficient. A third option is two-phase heat transfer utilizing a high temperature thermosyphon. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. Thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are desired to transfer heat from

  17. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.

    Science.gov (United States)

    Zuo, Weiwei; Morris, Robert H

    2015-02-01

    The catalytic hydrogenation of prochiral ketones and imines is an advantageous approach to the synthesis of enantioenriched alcohols and amines, respectively, which are two classes of compounds that are highly prized in pharmaceutical, fragrance and flavoring chemistry. This hydrogenation reaction is generally carried out using ruthenium-based catalysts. Our group has developed an alternative synthetic route that is based on the environmentally friendlier iron-based catalysis. This protocol describes the three-part synthesis of trans-[amine(imine)diphosphine]chlorocarbonyliron(II) tetrafluoroborate templated by iron salts and starting from commercially available chemicals, which provides the precatalyst for the efficient asymmetric transfer hydrogenation of ketones and imines. The use of the enantiopure (S,S) catalyst to reduce prochiral ketones to the (R)-alcohol in good to excellent yields and enantioenrichment is also detailed, as well as the reduction to the amine in very high yield and enantiopurity of imines substituted at the nitrogen with the N-(diphenylphosphinoyl) group (-P(O)Ph2). Although the best ruthenium catalysts provide alcohols in higher enantiomeric excess (ee) than the iron complex catalyst used in this protocol, they do so on much longer time scales or at higher catalyst loadings. This protocol can be completed in 2 weeks.

  18. Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization.

    Science.gov (United States)

    Benson, Eric E; Zhang, Hanyu; Schuman, Samuel A; Nanayakkara, Sanjini U; Bronstein, Noah D; Ferrere, Suzanne; Blackburn, Jeffrey L; Miller, Elisa M

    2018-01-10

    We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS2) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS2 functionalized with the most electron donating functional group (p-(CH3CH2)2NPh-MoS2) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS2. The p-(CH3CH2)2NPh-MoS2 is more stable than unfunctionalized metallic MoS2 and outperforms unfunctionalized metallic MoS2 for continuous H2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS2 nanosheet. The functional groups preserve the metallic nature of the MoS2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.

  19. Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Link, Elisa M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Benson, Eric E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Hanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nanayakkara, Sanjini U [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bronstein, Noah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackburn, Jeffrey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schuman, Samuel [Formerly NREL; Ferrere, Suzanne [Formerly NREL

    2017-12-27

    We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS2) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS2 functionalized with the most electron donating functional group (p-(CH3CH2)2NPh-MoS2) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS2. The p-(CH3CH2)2NPh-MoS2 is more stable than unfunctionalized metallic MoS2 and outperforms unfunctionalized metallic MoS2 for continuous H2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS2 nanosheet. The functional groups preserve the metallic nature of the MoS2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.

  20. Picosecond laser studies of the charge-transfer reaction of excited triplet diphenylcarbene with electron donors

    Science.gov (United States)

    Sitzmann, E. V.; Langan, J.; Eisenthal, K. B.

    1983-12-01

    Evidence of a one-electron transfer process in a carbene reaction has been observed for the first time. The example is the quenching of the photoexcited triplet state of diphenylcarbene ( 3*DPC) by electron donors. Measurement of the fluorescence lifetime as a function of donor concentration yielded the bimolecular rate constant, 3* k. An explanation is offered as to why 3* and 1DPC react efficiently with amines as well as alcohols, whereas the ground triplet, 3DPC, does not.

  1. Probing nucleon-nucleon correlations in heavy-ion transfer reactions

    Directory of Open Access Journals (Sweden)

    Szilner S.

    2016-01-01

    Full Text Available The γ-particle coincident measurements, performed by coupling of the PRISMA spectrometer to the large γ arrays (CLARA and AGATA, demonstrate a strong interplay between single-particle and collective degrees of freedom that is pertinent to the reaction dynamics. By using the unique PRISMA performance in terms of both resolution and efficiency, measurements at very low bombarding energies have been performed. Via transfer of nucleon pairs, valuable information on the component responsible for particle correlations has been derived.

  2. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    Science.gov (United States)

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  3. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-01-07

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered as several promising HER candidates. Here, a highly active and stable hybrid electrocatalyst 3D flower-like hierarchical Co9S8 nanosheets incorporated with MoSx has been developed via a one-step sulfurization method. Since the amounts of Co9S8 and MoSx are easily adjustable, we verify that small amounts of MoSx promotes the HER activity of Co9S8, and vise versa. In other words, we validate that symmetric synergy for HER in the Co- and Mo-based sulfide hybrid catalysts, a long-standing question requiring clear experimental proofs. Meanwhile, the best electrocatalyst Co9S8-30@MoSx/CC in this study exhibits excellent HER performance with an overpotential of −98 mV at −10 mA/cm2, a small Tafel slope of 64.8 mV/dec, and prominent electrochemical stability.

  4. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.

    Science.gov (United States)

    Kibsgaard, Jakob; Jaramillo, Thomas F

    2014-12-22

    Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non-noble-metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed-metal alloy catalysts are well-known, MoP|S represents a more uncommon mixed-anion catalyst where synergistic effects between sulfur and phosphorus produce a high-surface-area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water-splitting cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. WS{sub 2} nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guan-Qun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yan-Ru; Hu, Wen-Hui [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Li, Xiao; Chai, Yong-Ming; Liu, Yun-Qi [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2015-11-01

    WS{sub 2} nanosheets (WS{sub 2} NSs) as electrocatalysts for hydrogen evolution reaction (HER) have been prepared based on liquid exfoliation in dimethyl-formamide (DMF) via a direct dispersion and ultrasonication method. X-ray diffraction (XRD) shows the decreasing crystalline of the exfoliated WS{sub 2} (E-WS{sub 2}). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the as prepared E-WS{sub 2} consists of a few two-dimensional nanosheets, with large wrinkles on the surface. Electrochemical measurements show an excellent activity and stability of the E-WS{sub 2}, with a low overpotential of 80 mV and high current density (10 mA cm{sup −2}, at η = 205 mV), which indicates that through the process of exfoliation in DMF, both the dispersion and the amount of active sites have been improved greatly. Therefore, DMF is a promising alternative for exfoliating two-dimensional nanomaterials for highly efficient HER electrocatalysts. - Highlights: • A facile exfoliation process in DMF has been used to prepare E-WS{sub 2} for HER. • E-WS{sub 2} shows the better electrocatalytic activity than bulk WS{sub 2}. • DMF provides a promising alternative for enhancing exfoliation of 2D materials.

  6. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Toward Hydrogen Evolution Reaction.

    Science.gov (United States)

    Coy, Emerson; Yate, Luis; Valencia, Drochss P; Aperador, Willian; Siuzdak, Katarzyna; Torruella, Pau; Azanza, Eduardo; Estrade, Sonia; Iatsunskyi, Igor; Peiro, Francesca; Zhang, Xixiang; Tejada, Javier; Ziolo, Ronald F

    2017-09-13

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin-film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained while maintaining high electrocatalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin-film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates toward HER and, furthermore, that the methodology presented here is suitable to produce other transition-metal carbides with improved catalytic and mechanical properties.

  7. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-01-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  8. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyounmyung; Encinas, Andrew; Fokwa, Boniface P.T. [Department of Chemistry, University of California, Riverside, CA (United States); Department of Chemical and Environmental Engineering, University of California, Riverside, CA (United States); Scheifers, Jan P.; Zhang, Yuemei [Department of Chemistry, University of California, Riverside, CA (United States)

    2017-05-08

    Molybdenum-based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo{sub 2}B, α-MoB, β-MoB, and MoB{sub 2} by arc-melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy (XPS) for the first time; MoB{sub 2} and β-MoB show excellent activity in the same range as the recently reported α-MoB and β-Mo{sub 2}C phases, while the molybdenum richest phase Mo{sub 2}B show significantly lower HER activity, indicating a strong boron-dependency of these borides for the HER. In addition, MoB{sub 2} and β-MoB show long-term cycle stability in acidic solution. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    Science.gov (United States)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  10. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-06-05

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  11. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction.

    Science.gov (United States)

    Geng, Xiumei; Sun, Weiwei; Wu, Wei; Chen, Benjamin; Al-Hilo, Alaa; Benamara, Mourad; Zhu, Hongli; Watanabe, Fumiya; Cui, Jingbiao; Chen, Tar-Pin

    2016-02-10

    Metallic-phase MoS2 (M-MoS2) is metastable and does not exist in nature. Pure and stable M-MoS2 has not been previously prepared by chemical synthesis, to the best of our knowledge. Here we report a hydrothermal process for synthesizing stable two-dimensional M-MoS2 nanosheets in water. The metal-metal Raman stretching mode at 146 cm(-1) in the M-MoS2 structure, as predicted by theoretical calculations, is experimentally observed. The stability of the M-MoS2 is associated with the adsorption of a monolayer of water molecules on both sides of the nanosheets, which reduce restacking and prevent aggregation in water. The obtained M-MoS2 exhibits excellent stability in water and superior activity for the hydrogen evolution reaction, with a current density of 10 mA cm(-2) at a low potential of -175 mV and a Tafel slope of 41 mV per decade.

  12. Synthesis of Fe-Al nanoparticles by hydrogen plasma-metal reaction

    CERN Document Server

    Liu Tong; Li Xing Guo

    2003-01-01

    Fe-Al nanoparticles of eight kinds have been prepared by hydrogen plasma-metal reaction. The morphology, crystal structure, and chemical composition of the nanoparticles obtained were investigated by transmission electron microscopy (TEM), x-ray diffractometry (XRD), and induction-coupled plasma spectroscopy. The particle size was determined by TEM and Brunaumer-Emmet-Teller gas adsorption. It was found that all the nanoparticles have spherical shapes, with average particle size in the range of 29-46 nm. The oxide layer in nanoparticles containing Al after passivation is not observable by XRD and TEM. The Al contents in Fe-Al ultrafine particles are about 1.2-1.5 times those in the master alloys. The evaporation speeds of Al and Fe in Fe-Al alloys are mutually accelerated at a certain composition. The crystal structures of the Fe-Al nanoparticles vary with the composition of the master alloys. Pure Fe sub 3 Al (D0 sub 3) and FeAl (B2) structures are successfully produced with 15 and 25 at.% Al in bulks, respe...

  13. Boron-Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Park, Hyounmyung; Encinas, Andrew; Scheifers, Jan P; Zhang, Yuemei; Fokwa, Boniface P T

    2017-05-08

    Molybdenum-based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo2 B, α-MoB, β-MoB, and MoB2 by arc-melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy (XPS) for the first time; MoB2 and β-MoB show excellent activity in the same range as the recently reported α-MoB and β-Mo2 C phases, while the molybdenum richest phase Mo2 B show significantly lower HER activity, indicating a strong boron-dependency of these borides for the HER. In addition, MoB2 and β-MoB show long-term cycle stability in acidic solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Elevation of hydrogen peroxide after spinal cord injury detected by using the Fenton reaction.

    Science.gov (United States)

    Liu, D; Liu, J; Wen, J

    1999-08-01

    To reveal whether reactive oxygen species (ROS) play a role after spinal cord injury, we developed a unique method for assaying hydrogen peroxide (H2O2) and determined the time course of its concentration changes following impact injury to the rat spinal cord. Microdialysis was used to sample H2O2 in the extracellular space and the dialysates were collected into a vial containing salicylate and ferrous chloride (FeCl2). H2O2 collected in the vial was converted to hydroxyl radicals (*OH) by FeCl2 catalysis. 2,3- and 2,5-dihydroxybenzoic acid produced by reaction of *OH with salicylate in the collecting vial were measured by HPLC and calibrated to H2O2 concentrations. The postinjury levels of H2O2 were significantly increased (p = 0.02) for over 11 h. FeCl2 administered through the dialysis fiber catalyzes H2O2 conversion in the cord to *OH. This *OH does not reach the collecting vial due to its extremely short lifetime (nanoseconds). The reduced H2O2 levels in the vials validate the measurement of H2O2. The relatively long-lasting formation of H2O2 and superoxide reported herein and previously suggests that ROS may be important in secondary spinal cord damage and that removal of ROS may be a realistic treatment strategy for reducing injury caused by free radicals.

  15. Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface.

    Science.gov (United States)

    Kattel, Shyam; Liu, Ping; Chen, Jingguang G

    2017-07-26

    The chemical transformation of CO2 not only mitigates the anthropogenic CO2 emission into the Earth's atmosphere but also produces carbon compounds that can be used as precursors for the production of chemicals and fuels. The activation and conversion of CO2 can be achieved on multifunctional catalytic sites available at the metal/oxide interface by taking advantage of the synergy between the metal nanoparticles and oxide support. Herein, we look at the recent progress in mechanistic studies of CO2 hydrogenation to C1 (CO, CH3OH, and CH4) compounds on metal/oxide catalysts. On this basis, we are able to provide a better understanding of the complex reaction network, grasp the capability of manipulating structure and combination of metal and oxide at the interface in tuning selectivity, and identify the key descriptors to control the activity and, in particular, the selectivity of catalysts. Finally, we also discuss challenges and future research opportunities for tuning the selective conversion of CO2 on metal/oxide catalysts.

  16. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kunchan; Xia, Ming [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Weishan [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-01-15

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  17. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Towards Hydrogen Evolution Reaction

    KAUST Repository

    Coy, Emerson

    2017-08-22

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin film electrodes of metal-carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures to date neglect long lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained whilst maintaining high electro catalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates towards HER , and furthermore, that the methodology presented here is suitable to produce other transition metal carbides (TM-C) with improved catalytic and mechanical properties.

  18. Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Syngas and Hydrogen Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Jen Sung; Hai Wang; Angela Violi

    2009-02-28

    The collaborative research initiative culminated in amassing a substantial combustion database of experimental results for dry and moist mixtures of syngas and hydrogen (SGH), including autoignition times using a rapid compression machine as well as laminar flame speeds using a counterflow twin-flame configuration. These experimental data provided the basis for assessment of the kinetics of SGH combustion at elevated pressures using global uncertainty analysis methods. A review of the fundamental combustion characteristics of H{sub 2}/CO mixtures, with emphasis on ignition and flame propagation at high pressures was also conducted to understand the state of the art in SGH combustion. Investigation of the reaction kinetics of CO+HO{sub 2}{center_dot} {yields} CO{sub 2} + {center_dot}OH and HO{sub 2}+OH {yields} H{sub 2}O+O{sub 2} by ab initio calculations and master equation modeling was further carried out in order to look into the discrepancies between the experimental data and the results predicted by the mechanisms.

  19. Spectroscopy of $^{46}$Ar by the $(t,p)$ two-neutron transfer reaction

    CERN Document Server

    Nowak, K.; Hellgartner, S.; Mücher, D.; Bildstein, V.; Diriken, J.; Elseviers, J.; Gaffney, L.P.; Gernhäuser, R.; Iwanicki, J.; Johansen, J.G.; Huyse, M.; Konki, J.; Kröll, T.; Krücken, T.; Lutter, R.; Orlandi, R.; Pakarinen, J.; Raabe, R.; Reiter, P.; Roger, T.; Schrieder, G.; Seidlitz, M.; Sorlin, O.; Van Duppen, P.; Warr, N.; De Witte, H.; Zielinska, M.

    2016-04-27

    States in the $N=28$ nucleus $^{46}$Ar have been studied by a two-neutron transfer reaction at REX-ISOLDE (CERN). A beam of radioactive $^{44}$ at an energy of 2.16~AMeV and a tritium loaded titanium target were used to populate $^{46}$ by the t($^{44}$,p) two-neutron transfer reaction. Protons emitted from the target were identified in the T-REX silicon detector array. The excitation energies of states in $^{46}$ have been reconstructed from the measured angles and energies of recoil protons. Angular distributions for three final states were measured and based on the shape of the differential cross section an excited state at 3695~keV has been identified as $J^\\pi = 0^+$. The angular differential cross section for the population of different states are compared to calculations using a reaction model employing both sequential and direct transfer of two neutrons. Results are compared to shell model calculations using state-of-the-art effective interactions.

  20. Electrocatalysis of anodic oxygen-transfer reactions at modified lead dioxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Yun-Lin.

    1990-09-21

    The electrocatalytic activities were compared for pure and chloride-doped beta-PbO{sub 2} (Cl-PbO{sub 2}) films on gold and platinum substrates. Rate constants were increased significantly for oxidations of Mn{sup 2+}, toluene, benzyl alcohol, dimethylsulphoxide (DMSO) and benzaldehyde in acidic media by the incorporation of Cl{sup {minus}} into the oxide films. These reactions are concluded to occur by the electrocatalytic transfer of oxygen from H{sub 2}O to the reaction products. Results of x-ray diffraction studies indicate the Cl-PbO{sub 2} film continues to have the slightly distorted rutile structure of pure beta-PbO{sub 2}. The observed electrocatalytic phenomena are concluded to be the beneficial consequence of surface defects generated when Cl{sup {minus}} serves for charge compensation within the surface matrix and, thereby, increases the number of surface sites capable of adsorbing hydroxyl radicals which are transferred in the electrocatalytic O-transfer reactions. 91 refs., 44 figs., 10 tabs.

  1. Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder.

    Science.gov (United States)

    Najib, Najwa; Bachok, Norfifah; Arifin, Norihan Md; Ishak, Anuar

    2014-02-26

    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.

  2. Stagnation Point Flow and Mass Transfer with Chemical Reaction past a Stretching/Shrinking Cylinder

    Science.gov (United States)

    Najib, Najwa; Bachok, Norfifah; Arifin, Norihan Md.; Ishak, Anuar

    2014-02-01

    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.

  3. Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH

    Directory of Open Access Journals (Sweden)

    C. B. Porciúncula

    2012-06-01

    Full Text Available The objective of this work is to investigate the production of hydrogen as an energy source by means of the reaction of aluminum with water. This reaction only occurs in the presence of NaOH and KOH, which behave as catalysts. The main advantages of using aluminum for indirect energy storage are: recyclability, non-toxicity and easiness to shape. Alkali concentrations varying from 1 to 3 mol.L-1 were applied to different metallic samples, either foil (0.02 mm thick or plates (0.5 and 1 mm thick, and reaction temperatures between 295 and 345 K were tested. The results show that the reaction is strongly influenced by temperature, alkali concentration and metal shape. NaOH commonly promotes faster reactions and higher real yields than KOH.

  4. Dichotomous Hydrogen Atom Transfer vs. Proton Coupled Electron Transfer During Activation of X-H Bonds (X = C, N, O) by Nonheme Iron-Oxo Complexes of Variable Basicity

    Science.gov (United States)

    Usharani, Dandamudi; Lacy, David C.; Borovik, A. S.; Shaik, Sason

    2013-01-01

    We describe herein the hydrogen-atom transfer (HAT)/ proton-coupled electron-transfer (PCET) reactivity for FeIV-oxo and FeIII-oxo complexes (1–4) that activate C-H, N-H, and O-H bonds in 9,10 dihydroanthracene (S1), dimethylformamide (S2), 1,2 diphenylhydrazine (S3), p-methoxyphenol (S4), and 1,4-cyclohexadiene (S5). In 1–3, the iron is pentacoordinated by tris[N'-tert-butylureaylato)-N-ethylene]aminato ([H3buea]3−) or its derivatives. These complexes are basic, in the order 3 >> 1 > 2. Oxidant 4, [FeIVN4Py(O)]2+ (N4Py: N,N-bis(2-pyridylmethyl)-bis(2-pyridyl) methylamine), is the least basic oxidant. The DFT results match experimental trends and exhibit a mechanistic spectrum ranging from concerted HAT and PCET reactions to concerted-asynchronous proton transfer (PT) / electron transfer (ET) mechanisms, all the way to PT. The singly occupied orbital along the O---H---X (X= C, N, O) moiety in the TS shows clearly that in the PCET cases, the electron is transferred separately from the proton. The Bell-Evans-Polanyi principle does not account for the observed reactivity pattern, as evidenced by the scatter in the plot of calculated barrier vs. reactions driving forces. However, a plot of the deformation energy in the TS vs. the respective barrier provides a clear signature of the HAT/PCET dichotomy. Thus, in all C-H bond activations, the barrier derives from the deformation energy required to create the TS, whereas in N-H/O-H bond activations, the deformation energy is much larger than the corresponding barrier, indicating the presence of stabilizing interaction between the TS fragments. A valence bond model is used to link the observed results with the basicity/acidity of the reactants. PMID:24124906

  5. Study of hydrogen implantation-induced blistering in GaSb for potential layer transfer applications

    Science.gov (United States)

    Pathak, Ravi; Dadwal, U.; Singh, R.

    2017-07-01

    GaSb samples were implanted by 100 keV hydrogen ions (H+) at room temperature with fluence values of 1  ×  1017 and 2  ×  1017 ions cm-2. Post-implantation annealing studies revealed that the samples implanted with a fluence of 2  ×  1017 ions cm-2 did not show blistering/exfoliation. For the lower fluence, the samples showed the formation of surface blisters/craters along with the large area exfoliation of the top H-implanted surface. Topographical investigations of the samples were carried out using Nomarski optical microscopy, atomic force microscopy and stylus surface profilometry. The lateral sizes and heights of the blisters varied between 2-5 µm and 5-20 nm respectively. The root mean square roughness of the exfoliated region was about 12 nm while the exfoliation depth was found to be 730 nm. The exfoliation depth in the H-implanted GaSb is close to the damage concentration peak as found from SRIM calculations. The Föppl-von Karman theory of thin plates has been used to understand the effect of internal pressure and stress on the surface blistering. Using the above mentioned implantation and annealing parameters, potential layer transfer of GaSb could be enabled.

  6. An annular ionization detector for quasi-elastic and transfer reaction studies

    CERN Document Server

    Dinesh, B V; Nayak, B K; Biswas, D C; Saxena, A; Pant, L M; Sahu, P K; Choudhury, R K

    2000-01-01

    An annular ionization chamber detector has been developed to study quasi-elastic and transfer reactions in heavy-ion collisions at near-barrier and sub-barrier energies. The important feature of the detector is that it has a near 2 pi coverage in the azimuthal angle phi for the particles entering in the detector at a given theta direction. This feature makes the detector very useful for measurement of the differential cross-sections at backward angles with respect to the beam direction, involving low cross-section reaction channels. The split anode configuration of the detector makes it capable of both particle identification and energy measurement for heavy ions and fission fragments. The detector has been tested using heavy-ion beams from the 14 MV-pelletron accelerator at Mumbai. Results on quasi-elastic excitation function measurements and barrier distribution studies in many heavy-ion reactions using this detector setup are discussed.

  7. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  8. Rhenium doping induced structural transformation in mono-layered MoS2 with improved catalytic activity for hydrogen evolution reaction

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo; Qing Fu, Yong

    2017-10-01

    This paper reports a new design methodology to improve catalytic activities of catalysts based on 2D transition metal dichalcogenides through elemental doping which induces structural transformations. Effects of rhenium (Re) doping on structural stability/phase transformation and catalytic activity of mono-layered trigonal prismatic (2H) MoS2 were investigated using density functional theory as one example. Results show that 2H-Mo1-x Re x S2 transforms into 1T‧-Mo1-x Re x S2MoS2 as the value of x is larger than 0.4, and the transfer of the electron from Re to Mo is identified as the main reason for this structural transformation. The 1T‧-Mo1-x Re x S2 shows a good catalytic activity for the hydrogen evolution reaction when 0.75  ⩽  x  ⩽  0.94.

  9. Development of atom-economical catalytic asymmetric reactions under proton transfer conditions: construction of tetrasubstituted stereogenic centers and their application to therapeutics.

    Science.gov (United States)

    Kumagai, Naoya

    2011-01-01

    The development of atom-economical catalytic asymmetric reactions based on two distinct sets of catalyst, a rare earth metal/amide-based ligand catalyst and a soft Lewis acid/hard Brønsted base catalyst, is reviewed. These catalytic systems exhibit high catalytic activity and stereoselectivity by harnessing a cooperative catalysis through hydrogen bond/metal coordination and soft-soft interactions/hard-hard interactions, respectively. The effectiveness of these cooperative catalysts is clearly delineated by the high stereoselectivity in reactions with highly coordinative substrates, and the specific activation of otherwise low-reactive pronucleophiles under proton transfer conditions. The rare earth metal/amide-based ligand catalyst was successfully applied to catalytic asymmetric aminations, nitroaldol (Henry) reactions, Mannich-type reactions, and conjugate addition reactions, generating stereogenic tetrasubstituted centers. Catalytic asymmetric amination and anti-selective catalytic asymmetric nitroaldol reactions were successfully applied to the efficient enantioselective synthesis of therapeutic candidates, such as AS-3201 and the β(3)-adrenoreceptor agonist, showcasing the practical utility of the present protocols. The soft Lewis acid/hard Brønsted base cooperative catalyst was specifically developed for the chemoselective activation of soft Lewis basic allylic cyanides and thioamides, which are otherwise low-reactive pronucleophiles. The cooperative action of the catalyst allowed for efficient catalytic generation of active carbon nucleophiles in situ, which were integrated into subsequent enantioselective additions to carbonyl-type electrophiles.

  10. Experiments of time elapse comparison of two hydrogen clocks based on two-way satellite time and frequency transfer

    Science.gov (United States)

    Shen, Ziyu; Cai, Chenghui; Shen, Wen-Bin

    2017-04-01

    Since optical atomic clocks in laboratory have achieved a stability and accuracy of 10E-18 level, scientists expect near-future potential applications of precise clocks in geoscience, including for instance the geopotential measurement and world height system unification. Here we provide time ticks comparison between a fixed hydrogen clock and a portable hydrogen clock using the two-way satellite time and frequency transfer (TWSTFT) technique. After comparing the time ticks of two hydrogen clocks at the positions at the same height level for a period, they were separated for a height difference and compared again for a period. Experimental results are expected to confirm the general relativity theory and may provide technical details for future actual applications of precise clocks in geodesy. This study is supported by National 973 Project China (grant No. 2013CB733301 and 2013CB733305) and NSFCs (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  11. Bimolecular electron transfer in ionic liquids: are reaction rates anomalously high?

    Science.gov (United States)

    Liang, Min; Kaintz, Anne; Baker, Gary A; Maroncelli, Mark

    2012-02-02

    Steady-state and picosecond time-resolved emission spectroscopy are used to monitor the bimolecular electron transfer reaction between the electron acceptor 9,10-dicyanoanthracene in its S(1) state and the donor N,N-dimethylaniline in a variety of ionic liquids and several conventional solvents. Detailed study of this quenching reaction was undertaken in order to better understand why rates reported for similar diffusion-limited reactions in ionic liquids sometimes appear much higher than expected given the viscous nature of these liquids. Consistent with previous studies, Stern-Volmer analyses of steady-state and lifetime data provide effective quenching rate constants k(q), which are often 10-100-fold larger than simple predictions for diffusion-limited rate constants k(D) in ionic liquids. Similar departures from k(D) are also observed in conventional organic solvents having comparably high viscosities, indicating that this behavior is not unique to ionic liquids. A more complete analysis of the quenching data using a model combining approximate solution of the spherically symmetric diffusion equation with a Marcus-type description of electron transfer reveals the reasons for frequent observation of k(q) ≫ k(D). The primary cause is that the high viscosities typical of ionic liquids emphasize the transient component of diffusion-limited reactions, which renders the interpretation of rate constants derived from Stern-Volmer analyses ambiguous. Using a more appropriate description of the quenching process enables satisfactory fits of data in both ionic liquid and conventional solvents using a single set of physically reasonable electron transfer parameters. Doing so requires diffusion coefficients in ionic liquids to exceed hydrodynamic predictions by significant factors, typically in the range of 3-10. Direct, NMR measurements of solute diffusion confirm this enhanced diffusion in ionic liquids.

  12. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kouta [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Matsumura, Hirotoshi; Ishida, Takuya [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Yoshida, Makoto [Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 (Japan); Igarashi, Kiyohiko; Samejima, Masahiro [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Ohno, Hiroyuki [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Nakamura, Nobuhumi, E-mail: nobu1@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2016-08-26

    A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron to a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.

  13. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures.

    Science.gov (United States)

    Bai, Song; Wang, Chengming; Deng, Mingsen; Gong, Ming; Bai, Yu; Jiang, Jun; Xiong, Yujie

    2014-11-03

    Surface charge state plays an important role in tuning the catalytic performance of nanocrystals in various reactions. Herein, we report a synthetic approach to unique Pt-Pd-graphene stack structures with controllable Pt shell thickness. These unique hybrid structures allow us to correlate the Pt thickness with performance in the hydrogen-evolution reaction (HER). The HER activity increases with a decrease in the Pt thickness, which is well explained by surface polarization mechanism as suggested by first-principles simulations. In this hybrid system, the difference in work functions of Pt and Pd results in surface polarization on the Pt surface, tuning its charge state for hydrogen reduction. Meanwhile, the supporting graphene provides two-dimensional channels for efficient charge transport, improving the HER activities. This work opens up possibilities of reducing Pt usage while achieving high HER performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Manipulating the Energetics and Rates of Electron Transfer in Rhodobacter capsulatus Reaction Centers with Asymmetric Pigment Content.

    Science.gov (United States)

    Faries, Kaitlyn M; Dylla, Nicholas P; Hanson, Deborah K; Holten, Dewey; Laible, Philip D; Kirmaier, Christine

    2017-07-27

    Seemingly redundant parallel pathways for electron transfer (ET), composed of identical sets of cofactors, are a cornerstone feature of photosynthetic reaction centers (RCs) involved in light-energy conversion. In native bacterial RCs, both A and B branches house one bacteriochlorophyll (BChl) and one bacteriopheophytin (BPh), but the A branch is used exclusively. Described herein are the results obtained for two Rhodobacter capsulatus RCs with an unnaturally high degree of cofactor asymmetry, two BPh on the RC's B side and two BChl on the A side. These pigment changes derive, respectively, from the His(M180)Leu mutation [a BPh (Φ B ) replaces the B-side BChl (B B )], and the Leu(M212)His mutation [a BChl (β A ) replaces the A-side BPh (H A )]. Additionally, Tyr(M208)Phe was employed to disfavor ET to the A branch; in one mutant, Val(M131)Glu creates a hydrogen bond to H B to enhance ET to H B . In both Φ B mutants, the decay kinetics of the excited primary ET donor (P*) resolve three populations with lifetimes of ∼9 ps (50-60%), ∼40 ps (10-20%), and ∼200 ps (20-30%), with P + Φ B - formed predominantly from the 9 ps fraction. The 50-60% yield of P + Φ B - is the highest yet observed for a Φ B -containing RC. The results provide insight into factors needed for efficient multistep ET.

  15. (Multi-nucleon transfer in the reactions 16O, 32S+208Pb

    Directory of Open Access Journals (Sweden)

    Hinde D.J.

    2011-10-01

    Full Text Available A detailed analysis of the projectile-like fragments detected at backward angles in the reactions 16O,32 S+208Pb at energies below the fusion barrier is presented. Excitation functions corresponding to nucleon transfer with ∆Z = 1 and ∆Z = 2 were extracted, indicating surprisingly large absolute probabilities at subbarrier energies. A comparison of 2p transfer probabilities with time-dependent Hartree-Fock calculations suggests strong pairing correlations between the two protons. Excitation energies in the projectile-like fragments ~15 MeV and ~25 MeV for the 16O and 32S-induced reactions, respectively, indicate the population of highly excited states in the residual nuclei. A comparison with expected optimum Q-values suggests large losses in kinetic energy of the projectile-like fragments. These highly inelastic (large excitation energies and complex (correlated few-nucleon transfer processes may be closely related to the depletion of fusion through tunnelling at sub-barrier energies.

  16. A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Liang, Zhenxing; Ahn, Hyun S; Bard, Allen J

    2017-04-05

    The hydrogen evolution reaction (HER) on Ni in alkaline media was investigated by scanning electrochemical microscopy under two operating modes. First, the substrate generation/tip collection mode was employed to extract the "true" cathodic current associated with the HER from the total current in the polarization curve. Compared to metallic Ni, the electrocatalytic activity of the HER is improved in the presence of the low-valence-state oxide of Ni. This result is in agreement with a previous claim that the dissociative adsorption of water can be enhanced at the Ni/Ni oxide interface. Second, the surface-interrogation scanning electrochemical microscopy (SI-SECM) mode was used to directly measure the coverage of the adsorbed hydrogen on Ni at given potentials. Simulation indicates that the hydrogen coverage follows a Frumkin isotherm with respect to the applied potential. On the basis of the combined analysis of the Tafel slope and surface hydrogen coverage, the rate-determining step is suggested to be the adsorption of hydrogen (Volmer step) in the investigated potential window.

  17. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  18. A single-molecule perspective on the role of solvent hydrogen bonds in protein folding and chemical reactions.

    Science.gov (United States)

    Dougan, Lorna; Koti, Ainavarapu Sri Rama; Genchev, Georgi; Lu, Hui; Fernandez, Julio M

    2008-12-22

    We present an array of force spectroscopy experiments that aim to identify the role of solvent hydrogen bonds in protein folding and chemical reactions at the single-molecule level. In our experiments we control the strength of hydrogen bonds in the solvent environment by substituting water (H(2)O) with deuterium oxide (D(2)O). Using a combination of force protocols, we demonstrate that protein unfolding, protein collapse, protein folding and a chemical reaction are affected in different ways by substituting H(2)O with D(2)O. We find that D(2)O molecules form an integral part of the unfolding transition structure of the immunoglobulin module of human cardiac titin, I27. Strikingly, we find that D(2)O is a worse solvent than H(2)O for the protein I27, in direct contrast with the behaviour of simple hydrocarbons. We measure the effect of substituting H(2)O with D(2)O on the force dependent rate of reduction of a disulphide bond engineered within a single protein. Altogether, these experiments provide new information on the nature of the underlying interactions in protein folding and chemical reactions and demonstrate the power of single-molecule techniques to identify the changes induced by a small change in hydrogen bond strength.

  19. Metal-Ion- and Hydrogen-Bond-Mediated Interstellar Prebiotic Chemistry: The First Step in the Formose Reaction.

    Science.gov (United States)

    Thripati, Sorakayala; Ramabhadran, Raghunath O

    2017-11-16

    The formose reaction, which offers a feasible chemical pathway for the prebiotic synthesis of sugars, is a well-studied reaction for over two hundred and 50 years. Yet huge knowledge gaps exist even in the very first step of the formose reaction. In this work, we provide a new and otherwise unintuitive reaction pathway for the gas-phase conversion of formaldehyde to glycolaldehyde (the first step in the formose reaction) occurring in the interstellar medium (ISM). Employing electronic structure calculations (CCSD(T) and DFT methods), we exhaustively probe the role of various metal ions and small molecules detected in the ISM to propose a new mechanism wherein metal-oxygen interactions and hydrogen bonds cooperatively facilitate an otherwise implausible chemical reaction. The reactions involving Mg2+ are throughout found to be barrierless, and those featuring Al+ ions are noted to only have a small barrier. The proton affinities of the small molecules, metal-oxygen interactions, and the extent of C-C-bond formation are found to be the significant factors that influence the barrier heights. The mechanism is also shown to be consistent with well-known experimental details in the terrestrial formose reaction (which could, however, proceed through a different mechanism). Future experimental and theoretical scope arising out of this paper are subsequently discussed.

  20. Bimolecular electron transfer reactions in coumarin amine systems: Donor acceptor orientational effect on diffusion-controlled reaction rates

    Science.gov (United States)

    Satpati, A. K.; Nath, S.; Kumbhakar, M.; Maity, D. K.; Senthilkumar, S.; Pal, H.

    2008-04-01

    Electron transfer (ET) reactions between excited coumarin dyes and different aliphatic amine (AlA) and aromatic amine (ArA) donors have been investigated in acetonitrile solution using steady-state (SS) and time-resolved (TR) fluorescence quenching measurements. No ground state complex or emissive exciplex formation has been indicated in these systems. SS and TR measurements give similar quenching constants ( kq) for each of the coumarin-amine pairs, suggesting dynamic nature of interaction in these systems. On correlating kq values with the free energy changes (Δ G0) of the ET reactions show the typical Rehm-Weller type of behavior as expected for bimolecular ET reactions under diffusive condition, where kq increases with -Δ G0 at the lower exergonicity (-Δ G0) region but ultimately saturate to a diffusion-limited value (kqDC) at the higher exergonicity region. It is, however, interestingly observed that the kqDC values vary largely depending on the type of the amines used. Thus, kqDC is much higher with ArAs than AlAs. Similarly, the kqDC for cyclic monoamine 1-azabicyclo-[2,2,2]-octane (ABCO) is distinctly lower and that for cyclic diamine 1,4-diazabicyclo-[2,2,2]-octane (DABCO) is distinctly higher than the kqDC value obtained for other noncyclic AlAs. These differences in the kqDC values have been rationalized on the basis of the differences in the orientational restrictions involved in the ET reactions with different types of amines. As understood, n-type donors (AlAs) introduce large orientational restriction and thus significantly reduces the ET efficiency in comparison to the π-type donors (ArAs). Structural constrains are inferred to be the reason for the differences in the kqDC values involving ABCO, DABCO donors in comparison to other noncyclic AlAs. Supportive evidence for the orientational restrictions involving different types of amines donors has also been obtained from DFT based quantum chemical calculations on the molecular orbitals of