WorldWideScience

Sample records for hydrogen thermal annealing

  1. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  2. Effect of thermal annealing on the optical and structural properties of silicon implanted with a high hydrogen fluence

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.; Rodriguez, A.; Rodriguez, T.; Avella, M.; Jimenez, J.

    2006-01-01

    Silicon capped by thermal oxide has been implanted with 1 x 10 17 H/cm 2 and the implant profile peaking at the interface. Samples were subjected to thermal annealing and characterized by ERD, FTIR, RBS/channeling, UV/VIS reflectance and cathodoluminescence regarding H-content, crystalline quality and light emission. The results show that the luminescent properties are independent of the hydrogen content but are strongly related with the present damage

  3. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO 2 (H-TiO 2 ) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO 2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO 2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO 2 nanorods grown on F:SnO 2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO 2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO 2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO 2 nanorods

  4. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  5. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  6. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.; Komvopoulos, K.; Rose, F.; Marchon, B.

    2013-01-01

    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  7. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  8. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  9. Infrared thermal annealing device

    International Nuclear Information System (INIS)

    Gladys, M.J.; Clarke, I.; O'Connor, D.J.

    2003-01-01

    A device for annealing samples within an ultrahigh vacuum (UHV) scanning tunneling microscopy system was designed, constructed, and tested. The device is based on illuminating the sample with infrared radiation from outside the UHV chamber with a tungsten projector bulb. The apparatus uses an elliptical mirror to focus the beam through a sapphire viewport for low absorption. Experiments were conducted on clean Pd(100) and annealing temperatures in excess of 1000 K were easily reached

  10. Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Franck, E-mail: franck.rose@hgst.com; Wang, Na; Smith, Robert; Xiao, Qi-Fan; Dai, Qing; Marchon, Bruno [HGST, A Western Digital Company, San Jose Research Center, 3403, Yerba Buena Rd, San Jose, California 95135 (United States); Inaba, Hiroshi; Matsumura, Toru; Saito, Yoko; Matsumoto, Hiroyuki [HGST, A Western Digital Company, Japan Research Laboratory, 2880 Kozu, Odawara, Kanagawa 256-8510 (Japan); Mangolini, Filippo [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Carpick, Robert W. [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6315 (United States)

    2014-09-28

    We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamond-like carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 °C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp³ fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp² clustering rather than hydrogen diffusion in the film.

  11. Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing

    International Nuclear Information System (INIS)

    Rose, Franck; Wang, Na; Smith, Robert; Xiao, Qi-Fan; Dai, Qing; Marchon, Bruno; Inaba, Hiroshi; Matsumura, Toru; Saito, Yoko; Matsumoto, Hiroyuki; Mangolini, Filippo; Carpick, Robert W.

    2014-01-01

    We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamond-like carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 °C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp 3 fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp 2 clustering rather than hydrogen diffusion in the film.

  12. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  13. Rapid thermal annealing of phosphorus implanted silicon

    International Nuclear Information System (INIS)

    Lee, Y.H.; Pogany, A.; Harrison, H.B.; Williams, J.S.

    1985-01-01

    Rapid thermal annealing (RTA) of phosphorus-implanted silicon has been investigated by four point probe, Van der Pauw methods and transmission electron microscopy. The results have been compared to furnace annealing. Experiments show that RTA, even at temperatures as low as 605 deg C, results in good electrical properties with little remnant damage and compares favourably with furnace annealing

  14. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  15. Thermal annealing of tilted fiber Bragg gratings

    Science.gov (United States)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  16. Sensitization of erbium in silicon-rich silica : the effect of annealing temperature and hydrogen passivation

    International Nuclear Information System (INIS)

    Wilkinson, A.R.; Forcales, M.; Elliman, R.G.

    2005-01-01

    This paper reports on the effect of annealing temperature and hydrogen passivation on the excitation cross-section and photoluminescence of erbium in silicon-rich silica. Samples were prepared by co-implantation of Si and Er into SiO 2 followed by a single thermal anneal at temperatures ranging from 800 to 1100 degrees C, and with or without hydrogen passivation performed at 500 degrees C. Using time-resolved photoluminescence, the effective erbium excitation cross-section is shown to increase by a factor 3, while the number of optically active erbium ions decreases by a factor of 4 with increasing annealing temperature. Hydrogen passivation is shown to increase the luminescence intensity and to shorten the luminescence lifetime at 1.54 μm only in the presence of Si nanocrystals. The implications fo these results for realizing a silicon-based optical amplifier are also discussed. (author). 19 refs., 3 figs

  17. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  18. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  19. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  20. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  1. Reverse degradation of nickel graphene junction by hydrogen annealing

    Directory of Open Access Journals (Sweden)

    Zhenjun Zhang

    2016-02-01

    Full Text Available Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 0C is an effective technique to reverse the degradation.

  2. Significant improvement in the thermal annealing process of optical resonators

    Science.gov (United States)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  3. Effect of the annealing temperature for the hydrogen Q-degradation on superconducting cavities

    International Nuclear Information System (INIS)

    Ota, Tomoko; Sukenobu, Satoru; Tanabe, Yoshio; Onishi, Yoshimichi; Noguchi, Shuichi; Ono, Masaaki; Saito, Kenji; Shishido, Toshio; Yamazaki, Yoshishige

    1997-01-01

    Hydrogen Q-degradation was studied in niobium superconducting cavities prepared by barrel polishing, and electropolishing without annealing, though a fast cooling down of cavities. Cavity performance with various annealing temperature were tested using a 1.3GHz single-cell cavity to compare the effects of annealing temperature for hydrogen Q-degradation. (author)

  4. Reduction of thermal quenching of biotite mineral due to annealing

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2014-01-01

    Graphical abstract: - Highlights: • Thermoluminescence of X-ray irradiate biotite was studied at various heating rates. • Thermal quenching was found to decrease with increase in annealing temperature. • Due to annealing one trap level was vanished and a new shallow trap level generated. • The new trap level contributes low thermally quenched thermoluminescence signal. - Abstract: Thermoluminescence (TL) of X-ray irradiated natural biotite annealed at 473, 573, 673 and 773 K were studied within 290–480 K at various linear heating rates (2, 4, 6, 8 and 10 K/s). A Computerized Glow Curve Deconvolution technique was used to study various TL parameters. Thermal quenching was found to be very high for un-annealed sample, however it decreased significantly with increase in annealing temperature. For un-annealed sample thermal quenching activation energy (W) and pre-exponential frequency factor (C) were found to be W = (2.71 ± 0.05) eV and C = (2.38 ± 0.05) × 10 12 s −1 respectively. However for 773 K annealed sample, these parameters were found to be W = (0.63 ± 0.03) eV, C = (1.75 ± 0.27) × 10 14 s −1 . Due to annealing, the initially present trap level at depth 1.04 eV was vanished and a new shallow trap state was generated at depth of 0.78 eV which contributes very low thermally quenched TL signal

  5. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    in the crystals was estimated by means of the 1,2-dibromoethylene exchange technique. The results suggest that, as a consequence of nuclear events, quite a number of different reactions occur whereas the principal annealing reaction is a recombination of atomic bromine with a dibromophenyl radical....

  6. Thermal annealing studies in muscovite and in quartz

    International Nuclear Information System (INIS)

    Roberts, J.H.; Gold, R.; Ruddy, F.H.

    1979-06-01

    In order to use Solid State Track Recorders (SSTR) in environments at elevated temperatures, it is necessary to know the thermal annealing characteristics of various types of SSTR. For applications in the nuclear energy program, the principal interest is focused upon the annealing of fission tracks in muscovite mica and in quartz. Data showing correlations between changes in track diameters and track densities as a function of annealing time and temperature will be presented for Amersil quartz glass. Similar data showing changes in track lengths and in track densities will be presented for mica. Time-temperature regions will be defined where muscovite mica can be accurately applied with negligible correction for thermal annealing

  7. Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Baek Hyun, E-mail: bhkim@andrew.cmu.ed [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United Sates (United States); Davis, Robert F. [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United Sates (United States); Park, Seong-Ju [Nanophotonic Semiconductors Laboratory, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712 (Korea, Republic of)

    2010-01-01

    We present the effects on the thermal annealing of silicon quantum dots (Si QDs) embedded in silicon nitride. The improved photoluminescence (PL) intensities and the red-shifted PL spectra were obtained with annealing treatment in the range of 700 to 1000 {sup o}C. The shifts of PL spectra were attributed to the increase in the size of Si QDs. The improvement of the PL intensities was also attributed to the reduction of point defects at Si QD/silicon nitride interface and in the silicon nitride due to hydrogen passivation effects.

  8. Far-infrared spectroscopy of thermally annealed tungsten silicide films

    International Nuclear Information System (INIS)

    Amiotti, M.; Borghesi, A.; Guizzetti, G.; Nava, F.; Santoro, G.

    1991-01-01

    The far-infrared transmittance spectrum of tungsten silicide has been observed for the first time. WSi 2 polycrystalline films were prepared by coevaporation and chemical-vapour deposition on silicon wafers, and subsequently thermally annealed at different temperatures. The observed structures are interpreted, on the basis of the symmetry properties of the crystal, such as infrared-active vibrational modes. Moreover, the marked lineshape dependence on annealing temperature enables this technique to analyse the formation of the solid silicide phases

  9. Thermal annealing of amorphous Ti-Si-O thin films

    OpenAIRE

    Hodroj , Abbas; Chaix-Pluchery , Odette; Audier , Marc; Gottlieb , Ulrich; Deschanvres , Jean-Luc

    2008-01-01

    International audience; Ti-Si-O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analysed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain X-ray amorphous after annealing whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well crystallized anatase TiO2. Crystallization of ana...

  10. Processes in N-channel MOSFETs during postirradiation thermal annealing

    International Nuclear Information System (INIS)

    Pejovic, M.; Jaksic, A.; Ristic, G.; Baljosevic, B.

    1997-01-01

    The processes during postirradiation thermal annealing of γ-ray irradiated n-channel MOSFETs with both wet and dry gate oxides are investigated. For both analysed technologies, a so-called ''latent'' interface trap buildup is observed, followed at very late annealing times by the decrease in the interface-trap density. A model is proposed that successfully accounts for the experimental results. Implications of observed effects for total dose hardness assurance test methods implementation are discussed. (author)

  11. Susceptor and proximity rapid thermal annealing of InP

    International Nuclear Information System (INIS)

    Katz, A.; Pearton, S.J.; Geva, M.

    1990-01-01

    This paper presents a comparison between the efficiency of InP rapid thermal annealing within two types of SiC-coated graphite susceptors and by using the more conventional proximity approach, in providing degradation-free substrate surface morphology. The superiority of annealing within a susceptor was clearly demonstrated through the evaluation of AuGe contact performance to carbon-implanted InP substrates, which were annealed to activate the implants prior to the metallization. The susceptor annealing provided better protection against edge degradation, slip formation and better surface morphology, due to the elimination of P outdiffusion and pit formation. The two SiC-coated susceptors that were evaluated differ from each other in their geometry. The first type must be charged with the group V species prior to any annealing cycle. Under the optimum charging conditions, effective surface protection was provided only to one anneal (750 degrees C, 10s) of InP before charging was necessary. The second contained reservoirs for provision of the group V element partial pressure, enabled high temperature annealing at the InP without the need for continual recharging of the susceptor. Thus, one has the ability to subsequentially anneal a lot of InP wafers at high temperatures without inducing any surface deterioration

  12. The Effect of Thermal Annealing on the Optical Properties of a-SiC:H Films Produced by DC Sputtering Methods: I

    Directory of Open Access Journals (Sweden)

    Lusitra Munisa

    2003-04-01

    Full Text Available Silicon Target Case. The effects of thermal annealing treatment on the optical properties of amorphous silicon carbon films deposited by silicon target in an argon, methane and hydrogen gas mixture have been studied using ultra violet-visible (uv-vis spectroscopy. Both n and α, and consequently the real and imaginary parts of the dielectric constant, show a considerable variation with subsequent annealing up to annealing temperature 500 °C, with the most rapid changes occurring for temperature 300 °C. The films tend denser as the annealing temperature increased up to 500°C. The optical gap improved slightly upon annealing, where as the disorder of the amorphous network reduced. The annealing treatment produces reorganization of the amorphous network since thermal annealing results in dissociation of hydrogenated bonds (Si-H and C-H.

  13. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  14. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Hasenack, C.M.

    1986-01-01

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 1200 0 C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author) [pt

  15. Thermal annealing and ionic abrasion in ZnTe

    International Nuclear Information System (INIS)

    Bensahel, D.

    1975-01-01

    Thermal annealing of the ZnTe crystal is studied first in order to obtain information on the aspect of the penetration profile. Ionic abrasion is then investigated to find out whether it produces the same effects as ionic implantation, especially for luminescence [fr

  16. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  17. Annealing Kinetic Model Using Fast and Slow Metastable Defects for Hydrogenated-Amorphous-Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Seung Yeop Myong

    2007-01-01

    Full Text Available The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type hydrogenated-amorphous-silicon- (a-Si:H- based solar cells is simulated using a normalized fill factor. Reported annealing data on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing behaviors, the plausible microscopic mechanism on the defect removal process is discussed.

  18. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Veen, A. van; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3 He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed

  19. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Science.gov (United States)

    van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  20. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van E-mail: avveen@iri.tudelft.nl; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M

    1999-01-02

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV {sup 3}He ions with doses varying from 10{sup 15} to 10{sup 16} cm{sup -2} and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10{sup 15} cm{sup -2} annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  1. Positron annihilation studies on reactor irradiated and thermal annealed ferrocene

    International Nuclear Information System (INIS)

    Marques Netto, A.; Carvalho, R.S.; Magalhaes, W.F.; Sinisterra, R.D.

    1996-01-01

    Retention and thermal annealing following (n, γ) reaction in solid ferrocene, Fe(C 5 H 5 ) 2 , were studied by positron annihilation lifetime spectroscopy (PAL). Positronium (Ps) formation was observed in the non-irradiated compound with a probability or intensity (I 3 ) of 30%. Upon irradiation of the compound with thermal neutrons in a nuclear reactor, I 3 decreases with increasing irradiation time. Thermal treatment again increases I 3 values from 16% to 25%, revealing an important proportion of molecular reformation without variation of the ortho-positronium lifetime (τ 3 ). These results point out the major influence of the electronic structure as determining the Ps yields in the pure complex. In the irradiated and non irradiated complexes the results are satisfactorily explained on the basis of the spur model. (orig.)

  2. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  3. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  4. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  5. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in and silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  6. Recovery of the irradiated JFETs by thermal annealing

    International Nuclear Information System (INIS)

    Assaf, J.

    2007-10-01

    Study about the recovering of irradiated JFET transistors has been reported. The JFETs were damaged totally or partially by exposition to Gamma ray and neutrons. Electronics noise has used to evaluate the effect of radiation and the recovery. The study focused on the recovery by thermal annealing, where samples have been heated gradually until 140 centigrade degree (410 K). The recovery ratio given by this method was higher than that resulted from the relaxation method (time recovery) carried out in the room temperature (300 K), especially for Gamma irradiated samples.(author)

  7. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana; Groat, Lee A.; Chudy, Thomas; Shelyug, Anna; Navrotsky, Alexandra; Ewing, Rodney C.; Schlüter, Jochen; Škoda, Radek; Bismayer, Ulrich

    2017-01-01

    Abstract

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  8. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  9. Effect of thermal annealing of lead oxide film

    International Nuclear Information System (INIS)

    Hwang, Oh Hyeon; Kim, Sang Su; Suh, Jong Hee; Cho, Shin Hang; Kim, Ki Hyun; Hong, Jin Ki; Kim, Sun Ung

    2011-01-01

    Oxygen partial pressure in a growth process of lead oxide determines chemical and physical properties as well as crystalline structure. In order to supply oxygen, two ring-shape suppliers have been installed in a growth chamber. Films have been deposited using vacuum thermal evaporation from a raw material of yellow lead oxide powder (5N). Growth rate is controlled to be about 400 A/s, and film thickness more than 50 μm has been achieved. After deposition, the film is annealed at various temperatures under an oxygen atmosphere. In this study, an optimum growth condition for a good X-ray detector has been achieved by fine control of oxygen flow-rate and by thermal treatment. An electrical resistivity of 4.5x10 12 Ω cm is measured, and is comparable with the best data of PbO.

  10. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO₂ Nanoflowers via Vacuum Annealing Treatment.

    Science.gov (United States)

    Liu, Gao; Wang, Zhao; Chen, Zihui; Yang, Shulin; Fu, Xingxing; Huang, Rui; Li, Xiaokang; Xiong, Juan; Hu, Yongming; Gu, Haoshuang

    2018-03-23

    In this work, SnO₂ nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO₂ nanoflowers consisted of cuboid-like SnO₂ nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed after the vacuum annealing treatment, and this increase could have been due to the increase in surface oxygen vacancies serving as preferential adsorption sites for oxygen species. Annealing treatment resulted in an 8% increase in the specific surface area of the samples. Moreover, the conductivity of the sensors decreased after the annealing treatment, which should be attributed to the increase in electron scattering around the defects and the compensated donor behavior of the oxygen vacancies due to the surface oxygen adsorption. The hydrogen sensors of the annealed samples, compared to those of the unannealed samples, exhibited a much higher sensitivity and faster response rate. The sensor response factor and response rate increased from 27.1% to 80.2% and 0.34%/s to 1.15%/s, respectively. This remarkable enhancement in sensing performance induced by the annealing treatment could be attributed to the larger specific surface areas and higher amount of surface-adsorbed oxygen, which provides a greater reaction space for hydrogen. Moreover, the sensors with annealed SnO₂ nanoflowers also exhibited high selectivity towards hydrogen against CH₄, CO, and ethanol.

  11. Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Franklin, D.G.; Duffin, W.J.; Peters, H.R.

    1996-01-01

    Zircaloy-4, which is widely used as a core structural material in Pressurized-Water Reactors (PWR), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and hydrides precipitate after the Zircaloy-4 matrix becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4. To study hydrogen pickup and concentration, a postirradiation nondestructive radiographic technique for measuring hydrogen concentration was developed and qualified. Experiments on hydrogen pickup were conducted in the Advanced Test Reactor (ATR). Ex-reactor tests were conducted to determine the conditions for which hydrogen would dissolve, migrate, and precipitate. Finally, a phenomenological model for hydrogen diffusion was indexed to the data. This presentation describes the equipment and the model, presents the results of experiments, and compares the model predictions to experimental results

  12. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-T.; Jin, Z Q; Chakka, Vamsi M; Liu, J P [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2005-11-21

    A systematic study of heat treatments and magnetic hardening of NdFeB-based melt-spun nanocomposite ribbons have been carried out. Comparison was made between samples treated by rapid thermal annealing and by conventional furnace annealing. Heating rates up to 200 K s{sup -1} were adopted in the rapid thermal processing. It was observed that magnetic hardening can be realized in an annealing time as short as 1 s. Coercivity of 10.2 kOe in the nanocomposites has been obtained by rapid thermal annealing for 1 s, and prolonged annealing did not give any increase in coercivity. Detailed results on the effects of annealing time, temperature and heating rate have been obtained. The dependence of magnetic properties on the annealing parameters has been investigated. Structural characterization revealed that there is a close correlation between magnetic hardening and nanostructured morphology. The coercivity mechanism was also studied by analysing the magnetization minor loops.

  13. Forming of nanocrystal silicon films by implantation of high dose of H+ in layers of silicon on isolator and following fast thermal annealing

    International Nuclear Information System (INIS)

    Tyschenko, I.E.; Popov, V.P.; Talochkin, A.B.; Gutakovskij, A.K.; Zhuravlev, K.S.

    2004-01-01

    Formation of nanocrystalline silicon films during rapid thermal annealing of the high-dose H + ion implanted silicon-on-insulator structures was studied. It was found, that Si nanocrystals had formed alter annealings at 300-400 deg C, their formation being strongly limited by the hydrogen content in silicon and also by the annealing time. It was supposed that the nucleation of crystalline phase occurred inside the silicon islands between micropores. It is conditioned by ordering Si-Si bonds as hydrogen atoms are leaving their sites in silicon network. No coalescence of micropores takes place during the rapid thermal annealing at the temperatures up to ∼ 900 deg C. Green-orange photoluminescence was observed on synthesized films at room temperature [ru

  14. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  15. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Ghica, C; Nistor, L C; Vizireanu, S; Dinescu, G

    2011-01-01

    The smart-cut(TM) process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {1 1 1} and {1 0 0} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 deg. C, or by in situ heating in the electron microscope at 450, 650 and 800 deg. C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  16. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  17. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  18. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñ or, Ana L.; Mejia, Israel I.; Sotelo-Lerma, Mé rida; Guo, Zaibing; Alshareef, Husam N.; Quevedo-Ló pez, Manuel Angel Quevedo

    2014-01-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  19. Quantitative analysis of swelling on annealing of hydrogen ion implanted diamond single crystals

    International Nuclear Information System (INIS)

    Kuznetsov, G.F.

    2006-01-01

    Local swelling observed upon high-temperature annealing of natural diamond single crystals implanted by 350-keV hydrogen ions with a dose of 12 10 16 cm 2 is studied. Based on room-temperature measurements, Griffith cracking criterion in combination with gas law, model quantitative calculations of the swelling size and the amount of hydrogen molecules in a swelling have been carried out for the first time. At room temperature, T 1 293 K, the amount of local elastic stresses in the upper layer of the diamond is counterbalanced by inner hydrogen pressure. Behavior of the gas bubbles with the annealing temperature increase up to 1693 K and repeated annealing at a temperature of 1743 K has been calculated [ru

  20. New heating schedule in hydrogen annealing furnace based on process simulation for less energy consumption

    International Nuclear Information System (INIS)

    Saboonchi, Ahmad; Hassanpour, Saeid; Abbasi, Shahram

    2008-01-01

    Cold rolled steel coils are annealed in batch furnaces to obtain desirable mechanical properties. Annealing operations involve heating and cooling cycles which take long due to high weight of the coils under annealing. To reduce annealing time, a simulation code was developed that is capable of evaluating more effective schedules for annealing coils during the heating process. This code is additionally capable of accurate determination of furnace turn-off time for different coil weights and charge dimensions. After studying many heating schedules and considering heat transfer mechanism in the annealing furnace, a new schedule with the most advantages was selected as the new operation conditions in the hydrogen annealing plant. The performance of all the furnaces were adjusted to the new heating schedule after experiments had been carried out to ensure the accuracy of the code and the fitness of the new operation condition. Comparison of similar yield of cold rolled coils over two months revealed that specific energy consumption of furnaces under the new heating schedule decreased by 11%, heating cycle time by 16%, and the hydrogen consumption by 14%

  1. New heating schedule in hydrogen annealing furnace based on process simulation for less energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Saboonchi, Ahmad [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran); Hassanpour, Saeid [Rayan Tahlil Sepahan Co., Isfahan Science and Technology Town, Isfahan 84155 (Iran); Abbasi, Shahram [R and D Department, Mobarakeh Steel Complex, Isfahan (Iran)

    2008-11-15

    Cold rolled steel coils are annealed in batch furnaces to obtain desirable mechanical properties. Annealing operations involve heating and cooling cycles which take long due to high weight of the coils under annealing. To reduce annealing time, a simulation code was developed that is capable of evaluating more effective schedules for annealing coils during the heating process. This code is additionally capable of accurate determination of furnace turn-off time for different coil weights and charge dimensions. After studying many heating schedules and considering heat transfer mechanism in the annealing furnace, a new schedule with the most advantages was selected as the new operation conditions in the hydrogen annealing plant. The performance of all the furnaces were adjusted to the new heating schedule after experiments had been carried out to ensure the accuracy of the code and the fitness of the new operation condition. Comparison of similar yield of cold rolled coils over two months revealed that specific energy consumption of furnaces under the new heating schedule decreased by 11%, heating cycle time by 16%, and the hydrogen consumption by 14%. (author)

  2. Evolution of the structure and hydrogen bonding configuration in annealed hydrogenated a-Si/a-Ge multilayers and layers

    International Nuclear Information System (INIS)

    Frigeri, C.; Nasi, L.; Serenyi, M.; Khanh, N.Q.; Csik, A.; Szekrenyes, Zs.; Kamaras, K.

    2012-01-01

    Complete text of publication follows. Among the present available renewable energy sources, energy harvesting from sunlight by means of photovoltaic cells is the most attractive one. In order to win over the traditional energy resources both efficiency and cost effectiveness of photovoltaic conversion must be optimized as far as possible. Efficiency is basically improved by the use of multijunction cells containing semiconductors with different band-gap. In this respect, the III-V compounds guarantee the highest efficiency, up to 41.6 %, but they are quite expensive. The latter drawback also affects other compounds like CdTe and CuIn 1-x Ga x Se 2 (CIGS). Si based solar devices have lower efficiency but are much more cost effective. They can use either crystalline or amorphous Si thin layers or Si nanoparticles. As to the thin films, amorphous Si (a-Si) is preferred to crystalline Si as it has a wider band-gap (1.7 instead of 1.1 eV) thus harvesting a larger portion of solar energy. A tandem cell is formed by using a-SiGe which has a smaller band-gap tunable between 1.1 and 1.7 eV depending on the Ge content. The best value should be 1.4 eV since the material properties seem to degrade below this value whilst the photo-conductivity drops after light soaking if the band gap exceeds 1.4 eV. A key issue of amorphous Si, Ge and SiGe is the high density of defects in the band-gap mostly due to dangling bonds whose density is particularly high (even up to 5 x10 19 cm -3 ) since the lattice is significantly disordered with distorted bond angles and lengths. This increases the probability of rupture of the Si-Si (Ge-Ge) bonds, i.e., formation of dangling bonds. Owing to the fact that hydrogen with its single electron structure can close the dangling bonds, their density can be reduced even by 4 orders of magnitude by doping with hydrogen. However, H is unstable in the host lattice. In fact, several findings showed its evolution from the thin layer upon annealing and that

  3. Physical properties of Fe doped In_2O_3 magnetic semiconductor annealed in hydrogen at different temperature

    International Nuclear Information System (INIS)

    Baqiah, H.; Ibrahim, N.B.; Halim, S.A.; Chen, S.K.; Lim, K.P.; Kechik, M.M. Awang

    2016-01-01

    The effects of hydrogen-annealing at different temperatures (300, 400, 500 and 600 °C) on physical properties of In_2_−_xFe_xO_3 (x=0.025) thin film were investigated. The structural measurement using XRD shows that the film has a single In_2O_3 phase structure when annealed in hydrogen at 300–500 °C, however when annealed in hydrogen at 600 °C the film has a mixed phase structure of In_2O_3 and In phases. The electrical measurements show that the carrier concentrations of the films decrease with the increase of hydrogen-annealing temperature in the range 300–500 °C. The optical band gap of the films decreases with increasing hydrogen-annealing temperatures. The saturation magnetisation, Ms, and coercivity of films increase with the increment of hydrogen annealing temperature. The film annealed at 300 °C has the lowest resistivity, ρ=0.03 Ω cm, and the highest carrier concentrations, n=6.8×10"1"9 cm"−"3, while film annealed at 500 °C has both good electrical (ρ=0.05 Ω.cm and n=2.2×10"1"9 cm"−"3) and magnetic properties, Ms=21 emu/cm"-"3. - Highlights: • Physical properties of films were sensitive to hydrogen-annealing temperature. • Magnetisation, Ms, of films increased with increase of hydrogen annealing temperature. • Film annealed in hydrogen at 300 °C has the lowest resistivity, ρ=0.03 Ω cm. • Film annealed in hydrogen at 600 °C has highest magnetisation, Ms=30 emu/cm"3.

  4. Low temperature thermal annealing in fast neutron-irradiated potassium permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C W; Lecington, W C [New Hampshire Univ., Durham (USA). Dept. of Chemistry

    1975-01-01

    The effect of thermal annealing on the retention of recoil /sup 54/Mn as permanganate in crystalline KMnO/sub 4/ irradiated with fast neutrons at liquid nitrogen temperature has been studied. The retention after 4 hrs of annealing increases from about 8% at -196/sup 0/ to a maximum of 61% at 180/sup 0/, then decreases at higher temperatures. A single activation energy (approximately 0.01 eV) applies to the thermal annealing process between -196/sup 0/ and -40/sup 0/. Extrapolation of the data suggests that below -229/sup 0/ no thermal annealing would occur.

  5. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  6. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  7. Effects of thermal annealing temperature and duration on hydrothermally grown ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.Q.; Kim, C.R.; Lee, J.Y.; Shin, C.M.; Heo, J.H.; Leem, J.Y. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of)], E-mail: hhryu@inje.ac.kr; Chang, J.H. [Major of Nano Semiconductor, Korea Maritime University, 1 Dongsam-dong, Yeongdo-Ku, Busan 606-791 (Korea, Republic of); Lee, H.C. [Department of Mechatronics Engineering, Korea Maritime University, 1 Dongsam-dong, Yeongdo-Ku, Busan 606-791 (Korea, Republic of); Son, C.S. [Department of Electronic Materials Engineering, Silla University, Gwaebeop-dong, Sasang-gu, Busan 617-736 (Korea, Republic of); Shin, B.C.; Lee, W.J. [Department of Nano Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Jung, W.G. [School of Advanced Materials Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Tan, S.T. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Zhao, J.L. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Sun, X.W. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2009-03-15

    In this study, the effects of thermal annealing temperature and duration on ZnO nanorod arrays fabricated by hydrothermal method were investigated. The annealed ZnO/Si(1 1 1) substrate was used for ZnO nanorod array growth. The effects of annealing treatment on the structural and optical properties were investigated by scanning electron microscopy, X-ray diffraction, and room-temperature photoluminescence measurements. With the annealing temperature of 750 {sup o}C and the annealing duration of 10 min, both the structural and optical properties of the ZnO nanorod arrays improved significantly, as indicated in the X-ray diffraction and photoluminescence measurement.

  8. Improved thermal stability of gas-phase Mg nanoparticles for hydrogen storage

    NARCIS (Netherlands)

    Krishnan, Gopi; Palasantzas, G.; Kooi, B. J.

    2010-01-01

    This work focuses on improving the thermal stability of Mg nanoparticles (NPs) for use in hydrogen storage. Three ways are investigated that can achieve this goal. (i) Addition of Cu prevents void formation during NP production and reduces the fast evaporation/voiding of Mg during annealing. (ii)

  9. Rapid thermal and swift heavy ion induced annealing of Co ion implanted GaN films

    International Nuclear Information System (INIS)

    Baranwal, V.; Pandey, A. C.; Gerlach, J. W.; Rauschenbach, B.; Karl, H.; Kanjilal, D.; Avasthi, D. K.

    2008-01-01

    Thin epitaxial GaN films grown on 6H-SiC(0001) substrates were implanted with 180 keV Co ions at three different fluences. As-implanted samples were characterized with secondary ion mass spectrometry and Rutherford backscattering spectrometry to obtain the Co depth profiles and the maximum Co concentrations. As-implanted samples were annealed applying two different techniques: rapid thermal annealing and annealing by swift heavy ion irradiation. Rapid thermal annealing was done at two temperatures: 1150 deg. C for 20 s and 700 deg. C for 5 min. 200 MeV Ag ions at two fluences were used for annealing by irradiation. Crystalline structure of the pristine, as-implanted, and annealed samples was investigated using x-ray diffraction, and the results were compared. Improvement of the crystalline quality was observed for rapid thermal annealed samples at the higher annealing temperature as confirmed with rocking curve measurements. The results indicate the presence of Co clusters in these annealed samples. Swift heavy ion irradiation with the parameters chosen for this study did not lead to a significant annealing

  10. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  11. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    International Nuclear Information System (INIS)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; James, R.B.

    2010-01-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  12. Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices

    International Nuclear Information System (INIS)

    Lee, Seung Moo; Won, Jaihyung; Yim, Soyoung; Park, Se Jun; Choi, Jongsik; Kim, Jeongtae; Lee, Hyeondeok; Byun, Dongjin

    2012-01-01

    The effect of deposition and thermal annealing temperatures on the dry etch rate of a-C:H films was investigated to increase our fundamental understanding of the relationship between thermal annealing and dry etch rate and to obtain a low dry etch rate hard mask. The hydrocarbon contents and hydrogen concentration were decreased with increasing deposition and annealing temperatures. The I(D)/I(G) intensity ratio and extinction coefficient of the a-C:H films were increased with increasing deposition and annealing temperatures because of the increase of sp 2 bonds in the a-C:H films. There was no relationship between the density of the unpaired electrons and the deposition temperature, or between the density of the unpaired electrons and the annealing temperature. However, the thermally annealed a-C:H films had fewer unpaired electrons compared with the as-deposited ones. Transmission electron microscopy analysis showed the absence of any crystallographic change after thermal annealing. The density of the as-deposited films was increased with increasing deposition temperature. The density of the 600 °C annealed a-C:H films deposited under 450 °C was decreased but at 550 °C was increased, and the density of all 800 °C annealed films was increased. The dry etch rate of the as-deposited a-C:H films was negatively correlated with the deposition temperature. The dry etch rate of the 600 °C annealed a-C:H films deposited at 350 °C and 450 °C was faster than that of the as-deposited film and that of the 800 °C annealed a-C:H films deposited at 350 °C and 450 °C was 17% faster than that of the as-deposited film. However, the dry etch rate of the 550 °C deposited a-C:H film was decreased after annealing at 600 °C and 800 °C. The dry etch rate of the as-deposited films was decreased with increasing density but that of the annealed a-C:H films was not. These results indicated that the dry etch rate of a-C:H films for dry etch hard masks can be further decreased by

  13. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  14. Effect of hydrogen adsorption on the formation and annealing of Stone-Wales defects in graphene

    Science.gov (United States)

    Podlivaev, A. I.; Openov, L. A.

    2015-12-01

    The heights of energy barriers preventing the formation and annealing of Stone-Wales defects in graphene with a hydrogen atom adsorbed on the defect or in its immediate vicinity have been calculated using the atomistic computer simulation. It has been shown that, in the presence of hydrogen, both barriers are significantly lower than those in the absence of hydrogen. Based on the analysis of the potential energy surface, the frequency factors have been calculated for two different paths of the Stone-Wales transformation, and the temperature dependences of the corresponding annealing times of the defects have been found. The results obtained have been compared with the first-principles calculations and molecular dynamics data.

  15. Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere

    Science.gov (United States)

    van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.

    2016-09-01

    We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.

  16. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  17. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...... implant conditions. On the other hand, RTA revealed very high I on/I off ratio ∼ 107 and n ∼ 1, at the cost of high dopant diffusion and lower carrier concentrations which would degrade scalability and access resistance....

  18. Repair effect on patterned CoFeB-based magnetic tunneling junction using rapid thermal annealing

    International Nuclear Information System (INIS)

    Wu, K.-M.; Wang, Y.-H.; Chen, Wei-Chuan; Yang, S.-Y.; Shen, Kuei-Hung; Kao, M.-J.; Tsai, M.-J.; Kuo, C.-Y.; Wu, J.-C.; Horng, Lance

    2007-01-01

    Rapid thermal treatment without applying magnetic field reconstructing magnetic property of Co 60 Fe 20 B 20 was studied through magnetoresistance (R-H) measurement. In this paper, we report that the switching behaviors of CoFeB were obviously improved through rapid thermal annealing for only a brief 5 min. The squareness and reproduction of minor R-H loops were enhanced from 100 deg. C to 250 deg. C . Tunneling magnetoresistance (TMR) that is about 35% in the as-etched cells increases up to 44% after 250 deg. C rapid annealing and still shows about 25% TMR even after 400 deg. C treating. Therefore, repair purpose annealing is some what different from crystallizing purpose annealing. Applying magnetic field during repair annealing was not necessary. Brief thermal treatment improves CoFeB switching behavior indeed, and causes less damage at high temperature

  19. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass

    Energy Technology Data Exchange (ETDEWEB)

    Rau, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)], E-mail: bjoern.rau@helmholtz-berlin.de; Weber, T.; Gorka, B.; Dogan, P.; Fenske, F.; Lee, K.Y.; Gall, S.; Rech, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)

    2009-03-15

    In this report, we discuss the influence of rapid thermal annealing (RTA) on the performance of polycrystalline Si (poly-Si) thin-film solar cells on glass where the poly-Si layers are differently prepared. The first part presents a comprehensive study of RTA treatments on poly-Si thin-films made by solid phase crystallization (SPC) (standard material of CSG Solar AG, Thalheim). By varying both plateau temperature (up to 1050 deg. C) and duration (up to 1000 s) of the annealing profile, we determined the parameters for a maximum open-circuit voltage (V{sub OC}). In addition, we applied our standard plasma hydrogenation treatment in order to passivate the remaining intra-grain defects and grain boundaries by atomic hydrogen resulting in a further increase of V{sub OC}. We found, that the preceding RTA treatment increases the effect of hydrogenation already at comparable low RTA temperatures. The effect on hydrogenation increases significantly with RTA temperature. In a second step we investigated the effect of the RTA and hydrogenation on large-grained poly-Si films based on the epitaxial thickening of poly-Si seed layers.

  20. The effects of thermal annealing in structural and optical properties of RF sputtered amorphous silicon

    International Nuclear Information System (INIS)

    Abdul Fatah Awang Mat

    1988-01-01

    The effect of thermal annealing on structural and optical properties of amorphous silicon are studied on samples prepared by radio-frequency sputtering. The fundamental absorption edge of these films are investigated at room temperature and their respective parameters estimated. Annealing effect on optical properties is interpreted in terms of the removal of voids and a decrease of disorder. (author)

  1. Composition dependent thermal annealing behaviour of ion tracks in apatite

    Energy Technology Data Exchange (ETDEWEB)

    Nadzri, A., E-mail: allina.nadzri@anu.edu.au [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Schauries, D.; Mota-Santiago, P.; Muradoglu, S. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64287 Darmstadt (Germany); Gleadow, A.J.W. [School of Earth Science, University of Melbourne, Melbourne, VIC 3010 (Australia); Hawley, A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Kluth, P. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia)

    2016-07-15

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  2. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hara, Masanori; Otsuka, Teppei; Oya, Yasuhisa; Hatano, Yuji

    2015-01-01

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 10 26 m −2 ) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min −1 up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h

  3. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Science.gov (United States)

    Shimada, Masashi; Hara, Masanori; Otsuka, Teppei; Oya, Yasuhisa; Hatano, Yuji

    2015-08-01

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 1026 m-2) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min-1 up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.

  4. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Hara, Masanori [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Otsuka, Teppei [Kyushu University, Interdisciplinary Graduate School of Engineering Science, Higashi-ku, Fukuoka (Japan); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan)

    2015-08-15

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 10{sup 26} m{sup −2}) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min{sup −1} up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.

  5. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  6. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.

    Science.gov (United States)

    Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J

    2018-01-22

    The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

  7. Thermal annealing of gamma irradiated ammonium chloride (Preprint no. RC-37)

    International Nuclear Information System (INIS)

    Kalkar, C.D.; Lala, Neeta

    1991-01-01

    Ammonium chloride produces N 2 H 4 + and Cl 2 as the main radiolytic products on gamma irradiation. Thermal annealing has a marked effect on the stability of N 2 H 4 + and Cl 2 . During the thermal annealing the chemical yield of nitrite and iodine was studied by dissolving irradiated ammonium chloride in aqueous sodium nitrate and potassium iodide respectively. The yield of iodine in isochronal annealing showed an exponential behaviour with temperature while that of nitrite showed a decrease and then increases at higher temperatures. The results are explained on the basis of dissociation and recombination of N 2 H 4 + with temperature. (author). 3 refs., 2 figs

  8. Mechanical Properties of Super Duplex Stainless Steel 2507 after Gas Phase Thermal Precharging with Hydrogen

    Science.gov (United States)

    San Marchi, C.; Somerday, B. P.; Zelinski, J.; Tang, X.; Schiroky, G. H.

    2007-11-01

    Thermal precharging of super duplex stainless steel 2507 with 125 wppm hydrogen significantly reduced tensile ductility and fracture toughness. Strain-hardened 2507 exhibited more severe ductility loss compared to the annealed microstructure. The reduction of area (RA) was between 80 and 85 pct for both microstructures in the noncharged condition, while reductions of area were 25 and 46 pct for the strain-hardened and annealed microstructures, respectively, after hydrogen precharging. Similar to the effect of internal hydrogen on tensile ductility, fracture toughness of strain-hardened 2507 was lowered from nearly 300 MPa m1/2 in the noncharged condition to less than 60 MPa m1/2 in the hydrogen-precharged condition. While precharging 2507 with hydrogen results in a considerable reduction in ductility and toughness, the absolute values are similar to high-strength austenitic steels that have been tested under the same conditions, and which are generally considered acceptable for high-pressure hydrogen gas systems. The fracture mode in hydrogen-precharged 2507 involved cleavage cracking of the ferrite phase and ductile fracture along oblique planes in the austenite phase, compared to 100 pct microvoid coalescence in the absence of hydrogen. Predictions from a strain-based micromechanical fracture toughness model were in good agreement with the measured fracture toughness of hydrogen-precharged 2507, implying a governing role of austenite for resistance to hydrogen-assisted fracture.

  9. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-08-15

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-ray photon spectroscopy and atomic force microscopy.

  10. Integrated processing for the treatment of materials applied to thermal compression of hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, M.G; Esquivel, M. R

    2009-01-01

    In this work, AB 5 intermetallics are synthesized by low energy mechanical alloying according to: AB 5 + AB 5 = AB 5 . The obtained intermetallics are annealed at 600 oC to optimize both the microstructural and hydrogen sorption properties. Then, the material is applied to the design of schemes for thermal compression of hydrogen (TCH). These results are obtained within the frame of a research project related to Energy and Environment and focused on the replacement on fossil supply systems by a hydrogen based one. [es

  11. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  12. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-01-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  13. An assessment of the economic consequences of thermal annealing of a nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Griesbach, T.J.; Server, W.L.

    1991-01-01

    The use of a thermal heat treatment to recover mechanical properties which were degraded by neutron radiation exposure is a potential method for assuring reactor pressure vessel licensing life and possible license renewal. 'Wet anneals' at temperatures less than 343degC have been conducted on test reactors in Alaska (SM-1A) and Belgium (BR3). The Soviets have also performed 'dry anneals' at higher temperatures near or above 450degC on several commercial reactor vessels. Technical and economic uncertainties have made utilities in the United States reluctant to seriously consider thermal annealing of large commercial reactor vessels except as a last resort option. However, as a utility begins to experience significant radiation embrittlement or considers extending the operating license life of the vessel, thermal annealing can be a viable option depending upon many considerations. These considerations include other possible remedial measures that can be taken (i.e., flux reduction), economic issues with regard to utility finances, and corporate philosophy. A decision analysis model has been developed to analyze the thermal anneal option in comparison to other alternatives for a number of possible combinations and timing. The results for a postulated vessel and embrittlement condition are presented to show that thermal annealing can be a viable management option which should be taken seriously. (author)

  14. Proposed rule package on fracture toughness and thermal annealing requirements and guidance for light water reactor vessels

    International Nuclear Information System (INIS)

    Allen Hiser, J.R.

    1993-01-01

    In the framework of updating and clarification of the fracture toughness and thermal annealing requirements and guidance for light water reactor pressure vessels, proposed revisions concerning the pressurized thermal shock rule, fracture toughness requirements and reactor vessel material surveillance program requirements, are described. A new rule concerning thermal annealing requirements and a draft regulatory guide on 'Format and Content of Application for Approval for Thermal Annealing of RPV' are also proposed

  15. Proposed rule package on fracture toughness and thermal annealing requirements and guidance for light water reactor vessels

    Energy Technology Data Exchange (ETDEWEB)

    Allen Hiser, J R [UKAEA Harwell Lab. (United Kingdom). Engineering Div.

    1994-12-31

    In the framework of updating and clarification of the fracture toughness and thermal annealing requirements and guidance for light water reactor pressure vessels, proposed revisions concerning the pressurized thermal shock rule, fracture toughness requirements and reactor vessel material surveillance program requirements, are described. A new rule concerning thermal annealing requirements and a draft regulatory guide on `Format and Content of Application for Approval for Thermal Annealing of RPV` are also proposed.

  16. Thermal post-deposition treatment effects on nanocrystalline hydrogenated silicon prepared by PECVD under different hydrogen flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Sana Ben, E-mail: sana.benamor1@gmail.com [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); University of Applied Medical Sciences of Hafr El Baten (Saudi Arabia); Meddeb, Hosny; Daik, Ridha; Othman, Afef Ben; Slama, Sonia Ben; Dimassi, Wissem; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-01-01

    Graphical abstract: At high annealing temperatures, many atoms do not suffer the attraction of surface species due to the thermal agitation and consequently few atoms are adsorbed. As the temperature is lowered the adsorption is more efficient to the point that is no more atoms in the gas phase. Indeed at relatively low temperatures, the atoms have too little energy to escape from the surface or even to vibrate against it. They lost their degree of freedom in the direction perpendicular to the surface. But this does not prevent the atoms to diffuse along the surface. As a result, the layer's thickness decrease with increasing the annealing temperature. - Highlights: The results extracted from this work are: • The post-deposition thermal treatment improves the crystallinity the film at moderate temperature (500 °C). • The higher annealing temperature can lead to decrease the silicon–hydrogen bonds and increase the Si–Si bonds. • Moderate annealing temperature (700 °C) seems to be crucial for obtaining high minority carrier life times. • Hydrogen effusion phenomenon start occurring at 500–550 °C and get worsen at 900 °C. - Abstract: In this paper, hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on mono-crystalline silicon substrate by plasma enhanced chemical vapor deposition (PECVD) under different hydrogen flow rates followed by a thermal treatment in an infrared furnace at different temperature ranging from 300 to 900 °C. The investigated structural, morphological and optoelectronic properties of samples were found to be strongly dependent on the annealing temperature. Raman spectroscopy revealed that nc-Si:H films contain crystalline, amorphous and mixed structures as well. We find that post-deposition thermal treatment may lead to a tendency for structural improvement and a decrease of the disorder in the film network at moderate temperature under 500 °C. As for annealing at higher temperature up to 900

  17. Reversible p-type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mannam, Ramanjaneyulu, E-mail: ramu.nov9@gmail.com [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India); Kumar, E. Senthil [SRM Research Institute, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Ramachandra Rao, M.S., E-mail: msrrao@iitm.ac.in [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-04-01

    Highlights: • Electrical transport measurements revel that the (P, N) codoped ZnO thin films exhibited change in conductivity from p-type to n-type over a span of 120 days. • Hydrogen and carbon are found to be the main unintentional impurities in n-type (P, N) codoped ZnO thin films. • Rapid thermal annealing has been used to remove both H and C from the films. • Carbon can be removed at an annealing temperature of 600 °C, whereas, the dissociation of N−H complex takes place only at 800 °C. • The n-type (P, N) codoped ZnO thin film exhibited change in conductivity to p-type at an annealing temperature of 800 °C. - Abstract: We demonstrate reversible p-type nature of pulsed laser deposited (P, N) codoped ZnO thin films using rapid thermal annealing process. As grown thin films exhibited change in conductivity from p to n-type over a span of 120 days. Non-annealed n-type thin films contain unintentional donor impurities such as hydrogen and carbon. X-ray photoelectron spectroscopy and Raman measurements conclusively show that hydrogen passivates nitrogen acceptors by forming N−H complex. Carbon can be annealed out at 600 °C, whereas, the dissociation of N−H complex takes place at 800 °C. The films revert its p-type nature at an annealing temperature of 800 °C.

  18. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrate

    International Nuclear Information System (INIS)

    Brooks, K.G.; Reaney, I.M.; Klissurska, R.; Huang, Y.; Bursill, L.A.; Setter, N.

    1994-01-01

    The nucleation, growth and orientation of lead zirconate titanate thin films prepared from organometallic precursor solutions by spin coating on (111) oriented platinum substrates and crystallized by rapid thermal annealing was investigated. The effects of pyrolysis temperature, post-pyrolysis thermal treatments, excess lead addition, and Nb dopant substitution are reported. The use of post pyrolysis oxygen anneals at temperatures in the regime of 350-450 deg C was found to strongly effect the kinetics of subsequent amorphous-pyrochlore perovskite crystallization by rapid thermal annealing. It has also allowed films of reproducible microstructure and textures (both (100) and (111)) to be prepared by rapid thermal annealing. It is suggested that such anneals and pyrolysis temperature affect the oxygen concentration/average Pb valence in the amorphous films prior to annealing. The changes in Pb valence state then affect the stability of the transient pyrochlore phase and thus the kinetics of perovskite crystallization. Nb dopant was also found to influence the crystallization kinetics. 28 refs., 18 figs

  19. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys

    Science.gov (United States)

    Jiang, Shaoning; Wang, Zhiming

    2018-03-01

    The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.

  20. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  1. Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere

    International Nuclear Information System (INIS)

    Lin, T.-C.; Chang, S.-C.; Chiu, C.-F.

    2006-01-01

    A layer of copper was sputtered onto an indium tin oxide (ITO) glass substrates to form an ITO/Cu film, using a direct current magnetron operated at room temperature and in argon gas. The ITO and ITO/Cu films were heated in vacuum, and in hydrogen gas, to study their dependence of electronic and optical properties on annealing temperature. The resistivity of the ITO film was reduced from 6.2 x 10 -4 to 2.7 x 10 -4 Ω cm, and the average optical transmittance was improved to above 90% by the annealing process. The ITO/Cu film showed a low value of resistivity of 2.8 x 10 -4 Ω cm and the transmittance was between 58 and 72%

  2. The annealing behavior of hydrogen implanted into Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Masahiko; Yamaji, Norisuke; Imai, Makoto; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    We have studied effects of not only defects but also an added elements on trap-sites of hydrogen in metals. For the purpose, we observed depth profiles and thermal behaviors of hydrogen implanted into Al-1.5at.%Si alloy samples in an implantation-temperature range of liquid nitrogen temperature (LNT) to 373K at different doses. The results were compared with those for pure aluminum samples. It was found that hydrogen is trapped as molecules in grain boundaries of Al/Si. (author)

  3. Review of in-service thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1984-01-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper-shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. A test reactor pressure vessel has been wet annealed at less than 343 0 C (650 0 F), and annealing of the Belgian BR-3 reactor vessel has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place is feasible, but solvable engineering problems do exist. The materials with highest radiation sensitivity in the older reactor vessels are submerged-arc weld metals with high copper and nickel concentrations. The limited Charpy V-notch and fracture toughness data available for five such welds were reviewed. The review suggested that significant recovery results from annealing at 454 0 C (850 0 F) for one week. Two of the main concerns with a localized heat treatment at 454 0 C (850 0 F) are the degree of distortion that may occur after the annealing cycle and the extent of residual stresses. A thermal and structural analysis of a reactor vessel for distortions and residual stresses found no problems with the reactor vessel itself but did indicate a rotation at the nozzle region of the vessel that would plastically deform the attached primary piping. Further analytical studies are needed. An American Society for Testing and Materials (ASTM) task group is upgrading and revising the ASTM Recommended Guide for In-Service Annealing of WaterCooled Nuclear Reactor Vessels (E 509-74) with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (for example, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  4. Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD

    Science.gov (United States)

    Pool, Vanessa L.; Dou, Benjia; Van Campen, Douglas G.; Klein-Stockert, Talysa R.; Barnes, Frank S.; Shaheen, Sean E.; Ahmad, Md I.; van Hest, Maikel F. A. M.; Toney, Michael F.

    2017-01-01

    Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI3) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI3 and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI3 annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI3 into PbI2. PMID:28094249

  5. Thermal reorientation of hydrogenic Pr3+ centers

    International Nuclear Information System (INIS)

    Jones, G. D.

    1996-01-01

    Sets of five multi-hydrogenic centers of both CaF 2 :Pr 3+ and SrF 2 :Pr 3 + show bleaching under selective polarized-light irradiation. Two forms of bleaching behaviour are observed. In reversible polarized bleaching, irradiation creates re-oriented equivalent centers, which can be restored to the original orientation by switching the laser polarization by 90 deg. Indefinite sequences of bleaching and recovery can be established. In photoproduct bleaching, inequivalent centers are produced, which can be reverted by subsequently selectively exciting their absorption lines. Thermal recovery of the bleached centers on warming the crystals occurs abruptly over a 5 K range around 100 K and is noteworthy in occurring at essentially identical temperatures for H - , D - and T - centers. The simplest model for this thermal recovery is thermal activation of the mobile hydrogenic ions over a double well potential barrier. An alternative model proposed by Universitaet Regensburg requires the involvement of high frequency excitations in scattering processes for surmounting the barrier

  6. Effects of post-stress hydrogen annealing on MOS oxides after 60Co irradiation or Fowler-Nordheim injection

    International Nuclear Information System (INIS)

    Saks, N.S.; Stahlbush, R.E.; Mrstik, B.J.; Rendell, R.W.; Klein, R.B.

    1993-01-01

    Changes in interface trap density D it have been determined in MOSFETs as a function of time during hydrogen annealing at 295K. Large increases in D it are observed during H 2 annealing in MOSFETs previously stressed by either 60 Co irradiation or Fowler-Nordheim electron injection. The annealing behavior is very similar for both types of stress, which suggests that the D it creation mechanism involves similar chemistry for hydrogen reactions. Studies of the time dependence of D it creation as a function of MOSFET gate length show that the time dependence is limited primarily by lateral diffusion of molecular hydrogen (H 2 ) through the gate oxide. An activation energy of 0.57 eV, which is consistent with H 2 diffusion, is obtained from the temperature dependence

  7. Development of a supplemental surveillance program for reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Server, W.L.; Rosinski, S.T.

    1997-01-01

    The technical decision to thermally anneal a nuclear reactor pressure vessel (RPV) depends upon the level of embrittlement in the RPV steels, the amount of recovery of fracture toughness properties expected from the anneal, and the rate of re-embrittlement after the vessel is placed back into service. The recovery of Charpy impact toughness properties after annealing can be estimated initially by using a recovery model developed using experimental measurements of recovery (such as that developed by Eason et al. for U.S. vessel materials). However, actual validation measurements on plant-specific archived vessel materials (hopefully in the existing surveillance program) are needed; otherwise, irradiated surrogate materials, essentially the same as the RPV steels or bounding in expected behavior, must be utilized. The efficient use of any of these materials requires a supplemental surveillance program focused at both recovery and reirradiation embrittlement. Reconstituted Charpy specimens and new surveillance capsules will most likely be needed as part of this supplemental surveillance program. A new version of ASTM E 509 has recently been approved which provides guidance on thermal annealing in general and specifically for the development of an annealing supplemental surveillance program. The post-anneal re-embrittlement properties are crucial for continued plant operation, and the use of a re-embrittlement model, such as the lateral shift approach, may be overly conservative. This paper illustrates the new ASTM E 509 Standard Guide methodology for an annealing supplemental surveillance program. As an example, the proposed program for the Palisades RPV beltline steels is presented which covers the time from annealing to the end of operating license and beyond, if license renewal is pursued. The Palisades nuclear power plant RPV was planned to be annealed in 1998, but that plant is currently being re-evaluated. The proposed anneal was planned to be conducted at a

  8. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.

    2006-01-01

    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  9. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Science.gov (United States)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  10. Improved silicon surface passivation of APCVD Al2O3 by rapid thermal annealing

    NARCIS (Netherlands)

    Black, L.E.; Allen, T.; McIntosh, K.R.; Cuévas, A.

    2016-01-01

    Short-duration post-deposition thermal treatments at temperatures above those normally used for annealing activation have the potential to further improve the already excellent passivation of crystalline silicon (c-Si) achieved by Al2O3, but have so far received little attention. In this work we

  11. Effect of thermal annealing on optical properties of implanted GaAs

    NARCIS (Netherlands)

    Kulik, M; Komarov, FF; Maczka, D

    GaAs samples doped with indium atoms by ion implantation and thermal annealed were studied using a channelling method, Rutherford backscattering, and an ellipsometry. From these measurements it was observed that the layer implanted with 3 x 10(16) cm(-2) indium dose was totally damaged and its

  12. Thermally Annealed Iron (Oxide) Thin Film on an Alumina Barrier Layer, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    Herein we show characterization of an Fe thin film on Al_2O_3 after thermal annealing under H_2 using Al Ka X-rays. The XPS survey spectrum, narrow Fe 2p scan, and valence band regions are presented. The survey spectrum shows aluminum signals due to exposure of the underlying Al_2O_3 film during Fe nanoparticle formation.

  13. Magnetic structure of Fe-based amorphous and thermal annealed microwires

    International Nuclear Information System (INIS)

    Olivera, J.; Provencio, M.; Prida, V.M.; Hernando, B.; Santos, J.D.; Perez, M.J.; Gorria, P.; Sanchez, M.L.; Belzunce, F.J.

    2005-01-01

    The magnetic structure of amorphous and thermal annealed glass coated microwires is studied by thermomagnetic, DSC, and Bitter domain pattern techniques. The long-range dipolar interaction between parallel aligned microwires and the appearance of large Barkhausen jumps steps in the axially magnetized loops are discussed in terms of reversal magnetization process

  14. A novel method for biopolymer surface nanostructuring by platinum deposition and subsequent thermal annealing

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Juřík, P.; Kolská, Z.; Malinský, Petr; Macková, Anna; Michaljaničová, I.; Švorčík, V.

    2012-01-01

    Roč. 7, č. 671 (2012), s. 1-6 ISSN 1931-7573 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : nanopattering * surface morphology * biopolymer * platinum sputtering * thermal annealing Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.524, year: 2012

  15. Simulation of the diffusion of implanted impurities in silicon structures at the rapid thermal annealing

    International Nuclear Information System (INIS)

    Komarov, F.F.; Komarov, A.F.; Mironov, A.M.; Makarevich, Yu.V.; Miskevich, S.A.; Zayats, G.M.

    2011-01-01

    Physical and mathematical models and numerical simulation of the diffusion of implanted impurities during rapid thermal treatment of silicon structures are discussed. The calculation results correspond to the experimental results with a sufficient accuracy. A simulation software system has been developed that is integrated into ATHENA simulation system developed by Silvaco Inc. This program can simulate processes of the low-energy implantation of B, BF 2 , P, As, Sb, C ions into the silicon structures and subsequent rapid thermal annealing. (authors)

  16. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  17. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  18. Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq3 composite films.

    Science.gov (United States)

    Cuba, M; Muralidharan, G

    2015-11-01

    The 30 wt% of ZnO (weight percentage of ZnO has been optimised) incorporated tris- (8-hydroxyquinoline)aluminum (Alq3) has been synthesised and coated on to glass substrates using dip coating method. The structural and optical properties of the Alq3/ZnO composite film after thermal annealing from 50 to 300 °C insteps 50° has been studied and reported. XRD pattern reveals the presence of crystalline ZnO in all the annealed films. The films annealed above 150 °C reveal the presence of crystalline Alq3 along with crystalline ZnO. The FTIR spectra confirm the presence of hydroxyquinoline and ZnO vibration in all the annealed composite films. The composite films annealed above 150 °C show a partial sublimation and degradation of hydroxyquinoline compounds. The ZnO incorporated composite films (Alq3/ZnO) exhibit two emission peaks, one corresponding to ZnO at 487 nm and another at 513 nm due to Alq3. The films annealed at 200 °C exhibit maximum photoluminescence (PL) intensity than pristine film at 513 nm when excited at 390 nm.

  19. Photo-response behavior of organic transistors based on thermally annealed semiconducting diketopyrrolopyrrole core

    Science.gov (United States)

    Tarsoly, Gergely; Pyo, Seungmoon

    2018-06-01

    We report the opto-electrical response of organic field-effect transistors based on a thin-film of a semiconducting diketopyrrolopyrrole (DPP) core, a popular building block for molecular semiconductors, and a polymeric gate dielectric. The thin-film of the DPP core was thermally annealed at different temperatures under N2 atmosphere to investigate the relationship between the annealing temperature and the electrical properties of the device. The results showed that the annealing process induces morphological changes in the thin film, and properly controlling the thermal annealing conditions can enhance the device performance. In addition, we also investigated in detail the photo-response behaviors by analyzing the responsivity (R) of the device with the optimally annealed DPP-core thin film under two light illumination conditions by considering the irradiance absorbed by the thin film instead of the total irradiance of the light source. We found that the proposed model could lead to a light-source-independent description of the photo-response behavior of the device, and which can be used for other applications.

  20. Characterization for Ceramic-coated magnets using E-beam and thermal annealing methods

    International Nuclear Information System (INIS)

    Kim, Hyug Jong; Kim, Hee Gyu; Kang, In Gu; Kim, Min Wan; Yang, Ki Ho; Lee, Byung Cheol; Choi, Byung Ho

    2009-01-01

    Hard magnet was usually used by coating SiO 2 ceramic thick films followed by the thermal annealing process. In this work, the alternative annealing process for NdFeB magnets using e-beam sources(1∼2 MeV, 50∼400 kGy) was investigated. NdFeB magnets was coated with ceramic thick films using the spray method. The optimal annealing parameter for e-beam source reveals to be 1 MeV and 300 kGy. The sample prepared at 1 MeV and 300 kGy was characterized by the analysis of the surface morphology, film hardness, adhesion and chemical stability. The mechanical property of thick film, especially film hardness, is better than that of thermal annealed samples at 180 .deg. C. As a result, e-beam annealing process will be one of candidate and attractive heat treatment process. In future, manufacturing process will be carried out in cooperation with the magnet company

  1. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing

    Science.gov (United States)

    Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan

    2015-03-01

    We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.

  2. Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing

    Science.gov (United States)

    Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.

    2013-03-01

    It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.

  3. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  4. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  5. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric

    2010-08-18

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric; Mondal, Rajib; Bettinger, Christopher J.; Sok, Seihout; Toney, Michael F.; Bao, Zhenan

    2010-01-01

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.; Kusch, Gunnar; Schmidt, Michael; Collins, Timothy; Glynn, Colm; Martin, Robert W.; O’Dwyer, Colm; Morris, Michael D.; Holmes, Justin D.; Parbrook, Peter J.

    2016-12-07

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

  8. Synthesis of borides in molybdenum implanted by B+ ions under thermal and electron annealing

    International Nuclear Information System (INIS)

    Kazdaev, Kh.R.; Akchulakov, M.T.; Bayadilov, E.M.; Ehngel'ko, V.I.; Lazarenko, A.V.; Chebukov, E.S.

    1989-01-01

    The possibility of formation of borides in the near surface layers of monocrystalline molybdenum implanted by boron ions at 35 keV energy under thermal and pulsed electron annealing by an electon beam at 140 keV energy is investigated. It is found that implantation of boron ions into molybdenum with subsequent thermal annealing permits to produce both molybdenum monoboride (α-MoB) and boride (γ-Mo 2 B) with rather different formation mechanisms. Formation of the α-MoB phase occurs with the temperature elevation from the centers appeared during implantation, while the γ-Mo 2 B phase appears only on heating the implanted layers up to definite temperature as a result of the phase transformation of the solid solution into a chemical compound. Pulsed electron annealing instead of thermal annealing results mainly in formation of molybdenum boride (γ-Mo 2 B), the state of structure is determined by the degree of heating of implanted layers and their durable stay at temperatures exceeding the threshold values

  9. Comparison between thermal annealing and ion mixing of alloyed Ni-W films on Si. I

    International Nuclear Information System (INIS)

    Pai, C.S.; Lau, S.S.; Poker, D.B.; Hung, L.S.

    1985-01-01

    The reactions between Ni-W alloys and Si substrates induced by thermal annealing and ion mixing were investigated and compared. Samples were prepared by sputtering of Ni-W alloys, both Ni-rich and W-rich, onto the Si substrates, and followed by either furnace annealing (200--900 0 C) or ion mixing (2 x 10 15 -- 4 x 10 16 86 Kr + ions/cm 2 ). The reactions were analyzed by Rutherford backscattering and x-ray diffraction (Read camera). In general, thermal annealing and ion mixing lead to similar reactions. Phase separation between Ni and W with Ni silicides formed next to the Si substrate and W silicide formed on the surface was observed for both Ni-rich and W-rich samples under thermal annealing. Phase separation was also observed for Ni-rich samples under ion mixing; however, a Ni-W-Si ternary compound was possibly formed for ion-mixed W-rich samples. These reactions were rationalized in terms of the mobilities of various atoms and the energetics of the systems

  10. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.

    Science.gov (United States)

    Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith

    2015-03-01

    In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.

  11. Influence of Rapid Thermal Annealing on the Characteristics of InGaN/GaN MQWs

    Directory of Open Access Journals (Sweden)

    Tian Yuan

    2016-01-01

    Full Text Available N-type InGaN/GaN multiple-quantum-wells (MQWs were grown on sapphire substrates by metal organic chemical vapor deposition (MOCVD. The crystal quality and optical properties of samples after rapid thermal annealing (RTA at different temperatures in a range from 400 to 800°C are investigated by X-ray diffraction (XRD and photoluminescence (PL spectrum. The experimental results show that the peaks of InGaN, InN and In can be observed in all samples. And the results are induced by the phase separation and In-clusters. The luminescence peak of the samples annealed showed a red shift. It is caused by strain stress relaxation during the RTA process. Furthermore, some defects can be eliminated and the best annealing temperature is from 500°C to 700°C.

  12. Recombination luminescence in irradiated silicon - Effects of thermal annealing and lithium impurity.

    Science.gov (United States)

    Johnson, E. S.; Compton, W. D.

    1971-01-01

    Use of luminescence in irradiated silicon to determine the thermal stability of the defects responsible for the recombination. It is found that the defect responsible for the zero-phonon line at 0.97 eV has an annealing behavior similar to that of the divacancy and that the zero-phonon line at 0.79 eV anneals in a manner similar to the G-15 or K-center. Annealing at temperatures up to 500 C generates other defects whose luminescence is distinct from that seen previously. Addition of lithium to the material produces defects with new characteristic luminescence. Of particular importance is a defect with a level at E sub g -1.045 eV.

  13. The effect of thermal annealing on pentacene thin film transistor with micro contact printing.

    Science.gov (United States)

    Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.

  14. Recent evaluation of 'wet' thermal annealing to resolve reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Server, W.L.; Biemiller, E.C.

    1993-01-01

    Prior to the decision to close the Yankee Rowe plant in 1992, a great deal of effort was expended in trying to resolve the degree of neutron embrittlement that the reactor pressure vessel had experienced after 30 years of operation. One mitigative measure that was examined in detail was the possibility of performing a relatively low temperature thermal anneal (at approximately 650 deg. F) to partially restore the original design level of mechanical properties of the reactor pressure vessel beltline region which were lost due to the neutron radiation exposure. This low temperature anneal was to involve heating of the primary coolant water using pump heat in a similar manner as that used to anneal the Belgian BR-3 reactor pressure vessel in the early 1980s. This 'wet' anneal was successful in recovering mechanical properties for the BR-3 vessel, but the extent of the recovery, as well as the rate of re-embrittlement after the anneal, were issues that were difficult to quantify since the exact reactor pressure vessel steels were not available for experimental verification. For the case of Yankee Rowe, material was available from past surveillance programs for at least one of the materials in the vessel, as well as materials obtained from various sources which could act as bounding surrogates. An irradiation /annealing/reirradiation program was developed to better quantify the degree of recovery and re-embrittlement for these materials, but this program was halted before significant test results were obtained. Prior to the initiation of the testing program, a review of past annealing data was performed and the data were scrutinized for direct relevance to the annealing response of the Yankee Rowe vessel. This paper discusses the results derived from this review. The results from the critical review of the past annealing data indicated that a 'wet' anneal of the Yankee Rowe vessel may have been successful in reducing the degree of embrittlement to the point that the

  15. Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing.

    Science.gov (United States)

    Figuerola, Albert; van Huis, Marijn; Zanella, Marco; Genovese, Alessandro; Marras, Sergio; Falqui, Andrea; Zandbergen, Henny W; Cingolani, Roberto; Manna, Liberato

    2010-08-11

    The thermal evolution of a collection of heterogeneous CdSe-Au nanosystems (Au-decorated CdSe nanorods, networks, vertical assemblies) prepared by wet-chemical approaches was monitored in situ in the transmission electron microscope. In contrast to interfaces that are formed during kinetically controlled wet chemical synthesis, heating under vacuum conditions results in distinct and well-defined CdSe/Au interfaces, located at the CdSe polar surfaces. The high quality of these interfaces should make the heterostructures more suitable for use in nanoscale electronic devices.

  16. Microstructural modifications induced by rapid thermal annealing in plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bravo, D.; Lopez, F.J.; Fernandez, M.; Martinez, F.L.

    2003-01-01

    The effect of rapid thermal annealing (RTA) processes on the structural properties of SiO x N y H z films was investigated. The samples were deposited by the electron cyclotron resonance plasma method, using SiH 4 , O 2 and N 2 as precursor gases. For SiO x N y H z films with composition close to that of SiO 2 , which have a very low H content, RTA induces thermal relaxation of the lattice and improvement of the structural order. For films of intermediate composition and of compositions close to SiN y H z , the main effect of RTA is the release of H at high temperatures (T>700 deg. C). This H release is more significant in films containing both Si-H and N-H bonds, due to cooperative reactions between both kinds of bonds. In these films the degradation of structural order associated to H release prevails over thermal relaxation, while in those films with only N-H bonds, thermal relaxation predominates. For annealing temperatures in the 500-700 deg. C range, the passivation of dangling bonds by the nonbonded H in the films and the transition from the paramagnetic state to the diamagnetic state of the K center result in a decrease of the density of paramagnetic defects. The H release observed at high annealing temperatures is accompanied by an increase of density of paramagnetic defects

  17. Evolution of structural and magnetic properties of sputtered nanocrystalline Co thin films with thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Dileep; Gupta, Ajay

    2007-01-01

    Ultrafine grain films of cobalt prepared using ion-beam sputtering have been studied using X-ray diffraction (XRD), X-ray reflectivity (XRR), atomic force microscopy (AFM) and magneto-optical Kerr effect (MOKE) measurements. As-prepared films have very smooth surface owing to the ultrafine nature of the grains. Evolution of the structure and morphology of the film with thermal annealing has been studied and the same is correlated with the magnetic properties. Above an annealing temperature of 300 deg. C, the film gradually transforms from HCP to FCC phase that remains stable at room temperature. A significant contribution of the surface energy, due to small grain size, results in stabilisation of the FCC phase at room temperature. It is found that other processes like stress relaxation, grain texturing and growth also exhibit an enhanced rate above 300 deg. C, and may be associated with an enhanced mobility of the atoms above this temperature. Films possess a uniaxial anisotropy, which exhibits a non-monotonous behaviour with thermal annealing. The observed variation in the anisotropy and coercivity with annealing can be understood in terms of variations in the internal stresses, surface roughness, and grain structure

  18. Characterization and luminescent properties of thermally annealed olivines

    International Nuclear Information System (INIS)

    Colin-Garcia, Maria; Correcher, Virgilio; Garcia-Guinea, Javier; Heredia-Barbero, Alejandro; Roman-Lopez, Jesus; Ortega-Gutierrez, Fernando; Negron-Mendoza, Alicia; Ramos-Bernal, Sergio

    2013-01-01

    Olivine is an iron-magnesium solid solution silicate (Mg,Fe) 2 SiO 4 and it is probably one of the most abundant mineral phase in the Solar System, it is present in the primitive carbonaceous meteorites (i.e Allende), and in ordinary chondritic meteorite, comets or terrestrial planets. The olivine grains in those bodies have been exposed to different radiation sources like UV, electrons, cosmic radiation, etc. Here, we explore the effect of ionizing and non ionizing radiation on the luminescence emission of the two well-characterised olivine samples from Mexico and Spain by means of cathodoluminescence and thermoluminescence. The analyses by X-ray dispersive energies in the scanning electron microscopy show differences between the samples in the amount of iron and magnesium and also show traces of rare elements. Olivine exhibits spectral cathodoluminescence emissions of low intensity, explained for the quenching of the luminescence of the iron, and sharp signals assigned as impurities. Cathodoluminescence and thermoluminescence glow curves of the natural, and UV induced olivine samples were obtained. Our results show that thermal treatments at 1100 °C change the mineral molecular structure and the luminescence properties of this mineral phase. These results confirm an active participation of physical factors influencing the luminescent properties of olivine. -- Highlights: ► Luminescent properties of two olivines samples (Mexican and Spanish) were explored. ► EDS show different iron and magnesium content and traces of rare elements on both. ► Olivine exhibits spectral CL emissions of low intensity due to the quenching of iron. ► Treatments at 1100 °C change the mineral structure and its response to UV radiation

  19. Fast thermal annealing of implantation defects in silicon. Solid phase epitaxy and residual imperfection recovery

    International Nuclear Information System (INIS)

    Adekoya, O.A.

    1987-06-01

    Basic processes ruling the crystal reconstitution in solid phase during fast thermal annealing are studied; the role of electronic and thermodynamic effects at the interface is precised, following the implantations of a donor element (p + ), an acceptor element (B + ) and an intrinsic element (Ge + ). Then, after recrystallization, the electric role of residual point defects is shown together with the possibility of total recovery and an important electric activation of the doping [fr

  20. The preliminary results of the thermal annealing processes performed on the RPVs NPP V-1 in Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L; Brezina, M; Beno, P [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    1994-12-31

    Samples of weld and base metal above and below the weld were taken from RPV material in the V-230 type NPP V-1 in Bohunice; hardness measurements were carried out across the weld on the external surface of the RPV under the thermal shielding, before and after annealing. Results are presented and the annealing procedure efficiency is discussed. (authors). 13 refs., 5 figs.

  1. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiyong [College of Science, Shenyang Agricultural University, Shenyang 110866 (China); Wang, Ning, E-mail: ning_wang@outlook.com [School of Electrical and Electronic and Engineering, Nanyang Technological University 639798 (Singapore); Fu, Yan, E-mail: 1060945062@qq.com [College of Science, Shenyang Agricultural University, Shenyang 110866 (China)

    2016-12-15

    Highlights: • The TIPD layer as electron extraction layer and instead of Ca or LiF. • Impact of the work function of TIPD layer by thermal annealing treatment. • Importance of TIPD layer as electron extraction layer for work function and potential barrier. - Abstract: The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO{sub 3}/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO{sub 2} as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Ti=O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  2. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Sogne, E. [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); European School of Molecular Medicine (SEMM), IFOM-IEO, Milano (Italy); Merlini, M. [Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli 32, 20133 Milano (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-08-07

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  3. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    International Nuclear Information System (INIS)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P.; Sogne, E.; Merlini, M.; Ducati, C.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  4. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.; Sogne, Elisa; Lenardi, C.; Podestà , A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  5. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.

    2016-08-05

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  6. Improved behavior of cooper-amine complexes during thermal annealing for conductive thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ayag, Kevin Ray; Panama, Gustavo; Paul, Shrabani; Kim, Hong Doo [Dept. of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Previous studies successfully produced conductive thin films from organo-metallic-compounds-based inks. Some inks like those made from copper salt and amines, however, tend to move during thermal annealing and, thus, affect the conductive pattern on the substrate. In this study, conductive inks were synthesized by forming complexes of copper with amines and/or blended amines. To build-up an organo-metallic framework and preserve the pattern throughout the annealing period, diamine was added to the complex in different proportions. The prepared inks were coated on glass substrate and were annealed on a hot plate at 170°C under the gaseous mixture of formic acid and alcohol for 5 min. The metallic film was observed to retain the original pattern of the ink during and after annealing. Adhesion on the substrate was also improved. Inks with blended amines produced films with lower resistivities. The lowest electrical resistivity recorded was 4.99 μΩ cm, three times that of bulk copper.

  7. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.

    1996-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or open-quotes recovery,close quotes of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed

  8. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or open-quotes recovery,close quotes of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed

  9. Influence of thermal annealing on the memory effect in MIS structures containing crystalline Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian; Brueggemann, R. [Institut fuer Physik, Carl von Ossietzky Universitaet Oldenburg, 26111 Oldenburg (Germany); Kirilov, Kiril [Department of Solid State Physics and Microelectronics, Sofia Univ. (Bulgaria); Levi, Zelma; Manolov, E. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Nedev, N. [Instituto de Ingenieria Universidad Autonoma de Baja California, Benito Juarez Blvd., s/n, C.P. 21280, Mexicali, Baja California, Mexico (Mexico)

    2007-07-01

    Silicon nanocrystals embedded in a SiO{sub 2} matrix are fabricated by thermal annealing of Metal/SiO{sub 2}/SiO{sub x}/c-Si structures (x=1.15) at 1000 C in N{sub 2} atmosphere for 30 or 60 min. High frequency C-V measurements demonstrate that both types of sample can be charged negatively or positively by applying a positive or negative bias voltage to the gate. The clockwise hysteresis windows of 30 and 60 min annealed samples are about 7 and 5.5 V for the {+-}12 V scanning range (E{sub ox}={+-}2.4 MV/cm), respectively. Although the samples annealed for 60 min have a smaller hysteresis window, they have two important advantages compared to the 30 min annealed ones: a lower defect density at the c-Si wafer/SiO{sub 2} interface and a smaller value of the fixed oxide charge close to this interface.

  10. Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals

    International Nuclear Information System (INIS)

    Ermakov, Victor A; Alaferdov, Andrei V; Vaz, Alfredo R; Moshkalev, Stanislav A; Baranov, Alexander V

    2013-01-01

    The accuracy of thermal conductivity measurements by the micro-Raman technique for suspended multi-layer graphene flakes has been shown to depend critically on the quality of the thermal contacts between the flakes and the metal electrodes used as the heat sink. The quality of the contacts can be improved by nonlocal laser annealing at increased power. The improvement of the thermal contacts to initially rough metal electrodes is attributed to local melting of the metal surface under laser heating, and increased area of real metal–graphene contact. Improvement of the thermal contacts between multi-layer graphene and a silicon oxide surface was also observed, with more efficient heat transfer from graphene as compared with the graphene–metal case. (paper)

  11. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath

    2018-03-27

    A combination of steady-state and time-resolved spectroscopic measurements is used to investigate the photophysics of the all-polymer bulk heterojunction system TQ1:N2200. Upon thermal annealing a doubling of the external quantum efficiency and an improved fill factor (FF) is observed, resulting in an increase in the power conversion efficiency. Carrier extraction is similar for both blends, as demonstrated by time-resolved electric-field-induced second harmonic generation experiments in conjunction with transient photocurrent studies, spanning the ps-µs time range. Complementary transient absorption spectroscopy measurements reveal that the different quantum efficiencies originate from differences in charge carrier separation and recombination at the polymer-polymer interface: in as-spun samples ~35 % of the charges are bound in interfacial charge-transfer states and recombine geminately, while this pool is reduced to ~7 % in thermally-annealed sample, resulting in higher short-circuit currents. Time-delayed collection field experiments demonstrate a field-dependent charge generation process in as-spun samples, which reduces the FF. In contrast, field-dependence of charge generation is weak in annealed films. While both devices exhibit significant non-geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  12. A perspective on thermal annealing of reactor pressure vessel materials from the viewpoint of experimental results

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1996-01-01

    It is believed that in the next decade or so, several nuclear reactor pressure vessels (RPVs) may exceed the reference temperature limits set by the pressurized thermal shock screening criteria. One of the options to mitigate the effects of irradiation on RPVs is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory to study the annealing response, or ''recovery'' of several irradiated RPV steels. The fracture toughness is one of the important properties used in the evaluation of the integrity of RPVs. Optimally, the fracture toughness is measured directly by fracture toughness specimens, such as compact tension or precracked Charpy specimens, but is often inferred from the results of Charpy V-notch impact specimens. The experimental results are compared to the predictions of models for embrittlement recovery which have been developed by Eason et al. Some of the issues in annealing that still need to be resolved are discussed

  13. Comparison between thermal annealing and ion mixing of multilayered Ni-W films on Si. II

    International Nuclear Information System (INIS)

    Pai, C.S.; Lau, S.S.; Poker, D.B.; Hung, L.S.

    1985-01-01

    The reactions between bilayered Ni/W films and Si substrates induced by thermal annealing and ion mixing were investigated and compared. Samples were prepared by electron-beam sequential deposition of Ni and W onto the Si substrates and following by either furnace annealing (approx. 200--900 0 C) or ion mixing (approx. 2 x 10 15 -- 4 x 10 16 86 Kr + ions/cm 2 ). The reactions were analyzed by Rutherford backscattering and x-ray diffraction (Read camera). Thermal annealing of both W/Ni/Si and Ni/W/Si samples led to the formation of Ni silicide next to the Si substrate and W silicide on the sample surface (layer reversal between Ni and W in the Ni/W/Si case). Ion mixing of W/Ni/Si samples led to the formation of Ni silicide with a thin layer of Ni-W-Si mixture located at the sample surface. For Ni/W/Si samples a ternary amorphous mixture of Ni-W-Si was obtained with ion mixing. These reactions were rationalized in terms of the mobilities of various atoms and the intermixings between layers

  14. Investigation of charge compensation in indium-doped tin dioxide by hydrogen insertion via annealing under humid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Ken, E-mail: Watanabe.Ken@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); International Center for Young Scientists (ICYS-MANA), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ohsawa, Takeo; Ross, Emily M., E-mail: emross@hmc.edu; Adachi, Yutaka; Haneda, Hajime [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakaguchi, Isao; Takahashi, Ryosuke [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-kouen Kasuga, Fukuoka 816-8580 (Japan); Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de [Paul-Drude-Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Materials Department, University of California, Santa Barbara, California 93106 (United States); White, Mark E.; Tsai, Min-Ying; Speck, James S., E-mail: speck@ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106 (United States); Ohashi, Naoki, E-mail: Ohashi.Naoki@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-kouen Kasuga, Fukuoka 816-8580 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)

    2014-03-31

    The behavior of hydrogen (H) as an impurity in indium (In)-doped tin dioxide (SnO{sub 2}) was investigated by mass spectrometry analyses, with the aim of understanding the charge compensation mechanism in SnO{sub 2}. The H-concentration of the In-doped SnO{sub 2} films increased to (1–2) × 10{sup 19} cm{sup −3} by annealing in a humid atmosphere (WET annealing). The electron concentration in the films also increased after WET annealing but was two orders of magnitude less than their H-concentrations. A self-compensation mechanism, based on the assumption that H sits at substitutional sites, is proposed to explain the mismatch between the electron- and H-concentrations.

  15. Investigation of charge compensation in indium-doped tin dioxide by hydrogen insertion via annealing under humid conditions

    International Nuclear Information System (INIS)

    Watanabe, Ken; Ohsawa, Takeo; Ross, Emily M.; Adachi, Yutaka; Haneda, Hajime; Sakaguchi, Isao; Takahashi, Ryosuke; Bierwagen, Oliver; White, Mark E.; Tsai, Min-Ying; Speck, James S.; Ohashi, Naoki

    2014-01-01

    The behavior of hydrogen (H) as an impurity in indium (In)-doped tin dioxide (SnO 2 ) was investigated by mass spectrometry analyses, with the aim of understanding the charge compensation mechanism in SnO 2 . The H-concentration of the In-doped SnO 2 films increased to (1–2) × 10 19  cm −3 by annealing in a humid atmosphere (WET annealing). The electron concentration in the films also increased after WET annealing but was two orders of magnitude less than their H-concentrations. A self-compensation mechanism, based on the assumption that H sits at substitutional sites, is proposed to explain the mismatch between the electron- and H-concentrations

  16. Organic products from Ca14Co3 autoradiolysis: effects of thermal annealing

    International Nuclear Information System (INIS)

    Albarran S, M.G.; Collins, K.E.; Collins, C.H.

    1986-01-01

    Autoradiolysis of Ca 14 Co 3 produces several different low molecular mass organic compounds which can be conveniently observed after ion exclusion-partition chromatographic separation of the dissolved sample, provided that the solid was prepared with high specific activity carbon-14 and has been stored for a sufficiently long period. Subsequent thermal annealing changes the distribution of these observed compounds, demonstrating that chemical reactions of the precursor species take place in the solid Ca 14 Co 3 matrix. Specifically, the following products were observed after an autoradiolytic dose of 5 MGy: methanol, formaldehyde, formic acid, oxalic acid, glyoxylic acid, glycolic acid and acetic acid, with-G-values ranging from 5x10 -6 to 2x10 -3 . Isochronal annealing to 500 0 C markedly changes the yields of carbon-14 labelled formic and acetic acids but has lesser effects on the other acidic products. This indicates that several different precursor species are present in the autoradiolyzed solid. (Author) [pt

  17. Thermal annealing and recoil reactions of 128I atoms in thermal neutron activated iodate-nitrate mixed crystals

    International Nuclear Information System (INIS)

    Mishra, S.P.; Sharma, R.B.

    1983-01-01

    Recoil reaction of 128 I atoms in neutron irradiated mixed crystals (iodate-nitrate) have been studied by thermal annealing methods. The retention of 128 I (i.e. radioactivity of 128 I retained in the parent chemi cal form) decreases sharply in the beginning and then attains saturation value with the increase in concentration of nitrate. The annealing followed the usual characteristic pattern, viz., a steep rise in retention within the first few minutes and then a saturation value thereafter but these saturation values in case of mixed crystals are lower in comparison to those of pure iodate targets. The process obeys simple first order kinetics and the activation energy obtained are of lower order than those obtained in case of pure targets. The results are discussed in the light of present ideas and the role of nitrate ion and its radiolytic products have also been invoked. (author)

  18. Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films.

    Science.gov (United States)

    Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K

    2014-10-21

    Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.

  19. Effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Tong Liuniu; Wang Yichao; He Xianmei; Han Huaibin; Xia Ailin; Hu Jinlian

    2012-01-01

    We explore the effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles synthesized by the sol-gel method. X-ray diffraction and x-ray photoelectron spectroscopy data show evidence that Cr has been incorporated into the wurtzite ZnO lattice as Cr 2+ ions substituting for Zn 2+ ions without any detectable secondary phase in as-synthesized Zn 0.97 Cr 0.03 O nanopowders. The room temperature magnetization measurements reveal a large enhancement of saturation magnetization M s as well as an increase of coercivity of H 2 -annealed Zn 0.97 Cr 0.03 O:H samples. It is found that the field-cooled magnetization curves as a function of temperature from 40 to 400 K can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H 2 -annealed Zn 0.97 Cr 0.03 O:H nanoparticles are almost doubled upon H 2 -annealing. Photoluminescence measurements show evidence that the shallow donor defect or/and defect complexes such as hydrogen occupying an oxygen vacancy H o may play an important role in the origin of H 2 -annealing induced enhancement of ferromagnetism in Cr-H codoped ZnO nanoparticles. - Graphical Abstract: The H 2 -annealing induced enhancement of room temperature ferromagnetism in Cr-doped ZnO nanoparticles is observed. It is found that the field-cooled M-T curves can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H 2 -annealed Zn 0.97 Cr 0.03 O:H nanoparticles are almost doubled upon H 2 -annealing. The PL data show evidence that the hydrogen related shallow donor defect or/and defect complexes may be responsible for it. Display Omitted Highlights: ► The H 2 -annealing induced a large enhancement of

  20. The effect of low temperature neutron irradiation and annealing on the thermal conductivity of advanced carbon-based materials

    International Nuclear Information System (INIS)

    Barabash, V.; Mazul, I.; Latypov, R.; Pokrovsky, A.; Wu, C.H.

    2002-01-01

    Several carbon-based materials (carbon fibre composites NB 31, NS 31 and UAM-92, doped graphite RGTi-91), were irradiated at about 90 deg. C in the damage dose range 0.0021-0.13 dpa. Significant reduction of the thermal conductivity of all materials was observed (e.g. at damage dose of ∼0.13 dpa the thermal conductivity degraded up to level of ∼2-3% of the initial values). However, saturation of this effect was observed starting at a dose of ∼0.06 dpa. The effect of annealing at 250 and 350 deg. C on the recovery of thermal conductivity of NB 31 and NS 31 was studied and it was shown this annealing can significantly improve thermal conductivity (∼2.5-3 times). The data on the degradation of the thermal conductivity after additional irradiation after annealing is also reported

  1. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  2. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  3. Implantation temperature and thermal annealing behavior in H{sub 2}{sup +}-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Li, B.S., E-mail: b.s.li@impcas.ac.cn; Wang, Z.G.; Jin, J.F.

    2013-12-01

    The effects of hydrogen implantation temperature and annealing temperature in 6H-SiC are studied by the combination of Rutherford backscattering in channeling geometry (RBS/C), high-resolution X-ray diffraction (HRXRD) and scanning electron microscopy (SEM). 6H-SiC wafers were implanted with 100 keV H{sub 2}{sup +} ions to a fluence of 2.5 × 10{sup 16} H{sub 2}{sup +} cm{sup −2} at room temperature (RT), 573 K and 773 K. Post-implantation, the samples were annealing under argon gas flow at different temperatures from 973 K to 1373 K for isochronal annealing (15 min). The relative Si disorder at the damage peak for the sample implanted at RT decreases gradually with increasing annealing temperature. However, the reverse annealing effect is found for the samples implanted at 573 K and 773 K. As-implantation, the intensity of in-plane compressive stress is the maximum as the sample was implanted at RT, and is the minimum as the sample was implanted at 573 K. The intensity of in-plane compressive stress for the sample implanted at RT decreases gradually with increasing annealing temperature, while the intensities of in-plane compressive stress for the sample implanted at 573 K and 773 K show oscillatory changes with increasing annealing temperature. After annealing at 1373 K, blisters and craters occur on the sample surface and their average sizes increase with increasing implantation temperature.

  4. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  5. Enhancing electron transport in Si:P delta-doped devices by rapid thermal anneal

    International Nuclear Information System (INIS)

    Goh, K. E. J.; Augarten, Y.; Oberbeck, L.; Simmons, M. Y.

    2008-01-01

    We address the use of rapid thermal anneal (RTA) to enhance electron mobility and phase coherent transport in Si:P δ-doped devices encapsulated by low temperature Si molecular beam epitaxy while minimizing dopant diffusion. RTA temperatures of 500-700 deg. C were applied to δ-doped layers encapsulated at 250 deg. C. From 4.2 K magnetotransport measurements, we find that the improved crystal quality after RTA increases the mobility/mean free path by ∼40% and the phase coherence length by ∼25%. Our results suggest that the initial capping layer has near optimal crystal quality and transport improvement achieved by a RTA is limited

  6. Effects of rapid thermal annealing on the optical and electrical properties of InN epilayers

    International Nuclear Information System (INIS)

    Shu, G W; Wu, P F; Liu, Y W; Wang, J S; Shen, J L; Lin, T Y; Pong, P J; Chi, G C; Chang, H J; Chen, Y F; Lee, Y C

    2006-01-01

    We studied the optical and electrical properties of InN epilayers with rapid thermal annealing (RTA). The intensity of the photoluminescence (PL) and the carrier mobility were found to increase as the temperature of RTA was increased. We suggest that the formation of compensating acceptors (indium vacancies) after RTA is responsible for the improvement of the quality in InN. The dependence of the PL emission peak on carrier concentration provides a possible method for estimating the carrier concentration in degenerate InN. (letter to the editor)

  7. Formation of Au nanoparticles in sapphire by using Ar ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Zhou, L.H.; Zhang, C.H.; Yang, Y.T.; Li, B.S.; Zhang, L.Q.; Fu, Y.C.; Zhang, H.H.

    2009-01-01

    In this paper, we present results of the synthesis of gold nanoclusters in sapphire, using Ar ion implantation and annealing in air. Unlike the conventional method of Au implantation followed by thermal annealing, Au was deposited on the surface of m- and a- cut sapphire single crystal samples including those pre-implanted with Ar ions. Au atoms were brought into the substrate by subsequent implantation of Ar ions to form Au nanoparticles. Samples were finally annealed stepwisely in air at temperatures ranging from 400 to 800 deg. C and then studied using UV-vis absorption spectrometry, transmission electron microscopy and Rutherford backscattered spectrometry. Evidence of the formation Au nanoparticles in the sapphire can be obtained from the characteristic surface plasmon resonance (SPR) absorption band in the optical absorption spectra or directly from the transmission electron microscopy. The results of optical absorption spectra indicate that the specimen orientations and pre-implantation also influence the size and the volume fraction of Au nanoparticles formed. Theoretical calculations using Maxwell-Garnett effective medium theory supply a good interpretation of the optical absorption results.

  8. Highly Efficient Organic UV Photodetectors Based on Polyfluorene and Naphthalenediimide Blends: Effect of Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Gorkem Memisoglu

    2012-01-01

    Full Text Available A solution-processed organic ultraviolet photodetector (UV-PD is introduced. The active layer of the UV-PD consists of poly(9,9-dioctyl fluorenyl-2,7–yleneethynylene (PFE and N,N′-bis-n-butyl-1,4,5,8- naphthalenediimide (BNDI with a weight ratio of 3 : 1 in chloroform. The effect of thermal annealing on the device properties was investigated from room temperature to 80∘C. The full device structure of ITO/PEDOT:PSS/PFE:BNDI (3 : 1/Al gave responsivity of 410 mA/W at −4 V under 1 mW/cm2 UV light at 368 nm when 60∘C of annealing temperature was used during its preparation. The devices that were annealed over the crystallization temperature of PFE showed a charge transfer resistance increase and a mobility decrease.

  9. Influence of Thermal Annealing on the Microstructural Properties of Indium Tin Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Nam; Kim, Seung Bin [Pohang University of Science and Technology, Pohang (Korea, Republic of); Choi, Hyun Chul [Chonnam National University, Gwangju (Korea, Republic of)

    2012-01-15

    In this work, we studied the microstructural changes of ITO during the annealing process. ITO nanoparticles were prepared by the sol-gel method using indium tin hydroxide as the precursor. The prepared sample was investigated using TEM, powder XRD, XPS, DRIFT, and 2D correlation analysis. The O 1s XPS spectra suggested that the microstructural changes during the annealing process are closely correlated with the oxygen sites of the ITO nanoparticles. The temperature-dependent in situ DRIFT spectra suggested that In-OH in the terminal sites is firstly decomposed and, then, Sn-O-Sn is produced in the ITO nanoparticles during the thermal annealing process. Based on the 2D correlation analysis, we deduced the following sequence of events: 1483 (due to In-OH bending mode) → 2268, 2164 (due to In-OH stretching mode) → 1546 (due to overtones of Sn- O-Sn modes) → 1412 (due to overtones of Sn-O-Sn modes) cm{sup -1}.

  10. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits—A comparative study

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing......Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver...... kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted...

  11. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits-A comparative study

    International Nuclear Information System (INIS)

    Pantleon, Karen; Somers, Marcel A.J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted to be interpreted in terms of recovery, recrystallization and grain growth.

  12. Effects of thermal annealing on the performance of Al/ZnO nanorods/Pt structure ultraviolet photodetector

    International Nuclear Information System (INIS)

    Zhou Hai; Fang Guojia; Liu Nishuang; Zhao Xingzhong

    2011-01-01

    Highlights: → Schottky barrier ultraviolet photodetectors were obtained by sputtering Pt electrode and evaporating Al electrode on the top of ZnO nanorod arrays with thermal treatment. When annealing temperature was up to 300 deg. C, the performance of the PDs was improved with the great decrease of response and recovery times. → For annealing temperature at 300 deg. C and above, the responsivity decreases with increasing annealing temperature. → The ratio of detectivity (D254* to D546*) was calculated as high as 103 for all PDs annealed at 300 deg. C and above. - Abstract: ZnO nanorod arrays were fabricated on ZnO coated glass substrate by hydrothermal method. Schottky barrier ultraviolet photodetectors (PDs) were obtained by sputtering Pt electrode and evaporating Al electrode on the top of ZnO nanorod arrays with thermal treatment. It is illustrated that Schottky contacts at the electrode/ZnO NRs interface were formed at the annealing temperature of 300 deg. C and above. When annealing temperature was up to 300 o C, the performance of the PDs was improved with the great decrease of response and recovery times. At the forward bias of 2 V, the Schottky contact PDs showed the biggest responsivity and the best detectivity at the annealing temperature of 300 deg. C. For annealing temperature at 300 deg. C and above, the responsivity decreases with increasing annealing temperature and the ratio of detectivity (D 254 * to D 546 *) was calculated as high as 10 3 for all PDs annealed at 300 deg. C and above.

  13. Compositional changes in the channel layer of an amorphous In–Ga–Zn-O thin film transistor after thermal annealing

    International Nuclear Information System (INIS)

    Kang, Jiyeon; Lee, Su Jeong; Myoung, Jae-Min; Kim, Chul-Hong; Chae, Gee Sung; Jun, Myungchul; Hwang, Yong Kee; Lee, Woong

    2012-01-01

    In order to investigate the possible reason for the improved device performances of amorphous In–Ga–Zn-O (a-IGZO) thin film transistors after thermal annealing, changes in the elemental concentrations in the a-IGZO channel regions and related device performances due to thermal annealing were observed. It was found that thermal annealing introduces a substantial level of oxygen deficiencies in the channel layer accompanying significantly enhanced device performances. The improved device performances are attributed to the oxygen deficiency which is believed to be averaged over the entire structure to function as shallow donors increasing the carrier concentrations. Such a deduction was supported by the changes in the absorption spectra of the a-IGZO films with various thermal histories. (paper)

  14. Thermal properties of hydrogenated liquid natural rubber

    Science.gov (United States)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  15. Thermal properties of hydrogenated liquid natural rubber

    International Nuclear Information System (INIS)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-01-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion

  16. Thermal properties of hydrogenated liquid natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  17. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gollu, Sankara Rao, E-mail: sankar.gollu@gmail.com [Plastic Electronics and Energy Lab (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Sharma, Ramakant, E-mail: diptig@iitb.ac.in; G, Srinivas, E-mail: diptig@iitb.ac.in; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Lab (PEEL) Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2014-10-15

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO{sub 3}/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO{sub 3} layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  18. Origin of two maxima in specific heat in enthalpy relaxation under thermal history composed of cooling, annealing, and heating.

    Science.gov (United States)

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2016-12-01

    The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.

  19. The solubility and diffusivity of hydrogen in well-annealed and deformed iron

    International Nuclear Information System (INIS)

    Kiuchi, K.; McLellan, R.B.

    1983-01-01

    It has been shown that a large volume of data for the solubility of hydrogen in iron is affected by spurious surface conditions. Arrhenius plots of solubility data in the temperature range 300-1750 K, which are free of such effects, exhibit a temperature variation which, despite the low H-solubility in the entire temperature range, is not consistent with regular mixing statistics. This departure from regular behavior is consistent with the thermal activation of H atoms into energetically less favorable octahedral sites as the temperature is increased. The enhancement in H-solubility caused by the cold deformation of iron can be understood in terms of a simple Maxwell-Boltzmann distribution of H atoms between ''normal'' lattice sites and ''trapping'' sites of depth 34 kJ/mol. The 62 currently existing sets of data for the diffusivity of hydrogen through b.c.c. iron exhibit a large degree of mutual inconsistency. Exhaustive statistical analysis of this large data mass has shown that only those data obtained by electrochemical methods and H 2 -gas equilibration methods using UHV techniques and Pd-coated membranes are reliable. The problem of H-diffusion in deformed iron has been analysed using a semi-quantitative model in which the retarding effect of trapping sites on the diffusivity is partially compensated by a ''pipe'' diffusion contribution along dislocations. It is shown that this model is in accord with the diffusivities measured in deformed iron when data not encumbered by spurious surface effects are considered

  20. Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoanapatite, and Durango apatite: experimental results

    International Nuclear Information System (INIS)

    Ravenhurst, C.E.; Roden-Tice, M.K.; Miller, D.S.

    2003-01-01

    It is well known that the optically measured lengths of fission tracks in apatite crystals are a function of etching conditions, crystallographic orientation of the track, composition of the crystal, and the state of thermal annealing. In this study we standardize etching conditions and optimize track length measurability by etching until etch pits formed at the surface of each apatite crystal reached widths of about 0.74 μm. Etching times using 5M HNO 3 at 21 o C were 31 s for Otter Lake, Quebec, fluorapatite; 47 s for Durango, Mexico, apatite; 33 s for Portland, Connecticut, manganoanapatite; and 11 s for Bamle, Norway, chlorapatite. An etching experiment using two etchant strengths (5M and 1.6M HNO 3 ) revealed that, despite significant differences in etch pit shape, fission-track length anisotropy with respect to crystallographic orientation of the tracks is not a chemical etching effect. A series of 227 constant-temperature annealing experiments were carried out on nuclear reactor induced tracks in oriented slices of the apatites. After etching, crystallographic orientations of tracks were measured along with their lengths. The 200-300 track lengths measured for each slice were ellipse-fitted to give the major (c crystallographic direction) and minor (a crystallographic direction) semi-axes used to calculate equivalent isotropic lengths. The equivalent isotropic length is more useful than mean length for thermal history analysis because the variation caused by anisotropy has been removed. Using normalized etching procedures and equivalent isotropic length data, we found that the fluorapatite anneals most readily, followed by Durango apatite, manganoanapatite, and lastly chlorapatite. (author)

  1. Optical properties of thermally annealed CdZnSe/ZnSe quantum dots

    International Nuclear Information System (INIS)

    Margapoti, Emanuela

    2010-01-01

    To analyse the diffusion characteristics, photoluminescence (PL) spectroscopy has been carried out in extensive detail on single, as well as, ensembles of thermally annealed (TA) CdSe/ZnSe QDs. For a series of QD-ensembles, each annealed for t A = 30 s at temperatures from T A = 300-550 C, the change in the QD-composition has been calculated from the blue-shift of the exciton ground-state PL-emission, using a concentration function based on Fick's laws of diffusion. The diffusion length (L D ) and the activation energy (E A ) have been determined thereof. For the studied QDs, E A has been evaluated to be 2.2 eV. Additionally, TA results also in an enhancement of the PL-intensity and reduction of the full-width-at-half maximum (FWHM) of the spectra. This point towards an increased homogeneity of the QD-size and composition, and decrease in the concentration of defects around the QDs. For single CdSe/ZnSe QDs, TA has been varied from 100-240 C, in steps for 20 C, with t A kept fixed at 30 s. Finally, the evolution of the magneto-optic response with post-growth thermal annealing has been studied for both individual QDs and QD-ensembles. An external magnetic field, applied perpendicular to the plane of the QDs (Faraday configuration), results in Zeeman spin splitting of the ground exciton state. The emissions from the Zeeman-split states are left and right circularly polarized and from the degree of circular polarization (DCP), as well as, the spectral separation of the PL-peaks, the g-factor can be estimated. For CdSe/ZnSe QD-ensembles, the g-factor has been observed to change sign with TA. (orig.).

  2. Optical properties of thermally annealed CdZnSe/ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Margapoti, Emanuela

    2010-07-01

    To analyse the diffusion characteristics, photoluminescence (PL) spectroscopy has been carried out in extensive detail on single, as well as, ensembles of thermally annealed (TA) CdSe/ZnSe QDs. For a series of QD-ensembles, each annealed for t{sub A} = 30 s at temperatures from T{sub A} = 300-550 C, the change in the QD-composition has been calculated from the blue-shift of the exciton ground-state PL-emission, using a concentration function based on Fick's laws of diffusion. The diffusion length (L{sub D}) and the activation energy (E{sub A}) have been determined thereof. For the studied QDs, E{sub A} has been evaluated to be 2.2 eV. Additionally, TA results also in an enhancement of the PL-intensity and reduction of the full-width-at-half maximum (FWHM) of the spectra. This point towards an increased homogeneity of the QD-size and composition, and decrease in the concentration of defects around the QDs. For single CdSe/ZnSe QDs, TA has been varied from 100-240 C, in steps for 20 C, with t{sub A} kept fixed at 30 s. Finally, the evolution of the magneto-optic response with post-growth thermal annealing has been studied for both individual QDs and QD-ensembles. An external magnetic field, applied perpendicular to the plane of the QDs (Faraday configuration), results in Zeeman spin splitting of the ground exciton state. The emissions from the Zeeman-split states are left and right circularly polarized and from the degree of circular polarization (DCP), as well as, the spectral separation of the PL-peaks, the g-factor can be estimated. For CdSe/ZnSe QD-ensembles, the g-factor has been observed to change sign with TA. (orig.).

  3. Thermal annealing and pressure effects on BaFe2-xCoxAs2 single crystals.

    Science.gov (United States)

    Shin, Dongwon; Jung, Soon-Gil; Prathiba, G; Seo, Soonbeom; Choi, Ki-Young; Kim, Kee Hoon; Park, Tuson

    2017-11-26

    We investigate the pressure and thermal annealing effects on BaFe2-xCoxAs2 (Co-Ba122) single crystals with x = 0.1 and 0.17 via electrical transport measurements. The thermal annealing treatment not only enhances the superconducting transition temperature (Tc) from 9.6 to 12.7 K for x = 0.1 and from 18.1 to 21.0 K for x = 0.17, but also increases the antiferromagnetic transition temperature (TN). Simultaneous enhancement of Tc and TN by the thermal annealing treatment indicates that thermal annealing could substantially improve the quality of the Co-doped Ba122 samples. Interestingly, Tc of the Co-Ba122 compounds shows a scaling behavior with a linear dependence on the resistivity value at 290 K, irrespective of tuning parameters, such as chemical doping, pressure, and thermal annealing. These results not only provide an effective way to access the intrinsic properties of the BaFe2As2 system, but also may shed a light on designing new materials with higher superconducting transition temperature. © 2017 IOP Publishing Ltd.

  4. Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus

    Science.gov (United States)

    Zhao, Chuan; Sekhar, M. Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong

    2018-06-01

    Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.

  5. Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies

    International Nuclear Information System (INIS)

    Babonneau, D; Abadias, G; Toudert, J; Girardeau, T; Fonda, E; Micha, J S; Petroff, F

    2008-01-01

    The comprehensive study of C/FePt granular multilayers prepared by ion-beam sputtering at room temperature and subsequent annealing is reported. The as-deposited multilayers consist of carbon-encapsulated FePt nanoparticles (average size ∼3 nm) with a disordered face-centered-cubic structure. The effects of thermal annealing on the structural and magnetic properties are investigated by using dedicated ex situ and in situ techniques, including high-resolution transmission electron microscopy, extended x-ray absorption fine structure, magnetometry, and coupled grazing incidence small-angle x-ray scattering and x-ray diffraction. Our structural data show that the particle size and interparticle distance increase slightly with annealing at temperatures below 790 K by thermally activated migration of Fe and Pt atoms. We find that thermal annealing at temperatures above 870 K results in the dramatic growth of the FePt nanoparticles by coalescence and their gradual L1 0 ordering. In addition, we observe a preferential graphitization of the carbon matrix, which provides protection against oxidation for the FePt nanoparticles. Magnetization measurements indicate that progressive magnetic hardening occurs after annealing. The dependences of the blocking temperature, saturation magnetization, coercivity, and magnetocrystalline anisotropy energy on the annealing temperature are discussed on the basis of the structural data

  6. Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations

    KAUST Repository

    Vaughn, Justin T.

    2012-05-01

    A fluorinated, 6FDA based polyamide-imide is investigated for the purification of CH 4 from CO 2 and H 2S containing gas streams. Dense polymer films were thermally annealed and showed that increased annealing temperatures at constant annealing time caused transport behavior that does not resemble physical aging. Free volume increased after annealing at 200°C for 24h relative to annealing at 150°C for the same time. CO 2 and CH 4 permeabilities and diffusivities did not decrease as a result of the higher annealing temperature, and in fact, were shown to increase slightly. A change to the intrinsic microstructure that cannot be described by simple, densification based physical aging is hypothesized to be the reason for this trend. Furthermore, annealing increased CO 2 induced plasticization resistance and a temperature of 200°C was shown to have the greatest effect on plasticization suppression. Annealing at 200°C for 24h suppressed pure gas CO 2 plasticization up to 450psia. Fluorescence spectroscopy revealed increased intramolecular charge transfer, which is presumably due to increased electron conjugation over the N-phenyl bond. Additionally, intermolecular charge transfer increased with thermal annealing, as inferred from fluorescence intensity measurements and XRD patterns. 50/50 CO 2/CH 4 mixed gas permeation measurements reveal stable separation performance up to 1000psia. Ternary mixed gas feeds containing toluene/CO 2/CH 4 and H 2S/CO 2/CH 4 show antiplasticization, but more importantly, selectivity losses due to plasticization did not occur up to 900psia of total feed pressure. These results show that the polyamide-imide family represents a promising class of separation materials for aggressive acid gas purifications. © 2012 Elsevier B.V.

  7. Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations

    KAUST Repository

    Vaughn, Justin T.; Koros, William J.; Johnson, J.R.; Karvan, Oguz

    2012-01-01

    A fluorinated, 6FDA based polyamide-imide is investigated for the purification of CH 4 from CO 2 and H 2S containing gas streams. Dense polymer films were thermally annealed and showed that increased annealing temperatures at constant annealing time caused transport behavior that does not resemble physical aging. Free volume increased after annealing at 200°C for 24h relative to annealing at 150°C for the same time. CO 2 and CH 4 permeabilities and diffusivities did not decrease as a result of the higher annealing temperature, and in fact, were shown to increase slightly. A change to the intrinsic microstructure that cannot be described by simple, densification based physical aging is hypothesized to be the reason for this trend. Furthermore, annealing increased CO 2 induced plasticization resistance and a temperature of 200°C was shown to have the greatest effect on plasticization suppression. Annealing at 200°C for 24h suppressed pure gas CO 2 plasticization up to 450psia. Fluorescence spectroscopy revealed increased intramolecular charge transfer, which is presumably due to increased electron conjugation over the N-phenyl bond. Additionally, intermolecular charge transfer increased with thermal annealing, as inferred from fluorescence intensity measurements and XRD patterns. 50/50 CO 2/CH 4 mixed gas permeation measurements reveal stable separation performance up to 1000psia. Ternary mixed gas feeds containing toluene/CO 2/CH 4 and H 2S/CO 2/CH 4 show antiplasticization, but more importantly, selectivity losses due to plasticization did not occur up to 900psia of total feed pressure. These results show that the polyamide-imide family represents a promising class of separation materials for aggressive acid gas purifications. © 2012 Elsevier B.V.

  8. Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ling [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049, China and School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Fan, Lina; Li, Yanhuai; Song, Zhongxiao; Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn, E-mail: chlliu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Chunliang, E-mail: mafei@mail.xjtu.edu.cn, E-mail: chlliu@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-03-15

    Amorphous In–Ga–Zn oxide (IGZO) thin films were prepared using radio frequency magnetron sputtering at room temperature. Upon thermal annealing at temperatures even up to 500 °C, the amorphous characteristics were still maintained, but the electronic properties could be considerably enhanced. This could be ascribed to the increased optical band gap and the increased oxygen vacancies, as corroborated by the microstructure characterizations. In addition, the surface became smoother upon thermal annealing, guaranteeing good interface contact between electrode and a-IGZO. The optical transmittance at 400–800 nm exceeded 90% for all samples. All in all, thermal annealing at appropriate temperatures is expected to improve the performances of relevant a-IGZO thin film transistors.

  9. Effect of Thermal Annealing on Carbon in In-situ Phosphorous-Doped Si1-xCx films

    International Nuclear Information System (INIS)

    Adam, Thomas; Loubet, Nicolas; Reznicek, Alexander; Paruchuri, Vamsi; Sampson, Ron; Sadana, Devendra

    2012-01-01

    The effect of thermal heat treatment on carbon in in-situ phosphorous-doped silicon-carbon is studied as a function of annealing temperature and type. Films of 0 to 2% carbon were deposited using cyclic chemical vapor deposition at reduced pressures. Secondary ion-mass spectroscopy and high-resolution X-ray diffraction were employed to extract the total and substitutional carbon concentration in samples with phosphorous levels of mid-10 20 cm -3 . It was found that millisecond laser annealing drastically improves substitutionality while high thermal budget treatments (furnace, rapid-thermal, or spike annealing) resulted in an almost complete loss of substitutional carbon, independent of preceding or subsequent laser heat treatments.

  10. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    Directory of Open Access Journals (Sweden)

    Joong-Won Shin

    2017-07-01

    Full Text Available In this paper, we investigate a low thermal budget post-deposition-annealing (PDA process for amorphous In-Ga-ZnO (a-IGZO oxide semiconductor thin-film-transistors (TFTs. To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA and rapid thermal annealing (RTA methods were applied, and the results were compared with those of the conventional annealing (CTA method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C and short annealing time (2 min because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  11. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    Science.gov (United States)

    Shin, Joong-Won; Cho, Won-Ju

    2017-07-01

    In this paper, we investigate a low thermal budget post-deposition-annealing (PDA) process for amorphous In-Ga-ZnO (a-IGZO) oxide semiconductor thin-film-transistors (TFTs). To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA) and rapid thermal annealing (RTA) methods were applied, and the results were compared with those of the conventional annealing (CTA) method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C) and short annealing time (2 min) because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  12. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  13. Low temperature processed InGaZnO thin film transistor using the combination of hydrogen irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Woo; Choi, Min-Jun; Jo, Yongcheol; Chung, Kwun-Bum, E-mail: kbchung@dongguk.edu

    2014-12-01

    Highlights: • We studied the low temperature process of InGaZnO oxide thin film transistor. • Hydorgen irradiation was used for low temperature process below 150 °C. • Using hydrogen irradiation, field effect mobility of IGZO TFT was enhanced to ∼5 cm{sup 2} /Vs. • We examined the origin of improvement of device performance via electronic structure. - Abstract: Device performance of radio frequency (RF) sputtered InGaZnO (IGZO) thin film transistors (TFTs) were improved using combination post-treatment with hydrogen irradiation and low temperature annealing at 150 °C. Under the combination treatment, IGZO TFTs were significantly enhanced without changing physical structure and chemical composition. On the other hand, the electronic structure represents a dramatically modification of the chemical bonding states, band edge states below the conduction band, and band alignment. Compared to the hydrogen irradiation or low temperature annealing, the combination treatment induces the increase of oxygen deficient chemical bonding states, the shallow band edge state below the conduction band, and the smaller energy difference of conduction band offset, which can generate the increase in charge carrier and enhance the device performance.

  14. The effects of low fugacity hydrogen in duplex- and beta-annealed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Eylon, D.

    2004-01-01

    Due to its excellent combination of a high strength/weight ratio and good corrosion behavior, Ti-6Al-4V alloys are ranked among the most important advanced materials for a variety of aerospace, chemical engineering, biomaterials, marine and commercial applications. However, in many of these technological applications, this alloy is exposed to environments which can act as sources of hydrogen, and severe problems may arise based on its susceptibility to hydrogen embrittlement. Even small hydrogen concentrations might lead to failure. Consequently, a comprehensive knowledge of hydrogen-trapping interactions is necessary to better understand the trapping mechanisms, the types of the trap sites, the trapped hydrogen content, in order to determine the safe service conditions of this alloy in the aerospace industry. The objective of this paper is to investigate the role of microstructure on hydrogen absorption/desorption behavior in Ti-6Al-4V alloy, with specific emphasis on the nature of the interaction between microstructural traps and hydrogen atoms. The effect of low fugacity hydrogen on the microstructure is studied using X-ray diffraction (XRD), and electron microscopy (SEM and TEM), while the absorption and desorption characteristics are determined by means of a hydrogen determinator and thermal desorption spectroscopy (TDS), respectively. The role of microstructure on hydrogen absorption and desorption behavior is discussed in detail

  15. Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells

    Science.gov (United States)

    2013-01-01

    Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811

  16. Effect of rapid thermal annealing on InP1−xBix grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wu, X Y; Wang, K; Pan, W W; Wang, P; Li, Y Y; Song, Y X; Gu, Y; Yue, L; Xu, H; Zhang, Z P; Cui, J; Gong, Q; Wang, S M

    2015-01-01

    The effect of post-growth rapid thermal annealing on structural and optical properties of InP 1−x Bi x thin films was investigated. InPBi shows good thermal stability up to 500 °C and a modest improvement in photoluminescence (PL) intensity with an unchanged PL spectral feature. Bismuth outdiffusion from InPBi and strain relaxation are observed at about 600 °C. The InPBi sample annealed at 800 °C shows an unexpected PL spectrum with different energy transitions. (paper)

  17. BEHAVIOR OF THERMAL SPRAY COATINGS AGAINST HYDROGEN ATTACK

    OpenAIRE

    Vargas, Fabio; Latorre, Guillermo; Uribe, Iván

    2003-01-01

    The behavior of nickel and chrome alloys applied as thermal spray coatings to be used as protection against embrittlement by hydrogen is studied. Coatings were applied on a carbon steel substrate, under conditions that allow obtain different crystalline structures and porosity levels, in order to determine the effect of these variables on the hydrogen permeation kinetics and as a protection means against embrittlement caused this element. In order to establish behaviors as barriers and protec...

  18. Effect of thermal annealing on the structural and optical properties of tris-(8-hydroxyquinoline)aluminum(III) (Alq3 ) films.

    Science.gov (United States)

    Cuba, M; Muralidharan, G

    2015-05-01

    Tris-(8-hydroxyquionoline)aluminum (Alq3 ) was synthesized and coated on to a glass substrate using the dip coating method. The structural and optical properties of the Alq3 film after thermal annealing from 50°C to 300°C in 50° steps was studied. The films have been prepared with 2 to 16 layers (42-324 nm). The thickness and thermal annealing of Alq3 films were optimized for maximum luminescence yield. The Fourier transform infrared spectrum confirms the formation of quinoline with absorption in the region 700 - 500/cm. Partial sublimation and decomposition of quinoline ion was observed with the Alq3 films annealed at 300°C. The X-ray diffraction pattern of the Alq3 film annealed at 50°C to 150°C reveals the amorphous nature of the films. The Alq3 film annealed above 150°C were crystalline nature. Film annealed at 150°C exhibits a photoluminescence intensity maximum at 512 nm when excited at 390 nm. The Alq3 thin film deposited with 10 layers (220 nm) at 150°C exhibited maximum luminescence yield. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Feasibility of and methodology for thermal annealing an embrittled reactor vessel. Volume 1. Program overview. Final report

    International Nuclear Information System (INIS)

    Mager, T.R.

    1983-01-01

    An EPRI sponsored program was carried out by Westinghouse to determine the extent of fracture toughness recovery as a function of annealing time and temperature for neutron embrittlement sensitive reactor vessel material and to develop an optimal thermal anneal procedure for field applications. Program materials were three weldments fabricated by Combustion Engineering, Inc., from the same heat of A533 Grade B Class 1 plate material and the same heat of MnMoNi weld wire. The only variables were the target copper level and the welding flux which was Linde Grade 80 and Linde 0091. Weldments of 0.22, 0.36, and 0.41 wt % copper were produced. It was concluded from this study that excellent recovery of all properties could be achieved by annealing at 850 0 F (454 0 C) and above for 168 hours. Such an annealing resulted in ductile-brittle transition temperature shift recovery of 80 to 100%, and reirradiation after this annealing indicated that the ductile-brittle transition temperature shift appears to continue at the rate which would have been expected had no anneal been performed. System limitations were identified for both wet and dry annealing methods

  20. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    Science.gov (United States)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  1. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1994-01-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10 13 n/cm 2 and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed

  2. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation.

    Science.gov (United States)

    Yang, Haifeng; Zhang, Jincheng; Zhang, Chunfu; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue

    2017-07-21

    In this work, efficient mixed organic cation and mixed halide (MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with V OC of 1.02 V, J SC of 21.55 mA/cm² and FF of 76.27%. More importantly, the mixed lead halide perovskite MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ device still remains at 70.00% of its initial value, which is much better than the control MAPbI₃ device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates.

  3. Thermal Annealing Effect on Poly(3-hexylthiophene: Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer

    Directory of Open Access Journals (Sweden)

    H. Derouiche

    2013-01-01

    Full Text Available We have fabricated poly(3-hexylthiophene (P3HT/copper phthalocyanine (CuPc/fullerene (C60 ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO/poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate (PEDOT/PSS photoanode and a bathocuproine (BCP/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc0.5:C600.5/BCP/Al and ITO/PEDOT:PSS/P3HT0.3:CuPc0.3:C600.4/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation.

  4. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  5. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    International Nuclear Information System (INIS)

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang; Yang, Deren; Lu, Yunhao

    2014-01-01

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B 2 I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition

  6. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Yunhao, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn [International Center for New-Structured Materials and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-01-20

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  7. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    Science.gov (United States)

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  8. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing

    Science.gov (United States)

    Kim, Honghyuk; Guan, Yingxin; Babcock, Susan E.; Kuech, Thomas F.; Mawst, Luke J.

    2018-03-01

    Laser diodes employing a strain-compensated GaAs1-xBix/GaAs1-yPy single quantum well (SQW) active region were grown by organometallic vapor phase epitaxy (OMVPE). High resolution x-ray diffraction, room temperature photoluminescence, and real-time optical reflectance measurements during the OMVPE growth were used to find the optimum process window for the growth of the active region material. Systematic post-growth in situ thermal anneals of various lengths were carried out in order to investigate the impacts of thermal annealing on the laser device performance characteristics. While the lowest threshold current density was achieved after the thermal annealing for 30 min at 630 °C, a gradual decrease in the external differential quantum efficiency was observed as the annealing time increases. It was observed that the temperature sensitivities of the threshold current density increase while those of lasing wavelength and slope efficiency remain nearly constant with increasing annealing time. Z-contrast scanning transmission electron microscopic) analysis revealed inhomogeneous Bi distribution within the QW active region.

  9. Effects of thermal annealing on elimination of deep defects in amorphous In–Ga–Zn–O thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haochun; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hiramatsu, Hidenori [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ueda, Shigenori [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ohashi, Naoki [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Kamiya, Toshio, E-mail: tkamiya@msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2016-09-01

    We investigated the effects of thermal annealing for high-density subgap states in amorphous In–Ga–Zn–O (a-IGZO) films by focusing on low-quality defective films deposited without O{sub 2} supply (LQ films). It was found that most of the subgap states were thermally unstable and decreased dramatically by annealing at ≤ 400 °C in O{sub 2}. These defects (but with different shapes) were further reduced by 600 °C annealing, whose subgap states appeared similar to that of a-IGZO films deposited at an optimum condition (high quality, HQ films) and annealed at 300 °C. However, electron Hall mobilities and field-effect mobilities of their thin-film transistors (TFTs) were low for the LQ films/TFTs even annealed at 600 °C compared to those for the HQ films/TFTs. It implies that not only the subgap states but also heavier structural disorder deteriorated the electron transport in the LQ films. The present results also suggest that although a-IGZO deposition without O{sub 2} supply is sometimes employed in particular for DC sputtering, supplying some O{sub 2} gas would be better to produce good TFTs at lower temperatures. - Highlights: • Effects of thermal annealing on subgap states in a-In–Ga–Zn–O films were studied. • Hard X-ray photoemission spectroscopy was employed. • Low-quality films require annealing at 600 °C to make an operating transistor. • This temperature is much higher than those for high-quality films (300–400 °C). • The high temperature is required because some subgap states are very stable.

  10. The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures

    International Nuclear Information System (INIS)

    Subramaniam, S.C.; Rezazadeh, A.A.

    2006-01-01

    The effects of Fe-ion bombardment at 77 K (cold) and room temperature (RT) into single layer InGaAs, InP and multilayer InP/InGaAs HBT structures have been investigated. Annealing characteristics and RF dissipation loss measurements of Fe-ion bombarded samples at 77 K indicated good electrical isolation in n-, p-type InGaAs materials and InP/InGaAs HBT structures. Thermally stable (up to 250 deg. C) high sheet resistance (R sh ) of ∼5 x 10 6 Ω/sq has been achieved on these samples while higher R sh of ∼10 7 Ω/sq was obtained for the n-InP materials bombarded with similar conditions. Dissipation losses of 1.7 dB/cm at 10 GHz and 2.8 dB/cm at 40 GHz have been measured for the cold Fe-ion bombarded InP-based HBT structures. This result is similar to those obtained for an un-bombarded S.I. InP substrate, indicating good electrical isolation. We have also determined electron trapping levels by thermal annealing for the cold and RT Fe-ion bombarded samples. It is shown that the high resistivity achieved in the cold implanted InGaAs layer is most likely due to the creation of mid-bandgap defect levels (E C - 0.33) eV, which are created only in the cold Fe-ion bombardment. The DC isolation and RF dissipation loss analysis have been used to identify a suitable bombardment scheme for the fabrication of planar InP/InGaAs HBTs

  11. Activated Carbon Fibers "Thickly Overgrown" by Ag Nanohair Through Self-Assembly and Rapid Thermal Annealing

    Science.gov (United States)

    Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong

    2017-11-01

    Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.

  12. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    International Nuclear Information System (INIS)

    Mtangi, W.; Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M.; Nyamhere, C.

    2012-01-01

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8±0.3) meV that has been suggested as Zn i related and possibly H-complex related and (54.5±0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X Zn . The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60×10 17 cm −3 at 200 °C to 4.37×10 18 cm -3 at 800 °C.

  13. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  14. Enhanced TiC/SiC Ohmic contacts by ECR hydrogen plasma pretreatment and low-temperature post-annealing

    International Nuclear Information System (INIS)

    Liu, Bingbing; Qin, Fuwen; Wang, Dejun

    2015-01-01

    Highlights: • Low-temperature ECR microwave hydrogen plasma were pretreated for moderately doped (1 × 10"1"8 cm"−"3) SiC surfaces. • The relationship among Ohmic properties, the SiC surface properties and TiC/SiC interface properties were established. • Interface band structures were analyzed to elucidate the mechanism by which the Ohmic contacts were formed. - Abstract: We proposed an electronic cyclotron resonance (ECR) microwave hydrogen plasma pretreatment (HPT) for moderately doped (1 × 10"1"8 cm"−"3) SiC surfaces and formed ideal TiC/SiC Ohmic contacts with significantly low contact resistivity (1.5 × 10"−"5 Ω cm"2) after low-temperature annealing (600 °C). This is achieved by reducing barrier height at TiC/SiC interface because of the release of pinned Fermi level by surface flattening and SiC surface states reduction after HPT, as well as the generation of donor-type carbon vacancies, which reduced the depletion-layer width for electron tunneling after annealing. Interface band structures were analyzed to elucidate the mechanism of Ohmic contact formations.

  15. Thermal characteristics during hydrogen fueling process of type IV cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chan [Department of Fire and Disaster Prevention, Kyungil University, 33, Buhori, Hayang, Kyungsan 712-701 (Korea); Lee, Seung Hoon; Yoon, Kee Bong [Department of Mechanical Engineering, Chung Ang University, 221, Huksuk, Dongjak, Seoul 156-756 (Korea)

    2010-07-15

    Temperature increase during hydrogen fueling process is a significant safety concern of a high pressure hydrogen vessel. Hence, thermal characteristics of a Type IV cylinder during hydrogen filling process need to be understood. In this study, a series of experiments were conducted to quantify the temperature change of the cylinder during hydrogen filling to 35 MPa. Computational fluid dynamics (CFD) analysis was also conducted to simulate the conditions of the experiments. The results predicted by the CFD analysis show reasonable agreement with the experiments and the discrepancy between the CFD results and experimental results decrease with higher initial gas pressures. The upper and the lower parts of the vessel showed a temperature difference in the vertical direction. The upper gas temperature was higher than that of the lower part due to the buoyancy effect in the vessel. The maximum gas temperature was higher than the maximum temperature allowed in the ISO safety code (85 C) for the case in which the vessel was pressurized from 0 MPa to 35 MPa. This work contributes to the understanding of the thermal flow characteristics of the hydrogen filling process and notes that additional efforts should be made to guarantee the safety of a type IV cylinder during the hydrogen fueling process. (author)

  16. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  17. Effect of Thermal Annealing on Light-Induced Minority Carrier Lifetime Enhancement in Boron-Doped Czochralski Silicon

    International Nuclear Information System (INIS)

    Wang Hong-Zhe; Zheng Song-Sheng; Chen Chao

    2015-01-01

    The effect of thermal annealing on the light-induced effective minority carrier lifetime enhancement (LIE) phenomenon is investigated on the p-type Czochralski silicon (Cz-Si) wafer passivated by a phosphorus-doped silicon nitride (P-doped SiN_x) thin film. The experimental results show that low temperature annealing (below 300°C) can not only increase the effective minority carrier lifetime of P-doped SiN_x passivated boron-doped Cz-Si, but also improve the LIE phenomenon. The optimum annealing temperature is 180°C, and its corresponding effective minority carrier lifetime can be increased from initial 7.5 μs to maximum 57.7 μs by light soaking within 15 min after annealing. The analysis results of high-frequency dark capacitance-voltage characteristics reveal that the mechanism of the increase of effective minority carrier lifetime after low temperature annealing is due to the sharp enhancement of field effect passivation induced by the negative fixed charge density, while the mechanism of the LIE phenomenon after low temperature annealing is attributed to the enhancement of both field effect passivation and chemical passivation. (paper)

  18. Passivation mechanism of thermal atomic layer-deposited Al2O3 films on silicon at different annealing temperatures.

    Science.gov (United States)

    Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su

    2013-03-02

    Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.

  19. Dependence of TL-property changes of natural quartzes on aluminium contents accompanied by thermal annealing treatment

    International Nuclear Information System (INIS)

    Hashimoto, T.; Sakaue, S.; Aoki, H.; Ichino, M.

    1994-01-01

    The TL properties were investigated using both an IPDA (Intensified Photo-Diode Array) spectrometric system and a TLCI (Thermoluminescence Colour Image) method after thermal annealing treatment at several temperatures. An apparent colour change from original blue- (BTL) to red-TL(RTL) has unexpectedly occurred in a Z-cut slice of Madagascar quartz, after an annealing treatment around 1000 o C. From the TL-colour change studies of the Z-cut slice, it was confirmed that original BTL intensities are inversely proportional to the Al contents; the TLCI-patterns of the original or annealed Z-cut slice gave stripe patterns corresponding to Al impurity contents along the crystal growth direction particularly yielding an intense appearance of RTL on higher Al contents after the annealing treatment. This changeability of TL-colour towards RTL after thermal annealing treatment was found to be intimately correlated with the square of Al concentrations, although BTL clearly changed as linearly proportional to Al impurity contents. Finally, the cleavage of Al-O-Al bonds or some sites in the vicinity of Al-O-Al bonds were plausibly considered to play an important role for the formation of RTL colour centres in natural quartzes as a result of the operation of high temperature effects. (Author)

  20. CO2 Laser annealing of n-doped hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Bertolotti, M.; Ferrari, A.; Evangelisti, F.; Fiorini, P.; Proietti, M.G.

    1985-01-01

    Low power CO 2 laser annealing of n-doped a-Si:H is reported. Conductivity and its activation energy, photoconductivity, absorption coefficient and dependence of photoconductivity on light power show changes which can be interpreted as due to a better doping efficiency

  1. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    Science.gov (United States)

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  2. Effect of thermal annealing on resistance switching characteristics of Pt/ZrO2/TiN stacks

    International Nuclear Information System (INIS)

    Kim, Jonggi; Lee, Kyumin; Kim, Yonjae; Na, Heedo; Ko, Dae-Hong; Sohn, Hyunchul; Lee, Sunghoon

    2013-01-01

    In this study, the effect of thermal annealing on both the physical properties and the resistive switching properties of ZrO 2 films deposited by atomic layer deposition (ALD) method were investigated for its potential application to non-volatile memory devices. The ZrO 2 films in the Pt/ZrO 2 /TiN structure exhibited unipolar and bipolar resistance switching behaviors depending on the nature of the bias applied to Pt top electrodes for the electro-forming process. For unipolar switching, the resistance of the high resistance state (HRS) was reduced with increasing annealing temperature, accompanied with the increase of metallic Zr in the annealed ZrO 2 films. In contrast, the HRS resistance in the bipolar switching was increased while the low resistance state (LRS) resistance was decreased with increasing annealing temperature, producing a greater change in resistance. SIMS and EDX showed that the thickness of interfacial TiO x N y layer between the ZrO 2 and the TiN bottom electrode was enlarged with annealing. The enlarged TiO x N y layer was expected to produce the reduction of LRS resistance with the increase of HRS resistance in the bipolar resistance switching. - Highlights: • Effect of thermal annealing on resistive switching of ZrO 2 was investigated. • Both unipolar and bipolar switching were shown in the Pt/ZrO 2 /TiN stack. • TiO x N y interface layer was enlarged with increasing annealing temperature. • TiO x N y interface plays an important role in resistive switching properties

  3. Optical and thermal energy discharge from tritiated solid hydrogen

    International Nuclear Information System (INIS)

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-01-01

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T 2 using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs

  4. PLEPS study of thermal annealing influence on binary Fe-11.62 % Cr alloys

    International Nuclear Information System (INIS)

    Sojak, S.; Slugen, V.; Petriska, V.; Stancek, S.; Vitazek, K.; Stacho, M.; Veternikova, J.; Sabelova, V.; Krsjak, V.; Egger, W.; Ravelli, L.; Skarba, M.; Priputen, P.

    2012-01-01

    Lifetime of structural materials is one of the crucial factors for operation of nuclear power plants (NPP). Therefore, high expectations and requirements are put on these materials from the radiation, heat and mechanical resistance point of view. Even higher stresses are expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Therefore, investigation of new structural materials is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels with good characteristics as lower activation, good resistance to volume swelling, good radiation, and heat resistance (up to 550 grad C). Our research is focused on study of radiation damage simulated by ion implantations and thermal treatment evaluation of RAFM steels in form of binary Fe-Cr model alloys. Due to the defect production by ions, there was applied an approach for restoration of initial physical and mechanical characteristics of structural materials in the form of thermal annealing, with goal to decrease size and amount of accumulated defects. Experimental analysis of material damage at microstructural level was performed by Pulsed Low Energy Positron System (PLEPS) at the high intensity positron source NEPOMUC at the Munich research reactor FRM-II. (authors)

  5. Time effects in the thermal annealing of Fe/V multilayers

    CERN Document Server

    Borges, J F M

    2003-01-01

    We report a study on the structural and magnetic properties of iron-vanadium thin films grown in multilayer form and mixed by thermal treatment. The multilayer samples were annealed at 610 deg. C for times ranging from 10 to 540 min. The samples were structurally characterized by means of x-ray diffraction (XRD) and by x-ray absorption spectroscopy (XAS). The magnetic characterization was carried out with a conventional alternating gradient magnetometer (AGM) and by conversion electron Moessbauer spectroscopy (CEMS). The XRD result for the as-deposited multilayer shows a high degree of crystallinity while the CEMS result suggests an abrupt interface, since no significant contribution from vanadium in iron is observed. After the thermal treatment, the results from XRD show a phase transformation of the disordered body-centred-cubic structure (alpha-phase) into a tetragonal structure (sigma-phase) and a subsequent return to the alpha-phase. This alpha-sigma-alpha oscillation is not reported in the literature av...

  6. Phosphorus-defect interactions during thermal annealing of ion implanted silicon

    Science.gov (United States)

    Keys, Patrick Henry

    Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the

  7. Interface reactions between Pd thin films and SiC by thermal annealing and SHI irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Njoroge, E.G., E-mail: eric.njoroge@up.ac.za [Department of Physics, University of Pretoria, Pretoria (South Africa); Theron, C.C. [Department of Physics, University of Pretoria, Pretoria (South Africa); Skuratov, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Wamwangi, D. [School of Physics, University of Witwatersrand, Johannesburg (South Africa); Hlatshwayo, T.T. [Department of Physics, University of Pretoria, Pretoria (South Africa); Comrie, C.M. [MRD, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Malherbe, J.B. [Department of Physics, University of Pretoria, Pretoria (South Africa)

    2016-03-15

    The solid-state reactions between Pd thin films and 6H-SiC substrates induced by thermal annealing, room temperature swift heavy ion (SHI) irradiation and high temperature SHI irradiation have been investigated by in situ and real-time Rutherford backscattering spectrometry (RBS) and Grazing incidence X-ray diffraction (GIXRD). At room temperature, no silicides were detected to have formed in the Pd/SiC samples. Two reaction growth zones were observed in the samples annealed in situ and analysed by real time RBS. The initial reaction growth region led to formation of Pd{sub 3}Si or (Pd{sub 2}Si + Pd{sub 4}Si) as the initial phase(s) to form at a temperature of about 450 °C. Thereafter, the reaction zone did not change until a temperature of 640 °C was attained where Pd{sub 2}Si was observed to form in the reaction zone. Kinetic analysis of the initial reaction indicates very fast reaction rates of about 1.55 × 10{sup 15} at cm{sup −2}/s and the Pd silicide formed grew linear with time. SHI irradiation of the Pd/SiC samples was performed by 167 MeV Xe{sup 26+} ions at room temperature at high fluences of 1.07 × 10{sup 14} and 4 × 10{sup 14} ions/cm{sup 2} and at 400 °C at lower fluences of 5 × 10{sup 13} ions/cm{sup 2}. The Pd/SiC interface was analysed by RBS and no SHI induced diffusion was observed for room temperature irradiations. The sample irradiated at 400 °C, SHI induced diffusion was observed to occur accompanied with the formation of Pd{sub 4}Si, Pd{sub 9}Si{sub 2} and Pd{sub 5}Si phases which were identified by GIXRD analysis.

  8. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stacking...... faults. Selected area diffraction patterns and high-resolution transmission electron microscopy images show that nanowires undergo structural modifications upon annealing, suggesting a decrease of defect density following the thermal treatment....

  9. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    International Nuclear Information System (INIS)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon; Fu, Dejun; Yoon, Hyungdo

    2011-01-01

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  10. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon [Dongguk University-Seoul, Seoul (Korea, Republic of); Fu, Dejun [Wuhan University, Wuhan (China); Yoon, Hyungdo [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)

    2011-10-15

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  11. Thermally-driven hydrogen interaction with single-layer graphene on SiO2/Si substrates

    International Nuclear Information System (INIS)

    Feijo, Tais Orestes; Rolim, Guilherme Koszeniewski; Radtke, Claudio; Soares, Gabriel Vieira

    2016-01-01

    Full text: Graphene is a monolayer of carbon with sp 2 hybridization and hexagonal structure. Since all its area is exposed to the atmosphere, it is important to understand how graphene interacts with elements present in the atmosphere, such as hydrogen, oxygen and water, to control the processes of manufacturing [1]. In addition, some studies show that graphene can allow storage of hydrogen for use in fuel cells, which would contribute to the use of clean energies. This study aims to understand the thermally-driven hydrogen interaction with graphene samples. We used samples of graphene deposited on SiO 2 (285 nm) films on Si and then annealed in controlled atmosphere of deuterium (D 2 , natural abundance of 0.15%) at temperatures between 200 and 1000°C. We also investigated hydrogen desorption from graphene using samples previously treated in deuterium at 600°C and afterwards annealed in nitrogen atmosphere between 200 and 1000°C. After annealings, Nuclear Reaction Analysis (NRA) was employed to quantify deuterium, where we observed a large increase in deuterium incorporation above 400°C, with an constant D incorporation until 1000°C. We also observed that the desorption of deuterium from graphene only occurred above 800°C, although D desorption from silicon oxide samples takes place already at 600°C. Raman spectroscopy analysis was performed after each thermal treatment. Results show that defects in the graphene structure increases for higher treatment temperatures in incorporation and in desorption steps. Characterization using X-Ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) will also be presented. [1] A. C. Ferrari, et al., Nanoscale 7 (2015). (author)

  12. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  13. All-dry transferred single- and few-layer MoS2 field effect transistor with enhanced performance by thermal annealing

    Science.gov (United States)

    Islam, Arnob; Lee, Jaesung; Feng, Philip X.-L.

    2018-01-01

    We report on the experimental demonstration of all-dry stamp transferred single- and few-layer (1L to 3L) molybdenum disulfide (MoS2) field effect transistors (FETs), with a significant enhancement of device performance by employing thermal annealing in moderate vacuum. Three orders of magnitude reduction in both contact and channel resistances have been attained via thermal annealing. We obtain a low contact resistance of 22 kΩ μm after thermal annealing of 1L MoS2 FETs stamp-transferred onto gold (Au) contact electrodes. Furthermore, nearly two orders of magnitude enhancement of field effect mobility are also observed after thermal annealing. Finally, we employ Raman and photoluminescence measurements to reveal the phenomena of alloying or hybridization between 1L MoS2 and its contacting electrodes during annealing, which is responsible for attaining the low contact resistance.

  14. Thermal annealing of radiation damage in CMOS ICs in the temperature range -140 C to +375 C

    Science.gov (United States)

    Danchenko, V.; Fang, P. H.; Brashears, S. S.

    1982-01-01

    Annealing of radiation damage was investigated in the commercial, Z- and J-processes of the RCA CD4007A ICs in the temperature range from -140 C to +375 C. Tempering curves were analyzed for activation energies of thermal annealing, following irradiation at -140 C. It was found that at -140 C, the radiation-induced shifts in the threshold potentials were similar for all three processes. The radiation hardness of the Z- and J-process is primarily due to rapid annealing of radiation damage at room temperature. In the region -140 to 20 C, no dopant-dependent charge trapping is seen, similar to that observed at higher temperatures. In the unbiased Z-process n-channels, after 1 MeV electron irradiation, considerable negative charge remains in the gate oxide.

  15. Rutile TiO{sub 2} active-channel thin-film transistor using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Jin; Heo, Kwan-Jun; Yoo, Su-Chang; Choi, Seong-Gon [Chungbuk National University, Cheongju (Korea, Republic of); Chang, Seung-Wook [Samsung Display, Co., Ltd., Suwon (Korea, Republic of)

    2014-10-15

    TiO{sub 2} active-channel thin-film transistors (TFTs), in which the bottom-gate top-contact architecture was prepared with atomic layer deposition grown TiO{sub 2} as the semiconducting layer, were fabricated and then investigated based on key process parameters, such as the rapid thermal annealing (RTA) temperature. Structural analyses suggested that TiO{sub 2} films annealed at temperatures above 500 .deg. C changed from an amorphous to a rutile phase. The TFT with a TiO{sub 2} semiconductor annealed at 600 .deg. C exhibited strongly-saturated output characteristics, a much higher on/off current ratio of 4.3 x 10{sup 5}, and an electron mobility of 0.014 cm{sup 2}/Vs. Moreover, the potential for manipulating TiO{sub 2}-based TFTs with RTA methodology was demonstrated through the realization of a simple resistive-load inverter.

  16. The Effect of Thermal Annealing on the Optical Properties of a-SiC:H Films Produced by DC Sputtering Methods: I. Graphite Target Case.

    Directory of Open Access Journals (Sweden)

    Lusitra Munisa

    2003-04-01

    Full Text Available A study of the annealing effect on optical properties and disorder of hydrogenated amorphous silicon carbon (a-SiC:H films was undertaken. The films were prepared by sputtering technique using graphite target and silicon wafer in argon and hydrogen gas mixture, and then characterized by uv-vis (ultra violet-visible spectroscopy before and after annealing. Index of refraction n and absorption coefficient α of films have been determined from measurements of transmittance. The optical gap show small variation with annealing temperature, increasing with increasing annealing temperature up to 500 °C. An increase of annealing temperature leads to reduced film density and the amorphous network disorder. The experimental results are discussed in terms of deposition condition and compared to other experimental results.

  17. Thermal diffusion of hydrogen in zircaloy-2 containing hydrogen beyond terminal solid solubility

    International Nuclear Information System (INIS)

    Maki, Hideo; Sato, Masao.

    1975-01-01

    The thermal diffusion of hydrogen is one of causes of uneven hydride precipitation in zircaloy fuel cladding tubes that are used in water reactors. In the diffusion model of hydrogen in zircaloy, the effects of the hydride on the diffusibility of hydrogen has been regarded as negligibly small in comparison with that of hydrogen dissolved in the matrix. Contrary to the indications given by this model, phenomena are often encountered that cannot be explained unless hydride platelets have considerable ostensible diffusibility in zircaloy. In order to determine quantitatively the diffusion characteristics of hydrogen in zircaloy, a thermal diffusion experiment was performed with zircaloy-2 fuel cladding tubes containing hydrogen beyond the terminal solid solubility. In this experiment, a temperature difference of 20 0 --30 0 C was applied between the inside and outside surfaces of the specimen in a thermal simulator. To explain the experimental results, a modified diffusion model is presented, in which the effects of stress are introduced into Markowitz's model with the diffusion of hydrogen in the hydride taken into account. The diffusion equation derived from this model can be written in a form that ostensibly represents direct diffusion of hydride in zircaloy. The apparent diffusion characteristics of the hydride at around 300 0 C are Dsub(p)=2.3x10 5 exp(-32,000/RT), (where R:gas constant, T:temperature) and the apparent heat of transport Qsub(p) =-60,000 cal/mol. The modified diffusion model well explains the experimental results in such respects as reaches a steady state after several hours. (auth.)

  18. Effect of substrate properties and thermal annealing on the resistivity of molybdenum thin films

    International Nuclear Information System (INIS)

    Schmid, U.; Seidel, H.

    2005-01-01

    In this study, the influence of substrate properties (e.g. roughness characteristics and chemical composition) on the electrical resistivity of evaporated molybdenum thin films is investigated as a function of varying parameters, such as film thickness (25-115 nm) and post-deposition annealing with temperatures up to T PDA = 900 deg. C. A thermally oxidized silicon wafer with very low surface roughness was used as one substrate type. In contrast, a low temperature co-fired ceramics substrate with a glass encapsulant printed in thick film technology is the representative for rough surface morphology. The electrical resistivity follows the prediction of the size effect up to T PDA = 600 deg. C independent of substrate nature. On the silicon-based substrate, the thickness-independent portion of the film resistivity ρ g in the 'as deposited' state is about 29 times higher than the corresponding bulk value for a mono-crystalline sample. Thin films of this refractory metal on the SiO 2 /Si substrate exhibit an average grain size of 4.9 nm and a negative temperature coefficient of resistivity (TCR). On the glass/ceramic-based substrate, however, ρ g is half the value as compared to that obtained on the SiO 2 /Si substrate and the TCR is positive

  19. Thermal annealing behavior of niobium-implanted {alpha}-Al{sub 2}O{sub 3} under reducing environment

    Energy Technology Data Exchange (ETDEWEB)

    Jianer, Zeng; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Mingle, Gan; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Thermal annealing behavior is studied in {alpha}-Al{sub 2}O{sub 3} implanted with {sup 93}Nb{sup +} using RBS/channeling technique and optical absorption spectrometry. The samples with <0001> and <112-bar0> orientations are implanted with 300 keV and 400 keV {sup 93}Nb{sup +} ions. Thermal annealing under reducing environment (Ar+3%H{sub 2}) is employed in the temperature range from 600 to 1000degC to explore unusual materials phase. The annealing up to 1000degC for an hour does not show any essential change in RBS/channeling spectra in two kinds of samples but the significant decrease in the visible region is observed in optical absorption spectra. After annealing at 1000degC for 10 hours, the recovery of the lattice damage is detected by RBS/channeling analysis especially in (112-bar0) sample. In the optical absorption spectra, new absorption envelope appears in the ultraviolet region. The results are related to the formation of niobium metal fine particles, and the sharp distribution is realized especially in (0001) sample. (author)

  20. Ion-beam mixing and thermal annealing of Al--Nb and Al--Ta thin films

    International Nuclear Information System (INIS)

    Rai, A.K.; Bhattacharya, R.S.; Mendiratta, M.G.; Subramanian, P.R.; Dimiduk, D.M.

    1988-01-01

    Ion-beam mixing and thermal annealing of thin, alternating layers of Al and Nb, as well as Al and Ta, were investigated by selected area diffraction and Rutherford backscattering. The individual layer thicknesses were adjusted to obtain the overall compositions as Al 3 Nb and Al 3 Ta. The films were ion mixed with 1 MeV Au + ions at a dose of 1 x 10 16 ions cm/sup -2/ . Uniform mixing and amorphization were achieved for both Al--Nb and Al--Ta systems. Equilibrium crystalline Al 3 Nb and Al 3 Ta phases were formed after annealing of ion mixed amorphous films at 400 0 C for 6 h. Unmixed films, however, remained unreacted at 400 0 C for 1 h. Partial reaction was observed in the unmixed film of Al--Nb at 400 0 C for 6 h. After annealing at 500 0 C for 1 h, a complete reaction and formation of Al 3 Nb and Al 3 Ta phases in the respective films were observed. The influence of thermodynamics on the phase formation by ion mixing and thermal annealing is discussed

  1. Plasma thermal conversion of bio-oil for hydrogen production

    International Nuclear Information System (INIS)

    Guenadou, David; Lorcet, Helene; Peybernes, Jean; Catoire, Laurent; Osmont, Antoine; Gokalp, Iskender

    2012-01-01

    Numerous processes exist or are proposed for the energetic conversion of biomass. The use of thermal plasma is proposed in the frame of the GALACSY project for the conversion of bio-oil to hydrogen and carbon monoxide. For this purpose, an experimental apparatus has been built. The feasibility of this conversion at very high temperature, as encountered in thermal plasma, is examined both experimentally and numerically. This zero dimensional study tends to show that a high temperature (around 2500 K or above) is needed to ensure a high yield of hydrogen (about 50 mol%) and about 95 mol% of CO+H 2 . Predicted CO+H 2 yield and CO/H 2 ratio are consistent with measurements. It is also expected that the formation of particles and tars is hampered. Thermodynamic data of selected bio-oil components are provided in the CHEMKINNASA format. (authors)

  2. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  3. Effect of Hydrogen Post-Annealing on Transparent Conductive ITO/Ga2O3 Bi-Layer Films for Deep Ultraviolet Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Kyeong Heon; Kim, Su Jin; Park, Sang Young; Kim, Tae Geun

    2015-10-01

    The effect of hydrogen post-annealing on the electrical and optical properties of ITO/Ga2O bi-layer films, deposited by RF magnetron sputtering, is investigated for potential applications to transparent conductive electrodes of ultraviolet (UV) light-emitting diodes. Three samples--an as-deposited sample and two samples post-annealed in N2 gas and N2-H2 gas mixture--were prepared and annealed at different temperatures ranging from 100 °C to 500 °C for comparison. Among these samples, the sample annealed at 300 °C in a mixture of N2 and H2 gases shows the lowest sheet resistance of 301.3 Ω/square and a high UV transmittance of 87.1% at 300 nm.

  4. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Czech Academy of Sciences Publication Activity Database

    Krivyakin, G.K.; Volodin, V.; Kochubei, S.A.; Kamaev, G.N.; Purkrt, Adam; Remeš, Zdeněk; Fajgar, Radek; Stuchlíková, The-Ha; Stuchlík, Jiří

    2016-01-01

    Roč. 50, č. 7 (2016), s. 935-940 ISSN 1063-7826 R&D Projects: GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:67985858 Keywords : hydrogenated amorphous silicon * nanocrystals * laser annealing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.602, year: 2016

  5. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed; Najar, Adel; Ng, Tien Khee; Ooi, Boon S.

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation

  6. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  7. Influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material

    CSIR Research Space (South Africa)

    Motaung, DE

    2009-06-01

    Full Text Available variation in morphology during annealing due to the crystallization of C60. The as-prepared P3HT:C60 films have a higher surface roughness and larger cluster size compared to the as-prepared P3HT films. The thermal annealing effects on the optical microscopy...

  8. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    International Nuclear Information System (INIS)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-01-01

    A rapid thermal anneal (RTA) in an NH 3 ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 0 C in NH 3 and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (≥1000 0 C) RTA in Ar completely converted W into the low resistivity (31 μΩ cm) tetragonal WSi 2 phase. In contrast, after a prior 900 0 C RTA in NH 3 , N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi 2 formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 0 C NH 3 anneal. The NH 3 -treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 0 C, at which point some increase in contact resistance was measured

  9. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-12-15

    A rapid thermal anneal (RTA) in an NH/sub 3/ ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 /sup 0/C in NH/sub 3/ and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (greater than or equal to1000 /sup 0/C) RTA in Ar completely converted W into the low resistivity (31 ..mu cap omega.. cm) tetragonal WSi/sub 2/ phase. In contrast, after a prior 900 /sup 0/C RTA in NH/sub 3/, N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi/sub 2/ formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 /sup 0/C NH/sub 3/ anneal. The NH/sub 3/-treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 /sup 0/C, at which point some increase in contact resistance was measured.

  10. Targets for bulk hydrogen analysis using thermal neutrons

    CERN Document Server

    Csikai, J; Buczko, C M

    2002-01-01

    The reflection property of substances can be characterized by the reflection cross-section of thermal neutrons, sigma subbeta. A combination of the targets with thin polyethylene foils allowed an estimation of the flux depression of thermal neutrons caused by a bulk sample containing highly absorbing elements or compounds. Some new and more accurate sigma subbeta values were determined by using the combined target arrangement. For the ratio, R of the reflection and the elastic scattering cross-sections of thermal neutrons, R=sigma subbeta/sigma sub E sub L a value of 0.60+-0.02 was found on the basis of the data obtained for a number of elements from H to Pb. Using this correlation factor, and the sigma sub E sub L values, the unknown sigma subbeta data can be deduced. The equivalent thicknesses, to polyethylene or hydrogen, of the different target materials were determined from the sigma subbeta values.

  11. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    International Nuclear Information System (INIS)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Lu, Liu; Ren, Fan; Holzworth, M. R.; Jones, Kevin S.; Pearton, Stephen J.; Smith, David J.; Kim, Jihyun; Zhang, Ming-Lan

    2015-01-01

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing

  12. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K Jc , predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material)

  13. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Lee

    2018-01-01

    Full Text Available We investigated the effects of vacuum rapid thermal annealing (RTA on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  14. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Science.gov (United States)

    Lee, Hyun-Woo; Cho, Won-Ju

    2018-01-01

    We investigated the effects of vacuum rapid thermal annealing (RTA) on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO) thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs) with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  15. Study of thermal annealing effect on Bragg gratings photo-inscribed in step-index polymer optical fibers

    Science.gov (United States)

    Hu, X.; Kinet, D.; Mégret, P.; Caucheteur, C.

    2016-04-01

    In this paper, both non-annealed and annealed trans-4-stilbenemethanol-doped step-index polymer optical fibers were photo-inscribed using a 325 nm HeCd laser with two different beam power densities reaching the fiber core. In the high density regime where 637 mW/mm2 are used, the grating reflectivity is stable over time after the photo-writing process but the reflected spectrum is of limited quality, as the grating physical length is limited to 1.2 mm. To produce longer gratings exhibiting more interesting spectral features, the beam is enlarged to 6 mm, decreasing the power density to 127 mW/mm2. In this second regime, the grating reflectivity is not stable after the inscription process but tends to decay for both kinds of fibers. A fortunate property in this case results from the possibility to fully recover the initial reflectivity using a post-inscription thermal annealing, where the gratings are annealed at 80 °C during 2 days. The observed evolutions for both regimes are attributed to the behavior of the excited intermediate states between the excited singlet and the ground singlet state of trans- and cis-isomers as well as the temperature-dependent glassy polymer matrix.

  16. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  17. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  18. Study of the optical properties and the carbonaceous clusters in thermally-annealed CR-39 and Makrofol-E polymer-based solid-state nuclear track detectors

    International Nuclear Information System (INIS)

    El Ghazaly, M.

    2012-01-01

    The induced modifications in the optical properties of CR-39 and Makrofol-E polymer-based solid state nuclear track detectors were investigated after thermal annealing at a temperature of 200 .deg. C for different durations. The optical properties were studied using an UV-visible spectrophotometer. From the UV-visible spectra, the direct and the indirect optical band gaps, Urbach's energies, and the number of carbon atoms in a cluster were determined. The absorbance of CR-39 plastic detector was found to decrease with increasing annealing time while the absorbance of Makrofol-E decreased with increasing annealing time. The width of the tail of localized states in the band gap ΔE was evaluated with the Urbach method. The optical energy band gaps were obtained from the direct and the indirect allowed transitions in K-space. Both of the direct and the indirect band gaps of the annealed CR-39 detector decrease with increasing annealing time while in Makrofol-E, they decreased after an annealing time of 15 minute and then showed no remarkable changes for a prolonged annealing times. Urbach's energy decreased significantly for both CR-39 and Makrofol-E with increasing annealing time. The number of carbon atoms in a cluster increased in the CR-39 detector with increasing annealing time while it decreased with increasing annealing time for Makrofol-E. We may conclude that the CR-39 detector undergoes greater modifications than the Makrofol-E detector upon thermal annealing at 200 .deg. C. In conclusion, the induced modifications in the optical properties of CR-39 and Makrofol-E are correlated with the temperature and the duration of annealing.

  19. An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing

    Science.gov (United States)

    Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh

    2017-11-01

    In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.

  20. Modeling the effects of ion dose and crystallographic symmetry on the morphological evolution of embedded precipitates under thermal annealing

    International Nuclear Information System (INIS)

    Li, Kun-Dar

    2014-01-01

    Highlights: •We model the faceted precipitates formation by post-implantation annealing. •The anisotropic interfacial energy and diffusion kinetics play crucial roles. •The evolutions of faceted precipitates, including Ostwald ripening, are revealed. •The mechanism of the nucleation and growth is based on the atomic diffusion. •The effects of ion dose and crystallographic symmetry are also investigated. -- Abstract: Thermal annealing is one of the most common techniques to synthesize embedded precipitates by ion implantation process. In this study, an anisotropic phase field model is presented to investigate the effects of ion dose and crystallographic symmetry on the morphological formation and evolution of embedded precipitates during post-implantation thermal annealing process. This theoretical model provides an efficient numerical approach to understand the phenomenon of faceted precipitates formation by ion implantation. As a theoretical analysis, the interfacial energy and diffusion kinetics play prominent roles in the mechanism of atomic diffusion for the precipitates formation. With a low ion dose, faceted precipitates are developed by virtue of the anisotropic interfacial energy. As an increase of ion dose, connected precipitates with crystallographic characters on the edge are appeared. For a high ion dose, labyrinth-like nanostructures of precipitates are produced and the characteristic morphology of crystallographic symmetry becomes faint. These simulation results for the morphological evolutions of embedded precipitates by ion implantation are corresponded with many experimental observations in the literatures. The quantitative analyses of the simulations are also well described the consequence of precipitates formation under different conditions

  1. Non-thermal escape of molecular hydrogen from Mars

    Science.gov (United States)

    Gacesa, M.; Zhang, P.; Kharchenko, V.

    2012-05-01

    We present a detailed theoretical analysis of non-thermal escape of molecular hydrogen from Mars induced by collisions with hot atomic oxygen from the Martian corona. To accurately describe the energy transfer in O + H2(v, j) collisions, we performed extensive quantum-mechanical calculations of state-to-state elastic, inelastic, and reactive cross sections. The escape flux of H2 molecules was evaluated using a simplified 1D column model of the Martian atmosphere with realistic densities of atmospheric gases and hot oxygen production rates for low solar activity conditions. An average intensity of the non-thermal escape flux of H2 of 1.9 × 105 cm-2s-1 was obtained considering energetic O atoms produced in dissociative recombinations of O2+ ions. Predicted ro-vibrational distribution of the escaping H2 was found to contain a significant fraction of higher rotational states. While the non-thermal escape rate was found to be lower than Jeans rate for H2 molecules, the non-thermal escape rates of HD and D2 are significantly higher than their respective Jeans rates. The accurate evaluation of the collisional escape flux of H2 and its isotopes is important for understanding non-thermal escape of molecules from Mars, as well as for the formation of hot H2 Martian corona. The described molecular ejection mechanism is general and expected to contribute to atmospheric escape of H2 and other light molecules from planets, satellites, and exoplanetary bodies.

  2. Formation of metal-alloy nanoclusters in silica by ion implantation and annealing in selected atmosphere

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Mattei, G.; Mazzoldi, P.; Sada, C.; Zhang, X.

    2000-01-01

    The formation of binary alloy clusters in sequentially ion-implanted Au-Cu or Au-Ag silica glass has been studied as a function of the annealing atmosphere. Alloy formation has been evidenced in the as-implanted samples. The selective influence on Au precipitation of either oxygen or hydrogen annealing atmosphere governs the alloy cluster formation and the thermal stability

  3. Effects of thermal annealing on electrical characteristics of Cd/CdS/n-Si/Au-Sb sandwich structure

    International Nuclear Information System (INIS)

    Saglam, M.; Ates, A.; Guezeldir, B.; Astam, A.; Yildirim, M.A.

    2009-01-01

    In general, at the metal-semiconductor contacts, interfacial layers have been fabricated by different methods such as molecular beam epitaxy, metal organic chemical vapor deposition, sputtering and vacuum evaporation. However, all of these techniques have encountered various difficulties in the deposited films. Instead of these methods, since Successive Ionic Layer Adsorption and Reaction (SILAR) method is simple, fast, sensitive, and less costly to prepare interfacial layer, we have first employed this method in order to prepare Cd/CdS/n-Si/Au-Sb sandwich structure. For this reason, the CdS thin film has been directly formed on n-type Si substrate by means of SILAR method. The Cd/CdS/n-Si/Au-Sb sandwich structure has demonstrated clearly rectifying behaviour by the current-voltage (I-V) curves studied at room temperature. In order to observe the effect of the thermal annealing, this structure has been annealed at temperatures from 50 to 300 deg. C for 3 min in N 2 atmosphere. The characteristic parameters such as barrier height, ideality factor and series resistance of this structure have been calculated from the forward bias I-V characteristics as a function of annealing temperature with different methods. The values of n, Φ b and mean R s of the initial Cd/CdS/n-Si/Au-Sb sandwich structure were found to be 2.31, 0.790 eV and 1.86 kΩ respectively. After annealing at 300 deg. C, these values were changed to 1.89, 0.765 eV and 0.48 kΩ. It has been seen that the barrier height, ideality factor and series resistance have slightly changed with increasing annealing temperature up to 300 deg. C.

  4. Pure thermal sensitisation and pre-dose effect of OSL in both unfired and annealed quartz samples

    Energy Technology Data Exchange (ETDEWEB)

    Oniya, Ebenezer O., E-mail: ebenezer.oniya@aaua.edu.ng [Physics and Electronics Department, Adekunle Ajasin University, 342111 Akungba Akoko (Nigeria); Polymeris, George S. [Institute of Nuclear Sciences, Ankara University, Beşevler 06100, Ankara (Turkey); Jibiri, Nnamdi N. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Tsirliganis, Nestor C. [Department of Archaeometry and Physicochemical Measurements, R.C. ‘Athena’, P.O. Box 159, Kimmeria University Campus, 67100 Xanthi (Greece); Babalola, Israel A. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Kitis, George [Nuclear Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2017-06-01

    The sensitisation of quartz has attracted much attention since its thorough understanding is important in luminescence studies and dating applications. The present investigation examines the influence of pure thermal activation and predose treatments on the sensitisation of different components of linearly modulated optically stimulated luminescence (LM-OSL) measured at room temperature (RT) thereby eliminating undesired thermal quenching effects. Annealed and unfired quartz samples from Nigeria were used. The OSL measurements were carried out using an automated RISØTL/OSL reader (model-TL/OSL–DA–15). A new approach was adopted to match each of the resolved components of the RT-LM-OSL to respective thermoluminescence (TL) peaks that share the same electron trap and recombination centers. Pure thermal activation and pre-dose treatments respectively affect the sensitisation of all the components of the RT-LM-OSL in a similar manner as the one reported for the 110 °C TL peak but without thermal quenching contributions. Component C4 in annealed samples that was identified to share the same electron trap and recombination centers with the 110 °C TL peak was also proved appropriate for RT-LM-OSL, instead of the initial part of the continuous wave (CW) OSL signal, thus the methods can serve as complementary dating methods.

  5. Pure thermal sensitisation and pre-dose effect of OSL in both unfired and annealed quartz samples

    International Nuclear Information System (INIS)

    Oniya, Ebenezer O.; Polymeris, George S.; Jibiri, Nnamdi N.; Tsirliganis, Nestor C.; Babalola, Israel A.; Kitis, George

    2017-01-01

    The sensitisation of quartz has attracted much attention since its thorough understanding is important in luminescence studies and dating applications. The present investigation examines the influence of pure thermal activation and predose treatments on the sensitisation of different components of linearly modulated optically stimulated luminescence (LM-OSL) measured at room temperature (RT) thereby eliminating undesired thermal quenching effects. Annealed and unfired quartz samples from Nigeria were used. The OSL measurements were carried out using an automated RISØTL/OSL reader (model-TL/OSL–DA–15). A new approach was adopted to match each of the resolved components of the RT-LM-OSL to respective thermoluminescence (TL) peaks that share the same electron trap and recombination centers. Pure thermal activation and pre-dose treatments respectively affect the sensitisation of all the components of the RT-LM-OSL in a similar manner as the one reported for the 110 °C TL peak but without thermal quenching contributions. Component C4 in annealed samples that was identified to share the same electron trap and recombination centers with the 110 °C TL peak was also proved appropriate for RT-LM-OSL, instead of the initial part of the continuous wave (CW) OSL signal, thus the methods can serve as complementary dating methods.

  6. Thermal Annealing Effect on Optical Properties of Binary TiO2-SiO2 Sol-Gel Coatings

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2012-12-01

    Full Text Available TiO2-SiO2 binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  7. Evolution of interface and surface structures of ZnO/Al2 O3 multilayers upon rapid thermal annealing

    Science.gov (United States)

    Liu, H. H.; Chen, Q. Y.; Chang, C. F.; Hsieh, W. C.; Wadekar, P. V.; Huang, H. C.; Liao, H. H.; Seo, H. W.; Chu, W. K.

    2015-03-01

    ZnO ∖Al2O3 multilayers were deposited on sapphires by atomic layer deposition at 85°C. This low substrate temperature ensures good interface smoothness useful for study of interfacial reaction or interdiffusion. Our study aimed at the effects of rapid thermal annealing at different annealing temperatures, times and PAr:PO2. XRR and XRD techniques were used to investigate the kinetics from which various terms of the activation energies could be determined. HR-TEM and electron diffraction were carried out to correlate the microstructures and interfacial alignments as a result of the reactions. AFM were used to assist SEM profiling of the surface morphological evolution in association with the TEM observations.

  8. Current-induced metal-insulator transition in VO x thin film prepared by rapid-thermal-annealing

    International Nuclear Information System (INIS)

    Cho, Choong-Rae; Cho, SungIl; Vadim, Sidorkin; Jung, Ranju; Yoo, Inkyeong

    2006-01-01

    The phenomenon of metal-insulator transition (MIT) in polycrystalline VO x thin films and their preparations have been studied. The films were prepared by sputtering of vanadium thin films succeeded by Rapid Thermal Annealing (RTA) in oxygen ambient at 500 deg. C. Crystalline, compositional, and morphological characterizations reveal a continuous change of phase from vanadium metal to the highest oxide phase, V 2 O 5 , with the time of annealing. Electrical MIT switching has been observed in these films. Sweeping mode, electrode area, and temperature dependent MIT has been studied in Pt/VO x /Pt vertical structure. The important parameters for MIT in VO x have been found to be the current density and the electric field, which depend on carrier density in the films

  9. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing

    Science.gov (United States)

    Zhao, Chong-Jun; Liu, Yang; Zhang, Jing-Yan; Sun, Li; Ding, Lei; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Yu, Guang-Hua

    2012-08-01

    To reveal thermal effects on the film quality/microstructure evolution and the resulted magnetoresistance (MR) ratio in MgO/NiFe/MgO heterostructures, positron annihilation spectroscopy studies have been performed. It is found that the ionic interstitials in the MgO layers recombine with the nearby vacancies at lower annealing temperatures (200-300 °C) and lead to a slow increase in sample MR. Meanwhile, vacancy defects agglomeration/removal and ordering acceleration in MgO will occur at higher annealing temperatures (450-550 °C) and the improved MgO and MgO/NiFe interfaces microstructure are responsible for the observed significant MR enhancement.

  10. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  11. Rapid thermally annealed plasma deposited SiNx:H thin films: Application to metal-insulator-semiconductor structures with Si, In0.53Ga0.47As, and InP

    International Nuclear Information System (INIS)

    Martil, I.; Prado, A. del; San Andres, E.; Gonzalez Diaz, G.; Martinez, F.L.

    2003-01-01

    We present in this article a comprehensive study of rapid thermal annealing (RTA) effects on the physical properties of SiN x :H thin films deposited by the electron cyclotron resonance plasma method. Films of different as-deposited compositions (defined in this article as the nitrogen to silicon ratio, x=N/Si) were analyzed: from Si-rich (x=0.97) to N-rich (x=1.6) films. The evolution of the composition, bonding configuration, and paramagnetic defects with the annealing temperature are explained by means of different network bond reactions that take place depending on the as-deposited film composition. All the analyzed films release hydrogen, while Si-rich and near-stoichiometric (x=1.43) ones also lose nitrogen upon annealing. These films were used to make Al/SiN x :H/semiconductor devices with Si, In 0.53 Ga 0.47 As, and InP. After RTA treatments, the electrical properties of the three different SiN x :H/semiconductor interfaces can be explained, noting the microstructural modifications that SiN x :H experiences upon annealing

  12. Hydrogen sulfide toxicity in a thermal spring: a fatal outcome.

    Science.gov (United States)

    Daldal, Hale; Beder, Bayram; Serin, Simay; Sungurtekin, Hulya

    2010-08-01

    Hydrogen sulfide (H(2)S) is a toxic gas with the smells of "rotten egg"; its toxic effects are due to the blocking of cellular respiratory enzymes leading to cell anoxia and cell damage. We report two cases with acute H(2)S intoxication caused by inhalation of H(2)S evaporated from the water of a thermal spring. Two victims were found in a hotel room were they could take a thermal bath. A 26-year-old male was found unconscious; he was resuscitated, received supportive treatment and survived. A 25-year-old female was found dead. Autopsy showed diffuse edema and pulmonary congestion. Toxicological blood analysis of the female revealed the following concentrations: 0.68 mg/L sulfide and 0.21 mmol/L thiosulfate. The urine thiosulfate concentration was normal. Forensic investigation established that the thermal water was coming from the hotel's own illegal well. The hotel was closed. This report highlights the danger of H(2)S toxicity not only for reservoir and sewer cleaners, but also for individuals bathing in thermal springs.

  13. Novel Auto thermal Reforming Process for Pure Hydrogen Production

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.E.H.

    2004-01-01

    Steam reforming of heptane for hydrogen production is investigated in a novel Circulating Fluidized Bed Membrane Reformer-Regenerator system (CFBMRR) utilizing a number of hydrogen and oxygen selective membranes. It is shown that although the amount of carbon deposition is significant, the effect on catalyst deactivation is negligible due to the large solid to gas mass feed ratio and the continuous catalyst regeneration in the system. The combustion of the deposited carbon in the catalyst regenerator supplies the heat needed for the endothermic steam reforming as well as the combustion of flammable gases from the riser reformer. Auto thermal operation is achievable for the entire adiabatic reformer-regenerator system when the exothermic heat generated from the regenerator is sufficient to compensate the endothermic heat consumed in the reformer. Multiplicity of the steady states exists in the range of steam to carbon feed ratio of 1.4442.251 mol/mol. The novel configuration has the potential advantages not only with respect to hydrogen production but also energy minimization

  14. Thermal defect annealing of swift heavy ion irradiated ThO2

    Science.gov (United States)

    Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik

    2017-08-01

    Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.

  15. Two-dimensional thermal analysis of liquid hydrogen tank insulation

    Energy Technology Data Exchange (ETDEWEB)

    Babac, Gulru; Sisman, Altug [Istanbul Technical University, Energy Institute, Ayazaga campus, 34469 Maslak, Istanbul (Turkey); Cimen, Tolga [Jaguar and Landrover, Banbury Road, Gaydon, Warwick CV35 0RR (United Kingdom)

    2009-08-15

    Liquid hydrogen (LH{sub 2}) storage has the advantage of high volumetric energy density, while boil-off losses constitute a major disadvantage. To minimize the losses, complicated insulation techniques are necessary. In general, Multi Layer Insulation (MLI) and a Vapor-Cooled Shield (VCS) are used together in LH{sub 2} tanks. In the design of an LH{sub 2} tank with VCS, the main goal is to find the optimum location for the VCS in order to minimize heat leakage. In this study, a 2D thermal model is developed by considering the temperature dependencies of the thermal conductivity and heat capacity of hydrogen gas. The developed model is used to analyze the effects of model considerations on heat leakage predictions. Furthermore, heat leakage in insulation of LH{sub 2} tanks with single and double VCS is analyzed for an automobile application, and the optimum locations of the VCS for minimization of heat leakage are determined for both cases. (author)

  16. Feasibility of and methodology for thermal annealing an embrittled reactor vessel. Volume 2. Detailed technical description of the work. Final report

    International Nuclear Information System (INIS)

    Mager, T.R.

    1982-11-01

    Program materials were three weldments fabricated from A533 Grade B class 1 plate material and Mn Mo Ni weld wire. Specimens fabricated from the three submerged arc weldments included Type A Charpy V-notch impact, small size tensile, and 1/2T compact tension specimens. After encapsulation, the specimens were irradiated at the UVAR to two fluence levels, 8 x 10 18 n/cm 2 and 1.5 x 10 19 n/cm 2 (E > 1 MeV). Specimens were subjected to sequences of irradiation and anneals and then tested. Metallurgial/mechanistic analyses were also performed. It was concluded that excellent recovery of all properties could be achieved by annealing at greater than or equal to 850 0 F (454 0 C) for 168 hours. Such an annealing resulted in ductile-brittle transition temperature shift recovery of 80 to 100%, and reirradiation after this annealing indicated that the ductile-brittle transition temperature shift appears to continue at the expected rate. Several drawbacks were identified for wet thermal annealing. A conceptual dry in-situ thermal annealing procedure was developed for thermal annealing embrittled reactor vessels

  17. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    Directory of Open Access Journals (Sweden)

    Valeria Bragaglia

    2017-08-01

    Full Text Available A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111 oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  18. The influence of thermal annealing on structure and oxidation of iron nanowires

    Directory of Open Access Journals (Sweden)

    Krajewski Marcin

    2015-03-01

    Full Text Available Raman spectroscopy as well as Mössbauer spectroscopy were applied in order to study the phase composition of iron nanowires and its changes, caused by annealing in a neutral atmosphere at several temperatures ranging from 200°C to 800°C. As-prepared nanowires were manufactured via a simple chemical reduction in an external magnetic field. Both experimental techniques proved formation of the surface layer covered by crystalline iron oxides, with phase composition dependent on the annealing temperature (Ta. At higher Ta, hematite was the dominant phase in the nanowires.

  19. Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations

    Science.gov (United States)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias

    2015-01-01

    Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.

  20. 1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

    International Nuclear Information System (INIS)

    Nakos, J.T.; Rosinski, S.T.; Acton, R.U.

    1994-11-01

    The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in x 1.2 m x 17.1 cm thick [4 ft x 4 ft x 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the open-quotes mirrorclose quotes insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in x 2.1 in [10 ft x 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28 degrees C/hr [12.5, 25, and 50 degrees F/hr] as measured on the heated face. A peak temperature of 454 degrees C [850 degrees F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing

  1. Mechanism for ion-induced mixing of GaAs-AlGaAs interfaces by rapid thermal annealing

    International Nuclear Information System (INIS)

    Kahen, K.B.; Rajeswaran, G.; Lee, S.T.

    1988-01-01

    A mechanism for the transient-enhanced interdiffusion of GaAs-AlGaAs interfaces during rapid thermal annealing of ion-implanted heterostructures is proposed. The model is based on the solution of the coupled diffusion equations involving the excess vacancies and the post-implantation Al distribution following ion implantation. Both initial distributions are obtained from the solution of a three-dimensional Monte Carlo simulation of ion implantation into a heterostructure sample. In general, the model is valid for time frames within which impurity diffusion does not occur appreciably so that impurity-enhanced diffusion remains a weak effect

  2. Effects of high-temperature thermal annealing on the electronic properties of In-Ga-Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qin; Song, Zhong Xiao; Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn, E-mail: liyhemail@gmail.com; Li, Yan Huai, E-mail: mafei@mail.xjtu.edu.cn, E-mail: liyhemail@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Ke Wei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, Shaanxi 710049, China and Department of Physics and Opt-electronic Engineering, Xi' an University of Arts and Science, Xi' an, Shaanxi 710065 (China)

    2015-03-15

    Indium gallium zinc oxide (IGZO) thin films were deposited by radio-frequency magnetron sputtering at room-temperature. Then, thermal annealing was conducted to improve the structural ordering. X-ray diffraction and high-resolution transmission electron microscopy demonstrated that the as-deposited IGZO thin films were amorphous and crystallization occurred at 800 and 950 °C. As a result of crystallization at high temperature, the carrier concentration and the Hall mobility of IGZO thin films were sharply increased, which could be ascribed to the increased oxygen vacancies and improved structural ordering of the thin films.

  3. Transport mechanisms in low-resistance ohmic contacts to p-InP formed by rapid thermal annealing

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1993-01-01

    process is related to interdiffusion and compound formation between the metal elements and the InP. The onset of low specific contact resistance is characterized by a change in the dominant transport mechanism; from predominantly a combination of thermionic emission and field emission to purely thermionic......Thermionic emission across a very small effective Schottky barrier (0-0.2 eV) are reported as being the dominant transport process mechanism in very low-resistance ohmic contacts for conventional AuZn(Ni) metallization systems top-InP formed by rapid thermal annealing. The barrier modulation...

  4. Nickel oxide films by thermal annealing of ion-beam-sputtered Ni: Structure and electro-optical properties

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Remeš, Zdeněk; Bejšovec, Václav; Vacík, Jiří; Daniš, S.; Kormunda, M.

    2017-01-01

    Roč. 640, č. 10 (2017), s. 52-59 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR(CZ) GA14-05053S; GA MŠk LM2015056 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : NiO * ion beam sputtering * thermal annealing * nuclear analytical methods * optical properties Subject RIV: JK - Corrosion ; Surface Treatment of Materials; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Coating and films; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.879, year: 2016

  5. Optical and photoelectric properties of nanolamellar structures obtained by thermal annealing of InSe plates in Zn vapours

    Energy Technology Data Exchange (ETDEWEB)

    Untila, Dumitru; Evtodiev, Igor [Faculty of Physics and Engineering, Moldova State University, Chisinau (Moldova, Republic of); Ghitu Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Caraman, Iuliana [Engineering Department ' ' Vasile Alecsandri' ' , University of Bacau (Romania); Spalatu, Nicolae [Department of Materials Science, Tallinn University of Technology (Estonia); Dmitroglo, Liliana; Caraman, Mihail [Faculty of Physics and Engineering, Moldova State University, Chisinau (Moldova, Republic of)

    2018-02-15

    The structural, optical and photoelectric properties of InSe crystals grown by Bridgman-Stockbarger method and ZnSe/InSe structures obtained on InSe by thermal annealing in Zn vapours are studied in this paper. The study of structural properties confirms that ZnSe compound is formed. The analysis of photoelectric properties reveal that both the ZnSe-InSe composite layer and the composite/InSe heterojunction are photosensitive in the VIS-NIR spectral region. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap

    International Nuclear Information System (INIS)

    Babinski, Adam; Jasinski, J.; Bozek, R.; Szepielow, A.; Baranowski, J. M.

    2001-01-01

    The effect of postgrowth rapid thermal annealing (RTA) on GaAs proximity-capped structures with self-assembled InAs/GaAs quantum dots (QDs) is investigated using transmission electron microscopy (TEM) and photoluminescence (PL). As can be seen from the TEM images, QDs increase their lateral sizes with increasing annealing temperature (up to 700 C). QDs cannot be distinguished after RTA at temperature 800 C or higher, and substantial thickening of the wetting layer can be seen instead. The main PL peak blueshifts as a result of RTA. We propose that in the as-grown sample as well, as in samples annealed at temperatures up to 700 C, the peak is due to the QDs. After RTA at 800 C and higher the PL peak is due to a modified wetting layer. Relatively fast dissolution of QDs is explained in terms of strain-induced lateral Ga/In interdiffusion. It is proposed that such a process may be of importance in proximity-capped RTA, when no group-III vacancy formation takes place at the sample/capping interface

  7. Effect of rapid thermal annealing temperature on the dispersion of Si nanocrystals in SiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Nupur, E-mail: n1saxena@gmail.com; Kumar, Pragati; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-05-15

    Effect of rapid thermal annealing temperature on the dispersion of silicon nanocrystals (Si-NC’s) embedded in SiO{sub 2} matrix grown by atom beam sputtering (ABS) method is reported. The dispersion of Si NCs in SiO{sub 2} is an important issue to fabricate high efficiency devices based on Si-NC’s. The transmission electron microscopy studies reveal that the precipitation of excess silicon is almost uniform and the particles grow in almost uniform size upto 850 °C. The size distribution of the particles broadens and becomes bimodal as the temperature is increased to 950 °C. This suggests that by controlling the annealing temperature, the dispersion of Si-NC’s can be controlled. The results are supported by selected area diffraction (SAED) studies and micro photoluminescence (PL) spectroscopy. The discussion of effect of particle size distribution on PL spectrum is presented based on tight binding approximation (TBA) method using Gaussian and log-normal distribution of particles. The study suggests that the dispersion and consequently emission energy varies as a function of particle size distribution and that can be controlled by annealing parameters.

  8. Effect of rapid thermal annealing temperature on the dispersion of Si nanocrystals in SiO2 matrix

    International Nuclear Information System (INIS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2015-01-01

    Effect of rapid thermal annealing temperature on the dispersion of silicon nanocrystals (Si-NC’s) embedded in SiO 2 matrix grown by atom beam sputtering (ABS) method is reported. The dispersion of Si NCs in SiO 2 is an important issue to fabricate high efficiency devices based on Si-NC’s. The transmission electron microscopy studies reveal that the precipitation of excess silicon is almost uniform and the particles grow in almost uniform size upto 850 °C. The size distribution of the particles broadens and becomes bimodal as the temperature is increased to 950 °C. This suggests that by controlling the annealing temperature, the dispersion of Si-NC’s can be controlled. The results are supported by selected area diffraction (SAED) studies and micro photoluminescence (PL) spectroscopy. The discussion of effect of particle size distribution on PL spectrum is presented based on tight binding approximation (TBA) method using Gaussian and log-normal distribution of particles. The study suggests that the dispersion and consequently emission energy varies as a function of particle size distribution and that can be controlled by annealing parameters

  9. X-Ray diffraction analysis of thermally evaporated copper tin selenide thin films at different annealing temperature

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Zainal Abidin Talib; Wan Mahmood Mat Yunus; Josephine Liew Ying Chyi; Wilfred Sylvester Paulus

    2010-01-01

    Semiconductor thin films Copper Tin Selenide, Cu 2 SnSe 3 , a potential compound for semiconductor radiation detector or solar cell applications were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen, N 2 , for 2 hours in the temperature range from 100 to 500 degree Celsius. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from the Reitveld refinement show that the samples composed of Cu 2 SnSe 3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43 m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain. (author)

  10. Thermal annealing of carbon nanotubes reveals a toxicological impact of the structural defects

    Energy Technology Data Exchange (ETDEWEB)

    Figarol, Agathe, E-mail: figarol@emse.fr [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF (France); Pourchez, Jérémie, E-mail: pourchez@emse.fr [Ecole Nationale Supérieure des Mines, CIS-EMSE, EA 4624, SFR IFRESIS, LINA (France); Boudard, Delphine [Université Jean Monnet Saint-Etienne, EA 4624, SFR IFRESIS, LINA (France); Forest, Valérie [Ecole Nationale Supérieure des Mines, CIS-EMSE, EA 4624, SFR IFRESIS, LINA (France); Berhanu, Sarah [Armines - Mines ParisTech, Centre des Matériaux, CNRS UMR 7633 (France); Tulliani, Jean-Marc [Politecnico di Torino, Department of Applied Science and Technology (Italy); Lecompte, Jean-Pierre [Centre Européen de la céramique CNRS: UMR 7315, SPCTS (France); Cottier, Michèle [Université Jean Monnet Saint-Etienne, EA 4624, SFR IFRESIS, LINA (France); Bernache-Assollant, Didier [Ecole Nationale Supérieure des Mines, CIS-EMSE, EA 4624, SFR IFRESIS, LINA (France); Grosseau, Philippe [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF (France)

    2015-04-15

    The biological response to pristine and annealed multi-walled carbon nanotubes (MWCNT) was assessed on murine macrophages (RAW 264.7). First, the physicochemical features of the as-produced MWCNT and annealed at 2125 °C for 1 h were fully characterized. A decrease in structural defects, hydrophobicity and catalytic impurities was detected after annealing. Thereafter, their impact on cytotoxicity, oxidative stress, and pro-inflammatory response was investigated at concentrations ranging from 15 to 120 µg mL{sup −1}. No effect of the 2125 °C treatment was detected on the cytotoxicity. In contrast, the annealed carbon nanotubes showed a significant increase of the pro-inflammatory response. We assumed that this behavior was due to the reduction in structural defects that may modify the layer of adsorbed biomolecules. Surprisingly, the purification of metallic catalysts did not have any significant impact on the oxidative stress. We suggested that the structural improvements from the 2125 °C treatment can decrease the carbon nanotube scavenging capacity and thus allow a higher free radical release which may counterbalance the decrease of oxidative stress due to a lower content of metallic impurities.

  11. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  12. Effects of implantation temperature and thermal annealing on the Ga{sup +} ion beam induced optical contrast formation in a-SiC:H

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkova, T., E-mail: tania_tsvetkova@yahoo.co.uk [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); University of Exeter, College of Engineering, Mathematics and Physical Sciences, Harrison Building, North Park Rd, Exeter EX4 4QF (United Kingdom); Wright, C.D. [University of Exeter, College of Engineering, Mathematics and Physical Sciences, Harrison Building, North Park Rd, Exeter EX4 4QF (United Kingdom); Kitova, S. [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 109 Acad. G. Bontchev St., 1113 Sofia (Bulgaria); Bischoff, L. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 51 01 19, 01314 Dresden (Germany); Zuk, J. [Institute of Physics, Maria Curie-Sklodovska University, Pl. M.Curie-Sklodovskiej 1, 20-031 Lublin (Poland)

    2013-07-15

    The effects of implantation temperature and post-implantation thermal annealing on the Ga{sup +} ion beam induced optical contrast formation in hydrogenated silicon–carbon alloy films have been studied. As a result of the implantation a well-expressed “darkening” effect (i.e. absorption edge shift to the longer-wavelength/lower-photon-energy region) has been registered. It is accompanied by a remarkable increase of the absorption coefficient up to 2 orders of magnitude in the measured photon energy range (1.5–3.1 eV). The optical contrast thus obtained (between implanted and unimplanted regions of the film material) has been made use of in the form of optical pattern formation by computer-operated Ga{sup +}-focused ion beam. Possible applications of this effect in the area of submicron lithography and high-density optical data storage have been suggested with regard to the most widely spread focused micro-beam systems based on Ga{sup +} liquid metal ion sources. The fact that Ga has a very low melting point (T{sub m} = 29.8 °C) and an unusual feature of volume contraction on melting are factors which favour Ga incorporation upon ion-implantation as dispersed clusters, or small nanoparticles. It has been previously noted that Ga precipitation into nanoparticles can vary dramatically (in terms of particle size) with Ga concentration and small changes in surface implant temperature, thus affecting the optical properties of the target. The precise role of implantation temperature effects, i.e. the target temperature during Ga{sup +} ion irradiation, on the optical contrast obtainable, has been therefore a key part of this study. Appropriate post-implantation annealing treatments were also studied, since these are expected to offer further benefits in reducing the required ion dose and enhancing contrast, thus increasing the cost-effectiveness of the bit-writing method.

  13. Chemical and electrical characterisation of the segregation of Al from a CuAl alloy (90%:10% wt) with thermal anneal

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, C., E-mail: conor.byrne2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Brady, A.; Walsh, L.; McCoy, A.P.; Bogan, J. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); McGlynn, E. [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Rajani, K.V. [School of Electronic Engineering, Dublin City University, Dublin 9 (Ireland); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-01-29

    A copper–aluminium (CuAl) alloy (90%:10% wt) has been investigated in relation to segregation of the alloying element Al, from the alloy bulk during vacuum anneal treatments. X-ray photoelectron spectroscopy (XPS) measurements were used to track the surface enrichment of Al segregating from the alloy bulk during in situ ultra-high vacuum anneals. Secondary ion mass spectroscopy (SIMS) indicates a build-up of Al at the surface of the annealed alloy relative to the bulk composition. Metal oxide semiconductor (MOS) CuAl/SiO{sub 2}/Si structures show a shift in flatband voltage upon thermal anneal consistent with the segregation of the Al to the alloy/SiO{sub 2} interface. Electrical four point probe measurements indicate that the segregation of Al from the alloy bulk following thermal annealing results in a decrease in film resistivity. X-ray diffraction data shows evidence for significant changes in crystal structure upon annealing, providing further evidence for expulsion of Al from the alloy bulk. - Highlights: • CuAl alloy (90%:Al 10% wt) deposited and vacuum annealed • XPS and SIMS data show segregation of Al from the alloy bulk. • Chemical changes seen indicate the reduction of Cu oxide and growth of Al Oxide. • Electrical measurements indicate a chemical change at the metal/SiO{sub 2} interface. • All data consistent with Cu diffusion barrier layer formed.

  14. Thermal desorption of hydrogen from Mg2Ni hydrogen storage materials.

    Science.gov (United States)

    Hur, Tae Hong; Han, Jeong Seb; Kim, Jin Ho; Kim, Byung Kwan

    2011-07-01

    In order to investigate the influence of HCS on the hydrogen occupation site of Mg2Ni alloy, the thermal desorption technique has been applied to Mg2Ni hydride made by hydriding combustion synthesis (HCS). Mg2Ni was made under low temperature in a short time by the HCS compared to conventional melting process. At various initial hydride wt% from 0.91 to 3.52, the sample was heated to 623 K at a rate of 1.0 K/min. The starting temperature of the evolution of hydrogen goes higher as the initial hydride wt% increases. Only one peak is shown in the case of the small initial hydride wt%. But two peaks appeared with increasing initial hydride wt%. The activation energies obtained by the first and second peaks are 113.0 and 99.5 kJ/mol respectively. The two site occupation model by Darriet et al. was proved. The influence of HCS on the hydrogen occupation site of Mg2Ni alloy is nonexistent.

  15. Formation of VO{sub 2} by rapid thermal annealing and cooling of sputtered vanadium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ba, Cheikhou O. F., E-mail: cheikhou.ba.1@ulaval.ca; Fortin, Vincent; Bah, Souleymane T.; Vallée, Réal [Centre d' optique, photonique et laser (COPL), Université Laval, Québec G1V 0A6 (Canada); Pandurang, Ashrit [Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, New Brunswick E1A 3E9 (Canada)

    2016-05-15

    Sputtered vanadium-rich films were subjected to rapid thermal annealing-cooling (RTAC) in air to produce vanadium dioxide (VO{sub 2}) thin films with thermochromic switching behavior. High heating and cooling rates in the thermal oxidation process provided an increased ability to control the film's microstructure. X-ray diffraction patterns of the films revealed less intense VO{sub 2} peaks compared to traditional polycrystalline samples fabricated with a standard (slower) cooling time. Such films also exhibit a high optical switching reflectance contrast, unlike the traditional polycrystalline VO{sub 2} thin films, which show a more pronounced transmittance switching. The authors find that the RTAC process stabilizes the VO{sub 2} (M2) metastable phase, enabling a rutile-semiconductor phase transition (R-M2), followed by a semiconductor–semiconductor phase transition (M2-M1).

  16. Effect of rapid thermal annealing observed by photoluminescence measurement in GaAs1-xN x layers

    International Nuclear Information System (INIS)

    Bousbih, F.; Bouzid, S.B.; Hamdouni, A.; Chtourou, R.; Harmand, J.C.

    2005-01-01

    A set of GaAs 1-x N x samples with small nitrogen content were investigated by photoluminescence (PL) measurements as function of irradiance in order to investigate the effect of rapid thermal annealing (RTA) on photoluminescence (PL) properties. The analysis of PL spectra as function of irradiance and nitrogen content shows that the PL spectra associated to the GaAs 1- x N x layers are the result of the nitrogen localized state recombination. The results are examined as a consequence of a rapid thermal annealing (RTA). The variation of the emission band peak energy (E p ), at 10 K as a function of irradiance, is fitted by a theoretical model taking into account two types of nitrogen localized states. The variation of the PL intensity versus irradiance in the range from 1.59 to 159 W/cm 2 for different GaAs 1-x N x samples confirm that the PL spectra result from the nitrogen localized state recombination

  17. Investigating the Effect of Thermal Annealing Process on the Photovoltaic Performance of the Graphene-Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    Lifei Yang

    2015-01-01

    Full Text Available Graphene-silicon (Gr-Si Schottky solar cell has attracted much attention recently as promising candidate for low-cost photovoltaic application. For the fabrication of Gr-Si solar cell, the Gr film is usually transferred onto the Si substrate by wet transfer process. However, the impurities induced by this process at the graphene/silicon (Gr/Si interface, such as H2O and O2, degrade the photovoltaic performance of the Gr-Si solar cell. We found that the thermal annealing process can effectively improve the photovoltaic performance of the Gr-Si solar cell by removing these impurities at the Gr/Si interface. More interestingly, the photovoltaic performance of the Gr-Si solar cell can be improved, furthermore, when exposed to air environment after the thermal annealing process. Through investigating the characteristics of the Gr-Si solar cell and the properties of the Gr film (carrier density and sheet resistance, we point out that this phenomenon is caused by the natural doping effect of the Gr film.

  18. The influence of thermal annealing on the characteristics of different AL2O3 thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Vincekovic, M.; Knezevic, Z.; Miljanic, S.

    2002-01-01

    The manufacturers of TL detectors usually recommend the annealing temperature and time, however they do not give instructions about the heating and cooling rates. From the aspect of practical routine work, every laboratory has to find the optimum heating and cooling method. In this work the influence of various parameters of annealing on the properties of TL dosimeters (sensitivity, reproducibility, the shape of the glow curve) was investigated. Various Al 2 O 3 :dosimeters were used. The TL dosimeters based on Al 2 O 3 can be used in different dose ranges depending on the crystal structure of the dosimeter material as well as the kind and concentration of the activator. In this work Al 2 O 3 :C 4 and Al 2 O 3 :Mg,Y with 0.5% and 1% of activator were investigated

  19. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    International Nuclear Information System (INIS)

    Burke, M.G.; Freyer, P.D.; Mager, T.R.

    1993-01-01

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ''precipitation-type'' and a ''damage-type'' component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs

  20. Thermoluminiscence and thermal annealing of F centres in KCL gamma irradiated

    International Nuclear Information System (INIS)

    Ausin Alonso, Vicente.

    1976-01-01

    The thermoluminiscence spectrum and phosphorescence decays of Harshaw KCl samples gamma irradiated at room temperature have been studied up to 400 0 C. For the six peaks found, the order of recombination kinetics, the pre-exponential factor and the activation energy have been obtained. It has been observed that the area under the thermoluminiscence curve is always proportional to the F centre concentration in the sample before heating. It was also found that there is an annealing step of F centres corresponding to each thermoluminiscence peak, when the temperature of the sample is raised at a constant rate. It is concluded that the F centres play the role of recombination centres in the annealing process, the interstitials being the mobile entities moving towards there combination centre. At some stage in the process light is emitted. (author)

  1. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M G; Freyer, P D; Mager, T R

    1994-12-31

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ``precipitation-type`` and a ``damage-type`` component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs.

  2. Effect of an in-situ thermal annealing on the structural properties of self-assembled GaSb/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Delgado, N., E-mail: natalia.fernandezdelgado@alum.uca.es [Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMAT, University of Cádiz, 11510, Puerto Real, Cádiz (Spain); Herrera, M. [Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMAT, University of Cádiz, 11510, Puerto Real, Cádiz (Spain); Chisholm, M.F. [Scanning Transmission Electron Microscopy Group, Oak Ridge National Laboratory, TN (United States); Kamarudin, M.A. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor (Malaysia); Zhuang, Q.D.; Hayne, M. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Molina, S.I. [Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMAT, University of Cádiz, 11510, Puerto Real, Cádiz (Spain)

    2017-02-15

    Highlights: • GaSb QDs are more elongated and Sb is less concentrated after the thermal annealing. • The density of misfit dislocations in GaSb QDs is reduced after the annealing. • Threading dislocations in GaSb/GaAs QDs are Sb-rich after the thermal annealing. • The gliding of a threading dislocation favors Sb diffusion in GaSb/GaAs QDs. - Abstract: In this work, the effect of the application of a thermal annealing on the structural properties of GaSb/GaAs quantum dots (QDs) is analyzed by aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) Our results show that the GaSb/GaAs QDs are more elongated after the annealing, and that the interfaces are less abrupt due to the Sb diffusion. We have also found a strong reduction in the misfit dislocation density with the annealing. The analysis by EELS of a threading dislocation has shown that the dislocation core is rich in Sb. In addition, the region of the GaAs substrate delimited by the threading dislocation is shown to be Sb-rich as well. An enhanced diffusion of Sb due to a mechanism assisted by the dislocation movement is discussed.

  3. Study of defects created in silicon during thermal annealings - Correlation with the presence of oxygen

    International Nuclear Information System (INIS)

    Olivier, Michel

    1975-01-01

    Defects generation and precipitation phenomena in Czochralski silicon crystals annealed ten of hours at 1000 C have been observed. The defects (perfect dislocation loops emitted by semi-coherent precipitates, Frank loops in correlation with coherent precipitates) are studied by Transmission Electron Microscopy, X-Ray Topography and chemical etching. The generation of defects is connected to the precipitation of interstitial oxygen as it is shown by studying the infrared absorption at 9 μm. We present a lot of experimental results which indicates that the precipitates are SiO 2 clusters; in particular, we show that this hypothesis can explain the presence, after annealing, of an infrared absorption band at 8,2 μm. Some results on Czochralski silicon crystals annealed at 1150 deg. C and 1250 deg. C are then presented. In particular, X-Ray Topography studies show the presence of large (∼100 μm) Frank loops which seem connected to oxygen precipitation. (author) [fr

  4. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van; Nyamhere, C.

    2012-01-01

    Highlights: ► Highly rectifying Pd/ZnO contacts have been fabricated. ► The rectification behaviour decrease with annealing temperature. ► The surface donor concentration increases with increase in annealing temperature. ► The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current–voltage (IV) and capacitance–voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at −1.5 V. An average barrier height of (0.77 ± 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 ± 0.03) eV after annealing at 550 °C. The reverse current has been measured as (2.10 ± 0.01) × 10 −10 A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 °C to (1.56 ± 0.01) × 10 −5 A. The depletion layer width measured at −2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 μm after annealing at 200 °C to 0.24 μm after annealing at 500 °C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 × 10 15 cm −3 at 200 °C to 6.06 × 10 16 cm −3 after annealing at 550 °C. This increase in the volume concentration has been explained as an effect of a conductive channel that shifts closer to the surface after sample annealing. The series resistance has been observed to decrease with increase in annealing temperature. The Pd contacts have shown high stability up to an annealing temperature of 250 °C as revealed by the IV

  5. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Nyamhere, C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Highly rectifying Pd/ZnO contacts have been fabricated. Black-Right-Pointing-Pointer The rectification behaviour decrease with annealing temperature. Black-Right-Pointing-Pointer The surface donor concentration increases with increase in annealing temperature. Black-Right-Pointing-Pointer The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at -1.5 V. An average barrier height of (0.77 {+-} 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 {+-} 0.03) eV after annealing at 550 Degree-Sign C. The reverse current has been measured as (2.10 {+-} 0.01) Multiplication-Sign 10{sup -10} A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 Degree-Sign C to (1.56 {+-} 0.01) Multiplication-Sign 10{sup -5} A. The depletion layer width measured at -2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 {mu}m after annealing at 200 Degree-Sign C to 0.24 {mu}m after annealing at 500 Degree-Sign C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 Multiplication-Sign 10{sup 15} cm{sup -3} at 200 Degree-Sign C to 6.06 Multiplication-Sign 10{sup 16} cm{sup -3} after annealing at 550 Degree-Sign C. This increase in the volume concentration has been explained as an effect of a conductive channel

  6. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  7. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    OpenAIRE

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    2016-01-01

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...

  8. Hot vacuum outgassing to ensure low hydrogen content in MOX fuel pellets for thermal reactors

    International Nuclear Information System (INIS)

    Majumdar, S.; Nair, M.R.; Kumar, Arun

    1983-01-01

    Hot vacuum outgassing treatment to ensure low hydrogen content in Mixed Oxide Fuel (MOX) pellets for thermal reactors has been described. Hypostoichiometric sintered MOX pellets retain more hydrogen than UO 2 pellets. The hydrogen content further increases with the addition of admixed lubricant and pore formers. However, low hydrogen content in the MOX pellets can be ensured by a hot vacuum outgassing treatment at a temperature between 773K to 823K for 2 hrs. (author)

  9. Annealing effect of thermal spike in MgO thin film prepared by cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daoyun, E-mail: zhudy@gdut.edu.cn [Experiment Teaching Department, Guangdong University of Technology, Guangzhou 510006 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhao, Shoubai [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510400 (China); Zheng, Changxi; Chen, Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, Zhenhui, E-mail: stshzh@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-12-16

    MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg{sup 2+} or O{sup 2-} to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M{sub (100)} = 199 GPa, M{sub (110)} = 335 GPa and M{sub (111)} = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments. - Highlights: • MgO thin films with preferred orientation were obtained by CVAD technique. • Annealing effect of a thermal spike in MgO film was discussed. • Lattice spacing of MgO film decreased with the increase of bias voltage. • Film preferred orientation changed from (200) to (220) as the bias voltage increased.

  10. Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices

    Energy Technology Data Exchange (ETDEWEB)

    Caria, S [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Como, E Da [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Murgia, M [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Zamboni, R [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Melpignano, P [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy); Biondo, V [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy)

    2006-08-23

    The electro-optical behaviour of organic light emitting diode devices (OLEDs) is greatly influenced by the morphology of the films. A major parameter is due to the important role that the morphology of the active organic thin films plays in the phenomena that lead to light emission. For vacuum-grown OLEDs, the morphology of the specific thin films can be varied by modification of the deposition conditions. We have assessed the method (ultrahigh-vacuum organic molecular beam deposition) and conditions (variation of the deposition rate) for electro-emission (EL) optimization in a standard {alpha}-NPB (N,N'-bis-(1-naphthyl)-N,N' diphenyl-1,1' biphenyl-4-4' diamine)/Alq3 (tris-(8-hydroxyquinoline) aluminium) vacuum-grown OLED device. The best EL performances have been obtained for OLEDs made in ultrahigh vacuum with the Alq3 layer deposited with a differential deposition rate ranging from 1.0 to 0.3Angsts{sup -1}. The results are consistent with a model of different Alq3 morphologies, allowing efficient charge injection at the metal/organic interface, and of the minimization of grain boundaries at the electron-hole recombination interface, allowing efficient radiative excitonic decay. At the same time, with the objective of controlling and stabilizing the morphology changes and stabilizing the charge transport over a long OLED operating time, we have studied the effect of thermal annealing processing in the standard current behaviour of OLEDs. The large current fluctuations typically observed for standard vacuum-grown OLEDs have been smeared out and kept constant over a long operating time by the given thermal annealing conditions. The results are interpreted in terms of the stabilization of intrinsic polymorphism of the organic film's structure induced by thermal energy and leading the morphology to a lowest-energetic configuration.

  11. Characterization of damaging in apatitic materials irradiated with heavy ions and thermally annealed

    International Nuclear Information System (INIS)

    Tisserand, R.

    2004-12-01

    Some minerals belonging to the family of apatite are seen to be potential candidates for use as conditioning matrices or transmutation targets for high level nuclear waste management. Indeed, studies of natural nuclear reactors (Oklo) highlighted the strong ability of these minerals to anneal irradiation damage. In order to determine the global behaviour of these materials, we performed a fundamental study on the evolution of irradiation damage induced by various heavy ions in two apatites: a natural phospho-calcic fluor-apatite from Durango and a synthetic sintered mono-silicated fluor-apatite, called britholite. The damage in these materials was measured by using channelling R.B.S. and X-ray diffraction respectively and by determining an amorphization effective radius Re. The results revealed a similar behaviour for both apatites according to the electronic energy deposit at the entrance of the material. In addition, the effect of an isothermal annealing at 300 C was quantified on a mono-silicated britholite previously irradiated with Kr ions. We highlighted in this case the return of the lattice parameters to their initial values, followed by a partial and slow rebuilding of the crystalline lattice versus the annealing time. Finally, we followed the changes in the morphology of etch pits in the Durango fluor-apatite after acid dissolution as a function of the energy deposit by the ions. We showed that the influence of crystallography leads quickly to opening angles close to 30 degrees. The calculation of etching velocities within the irradiated material highlighted that there is a range of deposit energy where the velocity ratio increases strongly before becoming constant. (author)

  12. Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings

    DEFF Research Database (Denmark)

    Rathje, Jacob; Kristensen, Martin; Pedersen, Jens Engholm

    2000-01-01

    We present a new method for determining the long-term stability of UV-induced fiber Bragg gratings. We use a continuous temperature ramp method in which systematic variation of the ramp speed probes both the short- and long-term stability. Results are obtained both for gratings written in D2 loaded...... we resolve two separate energy distributions, suggesting that two different defects are involved. The experiments show that complicated decays originating from various energy distributions can be analyzed with this continuous isochronal anneal method. The results have both practical applications...

  13. Transparent thin-film transistor exploratory development via sequential layer deposition and thermal annealing

    International Nuclear Information System (INIS)

    Hong, David; Chiang, Hai Q.; Presley, Rick E.; Dehuff, Nicole L.; Bender, Jeffrey P.; Park, Cheol-Hee; Wager, John F.; Keszler, Douglas A.

    2006-01-01

    A novel deposition methodology is employed for exploratory development of a class of high-performance transparent thin-film transistor (TTFT) channel materials involving oxides composed of heavy-metal cations with (n - 1)d 10 ns 0 (n ≥ 4) electronic configurations. The method involves sequential radio-frequency sputter deposition of thin, single cation oxide layers and subsequent post-deposition annealing in order to obtain a multi-component oxide thin film. The viability of this rapid materials development methodology is demonstrated through the realization of high-performance TTFTs with channel layers composed of zinc oxide/tin oxide, and tin oxide/indium oxide

  14. Investigation of modified thin SnO2 layers treated by rapid thermal annealing by means of hollow cathode spectroscopy and AFM technique

    International Nuclear Information System (INIS)

    Djulgerova, R; Popova, L; Beshkov, G; Petrovic, Z Lju; Rakocevic, Z; Mihailov, V; Gencheva, V; Dohnalik, T

    2006-01-01

    By means of hollow cathode spectroscopy and atomic force microscopy the surface morphology and composition of SnO 2 thin film, modified with hexamethyldisilazane after rapid thermal annealing treatment (800-1200 deg. C), are investigated. Formation of crystalline structure is suggested at lower temperatures. Depolimerization, destruction and dehydration are developed at temperatures of 1200 deg. C. It is shown that the rapid thermal annealing treatment could modify both the surface morphology and the composition of the layer, thus changing the adsorption ability of the sensing layer. The results confirm the ability of hollow cathode emission spectroscopy for depth profiling of new materials especially combined with standard techniques

  15. Thermal effect on structural and magnetic properties of Fe78B13Si9 annealed amorphous ribbons

    Science.gov (United States)

    Soltani, Mohamed Larbi; Touares, Abdelhay; Aboki, Tiburce A. M.; Gasser, Jean-Georges

    2017-08-01

    In the present work, we study the influence of thermal treatments on the magnetic properties of as-quenched and pre-crystallized Fe78Si9B13 after stress relaxation. The crystallization behavior of amorphous and treated Fe78Si9B13 ribbons was revisited. The measurements were carried out by means of Differential Scanning Calorimetry, by X-ray diffraction and by Vibrating Sample Magnetometer, Susceptometer and fluxmeter. Relaxed samples were heated in the resistivity device up to 700°C and annealed near the onset temperature about 420°C for respectively 1, 3, 5, 8 hours. In as-quenched samples, two transition points occur at about 505°C and 564°C but in relaxed sample, the transition points have been found about 552°C and 568°C. Kinetics of crystallization was deduced for all studied samples. Annealing of the as-purchased ribbon shows the occurrence of α-Fe and tetragonal Fe3B resulting from the crystallization of the remaining amorphous phase. The effects on magnetic properties were pointed out by relating the structural evolution of the samples. The magnetic measurements show that annealing change the saturation magnetization and the coercive magnetic field values, hence destroying the good magnetic properties of the material. The heat treatment shows that the crystallization has greatly altered the shape of the cycles and moved the magnetic saturation point of the samples. The effect of treatment on the magneto-crystalline anisotropy is also demonstrated.

  16. Effect of thermal annealing in vacuum on the photovoltaic properties of electrodeposited Cu2O-absorber solar cell

    Directory of Open Access Journals (Sweden)

    Dimopoulos T.

    2014-07-01

    Full Text Available Heterojunction solar cells were fabricated by electrochemical deposition of p-type, cuprous oxide (Cu2O absorber on sputtered, n-type ZnO layer. X-ray diffraction measurements revealed that the as-deposited absorber consists mainly of Cu2O, but appreciable amounts of metallic Cu and cupric oxide (CuO are also present. These undesired oxidation states are incorporated during the deposition process and have a detrimental effect on the photovoltaic properties of the cells. The open circuit voltage (VOC, short circuit current density (jSC, fill factor (FF and power conversion efficiency (η of the as-deposited cells are 0.37 V, 3.71 mA/cm2, 35.7% and 0.49%, respectively, under AM1.5G illumination. We show that by thermal annealing in vacuum, at temperatures up to 300 °C, compositional purity of the Cu2O absorber could be obtained. A general improvement of the heterojunction and bulk materials quality is observed, reflected upon the smallest influence of the shunt and series resistance on the transport properties of the cells in dark and under illumination. Independent of the annealing temperature, transport is dominated by the space-charge layer generation-recombination current. After annealing at 300 °C the solar cell parameters could be significantly improved to the values of: VOC = 0.505 V, jSC = 4.67 mA/cm2, FF = 47.1% and η = 1.12%.

  17. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    International Nuclear Information System (INIS)

    Liu Wen-Feng; Zhang Min-Gang; Zhang Ke-Wei; Zhang Hai-Jie; Chai Yue-Sheng; Xu Xiao-Hong

    2016-01-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. (paper)

  18. Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers

    International Nuclear Information System (INIS)

    Hoechbauer, T.; Misra, A.; Nastasi, M.; Henttinen, K.; Suni, T.; Suni, I.; Lau, S.S.; Ensinger, W.

    2004-01-01

    Hydrogen ion-implantation into Si and subsequent heat treatment has been shown to be an effective means of cleaving thin layer of Si from its parent wafer. This process has been called Smart Cut TM or ion-cut. We investigated the cleavage process in H-implanted silicon samples, in which the ion-cut was provoked thermally and mechanically, respectively. A oriented p-type silicon wafer was irradiated at room temperature with 100 keV H 2 + -ions to a dose of 5 x 10 16 H 2 /cm 2 and subsequently joined to a handle wafer. Ion-cutting was achieved by two different methods: (1) thermally by annealing to 350 deg. C and (2) mechanically by insertion of a razor blade sidewise into the bonded wafers near the bond interface. The H-concentration and the crystal damage depth profiles before and after the ion-cut were investigated through the combined use of elastic recoil detection analysis and Rutherford backscattering spectroscopy (RBS). The location at which the ion-cut occurred was determined by RBS in channeling mode and cross-section transmission electron spectroscopy. The ion-cut depth was found to be independent on the cutting method. The gained knowledge was correlated to the depth distribution of the H-platelet density in the as-implanted sample, which contains two separate peaks in the implantation zone. The obtained results suggest that the ion-cut location coincides with the depth of the H-platelet density peak located at a larger depth

  19. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  20. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  1. Evolution of free volume in ultrasoft magnetic FeZrN films during thermal annealing

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Schut, H; Chezan, AR; Boerma, DO; Vystavel, T; De Hosson, JTM; DeHaven, PW; Field, DP; Harkness, SD; Sutliff, JA; Szpunar, JA; Tang, L; Thomson, T; Vaudin, MD

    2002-01-01

    The thermal stability of nanocrystalline ultra-soft magnetic (Fe98Zr2)(1-x)N-x films with x=0.10-0.25 was studied using high-resolution transmission electron microscopy (HRTEM), positron beam analysis (PBA) and thermal desorption spectrometry (TDS). The results demonstrate that grain growth during

  2. The influence of thermal annealing on the characteristics of Au/Ni Schottky contacts on n-type 4 H-SiC

    Science.gov (United States)

    Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.

    2018-05-01

    The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.

  3. Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Yoon, Young Soo

    2004-01-01

    We report on the fabrication of a LiCoO 2 film for an all-solid-state thin film microbattery by using a rapid-thermal-annealing (RTA) process. The LiCoO 2 films were grown by rf magnetron sputtering using a synthesized LiCoO 2 target in a [O 2 /(Ar+O 2 )] ratio of 10%. Scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) analysis results showed that the surface layer on the as-deposited LiCoO 2 film was completely removed by rapid thermal annealing process in oxygen ambient for 20 min. In addition, the thin film microbattery fabricated with the annealed LiCoO 2 film shows fairly stable cyclability with a specific discharge capacity of 56.49 μAh/cm2 μm. These results show the possibility of the RTA LiCoO 2 film and rapid thermal annealing process being a promising cathode material and annealing process for thin film microbatteries, respectively

  4. Surface state of GaN after rapid-thermal-annealing using AlN cap-layer

    Energy Technology Data Exchange (ETDEWEB)

    El-Zammar, G., E-mail: georgio.elzammar@univ-tours.fr [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Khalfaoui, W. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Oheix, T. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Yvon, A.; Collard, E. [STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Cayrel, F.; Alquier, D. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France)

    2015-11-15

    Graphical abstract: Surface state of a crack-free AlN cap-layer reactive sputtered on GaN and annealed at high temperature showing a smooth, pit-free surface. - Highlights: • We deposit a crystalline AlN layer by reactive magnetron sputtering on GaN. • We show the effect of deposition parameters of AlN by reactive magnetron sputtering on the quality of the grown layer. • We demonstrate the efficiency of double cap-layer for GaN protection during high temperature thermal treatments. • We show an efficient selective etch of AlN without damaging GaN surface. - Abstract: Critical issues need to be overcome to produce high performance Schottky diodes on gallium nitride (GaN). To activate dopant, high temperature thermal treatments are required but damage GaN surface where hexagonal pits appear and prevent any device processing. In this paper, we investigated the efficiency of cap-layers on GaN during thermal treatments to avoid degradation. Aluminum nitride (AlN) and silicon oxide (SiO{sub x}) were grown on GaN by direct current reactive magnetron sputtering and plasma-enhanced chemical vapor deposition, respectively. AlN growth parameters were studied to understand their effect on the grown layers and their protection efficiency. Focused ion beam was used to measure AlN layer thickness. Crystalline quality and exact composition were verified using X-ray diffraction and energy dispersive X-ray spectroscopy. Two types of rapid thermal annealing at high temperatures were investigated. Surface roughness and pits density were evaluated using atomic force microscopy and scanning electron microscopy. Cap-layers wet etching was processed in H{sub 3}PO{sub 4} at 120 °C for AlN and in HF (10%) for SiO{sub x}. This work reveals effective protection of GaN during thermal treatments at temperatures as high as 1150 °C. Low surface roughness was obtained. Furthermore, no hexagonal pit was observed on the surface.

  5. Availability of steam generator against thermal disturbance of hydrogen production system coupled to HTGR

    International Nuclear Information System (INIS)

    Shibata, Taiju; Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

    1996-01-01

    One of the safety issues to couple a hydrogen production system to an HTGR is how the reactor coolability can be maintained against anticipated abnormal reduction of heat removal (thermal disturbance) of the hydrogen production system. Since such a thermal disturbance is thought to frequently occur, it is desired against the thermal disturbance to keep reactor coolability by means other than reactor scram. Also, it is thought that the development of a passive cooling system for such a thermal disturbance will be necessary from a public acceptance point of view in a future HTGR-hydrogen production system. We propose a SG as the passive cooling system which can keep the reactor coolability during a thermal disturbance of a hydrogen production system. This paper describes the proposed steam generator (SG) for the HTGR-hydrogen production system and a result of transient thermal-hydraulic analysis of the total system, showing availability of the SG against a thermal disturbance of the hydrogen production system in case of the HTTR-steam reforming hydrogen production system. (author)

  6. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  7. Redshift and blueshift of GaNAs/GaAs multiple quantum wells induced by rapid thermal annealing

    Science.gov (United States)

    Sun, Yijun; Cheng, Zhiyuan; Zhou, Qiang; Sun, Ying; Sun, Jiabao; Liu, Yanhua; Wang, Meifang; Cao, Zhen; Ye, Zhi; Xu, Mingsheng; Ding, Yong; Chen, Peng; Heuken, Michael; Egawa, Takashi

    2018-02-01

    The effects of rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs multiple quantum wells (MQWs) grown by chemical beam epitaxy (CBE) are studied by photoluminescence (PL) at 77 K. The results show that the optical quality of the MQWs improves significantly after RTA. With increasing RTA temperature, PL peak energy of the MQWs redshifts below 1023 K, while it blueshifts above 1023 K. Two competitive processes which occur simultaneously during RTA result in redshift at low temperature and blueshift at high temperature. It is also found that PL peak energy shift can be explained neither by nitrogen diffusion out of quantum wells nor by nitrogen reorganization inside quantum wells. PL peak energy shift can be quantitatively explained by a modified recombination coupling model in which redshift nonradiative recombination and blueshift nonradiative recombination coexist. The results obtained have significant implication on the growth and RTA of GaNAs material for high performance optoelectronic device application.

  8. Annealing effects on room temperature thermoelectric performance of p-type thermally evaporated Bi-Sb-Te thin films

    Science.gov (United States)

    Singh, Sukhdeep; Singh, Janpreet; Tripathi, S. K.

    2018-05-01

    Bismuth antimony telluride (Bi-Sb-Te) compounds have been investigated for the past many decades for thermoelectric (TE) power generation and cooling purpose. We synthesized this compound with a stoichiometry Bi1.2Sb0.8Te3 through melt cool technique and thin films of as synthesized material were deposited by thermal evaporation. The prime focus of the present work is to study the influence of annealing temperature on the room temperature (RT) power factor of thin films. Electrical conductivity and Seebeck coefficient were studied and power factors were calculated which showed a peak value at 323 K. The compounds performance is comparable to some very efficient Bi-Sb-Te reported stoichiometries at RT scale. The values observed show that material has an enormous potential for energy production at ambient temperature scales.

  9. Carbon nanotubes growing on rapid thermal annealed Ni and their application to a triode-type field emission device

    International Nuclear Information System (INIS)

    Uh, Hyung Soo; Park, Sang Sik

    2006-01-01

    In this paper, we demonstrate a new triode-type field emitter arrays using carbon nanotubes (CNTs) as an electron emitter source. In the proposed structure, the gate electrode is located underneath the cathode electrode and the extractor electrode is surrounded by CNT emitters. CNTs were selectively grown on the patterned Ni catalyst layer by using plasma-enhanced chemical vapor deposition (PECVD). Vertically aligned CNTs were grown with gas mixture of acetylene and ammonia under external DC bias. Compared with a conventional under-gate structure, the proposed structure reduced the turn-on voltage by about 30%. In addition, with a view to controlling the density of CNTs, Ni catalyst thickness was varied and rapid thermal annealing (RTA) treatment was optionally adopted before CNT growth. With controlled Ni thickness and RTA condition, field emission efficiency was greatly improved by reducing the density of CNTs, which is due to the reduction of the electric field screening effect caused by dense CNTs

  10. Effect of thermal annealing on the microstructures and photocatalytic performance of silver orthophosphate: The synergistic mechanism of Ag vacancies and metallic Ag

    International Nuclear Information System (INIS)

    Yan, Tingjiang; Guan, Wenfei; Xiao, Ying; Tian, Jun; Qiao, Zheng; Zhai, Huishan; Li, Wenjuan; You, Jinmao

    2017-01-01

    Highlights: • Ag_3PO_4 was initially prepared via ion-exchange reaction and then annealed in air. • Thermal annealing also resulted in the formation of metallic Ag and Ag vacancies. • The annealed samples exhibited superior activity to the pristine sample. • Both Ag vacancies and metallic Ag contributed to the high activity. - Abstract: In this work, a simple thermal annealing route has been developed to improve the photocatalytic performance of silver orthophosphate (Ag_3PO_4) photocatalyst toward organic pollutants degradation under visible light irradiation. The experimental results indicated that thermal treatment of Ag_3PO_4 led to an obvious lattice shift towards right and significantly narrowed band gap energies due to the formation of Ag vacancies and metallic Ag during Ag_3PO_4 decomposition. These structural variations notably affected the photocatalytic performance of Ag_3PO_4 photocatalysts. The activity of the annealed samples was found to be significantly enhanced toward the degradation of MO dye. The highest activity was observed over the sample annealed at 400 °C, which exceeded that of pristine Ag_3PO_4 by a factor of about 21 times. By means of photoluminescence spectroscopy and photoelectrochemical measurements, we propose that the enormous enhancement in activity was mainly attributed to the efficient separation of photogenerated electrons and holes driven by the synergistic effect of Ag vacancies and metallic Ag. The strong interaction between annealed particles also inhibited the dissolution of Ag"+ from Ag_3PO_4 into aqueous solution, contributing to an improved photocatalytic stability. The strategy presented here provides an ideal platform for the design of other highly efficient and stable Ag-based photocatalysts for broad applications in the field of photocatalysis.

  11. Thermal-annealing effects on the structural and magnetic properties of 10% Fe-doped SnO{sub 2} nanoparticles synthetized by a polymer precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, F.H., E-mail: fermin964@hotmail.com [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Instituto de Ciências Biológicas, Pós-graduação em Nanociência e Nanobiotecnologia, Universidade de Brasília, Brasilia DF 70919-970 (Brazil); Coaquira, J.A.H. [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Nagamine, L.C.C.M.; Cohen, R. [Instituto de Física, Universidade de São Paulo, São Paulo SP 05508-090 (Brazil); Silva, S.W. da [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Instituto de Ciências Biológicas, Pós-graduação em Nanociência e Nanobiotecnologia, Universidade de Brasília, Brasilia DF 70919-970 (Brazil); and others

    2015-02-01

    In this work, we present the experimental results of Sn{sub 0.9}Fe{sub 0.1}O{sub 2} nanoparticles synthesized by a polymer precursor method. Studies were performed in the as-prepared (AP) and thermally-annealed (TA) samples. The X-ray diffraction (XRD) data analysis carried out using the Rietveld refinement method shows the formation of only the rutile-type structure in the AP sample and this phase remains stable for the TA sample. Additionally, the mean crystallite size shows an increase from ∼4 nm to ∼17 nm after the annealing and a clear reduction of the residual strain has also been determined. Micro-Raman spectroscopy measurements show the formation of an iron oxide phase (likely α-Fe{sub 2}O{sub 3}) after the thermal treatment. Magnetic measurements show a paramagnetic behavior for the AP sample and the coexistence of a weak ferromagnetism and paramagnetism for the TA sample. The magnetically-ordered contribution of the TA sample has been assigned to the formation of the hematite phase. DC and AC magnetic features of the TA sample are consistent with a cluster-glass behavior which seems to be related to the magnetic disorder of spins located at the particle surface. Those spins clusters seem to be formed due to the diffusion of iron ions from the core of the particle to the surface caused by the annealing process. - Highlights: • Thermal annealing effects in the 10% Fe-doped SnO{sub 2} nanoparticles have been studied. • XRD data analysis shows the formation of the rutile-type structure. • Raman measurements show the formation of small amount of α-Fe{sub 2}O{sub 3} after the annealing. • Paramagnetic and magnetically ordered phases were determined after the annealing. • Spin clusters likely at the particle surface have been formed after the annealing.

  12. Neutron scattering studies of the phase-transitions of ices by thermal-annealing

    International Nuclear Information System (INIS)

    Wang, Y.; Kolesnikov, A.; Li, J.C.

    1999-01-01

    Complete text of publication follows. Inelastic incoherent neutron scattering was used to study the phase-transition process of high-density amorphous (hda) ice produced by pressurising ice-Ih at 16 kbar and 77 K to low-density amorphous (Ida) ice, ice-Ic and ice-Ih by thermobaric treatments. The results show that when annealing temperature is lower than 136 K no obvious phase-transition was observed and transformation of the hda to the lda ice occurs between 136 and 144 K which is very closed to the theoretically calculated value 135 K (1). Comparing the lda spectrum with the vapour deposited low-density amorphous ice (2) shows a number of differences in the translational and vibrational regions, such as the low energy cut off of the vibrational band. On the other hand, the recovered lda from the hda ice has a similar spectrum as ice-Ih. (author)

  13. Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-10-04

    Composite materials were prepared by extrusion and injection molding from polybutyrate adipate terephthalate (PBAT) and high aspect ratio cellulose nanocrystals (CNCs) extracted from capim dourado fibers. Three CNC contents were used, corresponding to 0.5, 1, and 2 times the theoretical percolation threshold. Small-amplitude oscillary shear (SAOS) experiments show that as the CNC content increases, a more elastic behavior is observed but no percolating network can form within the polymeric matrix as a result of the high shear rates involved during the injection-molding process. Annealing of the samples at 170 °C was performed, and the possible reorganization of the nanofiller was investigated. This reorganization was further elucidated using 2D-SAOS and creep experiments.

  14. The fraction of substitutional boron in silicon during ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Caturla, M.J.; Johnson, M.D.; Diaz de la Rubia, T.

    1998-01-01

    We present results from a kinetic Monte Carlo simulation of boron transient enhanced diffusion (TED) in silicon. Our approach avoids the use of phenomenological fits to experimental data by using a complete and self-consistent set of values for defect and dopant energetics derived mostly from ab initio calculations. The results predict that, during annealing of 40 keV B-implanted Si at 800 degree C, there exists a time window during which all the implanted boron atoms are substitutional. At earlier or later times, the interactions between free silicon self-interstitials and boron atoms drive the growth of boron clusters and result in an inactive boron fraction. The results show that the majority of boron TED takes place during the growth period of interstitial clusters and not during their dissolution. copyright 1998 American Institute of Physics

  15. Rapid thermal annealing of Ti-rich TiNi thin films: A new approach to fabricate patterned shape memory thin films

    International Nuclear Information System (INIS)

    Motemani, Y.; Tan, M.J.; White, T.J.; Huang, W.M.

    2011-01-01

    This paper reports the rapid thermal annealing (RTA) of Ti-rich TiNi thin films, synthesized by the co-sputtering of TiNi and Ti targets. Long-range order of aperiodic alloy could be achieved in a few seconds with the optimum temperature of 773 K. Longer annealing (773 K/240 s), transformed the film to a poorly ordered vitreous phase, suggesting a novel method for solid state amorphization. Reitveld refinement analyses showed significant differences in structural parameters of the films crystallized by rapid and conventional thermal annealing. Dependence of the elastic modulus on the valence electron density (VED) of the crystallized films was studied. It is suggested that RTA provides a new approach to fabricate patterned shape memory thin films.

  16. Enhancement of electron transfer from CdSe core/shell quantum dots to TiO2 films by thermal annealing

    International Nuclear Information System (INIS)

    Shao, Cong; Meng, Xiangdong; Jing, Pengtao; Sun, Mingye; Zhao, Jialong; Li, Haibo

    2013-01-01

    We demonstrated the enhancement of electron transfer from CdSe/ZnS core/shell quantum dots (QDs) to TiO 2 films via thermal annealing by means of steady-state and time-resolved photoluminescence (PL) spectroscopy. The significant decrease in PL intensities and lifetimes of the QDs on TiO 2 films was clearly observed after thermal annealing at temperature ranging from 100 °C to 300 °C. The obtained rates of electron transfer from CdSe core/shell QDs with red, yellow, and green emissions to TiO 2 films were significantly enhanced from several times to an order of magnitude (from ∼10 7 s −1 to ∼10 8 s −1 ). The improvement in efficiencies of electron transfer in the TiO 2 /CdSe QD systems was also confirmed. The enhancement could be considered to result from the thermal annealing reduced distance between CdSe QDs and TiO 2 films. The experimental results revealed that thermal annealing would play an important role on improving performances of QD based optoelectronic devices. -- Highlights: • Annealing-induced enhancement of electron transfer from CdSe to TiO 2 is reported. • CdSe QDs on TiO 2 and SiO 2 films are annealed at various temperatures. • Steady-state and time-resolved PL spectroscopy of CdSe QDs is studied. • The enhancement is related to the reduced distance between CdSe QDs and TiO 2

  17. Recovery of indium-tin-oxide/silicon heterojunction solar cells by thermal annealing

    OpenAIRE

    Morales Vilches, Ana Belén; Voz Sánchez, Cristóbal; Colina Brito, Mónica Alejandra; López Rodríguez, Gema; Martín García, Isidro; Ortega Villasclaras, Pablo Rafael; Orpella García, Alberto; Alcubilla González, Ramón

    2014-01-01

    The emitter of silicon heterojunction solar cells consists of very thin hydrogenated amorphous silicon layers deposited at low temperature. The high sheet resistance of this type of emitter requires a transparent conductive oxide layer, which also acts as an effective antireflection coating. The deposition of this front electrode, typically by Sputtering, involves a relatively high energy ion bombardment at the surface that could degrade the emitter quality. The work function of the tra...

  18. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  19. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...

  20. Wet thermal annealing effect on TaN/HfO2/Ge metal—oxide—semiconductor capacitors with and without a GeO2 passivation layer

    International Nuclear Information System (INIS)

    Liu Guan-Zhou; Li Cheng; Lu Chang-Bao; Tang Rui-Fan; Tang Meng-Rao; Wu Zheng; Yang Xu; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2012-01-01

    Wet thermal annealing effects on the properties of TaN/HfO 2 /Ge metal—oxide—semiconductor (MOS) structures with and without a GeO 2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance—voltage (C—V) and current—voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 °C can lead to Ge incorporation in HfO 2 and the partial crystallization of HfO 2 , which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO 2 /Ge MOS capacitors. However, wet thermal annealing at 400 °C can decrease the GeO x interlayer thickness at the HfO 2 /Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeO x in the wet ambient. The pre-growth of a thin GeO 2 passivation layer can effectively suppress the interface states and improve the C—V characteristics for the as-prepared HfO 2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent

  1. Evidence for hydrogen-assisted recovery of cold-worked palladium: hydrogen solubility and mechanical properties studies

    Directory of Open Access Journals (Sweden)

    Maria Ferrer

    2017-07-01

    Full Text Available The influence of hydrogen as an agent to accelerate the thermal recovery of cold-worked palladium has been investigated. The techniques used to characterize the effects of hydrogen on the thermal recovery of palladium were hydrogen solubility and mechanical property measurements. Results show that the presence of modest amounts of hydrogen during annealing of cold-worked palladium does enhance the degree of thermal recovery, with a direct correlation between the amount of hydrogen during annealing and the degree of recovery. The results indicate that the damage resulting from cold-working palladium can be more effectively and efficiently reversed by suitable heat treatments in the presence of appropriate amounts of hydrogen, as compared to heat treatment in vacuum. The somewhat novel technique of using changes in the hydrogen solubility of palladium as an indicator of thermal recovery has been validated and complements the more traditional technique of mechanical property measurements.

  2. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Norshafadzila Mohammad Naim

    2015-01-01

    Full Text Available PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300°C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS. The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm–424 nm and 426 nm–464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  3. Time-resolved photoluminescence of Ga(NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Woscholski, R., E-mail: ronja.woscholski@physik.uni-marburg.de; Shakfa, M.K.; Gies, S.; Wiemer, M.; Rahimi-Iman, A.; Zimprich, M.; Reinhard, S.; Jandieri, K.; Baranovskii, S.D.; Heimbrodt, W.; Volz, K.; Stolz, W.; Koch, M.

    2016-08-31

    Time-resolved photoluminescence (TR-PL) spectroscopy has been used to study the impact of rapid thermal annealing (RTA) on the optical properties and carrier dynamics in Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates. TR-PL measurements reveal an enhancement in the PL efficiency when the RTA temperature is increased up to 925 °C. Then, the PL intensity dramatically decreases with the annealing temperature. This behavior is explained by the variation of the disorder degree in the studied structures. The analysis of the low-temperature emission-energy-dependent PL decay time enables us to characterize the disorder in the Ga(NAsP) MQWHs. The theoretically extracted energy-scales of disorder confirm the experimental observations. - Highlights: • Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates • Impact of rapid thermal annealing on the optical properties and carrier dynamics • Time resolved photoluminescence spectroscopy was applied. • PL transients became continuously faster with increasing annealing temperature. • Enhancement in the PL efficiency with increasing annealing temperature up to 925 °C.

  4. Time-resolved photoluminescence of Ga(NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing

    International Nuclear Information System (INIS)

    Woscholski, R.; Shakfa, M.K.; Gies, S.; Wiemer, M.; Rahimi-Iman, A.; Zimprich, M.; Reinhard, S.; Jandieri, K.; Baranovskii, S.D.; Heimbrodt, W.; Volz, K.; Stolz, W.; Koch, M.

    2016-01-01

    Time-resolved photoluminescence (TR-PL) spectroscopy has been used to study the impact of rapid thermal annealing (RTA) on the optical properties and carrier dynamics in Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates. TR-PL measurements reveal an enhancement in the PL efficiency when the RTA temperature is increased up to 925 °C. Then, the PL intensity dramatically decreases with the annealing temperature. This behavior is explained by the variation of the disorder degree in the studied structures. The analysis of the low-temperature emission-energy-dependent PL decay time enables us to characterize the disorder in the Ga(NAsP) MQWHs. The theoretically extracted energy-scales of disorder confirm the experimental observations. - Highlights: • Ga(NAsP) multiple quantum well heterostructures (MQWHs) grown on silicon substrates • Impact of rapid thermal annealing on the optical properties and carrier dynamics • Time resolved photoluminescence spectroscopy was applied. • PL transients became continuously faster with increasing annealing temperature. • Enhancement in the PL efficiency with increasing annealing temperature up to 925 °C

  5. Novel thermal donors generated in Cz silicon by prolonged annealing at 470oC

    International Nuclear Information System (INIS)

    Kamiura, Y.; Hashimoto, F.; Yoneta, M.

    1989-01-01

    A new family of shallower double donors (New TD's) than the normal family of thermal donors (TD's) currently studied has been discovered by DLTS (Deep Level Transient Spectroscopy) and Hall measurements. The both families exhibit qualitatively the same kinetic behaviors at 470 o C, but New TD's have smaller generation rates and higher thermal stability, correlating strongly with the NL10 EPR center. The hypothesis that an unknown nucleus involved in the core of New TD's plays an essential role in lowering their level ionization energies and stabilizing their donor activity is proposed to explain the results. (author) 11 refs., 6 figs

  6. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    Science.gov (United States)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  7. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  8. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-05

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  9. Optimisation of a combined transient-ion-drift/rapid thermal annealing process for copper detection in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Belayachi, A.; Heiser, T.; Schunck, J.P.; Bourdais, S.; Bloechl, P.; Huber, A.; Kempf, A

    2003-09-15

    The transient ion drift (TID) technique has been recently proposed for copper trace detection in silicon. Cu atoms may be present either in the vicinity of the Si surface or within the volume. In the latter case they are either gathered at secondary defects or form precipitates believed to be silicides. In order to become detectable by TID Cu atoms must be put into the highly mobile interstitial state. Depending on the initial configuration of the Cu/Si system different physical mechanisms may enable Cu atoms to become 'TID active'. In this work we study the Cu activation process using rapid thermal processing (RTP) in an attempt to minimise the thermal budget required to achieve a complete activation. Both, surface and volume contaminated samples are investigated. During RTP treatments the activation of surface Cu atoms is found to proceed significantly faster than during standard furnace anneal. We tentatively attribute this behaviour to the UV light exposure associated with the RTP, which may enhance the release of copper atoms from the surface. The dissolution kinetics of the Cu precipitates occurring during RTPs are found to be only limited by Cu diffusion. The RTP/TID process is used to study the low temperature reaction path of supersaturated Cu. If prior to the RTP process, Cu atoms are chemically removed from the surface or near surface region, TID measures only the residual bulk Cu atoms. Our results show that out-diffusion and near-surface precipitation are reducing mostly the copper supersaturation.

  10. Thermal stability of hydrogenated small-diameter carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Podlivaev, A. I., E-mail: AIPodlivayev@mephi.ru; Openov, L. A. [National Research Nuclear University “MEPhI” (Russian Federation)

    2017-02-15

    The initial stage of hydrogen desorption from fully hydrogenated carbon nanotubes (3.0) and (2.2) is numerically studied by the molecular dynamics method. The temperature dependence of the desorption rate is directly determined at T = 1800–2500 K. The characteristic desorption times are determined at temperatures outside this range by extrapolation. It is shown that hydrogen desorption leads to the appearance of electronic states in the band gap.

  11. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution

    Science.gov (United States)

    Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun

    2018-01-01

    The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.

  12. Depth profiling of hydrogen in ferritic/martensitic steels by means of a tritium imaging plate technique

    International Nuclear Information System (INIS)

    Otsuka, Teppei; Tanabe, Tetsuo

    2013-01-01

    Highlights: ► We applied a tritium imaging plate technique to depth profiling of hydrogen in bulk. ► Changes of hydrogen depth profiles in the steel by thermal annealing were examined. ► We proposed a release model of plasma-loaded hydrogen in the steel. ► Hydrogen is trapped at trapping sites newly developed by plasma loading. ► Hydrogen is also trapped at surface oxides and hardly desorbed by thermal annealing. -- Abstract: In order to understand how hydrogen loaded by plasma in F82H is removed by annealing at elevated temperatures in vacuum, depth profiles of plasma-loaded hydrogen were examined by means of a tritium imaging plate technique. Owing to large hydrogen diffusion coefficients in F82H, the plasma-loaded hydrogen easily penetrates into a deeper region becoming solute hydrogen and desorbs by thermal annealing in vacuum. However the plasma-loading creates new hydrogen trapping sites having larger trapping energy than that for the intrinsic sites beyond the projected range of the loaded hydrogen. Some surface oxides also trap an appreciable amount of hydrogen which is more difficult to remove by the thermal annealing

  13. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.

    Science.gov (United States)

    Wu, Xufei; Varshney, Vikas; Lee, Jonghoon; Zhang, Teng; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-06-08

    Penta-graphene (PG) has been identified as a novel two-dimensional (2D) material with an intrinsic bandgap, which makes it especially promising for electronics applications. In this work, we use first-principles lattice dynamics and iterative solution of the phonon Boltzmann transport equation (BTE) to determine the thermal conductivity of PG and its more stable derivative, hydrogenated penta-graphene (HPG). As a comparison, we also studied the effect of hydrogenation on graphene thermal conductivity. In contrast to hydrogenation of graphene, which leads to a dramatic decrease in thermal conductivity, HPG shows a notable increase in thermal conductivity, which is much higher than that of PG. Considering the necessity of using the same thickness when comparing thermal conductivity values of different 2D materials, hydrogenation leads to a 63% reduction in thermal conductivity for graphene, while it results in a 76% increase for PG. The high thermal conductivity of HPG makes it more thermally conductive than most other semiconducting 2D materials, such as the transition metal chalcogenides. Our detailed analyses show that the primary reason for the counterintuitive hydrogenation-induced thermal conductivity enhancement is the weaker bond anharmonicity in HPG than PG. This leads to weaker phonon scattering after hydrogenation, despite the increase in the phonon scattering phase space. The high thermal conductivity of HPG may inspire intensive research around HPG and other derivatives of PG as potential materials for future nanoelectronic devices. The fundamental physics understood from this study may open up a new strategy to engineer thermal transport properties of other 2D materials by controlling bond anharmonicity via functionalization.

  14. Si diffusion in compositional disordering of Si-implanted GaAs/AlGaAs superlattices induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    Uematsu, Masashi; Yanagawa, Fumihiko

    1988-01-01

    The Si diffusion in Si-implanted GaAs/Al 0.5 Ga 0.5 As superlattices intermixed in the disrodering process induced by rapid thermal annealing (RTA), is investigated by means of secondary ion mass spectroscopy (SIMS). The SIMS profiles indicate that no fast Si diffusion occurs during the disordering, and the disordering occurs when the Si concentration exceeds 1 x 10 19 cm -3 , which is about three times larger than the threshold value for the disordering by furnace annealing (FA). The number of Si atoms which are allowed to pass through the heterointerface is considered to be essential for disordering. (author)

  15. Synthesis of stoichiometric Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, B.F.; Morales, M.A.; Bohn, F.; Carriço, A.S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Medeiros, S.N. de, E-mail: sndemedeiros@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Dantas, A.L. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, RN (Brazil)

    2016-05-01

    We report the synthesis of Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing from α-Fe{sub 2}O{sub 3} and CaCO{sub 3}. Magnetization measurements, Mössbauer and X-ray spectra reveal that annealing at high temperatures leads to better quality samples. Our results indicate nanoparticles produced by 10 h high-energy ball milling and thermal annealing for 2 h at 1100 °C achieve improved stoichiometry and the full weak ferromagnetic signal of Ca{sub 2}Fe{sub 2}O{sub 5}. Samples annealed at lower temperatures show departure from stoichiometry, with a higher occupancy of Fe{sup 3+} in octahedral sites, and a reduced magnetization. Thermal relaxation for temperatures in the 700–1100 °C range is well represented by a Néel model, assuming a random orientation of the weak ferromagnetic moment of the Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles.

  16. Solid-state reaction in Fe/V multilayers by ion beam mixing with thermal annealing

    International Nuclear Information System (INIS)

    Borges, J.F.M.; Costa, M.I. da Jr.; Teixeira, S.R.; Cunha, J.B.M. da; Alves, M.C.M.

    2001-01-01

    We report a study on the structural and magnetic properties of iron-vanadium thin films, originally grown in multilayer form [Fe(20 A)/V(20 A)] 20 , and mixed by ion beam mixing (IBM) and a subsequent thermal treatment. The samples were structurally characterised by X-ray diffraction (XRD) in the θ-2θ geometry and X-ray absorption spectroscopy (XAS). The magnetic characterisation was made using conversion electron Moessbauer spectroscopy (CEMS). The XRD result for the as-deposited multilayer shows a high-degree crystallinity, while CEMS suggests abrupt interface, since no significant contribution from vanadium in iron is observed. After the IBM and thermal treatment, the results from XRD show an FeV solid solution indexed as a bcc-disordered structure (α phase). XAS structural results are consistent with the XRD observations. CEMS results show a magnetic moment reduction for mixed samples

  17. Ultra-high carrier mobility InSb film by rapid thermal annealing on glass substrate

    Directory of Open Access Journals (Sweden)

    Charith Jayanada Koswaththage

    2016-11-01

    Full Text Available InSb films were deposited on both mica and glass substrates using thermal evaporation and subjected to FA or RTA. Crystallinity, composition and electrical properties were investigated. High Hall electron mobility as high as 25,000 cm2/(Vs was obtained with the capped InSb film by keeping the In:Sb ratio after RTA at 520°C for 30 sec or more without adopting epitaxial growth on glass.

  18. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  19. Effect of Thermal Annealing and Second Harmonic Generation on Bulk Damage Performance of Rapid-Growth KDP Type I Doublers at 1064 nm

    International Nuclear Information System (INIS)

    Runkel, M; Maricle, S; Torres, R; Auerbach, J; Floyd, R; Hawley-Fedder, R; Burnham, A K

    2000-01-01

    This paper discusses the results of thermal annealing and in-situ second harmonic generation (SHG) damage tests performed on six rapid growth KDP type 1 doubler crystals at 1064 nm (1 ω) on the Zeus automated damage test facility. Unconditioned (S/1) and conditioned (R/1) damage probability tests were performed before and after thermal annealing, then with and without SHG on six doubler crystals from the NIF-size, rapid growth KDP boule F6. The tests revealed that unannealed, last-grown material from the boule in either prismatic or pyramidal sectors exhibited the highest damage curves. After thermal annealing at 160 C for seven days, the prismatic sector samples increased in performance ranging from 1.6 to 2.4X, while material from the pyramidal sector increased only modestly, ranging from 1.0 to 1.4X. Second harmonic generation decreased the damage fluence by an average of 20 percent for the S/1 tests and 40 percent for R/1 tests. Conversion efficiencies under test conditions were measured to be 20 to 30 percent and compared quite well to predicted behavior, as modeled by LLNL frequency conversion computer codes. The damage probabilities at the 1 ω NIF redline fluence (scaled to 10 ns via t 0.5 ) for S/1 tests for the unannealed samples ranged from 20 percent in one sample to 90-100 percent for the other 5 samples. Thermal annealing reduced the damage probabilities to less than 35 percent for 3 of the poor-performing crystals, while two pyramidal samples remained in the 80 to 90 percent range. Second harmonic generation in the annealed crystal increased the S/1 damage probabilities on all the crystals and ranged from 40 to 100 percent. In contrast, R/1 testing of an unannealed crystal resulted in a damage probability at the NIF redline fluence of 16%. Annealing increased the damage performance to the extent that all test sites survived NIF redline fluences without damage. Second harmonic generation in the R/1 test yielded a damage probability of less than 2

  20. Investigation of SiO{sub 2} film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3} and H{sub 2}O vapor at varied process durations

    Energy Technology Data Exchange (ETDEWEB)

    Poobalan, Banu [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Moon, Jeong Hyun; Kim, Sang-Cheol; Joo, Sung-Jae; Bahng, Wook; Kang, In Ho; Kim, Nam-Kyun [Power Semiconductor Research Centre, Korea Electrotechnology Research Institute, PO Box 20, Changwon, Gyungnam 641120 (Korea, Republic of); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2014-11-03

    This study has revealed that HNO{sub 3} and H{sub 2}O vapors can be utilized as direct thermal oxidation or postoxidation annealing agents at a temperature above 1000 °C; as they play a major role in simultaneous oxidation/nitridation/hydrogenation processes at the bulk oxide and SiO{sub 2}/SiC interface. The varied process durations of the above-mentioned techniques contribute to the development of thicker gate oxides for high power device applications with improved electrical properties, lower interface-state density and higher breakdown voltage as compared to oxides grown through a more conventional wet (H{sub 2}O vapor only) oxidation technique. The study highlights the effects of hydrogen and nitrogen species on the passivation of structural defects at the bulk oxide and the SiO{sub 2}/SiC interface, which are revealed through the use of Time-of-Flight Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy. The physical properties of the substrate after oxide removal show that the surface roughness decreases as the process durations increase with longer hours of H{sub 2}O and HNO{sub 3} vapor exposures on the samples, which is mainly due to the significant reduction of carbon content at the SiO{sub 2}/SiC interface. - Highlights: • Direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3}/H{sub 2}O vapor • SiO{sub 2} film growth in H{sub 2}O/HNO{sub 3}vapor at varied process durations • Thicker SiO{sub 2} film growth via annealing than direct growth in HNO{sub 3}/H{sub 2}O vapor • Nitrogen and hydrogen as passivation elements in SiO{sub 2}/SiC interface and SiO{sub 2} bulk • Significant reduction of carbon and Si-dangling bonds at the SiC/SiO{sub 2} interface.

  1. Effect of thermal annealing on carrier localization and efficiency of spin detection in GaAsSb epilayers grown on InP

    Science.gov (United States)

    Zhang, Bin; Chen, Cheng; Han, Junbo; Jin, Chuan; Chen, Jianxin; Wang, Xingjun

    2018-04-01

    The effect of the thermal annealing on the optical and spin properties in GaAs0.44Sb0.56 epilayers grown on InP was investigated via photoreflectance, power-dependent and time-resolved photoluminescence spectroscopy as well as optical orientation measurement. The carrier's localization and the optical spin detection efficiency increase with an increase of annealing temperature up to 600 °C. The enhancement of the spin detection efficiency is attributed to both the shortening of the electron lifetime and the prolonging of the spin lifetime as a result of the enhanced carriers' localization induced by the annealing process. Our results provided an approach to enhance spin detection efficiency of GaAsSb with its PL emission in the 1.55 μm region.

  2. Synthesis carbon-encapsulated NiZn ferrite nanocomposites by in-situ starch coating route combined with hydrogen thermal reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fuming [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Xie, Yu, E-mail: xieyu_121@163.com [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Duan, Junhong; Hua, Helin [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Gao, Yunhua [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Huang, Yan; Pan, Jianfei; Ling, Yun [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-05

    Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction. The nanocomposites were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and vibrate sample magnetometer (VSM) and so on techniques. XRD, FT-IR, TGA and TEM images indicate the formation of carbon-encapsulated NiZn ferrite magnetic nanocomposites. XRD patterns reveal that the crystalline structure of the nanocomposites is cubic spinel and taenite emerges under the hydrogen thermal reductive ambient. FT-IR spectra suggest that there are interactions on the NiZn ferrite nanocomposites and a spinel-type structure corresponding to NiZn ferrite has formed. TGA shows that the weight loss of the nanocomposites can be divided into three stages in the course of heat decomposition. TEM observations reveal that the carbon-encapsulated NiZn ferrite magnetic nanocomposites have an intact core–shell structure. Under the magnetic field, the nanocomposites exhibited the ferrimagnetic behavior. The saturated magnetization (M{sub s}) of carbon-encapsulated NiZn ferrite nanocomposites calcined at 400 °C can reach a high value up to 72.67 emu/g, and the saturated magnetization (M{sub s}) decreases as the annealing temperature goes up, while the coercivity (Hc), magnetic residual (Mr) magnetic parameters practically fixed on 115.15 Oe and 7.85 emu/g. - Graphical abstract: Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction (Fig. 1). The nanocomposites were characterized and the experimental results were discussed. Under applied magnetic field, the nanocomposites exhibited the ferromagnetic behavior

  3. Physical properties of electrically conductive Sb-doped SnO2 transparent electrodes by thermal annealing dependent structural changes for photovoltaic applications

    International Nuclear Information System (INIS)

    Leem, J.W.; Yu, J.S.

    2011-01-01

    Highlights: · The physical properties of sputtered Sb-doped SnO 2 after annealing were studied. · The figure of merit was estimated from the integral PFD and sheet resistance. · The characteristics of Sb-doped SnO 2 films were optimized by the figure of merit. · An optimized Sb-doped SnO 2 layer is promising for high efficiency photovoltaic cells. - Abstract: We have investigated the optical and electrical characteristics of antimony (Sb)-doped tin oxide (SnO 2 ) films with modified structures by thermal annealing as a transparent conductive electrode. The structural properties were analyzed from the relative void % by spectroscopic ellipsometry as well as the scanning electron microscopy images and X-ray diffraction patterns. As the annealing temperature was raised, Sb-doped SnO 2 films exhibited a slightly enhanced crystallinity with the increase of the grain size from 17.1 nm at 500 deg. C to 34.3 nm at 700 deg. C. Furthermore, the refractive index and extinction coefficient gradually decreased due to the increase in the relative void % within the film during the annealing. The resistivity decreased to 8.2 x 10 -3 Ω cm at 500 deg. C, but it increased rapidly at 700 deg. C. After thermal annealing, the optical transmittance was significantly increased. For photovoltaic applications, the photonic flux density and the figure of merit over the entire solar spectrum were obtained, indicating the highest values of 5.4 x 10 14 cm -2 s -1 nm -1 at 1.85 eV after annealing at 700 deg. C and 340.1 μA cm -2 Ω -1 at 500 deg. C, respectively.

  4. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    Science.gov (United States)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  5. Influence of dissolved hydrogen and temperature on primary water stress corrosion cracking of mill annealed alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Nobuo; Nishikawa, Yoshito [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    The influence of dissolved hydrogen and temperature on primary water stress corrosion cracking (PWSCC) of alloy 600 was experimentally studied at temperature ranging from 310 to 360degC and hydrogen contents ranging from 0 to 4 ppm using slow strain rate tensile technique (SSRT) and constant load tensile test. As a result, it was revealed that the PWSCC susceptibility of alloy 600 has a maximum near 3 ppm of dissolved hydrogen at 360degC and the peak shifts to 1 ppm at 320degC. The mechanism of the peak shift is not clear yet, however, it is possibly explained by the change of absorbed hydrogen in the metal caused by the change of hydrogen recombination reaction and/or change of the surface film. (author)

  6. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kriha, Kenneth [Gas Technology Inst., Des Plaines, IL (United States); Petitpas, Guillaume [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Melchionda, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soto, Herie [Shell, Houston TX (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-11

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used to liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.

  7. Effects of thermal annealing on the radiation produced electron paramagnetic resonance spectra of bovine and equine tooth enamel: Fossil and modern

    International Nuclear Information System (INIS)

    Weeks, Robert A.; Bogard, James S.; Elam, J. Michael; Weinand, Daniel C.; Kramer, Andrew

    2003-01-01

    The concentration of stable radiation-induced paramagnetic states in fossil teeth can be used as a measure of sample age. Temperature excursions >100 deg. C, however, can cause the paramagnetic state clock to differ from the actual postmortem time. We have heated irradiated enamel from both fossilized bovid and modern equine (MEQ) teeth for 30 min in 50 deg. C increments from 100 to 300 deg. C, measuring the electron paramagnetic resonance (EPR) spectrum after each anneal, to investigate such effects. Samples were irradiated again after the last anneal, with doses of 300-1200 Gy from 60 Co photons, and measured. Two unirradiated MEQ samples were also annealed for 30 min at 300 deg. C, one in an evacuated EPR tube and the other in a tube open to the atmosphere, and subsequently irradiated. The data showed that hyperfine components attributed to the alanine radical were not detected in the irradiated MEQ sample until after the anneals. The spectrum of the MEQ sample heated in air and then irradiated was similar to that of the heat treated fossil sample. We conclude that the hyperfine components are due to sample heating to temperatures/times >100 deg. C/30 min and that similarities between fossil and MEQ spectra after the 300 deg. C/30 min MEQ anneal are also due to sample heating. We conclude that the presence of the hyperfine components in spectra of fossil tooth enamel indicate that such thermal events occurred either at the time of death, or during the postmortem history

  8. The effect of thermal annealing on the optical band gap of cadmium sulphide thin films, prepared by the chemical bath deposition technique

    International Nuclear Information System (INIS)

    Ampong, F. K.; Boakye, F.; Asare Donkor, N. K.

    2010-01-01

    Cadmium sulphide thin films have been prepared by the chemical bath deposition technique (ph 11, 70 degree centigrade). Two different sets of films were prepared under varied conditions and concentrations of their ions sources (Cd 2+ from cadmium nitrate, S 2- from thiourea) and Na 2 EDTA as a complexing agent. A UV mini-Schimazu UV-VIS Spectrophotometer was used to determine the optical absorbance of the films as a function of wavelength at room temperature over the wavelength range 200 - 600 nm. The samples were then thermally annealed for thirty minutes, at temperatures of 100 degree centigrade, and 200 degree centigrade, after which the absorbance of the films were again recorded. The band gap values obtained for the sample with 0.5 M CdS as deposited, annealed at 100 degree centigrade and 200 degree centigrade were 2.1 eV, 2.2 eV and 2.3 eV respectively. Whilst the values obtained for the sample 0.15 CdS as deposited, annealed at 100 degree centigrade and annealed at 200 degree centigrade were 2.0 eV, 2.01 eV and 2.02 eV respectively. The increase in band gap with annealing temperature might be attributed to the improvement in crystallinity in the films. (au)

  9. Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se2 solar cells on glass substrate

    Science.gov (United States)

    Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru

    2018-03-01

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.

  10. Effect of Thermal Annealing on the Redistribution of Alkali Metals in Cu(In,Ga)Se2 Solar Cells on Glass Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, Harvey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kamikawa, Yukiko [National Institute of Advanced Industrial Science and Technology (AIST); Nishinaga, Jiro [National Institute of Advanced Industrial Science and Technology (AIST); Ishizuka, Shogo [National Institute of Advanced Industrial Science and Technology (AIST); Tayagaki, Takeshi [National Institute of Advanced Industrial Science and Technology (AIST); Shibata, Hajime [National Institute of Advanced Industrial Science and Technology (AIST); Matsubara, Koji [National Institute of Advanced Industrial Science and Technology (AIST); Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST)

    2018-03-02

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.

  11. Effect of thermal annealing on the emission properties of heterostructures containing a quantum-confined GaAsSb layer

    Energy Technology Data Exchange (ETDEWEB)

    Dikareva, N. V., E-mail: dnat@ro.ru; Vikhrova, O. V.; Zvonkov, B. N. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Malekhonova, N. V. [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Nekorkin, S. M. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Pirogov, A. V.; Pavlov, D. A. [Lobachevsky State University of Nizhni Novgorod (Russian Federation)

    2015-01-15

    Heterostructures containing single GaAsSb/GaAs quantum wells and bilayer GaAsSb/InGaAs quantum wells are produced by metal-organic vapor-phase epitaxy at atmospheric pressure. The growth temperature of the quantum-confined layers is 500–570°C. The structural quality of the samples and the quality of heterointerfaces of the quantum wells are studied by the high-resolution transmission electron microscopy of cross sections. The emission properties of the heterostructures are studied by photoluminescence measurements. The structures are subjected to thermal annealing under conditions chosen in accordance with the temperature and time of growth of the upper cladding p-InGaP layer during the formation of GaAs/InGaP laser structures with an active region containing quantum-confined GaAsSb layers. It is found that such heat treatment can have a profound effect on the emission properties of the active region, only if a bilayer GaAsSb/InGaAs quantum well is formed.

  12. Effects of thermal cycle annealing on reduction of defect density in lattice-mismatched InGaAs solar cells

    International Nuclear Information System (INIS)

    Sasaki, T.; Arafune, K.; Lee, H.S.; Ekins-Daukes, N.J.; Tanaka, S.; Ohshita, Y.; Yamaguchi, M.

    2006-01-01

    Lattice-mismatched In 0.16 Ga 0.84 As solar cells were grown on GaAs substrates using graded In x Ga 1- x As buffer layers and homogenous In 0.16 Ga 0.84 As buffer layers. The indium composition x in the graded buffer changed from 0% to 16% continuously. Thermal cycle annealing (TCA) was performed after the growth of the graded buffer layers. The effects of TCA on the solar cell open-circuit voltage and quantum efficiency have been investigated. The minority carrier lifetime is observed to increase in the p-type In 0.16 Ga 0.84 As layer after applying the TCA process. Electron-beam-induced current microscopy also shows a related reduction in dislocation density in the p-type In 0.16 Ga 0.84 As layer after TCA processing. Cross-sectional transmission electron microscopy performed on the graded buffer layer suggests that the strain present in the cell layers is reduced after the TCA process, implying that the TCA treatment promotes strain relaxation in the graded buffer layers

  13. Characterization of Si(1 1 1) crystals implanted with Sb{sup +} ions and annealed by rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Labbani, R.; Halimi, R.; Laoui, T.; Vantomme, A.; Pipeleers, B.; Roebben, G

    2003-09-15

    Monocrystalline Si(1 1 1) targets are implanted (at room temperature) with antimony ions at 120 keV energy to 5x10{sup 14} or 5x10{sup 15} Sb{sup +} cm{sup -2} dose. The samples are heat treated by means of rapid thermal processing (RTP) at 1000 deg. C during 60 s, under nitrogen atmosphere. In this work, we report the measured evolution of the silicon surface damage and the radiation damage recovery in relation to antimony dose and RTP processing. We also study the behavior of antimony dopant into Si(1 1 1) specimens. The investigation is carried out by He{sup +} Rutherford backscattering spectrometry (RBS; operating at 1.57 MeV energy in both random and channeling modes), X-ray diffraction (XRD) and atomic force microscopy (AFM) techniques. It is shown that a good surface damage recovery is obtained for all the annealed samples. However, after RTP, a significant loss of antimony has occurred for the specimens which are implanted with 5x10{sup 15} Sb{sup +} cm{sup -2} dose. This suggests an antimony out-diffusion. Finally, a good morphological characterization of the specimens is provided by AFM.

  14. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Ozcan, Yusuf [Department of Electricity and Energy, Pamukkale University, Denizli (Turkey); Orujalipoor, Ilghar [Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Huang, Yen-Chih; Jeng, U-Ser [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China); Ide, Semra [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  15. Studies of thermal annealing and dope composition on the enhancement of separation performance cellulose acetate membrane for brackish water treatment from Jepara

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-08-01

    Full Text Available Membrane is an alternative technology of water treatment with filtration principle that is being widely developed and used for water treatment. The main objective of this study was to make an asymmetric membrane using cellulose acetate polymer and study the effect of additive and annealing treatment on the morphology structure and performance of cellulose acetate membranes in brackish water treatment. Asymmetric membranes for brackish water treatment were casted using a casting machine process from dope solutions containing cellulose acetates and acetone as a solvent. Membranes was prepared by phase inversion method  with variation of polyethylene glycol (PEG concentration of 1 and 5 wt% and with thermal annealing at 60 oC in 10 seconds and without thermal annealing behavior. Membrane characterization consists of calculation of membrane flux and rejection with brackish water as a feed from Jepara. The research concluded that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion method. The more added concentration of PEG will be resulted the larger pore of membrane. Meanwhile the higher temperature and the longer time of annealing treatment, the skin layer of membrane become denser. Membrane with the composition of 18 wt% cellulose acetate, 5 wt% PEG, 1 wt% distilled water, with heat treatment at temperature of 60 oC for 10 seconds is obtained optimal performance.

  16. Electrical characteristics and preparation of (Ba0.5Sr0.5)TiO3 films by spray pyrolysis and rapid thermal annealing

    International Nuclear Information System (INIS)

    Koo, Horngshow; Ku, Hongkou; Kawai, Tomoji; Chen Mi

    2007-01-01

    Functional films of (Ba 0.5 Sr 0.5 )TiO 3 on Pt (1000 A)/Ti (100 A)/SiO 2 (2000 A)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba 0.5 Sr 0.5 )TiO 3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400degC and 57.7% weight loss up to 1000degC. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750degC for 5 min while leakage current density is 1.5x10 -6 A/cm 2 in the film annealed at 550degC for 5 min. (author)

  17. Ultrapure hydrogen thermal compressor based on metal hydrides for fuel cells and hybrid vehicles

    International Nuclear Information System (INIS)

    Almasan, V.; Biris, A.; Coldea, I.; Lupu, D.; Misan, I.; Popeneciu, G.; Ardelean, O.

    2007-01-01

    Full text: In hydrogen economy, efficient compressors are indispensable elements in the storage, transport and distribution of the produced hydrogen. Energetic efficient technologies can contribute to H 2 pipelines transport to the point of use and to distribute H 2 by refuelling stations. Characteristic for metal hydrides systems is the wide area of possibilities to absorb hydrogen at low pressure from any source of hydrogen, to store and deliver it hydrogen at high pressure (compression ratio more than 30). On the basis of innovative concepts and advanced materials for H 2 storage/compression (and fast thermal transfer), a fast mass (H 2 ) and heat transfer unit will be developed suitable to be integrated in a 3 stage thermal compressor. Metal hydrides used for a three stage hydrogen compression system must have different equilibrium pressures, namely: for stage 1, low pressure H 2 absorption and resistant to poisoning with impurities of hydrogen, for stage 2, medium pressure H 2 absorption and for stage 3, high pressure hydrogen delivery (120 bar). In the case of compression device based on metallic hydrides the most important properties are the hydrogen absorption/desorption rate, a smaller process enthalpy and a great structural stability on long term hydrogen absorption/desorption cycling. These properties require metal hydrides with large differences between the hydrogen absorption and desorption pressures at equilibrium, within a rather small temperature range. The main goal of this work is to search and develop metal hydride integrated systems for hydrogen purification, storage and compression. After a careful screening three hydrogen absorbing alloys will be selected. After selection, the work up of the alloys composition on the bases of detailed solid state studies, new multi-component alloys will be developed, with suitable thermodynamic and kinetic properties for a hydrogen compressor. The results of the study are the following: new types of hydrogen

  18. Thermal energy distribution analysis for hydrogen production in RGTT200K conceptual design

    International Nuclear Information System (INIS)

    Tumpal Pandiangan; Ign Djoko Irianto

    2011-01-01

    RGTT200K is a high temperature gas-cooled reactor (HTGR) which conceptually designed for power generation, hydrogen production and desalination. Hydrogen production process in this design uses thermochemical method of Iodine-Sulphur. To increase the thermal conversion efficiency in hydrogen production installations, it needs to design a thermal energy distribution and temperature associated with the process of thermo-chemical processes in the method of Iodine-Sulphur. In this method there are 7 kinds of processes: (i) H 2 SO4 decomposition reaction (ii) treatment of vaporization (iii) treatment of pre vaporizer (iv) treatment of flash 4 (v) treatment of decomposition of HI (vi) treatment of the flash 1-3 and (vii) Bunsen reaction. To regulate the distribution of energy and temperature appropriate to the needs of each process used 3 pieces of heat exchanger (HE). Calculation of energy distribution through the distribution of helium gas flow has been done with Scilab application programs, so that can know the distribution of thermal energy for production of 1 mole of hydrogen. From this model, it can calculate the thermal energy requirement for production of hydrogen at the desired capacity. In the conceptual design of RGTT200K, helium discharge has been designed by 20 kg/s, so that an efficient hydrogen production capacity needed to produce 15347.8 for 21.74 mole of H 2 . (author)

  19. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices.

    Science.gov (United States)

    Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan; Li, Qiang; Wang, Chen; Fang, Ying

    2011-02-09

    By combining atomic force microscopy and trans-port measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO(2)) substrates. Thermal treatment above 300 °C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO(2) substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid β-peptide (Aβ1-42) on graphene were electrically measured in real time.

  20. Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact

    International Nuclear Information System (INIS)

    Liu Fang; Qin Zhixin

    2016-01-01

    Fluorine plasma treatment was used prior to the Schottky metal deposition on the undoped Al 0.45 Ga 0.55 N, which aimed at the solar-blind wavelength. After fluorine plasma treatment and before depositing the Ni/Au Schottky, the samples were thermal annealed in the N 2 gas at 400 °C. The reverse leakage current density of Al 0.45 Ga 0.55 N Schottky diode was reduced by 2 orders of magnitude at −10 V. The reverse leakage current density was reduced by 3 orders of magnitude after thermal annealing. Further capacitance–frequency analysis revealed that the fluorine-based plasma treatment reduces the surface states of AlGaN by one order of magnitude at different surface state energies. The capacitance–frequency analysis also proved that the concentration of carriers in AlGaN top is reduced through fluorine plasma treatment. (paper)

  1. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  2. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.

    Science.gov (United States)

    Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao

    2014-12-15

    This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

  3. Marker experiments in growth studies of Ni2Si, Pd2Si, and CrSi2 formed both by thermal annealing and by ion mixing

    International Nuclear Information System (INIS)

    Hung, L.S.; Mayer, J.W.; Pai, C.S.; Lau, S.S.

    1985-01-01

    Inert markers (evaporated tungsten and silver) were used in growth studies of silicides formed both by thermal annealing and by ion mixing in the Ni/Si, Pd/Si, and Cr/Si systems. The markers were initially imbedded inside silicides and backscattering spectrometry was used to determine the marker displacement after different processing conditions. The results obtained in thermal annealing are quite consistent with that found in previous investigations. Ni is the dominant diffusing species in Ni 2 Si, while Si is the diffusing species in CrSi 2 . In Pd 2 Si, both Pd and Si are moving species with Pd the faster of the two. In contrast, in growth of silicides by ion irradiation Si is the faster diffusing species in all three systems

  4. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    Science.gov (United States)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-04-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  5. Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

    OpenAIRE

    Zhang, Lin

    2017-01-01

    Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces...

  6. Thermal annealing behaviour of sulphur-35 produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Dyakovich, V; Todorovski, D S; Kostadinova, Z D [Sofia Univ. (Bulgaria). Khimicheski Fakultet

    1983-12-19

    The regression analysis of the experimental results on the thermal annealing behaviour of /sup 35/S produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/ confirms some suppositions made in a previous paper. The chemical state of /sup 35/S is defined by the target prehistory and the iron concentration. The influence of Fe/sup 3 +/ can be observed indirectly through its influence on the defect structure formed.

  7. Effect of rapid thermal annealing on the composition of Au/Ti/Al/Ti ohmic contacts for GaN-based microdevices

    International Nuclear Information System (INIS)

    Redondo-Cubero, A.; Ynsa, M.D.; Romero, M.F.; Alves, L.C.; Muñoz, E.

    2013-01-01

    The homogeneity of Au/Ti/Al/Ti ohmic contacts for AlGaN/GaN devices was analyzed as a function of the thickness of the Ti barrier (30 nm 50 nm, although several compositional deficiencies were identified in the distribution maps obtained with the ion microprobe, including the formation of craters. A clear interplay between Ti and Au was found, suggesting the relevance of lateral flows during the rapid thermal annealing

  8. The thermal stability of the carbon-palladium films for hydrogen sensor applications

    Science.gov (United States)

    Rymarczyk, Joanna; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław

    2017-08-01

    The thermal stability of two types of C-Pd films prepared in PVD process were studied. These films are composed of Pd nanograins embedded in a multiphase carbonaceous matrix. These films were distinguished by Pd content. These films were annealed in a range of temperatures 50÷1000°C. The structural, topographical and molecular changes were studied by scanning electron microscopy (SEM), infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods. The results show that investigated films are thermally stable up to 200°C.

  9. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  10. Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere.

    Science.gov (United States)

    Yamauchi, Miho; Tsukuda, Tatsuya

    2011-05-14

    CuPd (1/1) nanoalloys composed of disordered body-centered-cubic crystals (crystal size = 1.6 nm) were prepared by synchronous reduction of Cu and Pd precursor ions with NaBH(4). In situ XRD measurement revealed that Cu and Pd atoms in the CuPd nanoalloys are arranged into an ordered B2 structure under exposure to H(2) (5 kPa) at 373 K. Ordering of Cu and Pd atoms over a longer distance (up to 3.6 nm) was achieved by annealing the nanoalloys for a longer time under a H(2) atmosphere.

  11. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-01-01

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps

  12. Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: a case of transformation of various defect states.

    Science.gov (United States)

    Pathak, Nimai; Gupta, Santosh Kumar; Prajapat, C L; Sharma, S K; Ghosh, P S; Kanrar, Buddhadev; Pujari, P K; Kadam, R M

    2017-05-17

    MgO particles of few micron size are synthesized through a sol-gel method at different annealing temperatures such as 600 °C (MgO-600), 800 °C (MgO-800) and 1000 °C (MgO-1000). EDX and ICP-AES studies confirmed a near total purity of the sample with respect to paramagnetic metal ion impurities. Magnetic measurements showed a low temperature weak ferromagnetic ordering with a T C (Curie temperature) around 65 K (±5 K). Unexpectedly, the saturation magnetization (M s ) was found to be increased with increasing annealing temperature during synthesis. It was observed that with J = 1 or 3/2 or S = 1 or 3/2, the experimental points are fitted well with the Brillouin function of weak ferromagnetic ordering. A positron annihilation lifetime measurement study indicated the presence of a divacancy (2V Mg + 2V O ) cluster in the case of the low temperature annealed compound, which underwent dissociations into isolated monovacancies of Mg and O at higher annealing temperatures. An EPR study showed that both singly charged Mg vacancies and oxygen vacancies are responsible for ferromagnetic ordering. It also showed that at lower annealing temperatures the contribution from was very low while at higher annealing temperatures, it increased significantly. A PL study showed that most of the F + centers were present in their dimer form, i.e. as centers. DFT calculation implied that this dimer form has a higher magnetic moment than the monomer. After a careful consideration of all these observations, which have been reported for the first time, this thermally tunable unusual magnetism phenomenon was attributed to a transformation mechanism of one kind of cluster vacancy to another.

  13. The effect of pre-heating and pre-irradiation with gamma rays on thermal annealing in bis [n-benzoil-n-phenyl hydroxilaminate] copper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1988-10-01

    The main purpose of this work was to make a contribution to the study of the chemical effects of the (n,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gamma-rays on the retention and thermal annealing of bis-[N-benzoil-N-phenlhydroxilaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-Point, elemental analysis, infra-red and vesible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis and radiolysis on the retention. It seems that heat gamma-radiation can produce deffects which will lower the susceptibility of the compound to thermal annealing. On the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing aasuming the capture of free electrons and also the existence of holes. (author) [pt

  14. The effect of pre-heating and pre-irradiation with gamma-rays on thermal annealing in-bis-[n-benzoil-n-(o) tolylhydroxylaminate] cooper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1990-02-01

    The main purpose of this work was to make a contribution on the study of the chemical effects of the (N,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gama-rays on the retention and thermal annealing of bis [N-benzoyl-N-(o)tolylhydroxylaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-point, elemental analysis, infra-red and visible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis on the retention. It seems that heat and gamma-radiaition can produce deffects which will lower the susceptibility of the compound to thermal annealling. On the basis on the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing assuming the capture of free electrons and also the existence of holes. (author) [pt

  15. Thermal decomposition of hydroiodic acid and hydrogen separation

    International Nuclear Information System (INIS)

    Yeheskel, J.; Leger, D.; Courvoisier, P.

    1978-01-01

    The reaction of decomposition of hydroiodic acid is included in a promising water splitting process (sulfur-iodine cycle). An experimental program is running in order to overcome some basic difficulties and data shortcomings which stand in the way of achieving that target. The core of the experimental system is the palladium silver (23% Ag) membrane tube reactor in which the feed gas entered the inner side of the tube. Four series of different kinds of experiments have been performed: 1) diffusion of hydrogen from a pure feed hydrogen stream through the membrane; the results are statistically analyzed due to the present correlations of the H 2 specific permeability as a function of temperature and pressure (up to 600 0 C and 20 bar); 2) separation of hydrogen from a binary feed mixture H 2 -He; a mathematical model is developed for this operation; 3) indication of the poisoning effect of a little amount of hydroiodic acid on the hydrogen pereability; this effect is partly reversible at high temperatures; 4) a performance of one continuous experiment of HI decomposition into the membrane tube at steady pressure and temperature of 8 bar and 500 0 C; the results prove the catalytic activity of the membrane surface

  16. Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air

    International Nuclear Information System (INIS)

    Zhang Jun; Liu Yanru; Wei Zhiyang; Zhang Junyan

    2013-01-01

    Highlights: ► Oxygen vacancy is the key factor in accounting for the change in morphology of the ZnO nanorod arrays. ► We firstly investigated the wettability alteration of ZnO nanorod arrays annealed in vacuum at different temperature. ► The hydrophilicity of the ZnO nanorod arrays annealed in air is not related to the oxygen vacancy but ascribed to the O adatom on the nanorod surface. - Abstract: The ZnO nanorod arrays were synthesized via a simple hydrothermal process followed by annealing in vacuum and air respectively at different temperature. The wettability of samples was controlled by adjusting the annealing atmosphere and temperature. To investigate the mechanism of wettability alteration, the chemical composition and surface morphology of nanorod arrays were analyzed by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM), respectively. Increasing oxygen vacancy concentration by increasing annealing temperature in vacuum resulted in a great change of surface morphology, which played the major role in wettability change. Under annealing in air, oxygen vacancy concentration reduced and the surface morphology of nanorod arrays showed little change with increasing annealing temperature. The wettability alteration is ascribed to the O adatom on the nanorods surface.

  17. Thermal annealing dynamics of carbon-coated LiFePO{sub 4} nanoparticles studied by in-situ analysis

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, Frank, E-mail: krumeich@inorg.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Waser, Oliver; Pratsinis, Sotiris E. [Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland)

    2016-10-15

    The thermal behavior of core-shell carbon-coated lithium iron phosphate (LiFePO{sub 4}-C) nanoparticles made by flame spray pyrolysis (FSP) during annealing was investigated by in-situ transmission electron microscopy (TEM), in-situ X-ray powder diffraction (XRD) as well as ex-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Crystallization of the initially glassy LiFePO{sub 4}-C nanoparticles starts at quite low temperatures (T=400 °C), forming single crystals inside the confinement of the carbon shell. Upon increasing the temperature to T≥700 °C, LiFePO{sub 4} starts to diffuse through the carbon shell resulting in cavities inside the mostly intact carbon shell. By increasing the temperature further to T≥800 °C, the initial core-shell morphology converts into open carbon shells (flakes and cenospheres) and bulky LiFePO{sub 4} particles (diameter in the range 300–400 nm), in agreement with ex-situ experiments. - Graphical abstract: TEM images of a typical sample area recorded at room temperature and after heating in-situ heating reveal the growth of particles and the formation of empty carbon cages. - Highlights: • LiFePO{sub 4} coated by a carbon shell is produced by flame spray pyrolysis. • The amorphous LiFePO{sub 4} starts to crystallize at 400 °C as revealed by in-situ XRD. • Crystal growth was visualized by TEM heating experiments. • The formation of empty carbon cages starts at 700 °C.

  18. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    International Nuclear Information System (INIS)

    Malek, M.F.; Mamat, M.H.; Musa, M.Z.; Soga, T.; Rahman, S.A.; Alrokayan, Salman A.H.; Khan, Haseeb A.; Rusop, M.

    2015-01-01

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T a ) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T a was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T a . All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T a temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T a temperature

  19. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  20. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Jingjin Wu

    2016-08-01

    Full Text Available The 4 at. % zirconium-doped zinc oxide (ZnO:Zr films grown by atomic layer deposition (ALD were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  1. Effect of rapid thermal annealing on the Mo back contact properties for Cu_2ZnSnSe_4 solar cells

    International Nuclear Information System (INIS)

    Placidi, Marcel; Espindola-Rodriguez, Moises; Lopez-Marino, Simon; Sanchez, Yudania; Giraldo, Sergio; Acebo, Laura; Neuschitzer, Markus; Alcobé, Xavier; Pérez-Rodríguez, Alejandro; Saucedo, Edgardo

    2016-01-01

    The effect of a rapid thermal process (RTP) on the molybdenum (Mo) back contact for Cu_2ZnSnSe_4 (CZTSe) solar cells is here investigated. It is shown that the annealing of the Mo layer during 5 min at 550 °C, not only improves the crystalline quality of the back contact (avoiding the absorber decomposition at this region because Mo becomes more resistant to the selenization), but also helps achieving higher crystalline quality of the absorber with bigger grains, reducing the current leakage through the heterojunction. We demonstrate that this is related to the relaxation of the compressive stress of the CZTSe absorber, when synthesized on the RTP annealed substrates. CZTSe solar cells prepared on annealed Mo films exhibited higher short circuit current densities and higher open circuit voltages, resulting in 10% and 33% higher fill factors and efficiencies. - Highlights: • An RTP annealing applied for the first time on Mo for CZTSe solar cells. • Clear improvement of the efficiency from 5.7 to 7.6% with RTP treatment. • Discussion of this improvement with adequate material/device characterizations. • Stress-induced defects responsible of the electrical leakage are revealed.

  2. Effect of rapid thermal annealing on the Mo back contact properties for Cu{sub 2}ZnSnSe{sub 4} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, Marcel, E-mail: mplacidi@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Espindola-Rodriguez, Moises; Lopez-Marino, Simon; Sanchez, Yudania; Giraldo, Sergio; Acebo, Laura; Neuschitzer, Markus [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Alcobé, Xavier [Centres Científics i Tecnològics (CCiTUB), Lluis Solé i Sabarís 1, 08028 Barcelona (Spain); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Saucedo, Edgardo [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain)

    2016-08-05

    The effect of a rapid thermal process (RTP) on the molybdenum (Mo) back contact for Cu{sub 2}ZnSnSe{sub 4} (CZTSe) solar cells is here investigated. It is shown that the annealing of the Mo layer during 5 min at 550 °C, not only improves the crystalline quality of the back contact (avoiding the absorber decomposition at this region because Mo becomes more resistant to the selenization), but also helps achieving higher crystalline quality of the absorber with bigger grains, reducing the current leakage through the heterojunction. We demonstrate that this is related to the relaxation of the compressive stress of the CZTSe absorber, when synthesized on the RTP annealed substrates. CZTSe solar cells prepared on annealed Mo films exhibited higher short circuit current densities and higher open circuit voltages, resulting in 10% and 33% higher fill factors and efficiencies. - Highlights: • An RTP annealing applied for the first time on Mo for CZTSe solar cells. • Clear improvement of the efficiency from 5.7 to 7.6% with RTP treatment. • Discussion of this improvement with adequate material/device characterizations. • Stress-induced defects responsible of the electrical leakage are revealed.

  3. Accumulation and release of implanted hydrogen from blisters in Si during the thermal treatment

    International Nuclear Information System (INIS)

    Aleksandrov, P.A.; Baranova, E.K.; Baranova, I.V.; Budaragin, V.V.; Litvinov, V.L.

    2004-01-01

    The processes of accumulation of ion implanted hydrogen in blisters in silicon and its release during the thermal treatment at 350-1020 deg C have been studied by optical techniques. It is established that accumulation of gaseous hydrogen inside blisters takes place at temperatures lower than ∼ 450-500 deg C and is accompanied by the growth of blisters thickness and deformation of their caps. At higher temperatures hydrogen leaves cavities and dissolves in silicon. Due to internal pressure dropping the elasticity deformed top layer partially relaxes, and the blister thickness decreases. Etching of the surface layer reveals the agglomerations of small voids ( [ru

  4. Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat

    Directory of Open Access Journals (Sweden)

    R.F. Beims

    2018-04-01

    Full Text Available This article presents the experimental data on the thermal cracking of soybean oil and blends with hydrogenated fat. Thermal cracking experiments were carried out in a plug flow reactor with pure soybean oil and two blends with hydrogenated fat to reduce the degree of unsaturation of the feedstock. The same operational conditions was considered. The data obtained showed a total aromatics content reduction by 14% with the lowest degree of unsaturation feedstock. Other physicochemical data is presented, such as iodine index, acid index, density, kinematic viscosity. A distillation curve was carried out and compared with the curve from a petroleum sample.

  5. Thermal neutron pulsed parameters in non-hydrogenous systems. Experiment for lead grains

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Kosik, M.; Krynicka, E.; Woznicka, U.; Zaleski, T.

    1997-01-01

    In Czubek's method of measurement of the thermal neutron macroscopic absorption cross section a two-region geometry is applied where the investigated sample is surrounded by an external moderator. Both regions in the measurements made up till now were hydrogenous, which means the same type of the thermal neutron transport properties. In the paper a theoretical consideration to use non-hydrogenous materials as the samples is presented. Pulsed neutron measurements have been performed on homogeneous material in a geometry of the classic experiment with the variable geometric buckling. Two decay constants have been measured for different cylindrical samples of small lead grains (a lead shot). (author)

  6. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  7. Microstructural evolution of Au/TiO{sub 2} nanocomposite films: The influence of Au concentration and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Kubart, T.; Kumar, S.; Leifer, K. [Solid-State Electronics, Department of Engineering Sciences, Uppsala University, P.O. Box 534, Uppsala SE-751 21 (Sweden); Rodrigues, M.S. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Duarte, N.; Martins, B.; Dias, J.P. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Vaz, F. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-04-01

    Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide (TiO{sub 2}), with embedded gold (Au) nanoparticles were prepared and will be analysed and discussed in detail in the present work. The evolution of morphological and structural features was studied for a wide range of Au concentrations and for annealing treatments in air, for temperatures ranging from 200 to 800 °C. Major findings revealed that for low Au atomic concentrations (at.%), there are only traces of clustering, and just for relatively high annealing temperatures, T ≥ 500 °C. Furthermore, the number of Au nanoparticles is extremely low, even for the highest annealing temperature, T = 800 °C. It is noteworthy that the TiO{sub 2} matrix also crystallizes in the anatase phase for annealing temperatures above 300 °C. For intermediate Au contents (5 at.% ≤ C{sub Au} ≤ 15 at.%), the formation of gold nanoclusters was much more evident, beginning at lower annealing temperatures (T ≥ 200 °C) with sizes ranging from 2 to 25 nm as the temperature increased. A change in the matrix crystallization from anatase to rutile was also observed in this intermediate range of compositions. For the highest Au concentrations (> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm (for T ≥ 400 °C). It is demonstrated that the structural and morphological characteristics of the films are strongly affected by the annealing temperature, as well as by the particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO{sub 2} matrix. - Highlights: • Au:TiO{sub 2} films were produced by magnetron sputtering and post-deposition annealing. • The Au concentration in the films increases with the Au pellet area. • Annealing induced microstructural changes in the films. • The nanoparticle size evolution with temperature depends on the Au concentration.

  8. Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel

    International Nuclear Information System (INIS)

    Yueksel, F.; Ceviz, M.A.

    2003-01-01

    This paper investigates the effects of adding constant quantity hydrogen to gasoline-air mixture on SI engine thermal balance and performance. A four stroke, four-cylinder SI engine was used for conducting this study. Thermal balance tests were conducted for engine thermal efficiency, heat loss through the exhaust gases, heat loss to the cooling water and unaccounted losses (i.e. heat lost by lubricating oil, radiation), while performance tests were in respect to the brake power, specific fuel consumption and air ratio. Hydrogen supplementations were used with three different and fixed mass flow rates; 0.129, 0.168 and 0.208 kg h -1 at near three-fourth throttle opening position and variable engine speed ranging from 1000 to 4500 rpm. The results showed that supplementation of hydrogen to gasoline decreases the heat loss to cooling water and unaccounted losses, and the heat loss through the exhaust gas is nearly the same with pure gasoline experiments. Additionally, specific fuel consumption decreases, while the engine thermal efficiency and the air ratio increase. Engine performance parameters such as thermal efficiency and specific fuel consumption improved the level of the ratio of hydrogen mass flow rate to that of gasoline up to 5%

  9. Thermal annealing evolution to physical properties of ZnS thin films as buffer layer for solar cell applications

    Science.gov (United States)

    Kaushalya; Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-07-01

    The conventional CdS window layer in solar cells is found to be hazardous for the environment due to toxic nature of the cadmium. Therefore, in order to seek an alternative, a study on effect of post-annealing treatment on physical properties of e-beam evaporated ZnS thin films has been carried out where films of thickness 150 nm were deposited on glass and indium tin oxide (ITO) substrates. The post annealing treatment was performed in air atmosphere within the temperature range from 100 °C to 500 °C. X-ray diffraction analysis reveals that the films on glass substrate are found to be amorphous at low temperature annealing (≤300 °C) while have α-ZnS hexagonal phase (wurtzite structure) at higher annealing. The patterns also show that the possibility of oxidation is increased significantly at temperature 500 °C which leads to decrease in direct band gap from 3.28 eV to 3.18 eV except films annealed at 300 °C (i.e. 3.39 eV). The maximum transmittance is found about 95% as a result of Doppler blue shift while electrical analysis indicated almost ohmic behavior between current and voltage and surface roughness is increased with post-annealing treatment.

  10. Effect of the post-annealing temperature on the thermal-decomposed NiOx hole contact layer for perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Yuxiao Guo

    2018-02-01

    Full Text Available A hysteresis-less inverted perovskite solar cell (PSC with power conversion efficiency (PCE of 13.57% was successfully achieved based on the thermal-decomposed NiOx hole contact layer, possessing better electron blocking and hole extraction properties for its suitable work function and high-conduction band edge position. Herein, the transparent and high-crystalline NiOx film is prepared by thermal-decomposing of the solution-derived Ni(OH2 film in our study, which is then employed as hole transport layer (HTL of the organic–inorganic hybrid PSCs. Reasonably, the post-annealing treatment, especially for the annealing temperature, could greatly affect the Ni(OH2 decomposition process and the quality of decomposed NiOx nanoparticles. The vital NiOx HTLs with discrepant morphology, crystallinity and transmission certainly lead to a wide range of device performance. As a result, an annealing process of 400∘C/2h significantly promotes the photovoltaic properties of the NiOx layer and the further device performance.

  11. Rapid phase segregation of P3HT:PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Fang, G.J.; Qin, P.L.; Cheng, F.; Zhao, X.Z. [Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan (China)

    2011-12-15

    The performances of bulk-heterojunction (BHJ) solar cells are investigated for time-dependent thermal annealing with different morphology evolution scales, having special consideration for the diffusion and aggregation of fullerene derivative molecules based on blends of poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM). Meaningfully, rapid formation of dot-like and needle-like crystalline PCBM structures of a few micrometers up to 60 {mu}m in size is obtained with thermal annealing treatment from 2 to 15 min, which dynamically reflects a fast process of PCBM molecule and cluster aggregation. Upon ultrasonic-assisted processing and annealing treatment, the scale of P3HT crystals is drastically increased in view of X-ray diffraction (XRD) patterns, leading to a high hole mobility. And, the P3HT domains can be gradually converted into larger P3HT crystals approved by the decreased full width at half-maximum in the XRD patterns. Corresponding current-voltage curves are measured in quantity and we propose a model to explain the effect of the crystalline degree of P3HT domains and aggregation of PCBM molecules and clusters on the phase segregation, expressing a viewpoint towards high performance of BHJ solar cells. (orig.)

  12. Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhou Zenglin; Song Yueqing; Cui Shun; Huang Changgeng; Qian Wenlian; Lin Chenguang; Zhang Yongjian; Lin Yulin

    2010-01-01

    MmNi 4.2 Co 0.3 Mn 0.4 Al 0.3 Mg 0.03 hydrogen storage alloy was prepared by single-roll rapid quenching followed by different annealing treatments for 8 h at 1133 K, 1173 K, 1213 K, and 1253 K, respectively. Alloy structure, phase composition, pressure-composition-temperature (PCT) properties, and electrochemical performance of different annealed alloys have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy dispersion spectrometer (EDS), automatic Sieverts-type apparatus, and electrochemical experiments. Electrochemical experiments indicate that the annealing treatment at 1213 K extends cycle life from 193 cycles to 358 cycles, increases the maximum discharge capacity, and slightly decreases the activation behavior. Alloy structure analyses show that the improvement in cycle life is attributed to the formation of a single CaCu 5 -type structure or the relief of an Mg-containing AlMnNi 2 -type second phase. Pressure composition isotherms results illustrate that both the hydrogen absorption capability and the dehydriding equilibrium pressure go up with increased annealing temperature. For its good performance/cost ratio, the Mg-added low-Co alloy annealed at 1213 K would be a promising substitution for MmNi 4.05 Co 0.45 Mn 0.4 Al 0.3 alloy product.

  13. On thermal conductivity of gas mixtures containing hydrogen

    Science.gov (United States)

    Zhukov, Victor P.; Pätz, Markus

    2017-06-01

    A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. \\hbox {H}_2{-}\\hbox {O}_2 mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569-579, 1967), and of Mason and Saxena (Phys Fluids 1(5):361-369, 1958), have better agreement with the experimental data than other equations for the thermal conductivity of multicomponent gas mixtures.

  14. Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1999-01-01

    Macroscopic parameters for a description of the thermal neutron transport in finite volumes are considered. A very good correspondence between the theoretical and experimental parameters of hydrogenous media is attained. Thermal neutrons in the medium possess an energy distribution, which is dependent on the size (characterized by the geometric buckling) and on the neutron transport properties of the medium. In a hydrogenous material the thermal neutron transport is dominated by the scattering cross section which is strongly dependent on energy. A monoenergetic treatment of the thermal neutron group (admissible for other materials) leads in this case to a discrepancy between theoretical and experimental results. In the present paper the theoretical definitions of the pulsed thermal neutron parameters (the absorption rate, the diffusion coefficient, and the diffusion cooling coefficient) are based on Nelkin's analysis of the decay of a neutron pulse. Problems of the experimental determination of these parameters for a hydrogenous medium are discussed. A theoretical calculation of the pulsed parameters requires knowledge of the scattering kernel. For thermal neutrons it is individual for each hydrogenous material because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics (characterized with internal energy modes which are comparable to the incident neutron energy). Granada's synthetic model for slow-neutron scattering is used. The complete up-dated formalism of calculation of the energy transfer scattering kernel after this model is presented in the paper. An influence of some minor variants within the model on the calculated differential and integral neutron parameters is shown. The theoretical energy-dependent scattering cross section (of Plexiglas) is compared to experimental results. A particular attention is paid to the calculation of the diffusion cooling coefficient. A solution of an equation, which determines the

  15. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    International Nuclear Information System (INIS)

    Mares, G.; Notingher, P.

    1996-01-01

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation

  16. Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein

    Science.gov (United States)

    Zhang, Lin; Chen, Teli; Ban, Heng; Liu, Ling

    2014-06-01

    Using atomistic simulations, we demonstrate that β-sheet, an essential component of spider silk protein, has a thermal conductivity 1-2 orders of magnitude higher than that of some other protein structures reported in the literature. In contrast to several other nanostructured materials of similar bundled/layered structures (e.g. few-layer graphene and bundled carbon nanotubes), the β-sheet is found to uniquely feature enhanced thermal conductivity with an increased number of constituting units, i.e. β-strands. Phonon analysis identifies inter-β-strand hydrogen bonding as the main contributor to the intriguing phenomenon, which prominently influences the state of phonons in both low- and high-frequency regimes. A thermal resistance model further verifies the critical role of hydrogen bonding in thermal conduction through β-sheet structures.Using atomistic simulations, we demonstrate that β-sheet, an essential component of spider silk protein, has a thermal conductivity 1-2 orders of magnitude higher than that of some other protein structures reported in the literature. In contrast to several other nanostructured materials of similar bundled/layered structures (e.g. few-layer graphene and bundled carbon nanotubes), the β-sheet is found to uniquely feature enhanced thermal conductivity with an increased number of constituting units, i.e. β-strands. Phonon analysis identifies inter-β-strand hydrogen bonding as the main contributor to the intriguing phenomenon, which prominently influences the state of phonons in both low- and high-frequency regimes. A thermal resistance model further verifies the critical role of hydrogen bonding in thermal conduction through β-sheet structures. Electronic supplementary information (ESI) available: Structure of the β-sheets, computational model, determination of area and temperature gradient, and additional phonon DOS results. See DOI: 10.1039/c4nr01195c

  17. Thermal shock testing of TiC-coated molybdenum with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1985-07-01

    Thermal shock testing of molybdenum samples, on which TiC is coated by TP-CVD and CVD methods, has been made by using a pulsed hydrogen beam. The power density applied was 2 kw/cm 2 . The test results showed that TiC coatings did not exfoliate until the melting of the substrate and showed good adhesion under the thermal shock condition. (author)

  18. Effects of thermal annealing on the radiation produced electron paramagnetic resonance spectra of bovine and equine tooth enamel: Fossil and modern

    Science.gov (United States)

    Weeks, Robert A.; Bogard, James S.; Elam, J. Michael; Weinand, Daniel C.; Kramer, Andrew

    2003-06-01

    The concentration of stable radiation-induced paramagnetic states in fossil teeth can be used as a measure of sample age. Temperature excursions >100 °C, however, can cause the paramagnetic state clock to differ from the actual postmortem time. We have heated irradiated enamel from both fossilized bovid and modern equine (MEQ) teeth for 30 min in 50 °C increments from 100 to 300 °C, measuring the electron paramagnetic resonance (EPR) spectrum after each anneal, to investigate such effects. Samples were irradiated again after the last anneal, with doses of 300-1200 Gy from 60Co photons, and measured. Two unirradiated MEQ samples were also annealed for 30 min at 300 °C, one in an evacuated EPR tube and the other in a tube open to the atmosphere, and subsequently irradiated. The data showed that hyperfine components attributed to the alanine radical were not detected in the irradiated MEQ sample until after the anneals. The spectrum of the MEQ sample heated in air and then irradiated was similar to that of the heat treated fossil sample. We conclude that the hyperfine components are due to sample heating to temperatures/times >100 °C/30 min and that similarities between fossil and MEQ spectra after the 300 °C/30 min MEQ anneal are also due to sample heating. We conclude that the presence of the hyperfine components in spectra of fossil tooth enamel indicate that such thermal events occurred either at the time of death, or during the postmortem history.

  19. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  20. Thermal integration of SCWR nuclear and thermochemical hydrogen plants

    International Nuclear Information System (INIS)

    Wang, Z.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the intermediate heat exchange between a Generation IV supercritical water-cooled nuclear reactor (SCWR) and a thermochemical hydrogen production cycle is discussed. It is found that the maximum and range of temperatures of a thermochemical cycle are the dominant parameters that affect the design of its coupling with SCWR. The copper-chlorine (Cu-Cl) thermochemical cycle is a promising cycle that can link with SCWRs. The location of extracting heat from a SCWR to a thermochemical cycle is investigated in this paper. Steam bypass lines downstream of the SCWR core are suggested for supplying heat to the Cu-Cl hydrogen production cycle. The stream extraction location is strongly dependent on the temperature requirements of the chemical steps of the thermochemical cycle. The available quantity of heat exchange at different hours of a day is also studied. It is found that the available heat at most hours of power demand in a day can support an industrial scale steam methane reforming plant if the SCWR power station is operating at full design capacity. (author)

  1. Neutralized solar wind ahead of the Earth's magnetopause as contribution to non-thermal exospheric hydrogen

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2018-03-01

    Full Text Available In a most recent paper by Qin and Waldrop (2016, it had been found that the scale height of hydrogen in the upper exosphere of the Earth, especially during solar minimum conditions, appears to be surprisingly large. This indicates that during minimum conditions when exobasic temperatures should be small, large exospheric H-scale heights predominate. They thus seem to indicate the presence of a non-thermal hydrogen component in the upper exosphere. In the following parts of the paper we shall investigate what fraction of such expected hot hydrogen atoms could have their origin from protons of the shocked solar wind ahead of the magnetopause converted into energetic neutral atoms (ENAs via charge-exchange processes with normal atmospheric, i.e., exospheric hydrogen atoms that in the first step evaporate from the exobase into the magnetosheath plasma region. We shall show that, dependent on the sunward location of the magnetopause, the density of these types of non-thermal hydrogen atoms (H-ENAs becomes progressively comparable with the density of exobasic hydrogen with increasing altitude. At low exobasic heights, however, their contribution is negligible. At the end of this paper, we finally study the question of whether the H-ENA population could even be understood as a self-consistency phenomenon of the H-ENA population, especially during solar activity minimum conditions, i.e., H-ENAs leaving the exosphere being replaced by H-ENAs injected into the exosphere.

  2. Neutralized solar wind ahead of the Earth's magnetopause as contribution to non-thermal exospheric hydrogen

    Science.gov (United States)

    Fahr, Hans J.; Nass, Uwe; Dutta-Roy, Robindro; Zoennchen, Jochen H.

    2018-03-01

    In a most recent paper by Qin and Waldrop (2016), it had been found that the scale height of hydrogen in the upper exosphere of the Earth, especially during solar minimum conditions, appears to be surprisingly large. This indicates that during minimum conditions when exobasic temperatures should be small, large exospheric H-scale heights predominate. They thus seem to indicate the presence of a non-thermal hydrogen component in the upper exosphere. In the following parts of the paper we shall investigate what fraction of such expected hot hydrogen atoms could have their origin from protons of the shocked solar wind ahead of the magnetopause converted into energetic neutral atoms (ENAs) via charge-exchange processes with normal atmospheric, i.e., exospheric hydrogen atoms that in the first step evaporate from the exobase into the magnetosheath plasma region. We shall show that, dependent on the sunward location of the magnetopause, the density of these types of non-thermal hydrogen atoms (H-ENAs) becomes progressively comparable with the density of exobasic hydrogen with increasing altitude. At low exobasic heights, however, their contribution is negligible. At the end of this paper, we finally study the question of whether the H-ENA population could even be understood as a self-consistency phenomenon of the H-ENA population, especially during solar activity minimum conditions, i.e., H-ENAs leaving the exosphere being replaced by H-ENAs injected into the exosphere.

  3. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  4. Thermal Decomposition of Sodium Hydrogen Carbonate and Textural Features of Its Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal

    2013-01-01

    Roč. 52, č. 31 (2013), s. 10619-10626 ISSN 0888-5885 R&D Projects: GA MŠk(CZ) 7C11009 Grant - others:RFCS(XE) RFCR-CT-2010-00009 Institutional support: RVO:67985858 Keywords : thermal decomposition * sodium hydrogen carbonate * sodium bicarbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.235, year: 2013

  5. Propagation of sound and thermal waves in an ionizing-recombining hydrogen plasma: Revision of results

    International Nuclear Information System (INIS)

    Di Sigalotti, Leonardo G.; Sira, Eloy; Tremola, Ciro

    2002-01-01

    The propagation of acoustic and thermal waves in a heat conducting, hydrogen plasma, in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is re-examined here using linear analysis. The resulting dispersion equation is solved analytically and the results are compared with previous solutions for the same plasma model. In particular, it is found that wave propagation in a slightly and highly ionized hydrogen plasma is affected by crossing between acoustic and thermal modes. At temperatures where the plasma is partially ionized, waves of all frequencies propagate without the occurrence of mode crossing. These results disagree with those reported in previous work, thereby leading to a different physical interpretation of the propagation of small linear disturbances in a conducting, ionizing-recombining, hydrogen plasma

  6. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  7. Influence of annealing temperature on passivation performance of thermal atomic layer deposition Al2O3 films

    International Nuclear Information System (INIS)

    Zhang Xiang; Liu Bang-Wu; Li Chao-Bo; Xia Yang; Zhao Yan

    2013-01-01

    Chemical and field-effect passivation of atomic layer deposition (ALD) Al 2 O 3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 °C and 500 °C, while the improvement is quite weak at 600 °C, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al 2 O 3 /Si interface structural change. The Al—OH groups play an important role in chemical passivation, and the Al—OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Effect of thermal annealing on electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Harasawa, Ryo; Yasue, Yuya; Aritake, Takanori; Jiang, Canyu; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ji, Lian; Lu, Shulong [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou (China)

    2016-08-15

    The effect of thermal annealing on the electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4) ns at 10 (300) K, which was more than two (four) times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  9. Effect of thermal annealing on electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available The effect of thermal annealing on the electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4 ns at 10 (300 K, which was more than two (four times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  10. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  11. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  12. Activation of ion implanted Si for backside processing by Ultra-fast Laser Thermal Annealing: Energy homogeneity and micro-scale sheet resistance

    DEFF Research Database (Denmark)

    Huet, K.; Lin, Rong; Boniface, C

    2009-01-01

    In this paper ion activation of implanted silicon using ultra-fast laser thermal annealing (LTA) process was discussed. The results stated that there was high dopant activation using LTA process for over 70%, excellent within shot activation uniformity, and there was a possibility for overlap...... parameter optimization. It was observed that, for activation LTA process, shallow box-shaped profiles- high diffusivity of B in liquids and high-temperatures was observed only near the surface in a submicrosecond timescale. Possible solutions were suggested as to low-cost and high-end for overlap...

  13. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing

    International Nuclear Information System (INIS)

    Fu Mingyue; Tsai, J.-H.; Yang, C.-F.; Liao, C.-H.

    2008-01-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO 2 films implanted by different doses of Si + ions. Room-temperature PL from 400-nm-thick SiO 2 films implanted to a dose of 3x10 16 cm -2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 deg. C) and duration (5-20 s). The reported approach of implanting silicon into SiO 2 films followed by RTA may be effective for tuning Si-based photonic devices.

  14. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    Science.gov (United States)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  15. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  16. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  17. Effect of In Situ Thermal Annealing on Structural, Optical, and Electrical Properties of CdS/CdTe Thin Film Solar Cells Fabricated by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Alaa Ayad Al-mebir

    2016-01-01

    Full Text Available An in situ thermal annealing process (iTAP has been introduced before the common ex situ cadmium chloride (CdCl2 annealing to improve crystal quality and morphology of the CdTe thin films after pulsed laser deposition of CdS/CdTe heterostructures. A strong correlation between the two annealing processes was observed, leading to a profound effect on the performance of CdS/CdTe thin film solar cells. Atomic force microscopy and Raman spectroscopy show that the iTAP in the optimal processing window produces considerable CdTe grain growth and improves the CdTe crystallinity, which results in significantly improved optoelectronic properties and quantum efficiency of the CdS/CdTe solar cells. A power conversion efficiency of up to 7.0% has been obtained on thin film CdS/CdTe solar cells of absorber thickness as small as 0.75 μm processed with the optimal iTAP at 450°C for 10–20 min. This result illustrates the importance of controlling microstructures of CdTe thin films and iTAP provides a viable approach to achieve such a control.

  18. Evolution of the magnetic properties of Co10Cu90 nanoparticles prepared by wet chemistry with thermal annealing.

    Science.gov (United States)

    García, I; Echeberria, J; Kakazei, G N; Golub, V O; Saliuk, O Y; Ilyn, M; Guslienko, K Y; González, J M

    2012-09-01

    Nanoparticles of Co10Cu90 alloy have been prepared by sonochemical wet method. According to transmission electron microscopy, bimetallic particles with typical diameter of 50-100 nm consisting of nanocrystallites with average diameter of 15-20 nm were obtained. The samples were annealed at 300 degrees C and 450 degrees C. Zero field cooled and field cooled temperature dependences of magnetization in the temperature range of 5-400 K at 50 Oe, as well as magnetization hysteresis loops at 15, 100 and 305 K were measured by vibrating sample magnetometry. Presence of antiferromagnetic phase, most probably of the oxide Co3O4, was observed in as-prepared sample. The lowest coercivity was found for the CoCu sample annealed at-300 degrees C, whereas for as prepared sample and the one annealed at 450 degrees C it was significantly higher. The samples were additionally probed by continuous wave ferromagnetic resonance at room, temperature using a standard X-band electron spin resonance spectrometer. A good correspondence between evolution of the coercivity and the microwave resonance fields with annealing temperature was observed.

  19. Thermal annealing using ultra-short laser pulses to improve the electrical properties of Al:ZnO thin films

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, Teunis Cornelis; Eijt, S.W.H.; Schut, H.; Römer, Gerardus Richardus, Bernardus, Engelina; Klein Gunnewiek, Michel; Lenferink, Aufrid T.M.; Kniknie, B.; Joy, R.M.; Dorenkamper, M.S.; de Lange, D.F.; Otto, Cornelis; Borsa, D.; Soppe, W.J.; Huis in 't Veld, Bert

    2015-01-01

    Industrial-grade Al:ZnO thin films, were annealed by UV picosecond laser irradiation in argon atmosphere. A remarkable increase of both the carrier density and electron mobility was measured, while the optical properties in the 400–1000 nm range did not change significantly. We studied the

  20. Thermal annealing using ultra-short laser pulses to improve the electrical properties of Al:ZnO thin films

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.C.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Klein Gunnewiek, M.; Lenferink, A.T.M.; Kniknie, B.J.; Mary Joy, R.; Dorenkamper, M.S.; Lange, D.F. de; Otto, C.; Borsa, D.; Soppe, W.J.; Huis in 't Veld, A.J.

    2015-01-01

    Abstract Industrial-grade Al:ZnO thin films, were annealed by UV picosecond laser irradiation in argon atmosphere. A remarkable increase of both the carrier density and electron mobility was measured, while the optical properties in the 400-1000 nm range did not change significantly. We studied the

  1. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing : Solvent and Thickness Effects

    NARCIS (Netherlands)

    Yang, Qiuyan; Loos, Katja

    2017-01-01

    Solvent vapor annealing of block copolymer (BCP) thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for

  2. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    International Nuclear Information System (INIS)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong

    2016-01-01

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy

  3. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy.

  4. Thermally Stable Dialkylzirconocenes with β-Hydrogens. Synthesis and Diastereoselectivity

    OpenAIRE

    Wendt, Ola F.; Bercaw, John E.

    2001-01-01

    Alkylation of Cp^r_2ZrCl_2 (Cpr = Cp (η^5-C_5H_5), Cp‘ (η^5-C_5H_4Me), Cp^* (η^5-C_5Me_5)) and CpCp^*Zr(CH_3)Cl with 1-lithio-2-methylpentane (R^1Li) gives the corresponding dialkylzirconocenes Cp^r_2ZrR^1_2 and CpCp^*Zr(CH_3)R^1, in high yields. Such alkyls have unprecedented thermal stabilities, especially for the CpCp^* ligand framework. The diastereomers of the Cp^r_2ZrR^1_2 complexes are formed in a statistical distribution, whereas the diastereomers of CpCp^*Zr(CH_3)R^1 form in a 2:3 ra...

  5. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    Science.gov (United States)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  6. Acoustic emission studies of cermet BK structural modifications under thermal and radiation action and hydrogenation

    International Nuclear Information System (INIS)

    Ul'yanov, V.L.; Chernov, I.P.; Botaki, A.A.; Chakhlov, B.V.

    1992-01-01

    Elastic wave attenuation and acoustic emission (AE) in tungsten monocarbide base cermets were investigated with the purpose of studying structural changes and microplastic strains under heating within the range of 100-1000 K, gamma-irradiation up to absorbed dose of 10 7 J·kg -1 and hydrogenation. Interrelations were revealed of AE signals and a decrement of elastic wave damping to temperature- and radiation-induced transformations in microstructure of 94 % WC -6 % Co and 92 % WC - 8 % Co hard alloys. AE peaks under thermal action were found to be associated with cobalt phase microstrain or with dislocation of hydrogen in preliminary hyudrogenated alloys

  7. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  8. Experiments on the thermalization of slow neutrons by liquid hydrogen (1962)

    International Nuclear Information System (INIS)

    Cribier, D.; Jacrot, B.; Lacaze, A.; Roubeau, P.

    1962-01-01

    In order to increase the flux of neutrons of long wave-length (λ > 4 A) emerging from a channel in the EL-3, a liquid hydrogen device was introduced into a channel of the reactor (Channel H 1 ). The principle of the device is simple. A volume of liquid hydrogen is introduced as close as possible to the reactor core into a region of intense isotropic flux. This hydrogen slows down the slow neutrons; because of the very small mean free diffusion path of slow in hydrogen, this slowing down is considerable even in a small volume of liquid hydrogen, and the spectrum temperature of neutrons emerging from the volume of liquid hydrogen can therefore be shifted. The intensity gain for neutrons with a wave length λ, is a G (λ) function which, for perfect thermalization and ignoring capture, is expressed by: G (λ) = 225 exp (- 45.3/λ 2 ), assuming a temperature of 300 deg. K for the neutrons before cooling and is 20 deg. K after cooling. For a wave-length of 5 A, the theoretical maximum gain of thus about 37. (authors) [fr

  9. Correlation of Etch Pits and Dislocations in As-grown and Thermal Cycle-Annealed HgCdTe(211) Films

    Science.gov (United States)

    Vaghayenegar, M.; Jacobs, R. N.; Benson, J. D.; Stoltz, A. J.; Almeida, L. A.; Smith, David J.

    2017-08-01

    This paper reports observations of the different types of etch pits and dislocations present in thick HgCdTe (211) layers grown by molecular beam epitaxy on CdTe/Si (211) composite substrates. Dislocation analysis for as-grown and thermal cycle-annealed samples has been carried out using bright-field transmission electron microscopy. Triangular pits present in as-grown material are associated with a mixture of Frank partials and perfect dislocations, while pits with fish-eye shapes have perfect dislocations with 1/2[0\\bar{1}1] Burgers vector. The dislocations beneath skew pits are more complex as they have two different crystallographic directions, and are associated with a mixture of Shockley partials and perfect dislocations. Dislocation analysis of samples after thermal cycle annealing (TCA) shows that the majority of dislocations under the etch pits are short segments of perfect dislocations with 1/2[0\\bar{1}1] Burgers vector while the remainder are Shockley partials. The absence of fish-eye shape pits in TCA samples suggests that they are associated with mobile dislocations that have reacted during annealing, causing the overall etch pit density to be reduced. Very large pits with a density ˜2×103 cm-2 are observed in as-grown and TCA samples. These defects thread from within the CdTe buffer layer into the upper regions of the HgCdTe layers. Their depth in as-grown material is so large that it is not possible to locate and identify the underlying defects.

  10. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  11. A comparative study of the physical properties of Sb2S3 thin films treated with N2 AC plasma and thermal annealing in N2

    International Nuclear Information System (INIS)

    Calixto-Rodriguez, M.; Martinez, H.; Pena, Y.; Flores, O.; Esparza-Ponce, H.E.; Sanchez-Juarez, A.; Campos-Alvarez, J.; Reyes, P.

    2010-01-01

    As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb 2 S 3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (E g ) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb 2 S 3 thin films decreased from 10 8 to 10 6 Ω-cm after plasma treatments.

  12. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  13. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    Science.gov (United States)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  14. Thermal annealing of high dose radiation induced damage at room temperature in alkali halides. Stored energy, thermoluminiscence and colouration

    International Nuclear Information System (INIS)

    Delgado, L.

    1980-01-01

    The possible relation between stored energy, thermoluminiscence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminiscence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KCl samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose. Capacity of alkali halides to sotore energy by irradiation increases as the cation size decreases. It appears that most of the observed release is not related to annealing processes of the radiation induced anion Frenkel pairs. The existence of damage in the cation sublattice with which this energy release might be related is considered. (auth.)

  15. Effectiveness of thermal ignition devices in lean hydrogen-air-steam mixtures

    International Nuclear Information System (INIS)

    Tamm, H.; McFarlane, R.; Liu, D.D.S.

    1985-03-01

    Deliberate ignition of hydrogen at low concentrations in reactor containment systems is one method of controlling hydrogen during degraded core accidents. Since many postulated accident conditions have substantial amounts of steam present, experiments have been performed to determine the hydrogen-air-steam concentration regimes in which ignitors would be effective. In these experiments, both a GM AC 7G thermal flow plug and a Tayco Model 3442 ignitor have been used. These ignitors have been installed in PWR containments with ice condensers and in BWR Mark III containments. This report presents the results of these ignitor effectiveness experiments, and gives the ignition limits and the effect of steam on the ignitor surface temperatures required for ignition

  16. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1998-01-01

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi)

  17. Effect of electric-spark alloying and subsequent annealing on the thermal stability of metallic structural materials

    International Nuclear Information System (INIS)

    Vdovin, S.F.; Reshetnikov, S.M.

    2000-01-01

    The effect of annealing on resistive properties of electric-spark coatings on the carbon steels is studied. The steels 10 and 20 samples with electric spark coatings of various compositions and control ones without annealing and coating are chosen for the study. The steels cr27 and 12cr18ni10ti, the nichrome (cr20ni80) alloy, aluminium as well as compositions of these materials: aluminium + cr27 and aluminium + nichrome were used as coating materials. It is shown that aluminium coatings increase the steel 10 heat resistance more them by 4 times, the aluminium + nichrome coatings - more than by 6 times and aluminium + cr27 coatings - more than by 6 times. In contrast to the electric-spark coating of the carbon steel surface by chromium-nickel alloys, the composition aluminium-containing coatings with annealing in vacuum provide for reliability of long-term protection of these steels from air oxidation with the temperature above the aluminium melting [ru

  18. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  19. Efficient STEP (solar thermal electrochemical photo) production of hydrogen - an economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Licht, Stuart [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Solar Institute, George Washington University, Washington, DC 20052 (United States); Chitayat, Olivia; Bergmann, Harry; Dick, Andrew; Ayub, Hina [Solar Institute, George Washington University, Washington, DC 20052 (United States); Ghosh, Susanta [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Department of Chemistry, Visva-Bharati, Santiniketan (India)

    2010-10-15

    A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H{sub 2} at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H{sub 2} production, (3) 25% CPV driven molten electrolysis H{sub 2} production, and (4) 35% CPV driven solid oxide electrolysis H{sub 2} production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from 5.74 to 4.96 to 3.01 to 2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H{sub 2}/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi{sup 2} in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and

  20. Transformation of photoluminescence and Raman scattering spectra of Si-rich Al{sub 2}O{sub 3} films at thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Vergara Hernandez, E. [UPIITA-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Jedrzejewski, J.; Balberg, I. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel)

    2014-11-15

    The effect of thermal annealing on optical properties of Al{sub 2}O{sub 3} films with the different Si contents was investigated using the photoluminescence and Raman scattering methods. Si-rich Al{sub 2}O{sub 3} films were prepared by RF magnetron co-sputtering of Si and Al{sub 2}O{sub 3} targets on long quartz glass substrates. Photoluminescence (PL) spectra of as grown Si-rich Al{sub 2}O{sub 3} films are characterized by four PL bands with the peak positions at 2.90, 2.70, 2.30 and 1.45 eV. The small intensity Raman peaks related to the scattering in the amorphous Si phase has been detected in as grown films as well. Thermal annealing at 1150 °C for 90 min stimulates the formation of Si nanocrystals (NCs) in the film area with the Si content exceeded 50%. The Raman peak related to the scattering on optic phonons in Si NCs has been detected for this area. After thermal annealing the PL intensity of all mentioned PL bands decreases in the film area with smaller Si content (≤50%) and increases in the film area with higher Si content (≥50%). Simultaneously the new PL band with the peak position at 1.65 eV appears in the film area with higher Si content (≥50%). The new PL band (1.65 eV) is attributed to the exciton recombination inside of small size Si NCs (2.5–2.7 nm). In bigger size Si NCs (3.5–5.0 nm) the PL band at 1.65 eV has been not detected due to the impact, apparently, of elastic strain appeared at the Si/Al{sub 2}O{sub 3} interface. Temperature dependences of PL spectra for the Si-rich Al{sub 2}O{sub 3} films have been studied in the range of 10–300 K with the aim to reveal the mechanism of recombination transitions for the mentioned above PL bands 2.90, 2.70, 2.30 and 1.45 eV in as grown films. The thermal activation of PL intensity and permanent PL peak positions in the temperature range 10–300 K permit to assign these PL bands to defect related emission in Al{sub 2}O{sub 3} matrix.

  1. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E

    2017-11-01

    The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.

  2. Thermal annealing of high dose radiation induced damage at room temperature in alkaline. Stored energy, thermoluminescence and coloration

    International Nuclear Information System (INIS)

    Delgado, L.

    1980-01-01

    The possible relation between stored energy, thermoluminescence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminescence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KC1 samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose.Capacity of alkali halides to store energy by irradiation increases as the cation size decreases. (Author) 51 refs

  3. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  4. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  5. Effect of thermal annealing on scintillation properties of Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12} under different atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Ding, Dongzhou; Wu, Yuntao; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Wang, Qingqing; Ye, Le; Ren, Guohao [Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai (China)

    2017-05-15

    Cerium-doped 1% Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12}(GYGAG) single crystal samples grown via Czochralski method were annealed under air, O{sub 2} and N{sub 2} atmospheres from 350 to 1400 C. The X-ray excited luminescence spectra, energy spectra and UV as well as thermally stimulated luminescence (TSL) spectra were performed comparatively on ''as-grown'' and thermally annealed samples. It was found that the luminescence efficiency after annealing in air and O{sub 2} was significantly enhanced compared to the non-annealed samples and this phenomenon was suggested to be caused by the existence of some oxygen vacancies in the Ce:GYGAG crystals. And the oxygen vacancies in the as-grown GYGAG crystals can be effectively eliminated by means of annealing in O{sub 2} containing atmosphere without changing the luminescence mechanism. From the TSL curves before and after annealing, three traps within 77-650 K were found to be related to oxygen vacancies. (orig.)

  6. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base.

    Science.gov (United States)

    Liu, Jian; Liu, Monica Yun; Nguyen, Jennifer B; Bhagat, Aditi; Mooney, Victoria; Yan, Elsa C Y

    2009-07-01

    Although thermal stability of the G protein-coupled receptor rhodopsin is directly related to its extremely low dark noise level and has recently generated considerable interest, the chemistry behind the thermal decay process of rhodopsin has remained unclear. Using UV-vis spectroscopy and HPLC analysis, we have demonstrated that the thermal decay of rhodopsin involves both hydrolysis of the protonated Schiff base and thermal isomerization of 11-cis to all-trans retinal. Examining the unfolding of rhodopsin by circular dichroism spectroscopy and measuring the rate of thermal isomerization of 11-cis retinal in solution, we conclude that the observed thermal isomerization of 11-cis to all-trans retinal happens when 11-cis retinal is in the binding pocket of rhodopsin. Furthermore, we demonstrate that solvent deuterium isotope effects are involved in the thermal decay process by decreasing the rates of thermal isomerization and hydrolysis, suggesting that the rate-determining step of these processes involves breaking hydrogen bonds. These results provide insight into understanding the critical role of an extensive hydrogen-bonding network on stabilizing the inactive state of rhodopsin and contribute to our current understanding of the low dark noise level of rhodopsin, which enables this specialized protein to function as an extremely sensitive biological light detector. Because similar hydrogen-bonding networks have also been suggested by structural analysis of two other GPCRs, beta1 and beta2 adrenergic receptors, our results could reveal a general role of hydrogen bonds in facilitating GPCR function.

  7. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  8. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects

    Directory of Open Access Journals (Sweden)

    Qiuyan Yang

    2017-10-01

    Full Text Available Solvent vapor annealing of block copolymer (BCP thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for nanolithography and hybrid materials preparation. However, precise control of the arising morphologies is essential, but in most cases difficult to achieve. In this work, we investigated the solvent and thickness effects on the morphology of poly(styrene-b-2 vinyl pyridine (PS-b-P2VP thin films with a film thickness range from 0.4 L0 up to 0.8 L0. Ordered perpendicular structures were achieved. One of the main merits of our work is that the phase behavior of the ultra-high molecular weight BCP thin films, which hold a 100-nm sized domain distance, can be easily monitored via current available techniques, such as scanning electron microscope (SEM, atomic force microscope (AFM, and transmission electron microscope (TEM. Systematic monitoring of the self-assembly behavior during solvent vapor annealing can thus provide an experimental guideline for the optimization of processing conditions of related BCP films systems.

  9. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  10. Kinetics of hydrogen evolution in the thermal dissociation of the hydride ZrNiH /SUB 2.8/

    International Nuclear Information System (INIS)

    Chernavskii, P.A.; Lunin, V.V.

    1985-01-01

    The kinetics of hydrogen evolution in the thermal decomposition of ZrNiH /SUB 2.8/ has been studied. The kinetic curve has two rate maxima. It is presumed that the second maximum is related to the phenomenon of critical inhibition that accompanies the phase transition. Apparent activation energies were determined for hydrogen evolution in argon and argon-ethylene atmospheres. The apparent energy increases in the argon-ethylene mixture. On the basis of the activation energy measurements it is presumed that the rate-determining step in hydrogen evolution is either the formation of hydrogen molecules from atoms on the surface of the lateral diffusion of atomic hydrogen. In the region of hydrogen concentration in the hydride corresponding to the phase transition, the rate-determining step is hydrogen diffusion in the hydride

  11. Thermal Annealing to Modulate the Shape Memory Behavior of a Biobased and Biocompatible Triblock Copolymer Scaffold in the Human Body Temperature Range.

    Science.gov (United States)

    Merlettini, Andrea; Gigli, Matteo; Ramella, Martina; Gualandi, Chiara; Soccio, Michelina; Boccafoschi, Francesca; Munari, Andrea; Lotti, Nadia; Focarete, Maria Letizia

    2017-08-14

    A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.

  12. Combined effect of non-equilibrium solidification and thermal annealing on microstructure evolution and hardness behavior of AZ91 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.Z.; Yang, W., E-mail: weiyang@mail.nwpu.edu.cn; Chen, S.H.; Yu, H.; Xu, Z.F.

    2014-06-15

    Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg{sub 17}Al{sub 12} phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg{sub 17}Al{sub 12} phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.

  13. Enhancement Performance of Hybrid Membrane Zeolite/PES for Produced Water Treatment With Membrane Modification Using Combination of Ulta Violet Irradiation, Composition of Zeolite and Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Djoko Kusworo Tutuk

    2018-01-01

    Full Text Available Produced water is a wastewater from oil production that must be treated well. Membrane is one alternative of water treatments technology based on filtration method. However, in the use of membrane, there’s no exact optimal variable that influences membrane performance.This underlying research to assess factors that influences membrane performance to obtain optimal condition. Therefore, the objectives of this study are determining the effect of variable process in membrane fabrication and several modification techniques on membrane performance. The membranes were fabricated via dry-wet phase inversion method. The process variables of this experiment are varying the Zeolite concentration by low level 1% weight and 3% weight, UV irradiation time low level 2 minutes and high level 6 minutes, thermal annealing temperature low level 160°C and high level 180°C. The experiment runs were designed using central composite design. From the research that has been perfromed, PES/Zeolit membrane has a higher permeability after being irradiated by UV light and denser pore after heating and the longer of annealing time.

  14. Diode characteristics and residual deep-level defects of p+n abrupt junctions fabricated by rapid thermal annealing of boron implanted silicon

    International Nuclear Information System (INIS)

    Usami, A.; Katayama, M.; Wada, T.; Tokuda, Y.

    1987-01-01

    p + n diodes were fabricated by rapid thermal annealing (RTA) of boron implanted silicon in the annealing temperature range 700-1100 0 C for around 7 s, and the RTA temperature dependence of electrical characteristics of these diodes was studied. Deep-level transient spectroscopy (DLTS) measurements were made to evaluate residual deep-level defects in the n-type bulk. Three electron traps were observed in p + n diodes fabricated by RTA at 700 0 C. It was considered that these three traps were residual point defects near the tail of the implantation damage after RTA. Residual defect concentrations increased in the range 700-900 0 C and decreased in the range 1000-1100 0 C. The growth of defects in the bulk was ascribed to the diffusion of defects from the implanted layer during RTA. Concentrations of electron traps observed in p + n diodes fabricated by RTA at 1100 0 C were approx. 10 12 cm -3 . It was found that these residual deep-level defects observed by DLTS were inefficient generation-recombination centres since the reverse current was independent of the RTA temperatures. (author)

  15. Hydrogen from renewable energy: A pilot plant for thermal production and mobility

    Science.gov (United States)

    Degiorgis, L.; Santarelli, M.; Calì, M.

    In the mainframe of a research contract, a feasibility pre-design study of a hydrogen-fuelled Laboratory-Village has been carried out: the goals are the design and the simulation of a demonstration plant based on hydrogen as primary fuel. The hydrogen is produced by electrolysis, from electric power produced by a mix of hydroelectric and solar photovoltaic plants. The plant will be located in a small remote village in Valle d'Aosta (Italy). This country has large water availability from glaciers and mountains, so electricity production from fluent water hydroelectric plants is abundant and cheap. Therefore, the production of hydrogen during the night (instead of selling the electricity to the grid at very low prices) could become a good economic choice, and hydrogen could be a competitive local fuel in term of costs, if compared to oil or gas. The H 2 will be produced and stored, and used to feed a hydrogen vehicle and for thermal purposes (heating requirement of three buildings), allowing a real field test (Village-Laboratory). Due to the high level of pressure requested for H 2 storage on-board in the vehicle, the choice has been the experimental test of a prototype laboratory-scale high-pressure PEM electrolyzer: a test laboratory has been designed, to investigate the energy savings related to this technology. In the paper, the description of the dynamic simulation of the plant (developed with TRNSYS) together with a detailed design and an economic analysis (proving the technical and economical feasibility of the installation) has been carried out. Moreover, the design of the high-pressure PEM electrolyzer is described.

  16. Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Andreasen, Birgitta

    2012-01-01

    intensity pulsed light, delivered by a commercial photonic sintering system. Thermally labile ester groups are positioned on the DTZ unit of the copolymer that can be eliminated thermally for enhanced photochemical stability and advantages in terms of processing (solubility/insolubility switching...

  17. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  18. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    International Nuclear Information System (INIS)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels

  19. Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si:H after rapid thermal annealing

    NARCIS (Netherlands)

    Macco, B.; Melskens, J.; Podraza, N.J.; Arts, K.; Pugh, C.; Thomas, O.; Kessels, W.M.M.

    2017-01-01

    Using an inductively coupled plasma, hydrogenated amorphous silicon (a-Si:H) films have been prepared at very low temperatures (<50 °C) to provide crystalline silicon (c-Si) surface passivation. Despite the limited nanostructural quality of the a-Si:H bulk, a surprisingly high minority carrier

  20. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    Beshkov, G.; Krastev, V.; Gogova, D.; Talik, E.; Adamies, M.

    2008-01-01

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 380 0 C and 420 0 C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  1. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L1{sub 0} ordering by introducing Ag cap-layers

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, S.C. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Tsai, J.L., E-mail: tsaijl@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chang, Y.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, H.Y. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2015-11-15

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1{sub 0} ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1{sub 0} ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture.

  2. Shift in room-temperature photoluminescence of low-fluence Si{sup +}-implanted SiO{sub 2} films subjected to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Fu [Department of Avionics Engineering, Air Force Academy, Kangshan, Kaohsiung 820, Taiwan (China); Tsai, J -H [Department of Mathematics and Physics, Air Force Academy, Kangshan, Kaohsiung 820, Taiwan (China); Yang, C -F [Department of Chemical and Materials Engineering, National Kaohsiung University, Nan-Tzu District, Kaohsiung 811, Taiwan (China); Liao, C.-H. [Department of Physics, Chinese Military Academy, Fengshan, Kaohsiung 830, Taiwan (China)], E-mail: fumy@cc.cafa.edu.tw

    2008-12-15

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO{sub 2} films implanted by different doses of Si{sup +} ions. Room-temperature PL from 400-nm-thick SiO{sub 2} films implanted to a dose of 3x10{sup 16} cm{sup -2} shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 deg. C) and duration (5-20 s). The reported approach of implanting silicon into SiO{sub 2} films followed by RTA may be effective for tuning Si-based photonic devices.

  3. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L10 ordering by introducing Ag cap-layers

    International Nuclear Information System (INIS)

    Hsiao, S.N.; Wu, S.C.; Liu, S.H.; Tsai, J.L.; Chen, S.K.; Chang, Y.C.; Lee, H.Y.

    2015-01-01

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1 0 ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1 0 ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture

  4. GaInAs Junction FET with InP buffer layer prepared by selective ion implantation of Be and rapid thermal annealing

    International Nuclear Information System (INIS)

    Selders, J.; Wachs, H.J.; Jurgensen, H.

    1986-01-01

    GaInAs JFETs were fabricated on VPE-grown GaInAs layers. The pn junctions have been realised with Be ion implantation and rapid thermal annealing. The devices show a high transconductance of 130 mS/mm and an electron saturation velocity of 1.8 x 10 7 cm/s. Channel mobilities measured at the complete device are as high as 6800 cm 2 /Vs. These excellent device properties are due to the use of an undoped InP buffer layer which avoids the diffusion of Fe from the substrate into the active layer. The data were supported by S-parameter measurements which gave a frequency limit of 20 GHz for gate dimensions of 1.6 by 200 μm 2 . (author)

  5. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  6. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  7. Effect of Hf underlayer on structure and magnetic properties of rapid thermal annealed FePt thin films

    International Nuclear Information System (INIS)

    Shen, C.Y.; Yuan, F.T.; Chang, H.W.; Lin, M.C.; Su, C.C.; Chang, S.T.; Wang, C.R.; Mei, J.K.; Hsiao, S.N.; Chen, C.C.; Shih, C.W.; Chang, W.C.

    2014-01-01

    FePt(20 nm) and FePt(20 nm)/Hf(10 nm) thin films prepared on the glass substrates by sputtering and post annealing are studied. For both samples, the as deposited films are disordered and L1 0 -ordering is triggered by a 400 °C-annealing. At T a ≥600 °C, Hf–Pt intermetallic compound forms with increasing T a , which consumes Pt in FePt layer and results in the formation of Fe 3 Pt phase. The film becomes soft magnetic at T a =800 °C. The optimized condition of FePt/Hf film is in the T a range of 500 to 600 °C where the interdiffusion between Hf and FePt layer is not extensive. The value of H c is 8.9 kOe and M r is 650–670 emu/cm 3 . Unlike FePt films, the Hf-undelayered samples show significantly reduced out-of-plane remanent and coercivity. The values for both are around 50% smaller than that of the FePt films. Additionally, Hf underlayer markedly reduces the FePt grain size and narrows the distribution, which enhances magnetic intergrain coupling. Good in-plane magnetic properties are preferred for the uses like a hard biasing magnet in a spintronic device. - Highlights: • Effect of Hf underlayer on structure and magnetic properties of FePt films are studied. • Hf underlayer reduces size, narrows the distribution of grains and thus enhances intergrain coupling. • Higher T a ≥600 °C makes Hf–Pt intermetallic compound and thus Fe 3 Pt phase form. • Good in-plane magnetic property is proper for uses in hard biasing magnet in spintronic devices

  8. Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris (8-hydroxyquinolinate) gallium films grown on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Fahmi Fariq, E-mail: fahmi982@gmail.com [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science and Engineering, University of Koya, Koya, Kurdistan Region (Iraq); Sulaiman, Khaulah [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-03

    Highlights: {yields} Achieving a broad absorption band for Gaq3 covering the whole UV and some parts of visible spectra. {yields} Increasing photoluminescence emission to five times stronger than that of pristine film. {yields} Conformational changes towards the formation of crystalline {alpha}-Gaq3 polymorph. {yields} Determination of glass transition temperature for Gaq3 (T{sub g} 182 deg. C) and Alq3 (T{sub g} = 173 deg. C). {yields} Improving and understanding the physical properties of Gaq3 film by means of thermal treatment. - Abstract: In this study we report the optical, spectroscopic, and structural properties of vacuum deposited tris (8-hydroxyquinolinate) gallium film upon thermal annealing in the temperature range from 85 deg. C to 255 deg. C under a flowing nitrogen gas for 10 min. The optical UV-vis-NIR and luminescence spectroscopy measurements were performed to estimate the absorption bands, optical energy gap (E{sub g}), and photoluminescence (PL) of the films. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques were used to probe the spectroscopic and structural nature of the films. We show that, by annealing the films from 85 deg. C to 235 deg. C, it is possible to achieve an enhanced absorption and increased photoluminescence to five times stronger than that of the pristine film. The PL quenching at 255 deg. C was attributed to the presence of plainer chains allow easy going for excitons to a long distance due to the crystalline region formation of {alpha}-Gaq3 polymorph. The reduction in E{sub g} and infrared absorption bands upon annealing were referred to the enhancement in {pi}-{pi} interchain interaction and conformational changes by re-arrangement of the Gaq3 quinolinate ligands, respectively. Stokes shift for the films were observed and calculated. From the differential scanning calorimetry, DSC measurements, higher glass transition temperature was observed for Gaq3 (T{sub g} = 182 deg. C) compared to

  9. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by

  10. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  11. Thermal shock testing of low-Z coatings with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1982-03-01

    Thermal shock testing of candidate low-Z surface coatings for JT-60 application has been made by using a pulsed hydrogen beam apparatus which is operated at a power density of 2KW/cm 2 . The materials tested are PVD (Physical Vapor Deposited) TiC and PVD and CVD (Chemical Vapor Deposited) TiN on molybdenum and Inconel 625. The result shows that CVD TiC on Mo and CVD TiN on Inconel are the most interesting choices for the coating-substrate combinations. (author)

  12. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mota-Santiago, Pablo-Ernesto [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Crespo-Sosa, Alejandro, E-mail: crespo@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Systematic study on the formation of Ag and Au nano-particles in Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Annealing in a reducing atmosphere, below the metal melting point is more suitable. Black-Right-Pointing-Pointer Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. Black-Right-Pointing-Pointer Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. Black-Right-Pointing-Pointer Optical properties of metallic nano-particles in Al{sub 2}O{sub 3} can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, {alpha}-Al{sub 2}O{sub 3} single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2} to 8 Multiplication-Sign 10{sup 16} ions/cm{sup 2}). Afterwards, the samples were annealed at different temperatures (from 600 Degree-Sign C to 1100 Degree-Sign C) in oxidising, reducing, Ar or N{sub 2} atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  13. Hydrogen Fuel as Ecological Contribution to Operation of the Existing Coal-Fired Thermal Power Plants

    International Nuclear Information System (INIS)

    Cosic, D.

    2009-01-01

    The analysis is carried out of the application of a new hydrogen based alternative fuel as ecological contribution of the coal thermal power plants operation. Given the fact that coal thermal power plants are seen as the largest producers, not only of CO 2 , but of all others harmful gases, the idea is initiated to use the new alternative fuel as an additive to the coal which would result in much better performance of the coal power plants from an ecological point of view. It is possible to use such a fuel in relation of 10-30% of former coal use. The positive influence of such an application is much bigger than relative used quantity. This lecture has a goal to incite potential investors to create conditions for industrial testing of the new fuel. It will be very interesting to animate investors for large-scale production of the new fuel, too.(author).

  14. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new method for performing thermal stress analyses in structures with multiple penetrations was applied to these analyses. This method couples the development of an equivalent thermal conductivity for the blocks, a technique that has been used extensively for modeling the thermal characteristics of reactor cores, with the use of the equivalent solid plate method for stress analysis. Using this equivalent thermal conductivity, which models as one material the heat transfer characteristics of the fuel, coolant, and graphite two-dimensional, steady-state thermal analyses of the fuel and control rod fuel blocks were performed to establish all temperature boundaries required for the stress analyses. In applying the equivalent solid plate method, the region of penetrations being modeled was replaced by a pseudo material having the same dimensions but whose materials properties were adjusted to account for the penetration. The peak stresses and strains were determined by applying stress and strain intensification factors to the calculated distributions. The condition studied was where the blocks were located near the center of the furnace. In this position, the axial surface of the block is heated near one end and cooled near the other. The approximate axial surface temperatures ranged from 1521 0 C at both the heated and the cooled ends to a peak of 1800 0 C near the center. Five specific cases were analyzed: plane (two-dimensional thermal, plane stress strain) analyses of each end of a standard fuel block (2 cases), plane analyses of each end of a control rod fuel block (2 cases), and a two-dimensional analysis of a fuel block treated as an axisymmetric cylind

  15. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane

    KAUST Repository

    Swaidan, Ramy J.; Ma, Xiaohua; Litwiller, Eric; Pinnau, Ingo

    2015-01-01

    Effective separation of propylene/propane is vital to the chemical industry where C3H6 is used as feedstock for a variety of important chemicals. The purity requirements are currently met with cryogenic distillation, which is an extremely energy-intensive process. Hybrid arrangements incorporating highly selective membranes (α>20) have been proposed to “debottleneck” the process and potentially improve the economics. Selective and permeable membranes can be obtained by the design of polymers of intrinsic microporosity (PIMs). In this work, a 250 °C annealed polyimide (PIM-6FDA-OH) membrane produced among the highest reported pure-gas C3H6/C3H8 selectivity of 30 for a solution-processable polymer to date. The high selectivity resulted from enhanced diffusivity selectivity due to the formation of inter-chain charge-transfer-complexes. Although there were some inevitable losses in selectivity under 50:50 mixed-gas feed conditions due to competitive sorption, relatively high selectivities were preserved due to enhanced plasticization resistance.

  16. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane

    KAUST Repository

    Swaidan, Ramy Jawdat

    2015-08-06

    Effective separation of propylene/propane is vital to the chemical industry where C3H6 is used as feedstock for a variety of important chemicals. The purity requirements are currently met with cryogenic distillation, which is an extremely energy-intensive process. Hybrid arrangements incorporating highly selective membranes (α>20) have been proposed to “debottleneck” the process and potentially improve the economics. Selective and permeable membranes can be obtained by the design of polymers of intrinsic microporosity (PIMs). In this work, a 250 °C annealed polyimide (PIM-6FDA-OH) membrane produced among the highest reported pure-gas C3H6/C3H8 selectivity of 30 for a solution-processable polymer to date. The high selectivity resulted from enhanced diffusivity selectivity due to the formation of inter-chain charge-transfer-complexes. Although there were some inevitable losses in selectivity under 50:50 mixed-gas feed conditions due to competitive sorption, relatively high selectivities were preserved due to enhanced plasticization resistance.

  17. Study of the bistable hydrogen donors properties in silicon implanted by the protons

    International Nuclear Information System (INIS)

    Abdullin, Kh.A.; Gorelkinskij, Yu.V.; Serikkanov, A.S.

    2003-01-01

    The proton implantation in silicon with doses 10 16 -10 17 cm -2 leads to formation of the hydrogen supersaturated solid solution in the Si. At the room temperature the hydrogen mobility on radiation defects limited by the H atom capture is inappreciably low. Thermal annealing at 400-500 Deg. C results in the decay and rebuilding of hydrogen-containing radiation defects and precipitants, that leads to reduction of the free energy of the system. Precipitation occurring in the form of nano-cluster defects formation, containing the hydrogen atoms. Thermal annealing of the silicon implanted by hydrogen at ∼450 Deg. C during 20 min. causing the hydrogen precipitation process and defects agglomeration leads to donor centers formation registering by the Hall effect

  18. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2006-01-01

    TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (T s ) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low T s (50 deg. C) have shown lower resistivity than those at high T s (250 deg. C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 deg. C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films

  19. Optical investigations of the effect of solvent and thermal annealing on the optoelectronic properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Laskarakis, A., E-mail: alask@physics.auth.gr; Karagiannidis, P.G.; Georgiou, D.; Nikolaidou, D.M.; Logothetidis, S.

    2013-08-31

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible–far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. - Highlights: • Optical study of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • The Drude model provides information for PEDOT:PSS conductivity. • The addition of dimethylsulfoxide increases the electrical conductivity of PEDOT:PSS. • The increase in conductivity is correlated to increase of PEDOT grain size. • The thermal treatment has a smaller effect on PEDOT:PSS properties.

  20. Optical investigations of the effect of solvent and thermal annealing on the optoelectronic properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Laskarakis, A.; Karagiannidis, P.G.; Georgiou, D.; Nikolaidou, D.M.; Logothetidis, S.

    2013-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation