WorldWideScience

Sample records for hydrogen thermal annealing

  1. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for

  2. XPS study of surface chemistry of tungsten carbides nanopowders produced through DC thermal plasma/hydrogen annealing process

    Science.gov (United States)

    Krasovskii, Pavel V.; Malinovskaya, Olga S.; Samokhin, Andrey V.; Blagoveshchenskiy, Yury V.; Kazakov, Valery А.; Ashmarin, Artem А.

    2015-06-01

    X-ray photoelectron spectroscopy (XPS) has been employed to characterize the surface composition and bonding of the tungsten carbides nanopowders produced through a DC thermal plasma/hydrogen annealing process. The XPS results were complemented with those from Raman spectroscopy, high-resolution transmission electron microscopy, and evolved gas analysis. The products of the DC plasma synthesis are the high-surface-area multicarbide mixtures composed mainly of crystalline WC1-x and W2C. The materials are contaminated with a pyrolitic carbonaceous deposit which forms ∼1 nm thick graphitic overlayers on the nanoparticles' surface. The underlying carbides are not oxidized in ambient air, and show no interfacial compounds underneath the graphitic overlayers. When annealed in hydrogen, the multicarbide mixtures undergo transformation into the single-phase WC nanopowders with an average particle size of 50-60 nm. The surface of the passivated and air-exposed WC nanopowders is stabilized by an ultrathin, no more than 0.5 nm in thickness, chemically heterogeneous overlayer, involving graphitic, carbon-to-oxygen, and WO3 bonding. Oxygen presents at coverages above a monolayer preferentially in the bonding configurations with carbon. The surface segregations of carbon are normally observed, even when the bulk content of carbon is below the stoichiometric level.

  3. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  4. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, Kh. A.; Gabdullin, M. T. [al-Farabi Kazakh National University, National Nanotechnology Laboratory of Open Type (Kazakhstan); Gritsenko, L. V. [Kazakh National Technical Research University (Kazakhstan); Ismailov, D. V.; Kalkozova, Zh. K. [al-Farabi Kazakh National University, National Nanotechnology Laboratory of Open Type (Kazakhstan); Kumekov, S. E., E-mail: skumekov@mail.ru; Mukash, Zh. O. [Kazakh National Technical Research University (Kazakhstan); Sazonov, A. Yu. [200 University Avenue West, University of Waterloo (Canada); Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-08-15

    The photoluminescence and optical absorption spectra and electrical properties of ZnO films grown by the metal–organic chemical vapor deposition and hydrothermal techniques, subjected to heat treatments and plasma treatment in a hydrogen atmosphere, are studied. It is shown that the adsorption of oxygen at grain boundaries upon annealing in an oxidizing atmosphere determines the electrical properties of the films. Vacuum annealing improves the electrical properties of the samples after degradation induced by annealing in air. Treatment in hydrogen plasma passivates surface states at the grain boundaries. The intrinsic photoluminescence intensity after plasma treatment is higher in the case of increased amounts of oxygen adsorbed at grain surfaces upon annealing in air. Surface states involving oxygen and hydrogen atoms are responsible for the high-intensity intrinsic photoluminescence band.

  5. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.

    2013-01-01

    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  6. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    Science.gov (United States)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  7. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  8. Morphological, thermal and annealed microhardness ...

    Indian Academy of Sciences (India)

    The effects of annealing temperature on the microhardness of IPNs were studied using the Vickers method. SEM indicates the homogeneous morphological features for IPN. The role of gelatin, AN and crosslinker on the developed hard biopolymer has been described with the help of DSC thermograms and microhardness ...

  9. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...

  10. The role of hydrogen partial pressure on the annealing of copper substrates for graphene CVD synthesis

    Science.gov (United States)

    Ramos, Welyson T. S.; Cunha, Thiago H. R.; Barcelos, Ingrid D.; Miquita, Douglas R.; Ferrari, Gustavo A.; de Oliveira, Sergio; Seara, Luciana M.; Silva Neto, Eliel G.; Ferlauto, Andre S.; Lacerda, Rodrigo G.

    2016-04-01

    The influence of hydrogen utilized during the thermal treatment of copper substrates on the subsequent graphene growth is investigated. It is known that various parameters such as nature of the carbon precursor, temperature and pressure strongly affect the quality of the graphene grown by chemical vapor deposition. Another important parameter is the hydrogen partial pressure adjusted during the growth stage and in the pre-growth annealing of the substrate. In attempts to elucidate the role of hydrogen assisted thermal annealing on the copper substrate morphology and on the subsequent graphene growth, we subjected Cu foils to thermal annealing under H2 atmosphere at different pressures. The copper surface was characterized by scanning electronic microscopy (SEM) and atomic force microscopy whereas graphene films and grains were characterized by Raman spectroscopy and SEM. Our findings suggest that hydrogen not only affect the Cu surface but also diffuses into the substrate, being stored in the bulk material during the thermal treatment of the substrate. The release of hydrogen species in the subsequent stages of growth can result in damage to the graphene layer or induce the nucleation of additional layers depending on the growth and pre-growth conditions. Therefore, the use of hydrogen during the annealing of ‘low purity Cu foils’ should be carefully planned in order to obtain high quality graphene via LPCVD.

  11. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  12. Reverse degradation of nickel graphene junction by hydrogen annealing

    Directory of Open Access Journals (Sweden)

    Zhenjun Zhang

    2016-02-01

    Full Text Available Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 0C is an effective technique to reverse the degradation.

  13. Reverse degradation of nickel graphene junction by hydrogen annealing

    CERN Document Server

    Zhang, Zhenjun; Agnihotri, Pratik; Lee, Ji Ung; Lloyd, Jim R

    2016-01-01

    Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 0C) is an effective technique to reverse the degradation.

  14. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  15. Improvement of saturation magnetization of Fe nanoparticles by post-annealing in a hydrogen gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kin, Masane, E-mail: masane-kin@denso.co.jp; Tanaka, Masaaki; Hayashi, Yasushi; Hasaegawa, Jun [Research Laboratories, DENSO CORPORATION, 500-1, Minamiyama, Komenoki-cho, Nisshin, Aichi 470-0111 (Japan); Kura, Hiroaki; Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Fe nanoparticles (NPs) were synthesized by the thermal decomposition of Fe(CO){sub 5} and then post-annealing in a hydrogen gas atmosphere to produce highly monodisperse Fe NPs with high saturation magnetization (M{sub s}). The as-synthesized pre-anneal Fe NPs had an expanded α-Fe structure and M{sub s} was only 39% of that for bulk Fe because of the low crystallinity and the inclusion of a surfactant. Post-annealing of the Fe NPs in a hydrogen gas atmosphere at 200 °C improved the crystallinity of the Fe NPs from an amorphous-like structure to a body centered cubic (bcc) structure without any lattice expansion. This result indicates that hydrogen gas plays a significant role in improvement of the crystallinity of Fe NPs. Accompanying the improvement in crystallinity, M{sub s} for the Fe NPs increased from 86 to 190 emu/g{sub net} at 300 K, the values of which include the weight of surfactant. This enhanced M{sub s} is almost the same as that of bulk Fe (218 emu/{sub Fe}). It was concluded that the crystallinity has a significant influence on the M{sub s} of the Fe NPs because long-range ordering of the lattice can maintain strong direct exchange interactions between Fe atoms.

  16. Thermal annealing of femtosecond laser written structures in silica glass

    NARCIS (Netherlands)

    Witcher, J.J.; Reichman, W.B.; Fletcher, L.B.; Troy, N.W.; Krol, D.M.

    2013-01-01

    We have investigated the thermal stability of femtosecond laser modification inside fused silica. Raman and FL spectroscopy show that fs-laser induced non-bridging oxygen hole center (NBOHC) defects completely disappear at 300 °C, whereas changes in Si-O ring structures only anneal out after heat

  17. Electro-optical characteristics of indium tin oxide (ITO) films: effect of thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.V.; Salehi, A.; Aliyu, Y.H.; Bunce, R.W. [University of Wales College of Cardiff (United Kingdom). School of Electrical, Electronics and System Engineering

    1996-02-01

    The effect of thermal annealing on the electrical and optical characteristics of ITO films prepared by reactive sputtering and thermal evaporation have been studied. The effect of the thermal annealing is to improve the conductivity and the optical transmission in the shorter wavelength region. The conductivity of the films increases with annealing temperature, this behaviour is associated with grain growth in the film. (author)

  18. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...

  19. Metallic nanowire networks: effects of thermal annealing on electrical resistance

    Science.gov (United States)

    Langley, D. P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D.; Bellet, D.

    2014-10-01

    Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq-1. Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.

  20. Thermally assisted quantum annealing of a 16-qubit problem

    Science.gov (United States)

    Dickson, N. G.; Johnson, M. W.; Amin, M. H.; Harris, R.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Cai, J.; Chapple, E. M.; Chavez, P.; Cioata, F.; Cirip, T.; Debuen, P.; Drew-Brook, M.; Enderud, C.; Gildert, S.; Hamze, F.; Hilton, J. P.; Hoskinson, E.; Karimi, K.; Ladizinsky, E.; Ladizinsky, N.; Lanting, T.; Mahon, T.; Neufeld, R.; Oh, T.; Perminov, I.; Petroff, C.; Przybysz, A.; Rich, C.; Spear, P.; Tcaciuc, A.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wang, J.; Wilson, A. B.; Merali, Z.; Rose, G.

    2013-05-01

    Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

  1. Thermally assisted quantum annealing of a 16-qubit problem.

    Science.gov (United States)

    Dickson, N G; Johnson, M W; Amin, M H; Harris, R; Altomare, F; Berkley, A J; Bunyk, P; Cai, J; Chapple, E M; Chavez, P; Cioata, F; Cirip, T; Debuen, P; Drew-Brook, M; Enderud, C; Gildert, S; Hamze, F; Hilton, J P; Hoskinson, E; Karimi, K; Ladizinsky, E; Ladizinsky, N; Lanting, T; Mahon, T; Neufeld, R; Oh, T; Perminov, I; Petroff, C; Przybysz, A; Rich, C; Spear, P; Tcaciuc, A; Thom, M C; Tolkacheva, E; Uchaikin, S; Wang, J; Wilson, A B; Merali, Z; Rose, G

    2013-01-01

    Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

  2. Dating thermal events at Cerro Prieto using fission track annealing

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, S.J.; Elders, W..

    1981-01-01

    Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.

  3. Influences of defects evolvement on the properties of sputtering deposited ZnO:Al films upon hydrogen annealing

    Directory of Open Access Journals (Sweden)

    Shiliu Yin

    2016-06-01

    Full Text Available Understanding how the defects interact with each other and affect the properties of ZnO:Al films is very important for improving their performance as a transparent conductive oxide (TCO. In the present work, we studied the effects of hydrogen annealing on the structural, optical and electrical properties of ZnO:Al films prepared by magnetron sputtering. High resolution transmission electron microscopy observations reveal that annealing at ∼300 oC induces the formation of partial dislocations (PD and stacking faults (SF, which disrupt the lattice periodicity leading to decreased grain size. Annealing at temperatures above ∼500 oC can remove the PD and SF, but large number of zinc vacancies will be generated. Our results show that when films are annealed at ∼500 oC, the oxygen-related defects (interstitials Oi, etc. in the as-grown films can be remarkably removed or converted, which lead to increments in the carrier concentration, mobility, and the transmittance in the visible range. At annealing temperatures above 550 oC, the hydrogen etching effect becomes predominant, and Al donors are deactivated by zinc vacancies. We also find an abnormal endothermic process by thermal analysis and an abnormal increase in the resistivity during heating the sample under hydrogen atmosphere, based on which the interaction of Oi with the defects (mainly Al donors and PD is discussed. It is also demonstrated that by annealing the as-grown AZO films at ∼500 oC under hydrogen atmosphere, high performance TCO films with a low resistivity of 4.48 × 10−4 Ωcm and high transmittance of above 90% in the visible light are obtained.

  4. Influences of defects evolvement on the properties of sputtering deposited ZnO:Al films upon hydrogen annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shiliu; Shirolkar, Mandar M.; Li, Jieni; Li, Ming; Song, Xiao; Dong, Xiaolei; Wang, Haiqian, E-mail: hqwang@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-06-15

    Understanding how the defects interact with each other and affect the properties of ZnO:Al films is very important for improving their performance as a transparent conductive oxide (TCO). In the present work, we studied the effects of hydrogen annealing on the structural, optical and electrical properties of ZnO:Al films prepared by magnetron sputtering. High resolution transmission electron microscopy observations reveal that annealing at ∼300 {sup o}C induces the formation of partial dislocations (PD) and stacking faults (SF), which disrupt the lattice periodicity leading to decreased grain size. Annealing at temperatures above ∼500 {sup o}C can remove the PD and SF, but large number of zinc vacancies will be generated. Our results show that when films are annealed at ∼500 {sup o}C, the oxygen-related defects (interstitials O{sub i}, etc.) in the as-grown films can be remarkably removed or converted, which lead to increments in the carrier concentration, mobility, and the transmittance in the visible range. At annealing temperatures above 550 {sup o}C, the hydrogen etching effect becomes predominant, and Al donors are deactivated by zinc vacancies. We also find an abnormal endothermic process by thermal analysis and an abnormal increase in the resistivity during heating the sample under hydrogen atmosphere, based on which the interaction of O{sub i} with the defects (mainly Al donors and PD) is discussed. It is also demonstrated that by annealing the as-grown AZO films at ∼500 {sup o}C under hydrogen atmosphere, high performance TCO films with a low resistivity of 4.48 × 10{sup −4} Ωcm and high transmittance of above 90% in the visible light are obtained.

  5. Co-Ir interface alloying induced by thermal annealing

    Science.gov (United States)

    Carlomagno, I.; Drnec, J.; Scaparro, A. M.; Cicia, S.; Vlaic, S.; Felici, R.; Meneghini, C.

    2016-11-01

    Using angular resolved X-ray Photoelectron Spectroscopy (XPS), Magneto Optic Kerr Effect (MOKE) and X-ray Absorption Spectroscopy (XAS), we characterize the structural and magnetic evolution upon annealing of two thin Co films (8 and 9 Monolayers) deposited on Ir(111). The XAS data collected in the near Co K edge region (XANES), interpreted with ab-initio simulations, show that intermixing takes place at the Co-Ir interface. Using a linear combination analysis, we follow the intermixing during the thermally driven diffusion process. At 500 °C, the interface between Co and Ir(111) roughens slightly, but no alloy formation is detected. At 600 °C, the Co film loses integrity and MOKE data show a rearrangement of the magnetic domains. Annealing to higher temperatures results in CoxIr1 - x alloy formation and Ir segregation on the surface.

  6. Thermal annealing of junctions with amorphous and polycrystalline ferromagnetic electrodes

    Science.gov (United States)

    Dimopoulos, T.; Gieres, G.; Wecker, J.; Wiese, N.; Sacher, M. D.

    2004-12-01

    In this work we study Al-oxide-based tunnel junctions with amorphous Co60Fe20B20 and polycrystalline Co90Fe10 ferromagnetic (FM) electrodes. Focus is given on the evolution of the tunnel magnetoresistance and barrier characteristics (resistance-area product, effective thickness, height, and asymmetry) as a function of the annealing temperature up to 400°C. Junctions with two CoFeB electrodes show the largest thermal stability of the tunnel magnetoresistance. Substituting firstly one and then both CoFeB electrodes with CoFe leads to an increasingly faster degradation of the spin-dependent transport upon annealing. The observed differences suggest an improved interface quality between the amorphous FM and the Al oxide.

  7. Annealing of UV-Induced Birefringence in Hydrogen Loaded Germanosilicate Fibres

    DEFF Research Database (Denmark)

    Canning, John; Deyerl, Hans-Jürgen; Sørensen, Henrik Rokkjær

    2005-01-01

    UV-reduced birefringence in germanosilicate optical fibres loaded with hydrogen is annealed out at low temperatures (125o C). Annealing for induced birefringence in gratings written by either s or p polarised UV light are identical. The results are incosistent with previous models for the origin...

  8. Positron annihilation studies on reactor irradiated and thermal annealed ferrocene

    Energy Technology Data Exchange (ETDEWEB)

    Marques Netto, A. [Laboratorio de Espectroscopia de Aniquilacao de Positrons-LEAP, Depto. de Quimica, ICEX, Univ. Federal de Minas Gerais-UFMG, Belo Horizonte, MG (Brazil); Carvalho, R.S. [Laboratorio de Espectroscopia de Aniquilacao de Positrons-LEAP, Depto. de Quimica, ICEX, Univ. Federal de Minas Gerais-UFMG, Belo Horizonte, MG (Brazil); Magalhaes, W.F. [Laboratorio de Espectroscopia de Aniquilacao de Positrons-LEAP, Depto. de Quimica, ICEX, Univ. Federal de Minas Gerais-UFMG, Belo Horizonte, MG (Brazil); Sinisterra, R.D. [Laboratorio de Espectroscopia de Aniquilacao de Positrons-LEAP, Depto. de Quimica, ICEX, Univ. Federal de Minas Gerais-UFMG, Belo Horizonte, MG (Brazil)

    1996-10-01

    Retention and thermal annealing following (n, {gamma}) reaction in solid ferrocene, Fe(C{sub 5}H{sub 5}){sub 2}, were studied by positron annihilation lifetime spectroscopy (PAL). Positronium (Ps) formation was observed in the non-irradiated compound with a probability or intensity (I{sub 3}) of 30%. Upon irradiation of the compound with thermal neutrons in a nuclear reactor, I{sub 3} decreases with increasing irradiation time. Thermal treatment again increases I{sub 3} values from 16% to 25%, revealing an important proportion of molecular reformation without variation of the ortho-positronium lifetime ({tau}{sub 3}). These results point out the major influence of the electronic structure as determining the Ps yields in the pure complex. In the irradiated and non irradiated complexes the results are satisfactorily explained on the basis of the spur model. (orig.)

  9. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-T.; Jin, Z Q; Chakka, Vamsi M; Liu, J P [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2005-11-21

    A systematic study of heat treatments and magnetic hardening of NdFeB-based melt-spun nanocomposite ribbons have been carried out. Comparison was made between samples treated by rapid thermal annealing and by conventional furnace annealing. Heating rates up to 200 K s{sup -1} were adopted in the rapid thermal processing. It was observed that magnetic hardening can be realized in an annealing time as short as 1 s. Coercivity of 10.2 kOe in the nanocomposites has been obtained by rapid thermal annealing for 1 s, and prolonged annealing did not give any increase in coercivity. Detailed results on the effects of annealing time, temperature and heating rate have been obtained. The dependence of magnetic properties on the annealing parameters has been investigated. Structural characterization revealed that there is a close correlation between magnetic hardening and nanostructured morphology. The coercivity mechanism was also studied by analysing the magnetization minor loops.

  10. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    Science.gov (United States)

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  11. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  12. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  13. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  14. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  15. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  16. The Effect of Thermal Annealing Processes on Structural and Photoluminescence of Zinc Oxide Thin Film

    Directory of Open Access Journals (Sweden)

    Huai-Shan Chin

    2013-01-01

    Full Text Available This study used radio frequency sputtering at room temperature to prepare a zinc oxide (ZnO thin film. After deposition, the thin film was placed in a high-temperature furnace to undergo thermal annealing at different temperatures (300, 400, 500, and 600°C and for different dwelling times (15, 30, 45, and 60 min. The objective was to explore the effects that the described process had on the thin film’s internal structure and luminescence properties. A scanning electron microscope topographic image showed that the size of the ZnO crystals grew with increases in either the thermal annealing temperature or the dwelling time. However, significant differences in the levels of influence caused by increasing the thermal annealing temperature or dwelling time existed; the thermal annealing temperature had a greater effect on crystal growth when compared to the dwelling time. Furthermore, the crystallization directions of ZnO (002, (101, (102, and (103 can be clearly observed through an X-ray diffraction analysis, and crystallization strength increased with an increase in the thermal annealing temperature. The photoluminescence measurement spectra showed that ultraviolet (UV emission intensity increased with increases in thermal annealing temperature and dwelling time. However, when the thermal annealing temperature reached 600°C or when the dwelling time reached 60 min, even exhibited a weak green light emission peak.

  17. Evolution of nano-structures of silver due to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Shyamal, E-mail: shyamal.mondal@saha.ac.in; Bhattacharyya, S. R., E-mail: shyamal.mondal@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2014-04-24

    This report deals with rapid thermal annealing (RTA) effect on continuous silver film on Si(100) substrate. For this purpose silver films of different thicknesses were deposited and subsequently annealed at 500 and 800 °C. The as-deposited and annealed samples were investigated by scanning electron microscope (SEM). Formations of different nano-structures have been observed. Fragmentation of formed nanoislands also observed at temperature below melting temperature.

  18. Improved thermal stability of gas-phase Mg nanoparticles for hydrogen storage

    NARCIS (Netherlands)

    Krishnan, Gopi; Palasantzas, G.; Kooi, B. J.

    2010-01-01

    This work focuses on improving the thermal stability of Mg nanoparticles (NPs) for use in hydrogen storage. Three ways are investigated that can achieve this goal. (i) Addition of Cu prevents void formation during NP production and reduces the fast evaporation/voiding of Mg during annealing. (ii)

  19. Physical properties of Fe doped In2O3 magnetic semiconductor annealed in hydrogen at different temperature

    Science.gov (United States)

    Baqiah, H.; Ibrahim, N. B.; Halim, S. A.; Chen, S. K.; Lim, K. P.; Kechik, M. M. Awang

    2016-03-01

    The effects of hydrogen-annealing at different temperatures (300, 400, 500 and 600 °C) on physical properties of In2-xFexO3 (x=0.025) thin film were investigated. The structural measurement using XRD shows that the film has a single In2O3 phase structure when annealed in hydrogen at 300-500 °C, however when annealed in hydrogen at 600 °C the film has a mixed phase structure of In2O3 and In phases. The electrical measurements show that the carrier concentrations of the films decrease with the increase of hydrogen-annealing temperature in the range 300-500 °C. The optical band gap of the films decreases with increasing hydrogen-annealing temperatures. The saturation magnetisation, Ms, and coercivity of films increase with the increment of hydrogen annealing temperature. The film annealed at 300 °C has the lowest resistivity, ρ=0.03 Ω cm, and the highest carrier concentrations, n=6.8×1019 cm-3, while film annealed at 500 °C has both good electrical (ρ=0.05 Ω.cm and n=2.2×1019 cm-3) and magnetic properties, Ms=21 emu/cm-3.

  20. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    OpenAIRE

    Guillaume Wantz; Lionel Hirsch; Bertrand Pavageau; Michel Lahaye; Lionel Derue; Sylvain Chambon

    2012-01-01

    16 pages; International audience; Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate usin...

  1. Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix

    Directory of Open Access Journals (Sweden)

    Wan Zhenyu

    2011-01-01

    Full Text Available Abstract In this paper, a positive effect of rapid thermal annealing (RTA technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%. Si nanocrystals (Si-NC containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

  2. Thermally and Electrically Conductive Nanopapers from Reduced Graphene Oxide: Effect of Nanoflakes Thermal Annealing on the Film Structure and Properties

    Directory of Open Access Journals (Sweden)

    M. Mar Bernal

    2017-12-01

    Full Text Available In this study, we report a novel strategy to prepare graphene nanopapers from direct vacuum filtration. Instead of the conventional method, i.e., thermal annealing nanopapers at extremely high temperatures prepared from graphene oxide (GO or partially reduced GO, we fabricate our graphene nanopapers directly from suspensions of fully reduced graphene oxide (RGO, obtained after RGO and thermal annealing at 1700 °C in vacuum. By using this approach, we studied the effect of thermal annealing on the physical properties of the macroscopic graphene-based papers. Indeed, we demonstrated that the enhancement of the thermal and electrical properties of graphene nanopapers prepared from annealed RGO is strongly influenced by the absence of oxygen functionalities and the morphology of the nanoflakes. Hence, our methodology can be considered as a valid alternative to the classical approach.

  3. Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing

    Science.gov (United States)

    Li, Qianli; Liu, Xiaoliln; Gu, Mu; Li, Fengrui; Zhang, Juannan; Wu, Qiang; Huang, Shiming; Liu, Si

    2018-03-01

    Highly c-axis oriented and densely packed ZnO:Ga nanorod arrays were fabricated on ZnO-seeded substrates by hydrothermal method, and the effect of hydrogen annealing on their morphology, structure and luminescence properties was investigated in detail. Under ultraviolet or X-ray excitation, an intense ultraviolet luminescence appeared in the hydrogen-annealed samples owing to the formation of a shallow hydrogen donor state, which can sharply activate the reconbination radiation. The luminescence intensity increased with the annealing temperature, and then decreased at a higher temperature due to the dissociation of the hydrogen ion. The optimum concentration and time of hydrogen annealing were acquired simultaneously. It is expected that the ZnO:Ga nanorod array is a promising candidate for application in ultrafast and high-spatial-resolution X-ray imaging detector.

  4. Thermalization, Freeze-out, and Noise: Deciphering Experimental Quantum Annealers

    Science.gov (United States)

    Marshall, Jeffrey; Rieffel, Eleanor G.; Hen, Itay

    2017-12-01

    By contrasting the performance of two quantum annealers operating at different temperatures, we address recent questions related to the role of temperature in these devices and their function as "Boltzmann samplers." Using a method to reliably calculate the degeneracies of the energy levels of large-scale spin-glass instances, we are able to estimate the instance-dependent effective temperature from the output of annealing runs. Our results corroborate the "freeze-out" picture which posits two regimes, one in which the final state corresponds to a Boltzmann distribution of the final Hamiltonian with a well-defined "effective temperature" determined at a freeze-out point late in the annealing schedule, and another regime in which such a distribution is not necessarily expected. We find that the output distributions of the annealers do not, in general, correspond to a classical Boltzmann distribution for the final Hamiltonian. We also find that the effective temperatures at different programing cycles fluctuate greatly, with the effect worsening with problem size. We discuss the implications of our results for the design of future quantum annealers to act as more-effective Boltzmann samplers and for the programing of such annealers.

  5. Study on the excimer laser annealed amorphous hydrogenated silicon carbon films deposited by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosone, G. [CNR-INFM CRS-Coherentia, Complesso Universitario MSA, Napoli (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario MSA, Napoli (Italy); Basa, D.K. [Utkal University, Bhubaneswar (India); Coscia, U. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario MSA, Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, Napoli (Italy); Tresso, E.; Celasco, E. [Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino (Italy); Chiodoni, A. [Materials and Microsystems Laboratory, chi-LAB, Politecnico di Torino (Italy); Pinto, N.; Murri, R. [Dipartimento di Fisica, Universita' di Camerino (Italy)

    2010-04-15

    Hydrogenated amorphous silicon carbon films of different carbon content were deposited by plasma enhanced chemical vapour deposition at low substrate temperature (200 C) and were subjected to excimer laser annealing. X-ray diffraction spectra and field emission scanning electron microscopy images demonstrate that carbon content plays an important role in facilitating the crystallization process induced by the excimer laser treatment (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-08-15

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-ray photon spectroscopy and atomic force microscopy.

  7. Thermal annealing of protocrystalline a-Si:H

    NARCIS (Netherlands)

    Muller, T.F.G.; Arendse, C.J.; Halindintwali, S.; Knoesen, D.; Schropp, R.E.I.

    2011-01-01

    It proves difficult to obtain a set of protocrystalline silicon materials with different characteristics from the same deposition chamber to study the exact nature of these transition region materials. Hot-wire deposited protocrystalline silicon was thus isochronically annealed at different

  8. The stabilization of the sensitivity of TLD-100 by combined UV irradiation and thermal annealing

    Science.gov (United States)

    Necmeddin Yazýcý, A.; Öztürk, Zihni

    2001-06-01

    In this study, a new experimental annealing procedure, which is based on combined UV(253.7+/-1.2 nm) irradiation and thermal annealing (300 °C for 30 min followed by 90 °C for 6 h) is introduced to reduce the large standard deviation (8-20% between consecutive ten cycles) observed after standard annealing (400 °C for 1 h followed by 100 °C for 10 min) on the main dosimetric peak 5 of thermoluminescence dosimeter TLD-100. The results indicate that when the combined UV irradiation and thermal annealing protocol is applied, the standard deviation in the area of the main dosimetric peak 5 is reduced to less than 10% for the consecutive ten-cycle operation.

  9. Relationship between beta radiation induced thermoluminescence and thermal annealing procedures in ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T. [ESIME-IPN, Culhuacan, 04430 Mexico D.F. (Mexico); Azorin, J.; Campero, A.; Velasquez, C. [UAM-I, 09340 Mexico D.F. (Mexico); Furetta, C. [Physics Department, Rome University ' ' La Sapienza' ' , Rome (Italy)

    2004-07-01

    The influence of thermal treatment on the glow curve characteristics of undoped ZrO2 polycrystalline powder were studied in the range 700 to 1100 . The TL intensity of annealed ZrO2 powder, previously exposed to a given beta dose, submitted to different thermal treatments in the range from 700 to 1100 increases as the annealing temperature is increased. The TL glow curve of ZrO2 powder beta irradiated at absorbed doses up to 20 Gy exhibited a single peak centered at 200 . Furthermore, if the absorbed dose is increased up to 25 Gy the glow curve changes, appearing a second peak with its maximum centered at 250 . Then, it could be concluded that the TL response of ZrO2 powder is closely related to the annealing procedures and the creation of charge trapping centers corresponding to the 200 and 250 TL peaks depends on the annealing temperature. (Author)

  10. Electric field assisted thermal annealing reorganization of graphene oxide/polystyrene latex films

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available Graphene/polymer films were prepared by casting water dispersion of graphene oxide (GO in the presence of polystyrene (PS latex particles. The samples were heated up to 180°C and exposed to an external electric voltage during their annealing. We observed that for the GO/PS films deposited before the electric field assisted thermal annealing the polymer latex was embedded in the graphene sheets, while the electric field assisted thermal annealing induces a phase separation with the enrichment of the PS phase above an underlying GO layer. For the films annealed under an external electric field we have also found that as the electric current passes through the GO film, GO could be recovered to reduced GO with decreased resistance.

  11. Study of a Thermal Annealing Approach for Very High Total Dose Environments

    Science.gov (United States)

    Dhombres, S.; Michez, A.; Boch, J.; Saigné, F.; Beauvivre, S.; Kraehenbuehl, D.; Vaillé, J.-R.; Adell, P. C.; Lorfèvre, E.; Ecoffet, R.; Roig, F.

    2014-12-01

    Total dose effect remains one challenging issue for electronics systems intended to space applications. For high total dose missions, like Jupiter missions, or for scientific instruments for which functionality and precision must be guaranteed, dose effect is one of the main drawbacks. So, new solutions must be found in order to ensure the reliability of the mission. In this paper, an analysis of a thermal annealing approach is done. This approach consists of applying isothermal annealing cycles to a device such that its electrical characteristics can be regenerated after being degraded by total ionizing dose. The analysis is based on experimental results obtained on Power MOSFET and CMOS APS imager. The impact of electric field during annealing is also investigated. It is shown that thermal annealing can be applied to electronic devices in order to extend their lifetime.

  12. Enhanced bolometric properties of TiO2-x thin films by thermal annealing

    Science.gov (United States)

    Ashok Kumar Reddy, Y.; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul; Sreedhara Reddy, P.

    2015-07-01

    The effect of thermal annealing on the bolometric properties of TiO2-x films was investigated. The test-patterned TiO2-x samples were annealed at 300 °C temperature in order to enhance their structural and electrical properties for effective infrared image sensor device applications. The crystallinity was changed from amorphous to rutile/anatase in annealed TiO2-x films. Compared to the as-deposited samples, a decrement of the band gap and a decrease of the electrical resistivity were perceived in annealed samples. We found that the annealed samples show linear current-voltage (I-V) characteristic performance, which implies that ohmic contact was well formed at the interface between the TiO2-x and the Ti electrode. Moreover, the annealed TiO2-x sample had a significantly low 1/f noise parameter (1.21 × 10-13) with a high bolometric parameter (β) value compared to those of the as-deposited samples. As a result, the thermal annealing process can be used to prepare TiO2-x film for a high-performance bolometric device.

  13. Structural, Optical, and Dielectric Properties of Azure B Thin Films and Impact of Thermal Annealing

    Science.gov (United States)

    Zeyada, H. M.; Zidan, H. M.; Abdelghany, A. M.; Abbas, I.

    2017-07-01

    Thin films of azure B (AB) have been prepared by thermal evaporation. Structural, optical, and dielectric characteristics of as-prepared and annealed samples were studied. AB is polycrystalline in as-synthesized powder form. Detailed x-ray diffraction studies showed amorphous structure for pristine and annealed films. Fourier-transform infrared vibrational spectroscopy indicated minor changes in molecular bonds of AB thin films either after deposition or after thermal annealing. Optical transmittance and reflection spectra of prepared thin films were studied at nearly normal light incidence in the spectral range from 200 nm to 2500 nm, showing marked changes without new peaks. Annealing increased the absorption coefficient and decreased the optical bandgap. Onset and optical energy gaps of pristine films were found to obey indirect allowed transition with values of 1.10 eV and 2.64 eV, respectively. Annealing decreased the onset and optical energy gaps to 1.0 eV and 2.57 eV, respectively. The dispersion parameters before and after annealing are discussed in terms of a single-oscillator model. The spectra of the dielectric constants ( ɛ 1, ɛ 2) were found to depend on the annealing temperature in addition to the incident photon energy.

  14. Effect of thermal annealing on ZnO:Al thin films grown by spray pyrolysis

    Science.gov (United States)

    El Manouni, A.; Manjón, F. J.; Perales, M.; Mollar, M.; Marí, B.; Lopez, M. C.; Ramos Barrado, J. R.

    2007-07-01

    We report the effect of thermal annealing in air on the structural and optical properties of undoped and aluminium-doped (1%-4%) zinc oxide (AZO) thin films, grown by the spray pyrolysis technique on quartz substrates. Films were characterized by X-ray diffraction, low-temperature photoluminescence, electrical resistivity, and Raman spectroscopy after annealing at temperatures between 500 and 900 ∘C. Annealing in air improves the long-range order crystalline quality of the bulk crystals, but promotes a number of point defects in the surface affecting both the resistivity and the photoluminescence.

  15. Ex Situ Thermal Cycle Annealing of Molecular Beam Epitaxy Grown HgCdTe/Si Layers

    Science.gov (United States)

    2010-01-01

    matched bulk CdZnTe substrates. Recent work6 on CdTe/Si has shown that in situ thermal cycle annealing (TCA), where annealing is performed intermittently...was grown on a bulk CdZnTe substrate for comparison. The HgCdTe was grown at 185C, with a growth rate of 2 lm/h. The typical HgCdTe layer...Cd composition. The HgCdTe layers grown on bulk CdZnTe samples, which were subjected to annealing condi- tions similar to those for the HgCdTe layers

  16. Morphology of oxygen precipitates in silicon wafers pre-treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kot, D., E-mail: kot@ihp-microelectronics.com; Kissinger, G.; Schubert, M. A. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Sattler, A. [Siltronic AG, Hanns-Seidel-Platz 4, 81737 München (Germany)

    2014-05-05

    The morphology of oxygen precipitates in Czochralski silicon wafers pre-treated by rapid thermal annealing (RTA) and subjected to a heat treatment in the temperature range between 800 °C and 1000 °C was investigated by scanning transmission electron microscopy. The samples were pre-treated by RTA in order to establish a defined supersaturation of vacancies. It was found that in such vacancy-rich samples subjected to an annealing at 800 °C three dimensional dendrites are formed. Until now, it was known that during annealing at 800 °C plate-like oxygen precipitates are formed.

  17. Epitaxial nickel and cobalt suicide formation by rapid thermal annealing

    Science.gov (United States)

    Chevallier, J.; Larsen, A. Nylandsted

    1986-02-01

    Thin films of epitaxial NiSi2 and CoSi2 were formed by short-duration incoherent light exposure of evaporated Ni or Co films on Si single crystals. The crystalline quality of these suicides is comparable to what has been obtained for long-duration furnace annealed suicides, as deduced from channeling measurements. NiSi2 is of high crystalline quality at all temperatures at which it is formed whereas the CoSi2 films recrystallize at a temperature of ˜980°C.

  18. Development of Low-energy Deuterium Ion Implantation Method to replace Hydrogen Post-metal Annealing (PMA)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Do, S. U.; Jeong, N. M.; Jeong, S. K. [Uiduk University, Gyeongju (Korea, Republic of)

    2009-03-15

    Recently, deuterium gas anneal was introduced to replace hydrogen gas anneal. Deuterium incorporation compared with that of hydrogen at Si/SiO{sub 2} interface is known to improve the device reliability characteristics because deuterium desorption is substantially reduced as compared with hydrogen desorption due to isotope effect. Deuterium diffusion takes place primarily through the gate oxide because of the limited permeability of bulk Si, metal, and even poly to deuterium. In the case of large scale ICs, therefore, the ability of deuterium to diffusion within the very thin SiO{sub 2} layer may be severely impeded, impacting the large-area devices used in peripheral circuits.

  19. Growth of Ni2Si by rapid thermal annealing: Kinetics and moving species

    Science.gov (United States)

    Ma, E.; Lim, B. S.; Nicolet, M.-A.; Natan, M.

    1987-10-01

    The growth kinetics is characterized and the moving species is identified for the formation of Ni2Si by Rapid Thermal Annealing (RTA) of sequentially deposited Si and Ni films on a Si substrate. The interfacial Ni2Si layer grows as the square root of time, indicating that the suicide growth process is diffusion-limited. The activation energy is 1.25±0.2 eV in the RTA temperature range of 350 450° C. The results extend those of conventional steady-state furnace annealing quite fittingly, and a common activation energy of 1.3±0.2 eV is deduced from 225° to 450° C. The marker experiment shows that Ni is the dominant moving species during Ni2Si formation by RTA, as is the case for furnace annealing. It is concluded that the two annealing techniques induce the same growth mechanisms in Ni2Si formation.

  20. Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing.

    Science.gov (United States)

    Cho, Jongweon; Gao, Li; Tian, Jifa; Cao, Helin; Wu, Wei; Yu, Qingkai; Yitamben, Esmeralda N; Fisher, Brandon; Guest, Jeffrey R; Chen, Yong P; Guisinger, Nathan P

    2011-05-24

    We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at ∼430 °C) exhibit predominantly striped Moiré patterns, indicating a relatively weak interaction between graphene and the underlying polycrystalline Cu foil. Rapid high-temperature annealing of the sample (at 700-800 °C) gives rise to the removal of Cu oxide and the recovery of crystallographic features of the copper that surrounds the intact graphene. These experimental observations of continuous crystalline features between the underlying copper (beneath the graphene islands) and the surrounding exposed copper areas revealed by high-temperature annealing demonstrates the impenetrable nature of graphene and its potential application as a protective layer against corrosion.

  1. Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers

    Science.gov (United States)

    Lehner, J.; Ganchev, M.; Loorits, M.; Revathi, N.; Raadik, T.; Raudoja, J.; Grossberg, M.; Mellikov, E.; Volobujeva, O.

    2013-10-01

    In this work Cu2ZnSnS4 (CZTS) thin films were formed by rapid thermal annealing (RTA) of sequentially electrodeposited Cu-Zn and Sn films in 5% H2S containing atmosphere. Six different thermal profiles were used in the experiments. In three of these, the temperature ramping up was varied, while the variable in the other three profiles was the cooling down rate. The optimising parameters for RTA of electrodeposited films were found and annealed films were characterised by X-ray diffraction (XRD), micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM+EDS). The material parameters such as lattice strain and crystallite size were also determined and the influence of annealing temperature and heating rate on these parameters was discussed.The pathway of MoS2 formation was investigated.

  2. Mathematical Simulation of Porous Glass Thermal Processes at Annealing Stage

    Science.gov (United States)

    Grushko, I. S.

    2017-11-01

    The mathematical model of the porous glass heat field under conditions of complex heat exchange in the process of the technological stage of annealing is presented. The model includes calculations of the radiation, convective and molecular components. The mathematical model is based on the finite element method. The model is realised in the software Ansys. The statement of the problem is given. The object under study, i.e., model structural features, is presented. The method of model structure obtaining, the initials and boundary conditions are given. The theoretical basis of the methods, approaches and of the optimal calculation parameters choice principles are presented. The estimation of the model adequacy by means of the experimental verification is given. The comparison of the obtained data with the experimental results is performed. The relative error of calculation using the developed model does not exceed 15%.

  3. The annealing behavior of hydrogen implanted into Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Masahiko; Yamaji, Norisuke; Imai, Makoto; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    We have studied effects of not only defects but also an added elements on trap-sites of hydrogen in metals. For the purpose, we observed depth profiles and thermal behaviors of hydrogen implanted into Al-1.5at.%Si alloy samples in an implantation-temperature range of liquid nitrogen temperature (LNT) to 373K at different doses. The results were compared with those for pure aluminum samples. It was found that hydrogen is trapped as molecules in grain boundaries of Al/Si. (author)

  4. The Effect of Thermal Annealing on the Optical Band Gap of Cd1 ...

    African Journals Online (AJOL)

    ... for an hour at temperatures of 100°C, 200°C and 300°C and the absorption spectra again recorded. It was observed that thermal annealing decreased the band gap of the samples; this may be due to improving crystallinity or alternatively, a phase transformation taking place in the samples as a result of the heat treatment.

  5. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers.

    Science.gov (United States)

    Raja, Shyamprasad N; Osenberg, David; Choi, Kyoungjun; Park, Hyung Gyu; Poulikakos, Dimos

    2017-10-19

    The thermal transport properties of graphene are strongly influenced by its contact environment and the strength of such interactions can be used to tailor these properties. Here we find that annealing suppresses the basal plane thermal conductivity (κ) of graphene supported on silicon dioxide, due to the increased conformity of graphene to the nanoscale asperities of the substrate after annealing. Intriguingly, increasing the polycrystallinity of graphene, grown by chemical vapor deposition on copper, increases the severity of this suppression after annealing, revealing the role of grain boundaries and associated defects in aiding phonon scattering by the substrate. In highly polycrystalline graphene, the value of κ after annealing is comparable to that after significant fluorination of an identical unannealed sample. Our experiments employ the suspended micro-bridge platform for basal plane thermal conductivity measurements. Using xenon difluoride gas for the final release also enables the investigation of thermal transport in graphene in contact with polymers. We find evidence for weaker phonon scattering in graphene, due to a 10 nm thick polymer layer on top compared to the pre-existing silicon dioxide substrate, which is a promising result for flexible electronics applications of graphene.

  6. Rectangular nanovoids in helium-implanted and thermally annealed MgO(100)

    NARCIS (Netherlands)

    Kooi, B.J.; Veen, A. van; Hosson, J.Th.M. De; Schut, H.; Fedorov, A.V.; Labohm, F.

    2000-01-01

    Cleaved MgO(100) single crystals were implanted with 30 keV 3He ions with doses varying from 1×10^19 to 1×10^20 m-2 and subsequently thermally annealed from 100 to 1100 °C. Transmission electron microscopy observations revealed the existence of sharply rectangular nanosize voids at a depth slightly

  7. Synthesis of B–Sb by rapid thermal annealing of B/Sb multilayer films

    Indian Academy of Sciences (India)

    layer with predetermined thickness of boron and antimony and subsequently subjecting the multilayer to rapid thermal annealing. The films were characterized by measuring microstructural, optical and compositional properties. 2. Experimental. Multilayer films of B and Sb were deposited onto Si and fused silica substrates ...

  8. Magnetic structure of Fe-based amorphous and thermal annealed microwires

    Energy Technology Data Exchange (ETDEWEB)

    Olivera, J. [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Provencio, M. [Instituto de Ciencia de Materiales, CSIC, Cantoblanco, 28049 Madrid (Spain); Prida, V.M. [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Hernando, B. [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)]. E-mail: grande@pinon.ccu.uniovi.es; Santos, J.D. [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Perez, M.J. [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Gorria, P. [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Sanchez, M.L. [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Belzunce, F.J. [Depto. Ciencia de los Materiales e Ingenieria Metalurgica, Universidad de Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2005-07-15

    The magnetic structure of amorphous and thermal annealed glass coated microwires is studied by thermomagnetic, DSC, and Bitter domain pattern techniques. The long-range dipolar interaction between parallel aligned microwires and the appearance of large Barkhausen jumps steps in the axially magnetized loops are discussed in terms of reversal magnetization process.

  9. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Takashi; Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro [YUMEX INC., 400 Itoda, Yumesaki, Himeji, Hyogo 671-2114 (Japan); Ishihara, Tsuguo; Izumi, Hirokazu [Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira, Suma, Kobe 654-0037 (Japan)

    2015-04-28

    We studied energy transfer from AlN to doped Gd{sup 3+} ions as a function of the post-thermal annealing temperature. Gd-doped AlN thin films were deposited on fused-silica substrates using a reactive radio-frequency magnetron sputtering technique. The film is a c-axis oriented polycrystal. The intra-orbital electron transition in Gd{sup 3+} showed an atomically sharp luminescence at 3.9 eV (318 nm). The photoluminescence (PL) excitation spectrum exhibited a resonant peak, indicating efficient energy transfer from the host AlN crystal to Gd{sup 3+} ions. The PL intensity increases approximately ten times by thermal annealing. The PL decay lifetime becomes long with annealing, and mid-gap luminescence relating to the crystal defects in AlN was also found to be reduced by annealing. These results suggest that energy dissipation of excited carriers in AlN was suppressed by annealing, and the efficiency of energy transfer into Gd{sup 3+} was improved.

  10. Physical properties of Fe doped In{sub 2}O{sub 3} magnetic semiconductor annealed in hydrogen at different temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baqiah, H. [Superconductors and Thin Film Laboratory, Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Ibrahim, N.B., E-mail: baayah@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Halim, S.A., E-mail: ahalim@upm.edu.my [Superconductors and Thin Film Laboratory, Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Chen, S.K.; Lim, K.P.; Kechik, M.M. Awang [Superconductors and Thin Film Laboratory, Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-03-01

    The effects of hydrogen-annealing at different temperatures (300, 400, 500 and 600 °C) on physical properties of In{sub 2−x}Fe{sub x}O{sub 3} (x=0.025) thin film were investigated. The structural measurement using XRD shows that the film has a single In{sub 2}O{sub 3} phase structure when annealed in hydrogen at 300–500 °C, however when annealed in hydrogen at 600 °C the film has a mixed phase structure of In{sub 2}O{sub 3} and In phases. The electrical measurements show that the carrier concentrations of the films decrease with the increase of hydrogen-annealing temperature in the range 300–500 °C. The optical band gap of the films decreases with increasing hydrogen-annealing temperatures. The saturation magnetisation, Ms, and coercivity of films increase with the increment of hydrogen annealing temperature. The film annealed at 300 °C has the lowest resistivity, ρ=0.03 Ω cm, and the highest carrier concentrations, n=6.8×10{sup 19} cm{sup −3}, while film annealed at 500 °C has both good electrical (ρ=0.05 Ω.cm and n=2.2×10{sup 19} cm{sup −3}) and magnetic properties, Ms=21 emu/cm{sup -3}. - Highlights: • Physical properties of films were sensitive to hydrogen-annealing temperature. • Magnetisation, Ms, of films increased with increase of hydrogen annealing temperature. • Film annealed in hydrogen at 300 °C has the lowest resistivity, ρ=0.03 Ω cm. • Film annealed in hydrogen at 600 °C has highest magnetisation, Ms=30 emu/cm{sup 3}.

  11. Influence of mechanical milling and thermal annealing on electrical ...

    Indian Academy of Sciences (India)

    Wintec

    the cation distribution. The dielectric constant is smaller by an order of magnitude and the dielectric loss is three orders of magnitude smaller for the milled sample compared to that of the bulk. In the case of cobalt ferrite, the observed decrease in conductivity, when the grain size is increased from 8–92 nm upon thermal.

  12. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  13. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.; Kusch, Gunnar; Schmidt, Michael; Collins, Timothy; Glynn, Colm; Martin, Robert W.; O’Dwyer, Colm; Morris, Michael D.; Holmes, Justin D.; Parbrook, Peter J.

    2016-12-07

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

  14. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric

    2010-08-18

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of Rapid Thermal Annealing on the Characteristics of InGaN/GaN MQWs

    Directory of Open Access Journals (Sweden)

    Tian Yuan

    2016-01-01

    Full Text Available N-type InGaN/GaN multiple-quantum-wells (MQWs were grown on sapphire substrates by metal organic chemical vapor deposition (MOCVD. The crystal quality and optical properties of samples after rapid thermal annealing (RTA at different temperatures in a range from 400 to 800°C are investigated by X-ray diffraction (XRD and photoluminescence (PL spectrum. The experimental results show that the peaks of InGaN, InN and In can be observed in all samples. And the results are induced by the phase separation and In-clusters. The luminescence peak of the samples annealed showed a red shift. It is caused by strain stress relaxation during the RTA process. Furthermore, some defects can be eliminated and the best annealing temperature is from 500°C to 700°C.

  16. Effects of thermal annealing on the magnetic interactions in nanogranular Fe-Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.; Fdez-Gubieda, M.L.; Svalov, A. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Campus de Leioa, 48940 Leioa (Spain); Meneghini, C. [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi Roma Tre, 00146 Roma (Italy); Orue, I. [SGIker, Universidad del Pais Vasco (UPV/EHU), Campus de Leioa, 48940 Leioa (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub x}Ag{sub 100-x} granular thin films with competing interactions (25 {<=} x{<=} 35). Black-Right-Pointing-Pointer Annealing up to 200 Degree-Sign C mainly modifies the interface of Fe nanoparticles. Black-Right-Pointing-Pointer Annealing reduces RKKY interactions in Fe{sub 25}Ag{sub 75}. Black-Right-Pointing-Pointer Annealing favors exchange interactions and ferromagnetic order in Fe{sub 35}Ag{sub 65}. - Abstract: In this paper we have studied, by analysing the evolution of the magnetic behaviour during thermal treatment, the role of the interparticle magnetic interactions in Fe{sub x}Ag{sub 100-x} granular thin films prepared by sputtering deposition technique. Two compositions have been selected: x = 25 and 35, below and around the magnetic percolation of the system, respectively, according to our previous works. The structure of these thin films has been studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements. To analyse the magnetic behaviour, DC magnetic measurements have been carried out after progressively annealing the samples at different temperatures (0 {<=} T{sub ann} {<=} 200 Degree-Sign C). These measurements have revealed that, upon thermal treatment, the frustrated state at low temperatures (T < 80 K) for the x = 25 sample tends to disappear, probably due to the weakening of RKKY interactions after the segregation of soluted Fe atoms in the Ag matrix. However, dipolar interactions are not affected by the annealing. On the contrary, at x = 35, around the magnetic percolation, the annealing gives rise to an increasingly ordered interface, thereby enhancing the transfer of the direct exchange interactions.

  17. Effects of thermal annealing on the evolution of He bubbles in zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Shuyan [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Velisa, Gihan [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Debelle, Aurélien [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Bât. 108, 91405 Orsay (France); Yang, Tengfei; Wang, Chenxu [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Thomé, Lionel [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Bât. 108, 91405 Orsay (France); Xue, Jianming; Yan, Sha [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Wang, Yugang, E-mail: ygwang@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-05-01

    Single crystals of yttria-stabilized zirconia were implanted with 100 keV He ions at two fluences of 9 × 10{sup 16} and 3 × 10{sup 17} cm{sup −2} (5 and 17 He at.%). In order to investigate the effect of thermal annealing on the evolution of both zirconia lattice and implanted He, the samples were annealed at several temperatures ranging from 500 °C to 1400 °C. Three complementary analysis techniques, RBS/C, AFM and TEM were used to study structural damage and surface morphology of the crystal before and after implantation. Results show different He evolution phenomena under the two implantation fluences. It is inferred that, at the lower fluence, the migration and agglomeration of He ions lead to bubble formation after annealing. These bubbles jack up sample surface causing the deformation of surface region and the damage level of surface region increase accordingly. As the temperature continues to increase, He gradually releases and the damage recovers. However, at the higher fluence, the He concentration is sufficient to induce bubble precipitation without annealing. He release and damage recovering is less efficient upon annealing.

  18. Flash lamp annealing of spray coated films containing oxidized or hydrogen terminated silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Falko, E-mail: falko.seidel@physik.tu-chemnitz.de [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Toader, Iulia G. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Koth, Stephan [Institute for Print and Media Technology, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Fritzsche, Ronny [Coordination Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Schäfer, Philipp; Bülz, Daniel [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Büchter, Benjamin [Coordination Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D.; Freitag, Hans [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Jakob, Alexander; Buschbeck, Roy [Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz,Germany (Germany); Hietschold, Michael [Solid Surface Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Lang, Heinrich [Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz,Germany (Germany); Mehring, Michael [Coordination Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Baumann, Reinhard [Institute for Print and Media Technology, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2014-07-01

    A variety of silicon nanoparticle (Si NP) powders is studied with diffuse-reflectance infrared Fourier-transform spectroscopy before and after treatment with hydrofluoric acid. As received Si NPs and surface passivated Si NPs are dispersed in organic dispersion media such ethanol. A spray coating system is used to spray the Si NPs onto molybdenum substrates under nitrogen atmosphere. During film growth an in-line spectroscopic ellipsometer monitors the deposition process. In addition, a Xe-lamp enables to flash films in order to melt Si NPs together. Si NP films are then investigated using atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Eventually, a difference in surface termination (e.g. state of surface oxidation and hydrogen passivation) between Si NP amounts of three selected providers was found. Furthermore, the dispersion stability of Si NP powder in dry ethanol (> 99%), the film roughness after processing, and the melting of Si NP films is found to depend strongly on the surface termination of the NPs. - Highlights: • Silicon nanoparticle suspensions are spray coated on molybdenum substrates. • Spectroscopic ellipsometry and atomic force microscopy watch the deposition. • After deposition a light flash anneals the sample to fuse silicon nanoparticles. • Silicon nanoparticle surface oxidation correlates with the effects of annealing.

  19. High Temperature Vacuum Annealing and Hydrogenation Modification of Exfoliated Graphite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Xiaobing Li

    2013-01-01

    Full Text Available Highly active defect sites on the edges of graphene automatically capture oxygen from air to form various oxygen groups. A two-step procedure to remove various oxygen functional groups from the defect sites of exfoliated graphene nanoplatelets (GNPs has been developed to reduce the atomic oxygen concentration from 9.5% to 4.8%. This two-step approach involves high temperature vacuum annealing followed by hydrogenation to protect the reduced edge carbon atoms from recombining with the atmospheric oxygen. The reduced GNPs exhibit decreased surface resistance and graphitic potential-dependent capacitance characteristics compared to the complex potential-dependent capacitance characteristics exhibited by the unreduced GNPs as a result of the removal of the oxygen functional groups present primarily at the edges. These reduced GNPs also exhibit high electrochemical cyclic stability for electrochemical energy storage applications.

  20. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    Science.gov (United States)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  1. Effect of annealing and hydrogen plasma treatment on the luminescence and persistent photoconductivity of polycrystalline ZnO films

    Science.gov (United States)

    Abdullin, Kh. A.; Cicero, G.; Gritsenko, L. V.; Kumekov, S. E.; Markhabaeva, A. A.

    2017-06-01

    Photoluminescence (PL) and electrical properties of boron doped zinc oxide (ZnO) thin films, deposited by metalorganic chemical vapour deposition on a glass substrate, were investigated. The effects of annealing in air, as well as the influence of the radiofrequency—plasma treatment in hydrogen atmosphere, on the PL and electrical conductivity of the ZnO films were studied. A correlation between photoluminescence and electrical properties during annealing was observed. Hydrogen plasma treatment causes an increase in the carrier mobility and concentration and results in a very intensive near band edge emission (NBE). It was found that defects responsible for the dramatic increase in the intensity of NBE band in the hydrogen-treated ZnO films are hydrogen-related complexes formed near or at the surface of the samples. The intensity of NBE in hydrogen-treated samples decreases after aging in the dark, and, conversely, the NBE intensity increases under UV light illumination. This effect is fully reversible and depends on the gas atmosphere during the UV exposure and subsequent aging. It was proposed that the NBE band in the ZnO films annealed in the air and treated in hydrogen plasma emerges due to O-H complexes forming at zinc vacancy sites, n(O-H)-VZn.

  2. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    OpenAIRE

    Tang, Jianshi; Wang, Chiu-Yen; Xiu, Faxian; Zhou, Yi; Chen, Lih-Juann; Wang, Kang L.

    2011-01-01

    We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studie...

  3. Hydrogenated liquids and hydrogen production by non-thermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Centre national de la recherche scientifique, Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    In recent years, hydrogen (H{sub 2}) has been considered as a fuel for electricity generation and transportation purposes. H{sub 2} is a renewable energy source that does not contribute to the greenhouse effect. This paper reported on a comparative study of syngas production from alcohol, with particular reference to the plasma steam-reforming of ethanol, methanol, ammonia and vegetable oil. The H{sub 2} yields and energetic cost in function of hydrogen sources were presented. The non thermal plasma used in this study was a laboratory scale experimental device static discharge. An arc formed between two electrodes made of graphite. The efficiency of the process was determined through chemical diagnostics. Gas chromatography and Fourier transform infrared (FTIR) techniques were used to determine concentrations of H{sub 2}, carbon monoxide, carbon dioxide and carbon as functions of flow and inlet liquid mixture concentration parameters. This paper also presented the values of H{sub 2}/CO ratio and the composition of synthesis gas according to various operating conditions. 18 refs., 2 tabs., 8 figs.

  4. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiyong [College of Science, Shenyang Agricultural University, Shenyang 110866 (China); Wang, Ning, E-mail: ning_wang@outlook.com [School of Electrical and Electronic and Engineering, Nanyang Technological University 639798 (Singapore); Fu, Yan, E-mail: 1060945062@qq.com [College of Science, Shenyang Agricultural University, Shenyang 110866 (China)

    2016-12-15

    Highlights: • The TIPD layer as electron extraction layer and instead of Ca or LiF. • Impact of the work function of TIPD layer by thermal annealing treatment. • Importance of TIPD layer as electron extraction layer for work function and potential barrier. - Abstract: The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO{sub 3}/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO{sub 2} as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Ti=O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  5. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.

    2016-08-05

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  6. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Sogne, E. [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); European School of Molecular Medicine (SEMM), IFOM-IEO, Milano (Italy); Merlini, M. [Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli 32, 20133 Milano (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-08-07

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  7. Microstructural analysis of the thermal annealing of ice-Ih using EBSD

    Science.gov (United States)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-04-01

    Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes

  8. Influence of thermal annealing on the memory effect in MIS structures containing crystalline Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian; Brueggemann, R. [Institut fuer Physik, Carl von Ossietzky Universitaet Oldenburg, 26111 Oldenburg (Germany); Kirilov, Kiril [Department of Solid State Physics and Microelectronics, Sofia Univ. (Bulgaria); Levi, Zelma; Manolov, E. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Nedev, N. [Instituto de Ingenieria Universidad Autonoma de Baja California, Benito Juarez Blvd., s/n, C.P. 21280, Mexicali, Baja California, Mexico (Mexico)

    2007-07-01

    Silicon nanocrystals embedded in a SiO{sub 2} matrix are fabricated by thermal annealing of Metal/SiO{sub 2}/SiO{sub x}/c-Si structures (x=1.15) at 1000 C in N{sub 2} atmosphere for 30 or 60 min. High frequency C-V measurements demonstrate that both types of sample can be charged negatively or positively by applying a positive or negative bias voltage to the gate. The clockwise hysteresis windows of 30 and 60 min annealed samples are about 7 and 5.5 V for the {+-}12 V scanning range (E{sub ox}={+-}2.4 MV/cm), respectively. Although the samples annealed for 60 min have a smaller hysteresis window, they have two important advantages compared to the 30 min annealed ones: a lower defect density at the c-Si wafer/SiO{sub 2} interface and a smaller value of the fixed oxide charge close to this interface.

  9. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-02-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.

  10. Implications of Thermal Annealing on the Benzene Vapor Sensing Behavior of PEVA-Graphene Nanocomposite Threads.

    Science.gov (United States)

    Patel, Sanjay V; Cemalovic, Sabina; Tolley, William K; Hobson, Stephen T; Anderson, Ryan; Fruhberger, Bernd

    2018-02-14

    The effect of thermal treatments, on the benzene vapor sensitivity of polyethylene (co-)vinylacetate (PEVA)/graphene nanocomposite threads, used as chemiresistive sensors, was investigated using DC resistance measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). These flexible threads are being developed as low-cost, easy-to-measure chemical sensors that can be incorporated into smart clothing or disposable sensing patches. Chemiresistive threads were solution-cast or extruded from PEVA and resistance with successive anneals. Threads heated to ≥80 °C showed improved limits of detection, resulting from improved signal-noise, when exposed to benzene vapor in dry air. In addition, annealing increased the speed of response and recovery upon exposure to and removal of benzene vapor. DSC results showed that the presence of graphene raises the freezing point, and may allow greater crystallinity, in the nanocomposite after annealing. SEM images confirm increased surface roughness/area, which may account for the increase response speed after annealing. Benzene vapor detection at 5 ppm is demonstrated with limits of detection estimated to be as low as 1.5 ppm, reflecting an order of magnitude improvement over unannealed threads.

  11. Thermal annealing study of F center clusters in LiF single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Izerrouken, M., E-mail: izerrouken@yahoo.co [Centre de Recherche Nucleaire de Draria (CRND), BP 43, Sebbala, Draria, Alger (Algeria); Guerbous, L. [Centre de Recherche Nucleaire d' Alger (CRNA), 2 Bd Frantz Fanon, BP 399, Alger gare (Algeria); Meftah, A. [LRPCSI, Universite 20 Aout 55 route d' El-Hadaik, BP 26, 21000 Skikda (Algeria)

    2010-01-21

    The present work is devoted to study the thermal annealing process of F center clusters (F{sub n}) induced in LiF single crystal under high-dose gamma-rays and high reactor neutrons fluence irradiations. With heating under argon atmosphere, the F-type center aggregates and gives rise to a new absorption band at 500 nm attributed to Li colloids. The optical density associated with F{sub 2} center observed in gamma-ray irradiated LiF decreases with increasing annealing temperature and exhibits two distinct annealing processes with activation energies E{sub 1}=0.9+-0.3 eV and E{sub 2}=1.6+-0.5 eV. Also, it is clear from the results that the F{sub 3}{sup +} and F{sub 2} emission bands positions are affected by the irradiated dose. Reactor neutrons irradiation induces large Li colloids. These colloids persist even after annealing at 450 deg. C.

  12. Improved behavior of cooper-amine complexes during thermal annealing for conductive thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ayag, Kevin Ray; Panama, Gustavo; Paul, Shrabani; Kim, Hong Doo [Dept. of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Previous studies successfully produced conductive thin films from organo-metallic-compounds-based inks. Some inks like those made from copper salt and amines, however, tend to move during thermal annealing and, thus, affect the conductive pattern on the substrate. In this study, conductive inks were synthesized by forming complexes of copper with amines and/or blended amines. To build-up an organo-metallic framework and preserve the pattern throughout the annealing period, diamine was added to the complex in different proportions. The prepared inks were coated on glass substrate and were annealed on a hot plate at 170°C under the gaseous mixture of formic acid and alcohol for 5 min. The metallic film was observed to retain the original pattern of the ink during and after annealing. Adhesion on the substrate was also improved. Inks with blended amines produced films with lower resistivities. The lowest electrical resistivity recorded was 4.99 μΩ cm, three times that of bulk copper.

  13. Investigation of effect of annealing on thermally evaporated ZnSe thin films through spectroscopic techniques

    Science.gov (United States)

    Mahesha, M. G.; Rashmitha; Meghana, N.; Padiyar, Meghavarsha

    2017-09-01

    ZnSe thin films have been grown on clean glass substrates by thermal evaporation technique and deposited films have been annealed at 473 K. William-Hall method has been adopted to extract information on crystallite size and internal strain in the film from X-ray diffractogram. Effect of annealing on ZnSe films has been analyzed by spectroscopic techniques which include optical absorption, Raman, and photoluminescence spectroscopy. From optical absorption, band gap has been estimated along with other optical parameters like refractive index and extinction coefficient. Also, Urbach tail, which originates near bad edge due to structural disorders, has been characterized. Raman spectra have been analyzed to get the information on the influence of crystallite size and strain effect on peak position, intensity and width. Photoluminescence spectra have been recorded and analyzed to get an insight on defect levels induced due to vacancies, interstadials, and impurity complexes.

  14. A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta₂O₅/Pd multi-layers film.

    Science.gov (United States)

    Hosoki, Ai; Nishiyama, Michiko; Igawa, Hirotaka; Seki, Atsushi; Watanabe, Kazuhiro

    2014-07-28

    In this paper, a response time of the surface plasmon resonance fiber optic hydrogen sensor has successfully improved with keeping sensor sensitivity high by means of hydrogen curing (immersing) process of annealed Au/Ta2O5/ Pd multi-layers film. The hydrogen curing effect on the response time and sensitivity has been experimentally revealed by changing the annealing temperatures of 400, 600, 800°C and through observing the optical loss change in the H2 curing process. When the 25-nm Au/60-nm Ta2O5/10-nm Pd multi-layers film annealed at 600°C is cured with 4% H2/N2 mixture, it is found that a lot of nano-sized cracks were produced on the Pd surface. After H2 curing process, the response time is improved to be 8 s, which is two times faster than previous reported one in the case of the 25-nm Au/60-nm Ta2O5/3-nm Pd multi-layers film with keeping the sensor sensitivity of 0.27 dB for 4% hydrogen adding. Discussions most likely responsible for this effect are given by introducing the α-β transition Pd structure in the H2 curing process.

  15. Intrinsic Gettering in Nitrogen-Doped and Hydrogen-Annealed Czochralski-Grown Silicon Wafers

    Science.gov (United States)

    Goto, Hiroyuki; Pan, Lian-Sheng; Tanaka, Masafumi; Kashima, Kazuhiko

    2001-06-01

    The properties of nitrogen-doped and hydrogen-annealed Czochralski-grown silicon (NHA-CZ-Si) wafers were investigated in this study. The quality of the subsurface was investigated by monitoring the generation lifetime of minority carriers, as measured by the capacitance-time measurements of a metal oxide silicon capacitor (MOS C-t). The intrinsic gettering (IG) ability was investigated by determining the nickel concentration on the surface and in the subsurface as measured by graphite furnace atomic absorption spectrometry (GFAAS) after the wafer was deliberately contaminated with nickel. From the results obtained, the generation lifetimes of these NHA-CZ-Si wafers were determined to be almost the same as, or a little longer than those of epitaxial wafers, and the IG ability was proportional to the total volume of oxygen precipitates [i.e., bulk micro defects (BMDs)], which was influenced by the oxygen and nitrogen concentrations in the wafers. Therefore, it is suggested that the subsurface of the NHA-CZ-Si wafers is of good quality and the IG capacity is controllable by the nitrogen and oxygen concentrations in the wafers.

  16. Highly Efficient Organic UV Photodetectors Based on Polyfluorene and Naphthalenediimide Blends: Effect of Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Gorkem Memisoglu

    2012-01-01

    Full Text Available A solution-processed organic ultraviolet photodetector (UV-PD is introduced. The active layer of the UV-PD consists of poly(9,9-dioctyl fluorenyl-2,7–yleneethynylene (PFE and N,N′-bis-n-butyl-1,4,5,8- naphthalenediimide (BNDI with a weight ratio of 3 : 1 in chloroform. The effect of thermal annealing on the device properties was investigated from room temperature to 80∘C. The full device structure of ITO/PEDOT:PSS/PFE:BNDI (3 : 1/Al gave responsivity of 410 mA/W at −4 V under 1 mW/cm2 UV light at 368 nm when 60∘C of annealing temperature was used during its preparation. The devices that were annealed over the crystallization temperature of PFE showed a charge transfer resistance increase and a mobility decrease.

  17. Thermal annealing of lattice-matched InGaAs/InAlAs Quantum-Cascade Lasers

    Science.gov (United States)

    Mathonnière, Sylvain; Semtsiv, M. P.; Ted Masselink, W.

    2017-11-01

    We describe the evolution of optical power, threshold current, and emission wavelength of a lattice-matched InGaAs/InAlAs Quantum-Cascade Laser (QCL) emitting at 13 μm grown by gas-source molecular-beam epitaxy under thermal annealing. Pieces from the same 2-in wafer were annealed at 600 °C, 650 °C, or 700 °C for 1 h; one control piece remained unannealed. No change in threshold current and emission wavelength was observed. The slope efficiency and maximum emission power increase for the 600 °C anneal, but higher annealing temperatures resulted in degraded performance. This result stands in contrast with the observation that strain-compensated structures cannot withstand annealing temperature of 600 °C. Useful information for post-growth processing steps and the role of interface roughness in QCL performance are obtained.

  18. Fluorine implantation effects on Ta2O5 dielectrics on polysilicon treated with post rapid thermal annealing

    Science.gov (United States)

    Chen, Hsiang; Kao, Chyuan Haur; Huang, Bo Yun; Lo, Wen Shih

    2013-10-01

    This paper investigates effects of fluorine implantation with post rapid thermal annealing on electrical characteristics and material properties of tantalum pentoxide (Ta2O5) dielectrics. The electrical behaviors of the dielectrics under various implantation doses were measured. To investigate annealing effects, secondary ion mass spectrometry (SIMS) was used to measure depth profiles of various atoms inside the dielectrics with and without annealing. In addition, atomic force microscopy measurements visualize the surface roughness and material properties of the dielectrics with different implantation doses. The dielectric performance can be significantly improved by an appropriate fluorine implantation dose of 1 × 1015 ions/cm2 with post annealing at 800 °C. The improvements in electrical characteristics were caused by the appropriate incorporation of the fluorine atoms presented in SIMS profiles and the removal of the dangling bonds and traps. The Ta2O5 dielectric incorporated with appropriate fluorine implantation and annealing treatments shows great promise for future generation of memory applications.

  19. Evolution of the microstructure, residual stresses, and mechanical properties of W-Si-N coatings after thermal annealing

    NARCIS (Netherlands)

    Cavaleiro, A; Marques, AP; Fernandes, JV; Carvalho, NJM; De Hosson, JT

    W-Si-N films were deposited by reactive sputtering in a Ar + N-2 atmosphere from a W target encrusted with different number of Si pieces and followed by a thermal annealing at increasing temperatures up to 900 degrees C. Three iron-based substrates with different thermal expansion coefficients, in

  20. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    Science.gov (United States)

    Gollu, Sankara Rao; Sharma, Ramakant; G, Srinivas; Gupta, Dipti

    2014-10-01

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO3/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO3 layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  1. Rapid thermal annealing of YBaCuO films on Si and SiO/sub 2/ substrates

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, M.; Soltis, R.E.; Logothetis, E.M.; Ager, R.; Mikkor, M.; Win, W.; Chen, J.T.; Wenger, L.E.

    1988-07-11

    A very rapid thermal annealing technique has been employed on sputter-deposited YBaCuO films. After an O/sub 2/ anneal (with or without a N/sub 2/ preanneal) at temperatures as high as 920 /sup 0/C for 8--12 s, films on (100)Si and on SiO/sub 2/ /Si substrates exhibited superconductivity onsets above 95 K and zero resistance in the range 40--66 K.

  2. Thermal annealing and pressure effects on BaFe2‑x Co x As2 single crystals

    Science.gov (United States)

    Shin, Dongwon; Jung, Soon-Gil; Prathiba, G.; Seo, Soonbeom; Choi, Ki-Young; Kim, Kee Hoon; Park, Tuson

    2018-01-01

    We investigate the pressure and thermal annealing effects on BaFe2‑x Co x As2 (Co-Ba122) single crystals with x  =  0.1 and 0.17 via electrical transport measurements. The thermal annealing treatment not only enhances the superconducting transition temperature (T c) from 9.6 to 12.7 K for x  =  0.1 and from 18.1 to 21.0 K for x  =  0.17, but also increases the antiferromagnetic transition temperature (T N). Simultaneous enhancement of T c and T N by the thermal annealing treatment indicates that thermal annealing could substantially improve the quality of the Co-doped Ba122 samples. Interestingly, T c of the Co-Ba122 compounds shows a scaling behavior with a linear dependence on the resistivity value at 290 K, irrespective of tuning parameters such as chemical doping, pressure, and thermal annealing. These results not only provide an effective way to access the intrinsic properties of the BaFe2As2 system, but may also shed a light on designing new materials with higher superconducting transition temperature.

  3. Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoanapatite, and Durango apatite: experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Ravenhurst, C.E.; Roden-Tice, M.K.; Miller, D.S. [Rensselaer Polytechnic Inst., Dept. of Earth and Environmental Sciences, Troy, New York (United States)]. E-mail: cravenhu@hotmail.com

    2003-07-01

    It is well known that the optically measured lengths of fission tracks in apatite crystals are a function of etching conditions, crystallographic orientation of the track, composition of the crystal, and the state of thermal annealing. In this study we standardize etching conditions and optimize track length measurability by etching until etch pits formed at the surface of each apatite crystal reached widths of about 0.74 {mu}m. Etching times using 5M HNO{sub 3} at 21{sup o}C were 31 s for Otter Lake, Quebec, fluorapatite; 47 s for Durango, Mexico, apatite; 33 s for Portland, Connecticut, manganoanapatite; and 11 s for Bamle, Norway, chlorapatite. An etching experiment using two etchant strengths (5M and 1.6M HNO{sub 3}) revealed that, despite significant differences in etch pit shape, fission-track length anisotropy with respect to crystallographic orientation of the tracks is not a chemical etching effect. A series of 227 constant-temperature annealing experiments were carried out on nuclear reactor induced tracks in oriented slices of the apatites. After etching, crystallographic orientations of tracks were measured along with their lengths. The 200-300 track lengths measured for each slice were ellipse-fitted to give the major (c crystallographic direction) and minor (a crystallographic direction) semi-axes used to calculate equivalent isotropic lengths. The equivalent isotropic length is more useful than mean length for thermal history analysis because the variation caused by anisotropy has been removed. Using normalized etching procedures and equivalent isotropic length data, we found that the fluorapatite anneals most readily, followed by Durango apatite, manganoanapatite, and lastly chlorapatite. (author)

  4. Optical characteristics of GaAsSb alloy after rapid thermal annealing

    Science.gov (United States)

    Gao, Xian; Zhao, Fenghuan; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Wang, Xiaohua; Wei, Zhipeng; Chen, Rui

    2017-11-01

    GaAsSb ternary alloy is a promising material for application in infrared optoelectronic devices. In this letter, the investigation of carrier recombination in the as-grown and rapid thermal annealing (RTA) treated GaAsSb samples has been carried out. It was found that after thermal treatment the emission of the GaAsSb material was enhanced and could be maintained up to room temperature. These phenomena can be ascribed to the decrease of non-radiative combination defects in the GaAsSb sample, which implies an improved crystal quality. Moreover, the localized exciton-longitudinal optical phonon interaction is slightly increased after RTA treatment. It is suggested that the interaction depends strongly on the localized states, and the photoluminescence emission intensity can be significantly increased after suitable RTA treatment. Promoting better optical emission in GaAsSb is very useful for its practical application.

  5. Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies

    Energy Technology Data Exchange (ETDEWEB)

    Babonneau, D [Laboratoire de Metallurgie Physique, UMR 6630 CNRS, Universite de Poitiers, SP2MI, Teleport 2, Boulevard M et P Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Abadias, G [Laboratoire de Metallurgie Physique, UMR 6630 CNRS, Universite de Poitiers, SP2MI, Teleport 2, Boulevard M et P Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Toudert, J [Laboratoire de Metallurgie Physique, UMR 6630 CNRS, Universite de Poitiers, SP2MI, Teleport 2, Boulevard M et P Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Girardeau, T [Laboratoire de Metallurgie Physique, UMR 6630 CNRS, Universite de Poitiers, SP2MI, Teleport 2, Boulevard M et P Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France); Fonda, E [Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Micha, J S [UMR SPrAM 5819 CNRS, CEA-Grenoble/DRMFC, 17 avenue des martyrs, 38054 Grenoble Cedex 9 (France); Petroff, F [Unite Mixte de Physique CNRS/THALES associee a l' Universite Paris-Sud XI, Route departementale 128, 91767 Palaiseau Cedex (France)

    2008-01-23

    The comprehensive study of C/FePt granular multilayers prepared by ion-beam sputtering at room temperature and subsequent annealing is reported. The as-deposited multilayers consist of carbon-encapsulated FePt nanoparticles (average size {approx}3 nm) with a disordered face-centered-cubic structure. The effects of thermal annealing on the structural and magnetic properties are investigated by using dedicated ex situ and in situ techniques, including high-resolution transmission electron microscopy, extended x-ray absorption fine structure, magnetometry, and coupled grazing incidence small-angle x-ray scattering and x-ray diffraction. Our structural data show that the particle size and interparticle distance increase slightly with annealing at temperatures below 790 K by thermally activated migration of Fe and Pt atoms. We find that thermal annealing at temperatures above 870 K results in the dramatic growth of the FePt nanoparticles by coalescence and their gradual L1{sub 0} ordering. In addition, we observe a preferential graphitization of the carbon matrix, which provides protection against oxidation for the FePt nanoparticles. Magnetization measurements indicate that progressive magnetic hardening occurs after annealing. The dependences of the blocking temperature, saturation magnetization, coercivity, and magnetocrystalline anisotropy energy on the annealing temperature are discussed on the basis of the structural data.

  6. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    Science.gov (United States)

    Liu, Zhiyong; Wang, Ning; Fu, Yan

    2016-12-01

    The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO3/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO2 as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Tidbnd O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  7. Atmospheric pulsed laser deposition and thermal annealing of plasmonic silver nanoparticle films

    Science.gov (United States)

    Khan, T. M.; Mujawar, M. A.; Siewerska, K. E.; Pokle, A.; Donnelly, T.; McEvoy, N.; Duesberg, G. S.; Lunney, J. G.

    2017-11-01

    A new method for pulsed laser deposition of plasmonic silver nanoparticle (NP) films in flowing gas at atmospheric pressure is described. The ablation was done using an excimer laser at 248 nm. Fast optical imaging shows that the ablation plume is captured by the flowing gas, and is expected to form a NP aerosol, which is carried 5-20 mm to the substrate. The dependence of the deposition rate on laser fluence, gas flow velocity, and target-substrate distance was investigated using electron microscopy and absorption spectroscopy of the deposited films. The NP films were annealed in argon and hydrogen at 400 °C, and in air for temperatures in the range 200 °C-900 °C, leading to strong enhancement, and narrowing of the surface plasmon resonance. The films were used for surface enhanced Raman spectroscopy of a 10-5 molar solution of Rhodamine 6G; films annealed in air at 400 °C were five times more sensitive than the as-deposited films.

  8. Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations

    KAUST Repository

    Vaughn, Justin T.

    2012-05-01

    A fluorinated, 6FDA based polyamide-imide is investigated for the purification of CH 4 from CO 2 and H 2S containing gas streams. Dense polymer films were thermally annealed and showed that increased annealing temperatures at constant annealing time caused transport behavior that does not resemble physical aging. Free volume increased after annealing at 200°C for 24h relative to annealing at 150°C for the same time. CO 2 and CH 4 permeabilities and diffusivities did not decrease as a result of the higher annealing temperature, and in fact, were shown to increase slightly. A change to the intrinsic microstructure that cannot be described by simple, densification based physical aging is hypothesized to be the reason for this trend. Furthermore, annealing increased CO 2 induced plasticization resistance and a temperature of 200°C was shown to have the greatest effect on plasticization suppression. Annealing at 200°C for 24h suppressed pure gas CO 2 plasticization up to 450psia. Fluorescence spectroscopy revealed increased intramolecular charge transfer, which is presumably due to increased electron conjugation over the N-phenyl bond. Additionally, intermolecular charge transfer increased with thermal annealing, as inferred from fluorescence intensity measurements and XRD patterns. 50/50 CO 2/CH 4 mixed gas permeation measurements reveal stable separation performance up to 1000psia. Ternary mixed gas feeds containing toluene/CO 2/CH 4 and H 2S/CO 2/CH 4 show antiplasticization, but more importantly, selectivity losses due to plasticization did not occur up to 900psia of total feed pressure. These results show that the polyamide-imide family represents a promising class of separation materials for aggressive acid gas purifications. © 2012 Elsevier B.V.

  9. Thermal, quantum and simulated quantum annealing: analytical comparisons for simple models

    OpenAIRE

    Bapst, Victor; Semerjian, Guilhem

    2015-01-01

    We study various annealing dynamics, both classical and quantum, for simple mean-field models and explain how to describe their behavior in the thermodynamic limit in terms of differential equations. In particular we emphasize the differences between quantum annealing (i.e. evolution with Schr\\"odinger equation) and simulated quantum annealing (i.e. annealing of a Quantum Monte Carlo simulation).

  10. Operation of metal hydride hydrogen storage systems for hydrogen compression using solar thermal energy

    Directory of Open Access Journals (Sweden)

    Naruki Endo

    2016-01-01

    Full Text Available By using a newly constructed bench-scale hydrogen energy system with renewable energy, ‘Pure Hydrogen Energy System’, the present study demonstrates the operations of a metal hydride (MH tank for hydrogen compression as implemented through the use solar thermal energy. Solar thermal energy is used to generate hot water as a heat source of the MH tank. Thus, 70 kg of LaNi5, one of the most typical alloys used for hydrogen storage, was placed in the MH tank. We present low and high hydrogen flow rate operations. Then, the operations under winter conditions are discussed along with numerical simulations conducted from the thermal point of view. Results show that a large amount of heat (>100 MJ is generated and the MH hydrogen compression is available.

  11. Non-thermal hydrogen atoms in the terrestrial upper thermosphere.

    Science.gov (United States)

    Qin, Jianqi; Waldrop, Lara

    2016-12-06

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.

  12. Thermal management technology for hydrogen storage: Fullerene option

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.C.; Chen, F.C.; Murphy, R.W. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Fullerenes are selected as the first option for investigating advanced thermal management technologies for hydrogen storage because of their potentially high volumetric and gravimetric densities. Experimental results indicate that about 6 wt% of hydrogen (corresponding to C{sub 60}H{sub 48}) can be added to and taken out of fullerenes. A model assuming thermally activated hydrogenation and dehydrogenation processes was developed to explain the experimental findings. The activation energies were estimated to be 100 and 160 kJ/mole (1.0 and 1.6 eV/H{sub 2}) for the hydrogenation and dehydrogenation processes, respectively. The difference is interpreted as the heat released during hydrogenation. There are indications that the activation energies and the heat of hydrogenation can be modified by the use of catalysts. Preliminary hydrogen storage simulations for a conceptually simple device were performed. A 1-m long hollow metal cylinder with an inner diameter of 0.02 m was assumed to be filled with fullerene powders. The results indicate that the thermal diffusivity of the fullerenes controls the hydrogenation and dehydrogenation rates. The rates can be significantly modified by changing the thermal diffusivity of the material inside the cylinder, e.g., by incorporating a metal mesh. Results from the simulation suggest that thermal management is essential for efficient hydrogen storage devices using fullerenes. While the preliminary models developed in this study explain some of the observation, more controlled experiments, rigorous model development, and physical property determinations are needed for the development of practical hydrogen storage devices. The use of catalysts to optimize the hydrogen storage characteristics of fullerenes also needs to be pursued. Future cooperative work between Oak Ridge National Laboratory (ORNL) and Material & Electrochemical Research Corporation (MER) is planned to address these needs.

  13. The impact of hydrogenation on the thermal transport of silicene

    Science.gov (United States)

    Liu, Zeyu; Wu, Xufei; Luo, Tengfei

    2017-06-01

    Silicene, the silicon counterpart of graphene, has been identified as a promising 2D material for electronics applications. The reported very low thermal conductivity of silicene can potentially pose challenges on the thermal management of such nanoelectronics, which can in turn influence the device performance and reliability. Although the thermal conductivity of silicene has been studied, the impact of hydrogenation of silicene, which can happen spontaneously due to the resultant lower energy state, on its thermal transport ability is not clear. In this paper, we use first-principles calculations and iterative solution of phonon Boltzmann transport equation (BTE) to investigate and compare the thermal transport property of silicene and hydrogenated silicene. Surprisingly, we predict that the hydrogenation can lead to a large increase in thermal conductivity (from 22.5 W m-1 K-1 for silicene to 78.0 W m-1 K-1 for hydrogenated silicene at 300 K). We also find that the main contributor for such an improvement is the transverse acoustic phonon modes, and the reasons are the reduced anharmonicity as well as the reduced three-phonon scattering phase space after hydrogenation. This research may help better understand thermal transport in functionalized 2D materials and inspire new strategies to manipulate their thermal properties, which is of critical importance for designing high performance and reliable nanoelectronic devices.

  14. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  15. Modulating the morphology of hydrogel particles by thermal annealing: mixed biopolymer electrostatic complexes

    Science.gov (United States)

    Wu, Bi-cheng; McClements, David Julian

    2015-11-01

    Biopolymer hydrogel particles formed by electrostatic complexation of proteins and polysaccharides have various applications within the food and other industries, including as delivery systems for bioactive compounds, as texture modifiers, and as fat replacers. The functional attributes of these electrostatic complexes are strongly influenced by their morphology, which is determined by the molecular interactions between the biopolymer molecules. In this study, electrostatic complexes were formed using an amphoteric protein (gelatin) and an anionic polysaccharide (pectin). Gelatin undergoes a helix-to-coil transition when heated above a critical temperature, which impacts its molecular interactions and hydrogel formation. The aim of this research was to study the influence of thermal annealing on the properties of hydrogel particles formed by electrostatic complexation of gelatin and pectin. Hydrogel particles were fabricated by mixing 0.5 wt% gelatin and 0.01 wt% pectin at pH 10 (where both were negatively charged) at various temperatures, followed by acidification to pH 5 (where they have opposite charges) with controlled acidification and stirring. The gelation ({{T}\\text{g}} ) and melting temperature ({{T}\\text{m}} ) of the electrostatic complexes were measuring using a small amplitude oscillation test: {{T}\\text{g}}=26.3 °C and {{T}\\text{m}}=32.3 °C. Three annealing temperatures (5, 30 and 50 °C) corresponding to different regimes (T{{T}\\text{m}} ) were selected to control the configuration of the gelatin chain. The effects of formation temperature, annealing temperature, and incubation time on the morphology of the hydrogel particles were characterized by turbidity, static light scattering, and microscopy. The results of this study will facilitate the rational design of hydrogel particles with specific particle dimensions and morphologies, which has important implications for tailoring their functionality for various applications.

  16. Thermal Annealing Effect on Poly(3-hexylthiophene): Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer

    Science.gov (United States)

    Derouiche, H.; Mohamed, A. B.

    2013-01-01

    We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc0.5:C600.5/BCP/Al and ITO/PEDOT:PSS/P3HT0.3:CuPc0.3:C600.4/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation. PMID:23766722

  17. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Jianshi Tang

    2011-01-01

    Full Text Available We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studied the effect of oxide confinement during the formation of nickel germanides in a Ge nanowire. In contrast to the formation of Ni2Ge/Ge/Ni2Ge nanowire heterostructures, a segment of high-quality epitaxial NiGe was formed between Ni2Ge with the confinement of Al2O3 during annealing. A twisted epitaxial growth mode was observed in both two Ge nanowire heterostructures to accommodate the large lattice mismatch in the NixGe/Ge interface. Moreover, we have demonstrated field-effect transistors using the nickel germanide regions as source/drain contacts to the Ge nanowire channel. Our Ge nanowire transistors have shown a high-performance p-type behavior with a high on/off ratio of 105 and a field-effect hole mobility of 210 cm2/Vs, which showed a significant improvement compared with that from unreacted Ge nanowire transistors.

  18. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation

    Science.gov (United States)

    Yang, Haifeng; Zhang, Jincheng; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue

    2017-01-01

    In this work, efficient mixed organic cation and mixed halide (MA0.7FA0.3Pb(I0.9Br0.1)3) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with VOC of 1.02 V, JSC of 21.55 mA/cm2 and FF of 76.27%. More importantly, the mixed lead halide perovskite MA0.7FA0.3Pb(I0.9Br0.1)3 can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA0.7FA0.3Pb(I0.9Br0.1)3 device still remains at 70.00% of its initial value, which is much better than the control MAPbI3 device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates. PMID:28773199

  19. Thermal Annealing Effect on Poly(3-hexylthiophene: Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer

    Directory of Open Access Journals (Sweden)

    H. Derouiche

    2013-01-01

    Full Text Available We have fabricated poly(3-hexylthiophene (P3HT/copper phthalocyanine (CuPc/fullerene (C60 ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO/poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate (PEDOT/PSS photoanode and a bathocuproine (BCP/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc0.5:C600.5/BCP/Al and ITO/PEDOT:PSS/P3HT0.3:CuPc0.3:C600.4/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation.

  20. Rapid Thermal Annealing for Solution Synthesis of Transparent Conducting Aluminum Zinc Oxide Thin Films

    Science.gov (United States)

    Ullah, Sana; De Matteis, Fabio; Davoli, Ivan

    2017-11-01

    Transparent conducting oxide films with optimized dopant molar ratio have been prepared with limited pre- and postdeposition annealing duration of 10 min. Multiple aluminum zinc oxide (AZO) layers were spin-coated on ordinary glass substrates. The predeposition consolidation temperature and dopant molar ratio were optimized for electrical conductivity and optical transparency. Next, a group of films were deposited on Corning glass substrates from precursor solutions with the optimized dopant ratio, followed by postdeposition rapid thermal annealing (RTA) at different temperatures and in controlled environments. The lowest resistivity of 10.1 × 10-3 Ω cm was obtained for films receiving RTA at 600°C for 10 min each in vacuum then in N2-5%H2 environment, while resistivity of 20.3 × 10-3 Ω cm was obtained for films subjected to RTA directly in N2-5%H2. Optical measurements revealed average total transmittance of about 85% in the visible region. A direct allowed transition bandgap was determined based on the absorption edge with a value slightly above 3.0 eV, within the typical range for semiconductors. RTA resulted in desorption of oxygen with enhanced carrier concentration and crystallinity, which increased the carrier mobility with decreased bulk resistivity while maintaining the required optical transparency.

  1. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    Science.gov (United States)

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  2. Postshock Annealing and Postannealing Shock in Equilibrated Ordinary Chondrites: Implications for the Thermal and Shock Histories of Chondritic Asteroids

    Science.gov (United States)

    Rubin, Alan E.

    2006-01-01

    In addition to shock effects in olivine, plagioclase, orthopyroxene and Ca-pyroxene, petrographic shock indicators in equilibrated ordinary chondrites (OC) include chromite veinlets, chromite-plagioclase assemblages, polycrystalline troilite, metallic Cu, irregularly shaped troilite grains within metallic Fe-Ni, rapidly solidified metal-sulfide intergrowths, martensite and various types of plessite, metal-sulfide veins, large metal and/or sulfide nodules, silicate melt veins, silicate darkening, low-Ca clinopyroxene, silicate melt pockets, and large regions of silicate melt. The presence of some of these indicators in every petrologic type-4 to -6 ordinary chondrite (OC) demonstrates that collisional events caused all equilibrated OC to reach shock stages S3-S6. Those type-4 to -6 OC that are classified as shock-stage S1 (on the basis of sharp optical extinction in olivine) underwent postshock annealing due to burial beneath materials heated by the impact event. Those type-4 to -6 OC that are classified S2 (on the basis of undulose extinction and lack of planar fractures in olivine) were shocked to stage S3-S6, annealed to stage S1 and then shocked again to stage S2. Some OC were probably shocked to stage 253 after annealing. It seems likely that many OC experienced multiple episodes of shock and annealing. Because 40Ar-39Ar chronological data indicate that MIL 99301 (LL6, Sl) was annealed approximately 4.26 Ga ago, presumably as a consequence of a major impact, it seems reasonable to suggest that other equilibrated S1 and S2 OC (which contain relict shock features) were also annealed by impacts. Because some type-6 S1 OC (e.g., Guarena, Kernouve, Portales Valley, all of which contain relict shock features) were annealed 4.44-4.45 Ga ago (during a period when impacts were prevalent and most OC were thermally metamorphosed), it follows that impact-induced annealing could have contributed significantly to OC thermal metamorphism.

  3. Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si:H after rapid thermal annealing

    Science.gov (United States)

    Macco, Bart; Melskens, Jimmy; Podraza, Nikolas J.; Arts, Karsten; Pugh, Christopher; Thomas, Owain; Kessels, Wilhelmus M. M.

    2017-07-01

    Using an inductively coupled plasma, hydrogenated amorphous silicon (a-Si:H) films have been prepared at very low temperatures (growth. The correlation between the a-Si:H nanostructure and the activation of a-Si:H/c-Si interface passivation, upon annealing, has been studied in detail. This yields a structural model that qualitatively describes the different processes that take place in the a-Si:H films during annealing. The presented experimental findings and insights can prove to be useful in the further development of very thin a-Si:H passivation layers for use in silicon heterojunction solar cells.

  4. Graphene hydrogenation by molecular hydrogen in the process of graphene oxide thermal reduction

    Science.gov (United States)

    Mikoushkin, V. M.; Nikonov, S. Yu.; Dideykin, A. T.; Vul', A. Ya.; Sakseev, D. A.; Baidakova, M. V.; Vilkov, O. Yu.; Nelyubov, A. V.

    2013-02-01

    Thermal reduction in molecular hydrogen of the graphene oxide films has been studied by X-ray photoelectron spectroscopy using synchrotron radiation. The restoration process was revealed to be accompanied by hydrogenation due to collisionally induced interaction of molecular hydrogen with carbon atoms. One side hydrogenated graphene films consisting of 20 μm one monolayer flakes were fabricated on SiO2/Si surface with hydrogen concentration as far as 40 at. %, at which the 0.3 eV bandgap opening was observed. It was shown that both H-coverage and bandgap width of the films can be controlled by varying the temperature of the heat treatment.

  5. Thermal annealing behaviour of deep levels in as-grown p-type MOCVD GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Naz, Nazir A., E-mail: nazir_phys@yahoo.co [Semiconductor Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Applied Physics, Federal Urdu University of Arts, Science and technology, G-7/1, Islamabad (Pakistan); Qurashi, Umar S.; Zafar Iqbal, M. [Semiconductor Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-12-15

    Thermal annealing behaviour of deep levels in p-GaAs grown by metal-organic chemical-vapor deposition (MOCVD) has been studied by deep level transient spectroscopy (DLTS) technique. Thermal annealing is found to introduce at least six new defects, four majority-carrier emitting deep levels, situated at E{sub v}+0.11, E{sub v}+0.27, E{sub v}+0.44 and E{sub v}+0.89 eV in the bandgap, and two minority-carrier emitting defects, at E{sub c}-0.49 eV and E{sub c}-0.99 eV. The minority-carrier emitting band of deep levels around approx100 K in the as-grown material has also been found to resolve into two distinct peaks corresponding to deep levels at E{sub c}-0.16 eV and E{sub c}-0.21 eV, upon isochronal annealing. Four of the annealed-in defects at E{sub v}+0.27, E{sub v}+0.44, E{sub c}-0.16 eV and E{sub c}-0.49 eV are identified with previously reported deep levels, while the other four defects cannot be identified with any of the deep levels reported in the literature. Data on the annealing behavior and other characteristics of these annealed-in levels are presented. The thermal annealing behavior of the both inadvertent levels observed at E{sub v}+0.55 eV and E{sub v}+0.96 eV suggests that these levels are most likely related to arsenic antisite, As{sub Ga}, defects.

  6. A Thermally Annealed Mach-Zehnder Interferometer for High Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Zhongyao Feng

    2014-08-01

    Full Text Available An in-fiber Mach-Zehnder interferometer (MZI for high temperature measurement is proposed and experimentally demonstrated. The device is constructed of a piece of thin-core fiber (TCF sandwiched between two short sections of multimode fiber (MMF, i.e., a MMF-TCF-MMF structure. A well-defined interference spectrum is obtained owing to the core-mismatch, and the interference dips are sensitive to the ambient temperature. The experimental results show that the proposed interferometer is capable of high temperature measurement up to 875 °C with a sensitivity of 92 pm/°C over repeated measurements. The explored wavelength drop point may limit the measurement range, which can be improved by repeated thermal annealing.

  7. A thermally annealed Mach-Zehnder interferometer for high temperature measurement.

    Science.gov (United States)

    Feng, Zhongyao; Li, Jiacheng; Qiao, Xueguang; Li, Ling; Yang, Hangzhou; Hu, Manli

    2014-08-04

    An in-fiber Mach-Zehnder interferometer (MZI) for high temperature measurement is proposed and experimentally demonstrated. The device is constructed of a piece of thin-core fiber (TCF) sandwiched between two short sections of multimode fiber (MMF), i.e., a MMF-TCF-MMF structure. A well-defined interference spectrum is obtained owing to the core-mismatch, and the interference dips are sensitive to the ambient temperature. The experimental results show that the proposed interferometer is capable of high temperature measurement up to 875 °C with a sensitivity of 92 pm/°C over repeated measurements. The explored wavelength drop point may limit the measurement range, which can be improved by repeated thermal annealing.

  8. Activated Carbon Fibers "Thickly Overgrown" by Ag Nanohair Through Self-Assembly and Rapid Thermal Annealing

    Science.gov (United States)

    Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong

    2017-11-01

    Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.

  9. Activated Carbon Fibers "Thickly Overgrown" by Ag Nanohair Through Self-Assembly and Rapid Thermal Annealing.

    Science.gov (United States)

    Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong

    2017-11-09

    Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.

  10. Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yue; Lu, Wu-yue; Wang, Tao; Chen, Zhi-zhan, E-mail: zzchen@shnu.edu.cn [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

    2016-06-14

    The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρ{sub c}) is 1.97 × 10{sup −3} Ω·cm{sup 2}, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA, which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.

  11. The effect of thermal annealing on the properties of thin alumina films prepared by low pressure MOCVD

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van de Vendel, D.; van Corbach, H.D.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin amorphous alumina films were prepared on stainless steel, type AISI 304, by low pressure metal-organic chemical vapour deposition. The effect of thermal annealing in nitrogen (for 2, 4 and 17 h at 600, 700 and 800 °C) on the film properties, including the protection of the underlying substrate

  12. EXPERIMENTAL STUDY OF THE THERMAL BEHAVIOUR OF HYDROGEN TANKS DURING HYDROGEN CYCLING

    OpenAIRE

    DE MIGUEL ECHEVARRIA NEREA; Acosta Iborra, Beatriz; Moretto, Pietro; HARSKAMP Frederik; BONATO CHRISTIAN

    2013-01-01

    The thermal behaviour of several commercial hydrogen tanks has been studied during high pressure (70-84 MPa) hydrogen cycling. The temperature of the gas at different points inside the tank, the temperature at the bosses and the tank outer wall temperature have been measured under different filling and emptying conditions. From the experimental results, the effect of the filling rate (1.5-4 g/s) and the influence of the liner material in the thermal behaviour of the hydrogen tanks have been e...

  13. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  14. Enhanced TiC/SiC Ohmic contacts by ECR hydrogen plasma pretreatment and low-temperature post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingbing [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Qin, Fuwen [State Key Laboratory of Material Modification by Laser, Ion and Electron Beam (Ministry of Education), Dalian University of Technology, Dalian 116024 (China); Wang, Dejun, E-mail: dwang121@dlut.edu.cn [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-11-15

    Highlights: • Low-temperature ECR microwave hydrogen plasma were pretreated for moderately doped (1 × 10{sup 18} cm{sup −3}) SiC surfaces. • The relationship among Ohmic properties, the SiC surface properties and TiC/SiC interface properties were established. • Interface band structures were analyzed to elucidate the mechanism by which the Ohmic contacts were formed. - Abstract: We proposed an electronic cyclotron resonance (ECR) microwave hydrogen plasma pretreatment (HPT) for moderately doped (1 × 10{sup 18} cm{sup −3}) SiC surfaces and formed ideal TiC/SiC Ohmic contacts with significantly low contact resistivity (1.5 × 10{sup −5} Ω cm{sup 2}) after low-temperature annealing (600 °C). This is achieved by reducing barrier height at TiC/SiC interface because of the release of pinned Fermi level by surface flattening and SiC surface states reduction after HPT, as well as the generation of donor-type carbon vacancies, which reduced the depletion-layer width for electron tunneling after annealing. Interface band structures were analyzed to elucidate the mechanism of Ohmic contact formations.

  15. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stackin...... faults. Selected area diffraction patterns and high-resolution transmission electron microscopy images show that nanowires undergo structural modifications upon annealing, suggesting a decrease of defect density following the thermal treatment....

  16. A change in domain morphology in optical superlattice LiNbO sub 3 induced by thermal annealing

    CERN Document Server

    Lu Yan Qing; Luo Qi; Zhu Yong Yuan; Chen Xiang Fei; Xue Cheng Cheng; Ming Nai Ben

    1997-01-01

    Optical superlattice LiNbO sub 3 crystals were grown by the Czochralski method. The effect of thermal annealing below the Curie temperature on domain structures of a sample with good periodicity was studied. It was found that the periodic domain structure remained unchanged at annealing temperature lower than 1000 deg. C and began to deteriorate when annealed at above 1000 deg. C. A sample at 1100 deg. C for an hour almost changed to a single-domain structure except that a 60 mu m single-domain layer with reversed spontaneous polarization was formed at the edge of the sample. These results are useful for revealing the mechanism of formation of the periodic domain structure and designing a more favourable temperature field to improve the crystals' quality. A space-charge-field model was proposed to explain the phenomena. (author)

  17. Investigation of thermal annealing effects on microstructural and optical properties of HfO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Modreanu, M. [Tyndall National Institute, Cork (Ireland)]. E-mail: mircea.modreanu@tyndall.ie; Sancho-Parramon, J. [Tyndall National Institute, Cork (Ireland); Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France); Servet, B. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France); Stchakovsky, M. [Horiba Jobin-Yvon, Thin Film Division, Chilly-Mazarin (France); Eypert, C. [Horiba Jobin-Yvon, Thin Film Division, Chilly-Mazarin (France); Naudin, C. [HORIBA Jobin-Yvon Raman Division, Villeneuve d' Ascq (France); Knowles, A. [HORIBA Jobin-Yvon Ltd., Raman Division, Middlesex (United Kingdom); Bridou, F. [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS, Unite mixte de Recherche 85801, 91403 Orsay Cedex (France); Ravet, M.-F. [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS, Unite mixte de Recherche 85801, 91403 Orsay Cedex (France)

    2006-10-31

    In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO{sub 2} thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO{sub 2} films were annealed in N{sub 2} ambient for 3 h at 300, 350, 450, 500 and 750 deg. C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO{sub 2} thin films. The results indicate that as-deposited PIAD HfO{sub 2} films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 deg. C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 deg. C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO{sub 2} (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 deg. C, the optical bandgap increases to 5.85 eV.

  18. Evolution of vertical phase separation in P3HT:PCBM thin films induced by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannidis, P.G.; Georgiou, D.; Pitsalidis, C.; Laskarakis, A. [Lab for Thin Films-Nanosystems and Nanometrology - LTFN Department of Physics, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Logothetidis, S., E-mail: logot@auth.gr [Lab for Thin Films-Nanosystems and Nanometrology - LTFN Department of Physics, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece)

    2011-10-03

    Highlights: {center_dot} Investigation of distribution of P3HT and PCBM in blend films. {center_dot} Thermal annealing of P3HT:PCBM blends leading to rapid polymer crystallization. {center_dot} A demixing process resulting to accumulation of P3HT at surface. {center_dot} PCBM segregation at the bottom layers of films. {center_dot} Inappropriate morphology for electron extraction at organic metal-cathode interface. - Abstract: The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 deg. C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films.

  19. Rapid thermal annealing of sputter-deposited ZnO:Al films for microcrystalline Si thin-film solar cells

    Directory of Open Access Journals (Sweden)

    Hanajiri T.

    2012-06-01

    Full Text Available Rapid thermal annealing of sputter-deposited ZnO and Al-doped ZnO (AZO films with and without an amorphous silicon (a-Si capping layer was investigated using a radio-frequency (rf argon thermal plasma jet of argon at atmospheric pressure. The resistivity of bare ZnO films on glass decreased from 108 to 104–105 Ω cm at maximum surface temperatures Tmaxs above 650 °C, whereas the resistivity increased from 10-4 to 10-3–10-2Ω cm for bare AZO films. On the other hand, the resistivity of AZO films with a 30-nm-thick a-Si capping layer remained below 10-4Ω cm, even after TPJ annealing at a Tmax of 825 °C. The film crystallization of both AZO and a-Si layers was promoted without the formation of an intermixing layer. Additionally, the crystallization of phosphorous- and boron-doped a-Si layers at the sample surface was promoted, compared to that of intrinsic a-Si under the identical plasma annealing conditions. The TPJ annealing of n+-a-Si/textured AZO was applied for single junction n-i-p microcrystalline Si thin-film solar cells.

  20. Thermal annealing behavior of niobium-implanted {alpha}-Al{sub 2}O{sub 3} under reducing environment

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianer; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Gan Mingle; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Thermal annealing behavior is studied in {alpha}-Al{sub 2}O{sub 3} implanted with {sup 93}Nb{sup +} using RBS/channeling technique and optical absorption spectrometry. The samples with <0001> and <112-bar0> orientations are implanted with 300 keV and 400 keV {sup 93}Nb{sup +} ions. Thermal annealing under reducing environment (Ar+3%H{sub 2}) is employed in the temperature range from 600 to 1000degC to explore unusual materials phase. The annealing up to 1000degC for an hour does not show any essential change in RBS/channeling spectra in two kinds of samples but the significant decrease in the visible region is observed in optical absorption spectra. After annealing at 1000degC for 10 hours, the recovery of the lattice damage is detected by RBS/channeling analysis especially in (112-bar0) sample. In the optical absorption spectra, new absorption envelope appears in the ultraviolet region. The results are related to the formation of niobium metal fine particles, and the sharp distribution is realized especially in (0001) sample. (author)

  1. Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing

    Science.gov (United States)

    Anupama, A. V.; Keune, W.; Sahoo, B.

    2017-10-01

    The evolution of magnetic phases in multi-phase iron oxide nanoparticles, synthesized via the transferred arc plasma induced gas phase condensation method, was investigated by X-ray diffraction, vibrating sample magnetometry and 57Fe Mössbauer spectroscopy. The particles are proposed to be consisting of three different iron oxide phases: α-Fe2O3, γ-Fe2O3 and Fe3O4. These nanoparticles were exposed to high temperature (∼935 K) under vacuum (10-3 mbar He pressure), and the thermally induced phase transformations were investigated. The Rietveld refinement of the X-ray diffraction data corroborates the least-squares fitting of the transmission Mössbauer spectra in confirming the presence of Fe3O4, γ-Fe2O3 and α-Fe2O3 phases before the thermal treatment, while only Fe3O4 and α-Fe2O3 phases exist after thermal treatment. On thermal annealing in vacuum, conversion from γ-Fe2O3 to Fe3O4 and α-Fe2O3 was observed. Interestingly, we have observed a phase transformation occurring in the temperature range ∼498 K-538 K, which is strikingly lower than the phase transformation temperature of γ-Fe2O3 to α-Fe2O3 (573-623 K) in air. Combining the results of Rietveld refinement of X-ray diffraction patterns and Mössbauer spectroscopy, we have attributed this phase transformation to the phase conversion of a metastable ;defected and strained; d-Fe3O4 phase, present in the as-prepared sample, to the α-Fe2O3 phase. Stabilization of the phases by controlling the phase transformations during the use of different iron-oxide nanoparticles is the key factor to select them for a particular application. Our investigation provides insight into the effect of temperature and chemical nature of the environment, which are the primary factors governing the phase stability, suitability and longevity of the iron oxide nanomaterials prepared by the gas-phase condensation method for various applications.

  2. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  3. Interdiffusion and growth of chromium silicide at the interface of Cr/Si(As) system during rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Benkherbache, H. [Universite de M' Sila, (28000) M' Sila (Algeria); Merabet, A., E-mail: merabet_abdelali@yahoo.f [Laboratoire Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, (19000) Setif (Algeria)

    2010-02-26

    In this work, the solid-state reaction between a thin film of chromium and silicon has been studied using Rutherford backscattering spectroscopy, X-ray diffraction and the sheet resistance measurements. The thickness of 100 nm chromium layer has been deposited by electronic bombardment on Si (100) substrates, part of them had previously been implanted with arsenic ions of 10{sup 15} at/cm{sup 2} doses and an energy of 100 keV. The samples were heat treated under rapid thermal annealing at 500 {sup o}C for time intervals ranging from 15 to 60 s. The rapid thermal annealing leads to a reaction at the interface Cr/Si inducing the formation and the growth of the unique silicide CrSi{sub 2}, but no other phase can be detected. For samples implanted with arsenic, the saturation value of the sheet resistance is approximately 1.5 times higher than for the non-implanted case.

  4. Characterization of a rapid thermal anneal TiNxOy/TiSi2 contact barrier

    Science.gov (United States)

    Ho, V. Q.

    1989-07-01

    In this paper, the physical and electrical properties of a TiNxOy/TiSi2 dual layer contact barrier are reported. The TiNxOy/TiSi2 barrier was formed by rapidly annealing a Ti thin film on Si in an N2 ambient. During this process, the Ti film surface reacts with N2 to form a TiNxOy skin layer and the bulk of the Ti film reacts with Si to form an underlying TiSi2 layer. The influences of rapid thermal anneal (RTA) conditions on the TiNxOy layer were investigated by varying the RTA temperature from 600 to 1100° C and cycle duration from 30 to 100 s. It is found that the resulting TiNxOy and TiSi2 layer thicknesses are dependent on RTA temperature and the starting Ti thickness. For a starting Ti thickness of 500Å, 150Å thick TiNxOy and 800Å thick TiSi2 are obtained after an RTA at 900° C for 30 s. The TiNxOy thickness is limited by a fast diffusion of Si into Ti to form TiSi2. When a Ti film is deposited on SiO2, Ti starts to react with SiO2 from 600° C and a significant reduction of the SiO2 thickness is observed after an RTA at 900° C. The resulting layer is composed of a surface TiNxOy layer followed by a complex layer of titanium oxide and titanium suicide. In addition, when Ti is depos-ited on TiSi2, thicker TiNxOy and TiSi2 layers are obtained after RTA. This is because the TiSi2 layer retards the diffusion of Si from the underlying substrate into the Ti layer. NMOSFETs were fabricated using the TiNxOy/TiSi2 as a contact barrier formed by RTA at 900° C for 30 s and a significant reduction of contact resistance was obtained. In addition, electromigration test at a high current density indicated that a significant improvement in mean time to failure (MTF) has been obtained with the barrier.

  5. Manipulating the adhesion of electroless nickel-phosphorus film on silicon wafers by silane compound modification and rapid thermal annealing

    OpenAIRE

    Hsu, Chin-Wei; Wang, Wei-Yen; Wang, Kuan-Ting; Chen, Hou-An; Wei, Tzu-Chien

    2017-01-01

    In this study, the effect of 3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) modification and post rapid thermal annealing (RTA) treatment on the adhesion of electroless plated nickel-phosphorus (ELP Ni-P) film on polyvinyl alcohol-capped palladium nanoclusters (PVA-Pd) catalyzed silicon wafers is systematically investigated. Characterized by pull-off adhesion, atomic force microscopy, X-ray spectroscopy and water contact angle, a time-dependent, three-staged ETAS grafting m...

  6. Nickel oxide films by thermal annealing of ion-beam-sputtered Ni: Structure and electro-optical properties

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Remeš, Zdeněk; Bejšovec, Václav; Vacík, Jiří; Daniš, S.; Kormunda, M.

    2017-01-01

    Roč. 640, č. 10 (2017), s. 52-59 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR(CZ) GA14-05053S; GA MŠk LM2015056 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : NiO * ion beam sputtering * thermal annealing * nuclear analytical methods * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.879, year: 2016

  7. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  8. Effects of Thermal Annealing on the Optical Properties of Titanium Oxide Thin Films Prepared by Chemical Bath Deposition Technique

    OpenAIRE

    H.U. Igwe; O.E. Ekpe; E.I. Ugwu

    2010-01-01

    A titanium oxide thin film was prepared by chemical bath deposition technique, deposited on glass substrates using TiO2 and NaOH solution with triethanolamine (TEA) as the complexing agent. The films w ere subjected to post deposition annealing under various temperatures, 100, 150, 200, 300 and 399ºC. The thermal treatment streamlined the properties of the oxide films. The films are transparent in the entire regions of the electromagnetic spectrum, firmly adhered to the substrate and resistan...

  9. Application of fast thermal annealing to ferrites treatment; Application du recuit thermique rapide au traitement des ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Legros, R.

    1995-12-31

    Annealing of magneto-optic memory disks require very fast treatment not to damage glass substrate. This article relates the optimisation of process and the choice of the most suitable alloy. Thermal rise time is linear for 15 s, then a 5 s constant 1273 degree Kelvin step is applied, and then a cooling phase starting at switching off the twelve 1 kw lamps. The most suitable alloy is the one containing manganese additions. (D.L.) 18 refs.

  10. Effect of Thermal Annealing in Ammonia on the Properties of InGaN Nanowires with Different Indium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Cristopher; Cordones, Amy; Andrews, Sean; Gao, Hanwei; Fu, Anthony; Leone, Stephen; Yang, Peidong

    2012-10-02

    The utility of an annealing procedure in ammonia ambient is investigated for improving the optical characteristics of InxGa1?xN nanowires (0.07 ≤ x ≤ 0.42) grown on c-Al2O3 using a halide chemical vapor deposition method. Morphological studies using scanning electron microscopy confirm that the nanowire morphology is retained after annealing in ammonia at temperatures up to 800 ?C. However, significant indium etching and composition inhomogeneities are observed for higher indium composition nanowires (x = 0.28, 0.42), as measured by energy-dispersive X-ray spectroscopy and Z-contrast scanning transmission electron microscopy. Structural analyses, using X-ray diffraction and high-resolution transmission electron microscopy, indicate that this is a result of the greater thermal instability of higher indium composition nanowires. The effect of these structural changes on the optical quality of InGaN nanowires is examined using steady-state and time-resolved photoluminescence measurements. Annealing in ammonia enhances the integrated photoluminescence intensity of InxGa1?xN nanowires by up to a factor of 4.11 ? 0.03 (for x = 0.42) by increasing the rate of radiative recombination. Fitting of photoluminescence decay curves to a Kohlrausch stretched exponential indicates that this increase is directly related to a larger distribution of recombination rates from composition inhomogeneities caused by annealing. The results demonstrate the role of thermal instability on the improved optical properties of InGaN nanowires annealed in ammonia.

  11. Enhancement of phosphors-solubility in ZnO by thermal annealing

    Science.gov (United States)

    Mahmood, K.; Amin, N.; Ali, A.; Nabi, M. Ajaz un; Imran Arshad, M.; Zafar, M.; Asghar, M.

    2015-12-01

    We have demonstrated the effect of annealing temperature on the diffusion density of phosphors in zinc oxide. The P-dopant P430 was sprayed on ZnO pellets and annealed at different temperatures from 500 to 1000 °C with a step of 100 °C for one hour using a programmable furnace. The concentration of P was controlled by varying the annealing temperature and the maximum solubility of P (3% At) was achieved at annealing 800 °C determined by energy dispersive X-ray diffraction (EDX) measurements. X-ray diffraction (XRD) confirmed the hexagonal structure of ZnO and showed that the growth direction was along the c-axis. We observed a maximum up shift in the (002) plane at an annealing temperature of 800 °C, suggesting that P atoms replaced Zn atoms in the structure which results in the reduction of the lattice constant. Room temperature photoluminescence (PL) spectrum consists of a peak at 3.28 eV and related to band edge emission, but samples annealed at 800 and 900 °C have an additional donor acceptor pair peak at 3.2 eV. Hall effect measurements confirmed the p-type conductivity of the sample annealed at 800 °C.

  12. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  13. Annealing Effect on the Thermoelectric Properties of Bi2Te3 Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    Jyun-Min Lin

    2013-01-01

    Full Text Available Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3 thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3 thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.

  14. Effect of thermal annealing on structural and optical properties of In{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonu, E-mail: sonuchoudhary1983@gmail.com [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India)

    2015-08-28

    There is a highly need of an alternate of toxic materials CdS for solar cell applications and indium sulfide is found the most suitable candidate to replace CdS due to its non-toxic and environmental friendly nature. In this paper, the effect of thermal annealing on the structural and optical properties of indium sulfide (In{sub 2}S{sub 3}) thin films is undertaken. The indium sulfide thin films of 121 nm were deposited on glass substrates employing thermal evaporation method. The films were subjected to the X-ray diffractometer and UV-Vis spectrophotometer respectively for structural and optical analysis. The XRD pattern show that the as-deposited thin film was amorphous in nature and crystallinity is found to be varied with annealing temperature. The optical analysis reveals that the optical band gap is varied with annealing. The optical parameters like absorption coefficient, extinction coefficient and refractive index were calculated. The results are in good agreement with available literature.

  15. An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing

    Science.gov (United States)

    Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh

    2017-11-01

    In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.

  16. Impacts of thermal annealing temperature on memory properties of charge trapping memory with NiO nano-pillars

    Science.gov (United States)

    Yan, Xiaobing; Yang, Tao; Jia, Xinlei; Zhao, Jianhui; Zhou, Zhenyu

    2017-03-01

    In this work, Au/SiO2/NiO/SiO2/Si structure charge trapping memory using NiO as the charge trapping layer was fabricated, and the impacts of the annealing temperature on the charge trapping memory performance were investigated in detail. The sample thermal annealed at 750 °C indicated a large memory window of 2.07 V under a low sweeping voltage of ± 5 V, which also has excellent charge retention properties with only small charge loss of ∼4.9% after more than 104 s retention. The high resolved transmission electron microscopy shows that the NiO films grew as nano-pillars structure. It is proposed that the excellent memory characteristics of the device are attributed to the inherent atomic defects and oxygen vacancies accumulated by the grain boundaries around NiO nano-pillars. Meanwhile the interface inter-diffusion formed by thermal annealing process is also an indispensable factor for the excellent memory characteristics of the device.

  17. Modeling the effects of ion dose and crystallographic symmetry on the morphological evolution of embedded precipitates under thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun-Dar, E-mail: kundar@mail.nutn.edu.tw

    2014-10-01

    Highlights: •We model the faceted precipitates formation by post-implantation annealing. •The anisotropic interfacial energy and diffusion kinetics play crucial roles. •The evolutions of faceted precipitates, including Ostwald ripening, are revealed. •The mechanism of the nucleation and growth is based on the atomic diffusion. •The effects of ion dose and crystallographic symmetry are also investigated. -- Abstract: Thermal annealing is one of the most common techniques to synthesize embedded precipitates by ion implantation process. In this study, an anisotropic phase field model is presented to investigate the effects of ion dose and crystallographic symmetry on the morphological formation and evolution of embedded precipitates during post-implantation thermal annealing process. This theoretical model provides an efficient numerical approach to understand the phenomenon of faceted precipitates formation by ion implantation. As a theoretical analysis, the interfacial energy and diffusion kinetics play prominent roles in the mechanism of atomic diffusion for the precipitates formation. With a low ion dose, faceted precipitates are developed by virtue of the anisotropic interfacial energy. As an increase of ion dose, connected precipitates with crystallographic characters on the edge are appeared. For a high ion dose, labyrinth-like nanostructures of precipitates are produced and the characteristic morphology of crystallographic symmetry becomes faint. These simulation results for the morphological evolutions of embedded precipitates by ion implantation are corresponded with many experimental observations in the literatures. The quantitative analyses of the simulations are also well described the consequence of precipitates formation under different conditions.

  18. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  19. Thermal Annealing Effect on Optical Properties of Binary TiO2-SiO2 Sol-Gel Coatings

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2012-12-01

    Full Text Available TiO2-SiO2 binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  20. Pure thermal sensitisation and pre-dose effect of OSL in both unfired and annealed quartz samples

    Energy Technology Data Exchange (ETDEWEB)

    Oniya, Ebenezer O., E-mail: ebenezer.oniya@aaua.edu.ng [Physics and Electronics Department, Adekunle Ajasin University, 342111 Akungba Akoko (Nigeria); Polymeris, George S. [Institute of Nuclear Sciences, Ankara University, Beşevler 06100, Ankara (Turkey); Jibiri, Nnamdi N. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Tsirliganis, Nestor C. [Department of Archaeometry and Physicochemical Measurements, R.C. ‘Athena’, P.O. Box 159, Kimmeria University Campus, 67100 Xanthi (Greece); Babalola, Israel A. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Kitis, George [Nuclear Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2017-06-01

    The sensitisation of quartz has attracted much attention since its thorough understanding is important in luminescence studies and dating applications. The present investigation examines the influence of pure thermal activation and predose treatments on the sensitisation of different components of linearly modulated optically stimulated luminescence (LM-OSL) measured at room temperature (RT) thereby eliminating undesired thermal quenching effects. Annealed and unfired quartz samples from Nigeria were used. The OSL measurements were carried out using an automated RISØTL/OSL reader (model-TL/OSL–DA–15). A new approach was adopted to match each of the resolved components of the RT-LM-OSL to respective thermoluminescence (TL) peaks that share the same electron trap and recombination centers. Pure thermal activation and pre-dose treatments respectively affect the sensitisation of all the components of the RT-LM-OSL in a similar manner as the one reported for the 110 °C TL peak but without thermal quenching contributions. Component C4 in annealed samples that was identified to share the same electron trap and recombination centers with the 110 °C TL peak was also proved appropriate for RT-LM-OSL, instead of the initial part of the continuous wave (CW) OSL signal, thus the methods can serve as complementary dating methods.

  1. Pure thermal sensitisation and pre-dose effect of OSL in both unfired and annealed quartz samples

    Science.gov (United States)

    Oniya, Ebenezer O.; Polymeris, George S.; Jibiri, Nnamdi N.; Tsirliganis, Nestor C.; Babalola, Israel A.; Kitis, George

    2017-06-01

    The sensitisation of quartz has attracted much attention since its thorough understanding is important in luminescence studies and dating applications. The present investigation examines the influence of pure thermal activation and predose treatments on the sensitisation of different components of linearly modulated optically stimulated luminescence (LM-OSL) measured at room temperature (RT) thereby eliminating undesired thermal quenching effects. Annealed and unfired quartz samples from Nigeria were used. The OSL measurements were carried out using an automated RISØTL/OSL reader (model-TL/OSL-DA-15). A new approach was adopted to match each of the resolved components of the RT-LM-OSL to respective thermoluminescence (TL) peaks that share the same electron trap and recombination centers. Pure thermal activation and pre-dose treatments respectively affect the sensitisation of all the components of the RT-LM-OSL in a similar manner as the one reported for the 110 °C TL peak but without thermal quenching contributions. Component C4 in annealed samples that was identified to share the same electron trap and recombination centers with the 110 °C TL peak was also proved appropriate for RT-LM-OSL, instead of the initial part of the continuous wave (CW) OSL signal, thus the methods can serve as complementary dating methods.

  2. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In2Se3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In2Se3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In2Se3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In2Se3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In2Se3 vapor and produce the high uniformity In2Se3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle

  3. Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C

    2007-04-06

    The goal of this project is to develop an indirectly heated gasification system that converts switchgrass into hydrogen-rich gas suitable for powering fuel cells. The project includes investigations of the indirectly-heated gasifier, development of particulate removal equipment, evaluation of catalytic methods for upgrading producer gas, development of contaminant measurement and control techniques, modeling of the thermal performance of the ballasted gasifier, and estimation of the cost of hydrogen from the proposed gasification system. Specific technologies investigated include a thermally ballasted gasifier, a moving bed granular filter, and catalytic reactors for steam reforming and water-gas shift reaction. The approach to this project was to employ a pilot-scale (5 ton per day) gasifier to evaluate the thermally ballasted gasifier as a means for producing hydrogen from switchgrass. A slipstream from the gasifier was used to evaluate gas cleaning and upgrading options. Other tests were conducted with laboratory-scale equipment using simulated producer gas. The ballasted gasifier operated in conjunction with a steam reformer and two-stage water-gas shift reactor produced gas streams containing 54.5 vol-% H2. If purge gas to the feeder system could be substantially eliminated, hydrogen concentration would reach 61 vol-%, which closely approaches the theoretical maximum of 66 vol-%. Tests with a combined catalyst/sorbent system demonstrated that steam reforming and water-gas shift reaction could be substantially performed in a single reactor and achieve hydrogen concentrations exceeding 90 vol-%. Cold flow trials with a laboratory-scale moving bed granular filter achieved particle removal efficiencies exceeding 99%. Two metal-based sorbents were tested for their ability to remove H2S from biomass-derived producer gas. The ZnO sorbent, tested at 450° C, was effective in reducing H2S from 200 ppm to less than 2 ppm (>99% reduction) while tests with the MnO sorbent

  4. The influence of thermal annealing on structure and oxidation of iron nanowires

    Directory of Open Access Journals (Sweden)

    Krajewski Marcin

    2015-03-01

    Full Text Available Raman spectroscopy as well as Mössbauer spectroscopy were applied in order to study the phase composition of iron nanowires and its changes, caused by annealing in a neutral atmosphere at several temperatures ranging from 200°C to 800°C. As-prepared nanowires were manufactured via a simple chemical reduction in an external magnetic field. Both experimental techniques proved formation of the surface layer covered by crystalline iron oxides, with phase composition dependent on the annealing temperature (Ta. At higher Ta, hematite was the dominant phase in the nanowires.

  5. Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations

    Science.gov (United States)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias

    2015-01-01

    Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.

  6. Annealing study and thermal investigation on bismuth sulfide thin films prepared by chemical bath deposition in basic medium

    Science.gov (United States)

    Dachraoui, O.; Merino, J. M.; Mami, A.; León, M.; Caballero, R.; Maghraoui-Meherzi, H.

    2018-02-01

    Bismuth sulfide thin films were prepared by chemical bath deposition using thiourea as sulfide ion source in basic medium. First, the effects of both the deposition parameters on film growth as well as the annealing effect under argon and sulfur atmosphere on as-deposited thin films were studied. The parameters were found to be influential using the Doehlert matrix experimental design methodology. Ranges for a maximum surface mass of films (3 mg cm-2) were determined. A well-crystallized major phase of bismuth sulfide with stoichiometric composition was achieved at 190 °C for 3 h. The prepared thin films were characterized using grazing incidence X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis. Second, the bandgap energy value was found to be 1.5 eV. Finally, the thermal properties have been studied for the first time by means of the electropyroelectric (EPE) technique. Indeed, the thermal conductivity varied in the range of 1.20-0.60 W m-1 K-1, while the thermal diffusivity values increased in terms of the annealing effect ranging from 1.8 to 3.5 10-7 m2 s-1.

  7. Analysis of Blockade in Charge Transport Across Polymeric Heterojunctions as a Function of Thermal Annealing: A Different Perspective

    Science.gov (United States)

    Rathi, Sonika; Chauhan, Gayatri; Gupta, Saral K.; Srivastava, Ritu; Singh, Amarjeet

    2017-02-01

    A blend of poly(3-hexylthiophene-2,5diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is popularly used as an active medium in polymeric solar devices. According to the most recent understanding, the blend is a three-phase system contrary to its earlier understanding of two-phase bicontinuous network. We have synthesized a P3HT-PCBM based layered heterostructure system by spin coating and thermal vacuum evaporations. Current density ( J) was measured as a function of applied electric field ( E) across the system bound between two metal electrodes. J- E relations were analyzed into the backdrop of space charge limited current model and Schottky model. The later was used to predict dc-dielectric constants from the linear slopes of ln ( J) versus E 1/2. The curves were not monotonously linear, but observe a knee-bend separating into two linear segments for each curve. Thermal annealing from 40°C to 80°C was used as an activation tool for driving changes in the internal morphology via inter-diffusion of polymers and current measurements were performed at room temperature after each annealing. At the last stage of annealing the two linear slopes were highly distinct. The presence of sharp knee-bend results in approximately 20 times jump in dielectric constant as a function of electric field. Such high jumps in dielectric constant illustrate the potential for switching applications and charge storage. The high dielectric constants can be understood in terms of space charge polarization due to isolated domains which hindrance to charge transport. The high dielectric constants were confirmed by another experiment of capacitance measurements of a different set of similar samples. A study of thermal evolution of internal morphology was also carried out using x-ray diffraction and scanning electron microscopy techniques to correlate the morphological changes with the transport properties.

  8. Targets for bulk hydrogen analysis using thermal neutrons

    CERN Document Server

    Csikai, J; Buczko, C M

    2002-01-01

    The reflection property of substances can be characterized by the reflection cross-section of thermal neutrons, sigma subbeta. A combination of the targets with thin polyethylene foils allowed an estimation of the flux depression of thermal neutrons caused by a bulk sample containing highly absorbing elements or compounds. Some new and more accurate sigma subbeta values were determined by using the combined target arrangement. For the ratio, R of the reflection and the elastic scattering cross-sections of thermal neutrons, R=sigma subbeta/sigma sub E sub L a value of 0.60+-0.02 was found on the basis of the data obtained for a number of elements from H to Pb. Using this correlation factor, and the sigma sub E sub L values, the unknown sigma subbeta data can be deduced. The equivalent thicknesses, to polyethylene or hydrogen, of the different target materials were determined from the sigma subbeta values.

  9. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, Adam; Jasinski, J.; Boz(overdot)ek, R.; Szepielow, A.; Baranowski, J. M.

    2001-10-15

    The effect of postgrowth rapid thermal annealing (RTA) on GaAs proximity-capped structures with self-assembled InAs/GaAs quantum dots (QDs) is investigated using transmission electron microscopy (TEM) and photoluminescence (PL). As can be seen from the TEM images, QDs increase their lateral sizes with increasing annealing temperature (up to 700 C). QDs cannot be distinguished after RTA at temperature 800 C or higher, and substantial thickening of the wetting layer can be seen instead. The main PL peak blueshifts as a result of RTA. We propose that in the as-grown sample as well, as in samples annealed at temperatures up to 700 C, the peak is due to the QDs. After RTA at 800 C and higher the PL peak is due to a modified wetting layer. Relatively fast dissolution of QDs is explained in terms of strain-induced lateral Ga/In interdiffusion. It is proposed that such a process may be of importance in proximity-capped RTA, when no group-III vacancy formation takes place at the sample/capping interface.

  10. Contacts realization by rapid thermal annealing in multicrystalline silicon solar cells with special emphasis on metal influence

    Energy Technology Data Exchange (ETDEWEB)

    El Omari, H.; Boyeaux, J.P.; Laugier, A. [Institut National des Sciences Appliquees de Lyon, Villeurbanne (France). Lab. de Physique de la Matiere

    1994-12-31

    To improve the quality of the screen printing contacts, the authors have previously shown the capability to sinter the screen printed contacts by Rapid Thermal Annealing (RTA) instead of commercial sintering; they have also noticed that the commonly used TiO{sub 2} coating deposited by spray enhances the quality of the contact either with classical annealing or RTA. The aim of the present work is to analyze the metal influence on either front or back contacts realization by RTA on Polix p type multicrystalline silicon subsequently phosphorus diffused. The screen printed contact was replaced by the chosen metal dot obtained by evaporation. The authors have studied: Al/TiO{sub 2}; Ag/Al/TiO{sub 2}; Cu/Al/TiO{sub 2}; Pt/Al/TiO{sub 2} and Cu/Cr/TiO{sub 2}. The RTA treatments were carried out at various temperatures and annealing time in an Ar ambience. The quality of the contacts are analyzed from I(V) characteristics, and possible diffusions of metallic species are characterized by SIMS experiments.

  11. The effects of precursor concentration and thermal annealing on the growth of zinc oxide nanostructures grown on silicon substrate

    Science.gov (United States)

    Paculba, H. M. D.; Alguno, A. C.; Vequizo, R. M.

    2015-06-01

    This study focuses on the growth of Zinc Oxide (ZnO) nanostructures on SiO2/Si(100) substrate via chemical bath deposition (CBD) with varying NH4OH concentration and annealing temperature. The grown ZnOnanostructures were characterized via SEM-EDS for the surface morphology and elemental composition and UV-Vis spectroscopy for the reflectance measurement. Increasing the concentration of NH4OH produced denser ZnOnanostructures composed of rods having smaller diameter. It is believed that at higher concentration of NH4OH, more Zn(OH)2 seed will act as nucleation site for ZnOformation which suggests higher probability of ZnOgrowth. Thermal annealing increased the average diameter of ZnOnanorods. Annealing provided enough energy for unstable atoms to rearrange into a more suitable position. This would result to larger rods that have been formed in expense of the smaller rods. Furthermore, it is confirmed in the UV-Vis spectroscopy results that ZnOnanostructures were successfully grown on SiO2/Si(100) substrate. This successful growth of ZnOnanostructures is a promising material for solar cell technology.

  12. High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing.

    Science.gov (United States)

    Sun, Yihui; Yan, Xiaoqin; Zheng, Xin; Liu, Yichong; Zhao, Yanguang; Shen, Yanwei; Liao, Qingliang; Zhang, Yue

    2015-04-08

    In this work, a high-performance, forming-free memristor based on Au/ZnO nanorods/AZO (Al-doped ZnO conductive glass) sandwich structure has been developed by rapid hydrogen annealing treatment. The Ron/Roff rate is dramatically increased from ∼10 to ∼10(4) after the surface treatment. Such an enhanced performance is attributed to the introduced oxygen vacancies layer at the top of ZnO nanorods. The device also exhibits excellent switching and retention stability. In addition, the carrier migration behavior can be well interpreted by classical trap-controlled space charge limited conduction, which verifies the forming of conductive filamentary in low resistive state. On this basis, Arrhenius activation theory is adopted to explain the drifting of oxygen vacancies, which is further confirmed by the time pertinence of resistive switching behavior under different sweep speed. This fabrication approach offers a useful approach to enhance the switching properties for next-generation memory applications.

  13. Thermal annealing behavior of deep levels in Rh-doped n-type MOVPE GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Naz, Nazir A., E-mail: nazir_phys@yahoo.co [Semiconductor Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Applied Physics, Federal Urdu University of Arts, Science and Technology, G-7/1, Islamabad (Pakistan); Qurashi, Umar S.; Zafar Iqbal, M. [Semiconductor Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-12-15

    We report the results of isochronal annealing study of deep levels in Rh-doped n-type GaAs grown by metal-organic vapor phase epitaxy (MOVPE). Deep level transient spectroscopy (DLTS) technique has been employed to study the effects of annealing on deep levels in Rh-doped p{sup +}nn{sup +} junction samples. A majority-carrier emitting band of deep levels along with a high temperature peak (RhE1), corresponding to deep level energy position E{sub c}-0.92 eV and a minority-carrier emitting band of deep levels are identified with Rh-impurity prior to thermal annealing of our samples. In addition to these Rh-related deep levels, the well-known native defect EL2 at E{sub c}-0.79 eV is observed in majority-carrier emission spectra and two inadvertent deep-level defects, H1 at E{sub v}+0.09 eV and H3 at E{sub v}+0.93 eV, usually observed in reference (without Rh) samples, are also detected in the minority-carrier emission spectra of Rh-doped samples. At least one level is found to be introduced at E{sub c}-0.13 eV in Rh-doped samples at about the same temperature position as the level E(A)1, observed in reference samples, as a result of isochronal annealing, while the other two levels observed in reference samples could not be seen in annealed Rh-doped samples. Data on the annealing behavior and other characteristics of both Rh-related bands of deep levels observed in majority- and minority-carrier emission DLTS spectra, as well as for the high temperature Rh-related electron-emission peak, are presented. Possible interpretations of these results for the nature and structure of the different deep-level defects are discussed.

  14. Effect of thermal annealing on the structural, optical and dielectrical properties of P3HT:PC{sub 70}BM nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Aloui, Walid, E-mail: alouiwalid26@yahoo.fr [Laboratory of Condensed Matter and Nanosciences, Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir (Tunisia); Adhikari, Tham [Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6 (Canada); Nunzi, Jean-Michel [Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6 (Canada); Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6 (Canada); Bouazizi, Abdelaziz [Laboratory of Condensed Matter and Nanosciences, Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir (Tunisia)

    2016-06-15

    Highlights: • A typical structure of ITO/PEDOT: PSS/P3HT: PC{sub 70}BM/Al was fabricated. • Charge carrier diffusion and recombination have been calculated. • AFM and optical results show that thermal annealing promotes the phase separation. • The annealing process improves the transport of charges. - Abstract: The effect of thermal annealing on the optical, structural and the dielectric properties of P3HT:PC{sub 70}BM blended films were investigated. By means of atomic force microscopy, we observed the morphology evolution of the annealed P3HT:PC{sub 70}BM nanocomposites. Raman spectroscopy showed a substantial ordering in the polymer film after annealing. The absorption spectra of the annealed P3HT:PC{sub 70}BM films were improved and red shifted than un-annealed samples. The results indicate that the P3HT in the nanocomposite becomes an ordered structure with annealing. The ordered P3HT facilitates the charge transport. From the photoluminescence measurements, the formation of polymer crystallites was observed upon annealing. Thus, the device efficiency reaches 2.2% after annealing at 150 °C. Impedance spectroscopy shows the classical complex plan curves; the low frequency is related to the effective lifetime of charge carriers and the high frequency corresponds to the diffusion time of these carriers. Global mobilities are in the range 3.8–4.6 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1}.

  15. Chemical and electrical characterisation of the segregation of Al from a CuAl alloy (90%:10% wt) with thermal anneal

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, C., E-mail: conor.byrne2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Brady, A.; Walsh, L.; McCoy, A.P.; Bogan, J. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); McGlynn, E. [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Rajani, K.V. [School of Electronic Engineering, Dublin City University, Dublin 9 (Ireland); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-01-29

    A copper–aluminium (CuAl) alloy (90%:10% wt) has been investigated in relation to segregation of the alloying element Al, from the alloy bulk during vacuum anneal treatments. X-ray photoelectron spectroscopy (XPS) measurements were used to track the surface enrichment of Al segregating from the alloy bulk during in situ ultra-high vacuum anneals. Secondary ion mass spectroscopy (SIMS) indicates a build-up of Al at the surface of the annealed alloy relative to the bulk composition. Metal oxide semiconductor (MOS) CuAl/SiO{sub 2}/Si structures show a shift in flatband voltage upon thermal anneal consistent with the segregation of the Al to the alloy/SiO{sub 2} interface. Electrical four point probe measurements indicate that the segregation of Al from the alloy bulk following thermal annealing results in a decrease in film resistivity. X-ray diffraction data shows evidence for significant changes in crystal structure upon annealing, providing further evidence for expulsion of Al from the alloy bulk. - Highlights: • CuAl alloy (90%:Al 10% wt) deposited and vacuum annealed • XPS and SIMS data show segregation of Al from the alloy bulk. • Chemical changes seen indicate the reduction of Cu oxide and growth of Al Oxide. • Electrical measurements indicate a chemical change at the metal/SiO{sub 2} interface. • All data consistent with Cu diffusion barrier layer formed.

  16. Effect of an in-situ thermal annealing on the structural properties of self-assembled GaSb/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Delgado, N., E-mail: natalia.fernandezdelgado@alum.uca.es [Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMAT, University of Cádiz, 11510, Puerto Real, Cádiz (Spain); Herrera, M. [Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMAT, University of Cádiz, 11510, Puerto Real, Cádiz (Spain); Chisholm, M.F. [Scanning Transmission Electron Microscopy Group, Oak Ridge National Laboratory, TN (United States); Kamarudin, M.A. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor (Malaysia); Zhuang, Q.D.; Hayne, M. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Molina, S.I. [Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMAT, University of Cádiz, 11510, Puerto Real, Cádiz (Spain)

    2017-02-15

    Highlights: • GaSb QDs are more elongated and Sb is less concentrated after the thermal annealing. • The density of misfit dislocations in GaSb QDs is reduced after the annealing. • Threading dislocations in GaSb/GaAs QDs are Sb-rich after the thermal annealing. • The gliding of a threading dislocation favors Sb diffusion in GaSb/GaAs QDs. - Abstract: In this work, the effect of the application of a thermal annealing on the structural properties of GaSb/GaAs quantum dots (QDs) is analyzed by aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) Our results show that the GaSb/GaAs QDs are more elongated after the annealing, and that the interfaces are less abrupt due to the Sb diffusion. We have also found a strong reduction in the misfit dislocation density with the annealing. The analysis by EELS of a threading dislocation has shown that the dislocation core is rich in Sb. In addition, the region of the GaAs substrate delimited by the threading dislocation is shown to be Sb-rich as well. An enhanced diffusion of Sb due to a mechanism assisted by the dislocation movement is discussed.

  17. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Nyamhere, C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Highly rectifying Pd/ZnO contacts have been fabricated. Black-Right-Pointing-Pointer The rectification behaviour decrease with annealing temperature. Black-Right-Pointing-Pointer The surface donor concentration increases with increase in annealing temperature. Black-Right-Pointing-Pointer The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at -1.5 V. An average barrier height of (0.77 {+-} 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 {+-} 0.03) eV after annealing at 550 Degree-Sign C. The reverse current has been measured as (2.10 {+-} 0.01) Multiplication-Sign 10{sup -10} A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 Degree-Sign C to (1.56 {+-} 0.01) Multiplication-Sign 10{sup -5} A. The depletion layer width measured at -2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 {mu}m after annealing at 200 Degree-Sign C to 0.24 {mu}m after annealing at 500 Degree-Sign C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 Multiplication-Sign 10{sup 15} cm{sup -3} at 200 Degree-Sign C to 6.06 Multiplication-Sign 10{sup 16} cm{sup -3} after annealing at 550 Degree-Sign C. This increase in the volume concentration has been explained as an effect of a conductive channel

  18. Bandgap-Tuning in Triple-Chalcogenophene Polymer Films by Thermal Annealing.

    Science.gov (United States)

    González, Daniel Moseguí; Raftopoulos, Konstantinos N; He, Gang; Papadakis, Christine M; Brown, Alex; Rivard, Eric; Müller-Buschbaum, Peter

    2017-06-01

    The authors study adjustable bandgap properties of the novel triple chalcogenophene-based polymer poly-(3-hexyl-2(3-(4-hexylthiophene-2-yl)-4,5-butylselenophene-1-yl)-5-(4,5-butyltellurophene-1-yl)thiophene) through a combination of morphological, spectroscopic, and computational techniques. The bandgap can be tuned after polymerization by means of mild temperature annealing, which will allow for a partnership with a broader range of donor/acceptor molecules, a property that makes it potentially suitable for organic photovoltaic implementation. The bandgap is modified by selection of the annealing temperatures, and the process is arguably related to the aggregation of tellurophene units, as similar effects are observed in polytellurophenes. Moreover, adequate chemistry engineering ensures easy solution processability and attainment of homogeneous films, which is also essential for applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal stability of RuO sub 2 -based bottom electrodes during various ambient annealings

    CERN Document Server

    Ahn, J H; Choi, G P; Choi, W Y; Kim, H G; Lee, W J; Yoon, S G

    1999-01-01

    RuO sub 2 thin films were prepared on SiO sub 2 /Si, TiN/SiO sub 2 /Si and Ru/poly-Si by using DC magnetron sputtering. The annealing of the RuO sub 2 -based bottom electrodes was performed in oxygen and argon ambients and in high vacuum in the temperature range of 400 .deg. C approx 800 .deg. C. In oxygen-ambient annealing, the surface morphology was drastically changed due to the evaporation of ruthenium dioxides in the form of RuO sub 3 and RuO sub 4. The RuO sub 2 thin film annealed in high vacuum was reduced to the Ru metal phase. Evaporation and reduction of the RuO sub 2 thin films could actually be observed during the deposition of (Ba,Sr)TiO sub 3 thin films. oxygen diffusion through the RuO sub 2 /diffusion barrier/poly-Si structures is also discussed

  20. Formation of ZnGa2O4 films by multilayer deposition and subsequent thermal annealing

    Science.gov (United States)

    Yan, Jin-Liang; Zhao, Yin-Nü; Li, Chao

    2014-04-01

    The Ga2O3/ZnO multilayer films are deposited on quartz substrates by magnetron sputtering, the thickness values of Ga2O3 layers are in a range of 19 nm-2.5 nm and the thickness of ZnO layer is a constant of 1 nm. Formation of spinel ZnGa2O4 film is achieved via the annealing of the Ga2O3/ZnO multilayer film. The influences of original Ga2O3 sublayer thickness on the optical and structural properties of Ga2O3/ZnO multilayer films and annealed films are studied. With the decrease of the thickness of Ga2O3 sublayer, the optical band-gap of Ga2O3/ZnO multilayer film decreases, the intensity of UV emission diminishes and the intensity of violet emission increases. The annealed film displays the enlarged optical band gap and the quenched violet emission. UV fluorescence bands are observed from Ga2O3 and ZnGa2O4.

  1. Effect of Thermal Annealing on Carbon in In-situ Phosphorous-Doped Si{sub 1-x}C{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Thomas, E-mail: tadam@us.ibm.com [IBM Research at Albany Nanotech, 257 Fuller Road, Albany, NY 12203 (United States); Loubet, Nicolas [STMicroelectronics at Albany Nanotech, 257 Fuller Road, Albany, NY 12203 (United States); Reznicek, Alexander; Paruchuri, Vamsi [IBM Research at Albany Nanotech, 257 Fuller Road, Albany, NY 12203 (United States); Sampson, Ron [STMicroelectronics at Albany Nanotech, 257 Fuller Road, Albany, NY 12203 (United States); Sadana, Devendra [IBM Research, 1101 Kitchawan Road, Yorktown, NY 10598 (United States)

    2012-02-01

    The effect of thermal heat treatment on carbon in in-situ phosphorous-doped silicon-carbon is studied as a function of annealing temperature and type. Films of 0 to 2% carbon were deposited using cyclic chemical vapor deposition at reduced pressures. Secondary ion-mass spectroscopy and high-resolution X-ray diffraction were employed to extract the total and substitutional carbon concentration in samples with phosphorous levels of mid-10{sup 20} cm{sup -3}. It was found that millisecond laser annealing drastically improves substitutionality while high thermal budget treatments (furnace, rapid-thermal, or spike annealing) resulted in an almost complete loss of substitutional carbon, independent of preceding or subsequent laser heat treatments.

  2. Hydrogen sulfide toxicity in a thermal spring: a fatal outcome.

    Science.gov (United States)

    Daldal, Hale; Beder, Bayram; Serin, Simay; Sungurtekin, Hulya

    2010-08-01

    Hydrogen sulfide (H(2)S) is a toxic gas with the smells of "rotten egg"; its toxic effects are due to the blocking of cellular respiratory enzymes leading to cell anoxia and cell damage. We report two cases with acute H(2)S intoxication caused by inhalation of H(2)S evaporated from the water of a thermal spring. Two victims were found in a hotel room were they could take a thermal bath. A 26-year-old male was found unconscious; he was resuscitated, received supportive treatment and survived. A 25-year-old female was found dead. Autopsy showed diffuse edema and pulmonary congestion. Toxicological blood analysis of the female revealed the following concentrations: 0.68 mg/L sulfide and 0.21 mmol/L thiosulfate. The urine thiosulfate concentration was normal. Forensic investigation established that the thermal water was coming from the hotel's own illegal well. The hotel was closed. This report highlights the danger of H(2)S toxicity not only for reservoir and sewer cleaners, but also for individuals bathing in thermal springs.

  3. UV-pretreatment- and near-infrared rapid thermal annealing-enhanced dehydrogenation for a-Si:H thin films at 400 °C

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Sanghyun [AP Systems Corp., 15-5 Dongtansandan 8-gil, Dongtanmyeon, Hwaseongsi, Gyeonggido 445-811 (Korea, Republic of); Dept. of Chem. and Biomol. Engng., Sogang Univ., 35 Baekbeomro, Mapogu, Seoul 121-742 (Korea, Republic of); Hwang, Chi-Sun [ETRI, 138 Gajeongro, Yuseonggu, Daejeon 305-350 (Korea, Republic of); Jeong, Pilseong; Lee, Sungyong [AP Systems Corp., 15-5 Dongtansandan 8-gil, Dongtanmyeon, Hwaseongsi, Gyeonggido 445-811 (Korea, Republic of); Lee, Kwang Soon, E-mail: kslee@sogang.ac.kr [Dept. of Chem. and Biomol. Engng., Sogang Univ., 35 Baekbeomro, Mapogu, Seoul 121-742 (Korea, Republic of)

    2016-01-01

    A new dehydrogenation processing method was developed for the low-temperature polysilicon process. This method can reduce both the process temperature and time through the combination of an ultraviolet pretreatment (UVP) process with near-infrared rapid thermal annealing (NIR-RTA). NIR-RTA using tungsten-halogen lamps was observed to reduce the dehydrogenation time by approximately two thirds and the temperature by approximately 20 °C compared to conventional furnace processing. The UVP process was able to lower the dehydrogenation temperature by a further 20 °C. Thus, the new dehydrogenation process, consisting of UVP followed by NIR-RTA, could achieve a hydrogen concentration of 1.97 at.% in 20 min at 360 °C. - Highlights: • An enhanced dehydrogenation process for flexible substrates as well as glass substrates is proposed.. • UV pretreatment and NIR-RTA are used.. • Temperature of the LTPS process for a-Si:H thin films could be reduced by 40 °C.. • Dehydrogenation time of the LTPS process could be reduced by 20 min..

  4. Magnetic Characteristics of Mn-Implanted GaN Nanorods Followed by Thermal Annealing

    OpenAIRE

    Im Taek Yoon; Yoon Shon; Younghae Kwon; Park, Young S.; Chang Soo Park; Tae Won Kang

    2012-01-01

    We have investigated the magnetic and optical properties of dislocation-free vertical GaN nanorods with diameters of 150 nm grown on (111) Si substrates by radio-frequency plasma-assisted molecular-beam epitaxy followed by Mn ion implantation and annealing. The GaN nanorods are fully relaxed and have a very good crystal quality characterized by extremely strong and narrow photoluminescence excitonic lines near 3.47 eV. For GaMnN nanorods, it can be concluded that the ferromagnetic property of...

  5. Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part I - Annealing

    Directory of Open Access Journals (Sweden)

    Tarpani José R.

    2002-01-01

    Full Text Available A nuclear reactor pressure vessel steel was submitted to different annealing heat treatments aimed at simulating neutron irradiation damage. The obtained microstructures were mechanically tested with subsequent metallographic and fractographic characterization. The relevant microstructural and fractographic aspects were employed in the interpretation of the mechanical behavior of the microstructures in both quasi-static (J-R curve and dynamic (Charpy impact loading regimes. A well defined relationship was determined between the elastic-plastic fracture toughness parameter J-integral and the Charpy impact energy for very most of the microstructures.

  6. Thermal Cycle Annealing and its Application to Arsenic-Ion Implanted HgCdTe

    Science.gov (United States)

    2014-06-26

    Bromine- Methanol , two methanol rinses followed by 45 seconds dip in the Benson etch and finally a de-ionized water rinse. Computer software was used...annealed sample into several smaller pieces and subjecting each piece to shallow or deeper Bromine- Methanol etch followed by only 20 seconds of the...Beam Epitaxy Grown HgCdTe/Si Layers," Journal of Electronic Materials, 2009. [7] T. Sasaki and N. Oda, "Dislocation reduction in HgCdTe on GaAs by

  7. Effect of thermal annealing in vacuum on the photovoltaic properties of electrodeposited Cu2O-absorber solar cell

    Directory of Open Access Journals (Sweden)

    Dimopoulos T.

    2014-07-01

    Full Text Available Heterojunction solar cells were fabricated by electrochemical deposition of p-type, cuprous oxide (Cu2O absorber on sputtered, n-type ZnO layer. X-ray diffraction measurements revealed that the as-deposited absorber consists mainly of Cu2O, but appreciable amounts of metallic Cu and cupric oxide (CuO are also present. These undesired oxidation states are incorporated during the deposition process and have a detrimental effect on the photovoltaic properties of the cells. The open circuit voltage (VOC, short circuit current density (jSC, fill factor (FF and power conversion efficiency (η of the as-deposited cells are 0.37 V, 3.71 mA/cm2, 35.7% and 0.49%, respectively, under AM1.5G illumination. We show that by thermal annealing in vacuum, at temperatures up to 300 °C, compositional purity of the Cu2O absorber could be obtained. A general improvement of the heterojunction and bulk materials quality is observed, reflected upon the smallest influence of the shunt and series resistance on the transport properties of the cells in dark and under illumination. Independent of the annealing temperature, transport is dominated by the space-charge layer generation-recombination current. After annealing at 300 °C the solar cell parameters could be significantly improved to the values of: VOC = 0.505 V, jSC = 4.67 mA/cm2, FF = 47.1% and η = 1.12%.

  8. Effect of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO films

    Science.gov (United States)

    Lee, Min-Jung; Lee, Tae-Il; Lim, Jinhyong; Bang, Jungsik; Lee, Woong; Lee, Taeyoon; Myoung, Jae-Min

    2009-09-01

    The combined effects of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO (GZO) films were investigated as a potential substitute for indium tin oxide transparent conductive oxide (TCO). On the as-deposited films, increasing the deposition temperature initially improved the electrical properties, but a deposition temperature in excess of 423 K resulted in the deterioration of the electrical properties due to the development of ZnGa2O4 and Ga2O3 phases originating from the excessive amount of the Ga dopant. While a post-annealing treatment of the GZO films in hydrogen leveled off the overall properties, improvement in the electrical property was observed only in films initially deposited at room temperature. This is attributed to the excessively high concentration of the dopant Ga released from ZnGa2O4 and Ga2O3 during the post-annealing treatment. It is therefore suggested that in the preparation of TCOs based on GZO films, the concentration of the dopant Ga should be carefully controlled to obtain the optimal properties by suppressing the formation of ZnGa2O4 and Ga2O3 that occurs due to the presence of excess Ga.

  9. ZnO films synthesized by thermal annealing of ZnSe/GaAs heterostructures

    Science.gov (United States)

    Maksimov, Oleg

    2008-03-01

    ZnO received much attention due to its potential application for the fabrication of ultraviolet light emitters and photodetectors. High crystalline quality films were grown using MBE, PLD, and CVD on Al2O3, GaN, SiC, and other substrates. However, further progress in this area is slowed down by the difficulties associated with doping ZnO p-type. Here, we report on the synthesis and doping of ZnO films using the annealing of MBE-grown ZnSe/GaAs heterostructures in the controlled environment. Se is displaced by oxygen through the reaction: 2ZnSe + 3O2-> 2ZnO + 2SO2. In addition, As migrating from the GaAs substrate into the ZnO layer, promotes p-type doping. While ZnGa2O4, ZnO2, and other second phases form as the result of high temperature annealing (>700^oC), stoichiometric ZnO films are obtained at moderate temperatures (˜500^oC). Films processed under optimized conditions exhibit sharp band edge emission, narrow rocking curve, and are comparable with the ZnO films grown on the GaAs substrates using other techniques. I would like to acknowledge support from the Office of Naval Research under grant N00014-06-1-1018.

  10. Magnetic Characteristics of Mn-Implanted GaN Nanorods Followed by Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Im Taek Yoon

    2012-01-01

    Full Text Available We have investigated the magnetic and optical properties of dislocation-free vertical GaN nanorods with diameters of 150 nm grown on (111 Si substrates by radio-frequency plasma-assisted molecular-beam epitaxy followed by Mn ion implantation and annealing. The GaN nanorods are fully relaxed and have a very good crystal quality characterized by extremely strong and narrow photoluminescence excitonic lines near 3.47 eV. For GaMnN nanorods, it can be concluded that the ferromagnetic property of GaMnN nanorod with a Curie temperature over 300 K is associated with the formation of Mn4Si7 magnetic phase which results from the effects of magnetic and structural disorder introduced by a random incorporation and inhomogeneous distribution of Mn atoms in the porous layer between the nanorods that form precipitates in the Si substrate before or during the annealing step amongst the GaN nanorods.

  11. Non-thermal alloyed ohmic contact process of GaN-based HEMTs by pulsed laser annealing

    Science.gov (United States)

    Tzou, An-Jye; Hsieh, Dan-Hua; Chen, Szu-Hung; Li, Zhen-Yu; Chang, Chun-Yen; Kuo, Hao-Chung

    2016-05-01

    We have demonstrated Si implantation incorporation into GaN HEMTs with a non-alloyed ohmic contact process. We optimized the power density of pulsed laser annealing to activate implanted Si dopants without a thermal metallization process. The experimental results show that the GaN surface will be reformed under the high power density of the illumination conditions. It provides a smooth surface for following contact engineering and leads to comparable contact resistance. The transmission line model (TLM) measurement shows a lower contact resistance to 6.8 × 10-7 Ω · cm2 via non-alloyed contact technology with significantly improved surface morphology of the contact metals. DC measurement of HEMTs shows better current and on-resistance. The on-resistance could be decreased from 2.18 to 1.74 mΩ-cm2 as we produce a lower contact resistance. Pulsed laser annealing also results in lower gate leakage and smaller dispersion under a pulse I-V measurement, which implies that the density of the surface state is improved.

  12. The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device

    Science.gov (United States)

    Ji, Lian; Tan, Ming; Ding, Chao; Honda, Kazuki; Harasawa, Ryo; Yasue, Yuya; Wu, Yuanyuan; Dai, Pan; Tackeuchi, Atsushi; Bian, Lifeng; Lu, Shulong; Yang, Hui

    2017-01-01

    Rapid thermal annealing (RTA) has been performed on InGaAsP solar cells with the bandgap energy of 1 eV grown by molecular beam epitaxy. With the employment of RTA under an optimized condition, the open voltage was increased from 0.45 to 0.5 V and the photoelectric conversion efficiency was increased from 11.87-13.2%, respectively, which was attributed to the crystal quality improvement of p-type InGaAsP and therefore a reduced recombination current inside depletion region. The integral photoluminescence (PL) intensity of p-type InGaAsP increased to 166 times after annealing at 800 °C and its PL decay time increased by one order of magnitude. While the changes of nominally undoped and n-doped InGaAsP were negligible. The different behaviors of the effect of RTA on InGaAsP of different doping types were attributed to the highly mobile "activator" - beryllium (Be) atom in p-type InGaAsP.

  13. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  14. Interfacial Characterizations of a Nickel-Phosphorus Layer Electrolessly Deposited on a Silane Compound-Modified Silicon Wafer Under Thermal Annealing

    Science.gov (United States)

    Lai, Kuei-Chang; Wu, Pei-Yu; Chen, Chih-Ming; Wei, Tzu-Chien; Wu, Chung-Han; Feng, Shien-Ping

    2016-10-01

    Front-side metallization of a Si wafer was carried out using electroless deposition of nickel-phosphorus (Ni-P) catalyzed by polyvinylpyrrolidone-capped palladium nanoclusters (PVP-nPd). A 3-[2-(2-Aminoethylamino)ethylamino] propyl-trimethoxysilane (ETAS) layer was covalently bonded on the Si surface as bridge linker to the Pd cores of PVP-nPd clusters for improving adhesion between the Ni-P layer and the Si surface. To investigate the effects of an interfacial ETAS layer on the Ni silicide formation at the Ni-P/Si contact, the Ni-P-coated Si samples were thermally annealed via rapid thermal annealing (RTA) from 500°C to 900°C for 2 min. To compare with the ETAS sample, the sputtered Ni layer on Si and electroless Ni-P layer on ion-Pd-catalyzed Si (both are standard processes) were also investigated. The microstructural characterizations for the Ni-P or Ni layer deposited on the Si wafer were performed using x-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. Our results showed that the ETAS layer acted as a barrier to slow the atomic diffusion of Ni toward the Si side. Although the formation of Ni silicides required a higher annealing temperature, the adhesion strength and contact resistivity measurements of annealed Ni-P/Si contacts showed satisfactory results, which were essential to the device performance and reliability during thermal annealing.

  15. Evolution of free volume in ultrasoft magnetic FeZrN films during thermal annealing

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Schut, H; Chezan, AR; Boerma, DO; Vystavel, T; De Hosson, JTM; DeHaven, PW; Field, DP; Harkness, SD; Sutliff, JA; Szpunar, JA; Tang, L; Thomson, T; Vaudin, MD

    2002-01-01

    The thermal stability of nanocrystalline ultra-soft magnetic (Fe98Zr2)(1-x)N-x films with x=0.10-0.25 was studied using high-resolution transmission electron microscopy (HRTEM), positron beam analysis (PBA) and thermal desorption spectrometry (TDS). The results demonstrate that grain growth during

  16. Effect of thermal annealing on the microstructures and photocatalytic performance of silver orthophosphate: The synergistic mechanism of Ag vacancies and metallic Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Tingjiang, E-mail: tingjiangn@163.com [The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Guan, Wenfei; Xiao, Ying; Tian, Jun; Qiao, Zheng; Zhai, Huishan; Li, Wenjuan; You, Jinmao [The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China)

    2017-01-01

    Highlights: • Ag{sub 3}PO{sub 4} was initially prepared via ion-exchange reaction and then annealed in air. • Thermal annealing also resulted in the formation of metallic Ag and Ag vacancies. • The annealed samples exhibited superior activity to the pristine sample. • Both Ag vacancies and metallic Ag contributed to the high activity. - Abstract: In this work, a simple thermal annealing route has been developed to improve the photocatalytic performance of silver orthophosphate (Ag{sub 3}PO{sub 4}) photocatalyst toward organic pollutants degradation under visible light irradiation. The experimental results indicated that thermal treatment of Ag{sub 3}PO{sub 4} led to an obvious lattice shift towards right and significantly narrowed band gap energies due to the formation of Ag vacancies and metallic Ag during Ag{sub 3}PO{sub 4} decomposition. These structural variations notably affected the photocatalytic performance of Ag{sub 3}PO{sub 4} photocatalysts. The activity of the annealed samples was found to be significantly enhanced toward the degradation of MO dye. The highest activity was observed over the sample annealed at 400 °C, which exceeded that of pristine Ag{sub 3}PO{sub 4} by a factor of about 21 times. By means of photoluminescence spectroscopy and photoelectrochemical measurements, we propose that the enormous enhancement in activity was mainly attributed to the efficient separation of photogenerated electrons and holes driven by the synergistic effect of Ag vacancies and metallic Ag. The strong interaction between annealed particles also inhibited the dissolution of Ag{sup +} from Ag{sub 3}PO{sub 4} into aqueous solution, contributing to an improved photocatalytic stability. The strategy presented here provides an ideal platform for the design of other highly efficient and stable Ag-based photocatalysts for broad applications in the field of photocatalysis.

  17. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  18. Correlation between Pd metal thickness and thermally stable perpendicular magnetic anisotropy features in [Co/Pd]n multilayers at annealing temperatures up to 500 °C

    Directory of Open Access Journals (Sweden)

    Gwang Guk An

    2015-02-01

    Full Text Available We examine highly stable perpendicular magnetic anisotropy (PMA features of [Co/Pd]10 multilayers (MLs versus Pd thickness at various ex-situ annealing temperatures. Thermally stable PMA characteristics were observed up to 500 °C, confirming the suitability of these systems for industrial applications at this temperature. Experimental observations suggest that the choice of equivalent Co and Pd layer thicknesses in a ML configuration ensures thermally stable PMA features, even at higher annealing temperatures. X-ray diffraction patterns and cross-sectional transmission electron microscopy images were obtained to determine thickness, post-annealing PMA behavior, and to explore the structural features that govern these findings.

  19. High-dose neutron irradiation of MgAl{sub 2}O{sub 4} spinel: effects of post-irradiation thermal annealing on EPR and optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, A. [EURATOM/CIEMAT Fusion Association, Inst. Investigacion Basica, Av. Complutense, 22, E-28040 Madrid (Spain)]. E-mail: angel.ibarra@ciemat.es; Bravo, D. [Departamento de Fisica de Materiales, Facultad de Ciencias (C-IV), Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Lopez, F.J. [Departamento de Fisica de Materiales, Facultad de Ciencias (C-IV), Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2005-02-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra were measured during thermal annealing of stoichiometric MgAl{sub 2}O{sub 4} spinel that was previously irradiated in the Materials Open Test Assembly in the Fast Flux Test Facility (FFTF/MOTA) at {approx}680 K to {approx}50 dpa. Both F and F{sup +} centres are to persist up to very high temperatures (over 1000 K) suggesting the operation of an annealing mechanism controlled by the thermal stability of extended defects. Using X-ray irradiation following the different annealing steps it was shown that an optical absorption band at 37,000 cm{sup -1} is related to a sharp EPR band at g = 2.0005 and that the defect causing these effects is the F{sup +} centre.

  20. Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-10-04

    Composite materials were prepared by extrusion and injection molding from polybutyrate adipate terephthalate (PBAT) and high aspect ratio cellulose nanocrystals (CNCs) extracted from capim dourado fibers. Three CNC contents were used, corresponding to 0.5, 1, and 2 times the theoretical percolation threshold. Small-amplitude oscillary shear (SAOS) experiments show that as the CNC content increases, a more elastic behavior is observed but no percolating network can form within the polymeric matrix as a result of the high shear rates involved during the injection-molding process. Annealing of the samples at 170 °C was performed, and the possible reorganization of the nanofiller was investigated. This reorganization was further elucidated using 2D-SAOS and creep experiments.

  1. Effect of growth temperature, thermal annealing and nitrogen doping on optoelectronic properties of sputter-deposited ZnTe films

    Energy Technology Data Exchange (ETDEWEB)

    Rakhshani, A.E., E-mail: ali.rakhshani@ku.edu.kw

    2013-06-01

    Thin films of zinc telluride were grown on glass substrate at different temperatures by magnetron sputtering. Nitrogen-doped films were also prepared at different doping levels. Films underwent a post deposition thermal annealing at low pressure of nitrogen. The film structure, optical and electrical properties were studied using various techniques. The results revealed that the films are composed from nano-size grains (3 – 19 nm) with cubic lattice structure. The grain growth during deposition is thermally activated with the activation energy of 108 meV. Direct optical transitions occurring from the valence band and also from the spin-orbit valence band to either a band gap defect level (for as-grown films) or to the conduction band (for annealed films) have been observed. The valence band split energy is found to be in the range 0.82 – 1.10 eV. The defect level, likely related to oxygen impurities, is located 1.77 eV above the valence band edge. The band gap energy of the annealed films is in the range 2.13 – 2.20 eV and the films doped with nitrogen, at optimum condition, have a free hole concentration and mobility of 2.9 × 10{sup 18} cm{sup −3} and 1.4 cm{sup 2} V{sup −1} s{sup −1}, respectively. - Highlights: • Undoped and nitrogen doped ZnTe films were grown on glass by sputtering technique. • Growth temperature varied in the range 35– 305 °C. • Optimum doping was achieved at the N{sub 2}/(N{sub 2} + Ar) flow rate ratio of 2%. • At optimum condition 2.9 × 10{sup 18} holes/cm{sup 3} with mobility 1.4 cm{sup 2} V{sup −1} s{sup −1} were obtained. • The split valence band and oxygen defects contribute to the absorption of light.

  2. A novel method for biopolymer surface nanostructuring by platinum deposition and subsequent thermal annealing

    National Research Council Canada - National Science Library

    Slepička, Petr; Juřík, Petr; Kolská, Zdeňka; Malinský, Petr; Macková, Anna; Michaljaničová, Iva; Švorčík, Václav

    2012-01-01

    .... The surface properties of sputtered platinum layers on the biocompatible polymer poly(l-lactic acid) (PLLA) are presented. The influence of thermal treatment on surface morphology and electrical resistance and Pt distribution in ca...

  3. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India)

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} A to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  4. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Norshafadzila Mohammad Naim

    2015-01-01

    Full Text Available PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300°C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS. The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm–424 nm and 426 nm–464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  5. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring.

    Science.gov (United States)

    Mohammad Naim, Norshafadzila; Abdullah, H; Umar, Akrajas Ali; Abdul Hamid, Aidil; Shaari, Sahbudin

    2015-01-01

    PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300 °C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS). The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm-424 nm and 426 nm-464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  6. Hydrogen Behaviors Coupled with Thermal Hydraulics in APR1400 Containment during an SBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There are two hydrogen mitigation strategies. One is burning hydrogen by igniters as it is released in the containment. The other is using PARs (passive auto-catalytic recombiners) to remove the hydrogen. The strategy based on PAR installation requires well-mixing of the released hydrogen with steam in a containment atmosphere. It means that hydrogen distribution in a containment is very important for the hydrogen mitigation by PAR. Hydrogen behaviors in a NPP containment is strongly coupled with thermal hydraulics such as turbulent mixing, stratification by buoyancy, steam condensation, heat transfer et al. The purpose of this study is to investigate hydrogen behaviors in the APR1400 containment during an SBLOCA with a reactor core damage. The GASFLOW code is used to simulate hydrogen behaviors with thermal hydraulics in the APR1400 containment. In this paper, the hydrogen behaviors in the APR1400 containment during an SBLOCA were investigated by numerical simulation using GASFLOW. It was found that hydrogen mixture cloud may move downward relying on thermal hydraulic effect occurring in the containment. It is thought that condensation of steam included in the hydrogen mixture is very important in the hydrogen behaviors.

  7. Chemical kinetic performance losses for a hydrogen laser thermal thruster

    Science.gov (United States)

    Mccay, T. D.; Dexter, C. E.

    1985-01-01

    Projected requirements for efficient, economical, orbit-raising propulsion systems have generated investigations into several potentially high specific impulse, moderate thrust, advanced systems. One of these systems, laser thermal propulsion, utilizes a high temperature plasma as the enthalpy source. The plasma is sustained by a focused laser beam which maintains the plasma temperature at levels near 20,000 K. Since such temperature levels lead to total dissociation and high ionization, the plasma thruster system potentially has a high specific impulse decrement due to recombination losses. The nozzle flow is expected to be sufficiently nonequilibrium to warrant concern over the achievable specific impluse. This investigation was an attempt at evaluation of those losses. The One-Dimensional Kinetics (ODK) option of the Two-Dimensional Kinetics (TDK) Computer Program was used with a chemical kinetics rate set obtained from available literature to determine the chemical kinetic energy losses for typical plasma thruster conditions. The rates were varied about the nominal accepted values to band the possible losses. Kinetic losses were shown to be highly significant for a laser thermal thruster using hydrogen. A 30 percent reduction in specific impulse is possible simply due to the inability to completely extract the molecular recombination energy.

  8. Effect of Thermal Annealing on Machining-Induced Residual Stresses in Inconel 718

    Science.gov (United States)

    Madariaga, A.; Aperribay, J.; Arrazola, P. J.; Esnaola, J. A.; Hormaetxe, E.; Garay, A.; Ostolaza, K.

    2017-08-01

    Nickel-based alloys are widely employed in the manufacturing of aero-engines. These alloys are difficult to machine, and tensile residual stresses are generated during machining. These tensile residual stresses can negatively affect the performance of aero-engine components. Nevertheless, residual stresses can vary due to thermal or mechanical loading. These variations must be considered to evaluate the real influence of residual stresses on component behavior. This paper studies the effect of thermal loads on machining-induced residual stresses in the alloy Inconel 718. A ring-shaped Inconel 718 part was face-turned, and specimens were extracted from it. Specimens were exposed at 550 and 650 °C for 10 min, 1 and 10 h. Residual stresses were measured, and microstructure was observed before and after thermal exposure. Residual stress variations found after thermal exposure were the consequence of two factors: relaxation of strain bands during the early stage of exposure and diffusion-controlled creep. In addition, a modified Zener-Wert-Avrami model is proposed to predict residual stress relaxation caused by the diffusion-controlled creep. Once having fitted the modified Zener-Wert-Avrami model, the study was extended for a wider range of temperatures (400-650 °C). This analysis showed that surface residual stresses do not relax significantly at temperatures below 500 °C.

  9. Phase transformation and structures of pure and carbon containing titania thin films annealed in air and in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wei-Chie; Wang, Hsiang-Li; Wong, Ming-Show, E-mail: mswong@mail.ndhu.edu.tw

    2013-01-01

    Pure titania (TiO{sub 2}) and carbon containing titania(C-TiO{sub 2}) thin films were prepared by reactive sputtering in argon–oxygen plasma at 100 °C. The as-deposited thin films were amorphous and subsequently annealed at various temperatures of 280–800 °C in air and H{sub 2} atmosphere. The effects of annealing on the films were systematically studied in terms of phase transformation, activation energy, crystallinity, oxygen vacancies and their photocatalytic properties. The as-deposited TiO{sub 2} transforms to anatase at a much lower temperature than the C-TiO{sub 2}. At the same temperature, the H{sub 2}-annealed films achieve better crystallinity than the air-annealed films. The activation energies of phase transformation from amorphous to anatase are 180 and 168 kJ/mol for the air- and the H{sub 2}-annealed pure TiO{sub 2} films, respectively. The result also shows that the C-TiO{sub 2} requires higher temperature or more energy for phase transformation than the pure TiO{sub 2}. - Highlights: ► Oxygen vacancies created in TiO{sub 2} annealed in H{sub 2} accelerate phase transformation. ► Carbon atoms in C-TiO{sub 2} act as a diffusion barrier and retard phase transformation. ► Activation energies from amorphous TiO{sub 2} and C-TiO{sub 2} to anatase are obtained.

  10. The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films

    DEFF Research Database (Denmark)

    Liu, Q.M.; Poumellec, B.; Braga, D.

    2005-01-01

    The secondary electron emission contrast between poled and unpoled regions in thermally poled Ge-doped silica films were measured according to different annealing temperatures and electron doses with electron acceleration energy of 5 keV. It is used for measuring the change on annealing of poling...... induced electric field and other insulating properties like electron traps population and conductivity in high field. Concerning the change of the contrast at low dose arising from the poling electric field, we show that this field begins to disappear at around 450 degrees C and is erased completely...

  11. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method.

    Science.gov (United States)

    Pan, Huang-Wei; Wang, Shun-Jin; Kuo, Ling-Chi; Chao, Shiuh; Principe, Maria; Pinto, Innocenzo M; DeSalvo, Riccardo

    2014-12-01

    Crystallization following thermal annealing of thin film stacks consisting of alternating nm-thick titania/silica layers was investigated. Several prototypes were designed, featuring a different number of titania/silica layer pairs, and different thicknesses (in the range from 4 to 40 nm, for the titania layers), but the same nominal refractive index (2.09) and optical thickness (a quarter of wavelength at 1064 nm). The prototypes were deposited by ion beam sputtering on silicon substrates. All prototypes were found to be amorphous as-deposited. Thermal annealing in air at progressive temperatures was subsequently performed. It was found that the titania layers eventually crystallized forming the anatase phase, while the silica layers remained always amorphous. However, progressively thinner layers exhibited progressively higher threshold temperatures for crystallization onset. Accordingly it can be expected that composites with thinner layers will be able to sustain higher annealing temperatures without crystallizing, and likely yielding better optical and mechanical properties for advanced coatings application. These results open the way to the use of materials like titania and hafnia, that crystallize easily under thermal anneal, but ARE otherwise promising candidate materials for HR coatings necessary for cryogenic 3rd generation laser interferometric gravitational wave detectors.

  12. Synthesis of stoichiometric Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, B.F.; Morales, M.A.; Bohn, F.; Carriço, A.S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Medeiros, S.N. de, E-mail: sndemedeiros@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Dantas, A.L. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, RN (Brazil)

    2016-05-01

    We report the synthesis of Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing from α-Fe{sub 2}O{sub 3} and CaCO{sub 3}. Magnetization measurements, Mössbauer and X-ray spectra reveal that annealing at high temperatures leads to better quality samples. Our results indicate nanoparticles produced by 10 h high-energy ball milling and thermal annealing for 2 h at 1100 °C achieve improved stoichiometry and the full weak ferromagnetic signal of Ca{sub 2}Fe{sub 2}O{sub 5}. Samples annealed at lower temperatures show departure from stoichiometry, with a higher occupancy of Fe{sup 3+} in octahedral sites, and a reduced magnetization. Thermal relaxation for temperatures in the 700–1100 °C range is well represented by a Néel model, assuming a random orientation of the weak ferromagnetic moment of the Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles.

  13. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution

    Science.gov (United States)

    Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun

    2018-01-01

    The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.

  14. Rapid crystallization of a-Si:H films with various silicon-to-hydrogen bonding configurations using rapid energy transfer annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y.-L. [Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)]. E-mail: yljiang@nchu.edu.tw; Chang, Y.-C. [Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2006-04-03

    Hydrogenated amorphous silicon (a-Si:H) films were prepared by changing substrate temperature of plasma-enhanced chemical vapor deposition to induce different contents of monohydride and polyhydride bonds, which were then crystallized into polysilicon (poly-Si) films by rapid energy transfer annealing. Fourier transform infrared and transmission spectra show that the formation of numerous polyhydride bonds increases the hydrogen content and reduces the refractive index of a-Si:H films. The rise in the concentration of polyhydride bonds in as-deposited a-Si:H films can result in the increase of ultraviolet reflectance, small peak shift, and change in full width at half maximum of Raman scattering and X-ray diffraction peaks of the obtained poly-Si films after annealing. These results demonstrate that high-concentration polyhydride bonds can promote the rapid crystallization of a-Si:H and obtain high-crystallinity poly-Si films. Transmission electron microscopy identifies that the poly-Si films have the typical dendrite-like grain structure.

  15. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  16. The effect of rapid thermal annealing on the photoluminescence of InAsN/InGaAs dot-in-a-well structures

    Energy Technology Data Exchange (ETDEWEB)

    Gargallo-Caballero, R; Miguel-Sanchez, J; Guzman, A; Hierro, A; Munoz, E [Instituto de Sistemas Optoelectronicos y MicrotecnologIa (ISOM)-Departamento de IngenierIa Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)], E-mail: rgargallo@die.upm.es

    2008-03-21

    The effect of post-growth rapid thermal annealing on the optical characteristics of InAsN/InGaAs dot-in-a-well DWELL structures grown by molecular beam epitaxy on GaAs(1 0 0) has been studied. InAs/InGaAs DWELL structures have been used as a reference. Photoluminescence measurements of these samples show similar optical effects, such as a blueshift of the peak wavelength and a reduction of the full width of at half maximum PL emission, in both types of structures up to an annealing temperature of 750 deg. C. Nevertheless, at 850 deg. C, these effects are much more pronounced in the structures with N. These results suggest that an additional As-N interdiffusion process inside the InAsN quantum dots plays a dominant role in these effects at high annealing temperatures (850 deg. C) on InAsN/InGaAs structures.

  17. Thermal Effect on the Optical and Morphological Properties of TiO{sub 2} Thin Films Obtained by Annealing a Ti Metal Layer

    Energy Technology Data Exchange (ETDEWEB)

    Butt, M. A.; Fomchenkov, S. A. [Samara National Research University, Samara (Russian Federation)

    2017-01-15

    Titanium metal layers of different thicknesses were deposited on optical glass, quartz and ceramic at 50 ℃ and 150 ℃ substrate temperatures with the help of magnetron deposition. The metal layers were converted into a rutile phase of TiO{sub 2} at different annealing temperatures. The effect of thermal annealing on the morphology and the refractive index of the thin film was investigated. The film's quality and roughness were found to depend on the substrate's temperature during metal film deposition and on the annealing temperature. The TiO{sub 2} thin films obtained on ceramic and glass substrates were seem to show less surface roughness at low substrate temperature as compared to the quartz substrate.

  18. EFFECT OF PRE-ANNEALING TEMPERATURE ON THE GROWTH OF ALIGNED α-Fe2O3 NANOWIRES VIA A TWO-STEP THERMAL OXIDATION

    Science.gov (United States)

    Rashid, Norhana Mohamed; Kishi, Naoki; Soga, Tetsuo

    2016-03-01

    Pre-annealing as part of a two-step thermal oxidation process has a significant effect on the growth of hematite (α-Fe2O3) nanowires on Fe foil. High-density aligned nanowires were obtained on iron foils pre-annealed at 300∘C under a dry air flow for 30min. The X-ray diffraction (XRD) patterns indicate that the nanowires are transformed from the small α-Fe2O3 grains and uniquely grow in the (110) direction. The formation of a high-density of small grains by pre-annealing improved the alignment and density of the α-Fe2O3 nanowires.

  19. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    Science.gov (United States)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  20. Comprehensive study of the surface morphology evolution induced by thermal annealing in single-crystalline ZnO films and ZnO bulks

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, N.; Oh, D. C. [Hoseo University, Asan (Korea, Republic of); Ko, H. J. [Korea Photonics Technology Institute, Gwangju (Korea, Republic of); Lim, D. S.; Hong, S. K. [Chungnam National University, Daejeon (Korea, Republic of); Yao, T. [Tohoku University, Sendai (Japan)

    2012-11-15

    We report on the evolution of the surface morphology induced by thermal annealing in N{sub 2} ambient over a wide temperature range of 500 - 1200 .deg. C in single-crystalline ZnO films and ZnO bulks. The surface morphology is seriously changed by the annealing temperature, and the evolution can be categorized into three regions: island growth, island agglomeration, and pit formation. Island growth at low temperatures below 700 .deg. C, is ascribed to the atomic migration to reduce surface energy, which causes surface roughening. Island agglomeration at intermediate temperatures of 700 - 900 .deg. C is ascribed to the migration and the evaporation of surface atoms, which causes surface flattening. Pit formation at high temperatures above 900 .deg. C is ascribed to the atomic evaporation by high vapor pressure, which causes surface destruction. On the other hand, the bulk lattice is continuously improved with increasing annealing temperature in the temperature regions before the surface-destruction region, which is attributed to the reduction in the numbers of point and line defects caused by recrystallization. As a result, the best surface morphology and the best bulk lattice are obtained at an annealing temperature of 900 .deg. C. The common surface-morphology evolution of ZnO films and ZnO bulks with increasing annealing temperature can be summarized using the three steps of surface roughening by island growth, surface flattening by island agglomeration, and surface destruction by pit formation.

  1. Photothermal deflection technique investigation of annealing temperature and time effects on optical and thermal conductivity of V/V2O5 alternating layers structure

    Science.gov (United States)

    Khalfaoui, A.; Ilahi, S.; Abdel-Rahman, M.; Zia, M. F.; Alduraibi, M.; Ilahi, B.; Yacoubi, N.

    2017-10-01

    The VxOy material is fabricated by alternating multilayer of V/V2O5. Two sets of VxOy are presented annealed at 300 °C and 400 °C for 20, 30 and 40 min. We have determined optical absorption spectra of the two sets by comparison between experimental and theoretical PDS amplitude signal. In fact, a variation of the bandgap energy from 2.34eV to 2.49 eV has found for both set annealed at 300 °C and 400 °C for various annealing time. The variation of bandgap energy is discussed testifying a structural and compositional change. Moreover, thermal conductivity of the set annealed at 400 °C showed a variation from 1.96 W/m K to 6.2 W/m K noting a decrease up to 2.89 W/m K for that annealed for 30 min.

  2. Studies of thermal annealing and dope composition on the enhancement of separation performance cellulose acetate membrane for brackish water treatment from Jepara

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-08-01

    Full Text Available Membrane is an alternative technology of water treatment with filtration principle that is being widely developed and used for water treatment. The main objective of this study was to make an asymmetric membrane using cellulose acetate polymer and study the effect of additive and annealing treatment on the morphology structure and performance of cellulose acetate membranes in brackish water treatment. Asymmetric membranes for brackish water treatment were casted using a casting machine process from dope solutions containing cellulose acetates and acetone as a solvent. Membranes was prepared by phase inversion method  with variation of polyethylene glycol (PEG concentration of 1 and 5 wt% and with thermal annealing at 60 oC in 10 seconds and without thermal annealing behavior. Membrane characterization consists of calculation of membrane flux and rejection with brackish water as a feed from Jepara. The research concluded that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion method. The more added concentration of PEG will be resulted the larger pore of membrane. Meanwhile the higher temperature and the longer time of annealing treatment, the skin layer of membrane become denser. Membrane with the composition of 18 wt% cellulose acetate, 5 wt% PEG, 1 wt% distilled water, with heat treatment at temperature of 60 oC for 10 seconds is obtained optimal performance.

  3. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Ozcan, Yusuf [Department of Electricity and Energy, Pamukkale University, Denizli (Turkey); Orujalipoor, Ilghar [Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Huang, Yen-Chih; Jeng, U-Ser [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China); Ide, Semra [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  4. Dependence of N incorporation into (Ga)InAsN QDs on Ga content probed by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Gargallo-Caballero, R.; Guzman, A.; Ulloa, J.M.; Hierro, A.; Calleja, E. [Instituto de Sistemas Optoelectronicos y Microtecnologia (ISOM) - Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid (Spain); Hopkinson, M. [Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield (United Kingdom)

    2009-06-15

    In this letter we demonstrate that the N incorporation into (Ga)InAsN quantum dots (QDs), grown on GaAs (100) by radio-frequency (RF) plasma assisted molecular beam epitaxy (MBE), is enhanced as the Ga content increases up to 30% and decreases for Ga contents higher than 30%. Thus, this effect exhibits a maximum N incorporation with a Ga content of 30%. Two sets of (Ga)InAsN QDs samples have been grown under the same growth conditions but with different N contents in one of them and with different Ga concentration in the other set. Optical analysis using Photoluminescence (PL) measurements of the as-grown and post growth rapid thermal annealed samples have been performed. The experimental results show a clear increase of the blueshift with the N concentration as occurred in dilute nitride quantum well (QW) structures. PL peak emission wavelength as high as 1.55{mu}m has been obtained from QDs capped with GaAs. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Topotaxial growth of α-Fe{sub 2}O{sub 3} nanowires on iron substrate in thermal annealing method

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Himanshu, E-mail: himsri@rrcat.gov.in; Srivastava, A. K.; Babu, Mahendra; Rai, Sanjay; Ganguli, Tapas [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-06-28

    A detail cross-sectional transmission electron microscopy of as-grown α-Fe{sub 2}O{sub 3} nanowire sample, synthesized on iron substrate by thermal annealing method, was carried out to understand the mechanism of growth in this system. Iron undergoes sequential oxidation to form a layered structure of Fe/FeO/Fe{sub 3}O{sub 4}/α-Fe{sub 2}O{sub 3}. α-Fe{sub 2}O{sub 3} nanowires grow on to the top of α-Fe{sub 2}O{sub 3} layer. It was found that subsequent oxide layers grow topotaxially on the grains of iron, which results in a direct orientation relationship between the α-Fe{sub 2}O{sub 3} nanowire and the parent grain of iron. The results also showed that the grains of α-Fe{sub 2}O{sub 3} layer, which were uniquely oriented in [110] direction, undergo highly anisotropic growth to form the nanowire. This anisotropic growth occurs at a twin interface, given by (−11−1), in the α-Fe{sub 2}O{sub 3} layer. It was concluded that the growth at twin interface could be the main driving factor for such anisotropic growth. These observations are not only helpful in understanding the growth mechanism of α-Fe{sub 2}O{sub 3} nanowires, but it also demonstrates a way of patterning the nanowires by controlling the texture of iron substrate.

  6. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis

    Science.gov (United States)

    Krumeich, Frank; Waser, Oliver; Pratsinis, Sotiris E.

    2016-10-01

    The thermal behavior of core-shell carbon-coated lithium iron phosphate (LiFePO4-C) nanoparticles made by flame spray pyrolysis (FSP) during annealing was investigated by in-situ transmission electron microscopy (TEM), in-situ X-ray powder diffraction (XRD) as well as ex-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Crystallization of the initially glassy LiFePO4-C nanoparticles starts at quite low temperatures (T=400 °C), forming single crystals inside the confinement of the carbon shell. Upon increasing the temperature to T≥700 °C, LiFePO4 starts to diffuse through the carbon shell resulting in cavities inside the mostly intact carbon shell. By increasing the temperature further to T≥800 °C, the initial core-shell morphology converts into open carbon shells (flakes and cenospheres) and bulky LiFePO4 particles (diameter in the range 300-400 nm), in agreement with ex-situ experiments.

  7. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis.

    Science.gov (United States)

    Sheng, Zhen-Huan; Shao, Lin; Chen, Jing-Jing; Bao, Wen-Jing; Wang, Feng-Bin; Xia, Xing-Hua

    2011-06-28

    The electronic and chemical properties of graphene can be modulated by chemical doping foreign atoms and functional moieties. The general approach to the synthesis of nitrogen-doped graphene (NG), such as chemical vapor deposition (CVD) performed in gas phases, requires transitional metal catalysts which could contaminate the resultant products and thus affect their properties. In this paper, we propose a facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source. This approach can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated. Detailed X-ray photoelectron spectrum analysis of the resultant products shows that the atomic percentage of nitrogen in doped graphene samples can be adjusted up to 10.1%. Such a high doping level has not been reported previously. High-resolution N1s spectra reveal that the as-made NG mainly contains pyridine-like nitrogen atoms. Electrochemical characterizations clearly demonstrate excellent electrocatalytic activity of NG toward the oxygen reduction reaction (ORR) in alkaline electrolytes, which is independent of nitrogen doping level. The present catalyst-free approach opens up the possibility for the synthesis of NG in gram-scale for electronic devices and cathodic materials for fuel cells and biosensors.

  8. Synthesis and kinetics studies of poly(styrene-b-vinylmethylsiloxane) and its thin film ordering by thermal and solvent annealing

    Science.gov (United States)

    Chatterjee, Sourav; Uddin, Md Fakar; Lwoya, Baraka; Albert, Julie N. L.

    Nano-structured thin film materials are important materials that find uses in templating and membrane applications. Block copolymers (BCP) have gained considerable attention for next-generation lithographic masks due to their self-assemble into morphologies with periodic sub 20 nm feature sizes with high regularity and reproducibility. A novel synthetic block copolymer of poly(styrene-b-vinylmethylsiloxane) (PS-b-PVMS) was synthesized. Like poly(styrene-b-dimethylsiloxane), this polymer has a high Flory Huggins interaction parameter between blocks to minimize feature size. Furthermore, incorporation of the vinyl side group provides an opportunity for post-polymerization chemical modification to manipulate the interaction parameter or impart functionality for various applications. Synthesis and kinetic studies of PS-b-PVMS as well as PS and PVMS homopolymers will be presented. All polymers are well characterized by proton NMR and GPC. As proof of concept, we show that block copolymers having different block fractions self-assemble into the expected nanostructures (lamellae, cylinders, spheres). Thin film studies also will be presented showing how the ordering of PS-b-PVMS is affected by different solvent and thermal annealing conditions.

  9. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  10. Colloidal CdSe/Cu3P/CdSe nanocrystal heterostructures and their evolution upon thermal annealing.

    Science.gov (United States)

    De Trizio, Luca; De Donato, Francesco; Casu, Alberto; Genovese, Alessandro; Falqui, Andrea; Povia, Mauro; Manna, Liberato

    2013-05-28

    We report the synthesis of colloidal CdSe/Cu(3)P/CdSe nanocrystal heterostructures grown from hexagonal Cu(3)P platelets as templates. One type of heterostructure was a sort of "coral", formed by vertical pillars of CdSe grown preferentially on both basal facets of a Cu(3)P platelet and at its edges. Another type of heterostructure had a "sandwich" type of architecture, formed by two thick, epitaxial CdSe layers encasing the original Cu(3)P platelet. When the sandwiches were annealed under vacuum up to 450 °C, sublimation of P and Cd species with concomitant interdiffusion of Cu and Se species was observed by in situ HR- and EFTEM analyses. These processes transformed the starting sandwiches into Cu2Se nanoplatelets. Under the same conditions, both the pristine (uncoated) Cu(3)P platelets and a control sample made of isolated CdSe nanocrystals were stable. Therefore, the thermal instability of the sandwiches under vacuum might be explained by the diffusion of Cu species from Cu(3)P cores into CdSe domains, which triggered sublimation of Cd, as well as out-diffusion of P species and their partial sublimation, together with the overall transformation of the sandwiches into Cu(2)Se nanocrystals. A similar fate was followed by the coral-like structures. These CdSe/Cu(3)P/CdSe nanocrystals are therefore an example of a nanostructure that is thermally unstable, despite its separate components showing to be stable under the same conditions.

  11. Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N δ-doped layer in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yasuhiro; Harada, Yukihiro; Baba, Takeshi; Kaizu, Toshiyuki; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2016-03-14

    We have conducted rapid thermal annealing (RTA) for improving the two-dimensional (2D) arrangement of electronic states in the epitaxial nitrogen (N) δ-doped layer in GaAs. RTA rearranged the N-pair configurations in the GaAs (001) plane and reduced the number of non-radiative recombination centers. Furthermore, a Landau shift, representing the 2D delocalized electronic states in the (001) plane, was observed at around zero magnetic field intensity in the Faraday configuration.

  12. Divacancy-hydrogen complexes in dislocation-free high-purity germanium. [Annealing, Hall effect, steady-state concentration energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.; Hubbard, G.S.; Hansen, W.L.; Seeger, A.

    1976-09-01

    A defect center with a single acceptor level at E/sub v/ + 0.08 eV appears in H/sub 2/-grown dislocation-free high-purity germanium. Its concentration changes reversibly upon annealing up to 650 K. By means of Hall-effect and conductivity measurements over a large temperature range the temperature dependence of the steady-state concentration between 450 and 720 K as well as the transients following changes in temperature were determined. The observed acceptor level is attributed to the divacancy-hydrogen complex V/sub 2/H. The complex reacts with hydrogen, dissolved in the Ge lattice or stored in traps, according to V/sub 2/H + H reversible V/sub 2/H/sub 2/. An energy level associated with the divacancy-dihydrogen complex was not observed. These results are in good agreement with the idea that hydrogen in germanium forms a ''very deep donor'' (i.e., the energy level lies inside the valence band).

  13. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.

    Science.gov (United States)

    Wu, Xufei; Varshney, Vikas; Lee, Jonghoon; Zhang, Teng; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-06-08

    Penta-graphene (PG) has been identified as a novel two-dimensional (2D) material with an intrinsic bandgap, which makes it especially promising for electronics applications. In this work, we use first-principles lattice dynamics and iterative solution of the phonon Boltzmann transport equation (BTE) to determine the thermal conductivity of PG and its more stable derivative, hydrogenated penta-graphene (HPG). As a comparison, we also studied the effect of hydrogenation on graphene thermal conductivity. In contrast to hydrogenation of graphene, which leads to a dramatic decrease in thermal conductivity, HPG shows a notable increase in thermal conductivity, which is much higher than that of PG. Considering the necessity of using the same thickness when comparing thermal conductivity values of different 2D materials, hydrogenation leads to a 63% reduction in thermal conductivity for graphene, while it results in a 76% increase for PG. The high thermal conductivity of HPG makes it more thermally conductive than most other semiconducting 2D materials, such as the transition metal chalcogenides. Our detailed analyses show that the primary reason for the counterintuitive hydrogenation-induced thermal conductivity enhancement is the weaker bond anharmonicity in HPG than PG. This leads to weaker phonon scattering after hydrogenation, despite the increase in the phonon scattering phase space. The high thermal conductivity of HPG may inspire intensive research around HPG and other derivatives of PG as potential materials for future nanoelectronic devices. The fundamental physics understood from this study may open up a new strategy to engineer thermal transport properties of other 2D materials by controlling bond anharmonicity via functionalization.

  14. Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent

    Science.gov (United States)

    Fan, Xing; Zhao, Su-Ling; Chen, Yu; Zhang, Jie; Yang, Qian-Qian; Gong, Wei; Yuan, Meng-Yao; Xu, Zheng; Xu, Xu-Rong

    2015-07-01

    Crystallographic dynamics of blend films of regioregular poly(3-hexylthiophene) (P3HT) mixed with [6-6-]-phenyl-C61-butyric acid methyl ester (PC61BM) treated by thermal annealing or by adding solvent 1,8-diiodooctane (DIO) are characterized by 2D-grazing incidence x-ray diffraction (2D-GIXRD). The results show that the P3HT chains are primarily oriented with the thiophene ring edge-on to the substrate, with a small fraction of chains oriented plane-on. The interplanar spacing becomes narrow after being treated by DIO, and the coherence length of the P3HT crystallites increases after being treated by thermal annealing or DIO, which is accompanied by a change in the orientation angle of the P3HT lamellae. The increased ordering of P3HT packing induced by thermal annealing or adding DIO contributes to enhanced photovoltaic performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272022 and 11474018), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120009130005), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2012JBZ001).

  15. TiO2 films annealing temperature-dependent properties in terms of the Amlouk-Boubaker opto-thermal expansivity ψAB

    Science.gov (United States)

    Amlouk, A.; Boubaker, K.; El Mir, L.; Amlouk, M.

    2011-02-01

    In this study, TiO2 films were grown at room temperature by sol-gel process using titanium (IV)-isopropylat as precursor. XRD, EDS and MEB analyses proved that an eventual annealing treatment caused the TiO2 amorphous phase to shift to a crystalline anatase phase. Optical measurements were carried out via absorbance spectra in 500-2500 nm wavelength domain. From these optical measurements, the temperature-dependent conjoint optical and thermal properties were deduced using the Amlouk-Boubaker opto-thermal expansivity ψAB.

  16. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  17. Deformation and thermal histories of ordinary chondrites: Evidence for post-deformation annealing and syn-metamorphic shock

    Science.gov (United States)

    Ruzicka, Alex; Hugo, Richard; Hutson, Melinda

    2015-08-01

    We show that olivine microstructures in seven metamorphosed ordinary chondrites of different groups studied with optical and transmission electron microscopy can be used to evaluate the post-deformation cooling setting of the meteorites, and to discriminate between collisions affecting cold and warm parent bodies. The L6 chondrites Park (shock stage S1), Bruderheim (S4), Leedey (S4), and Morrow County (S5) were affected by variable shock deformation followed by relatively rapid cooling, and probably cooled as fragments liberated by impact in near-surface settings. In contrast, Kernouvé (H6 S1), Portales Valley (H6/7 S1), and MIL 99301 (LL6 S1) appear to have cooled slowly after shock, probably by deep burial in warm materials. In these chondrites, post-deformation annealing lowered apparent optical strain levels in olivine. Additionally, Kernouvé, Morrow County, Park, MIL 99301, and possibly Portales Valley, show evidence for having been deformed at an elevated temperature (⩾800-1000 °C). The high temperatures for Morrow County can be explained by dynamic heating during intense shock, but Kernouvé, Park, and MIL 99301 were probably shocked while the H, L and LL parent bodies were warm, during early, endogenically-driven thermal metamorphism. Thus, whereas the S4 and S5 chondrites experienced purely shock-induced heating and cooling, all the S1 chondrites examined show evidence for static heating consistent with either syn-metamorphic shock (Kernouvé, MIL 99301, Park), post-deformation burial in warm materials (Kernouvé, MIL 99301, Portales Valley), or both. The results show the pitfalls in relying on optical shock classification alone to infer an absence of shock and to construct cooling stratigraphy models for parent bodies. Moreover, they provide support for the idea that "secondary" metamorphic and "tertiary" shock processes overlapped in time shortly after the accretion of chondritic planetesimals, and that impacts into warm asteroidal bodies were

  18. Effect of rapid thermal annealing on the Mo back contact properties for Cu{sub 2}ZnSnSe{sub 4} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, Marcel, E-mail: mplacidi@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Espindola-Rodriguez, Moises; Lopez-Marino, Simon; Sanchez, Yudania; Giraldo, Sergio; Acebo, Laura; Neuschitzer, Markus [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Alcobé, Xavier [Centres Científics i Tecnològics (CCiTUB), Lluis Solé i Sabarís 1, 08028 Barcelona (Spain); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Saucedo, Edgardo [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain)

    2016-08-05

    The effect of a rapid thermal process (RTP) on the molybdenum (Mo) back contact for Cu{sub 2}ZnSnSe{sub 4} (CZTSe) solar cells is here investigated. It is shown that the annealing of the Mo layer during 5 min at 550 °C, not only improves the crystalline quality of the back contact (avoiding the absorber decomposition at this region because Mo becomes more resistant to the selenization), but also helps achieving higher crystalline quality of the absorber with bigger grains, reducing the current leakage through the heterojunction. We demonstrate that this is related to the relaxation of the compressive stress of the CZTSe absorber, when synthesized on the RTP annealed substrates. CZTSe solar cells prepared on annealed Mo films exhibited higher short circuit current densities and higher open circuit voltages, resulting in 10% and 33% higher fill factors and efficiencies. - Highlights: • An RTP annealing applied for the first time on Mo for CZTSe solar cells. • Clear improvement of the efficiency from 5.7 to 7.6% with RTP treatment. • Discussion of this improvement with adequate material/device characterizations. • Stress-induced defects responsible of the electrical leakage are revealed.

  19. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Jingjin Wu

    2016-08-01

    Full Text Available The 4 at. % zirconium-doped zinc oxide (ZnO:Zr films grown by atomic layer deposition (ALD were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  20. The kinetics of swelling in block copolymer thin films during ``solvo-microwave'' and solvo-thermal annealing: The effect of vapour pressure

    Science.gov (United States)

    Mokarian-Tabari, Parvanrh; Collins, Timothy; Cummins, Cian; Delgado Simão, Claudia; Sotomayor, Clivia; Morris, Michael A.

    2015-03-01

    Long annealing time associated with high chi block copolymers is a major disadvantage for their integration in industrial applications. Microwave-assisted microphase separation appears to offer considerable benefits in reducing annealing times for BCPs. However, despite the promise of this technique, little is known about the mechanism of how microwave irradiation might sponsor the molecular motion that accompanies microphase separation. In our earlier work we carried out an in situ temperature measurement during ``solvo-microwave'' annealing of poly(styrene-b-lactic acid) (PS- b-PLA) in presence of THF and also in the conventional oven. Comparing the results indicated that vapour pressure of THF might have a major role to achieve fast self- assembly (60 seconds) in PS- b-PLA film. Here, we study the kinetics of swelling by monitoring the pressure through in situ pressure experiments during ``solvo-microwave'' and solvo-thermal annealing. The preliminary data suggest that the rate at which the THF pressure increases is the key factor. This suggests that kinetics, i.e., the rate of film swelling and diffusion, affects the order and the coherence length of the pattern. We estimated the defect density in the patterns by our recently developed defect analysis software.

  1. Effect of thermal annealing on structural properties of GeSn thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Zhang, Z. P.; Song, Y. X.; Li, Y. Y.; Wu, X. Y.; Zhu, Z. Y. S.; Han, Y.; Zhang, L. Y.; Huang, H.; Wang, S. M.

    2017-10-01

    GeSn alloy with 7.68% Sn concentration grown by molecular beam epitaxy has been rapidly annealed at different temperatures from 300°C to 800°C. Surface morphology and roughness annealed below or equal to 500°C for 1 min have no obvious changes, while the strain relaxation rate increasing. When the annealing temperature is above or equal to 600°C, significant changes occur in surface morphology and roughness, and Sn precipitation is observed at 700°C. The structural properties are analyzed by reciprocal space mapping in the symmetric (004) and asymmetric (224) planes by high resolution X-ray diffraction. The lateral correlation length and the mosaic spread are extracted for the epi-layer peaks in the asymmetric (224) diffraction. The most suitable annealing temperature to improve both the GeSn lattice quality and relaxation rate is about 500°C.

  2. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    NARCIS (Netherlands)

    Peerenboom, K. S. C.; van Dijk, J.; W. J. Goedheer,; Kroesen, G. M. W.

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been

  3. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    Science.gov (United States)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  4. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kriha, Kenneth [Gas Technology Inst., Des Plaines, IL (United States); Petitpas, Guillaume [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Melchionda, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soto, Herie [Shell, Houston TX (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-11

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used to liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.

  5. Hardness and microstructural response to thermal annealing of irradiated ASTM A533B class 1 plate steel

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, D.E. [SMS Concast, Inc., Pittsburgh, PA (United States); Kumar, A.S. [Univ. of Missouri, Rolla, MO (United States); Gelles, D.S.; Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Rosinski, S.T. [Electric Power Research Inst., Charlotte, NC (United States)

    1999-10-01

    Hardness measurements were used to determine the post-irradiation annealing response of A533B class 1 plate steel irradiated to a fluence of 1 {times} 10{sup 19} n/cm{sup 2} (E > 1 MeV) at 150 C. Rockwell hardness measurements indicated that the material had hardened by 6.6 points on the B scale after irradiation. The irradiation induced hardness increase was associated with a decrease in upper shelf energy from 63.4 J to 5-1.8 J and a temperature shift in the Charpy curve at the 41 J level from 115 C to 215 C. Specimens were annealed after irradiation at temperatures of 343 C (650 F), 399 C (750 F), and 454 C (850 F) for durations of up to one week (168 h). Hardness measurements were made to chart recovery of hardness as a function of time and temperature. Specimens annealed at the highest temperature 454 C recovered the fastest, fully recovering within 144 h. Specimens annealed at 399 C recovered completely within 168 h. Specimens annealed at the lowest temperature, 343 C recovered only {approximately}70% after 168 h of annealing. After neutron irradiation, a new feature of black spot damage was found to be superimposed on the unirradiated microstructure. The density of black spots was found to vary from 2.3 {times} 10{sup 15}/cm{sup 3} to 1.1 {times} 10{sup 16}/cm{sup 3} with an average diameter of 2.85 nm. Following annealing at 454 C for 24 h the black spot damage was completely annealed out. It was concluded that the black spot damage was responsible for 70% of the irradiation-induced hardness.

  6. Analysis of improved photovoltaic properties of pentacene/C 60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing

    Science.gov (United States)

    Yoo, Seunghyup; Potscavage, William J.; Domercq, Benoit; Han, Sung-Ho; Li, Tai-De; Jones, Simon C.; Szoszkiewicz, Robert; Levi, Dean; Riedo, Elisa; Marder, Seth R.; Kippelen, Bernard

    2007-10-01

    We report on the photovoltaic properties of organic solar cells based on pentacene and C 60 thin films with a focus on their spectral responses and the effect of thermal annealing. Spectra of external quantum efficiency (EQE) are measured and analyzed with a one-dimensional exciton diffusion model dependent upon the complex optical functions of pentacene films, which are measured by spectroscopic ellipsometry. An improvement in EQE is observed when the thickness of the bathocuproine (BCP) layer is decreased from 12 nm to 6 nm. Detailed analysis of the EQE spectra indicates that large exciton diffusion lengths in the pentacene films are responsible for the overall high EQE values near wavelengths of 668 nm. Analysis also shows that improvement in the EQE of devices with the thinner BCP layer can be attributed to a net gain in optical field distribution and improvement in carrier collection efficiency. An improvement in open-circuit voltage ( VOC) is also achieved through a thermal annealing process, leading to a net increase in power conversion efficiency. Integration of the EQE spectrum with an AM1.5 G spectrum yields a predicted power conversion efficiency of 1.8 ± 0.2%. The increase in VOC is attributed to a significant reduction in the diode reverse saturation current upon annealing.

  7. Hydrogen chemical configuration and thermal stability in tungsten disulfide nanoparticles exposed to hydrogen plasma

    OpenAIRE

    Laikhtman, Alex; Makrinich, Gennady; Sezen, Meltem; Yıldızhan, Melike Mercan; Yildizhan, Melike Mercan; Martinez, Jose I.; Dinescu, Doru; Prodana, Mariana; Enachescu, Marius; Alonso, Julio A.; Zak, Alla

    2017-01-01

    The chemical configuration and interaction mechanism of hydrogen adsorbed in inorganic nanoparticles of WS2 are investigated. Our recent approaches of using hydrogen activated by either microwave or radiofrequency plasma dramatically increased the efficiency of its adsorption on the nanoparticle surface. In the current work we put an emphasis on elucidation of the chemical configuration of the adsorbed hydrogen. This configuration is of primary importance as it affects its adsorption stabilit...

  8. Rapid thermal annealing and modulation-doping effects on InAs/GaAs quantum dots photoluminescence dependence on excitation power

    Energy Technology Data Exchange (ETDEWEB)

    Chaâbani, W. [Laboratoire Matériaux-Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, Université de Carthage, La Marsa 2070 (Tunisia); Melliti, A., E-mail: adnenmelliti@yahoo.fr [Laboratoire Matériaux-Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, Université de Carthage, La Marsa 2070 (Tunisia); Maaref, M.A. [Laboratoire Matériaux-Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, Université de Carthage, La Marsa 2070 (Tunisia); Testelin, C. [Institut des NanoSciences de Paris, UPMC Univ., Paris 06, UMR 7588, F-75005 Paris (France); CNRS, UMR 7588, INSP, F-75005 Paris (France); Lemaître, A. [Laboratoire de Photonique et Nanostructures (LPN), CNRS, Route de Nozay, F-91460 Marcoussis (France)

    2016-07-15

    The optical properties of p-doped and annealed InAs/GaAs quantum dots (QDs) was investigated by photoluminescence (PL) as a function of temperature and excitation power density (P{sub exc}). At low-T, PL spectra of rapid thermal annealing (RTA) and p-modulation doped QDs show an energy blueshift and redshift, respectively. A superlinear dependence of integrated PL intensity on P{sub exc} at high-T was found only for undoped QD. The superlinearity was suppressed by modulation-doping and RTA effects. A linear dependence of I{sub PL} at all temperatures and a decrease of the carrier-carrier Coulomb interaction at high-T was found after RTA.

  9. A Large-Area Nanoplasmonic Sensor Fabricated by Rapid Thermal Annealing Treatment for Label-Free and Multi-Point Immunoglobulin Sensing.

    Science.gov (United States)

    Lin, Hana Tzu-Han; Yang, Chuan-Kai; Lin, Chi-Chen; Wu, Albert Meng-Hsin; Wang, Lon A; Huang, Nien-Tsu

    2017-05-02

    Immunoglobulins are important biomarkers to evaluate the immune status or development of infectious diseases. To provide timely clinical treatments, it is important to continuously monitor the level of multiple immunoglobulins. Localized surface plasmon resonance (LSPR)-based nanoplasmonic sensors have been demonstrated for multiplex immunoglobulins detection. However, the sensor fabrication process is usually slow and complicated, so it is not accessible for large-area and batch fabrication. Herein, we report a large-area (2 cm × 2 cm) nanofabrication method using physical vapor deposition followed by a rapid thermal annealing treatment. To optimize the sensor performance, we systematically characterized three fabrication conditions, including (1) the deposition thickness; (2) the maximum annealing temperature, and (3) the annealing time. The corresponding absorbance spectrum profile and surface morphology of the nanostructures were observed by a UV-VIS spectrometer and atomic force microscopy. We then tested the sensitivity of the sensor using a glucose solution at different concentrations. The results showed that the sensor with 10 nm gold deposition thickness under 5-min 900 °C rapid thermal annealing can achieve the highest sensitivity (189 nm RIU-1). Finally, we integrated this nanoplasmonic sensor with a microchannel and a motorized stage to perform a 10-spot immunoglobulin detection in 50 min. Based on its real-time, dynamic and multi-point analyte detection capability, the nanoplasmonic sensor has the potential to be applied in high-throughput or multiplex immunoassay analysis, which would be beneficial for disease diagnosis or biomedical research in a simple and cost-effective platform.

  10. Silicon nanocrystals in SiN{sub x}/SiO{sub 2} hetero-superlattices: The loss of size control after thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zelenina, A., E-mail: anastasia.zelenina@imtek.uni-freiburg.de; Zacharias, M. [Faculty of Engineering, IMTEK, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, Freiburg 79110 (Germany); Sarikov, A. [Faculty of Engineering, IMTEK, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, Freiburg 79110 (Germany); V. Lashkarev Institute of Semiconductor Physics NAS Ukraine, 45 Nauki Avenue, Kiev 03028 (Ukraine); Zhigunov, D. M. [Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991 (Russian Federation); Weiss, C. [Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstr. 2, Freiburg 79110 (Germany); Zakharov, N.; Werner, P. [Max-Planck-Institute of Microstructure Physics, Weinberg 2, Halle 06120 (Germany); López-Conesa, L.; Peiró, F. [MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, C/Martí i Franquès, 1, Barcelona 08028 (Spain); Estradé, S. [MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, C/Martí i Franquès, 1, Barcelona 08028 (Spain); CCiT, Scientific and Technical Centers, Universitat de Barcelona, C/Lluís Solé i Sabaris 1, Barcelona 08028 (Spain); Dyakov, S. A. [Optics and Photonics, School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, Kista SE-16440 (Sweden)

    2014-06-28

    Superlattices containing 3 nm thick silicon rich silicon nitride sublayers and 3 nm and 10 nm thick SiO{sub 2} barriers were prepared by plasma enhanced chemical vapor deposition. Despite the as-prepared samples represented a well-kept multilayer structure with smooth interfaces, the high temperature annealing resulted in the total destruction of multilayer structure in the samples containing 3 nm SiO{sub 2} barriers. Energy-filtered transmission electron microscopy images of these samples indicated a silicon nanoclusters formation with sizes of 2.5–12.5 nm, which were randomly distributed within the structure. Although in the sample with 10 nm SiO{sub 2} barriers some fragments of the multilayer structure could be still observed after thermal annealing, nevertheless, the formation of large nanocrystals with diameters up to 10 nm was confirmed by dark field transmission electron microscopy. Thus, in contrast to the previously published results, the expected size control of silicon nanocrystals was lost. According to the FTIR results, the thermal annealing of SiN{sub x}/SiO{sub 2} superlattices led to the formation of silicon nanocrystals in mostly oxynitride matrix. Annealed samples demonstrated a photoluminescence peak at 885 nm related to the luminescence of silicon nanocrystals, as confirmed by time-resolved photoluminescence measurements. The loss of nanocrystals size control is discussed in terms of the migration of oxygen atoms from the SiO{sub 2} barriers into the silicon rich silicon nitride sublayers. A thermodynamic mechanism responsible for this process is proposed. According to this mechanism, the driving force for the oxygen migration is the gain in the configuration entropy related to the relative arrangements of oxygen and nitrogen atoms.

  11. Impact of ink synthesis on processing of inkjet-printed silicon nanoparticle thin films: A comparison of Rapid Thermal Annealing and photonic sintering

    Energy Technology Data Exchange (ETDEWEB)

    Drahi, E.; Blayac, S. [Centre Microélectronique de Provence/Ecole Nationale Supérieure des Mines de Saint Etienne, 880, avenue de Mimet Gardanne, 13541 (France); Borbely, A. [Science des Matériaux et des Structures/Ecole Nationale Supérieure des Mines de Saint Etienne, 158, cours Fauriel Saint Etienne Cedex 2, 42023 (France); Benaben, P. [Centre Microélectronique de Provence/Ecole Nationale Supérieure des Mines de Saint Etienne, 880, avenue de Mimet Gardanne, 13541 (France)

    2015-01-01

    Inkjet printing has a high potential for cost reduction in solar cell and thermoelectric industry. This study demonstrates that silicon thin films can be produced by inkjet-printing of silicon nanoparticles followed by subsequent drying and annealing steps. Ink formulation is crucial for the sintering of the silicon nanoparticles and control of the microstructure at low temperature. Upon heating, the microstructure is modified from porous layer made of juxtaposed silicon nanoparticles to denser layer with coarser grains. This evolution is monitored by scanning electron microscopy and by micro-Raman spectroscopy, which offer a fast and precise characterization of the microstructure and chemical composition of thin films. Above a threshold temperature of 800 °C cracks appear within thin film and substrate because of the stress induced by the oxidation of the surface. An innovative sintering method, photonic annealing, is studied in order to reduce both oxidation and stress in the thin films as well as reducing processing time. Evolution of the thermal conductivity is performed by micro-Raman spectroscopy and can be tailored in a large range between ~ 1 and ~ 100 W·m{sup −1}·K{sup −1} depending on the sintering method and atmosphere. Therefore control of the microstructure evolution with applied annealing process allows tailoring of both microstructure and thermal conductivity of the silicon thin films. - Highlights: • Impact of ink synthesis on sintering (Si nanoparticle surface chemistry) • Photonic annealing of inkjet printed Si nanoparticles • Micro-Raman spectroscopy and X-Ray Diffraction for thin film characterization.

  12. Effect of thermal annealing on electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available The effect of thermal annealing on the electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4 ns at 10 (300 K, which was more than two (four times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  13. Effect of thermal annealing on electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Harasawa, Ryo; Yasue, Yuya; Aritake, Takanori; Jiang, Canyu; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ji, Lian; Lu, Shulong [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou (China)

    2016-08-15

    The effect of thermal annealing on the electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4) ns at 10 (300) K, which was more than two (four) times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  14. Simulated Annealing Approach to the Temperature-Emissivity Separation Problem in Thermal Remote Sensing Part One: Mathematical Background

    CERN Document Server

    Morgan, John A

    2016-01-01

    The method of simulated annealing is adapted to the temperature-emissivity separation (TES) problem. A patch of surface at the bottom of the atmosphere is assumed to be a greybody emitter with spectral emissivity $\\epsilon(k)$ describable by a mixture of spectral endmembers. We prove that a simulated annealing search conducted according to a suitable schedule converges to a solution maximizing the $\\textit{A-Posteriori}$ probability that spectral radiance detected at the top of the atmosphere originates from a patch with stipulated $T$ and $\\epsilon(k)$. Any such solution will be nonunique. The average of a large number of simulated annealing solutions, however, converges almost surely to a unique Maximum A-Posteriori solution for $T$ and $\\epsilon(k)$. The limitation to a stipulated set of endmember emissivities may be relaxed by allowing the number of endmembers to grow without bound, and to be generic continuous functions of wavenumber with bounded first derivatives with respect to wavenumber.

  15. Rapid thermal annealing of p-type silicon: Correlation between deep-level transient spectroscopy and lifetime measurements

    Science.gov (United States)

    Poggi, Antonella; Susi, Enrichetta; Bumuri, Maria Angela; Carotta, Maria Cristina

    1994-03-01

    The correlation between minority carrier lifetime and deep-level transient spectroscopy measurements was used in order to obtain more information about the mechanisms of defect formation and annealing in CS and FZ silicon during high temperature heating by lamp. Different energy levels induced by lamp annealings were detected: a good correlation with the lifetime behavior was observed of a donor at E(sub v) + 0.29 eV. No direct influence of the oxygen content was detected at 1050 C, while at 750 C a gettering action of oxygen aggregates can be hypothesized.

  16. Functional differential equations of neutral type with integrable weak singularity: hydrogen thermal desorption model

    Science.gov (United States)

    Zaika, Yury V.; Kostikova, Ekaterina K.

    2017-11-01

    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a thermal desorption functional differential equations of neutral type with integrable weak singularity and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  17. Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem

    Science.gov (United States)

    Kostikova, E. K.; Zaika, Yu V.

    2016-11-01

    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  18. Non-thermal production of pure hydrogen from biomass: HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.; Koukios, E.G.; Niel, van E.W.J.; Eroglu, I.; Modigell, M.; Friedl, A.; Wukovits, W.; Ahrer, W.

    2010-01-01

    The objectives and methodology of the EU-funded research project HYVOLUTION devoted to hydrogen production from biomass are reviewed. The main scientific objective of this project is the development of a novel two-stage bioprocess employing thermophilic and phototrophic bacteria, for the

  19. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  20. Origin of a Raman scattering peak generated in single-walled carbon nanotubes by X-ray irradiation and subsequent thermal annealing

    Directory of Open Access Journals (Sweden)

    Toshiya Murakami

    2016-08-01

    Full Text Available We have found that a Raman scattering (RS peak around 1870 cm−1 was produced by the annealing of the X-ray irradiated film of single-walled carbon nanotubes (SWNTs at 450 oC. The intensity of 1870-cm−1 peak showed a maximum at the probe energy of 2.3 eV for the RS spectroscopy with various probe lasers. Both the peak position and the probe-energy dependence were almost identical to those of the one-dimensional carbon chains previously reported in multi-walled carbon nanotubes. Consequently, we concluded that the 1870-cm−1 peak found in the present study is attributed to carbon chains. The formation of carbon chains by the annealing at temperature lower than 500 oC is firstly reported by the present study. The carbon chains would be formed by aggregation of the interstitial carbons, which are formed as a counterpart of carbon vacancies by X-ray irradiation diffused on SWNT walls. The result indicates that the combination of X-ray irradiation and subsequent thermal annealing is a feasible tool for generating new nanostructures in SWNT.

  1. Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ayachi, Boubakeur, E-mail: boubakeur.ayachi@ed.univ-lille1.fr [Institute of Electronics, Microelectronics and Nanotechnology, Lille 1 University, Avenue Poincaré, UMR 8520, CS 60069, Villeneuve d’Ascq 59652 (France); Aviles, Thomas [CROSSLUX, Avenue Georges Vacher, ZI Rousset Peynier, Immeuble CCE, Rousset 13106 (France); Vilcot, Jean-Pierre [Institute of Electronics, Microelectronics and Nanotechnology, Lille 1 University, Avenue Poincaré, UMR 8520, CS 60069, Villeneuve d’Ascq 59652 (France); Sion, Cathy [Institute of Electronics, Microelectronics and Nanotechnology, Lille 1 University, Avenue Poincaré, UMR 8520, CS 60069, Villeneuve d’Ascq 59652 (France); Ecole Centrale Lille, Cité Scientifique – CS20048, Villeneuve d’Ascq 59651 (France)

    2016-03-15

    Graphical abstract: - Highlights: • High quality pulsed-DC sputtered AZO thin films were obtained after RTA treatment. • RTA for 30 s was sufficient to achieve uniform spatial resistivity distribution. • RTA for longer than 1 min showed a small increase in resistivity value. • Such improvement was attributed to grain boundaries passivation and doping activation. • In the framework of low cost solar cells development, RTA process would be helpful. - Abstract: Room temperature deposited aluminium-doped zinc oxide thin films on glass substrate, using pulsed-DC magnetron sputtering, have shown high optical transmittance and low electrical resistivity with high uniformity of its spatial distribution after they were exposed to a rapid thermal annealing process at 400 °C under N{sub 2}H{sub 2} atmosphere. It is particularly interesting to note that such an annealing process of AZO thin films for only 30 s was sufficient, on one hand to improve their optical transmittance from 73% to 86%, on the other hand to both decrease their resistivity from 1.7 × 10{sup −3} Ω cm to 5.1 × 10{sup −4} Ω cm and achieve the highest uniformity spatial distribution. To understand the mechanisms behind such improvements of the optoelectronic properties, electrical, optical, structural and morphological changes as a function of annealing time have been investigated by using hall measurement, UV–visible spectrometry, X-ray diffraction and scanning electron microscope imaging, respectively.

  2. Origin of a Raman scattering peak generated in single-walled carbon nanotubes by X-ray irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Toshiya; Matsuda, Mitsuaki; Itoh, Chihiro, E-mail: citoh@sys.wakayama-u.ac.jp [Department of Materials Science, Wakayama University, 930 Sakaedani, Wakayama 640-8510 (Japan); Kisoda, Kenji [Department of Physics, Wakayama University, 930 Sakaedani, Wakayama 640-8510 (Japan)

    2016-08-15

    We have found that a Raman scattering (RS) peak around 1870 cm{sup −1} was produced by the annealing of the X-ray irradiated film of single-walled carbon nanotubes (SWNTs) at 450 {sup o}C. The intensity of 1870-cm{sup −1} peak showed a maximum at the probe energy of 2.3 eV for the RS spectroscopy with various probe lasers. Both the peak position and the probe-energy dependence were almost identical to those of the one-dimensional carbon chains previously reported in multi-walled carbon nanotubes. Consequently, we concluded that the 1870-cm{sup −1} peak found in the present study is attributed to carbon chains. The formation of carbon chains by the annealing at temperature lower than 500 {sup o}C is firstly reported by the present study. The carbon chains would be formed by aggregation of the interstitial carbons, which are formed as a counterpart of carbon vacancies by X-ray irradiation diffused on SWNT walls. The result indicates that the combination of X-ray irradiation and subsequent thermal annealing is a feasible tool for generating new nanostructures in SWNT.

  3. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique

    Science.gov (United States)

    Hosokawa, Yuichi; Wada, Kodai; Tanaka, Masaki; Tomita, Koji; Takashiri, Masayuki

    2018-02-01

    High-purity hexagonal bismuth telluride (Bi2Te3) nanoplates were prepared by a solvothermal synthesis method, followed by the fabrication of nanoplate thin films by the drop-casting technique. The Bi2Te3 nanoplates exhibited a single-crystalline phase with a rhombohedral crystal structure. The nanoplates had a flat surface with edge sizes ranging from 500 to 2000 nm (average size of 1000 nm) and a thickness of less than 50 nm. The resulting Bi2Te3 nanoplate thin films were composed of well-aligned hexagonal nanoplates along the surface direction with an approximate film thickness of 40 µm. To tightly connect the nanoplates together within the thin films, thermal annealing was performed at different temperatures. We found that the thermoelectric properties, especially the Seebeck coefficient, were very sensitive to the annealing temperature. Finally, the optimum annealing temperature was determined to be 250 °C and the Seebeck coefficient and power factor were ‑300 µV/K and 3.5 µW/(cm·K2), respectively.

  4. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  5. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    Energy Technology Data Exchange (ETDEWEB)

    Mares, G. [EUROTEST S.A., Bucharest (Romania). Research, Equipment Testing, Industrial Engineering and Scientific Services; Notingher, P. [Univ. Politehnica, Bucharest (Romania). Faculty of Electrical Engineering

    1996-12-31

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation.

  6. Measurements of hydrogen content in bulk niobium by Thermal Desorption Spectroscopy

    CERN Document Server

    Hakovirta, M

    2001-01-01

    The hydrogen content of bulk niobium has been studied by Thermal Desorption Spectroscopy. The work has been focussed initially on the influence of the vacuum firing and the surface chemical treatment. It is planned to extend the investigation to niobium samples of different quality and origin to ascertain the interest of using the Thermal Desorption Spectroscopy technique to qualify the raw niobium sheets to be used for cavity manufacturing

  7. Correlation of Etch Pits and Dislocations in As-grown and Thermal Cycle-Annealed HgCdTe(211) Films

    Science.gov (United States)

    Vaghayenegar, M.; Jacobs, R. N.; Benson, J. D.; Stoltz, A. J.; Almeida, L. A.; Smith, David J.

    2017-08-01

    This paper reports observations of the different types of etch pits and dislocations present in thick HgCdTe (211) layers grown by molecular beam epitaxy on CdTe/Si (211) composite substrates. Dislocation analysis for as-grown and thermal cycle-annealed samples has been carried out using bright-field transmission electron microscopy. Triangular pits present in as-grown material are associated with a mixture of Frank partials and perfect dislocations, while pits with fish-eye shapes have perfect dislocations with 1/2[0\\bar{1}1] Burgers vector. The dislocations beneath skew pits are more complex as they have two different crystallographic directions, and are associated with a mixture of Shockley partials and perfect dislocations. Dislocation analysis of samples after thermal cycle annealing (TCA) shows that the majority of dislocations under the etch pits are short segments of perfect dislocations with 1/2[0\\bar{1}1] Burgers vector while the remainder are Shockley partials. The absence of fish-eye shape pits in TCA samples suggests that they are associated with mobile dislocations that have reacted during annealing, causing the overall etch pit density to be reduced. Very large pits with a density ˜2×103 cm-2 are observed in as-grown and TCA samples. These defects thread from within the CdTe buffer layer into the upper regions of the HgCdTe layers. Their depth in as-grown material is so large that it is not possible to locate and identify the underlying defects.

  8. Hydrogen gas filling into an actual tank at high pressure and optimization of its thermal characteristics

    Science.gov (United States)

    Khan, Md. Tawhidul Islam; Monde, Masanori; Setoguchi, Toshiaki

    2009-09-01

    Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Different types of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel and typically carbon fiber reinforced plastic (CFRP) materials are commercially used in hydrogen vessels. An aluminum lined vessel is easy to construct and posses high thermal conductivity compared to other commercially available vessels. However, compared to CFRP lined vessel, it has low strength capacity and safety factors. Therefore, nowadays, CFRP lined vessels are becoming more popular in hydrogen vehicles. Moreover, CFRP lined vessel has an advantage of light weight. CFRP, although, has many desirable properties in reducing the weight and in increasing the strength, it is also necessary to keep the material temperature below 85 °C for maintaining stringent safety requirements. While filling process occurs, the temperature can be exceeded due to the compression works of the gas flow. Therefore, it is very important to optimize the hydrogen filling system to avoid the crossing of the critical limit of the temperature rise. Computer-aided simulation has been conducted to characterize the hydrogen filling to optimize the technique. Three types of hydrogen vessels with different volumes have been analyzed for optimizing the charging characteristics of hydrogen to test vessels. Gas temperatures are measured inside representative vessels in the supply reservoirs (H2 storages) and at the inlet to the test tank during filling.

  9. PCM Thermal Control of Nickel-Hydrogen Batteries

    Science.gov (United States)

    1993-06-01

    vessel DOD depth of discharge EOL end of life ESLI Energy Science Laboratories, Inc. Na-S sodium sulfur Ni-H2 nickel hydrogen Ni-Cd nickel cadmium NiMH...high temperature sodium - sulfur batteries forFigure 1 PCC conductivity structure design stli adeeti eil plctos options. satellite and electric vehicle...Table I Phase change material candidates for storing 10 kWh heat within AT = 30’C at 350’C. Material Weight (kg) Volume (Liter) Sodium - sulfur cells

  10. Optimization of the contact resistance in the interface structure of n-type Al/a-SiC:H by thermal annealing for optoelectronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Roberto; Mireles, Jose Jr. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, 32310, Chihuahua (Mexico); Torres, Alfonso; Zuniga, Carlos; Moreno, Mario [National Institute for Astrophysics Optics and Electronics INAOE, Luis E. Erro 1, PO Box 51 and 216, 7200, Puebla (Mexico)

    2010-07-15

    The presented work meets the requirements for integration of amorphous silicon carbon films with silicon technology in order to obtain a complete optoelectronic system such as light emitting diodes and its electronic readout circuits. The key enabler for this integration scheme is the low temperature of deposition of a-SiC:H films and an ohmic behavior in the interface metal/a-SiC:H. In this work, the optimization of the interface Al/a-SiC:H films are performed by means of thermal annealing timing. The a-SiC:H films were deposited by enhanced chemical vapor deposition from CH{sub 4}/SiH{sub 4} and C{sub 2}H{sub 2}/SiH{sub 4} mixtures. The structural and optical properties of the deposited films are presented. An implantation phosphorous dose was used for doping before fabrication of patterned aluminum contacts. The implanted films were electrically characterized by the transfer length method (TLM) measuring a sheet resistance value as low as 171 M{omega}/square. The Schottky behavior was improved to ohmic behavior after several hours in thermal annealing treatments at 350 C, which allows to obtain a reasonable contact resistance values in the range from 8.6 to 26.8 k{omega}. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. The effect of the rapid thermal annealing on the interdiffusion and the reaction at the interface of the binary system Cr/Si

    Energy Technology Data Exchange (ETDEWEB)

    Merabet, A. [Laboratoire Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, Setif 19000 (Algeria)]. E-mail: merabet_abdelali@yahoo.fr

    2004-12-15

    In order to understand the growth mechanism of the silicides and the effect of the dopant on the electrical activity, a thin layer of chromium (100 nm) is deposited on the single crystal silicon (1 0 0) substrate implanted (10{sup 15} As{sup +} atoms/cm{sup 2}, 100 keV) and non implanted. Afterwards, we performed a rapid thermal annealing in the interval of temperature (450-600 deg. C) for a fixed duration of 45 s. The samples are analyzed by X ray-diffraction (XRD) and Rutherford backscattering spectrometry (RBS). The electrical activity has been investigated by the method of the four-point probes. The analysis of the samples by XRD and RBS showed that the rapid thermal annealing (RTA) leads to a reaction at the interface Cr/Si inducing the formation and the growth of the unique silicide CrSi{sub 2}. It is also established that the kinetics growth of CrSi{sub 2} presents a linear evolution with temperature. This fact shows that the growth is governed by a chemical reaction of the interface. Sheet resistance measurements have been performed to study the electrical behavior for these structures. It is worth to point out that the presence of the implanted arsenic in the single crystal silicon increased the resistance in a significant manner.

  12. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  13. Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten

    NARCIS (Netherlands)

    Wirtz, M.; Linke, J.; Pintsuk, G.; Rapp, J.; Wright, G. M.

    2012-01-01

    The influence of high flux hydrogen-plasma on the thermal shock behaviour of tungsten was investigated in a combined experiment using the linear plasma device Pilot-PSI and the electron beam facility JUDITH 1. Tungsten targets were exposed to high flux hydrogen plasma, cyclic thermal shock tests and

  14. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    Science.gov (United States)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  15. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  16. Study of thermal insulation for airborne liquid hydrogen fuel tanks

    Science.gov (United States)

    Ruccia, F. E.; Lindstrom, R. S.; Lucas, R. M.

    1978-01-01

    A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept.

  17. Effect of thermal annealing on scintillation properties of Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12} under different atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Ding, Dongzhou; Wu, Yuntao; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Wang, Qingqing; Ye, Le; Ren, Guohao [Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai (China)

    2017-05-15

    Cerium-doped 1% Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12}(GYGAG) single crystal samples grown via Czochralski method were annealed under air, O{sub 2} and N{sub 2} atmospheres from 350 to 1400 C. The X-ray excited luminescence spectra, energy spectra and UV as well as thermally stimulated luminescence (TSL) spectra were performed comparatively on ''as-grown'' and thermally annealed samples. It was found that the luminescence efficiency after annealing in air and O{sub 2} was significantly enhanced compared to the non-annealed samples and this phenomenon was suggested to be caused by the existence of some oxygen vacancies in the Ce:GYGAG crystals. And the oxygen vacancies in the as-grown GYGAG crystals can be effectively eliminated by means of annealing in O{sub 2} containing atmosphere without changing the luminescence mechanism. From the TSL curves before and after annealing, three traps within 77-650 K were found to be related to oxygen vacancies. (orig.)

  18. Black titania: effect of hydrogenation on structural and thermal stability of nanotitania

    Science.gov (United States)

    Khanam, Rizwin; Taparia, Dolly; Mondal, Biplob; Mohanta, Dambarudhar

    2016-02-01

    We report on the effect of hydrogenation on sol-gel-derived, anatase-phase TiO2 nanoparticles. The structural analysis of white nanotitania (W-TiO2) and hydrogenated black titania (B-TiO2) has been carried out by X-ray diffraction (XRD) studies, which confirms anatase phase for both the cases, but with weak diffraction signals in the latter system. Upon hydrogenation, nanotitania system is believed to acquire a disordered phase in the form of a thin amorphous layer surrounding the nanoparticles, which can be realized through transmission electron microscopy analyses. As compared to W-TiO2 (~3.15 eV), the optical band gap of B-TiO2 is substantially reduced with respective band gap values of ~1.99 and 1.53 eV for 0.5 and 1 % H2 inclusion cases. Moreover, thermogravimetric analysis reveals high temperature thermal stability of B-TiO2 system, especially in the range of 350-600 °C. Exploiting thermal, optical and electronic properties of hydrogenated nanotitania could find scope in infrared optics, hydrogen storage and suitable photocatalytic applications.

  19. Thermally Stable Dialkylzirconocenes with β-Hydrogens. Synthesis and Diastereoselectivity

    OpenAIRE

    Wendt, Ola F.; Bercaw, John E.

    2001-01-01

    Alkylation of Cp^r_2ZrCl_2 (Cpr = Cp (η^5-C_5H_5), Cp‘ (η^5-C_5H_4Me), Cp^* (η^5-C_5Me_5)) and CpCp^*Zr(CH_3)Cl with 1-lithio-2-methylpentane (R^1Li) gives the corresponding dialkylzirconocenes Cp^r_2ZrR^1_2 and CpCp^*Zr(CH_3)R^1, in high yields. Such alkyls have unprecedented thermal stabilities, especially for the CpCp^* ligand framework. The diastereomers of the Cp^r_2ZrR^1_2 complexes are formed in a statistical distribution, whereas the diastereomers of CpCp^*Zr(CH_3)R^1 form in a 2:3 ra...

  20. MECHANICAL ALLOYING AND THERMAL TREATMENT FOR PRODUCTION OF ZIRCONIUM IRON HYDROGEN ISOTOPE GETTERS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2008-02-20

    The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support production-scale hydrogen isotope separations. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling.

  1. Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices

    Science.gov (United States)

    Devi, Ksh. Devarani; Ojha, Sunil; Singh, Fouran

    2018-03-01

    Gold nanoparticles (AuNPs) embedded in fused silica and sapphire dielectric matrices were synthesized by Au ion implantation. Systematic investigations were carried out to study the influence of implantation dose, post annealing temperature, swift heavy ion (SHI) irradiation and radiation enhanced diffusion (RED). Rutherford Backscattering Spectrometry (RBS) measurements were carried out to quantify concentration and depth profile of Au present in the host matrices. X-ray diffraction (XRD) was employed to characterize AuNPs formation. As-implanted and post-annealed films were irradiated using 100 MeV Ag ions to investigate the effect of electronic energy deposition on size and shape of NPs, which is estimated indirectly by the peak shape analysis of surface plasmon resonance (SPR). The effect of volume fraction of Au and their redistribution is also reported. A strong absorption in near infra red region is also noticed and understood by the formation of percolated NPs in dielectric matrices. It is quite clear from these results that the effect of RED assisted Oswald ripening is much more pronounced than the conventional Oswald ripening for the growth of NPs in the case of silica host matrices. However for sapphire matrices, it seems that growth of NPs already completed during implantation and it may be attributed to the high diffusivity of Au in sapphire matrices during implantation process.

  2. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects

    Directory of Open Access Journals (Sweden)

    Qiuyan Yang

    2017-10-01

    Full Text Available Solvent vapor annealing of block copolymer (BCP thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for nanolithography and hybrid materials preparation. However, precise control of the arising morphologies is essential, but in most cases difficult to achieve. In this work, we investigated the solvent and thickness effects on the morphology of poly(styrene-b-2 vinyl pyridine (PS-b-P2VP thin films with a film thickness range from 0.4 L0 up to 0.8 L0. Ordered perpendicular structures were achieved. One of the main merits of our work is that the phase behavior of the ultra-high molecular weight BCP thin films, which hold a 100-nm sized domain distance, can be easily monitored via current available techniques, such as scanning electron microscope (SEM, atomic force microscope (AFM, and transmission electron microscope (TEM. Systematic monitoring of the self-assembly behavior during solvent vapor annealing can thus provide an experimental guideline for the optimization of processing conditions of related BCP films systems.

  3. Solid-State Autocatalysis and Oscillatory Reactions in Thermally Processed Hydrogen Loaded Germanosilicate Fibres

    DEFF Research Database (Denmark)

    Canning, John; Sørensen, Henrik Rokkjær; Kristensen, Martin

    2005-01-01

    Solid-state autocatalysis leading to oscillatory behaviour in GeOH and SiOH formation is demonstrated in optical fibres processed at 500o C. The results confirm the proposed view that hydrogen accelerates change in processed optical fibres principally through autocatalysis. Diffusion of OH through...... hydrogen hopping is thought to be instrumental in terminating this process. To our knowledge this is the first demonstration of solid-state autocatalysis in a non-decomposing medium. The demonstration of complexity offers potentially much more sophisticated tailoring of thermally processed and UV processed...... device properties....

  4. Thermal Annealing to Modulate the Shape Memory Behavior of a Biobased and Biocompatible Triblock Copolymer Scaffold in the Human Body Temperature Range.

    Science.gov (United States)

    Merlettini, Andrea; Gigli, Matteo; Ramella, Martina; Gualandi, Chiara; Soccio, Michelina; Boccafoschi, Francesca; Munari, Andrea; Lotti, Nadia; Focarete, Maria Letizia

    2017-08-14

    A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.

  5. Regular Organic Solar Cells with Efficiency over 10% and Promoted Stability by Ligand- and Thermal Annealing-Free Al-Doped ZnO Cathode Interlayer.

    Science.gov (United States)

    Liu, Xiaohui; Wang, Hai-Qiao; Li, Yaru; Gui, Zhenzhen; Ming, Shuaiqiang; Usman, Khurram; Zhang, Wenjun; Fang, Junfeng

    2017-08-01

    Landmark power conversion efficiency (PCE) over 10% has been accomplished in the past year for single-junction organic solar cell (OSCs), suggesting a promising potential application of this technology. However, most of the high efficient OSCs are based on inverted configuration. Regular structure OSCs with both high efficiency and good stability are still rarely reported to date. In this work, by utilizing a new designed ligand-free and non-thermal-annealing-treated Al-doped ZnO cathode interlayer, high efficiency and greatly improved stability are simultaneously realized in regular OSCs. The highest PCE of 10.14% is accomplished for single-junction regular OSCs with active blend of poly [[2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno [3,4-b]thiophenediyl

  6. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...... reflector increases its reflectance drastically. The process is performed at low temperature (150°C) to allow the use of plastic sheets such as polyethylene naphthalate and increases the efficiency of single junction amorphous solar cells dramatically. We present the best result obtained on a flexible...... substrate: a cell with 9.9% initial efficiency and 15.82 mA/cm2 in short circuit current is realized in n-i-p configuration. © 2011 Materials Research Society....

  7. Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing.

    Science.gov (United States)

    Jeong, Yong Jin; Yun, Dong-Jin; Jang, Jaeyoung; Park, Seonuk; An, Tae Kyu; Kim, Lae Ho; Kim, Se Hyun; Park, Chan Eon

    2015-03-07

    Solution-processed organic field effect transistors (OFETs), which are amenable to facile large-area processing methods, have generated significant interest as key elements for use in all-organic electronic applications aimed at realizing low-cost, lightweight, and flexible devices. The low performance levels of n-type solution-processed bottom-contact OFETs unfortunately continue to pose a barrier to their commercialization. In this study, we introduced a combination of CVD-grown graphene source/drain (S/D) electrodes and fullerene (C60) in a solution-processable n-type semiconductor toward the fabrication of n-type bottom-contact OFETs. The C60 coating in the channel region was achieved by modifying the surface of the oxide gate dielectric layer with a phenyl group-terminated self-assembled monolayer (SAM). The graphene and phenyl group in the SAMs induced π-π interactions with C60, which facilitated the formation of a C60 coating. We also investigated the effects of thermal annealing on the reorganization properties and field-effect performances of the overlaying solution-processed C60 semiconductors. We found that thermal annealing of the C60 layer on the graphene surface improved the crystallinity of the face-centered cubic (fcc) phase structure, which improved the OFET performance and yielded mobilities of 0.055 cm(2) V(-1) s(-1). This approach enables the realization of solution-processed C60-based FETs using CVD-grown graphene S/D electrodes via inexpensive and solution-process techniques.

  8. Effect of thermal annealing on the optical and electrical properties of boron doped a-SiO{sub x}:H for thin-film silicon solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinjoo [College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Lee, Sunwha [College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Applied Optics and Energy Research Group, Korea Institute of Industrial Technology, Oryong-dong 1110-9, Buk-ku, Gwangju 506-824 (Korea, Republic of); Kim, Sunbo; Jung, Junhee; Balaji, Nagarajan [Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Dao, Vinh Ai; Lee, Youn-Jung [College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2015-07-31

    The p-type layer in a p-i-n thin-film solar cell plays a crucial role in determining efficiency. The requirements for p-type layer films are high optical band gap (E{sub g}), narrow valence band tail to minimize optical absorption, high dark conductivity, and low activation energy to reduce the parasitic series resistance of the solar cell. We investigated the effects of temperature during film growth and post-deposition thermal annealing on the optical and electronic properties of p-type amorphous silicon oxide films (p-a-SiO{sub x}:H) for thin-film silicon solar cell applications. The activation energy of thermally annealed p-a-SiO{sub x}:H film prepared at low substrate temperature decreased from 0.72 eV to 0.56 eV with similar E{sub g}. Our improvements are explained in the changed ratio of conjugation with the three- and four-fold coordinated boron atoms by the shift of the B (1 s) X-ray photoelectron spectrum. Taking into account the reversible electrical change by thermal annealing while maintaining high optical properties, we propose necessary process-procedure conditions for obtaining high photovoltaic performance in thin-film-Si solar cells with high-quality p-a-SiO{sub x}:H. We carried out device modeling of p-i-n junction amorphous silicon solar cells by employing a thermal annealing effect on p-type a-SiO{sub x}:H layer, using an advanced semiconductor analysis simulator. Due to reduced E{sub a} with high E{sub g} of p-type a-SiO{sub x}:H layer after thermal annealing, the solar cell performance of the open circuit voltage, fill factor, and conversion efficiency improved by 11.1%, 60.42%, and 53.75%, respectively. - Highlights: • We investigated the effects thermal annealing on p-a-SiO{sub x}:H films. • The E{sub a} property of annealed p-a-SiO{sub x}:H film prepared at low temperature decreased. • The simulated performance of solar cell with annealed p-type a-SiO{sub x}:H improved.

  9. Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris (8-hydroxyquinolinate) gallium films grown on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Fahmi Fariq, E-mail: fahmi982@gmail.com [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science and Engineering, University of Koya, Koya, Kurdistan Region (Iraq); Sulaiman, Khaulah [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-03

    Highlights: {yields} Achieving a broad absorption band for Gaq3 covering the whole UV and some parts of visible spectra. {yields} Increasing photoluminescence emission to five times stronger than that of pristine film. {yields} Conformational changes towards the formation of crystalline {alpha}-Gaq3 polymorph. {yields} Determination of glass transition temperature for Gaq3 (T{sub g} 182 deg. C) and Alq3 (T{sub g} = 173 deg. C). {yields} Improving and understanding the physical properties of Gaq3 film by means of thermal treatment. - Abstract: In this study we report the optical, spectroscopic, and structural properties of vacuum deposited tris (8-hydroxyquinolinate) gallium film upon thermal annealing in the temperature range from 85 deg. C to 255 deg. C under a flowing nitrogen gas for 10 min. The optical UV-vis-NIR and luminescence spectroscopy measurements were performed to estimate the absorption bands, optical energy gap (E{sub g}), and photoluminescence (PL) of the films. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques were used to probe the spectroscopic and structural nature of the films. We show that, by annealing the films from 85 deg. C to 235 deg. C, it is possible to achieve an enhanced absorption and increased photoluminescence to five times stronger than that of the pristine film. The PL quenching at 255 deg. C was attributed to the presence of plainer chains allow easy going for excitons to a long distance due to the crystalline region formation of {alpha}-Gaq3 polymorph. The reduction in E{sub g} and infrared absorption bands upon annealing were referred to the enhancement in {pi}-{pi} interchain interaction and conformational changes by re-arrangement of the Gaq3 quinolinate ligands, respectively. Stokes shift for the films were observed and calculated. From the differential scanning calorimetry, DSC measurements, higher glass transition temperature was observed for Gaq3 (T{sub g} = 182 deg. C) compared to

  10. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1998-08-11

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi).

  11. Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Andreasen, Birgitta

    2012-01-01

    intensity pulsed light, delivered by a commercial photonic sintering system. Thermally labile ester groups are positioned on the DTZ unit of the copolymer that can be eliminated thermally for enhanced photochemical stability and advantages in terms of processing (solubility/insolubility switching......Light induced thermocleaving of a thermally reactive copolymer based on dithienylthiazolo[5,4-d]thiazole (DTZ) and silolodithiophene (SDT) in contact with the heat sensitive substrate the heat sensitive substrate polyethyleneterphthalate (PET) was effectively demonstrated with the use of high...

  12. Experimental determination of La{sub 2}O{sub 3} thermal conductivity and its application to the thermal analysis of a-Ge/La{sub 2}O{sub 3}/c-Si laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati, Roma (Italy)], E-mail: fornarini@frascati.enea.it; Conde, J.C. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Lagoas Marcosende 9, E-36200 Vigo (Spain); Alvani, C. [Enea-Casaccia, S.P. Anguillarese 301, I-00100 Roma (Italy); Olevano, D. [Centro Sviluppo Materiali, Via di Castel Romano 100, I-00128 Roma (Italy); Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Lagoas Marcosende 9, E-36200 Vigo (Spain)

    2008-09-01

    Rare earth oxides are emerging candidates for gate oxide films as they have high dielectric constants as well as promising crystal and electronic structures. Lanthanum oxide is one of them but, even if many of its properties are known, no data exist in literature on its thermal conductivity. In this work, La{sub 2}O{sub 3} thermal diffusivity has been measured by laser flash technique in the temperature range 300 K-1600 K and, from it, its thermal conductivity has been derived. Thermal diffusivity showed a decreasing trend from 2.7 * 10{sup -6} m{sup 2}/s to 0.7 * 10{sup -6} m{sup 2}/s while thermal conductivity decreases from 6 W/m/K to 2.1 W/m/K in the studied temperature range. Results have been applied to the thermal analysis of excimer laser annealing of La{sub 2}O{sub 3}/Si and a-Ge/La{sub 2}O{sub 3}/c-Si structures.

  13. Powdered hydrogenation catalysts. An evaluation and characterization by thermal analysis and ESCA

    Energy Technology Data Exchange (ETDEWEB)

    Kosak, J.R.; Duch, M.W.

    1979-01-01

    An evaluation and characterization by thermal analysis and ESCA showed that both techniques are excellent tools for screening such catalysts, e.g., carbon-supported platinum (1, 4, or 5Vertical Bar3<) or palladium (5Vertical Bar3<) tested in the liquid-phase, batch hydrogenation of p-nitrotoluene at 120/sup 0/C and 500 psig hydrogen. Thermal analysis, a chemisorption technique combined with pressure differential scanning calorimetry, affords a fast, practical means for monitoring the reproducibility of both unreduced and reduced catalysts and yields direct information on catalyst behavior in the presence of hydrogen. ESCA measures relative metal dispersion and permits the evaluation of completeness of reduction in those catalysts after prereduction. The combination of the two techniques provides comparison data about metal dispersion on the support and information on the chemical state of the metal, the latter being particularly useful for characterizing catalyst selectivity. For unreduced or completely reduced catalysts, both techniques give similar hydrogenation performance predictions, but for prereduced catalysts with only partial metal conversion to the zero oxidation state, ESCA yields more reliable data.

  14. Collisions at thermal energy between metastable hydrogen atoms and hydrogen molecules: Total and differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, G.; Perales, F.; Miniatura, C.; Robert, J.; Reinhardt, J.; Vecchiocattivi, F.; Baudon, J. (Paris-13 Univ., 93 - Villetaneuse (France). Lab. de Physique des Lasers)

    1990-10-01

    A metastable hydrogen (deuterium) atom source in which groundstate atoms produced by a RF discharge dissociator are bombarded by electrons, provides a relatively large amount of slow metastable atoms (velocity 3-5 km/s). Total integral cross sections for H{sup *}(D{sup *})(2s)+H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}, {nu}=0) collisions have been measured in a wide range of relative velocity (2,5-30 km/s), by using the attenuation method. A significant improvement of accuracy is obtained, with respect to previous measurements, at low relative velocities. Total cross sections for H{sup *} and D{sup *}, as functions of the relative velocity, are different, especially in the low velocity range. H{sup *}+H{sub 2} total differential cross sections have also been measured, with an angular spread of 3.6deg, for two different collision energy distributions, centered respectively at 100 meV and 390 meV. A first attempt of theoretical analysis of the cross sections, by means of an optical potential, is presented. (orig.).

  15. Photovoltaic performance improvement in planar P3HT/CdS solar cells induced by structural, optical and electrical property modification in thermal annealed P3HT thin films

    Science.gov (United States)

    Cortina-Marrero, Hugo Jorge; Martínez-Alonso, Claudia; Hechavarría-Difur, Liliana; Hu, Hailin

    2013-07-01

    Bilayer hybrid solar cells were prepared by solution deposition of CdS thin films on conductive glass substrates (ITO), followed by spin-coating or drop-casting poly (3-hexylthiophene) (P3HT) solution on a CdS surface. After a slow drying process, the P3HT films of different thicknesses (from 100 to 725 nm) were annealed at temperatures (T1) from 110 to 190 °C, called pre-metal contact annealing. Then carbon paint was collocated on top of P3HT and gold was evaporated. The whole structure was annealed for the second time, called post-metal contact annealing, at temperature (T2) between 110 and 190 °C. The continuous increase of the (1 0 0) crystalline plane and the optical absorption coefficient of P3HT films with annealing temperatures indicates the improvement of molecular order inside the polymer films induced by the thermal annealing process. The better ordered P3HT films lead to lower series resistance and higher fill factor in the corresponding solar cells, suggesting the enlargement of charge carrier mobility in annealed P3HT films. On the other hand, the photovoltaic performance is also affected by T2 temperature; a low T2 improves the ohmic contact between P3HT and the metal contact to benefit the charge carrier extraction, whereas a high T2 may deteriorate that union. The same observation was obtained in CdS/P3HT solar cells with P3HT films of different thicknesses. The best energy conversion efficiency of 0.44% was obtained in CdS/P3HT cells with 305 nm thick P3HT annealed at T1 = 190 °C and T2 = 110 °C for 10 min each.

  16. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane

    KAUST Repository

    Swaidan, Ramy Jawdat

    2015-08-06

    Effective separation of propylene/propane is vital to the chemical industry where C3H6 is used as feedstock for a variety of important chemicals. The purity requirements are currently met with cryogenic distillation, which is an extremely energy-intensive process. Hybrid arrangements incorporating highly selective membranes (α>20) have been proposed to “debottleneck” the process and potentially improve the economics. Selective and permeable membranes can be obtained by the design of polymers of intrinsic microporosity (PIMs). In this work, a 250 °C annealed polyimide (PIM-6FDA-OH) membrane produced among the highest reported pure-gas C3H6/C3H8 selectivity of 30 for a solution-processable polymer to date. The high selectivity resulted from enhanced diffusivity selectivity due to the formation of inter-chain charge-transfer-complexes. Although there were some inevitable losses in selectivity under 50:50 mixed-gas feed conditions due to competitive sorption, relatively high selectivities were preserved due to enhanced plasticization resistance.

  17. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  18. Behavior of hydrogen atoms in boron films during H{sub 2} and He glow discharge and thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, K.; Natsir, M.; Inoue, N. [and others

    1995-09-01

    Hydrogen absorption and desorption characteristics in boron films deposited on a graphite liner have been studied. Number of hydrogen atoms absorbed in the films is estimated from a decrease in hydrogen pressure during a hydrogen glow discharge. It was 1.9 x 10{sup 17} atoms/cm{sup 2} in the 1 hour discharge after an evacuation of H atoms contained in the original boron films by thermal desorption. Hydrogen atoms were absorbed continuously without saturation for 3 hours during the discharge. Number of H atoms absorbed reached to 2.6 x 10{sup 17} atoms/cm{sup 2} at 3 hour. A discharge in helium was carried out to investigate H desorption characteristics from hydrogen implanted boron films. It was verified that reactivity for hydrogen absorption was recovered after the He discharge. Hydrogen atoms were accumulated in the films by repetition of alternate He and H{sub 2} discharge. Thermal desorption experiments have been carried out by raising the liner temperature up to 500degC for films after 1 hour, 3 hours hydrogen discharge and 6 times repetition of H{sub 2}/He discharges. Most of H atoms in the films were desorbed for all these cases. The slow absorption process was confirmed through the thermal desorption experiments. (author).

  19. Enabling n-type polycrystalline Ge junctionless FinFET of low thermal budget by in situ doping of channel and visible pulsed laser annealing

    Science.gov (United States)

    Huang, Wen-Hsien; Shieh, Jia-Min; Kao, Ming-Hsuan; Shen, Chang-Hong; Huang, Tzu-En; Wang, Hsing-Hsiang; Yang, Chih-Chao; Hsieh, Tung-Ying; Hsieh, Jin-Long; Yu, Peichen; Yeh, Wen-Kuan

    2017-02-01

    A low-thermal-budget n-type polycrystalline Ge (poly-Ge) channel that was prepared by plasma in-situ-doped nanocrystalline Ge (nc-Ge) and visible pulsed laser annealing exhibits a high electrically active concentration of 2 × 1019 cm-3 and a narrow Raman FWHM of 3.9 cm-1. Furthermore, the fabricated n-type poly-Ge junctionless FinFET (JL-FinFET) shows an I on/I off ratio of 6 × 104, V th of -0.3 V, and a subthreshold swing of 237 mV/dec at V d of 1 V and DIBL of 101 mV/V. The poly-Ge JL-FinFET with a high-aspect-ratio fin channel is less sensitive to V th roll-off and subthreshold-swing degradation as the gate length is scaled down to 50 nm. This low-thermal-budget JL-FinFET can be integrated into three-dimensional sequential-layer integration and flexible electronics.

  20. Preparation of Reduced Graphene Oxide:ZnO Hybrid Cathode Interlayer Using In Situ Thermal Reduction/Annealing for Interconnecting Nanostructure and Its Effect on Organic Solar Cell.

    Science.gov (United States)

    Zheng, Ding; Huang, Wei; Fan, Pu; Zheng, Yifan; Huang, Jiang; Yu, Junsheng

    2017-02-08

    A novel hybrid cathode interlayer (CIL) consisting of reduced graphene oxide and zinc oxide (ZnO) is realized in the inverted organic solar cells (OSCs). A dual-nozzle spray coating system and facile one-step in situ thermal reduction/annealing (ITR/ITA) method are introduced to precisely control the components of the CIL, assemble ZnO with graphene oxide, and reduce graphene oxide into in situ thermal reduced graphene oxide (IT-RGO), simultaneously. The ZnO:IT-RGO hybrid CIL shows high electric conductivity, interconnecting nanostructure, and matched energy level, which leads to a significant enhancement in the power conversion efficiency from 6.16% to 8.04% for PTB7:PC71BM and from 8.02% to 9.49% for PTB7-Th:PC71BM-based OSCs, respectively. This newly developed spray-coated ZnO:IT-RGO hybrid CIL based on one-step ITR/ITA treatment has the high potential to provide a facile pathway to fabricate the large-scale, fast fabrication, and high performance OSCs.

  1. Hydrogen from renewable energy: A pilot plant for thermal production and mobility

    Science.gov (United States)

    Degiorgis, L.; Santarelli, M.; Calì, M.

    In the mainframe of a research contract, a feasibility pre-design study of a hydrogen-fuelled Laboratory-Village has been carried out: the goals are the design and the simulation of a demonstration plant based on hydrogen as primary fuel. The hydrogen is produced by electrolysis, from electric power produced by a mix of hydroelectric and solar photovoltaic plants. The plant will be located in a small remote village in Valle d'Aosta (Italy). This country has large water availability from glaciers and mountains, so electricity production from fluent water hydroelectric plants is abundant and cheap. Therefore, the production of hydrogen during the night (instead of selling the electricity to the grid at very low prices) could become a good economic choice, and hydrogen could be a competitive local fuel in term of costs, if compared to oil or gas. The H 2 will be produced and stored, and used to feed a hydrogen vehicle and for thermal purposes (heating requirement of three buildings), allowing a real field test (Village-Laboratory). Due to the high level of pressure requested for H 2 storage on-board in the vehicle, the choice has been the experimental test of a prototype laboratory-scale high-pressure PEM electrolyzer: a test laboratory has been designed, to investigate the energy savings related to this technology. In the paper, the description of the dynamic simulation of the plant (developed with TRNSYS) together with a detailed design and an economic analysis (proving the technical and economical feasibility of the installation) has been carried out. Moreover, the design of the high-pressure PEM electrolyzer is described.

  2. Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water.

    Science.gov (United States)

    Li, Gao; Zeng, Chenjie; Jin, Rongchao

    2014-03-05

    We report the synthesis and catalytic application of thermally robust gold nanoclusters formulated as Au99(SPh)42. The formula was determined by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry in conjunction with thermogravimetric analysis. The optical spectrum of Au99(SPh)42 nanoclusters shows absorption peaks at ~920 nm (1.35 eV), 730 nm (1.70 eV), 600 nm (2.07 eV), 490 nm (2.53 eV), and 400 nm (3.1 eV) in contrast to conventional gold nanoparticles, which exhibit a plasmon resonance band at 520 nm (for spherical particles). The ceria-supported Au99(SPh)42 nanoclusters were utilized as a catalyst for chemoselective hydrogenation of nitrobenzaldehyde to nitrobenzyl alcohol in water using H2 gas as the hydrogen source. The selective hydrogenation of the aldehyde group catalyzed by nanoclusters is a surprise because conventional nanogold catalysts instead give rise to the product resulting from reduction of the nitro group. The Au99(SPh)42/CeO2 catalyst gives high catalytic activity for a range of nitrobenzaldehyde derivatives and also shows excellent recyclability due to its thermal robustness. We further tested the size-dependent catalytic performance of Au25(SPh)18 and Au36(SPh)24 nanoclusters, and on the basis of their crystal structures we propose a molecular adsorption site for nitrobenzaldehyde. The nanocluster material is expected to find wide application in catalytic reactions.

  3. Modeling and testing of cryo-adsorbent hydrogen storage tanks with improved thermal isolation

    Science.gov (United States)

    Raymond, Alexander William; Reiter, Joseph

    2012-06-01

    One storage concept for hydrogen-fueled vehicles is physical adsorption of hydrogen at cryogenic temperatures (nominally 80 K). During long idle periods, parasitic heat transfer from the environment induces desorption to the tank void volume. This desorption increases tank pressure such that it must be vented. To reduce the amount of fuel lost to venting, parasitic heating is minimized using multi-layer vacuum insulation and thermally isolating structures. A model is developed to predict the amount of conduction through structural supports and hydrogen lines, radiation through multi-layer insulation, and rarified gas conduction in the vacuum jacket of a tank sized for adsorption storage. The model reveals that conduction through structural supports is significant for cases of interest. Thus, two structural support architectures are compared: one utilizing G-10 CR composite and another involving KevlarTM cable. The structural members are sized to support comparable inertial loadings; the overall parasitic heat transfer is found to be as much as 38 percent less for the KevlarTM design. A lumped-parameter tank simulation is used to relate parasitic heat transfer to dormancy time and venting rate. The results of thermal testing of a sub-scale tank simulator are compared with model predictions.

  4. Hydrogen storage by adsorption on activated carbon: Investigation of the thermal effects during the charging process

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla-Lara, G. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France); Momen, G.; Le Neindre, B.; Hassouni, K. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Marty, P.H. [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France)

    2007-07-15

    This paper presents an investigation of the thermal effects during high-pressure charging of a packed bed hydrogen storage tank. The studied column is packed with activated IRH3 carbon, which has an average surface area of 2600m{sup 2}g{sup -1} and is fed with hydrogen or helium from an external high-pressure source. The temperature at six locations in the storage tank and the pressure value at the bottom of the tank are recorded during the charging stage. Several experiments were carried out to investigate the effect of the initial flow rate on the temperature field in the reservoir and on the duration of the charging process. A study of the respective contribution of adsorption and mechanical dissipation effects to the thermal phenomena is done in the case of hydrogen. Experimental results are compared to those obtained with the commercial code Fluent. A fair agreement is found when comparing typical pressure and temperature evolutions during the tank filling. (author)

  5. A REVIEW: THE EFFECT OF OPERATING CONDITIONS AND THERMAL MANAGEMENT ON THE PERFORMANCES OF METAL HYDRIDE HYDROGEN STORAGE TANK

    Directory of Open Access Journals (Sweden)

    Taurista Perdana Syawitri

    2016-12-01

    Full Text Available For safety and operability concerns, the use of metal hydrides to store hydrogen appears to be particularly promising option for alternative energy at present. However, the process of adding, removing and distributing heat during the hydrogen charging/ discharging process is problematic due to the poor effective thermal conductivity of the metal hydride porous bed and the high enthalpies of H2 adsorption/desorption. Therefore, heat transfer is a critical factor affecting the performance of metal hydride hydrogen (MHR storage tanks. Over decade, many researches focused on MHR’s operating conditions and its thermal management to improve its performance.

  6. Directed Self-Assembly of Polystyrene- b -poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guan-Wen [MOE Laboratory of; Wu, Guang-Peng [MOE Laboratory of; Chen, Xuanxuan [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Xiong, Shisheng [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Arges, Christopher G. [Cain Department; Ji, Shengxiang [Key Laboratory of Polymer Ecomaterials,; Nealey, Paul F. [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Lu, Xiao-Bing [State Key Laboratory of; Darensbourg, Donald J. [Department of Chemistry, Texas A& amp,M University, 3255 TAMU, College Station, Texas 77843, United States; Xu, Zhi-Kang [MOE Laboratory of

    2017-01-23

    Directed self-assembly (DSA) of block copolymers (BCPs) combines advantages of conventional photolithography and polymeric materials and shows competence in semiconductors and data storage applications. Driven by the more integrated, much smaller and higher performance of the electronics, however, the industry standard polystyrene-block-poly(methyl methacrylate) (PS-b-PMM.A) in DSA strategy cannot meet the rapid development of lithography technology because its intrinsic limited Flory-Huggins interaction parameter (chi). Despite hundreds of block copolymers have been developed, these BCPs systems are usually subject to a trade-off between high chi and thermal treatment, resulting in incompatibility with the current nanomanufacturing fab processes. Here we discover that polystyrene-b-poly(propylene carbonate) (PS-b-PPC) is well qualified to fill key positions on DSA strategy for the next-generation lithography. The estimated chi-value for PS-b-PPC is 0.079, that is, two times greater than PS-b-PMMA (chi = 0.029 at 150 degrees C), while processing the ability to form perpendicular sub-10 nm morphologies (cylinder and lamellae) via the industry preferred thermal-treatment. DSA of lamellae forming PS-b-PPC on chemoepitaxial density multiplication demonstrates successful sub-10 nm long-range order features on large-area patterning for nanofabrication. Pattern transfer to the silicon substrate through industrial sequential infiltration synthesis is also implemented successfully. Compared with the previously reported methods to orientation control BCPs with high chi-value (including solvent annealing, neutral top-coats, and chemical modification), the easy preparation, high chi value, and etch selectivity while enduring thermal treatment demonstrates PS-b-PPC as a rare and valuable candidate for advancing the field of nanolithography.

  7. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  8. Irreversibility analysis of hydrogen separation schemes in thermochemical cycles. [Condensation, physical absorption, diffusion, physical adsorption, thermal adsorption, and electrochemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.

    1978-01-01

    Six processes have been evaluated as regards irreversibility generation for hydrogen separation from binary gas mixtures. The results are presented as a series of plots of separation efficiency against the mol fraction hydrogen in the feed gas. Three processes, condensation, physical absorption and electrochemical separation indicate increasing efficiency with hydrogen content. The other processes, physical and thermal adsorption, and diffusion show maxima in efficiency at a hydrogen content of 50 mol percent. Choice of separation process will also depend on such parameters as condition of feed, impurity content and capital investment. For thermochemical cycles, schemes based on low temperature heat availability are preferable to those requiring a work input.

  9. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by

  10. Thermal stability of quaternary alloy (InAlGaAs)-capped InAs/GaAs multilayer quantum dot heterostructures with variation in growth rate, barrier thickness, seed quantum dot monolayer coverage, and post-growth annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, A.; Chakrabarti, S. [Indian Institute of Technology Bombay, Department of Electrical Engineering, Mumbai, Maharashtra (India); Verma, U. [Indian Institute of Technology Rajasthan, Department of Electrical Engineering, Jodhpur, Rajasthan (India)

    2013-10-15

    Strain-driven influences on the structural and optoelectronic properties of self-assembled InAs/GaAs multilayer quantum dot (MQD) heterostructures prompted our research into the growth of thermally stable MQD samples that were functional in an emission range technically favorable for communication lasers and intermediate band gap solar cells. We also studied parameter optimization by varying growth rate, capping layer thickness, seed quantum dot (QD) monolayer coverage, and post-growth annealing. A capping combination of InAlGaAs and i-GaAs was used. This combination helps in strain compensation, favors growth of multiple QD layers, functions as a strain-driven phase separation alloy, and helps increase QD stability. Photoluminescence results showed MQD sample emissions in the technologically significant range of 1.1-1.3 {mu}m. Post-growth annealing at high temperatures led to inter-diffusion of the constituent QD materials, generation of low minimum energy states, and greater carrier involvement in intermediate band gap structures, thereby showing that annealing is a suitable method for post-growth manipulation. For one MQD sample, the annealing temperature was found to affect structural and optoelectronic properties as well as the presence of intermediate energy states. Heterostructure stability at annealing temperatures up to 750 {sup circle} C was found for the other samples. Transmission electron microscopy and photoluminescence results supported these findings. (orig.)

  11. Population Annealing Monte Carlo for Frustrated Systems

    Science.gov (United States)

    Amey, Christopher; Machta, Jonathan

    Population annealing is a sequential Monte Carlo algorithm that efficiently simulates equilibrium systems with rough free energy landscapes such as spin glasses and glassy fluids. A large population of configurations is initially thermalized at high temperature and then cooled to low temperature according to an annealing schedule. The population is kept in thermal equilibrium at every annealing step via resampling configurations according to their Boltzmann weights. Population annealing is comparable to parallel tempering in terms of efficiency, but has several distinct and useful features. In this talk I will give an introduction to population annealing and present recent progress in understanding its equilibration properties and optimizing it for spin glasses. Results from large-scale population annealing simulations for the Ising spin glass in 3D and 4D will be presented. NSF Grant DMR-1507506.

  12. Hydrogen in carbon foils made by DC glow discharge in ethylene

    Science.gov (United States)

    Bailey, P.; Armour, D. G.; England, J. B. A.; Tait, N. R. S.; Tolfree, D. W. L.

    1983-08-01

    Thermal desorption has been studied from thin films of carbon prepared by dc glow discharge in ethylene. The only gases released in significant quantities are hydrogen and methane. Both releases can be characterised by a continuum of activation energies but the methane release peaks at a lower temperature than that from hydrogen. The estimated total hydrogen release is compared with the hydrogen content determined by nuclear scattering experiments. Infra red studies suggest that the majority of CH 2 and CH 3 bonds can be ruptured by annealing at 300°C, a temperature well below the hydrogen and methane release rate maxima. Possible hydrogen bonding modes and desorption mechanisms are discussed.

  13. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    Science.gov (United States)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  14. Interfacial Hydrogen Bonds and Their Influence Mechanism on Increasing the Thermal Stability of Nano-SiO2-Modified Meta-Aramid Fibres

    National Research Council Canada - National Science Library

    Chao Tang; Xu Li; Zhiwei Li; Jian Hao

    2017-01-01

    ... of nano-SiO2/meta-aramid fibre interfacial hydrogen bonds and the strengthening mechanism behind interfacial hydrogen bonds on the thermal stability of meta-aramid fibres using molecular dynamics...

  15. Ti-thickness-dependent electromigration resistance for Ti/Al-Cu-Si metallization with and without barrier rapid-thermal-anneal in an ammonia ambient

    Science.gov (United States)

    Fu, Kuan Y.; Kawasaki, Hisao; Olowolafe, Johnson O.; Pyle, Ronald E.

    1993-05-01

    The electromigration resistance for Al-Cu-Si alloy over a Ti underlayer as a function of the initial Ti thickness in the range of 0 angstroms - 1000 angstroms is investigated. After the Ti deposition, test structures have been divided into groups with and without a rapid thermal anneal (RTA) in an ammonia ambient to form a TiN barrier. The electromigration resistance of these barrier metallization systems, in general, increases with the initial Ti thickness, except when the initial Ti thickness is less than 600 angstroms for the RTA TiN/Al-Cu-Si system. A model is proposed to explain this electromigration characteristic as a function of the initial Ti thickness for these barrier metallization systems, with the support of texture analysis of the Al-alloy surface and stress measurements of barrier layers using X-ray diffraction and wafer curvature. This study highlights a direction of how a Ti-based barrier metallization system should be processed in order to optimize its electromigration resistance.

  16. Characterization of the ion-amorphization process and thermal annealing effects on third generation SiC fibers and 6H-SiC

    Directory of Open Access Journals (Sweden)

    Huguet-Garcia Juan

    2015-01-01

    Full Text Available The objective of the present work is to study the irradiation effects on third generation SiC fibers which fulfill the minimum requisites for nuclear applications, i.e. Hi-Nicalon type S, hereafter HNS, and Tyranno SA3, hereafter TSA3. With this purpose, these fibers have been ion-irradiated with 4 MeV Au ions at room temperature and increasing fluences. Irradiation effects have been characterized in terms of micro-Raman Spectroscopy and Transmission Electron Microscopy and compared to the response of the as-irradiated model material, i.e. 6H-SiC single crystals. It is reported that ion-irradiation induces amorphization in SiC fibers. Ion-amorphization kinetics between these fibers and 6H-SiC single crystals are similar despite their different microstructures and polytypes with a critical amorphization dose of ∼3 × 1014 cm−2 (∼0.6 dpa at room temperature. Also, thermally annealing-induced cracking is studied via in situ Environmental Scanning Electron Microscopy. The temperatures at which the first cracks appear as well as the crack density growth rate increase with increasing heating rates. The activation energy of the cracking process yields 1.05 eV in agreement with recrystallization activation energies of ion-amorphized samples.

  17. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  18. Nitrogen Gas Flow Ratio and Rapid Thermal Annealing Temperature Dependences of Sputtered Titanium Nitride Gate Work Function and Their Effect on Device Characteristics

    Science.gov (United States)

    Liu, Yongxun; Hayashida, Tetsuro; Matsukawa, Takashi; Endo, Kazuhiko; Masahara, Meishoku; O'uchi, Shinich; Sakamoto, Kunihiro; Ishii, Kenichi; Tsukada, Junichi; Ishikawa, Yuki; Yamauchi, Hiromi; Ogura, Atsushi; Suzuki, Eiichi

    2008-04-01

    A sputtered titanium nitride (TiN) metal gate has systematically been investigated, and the dependences of TiN work function (φTiN) and device performance on nitrogen gas flow ratio [RN=N2/(N2+Ar)] in sputtering and rapid thermal annealing (RTA) temperature (TR) are clarified. It is experimentally found that φTiN slightly decreases from 4.87 to 4.78 eV with increasing RN from 17 to 83%, and it markedly decreases with increasing TR. The analysis of the electrical characteristics of fabricated metal-oxide-semiconductor field-effect transistors (MOSFETs) shows that the optimal RN range is 17-50%, and a higher RN offers a lower Vth owing to the lower φTiN. The origin of φTiN decrease with increasing RN and TR is discussed. The obtained results indicate that φTiN can be controlled by sputtering and RTA conditions, and are very useful for setting the appropriate Vth for lightly doped channel devices such as a FinFET.

  19. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    Science.gov (United States)

    Chen, Hung-Wei; Yang, Hsi-Wen; He, Hsin-Min; Lee, Yi-Mu

    2016-01-01

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h.

  20. Binary mixtures of hydrogen-bonded ferroelectric liquid crystals. Thermal span enhancement in smectic X* phase

    Energy Technology Data Exchange (ETDEWEB)

    Sangameswari, Gopal; Prabu, Nataraj Pongali Sathya; Madhu Mohan, Mathukumalli Lakshmi Narayana [Bannari Amman Institute of Technology, Sathyamangalam (India). Liquid Crystal Research Laboratory (LCRL)

    2015-07-01

    Thermotropic hydrogen-bonded ferroelectric binary liquid crystal mixtures comprising of N-carbamyl-l-glutamic acid (CGA) and p-n-alkyloxy benzoic acids (BAO) are investigated. Variation in the molar proportion of X and Y (where X=CGA+5BAO and Y=CGA+9BAO, CGA+10BAO, CGA+11BAO, and CGA+12BAO) comprising of four series yielded 36 binary mixtures. Optical and thermal properties of these mixtures are meticulously studied in the present article. In addition to the traditional phases, a novel smectic ordering namely smectic X* is observed in all the four series. The aim of the investigation is to obtain abundance occurrence of smectic X* with a large thermal span, and hence, the proportions of the binary mixtures are so chosen that the prelude task is accomplished. Optical tilt angle in smectic X* and smectic C* phases is experimentally determined, and a theoretical fit is performed. Phase diagrams of the four series are constructed from the data obtained from the differential scanning calorimetry and correlated with the phases recorded by the polarising optical microscope studies. Thermal stability factor and thermal equilibrium are also premeditated.

  1. Influence of homo-buffer layers and post-deposition rapid thermal annealing upon atomic layer deposition grown ZnO at 100 °C with three-pulsed precursors per growth cycle

    Science.gov (United States)

    Cheng, Yung-Chen; Yuan, Kai-Yun; Chen, Miin-Jang

    2017-10-01

    ZnO main epilayers are deposited with three-pulsed precursors in every growth cycle at 100 °C on various thicknesses of 300 °C-grown homo-buffer layers by atomic layer deposition (ALD) on sapphire substrate. Samples are treated without and with post-deposition rapid thermal annealing (RTA). Two different annealing temperatures 300 and 1000 °C are utilized in the ambience of oxygen for 5 min. Extremely low background electron concentration 8.4 × 1014 cm-3, high electron mobility 62.1 cm2/V s, and pronounced enhancement of near bandgap edge photoluminescence (PL) are achieved for ZnO main epilayer with sufficient thickness of buffer layer (200 ALD cycles) and post-deposition RTA at 1000 °C. Effective block and remove of thermally unstable mobile defects and other crystal lattice imperfections are the agents of quality promotion of ZnO thin film.

  2. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  3. Thermal-Hydraulic Sensitivity Study of Intermediate Loop Parameters for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwa; Lee, Heung Nae; Park, Jea Ho [KONES Corp., Seoul (Korea, Republic of); Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Co., Seoul (Korea, Republic of)

    2016-10-15

    The heat generated from the VHTR is transferred to the intermediate loop through Intermediate Heat Exchanger (IHX). It is further passed on to the Sulfur-Iodine (SI) hydrogen production system (HPS) through Process Heat Exchanger (PHX). The IL provides the safety distance between the VHTR and HPS. Since the IL performance affects the overall nuclear HPS efficiency, it is required to optimize its design and operation parameters. In this study, the thermal-hydraulic sensitivity of IL parameters with various coolant options has been examined by using MARS-GCR code, which was already applied for the case of steam generator. Sensitivity study of the IL and PHX parameters has been carried out based on their thermal-hydraulic performance. Several parameters for design and operation, such as the pipe diameter, safety distance and surface area, are considered for different coolant options, He, CO{sub 2} and He-CO{sub 2} (2:8). It was found that the circulator work is the major factor affecting on the overall nuclear hydrogen production system efficiency. Circulator work increases with the safety distance, and decreases with the operation pressure and loop pipe diameter. Sensitivity results obtained from this study will contribute to the optimization of the IL design and operation parameters and the optimal coolant selection.

  4. Crystal growth, structural, optical, thermal and dielectric properties of lithium hydrogen oxalate monohydrate single crystal

    Science.gov (United States)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-11-01

    The vibrational groups of the lithium hydrogen oxalate monohydrate have been investigated by FTIR and FT- Raman analyses. It has low absorbance in the UV-Vis-NIR region. The laser damage threshold study confirms that the material withstands upto 30 mJ with time of 7 s, after that circular dot damage is seen on the surface. The dark region of the surface damage spot occurs due to the thermal effects. The material is thermally stable upto 93 °C and there is no weight loss below this temperature. The dielectric studies were carried out at the frequency regions of 1 kHz-1 MHz and different temperatures from 40 °C to 80 °C. Semi-organic non-linear optical (NLO) single crystal lithium hydrogen oxalate monohydrate has been grown by slow evaporation solution growth technique. The Hirshfeld surface analysis was performed to understand the different intermolecular interactions in the title compound. The fingerprint plots contain the highest portion of H⋯O/O⋯H (48.3%) interactions.

  5. Improved ground-state modulation characteristics in 1.3 μm InAs/GaAs quantum dot lasers by rapid thermal annealing

    Directory of Open Access Journals (Sweden)

    Ngo Chun

    2011-01-01

    Full Text Available Abstract We investigated the ground-state (GS modulation characteristics of 1.3 μm InAs/GaAs quantum dot (QD lasers that consist of either as-grown or annealed QDs. The choice of annealing conditions was determined from our recently reported results. With reference to the as-grown QD lasers, one obtains approximately 18% improvement in the modulation bandwidth from the annealed QD lasers. In addition, the modulation efficiency of the annealed QD lasers improves by approximately 45% as compared to the as-grown ones. The observed improvements are due to (1 the removal of defects which act as nonradiative recombination centers in the QD structure and (2 the reduction in the Auger-related recombination processes upon annealing.

  6. Quantum annealing with manufactured spins.

    Science.gov (United States)

    Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G

    2011-05-12

    Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

  7. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage

    OpenAIRE

    Feng, Yiyu; Liu, Hongpo; Luo, Wen; Liu, Enzuo; Zhao, Naiqin; Yoshino, Katsumi; Feng, Wei

    2013-01-01

    Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (?Ea ) of cis to tran reversion and thermal storage (?H) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of 5400?h (?Ea = 1.2?eV), which was much longer than that of RGO-para-AZO (116?h). RGO-para-AZO with o...

  8. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    Science.gov (United States)

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  9. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Jorge H. F. Ribeiro

    2012-02-01

    Full Text Available Different types of experimental studies are performed using the hydrogen storage alloy (HSA MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal, chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC. The recently developed molecular beam—thermal desorption spectrometry (MB-TDS technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA, and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  10. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Science.gov (United States)

    Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.

    2012-01-01

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043

  11. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    Science.gov (United States)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  12. Hydrogenated polyisoprene-silica nanoparticles and their applications for nanocomposites with enhanced mechanical properties and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Kongsinlark, Anong [Faculty of Science, Chulalongkorn University, Program in Petrochemistry and Polymer Science (Thailand); Rempel, Garry L., E-mail: grempel@uwaterloo.ca [University of Waterloo, Department of Chemical Engineering (Canada); Prasassarakich, Pattarapan, E-mail: ppattara@chula.ac.th [Faculty of Science, Chulalongkorn University, Department of Chemical Technology (Thailand)

    2013-05-15

    Hydrogenated polyisoprene (HPIP)-SiO{sub 2} nanocomposites were synthesized via differential microemulsiion polymerization followed by diimide hydrogenation. First, the isoprene monomer was polymerized on the silane treated nanosilica by differential microemulsion polymerization to obtain polyisoprene (PIP)-SiO{sub 2} nanoparticles with a particle size of 43 nm. PIP-SiO{sub 2} latex was subsequently hydrogenated at the carbon-carbon double bonds by diimide reduction in the presence of hydrazine and hydrogen peroxide with boric acid as promotor to provide HPIP-SiO{sub 2} nanocomposites. Core-shell morphology consisting of silica as the nano-core encapsulated by HPIP as the nano-shell was formed. The highest hydrogenation degree of 98 % was achieved at a ratio of hydrogen peroxide to hydrazine of 1.5:1. The nanosized HPIP-SiO{sub 2} at 98 % hydrogenation showed a maximum degradation temperature of 521 Degree-Sign C resulting in excellent thermal stability, compared with unfilled PIP (387 Degree-Sign C). A new nanocomposite of HPIP-SiO{sub 2} could be used as a novel nanofiller in natural rubber. Consequently, HPIP-SiO{sub 2}/NR composites had improved mechanical properties and exhibited a good retention of tensile strength after thermal aging and good resistance toward ozone exposure.

  13. Hydrogen production from urea wastewater using a combination of urea thermal hydrolyser-desorber loop and a hydrogen-permselective membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, M.R.; Mottaghi, H.R.; Barmaki, M.M. [Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz71345 (Iran)

    2010-06-15

    This work presents novel application of palladium-based membrane in a wastewater treatment loop of urea plant for hydrogen production. Urea wastewater treatment loop is based on combined thermal hydrolysis-desorption operations. The wastewater of urea plant includes ammonia and urea which in the current treatment loop; urea decomposes to ammonia and carbon dioxide. The catalytic hydrogen-permselective membrane reactor is proposed for hydrogen production from desorbed ammonia of urea wastewater which much of it discharges to air and causes environmental pollution. Therefore hydrogen is produced from decomposition of ammonia on nickel-alumina catalyst bed simultaneously and permeates from reaction side to shell side through thin layer of palladium-silver membrane. Also a sweep gas is used in the shell side for increasing driving force. In this way, 4588 tons/yr hydrogen is produced and environmental problem of urea plant is solved. The membrane reactor and urea wastewater treatment loop are modeled mathematically and the predicted data of the model are consistent with the experimental and plant data that show validity of the model. Also the effects of key parameters on the performance of catalytic hydrogen-permselective membrane reactor such as the temperature, pressure, thickness of Pd-Ag layer, configuration of flow and sweep gas flow ratio were examined. (author)

  14. Study of the effect of thermal annealing on the optical and electrical properties of vacuum evaporated amorphous thin films in the system Ge20Te80-xBix

    Science.gov (United States)

    Bhatia, K. L.; Kishore, Nawal; Malik, Jitender; Singh, Mahender; Kundu, R. S.; Sharma, Ashwani; Srivastav, B. K.

    2002-03-01

    We systematically studied the effect of thermal annealing on the optical and electrical properties of amorphous semiconducting thin films in the system Ge20Te80-xBix (x = 0, 0.19, 2.93, 7.35) prepared by flash evaporation in a vacuum of 1 × 10-6 Torr. The films are characterized by x-ray diffraction (XRD) and electron probe micro analysis. The annealing temperature is kept at 150 °C, 180 °C and 220 °C. No crystallization of the thin films is achieved on annealing up to the temperature of 150 °C. At a higher temperature of annealing, microcrystals of Te, Bi2Te3, Ge-Te, etc, are observed along with an amorphous phase as indicated by XRD analysis. The fundamental optical absorption edge and reflection spectra of as-prepared and annealed films are determined. Optical interband transitions are observed for various films (as-prepared and annealed). The presence of crystalline Bi2Te3 in films annealed at 220 °C is also supported by the reflection spectrum. The optical energy gap (Eg), the slope parameter (Δ) of the absorption edge and the tailing parameter (B-1) of the energy band tails are computed from the optical data. The dc electrical conductivity (σdc) of various films is studied in the temperature range of 150-450 K. We observe that two types of conduction take place: conduction through extended states in the higher temperature region, and conduction through localized states in the band tails and at the Fermi level by the hopping process assisted by phonons at lower temperatures. The data at higher temperatures have been fitted with the expression σdc = σ0exp(-ΔE/kT) and the electrical parameters, ΔE and σ0, are also determined. It is observed that the bismuth concentration and annealing temperature dependences of the optical and electrical parameters are different in the two regions of compositions, x ≤ 2.93 and x > 2.93, indicating structural differences in the two sets of compositions. It is pointed out that the bulk form of these amorphous

  15. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  16. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  17. Modulation of the thermoluminescence glow curve of sol-gel synthesized SiO{sub 2} and Si O-2:Eu through thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Salas J, Ch. J.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: salasjuarez@gimmunison.com [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, 76000 Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: Due to the increasing use of ionizing radiations, is necessary to monitor the radiation fields and exposure doses in facilities in which they are used. Different facilities or applications involve the use of different radiation and doses, and the sort of needed dosimetry also varies. Sometimes a conventional thermoluminescence (Tl) dosimetry satisfy the requirements since the record of the accumulated dose in a time interval is enough, but other cases could require for real-time measurement of a radiation field, being required a non-Tl dosimetric technique. On the other hand, different applications involve the use of different dose ranges, and so dosimeters with different sensitivities are needed. To solve the diverse needs of radiation detectors and dosimeters, a lot of phosphors materials has been characterized concerning their dosimetric capabilities. For medical application, biocompatible materials are desirable. In this work, we present experimental evidence that Sol-Gel synthesized SiO{sub 2} and SiO{sub 2}:Eu phosphors exhibit Tl glow curves composed by the superposition of several individual glow peaks each located at different temperature ranging from values below 100 up to temperatures greater than 400 degrees C, whose relative sensitivities can be modified by subjecting the phosphors to different thermal annealing. By modulating the relative intensities of the individual Tl peaks, glow curves with different shapes are obtained in such a way that SiO{sub 2} and SiO{sub 2}:Eu can be used to develop dosimeters useful for different dose ranges, and for both, conventional thermoluminescence dosimetry and non-thermoluminescence afterglow-based) dosimetry. (Author)

  18. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing and Analytical Modeling

    Science.gov (United States)

    Olsen, A. D.; Cady, E. C.; Jenkins, D. S.; Chandler, F. O.; Grayson, G. D.; Lopez, A.; Hastings, L. J.; Flachbart, R. H.; Pedersen, K. W.

    2012-01-01

    The demonstration of a unique liquid hydrogen (LH2) storage and feed system concept for solar thermal upper stage was cooperatively accomplished by a Boeing/NASA Marshall Space Flight Center team. The strategy was to balance thermodynamic venting with the engine thrusting timeline during a representative 30-day mission, thereby, assuring no vent losses. Using a 2 cubic m (71 cubic ft) LH2 tank, proof-of-concept testing consisted of an engineering checkout followed by a 30-day mission simulation. The data were used to anchor a combination of standard analyses and computational fluid dynamics (CFD) modeling. Dependence on orbital testing has been incrementally reduced as CFD codes, combined with standard modeling, continue to be challenged with test data such as this.

  19. The effect of low temperature thermal annealing on the magnetic properties of Heusler Ni–Mn–Sn melt-spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Llamazares, J.L. Sánchez, E-mail: jose.sanchez@ipicyt.edu.mx [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Quintana-Nedelcos, A. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Marmara University, Department of Material and Metalurgy Eng., Kadıkoy 34777, Istanbul (Turkey); Ríos-Jara, D. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Sánchez-Valdes, C.F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, Ensenada 22860, Baja California, México (Mexico); and others

    2016-03-01

    We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni{sub 50.6}Mn{sub 36.3}Sn{sub 13.1} as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L2{sub 1}-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures (~3–6 K) but to a significant rise of ~73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances. - Highlights: • We study the effect of low temperature annealing on Ni{sub 50.6}Mn{sub 36.3}Sn{sub 13.1} melt-spun ribbons. • Low temperature annealing preserves the crystal structure, composition and microstructure of the ribbons. • Low temperature annealing reduces the cell volume. • The strengthening of the ferromagnetic exchange interaction significant increases σ{sub S}.

  20. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  1. Solar thermal hydrogen production process: Final report, January 1978-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

  2. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  3. Morphological, thermal and annealed microhardness ...

    Indian Academy of Sciences (India)

    Unknown

    Department of Chemistry, Government Autonomous Science College, Jabalpur 482 001, India. MS received 12 November 2004; revised 13 June 2005. Abstract. The present paper reports the preparation of full IPNs of gelatin and polyacrylonitrile.

  4. Update of Continuous-Energy Data for Hydrogen and SiO2 Thermal Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Conlin, Jeremy Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-23

    The Nuclear Data Team has released updated continuous-energy neutron data files for: 1) hydrogen, and 2) S (α; β) (thermal scattering) on SiO2. A list of new ZAIDs and the data that is updated (Old ZAID) is given in Table 1. The old data are still accessible, but are not the default.

  5. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  6. Novel Recycling Method for Boron Removal from Silicon by Thermal Plasma Treatment Coupled with Steam and Hydrogen Gases

    Directory of Open Access Journals (Sweden)

    Su-Hyun Baek

    2017-09-01

    Full Text Available Boron (B separation from photovoltaic silicon (Si remains a research challenge in the recycling field. In this study, a novel B-removal process was developed using thermal plasma treatment coupled with steam and hydrogen gases. Experiments were performed on artificially B-doped Si using various plasma conditions of mixed argon (Ar/steam/hydrogen gases and varied refining time. The B concentration in all of the samples decreased with increasing refining time. The use of the plasma mixed with Ar/steam/hydrogen gases resulted in a significant improvement of the efficiency of B removal compared with the Ar/steam plasma refining. In addition, with increasing steam content in the plasma with mixed Ar/steam/hydrogen gases, the B-removal rates increased.

  7. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    but rely on the concentration of hydrogen. The model ... first-order rate law. Lehmhus and Rausch (2004) have annealed TiH2 pow- der in air and argon. In argon, the powder does not develop a surface layer and as a result, a small amount of hydro- gen is lost ... rate effect on the thermal decomposition behaviour of TiH2.

  8. Study the Effect of Annealing Temperature on Optical and Structural Properties of Zinc Oxide Thin Film Prepared by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Adawiah, R.; Rafaie, H. A.; Rusop, M.

    2009-06-01

    Zinc oxide (ZnO) thin films deposited on silicon and glass substrate were prepared using chemical vapor deposition (CVD) method utilizing zinc acetate dihydrate as the zinc sources. The deposited film then annealed at 300° C to 500° C for 1 hour. The optical and structural properties of ZnO thin films were characterized using photoluminescence (PL) and Scanning Electron Microscopy (SEM) respectively. SEM images show that the ZnO thin film on silicon substrate formed unique morphology of flower-like and ball-shaped structures at annealing temperature 300° C and 400° C. Increasing annealing temperature to 450° C for ZnO deposited on glass substrate had increased the grain size of particle which implies the improvement of crystalline grain of thin film. PL results observed that the defect of oxygen vacancy decreased after annealing process for films deposited on silicon substrate. The blue peak emission at 437 nm appears only on the glass substrate. Based on the highest PL intensity value, the optimum annealing temperature for silicon and glass substrate is 350° C and 450° C respectively.

  9. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2-NaBH4 Hydrogen Storage Composite.

    Science.gov (United States)

    Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan

    2017-09-20

    The lightweight compound material NaNH2-NaBH4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH2-NaBH4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H2, NH3, B2H6, and N2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B6H12 also exists. The TG/DTA analyses show that the composite NaNH2-NaBH4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na3(NH2)2BH4 hydride decomposes into Na3BN2 and H2 (200-350 °C); (2) remaining Na3(NH2)2BH4 reacts with NaBH4 and Na3BN2, generating Na, BN, NH3, N2, and H2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.

  10. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  11. Modeling of long-term defect evolution in heavy-ion irradiated 3C-SiC: Mechanism for thermal annealing and influences of spatial correlation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Daxi; He, Chaohui, E-mail: ignacio.martin@imdea.org, E-mail: hechaohui@mail.xjtu.edu.cn; Zang, Hang; Zhang, Peng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Martin-Bragado, Ignacio, E-mail: ignacio.martin@imdea.org, E-mail: hechaohui@mail.xjtu.edu.cn [IMDEA Materiales, C/ Eric Kandel, 2, Tecnogetafe, 28906 Getafe, Madrid (Spain)

    2014-11-28

    Based on the parameters from published ab-initio theoretical and experimental studies, and combining molecular dynamics and kinetic Monte Carlo simulations, a framework of multi-scale modeling is developed to investigate the long-term evolution of displacement damage induced by heavy-ion irradiation in cubic silicon carbide. The isochronal annealing after heavy ion irradiation is simulated, and the annealing behaviors of total interstitials are found consistent with previous experiments. Two annealing stages below 600 K and one stage above 900 K are identified. The mechanisms for those recovery stages are interpreted by the evolution of defects. The influence of the spatial correlation in primary damage on defect recovery has been studied and found insignificant when the damage dose is high enough, which sheds light on the applicability of approaches with mean-field approximation to the long-term evolution of damage by heavy ions in SiC.

  12. Modification of photosensing property of CdS–Bi{sub 2}S{sub 3} bi-layer by thermal annealing and swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Shaheed U.; Siddiqui, Farha Y. [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India); Singh, Fouran; Kulriya, Pawan K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Phase, D.M. [UGC DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Sharma, Ramphal, E-mail: ramphalsharma@yahoo.com [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-02-01

    The CdS–Bi{sub 2}S{sub 3} bi-layer thin films have been deposited on Indium Tin Oxide (ITO) glass substrates at room temperature by Chemical Bath Deposition Technique (CBD) and bi-layer thin films were annealed in air atmosphere for 1 h at 250 {sup °}C. The air annealed sample was irradiated using Au{sup 9+} ions at the fluence 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. Effects of Swift Heavy Ion (SHI) irradiation on CdS–Bi{sub 2}S{sub 3} bi-layer thin films were studied. The results are explained on the basis annealing and high electronic excitation, using X-ray diffraction (XRD), Selective Electron Area Diffraction (SEAD), Atomic Force Microscopy (AFM), Raman Spectroscopy, UV spectroscopy and I–V characteristics. The photosensing property after illumination of visible light over the samples is studied. These as-deposited, annealed and irradiated bi-layer thin films are used to sense visible light at room temperature. - Graphical abstract: Schematic illustration of CdS–Bi{sub 2}S{sub 3} bi-layer thin film (a) As-deposited (b) Annealed (c) irradiated sample respectively (d) Model of bi-layer photosensor device (e) Graph of illumination intensity verses photosensitivity. - Highlights: • CdS–Bi{sub 2}S{sub 3} bi-layer thin film prepared at room temperature. • Irradiated using Au{sup 9+} ions at the fluence of 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. • Study of modification induced by irradiations. • Study of Photosensitivity after annealing and irradiation.

  13. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Frederick E., E-mail: frederick.e.pinkerton@gm.com [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Balogh, Michael P.; Ellison, Nicole [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Foto, Aldo [Element Materials Technology Wixom, Inc (United States); Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P. [Powertrain Materials/Fluids/AMPPD Engineering and Labs, GFL VE/PT Materials Engineering, General Motors LLC, Pontiac, MI 48340 (United States)

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity H{sub ci} of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H{sub 2} gas. Expansion of the NdFeB crystal lattice in both ATF and H{sub 2} identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets. - Highlights: • Injection molded NdFeB magnets age rapidly in automatic transmission fluid (ATF). • Coercivity loss is not due to direct chemical reaction between ATF and the powder. • Chemical reaction with the binder does not play a major role in aging. • Hydrogen dissociates from ATF and diffuses into Nd{sub 2}Fe{sub 14}B, reducing coercivity.

  14. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation.

    Science.gov (United States)

    Wu, Zhong-Shuai; Ren, Wencai; Gao, Libo; Zhao, Jinping; Chen, Zongping; Liu, Bilu; Tang, Daiming; Yu, Bing; Jiang, Chuanbin; Cheng, Hui-Ming

    2009-02-24

    We developed a hydrogen arc discharge exfoliation method for the synthesis of graphene sheets (GSs) with excellent electrical conductivity and good thermal stability from graphite oxide (GO), in combination with solution-phase dispersion and centrifugation techniques. It was found that efficient exfoliation and considerable deoxygenation of GO, and defect elimination and healing of exfoliated graphite can be simultaneously achieved during the hydrogen arc discharge exfoliation process. The GSs obtained by hydrogen arc discharge exfoliation exhibit a high electrical conductivity of approximately 2 x 10(3) S/cm and high thermal stability with oxidization resistance temperature of 601 degrees C, which are much better than those prepared by argon arc discharge exfoliation (approximately 2 x 10(2) S/cm, 525 degrees C) and by conventional thermal exfoliation (approximately 80 S/cm, 507 degrees C) with the same starting GO. These results demonstrate that this hydrogen arc discharge exfoliation method is a good approach for the preparation of GSs with a good quality.

  15. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, Sanjay [Stony Brook Univ., NY (United States)

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness

  16. Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Dame, Rudger H.; Archer, Paul Douglas; Hogancamp, Joanna C.

    2017-10-01

    While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments.The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars.The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. ~20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 °C to 500 °C at 20 °C/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy.Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).

  17. Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Archer, P. D., Jr.

    2017-01-01

    While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments. The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars. The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. 20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 degC to 500 degC at 20 degC/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy. Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).

  18. The influence of natural tocopherols during thermal oxidation of refined and partially hydrogenated soybean oils

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D.

    2005-03-01

    Full Text Available Samples of refined and partially hydrogenated soybean oils, with iodine values between 60 and 130, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C (during for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and tocopherols. The relation of iodine value to the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed that α and γ -tocopherols were destroyed faster than β and δ -tocopherols. In addition, the degradation rate of tocopherols was greater in the more saturated fats. The formation of dimers and polymers was greater in the oil than in the hydrogenated samples and in the samples treated with aluminium oxide with respect to the original, untreated samples.Muestras de aceites refinados y parcialmente hidrogenados de soja, con índices de yodo entre 60 y 130, tratadas o no con óxido de aluminio para eliminar los tocoferoles naturales presentes en los aceites, fueron sometidas a termoxidación, a 180 °C durante 10 horas. Se tomaron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la relación del índice de yodo con la formación de dímeros y polímeros, y también el papel de los tocoferoles originales del aceite y de las grasas en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron la destrucción más rápida de α y γ -tocoferoles, respecto a β y δ-tocoferoles. Además, la degradación de los tocoferoles ocurrió a mayor velocidad en las grasas más saturadas. La formación de dímeros y polímeros fue mayor en el aceite que en las muestras hidrogenadas y en las muestras tratadas

  19. Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition.

    Science.gov (United States)

    Wang, Tzu-Yu; Ou, Sin-Liang; Shen, Kun-Ching; Wuu, Dong-Sing

    2013-03-25

    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications.

  20. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide

    Science.gov (United States)

    Ke, Zhigang; Ma, Yulong; Zhu, Zhongjie; Zhao, Hongwei; Wang, Qi; Huang, Qing

    2018-01-01

    Graphene-based materials (GMs) are promising antibacterial agents which provide an alternative route to treat pathogenic bacteria with resistance to conventional antibiotics. To further improve their antibacterial activity, many methods have been developed to functionalize the GMs with chemicals. However, the application of additional chemicals may pose potential risks to the environment and human being. Herein, a radio-frequency-driven inductively coupled non-thermal hydrogen plasma was used to treat and reduce graphene oxide (GO) without using any other chemicals, and we found that the plasma-reduced GO (prGO) is with significantly higher bactericidal activity against Escherichia coli. The mechanism of the increased antibacterial activity of prGO is due to that plasma processing breaks down the GO sheets into smaller layers with more rough surface defects, which can thus induce more destructive membrane damages to the bacteria. This work sets another good example, showing that plasma processing is a green and low-cost alternative for GM modification for biomedical applications.

  1. Numerical study of hydrogen peroxide thermal decomposition in a shock tube

    Science.gov (United States)

    Bhatti, Muhammad Rizwan; Sheikh, Nadeem Ahmed; Manzoor, Shehryar; Khan, Muhammad Mahabat; Ali, Muzaffar

    2017-06-01

    Hydrogen peroxide (H2O2) has its significance during the combustion of heavy hydrocarbons in the internal combustion (IC) engines. Owing to its importance the measurements of H2O2 dissociation rate have been reported mostly using the shock tube apparatus. These types of experimental measurements are although quite reliable but require high cost. On the other hand, numerical simulations provide low cost and reliable solutions especially using computation fluid dynamics (CFD) software. In the current study an experimental shock tube flow is modeled using open access platform OpenFOAM to investigate the thermal decomposition of H2O2. Using two different convective schemes, limitedLinear and upwind, the propagation of shock wave and resultant dissociation reaction are simulated. The results of the simulations are compared with the experimental data. It is observed that the rate constant measured using the simulation data deviates from the experimental results in the low temperature range and approaches the experimental values as the temperature is raised.

  2. DOE`s annealing prototype demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

  3. Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes.

    Science.gov (United States)

    Gençer, Emre; Mallapragada, Dharik S; Maréchal, François; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-12-29

    We introduce a paradigm-"hydricity"-that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40-46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a "turbine"-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65-70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses.

  4. Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes

    Science.gov (United States)

    Gençer, Emre; Mallapragada, Dharik S.; Maréchal, François; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-01-01

    We introduce a paradigm—“hydricity”—that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40–46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a “turbine”-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65–70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses. PMID:26668380

  5. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    Science.gov (United States)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  6. Thermal annealing and SHI irradiation induced modifications in sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite thin film

    Science.gov (United States)

    Singh, S. K.; Singhal, R.

    2017-09-01

    In the present work, we study the annealing and swift heavy ion (SHI) beam induced modifications in the optical and structural properties of sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite (NCs) thin films. The NCs thin films were synthesized by electron-beam evaporation technique at room temperature with ∼30 nm thickness for both carbon layer and ∼6 nm for gold layer. Gold-carbon NCs thin films were annealed in the presence of argon at a temperature of 500 °C, 600 °C and 750 °C. The NCs thin films were also irradiated with 90 MeV Ni ions beam with different ion fluences in the range from 3 × 1012, 6 × 1012 and 1 × 1013 ions/cm2. Surface plasmon resonance (SPR) of Au nanoparticles are not observed in the pristine film but, after annealing at temperature of 600 °C and 750 °C, it was clearly seen at ∼534 nm as confirmed by UV-visible absorption spectroscopy. 90 MeV Ni irradiated thin film at the fluence of 1 × 1013 ions/cm2 also show strong absorption band at ∼534 nm. The growth and size of Au nanoparticle for pristine and 90 MeV Ni ion irradiated thin film with fluence of 1 × 1013 ions/cm2, were estimated by Transmission electron microscopy (TEM) images with the bi-model distribution. The size of the gold nanoparticle (NPs) was found to be ∼4.5 nm for the pristine film and ∼5.4 nm for the irradiated film at a fluence of 1 × 1013 ions/cm2. The thickness and metal atomic fraction in carbon matrix were estimated by Rutherford backscattering spectroscopy (RBS). The effect of annealing as well as heavy ion irradiation on D and G band of carbon matrix were studied by Raman spectroscopy.

  7. In-situ thermal annealing of on-membrane silicon-on-insulator semiconductor-based devices after high gamma dose irradiation

    Science.gov (United States)

    Amor, S.; André, N.; Kilchytska, V.; Tounsi, F.; Mezghani, B.; Gérard, P.; Ali, Z.; Udrea, F.; Flandre, D.; Francis, L. A.

    2017-05-01

    In this paper, we investigate the recovery of some semiconductor-based components, such as N/P-type field-effect transistors (FETs) and a complementary metal-oxide-semiconductor (CMOS) inverter, after being exposed to a high total dose of gamma ray radiation. The employed method consists mainly of a rapid, low power and in situ annealing mitigation technique by silicon-on-insulator micro-hotplates. Due to the ionizing effect of the gamma irradiation, the threshold voltages showed an average shift of -580 mV for N-channel transistors, and -360 mV for P-MOSFETs. A 4 min double-cycle annealing of components with a heater temperature up to 465 °C, corresponding to a maximum power of 38 mW, ensured partial recovery but was not sufficient for full recovery. The degradation was completely recovered after the use of a built-in high temperature annealing process, up to 975 °C for 8 min corresponding to a maximum power of 112 mW, which restored the normal operating characteristics for all devices after their irradiation.

  8. Impact of thermal oxygen annealing on the properties of tin oxide films and characteristics of p-type thin-film transistors

    Science.gov (United States)

    Zhong, Chia-Wen; Lin, Horng-Chih; Liu, Kou-Chen; Huang, Tiao-Yuan

    2016-01-01

    In this work, we study the properties of tin oxide films, which were annealed in oxygen ambient for various periods. The as-deposited tin oxides are tin-dominant and, from the Hall measurements, they are of the n-type with high electron concentrations (>1019 cm-3) and would change to the p-type when the oxygen annealing is sufficiently long. We have also found that changes in the structure and crystallinity of the channel layer can be clearly observed by X-ray diffraction analysis and optical microscopy. On the basis of the observations, a physical scheme is proposed to describe the evolution of the electrical performance of oxygen-annealed devices. A hole mobility of 3.24 cm2 V-1 s-1, a subthreshold swing of 0.43 V/dec, a threshold voltage of 1.4 V, and an on/off current ratio larger than 103 are obtained as the channel is transformed into SnO.

  9. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage

    Science.gov (United States)

    Feng, Yiyu; Liu, Hongpo; Luo, Wen; Liu, Enzuo; Zhao, Naiqin; Yoshino, Katsumi; Feng, Wei

    2013-11-01

    Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (ΔEa) of cis to tran reversion and thermal storage (ΔH) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of 5400 h (ΔEa = 1.2 eV), which was much longer than that of RGO-para-AZO (116 h). RGO-para-AZO with one intermolecular H-bond showed a high density of thermal storage up to 269.8 kJ kg-1 compared with RGO-ortho-AZO (149.6 kJ kg-1) with multiple intra- and intermolecular H-bonds of AZO according to relaxed stable structures. Thermal storage in experiment was the same order magnitude to theoretical data based on ΔH calculated by density functional theory and packing density. Photoactive RGO-AZO hybrid can be developed for high-performance solar thermal storage by optimizing molecular H-bonds.

  10. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  11. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

  12. Effects of rapid thermal annealing on structural, chemical, and electrical characteristics of atomic-layer deposited lanthanum doped zirconium dioxide thin film on 4H-SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Way Foong, E-mail: wayfoong317@yahoo.com.sg [Institute of Nano Optoelectronics Research and Technology, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Centre for Research Initiatives (CRI) Natural Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Quah, Hock Jin, E-mail: jinquah1st@hotmail.com [Institute of Nano Optoelectronics Research and Technology, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Centre for Research Initiatives (CRI) Natural Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Lu, Qifeng, E-mail: Qifeng@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Mu, Yifei, E-mail: Y.mu@student.liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Ismail, Wan Azli Wan, E-mail: azli.ismail@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Rahim, Bazura Abdul, E-mail: bazura@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Esa, Siti Rahmah, E-mail: rahmah.esa@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Kee, Yeh Yee, E-mail: yy.kee@mimos.my [Advance Analytical Services Lab, MIMOS Wafer Fab, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia); Zhao, Ce Zhou, E-mail: cezhou.zhao@xjtlu.edu.cn [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123 (China); and others

    2016-03-01

    Graphical abstract: - Highlights: • Studies of RTA temperatures on La doped ZrO2 atomic layer deposited on 4HSiC. • Oxygen vacancies improved insulating and catalytic properties of La doped ZrO2. • 700 °C annealed sample showed the highest EB, k value, and sensitivity on O2. • La doped ZrO2 was proposed as a potential metal reactive oxide on 4H-SiC. - Abstract: Effects of rapid thermal annealing at different temperatures (700–900 °C) on structural, chemical, and electrical characteristics of lanthanum (La) doped zirconium oxide (ZrO{sub 2}) atomic layer deposited on 4H-SiC substrates have been investigated. Chemical composition depth profiling analysis using X-ray photoelectron spectroscopy (XPS) and cross-sectional studies using high resolution transmission electron microscopy equipped with energy dispersive X-ray spectroscopy line scan analysis were insufficient to justify the presence of La in the investigated samples. The minute amount of La present in the bulk oxide was confirmed by chemical depth profiles of time-of-flight secondary ion mass spectrometry. The presence of La in the ZrO{sub 2} lattice led to the formation of oxygen vacancies, which was revealed through binding energy shift for XPS O 1s core level spectra of Zr−O. The highest amount of oxygen vacancies in the sample annealed at 700 °C has yielded the acquisition of the highest electric breakdown field (∼ 6.3 MV/cm) and dielectric constant value (k = 23) as well as the highest current–time (I–t) sensor response towards oxygen gas. The attainment of both the insulating and catalytic properties in the La doped ZrO{sub 2} signified the potential of the doped ZrO{sub 2} as a metal reactive oxide on 4H-SiC substrate.

  13. Measurement of very small hydrogen content in zirconium alloys by measuring thermal neutron incoherent scattering

    CERN Document Server

    Choi, Y N; Lee, C H; Oh, H S; Park, S D; Somenkov, V A

    2002-01-01

    In neutron-scattering experiments, the incoherent scattering contributes to the background signal, which is an unwelcome property of matter. Among natural nuclei, the hydrogen nucleus (proton) has a remarkably large value of incoherent neutron scattering cross section. Therefore, a very small amount of hydrogen in a material could be analyzed by measuring the neutron incoherent scattering of the material. The hydrogen content of a metal or semiconductor is a matter of concern because it can affect significantly the physical, mechanical or chemical properties of materials although the amount of hydrogen is very small. In this study, the neutron incoherent scattering was measured using a 1-D position-sensitive detector at 1.835 A. Estimated detection limits are about 5 and 2 mu g/g for 10-min and 1-h measurements, respectively. Using the calibration data obtained by measurement of artificial samples (zircaloy+polypropylene films), the relative amounts of hydrogen in three commercial zircaloy samples were estima...

  14. Post-annealed gallium and aluminum co-doped zinc oxide films applied in organic photovoltaic devices

    Science.gov (United States)

    Chang, Shang-Chou

    2014-10-01

    Gallium and aluminum co-doped zinc oxide (GAZO) films were produced by magnetron sputtering. The GAZO films were post-annealed in either vacuum or hydrogen microwave plasma. Vacuum- and hydrogen microwave plasma-annealed GAZO films show different surface morphologies and lattice structures. The surface roughness and the spacing between adjacent (002) planes decrease; grain growth occurs for the GAZO films after vacuum annealing. The surface roughness increases and nanocrystals are grown for the GAZO films after hydrogen microwave plasma annealing. Both vacuum and hydrogen microwave plasma annealing can improve the electrical and optical properties of GAZO films. Hydrogen microwave plasma annealing improves more than vacuum annealing does for GAZO films. An electrical resistivity of 4.7 × 10-4 Ω-cm and average optical transmittance in the visible range from 400 to 800 nm of 95% can be obtained for the GAZO films after hydrogen microwave plasma annealing. Hybrid organic photovoltaic (OPV) devices were fabricated on the as-deposited, vacuum-annealed, and hydrogen microwave plasma-annealed GAZO-coated glass substrates. The active layer consisted of blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the OPV devices. The power conversion efficiency of the OPV devices is 1.22% for the hydrogen microwave plasma-annealed GAZO films, which is nearly two times higher compared with that for the as-deposited GAZO films.

  15. Structural properties of the formation of zinc-containing nanoparticles obtained by ion implantation in Si (001 and subsequent thermal annealing

    Directory of Open Access Journals (Sweden)

    Ksenia B. Eidelman

    2017-09-01

    We show that a damaged layer with a large concentration of radiation induced defects forms near the surface as a result of the implantation of Zn+ ions with an energy of 50 keV. In the as-implanted state, nanoparticles of metallic Zn with a size of about 25 nm form at a depth of 40 nm inside the damaged silicon layer. Subsequent annealing at 800 °C in a dry oxygen atmosphere leads to structural changes in the defect layer and the formation of Zn2SiO4 nanoparticles at a depth of 25 nm with an average size of 3 nm, as well as oxidation of the existing Zn particles to the Zn2SiO4 phase. The oxidation of the metallic Zn nanoparticles starts from the surface of the particles and leads to the formation of particles with a “core-shell” structure. Analysis of the phase composition of the silicon layer after two-stage implantation with O+ and Zn+ ions showed that Zn and Zn2SiO4 particles form in the as-implanted state. Subsequent annealing at 800 °C in a dry oxygen atmosphere leads to an increase in the particle size but does not change the phase composition of the near-surface layer. ZnO nanoparticles were not observed under these experimental conditions of ion beam synthesis.

  16. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    Science.gov (United States)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  17. Reliability and effective thermal conductivity of three metallic-ceramic composite insulating coatings on cooled hydrogen-oxygen rockets

    Science.gov (United States)

    Price, H. G., Jr.; Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation of the structural integrity and effective thermal conductivity of three metallic-ceramic composite coatings was conducted. These coatings were plasma sprayed onto the combustion side of water-cooled, 12.7-centimeter throat diameter, hydrogen-oxygen rocket thrust chambers operating at 2.07 to 4.14 meganewtons per square meter chamber pressure. The metallic-ceramic composites functioned for six to 17 cycles and for as long as 213 seconds of rocket operations and could have probably provided their insulating properties for many additional cycles. The effective thermal conductivity of all the coatings was in the range of 0.7472 to 4.483 w/(m)(K), which makes the coatings a very effective thermal barrier. Photomicrographic studies of cross-sectioned coolant tubes seem to indicate that the effective thermal conductivity of the coatings is controlled by contact resistance between the particles, as a result of the spraying process, and not the thermal conductivity of the bulk materials.

  18. Engineering design elements of a two-phase thermosyphon to transfer nuclear thermal energy to a hydrogen plant

    Science.gov (United States)

    Sabharwall, Piyush

    Two hydrogen production processes, both powered by Next Generation Nuclear Plant (NGNP), are currently under investigation at the Idaho National Laboratory. The first is high-temperature steam electrolysis utilizing both heat and electricity and the second is thermo-chemical production through the sulfur-iodine process primarily utilizing heat. Both processes require high temperature (>850°C) for enhanced efficiency; temperatures indicative of NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100m. There are several options to transferring multi-megawatt thermal power over such a distance. One option is simply to produce only electricity, transfer by wire to the hydrogen plant, and then reconvert the electric energy to heat via Joule or induction heating. Electrical transport, however, suffers energy losses of 60-70% due to the thermal to electric conversion inherent in the Brayton cycle. A second option is thermal energy transport via a single-phase forced convection loop where a fluid is mechanically pumped between heat exchangers at the nuclear and hydrogen plants. High temperatures, however, present unique materials and pumping challenges. Single phase, low pressure helium is an attractive option for NGNP, but is not suitable for a single purpose facility dictated to hydrogen production because low pressure helium requires higher pumping power and makes the process very inefficient. A third option is two-phase heat transfer utilizing a high temperature thermosyphon. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. Thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are desired to transfer heat from

  19. Energy Band Diagram near the Interface of Aluminum Oxide on p-Si Fabricated by Atomic Layer Deposition without/with Rapid Thermal Cycle Annealing Determined by Capacitance-Voltage Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, N. [Department of Electrical Engineering, Kyoto University, Kyoto (Japan); Cesar, I.; Lamers, M.; Romijn, I.; Bakker, K.; Olson, C.; Oosterling Saynova, D.; Komatsu, Y.; Weeber, A. [ECN Solar Energy, Petten (Netherlands); Verbake, F.; Wiggers, M. [Philips Research, Eindhoven (Netherlands)

    2012-07-01

    We evaluated the fixed charge (Qf) and the interface state density (Dit) from the capacitance-voltage (C-V) measurement before and after rapid thermal cycle annealing (RTCA) using p-type silicon in which the passivation was performed with aluminum oxide (Al2O3) film by atomic layer deposition (ALD). From C-V measurement we obtained the surface potential (VS), accumulation and depletion width, and as a result, energy band diagrams were produced. It was determined that a barrier height of approximately 100 mV was induced by fixed negative charges in the Al2O3 layer near the interface to the p-type Si substrate. The field effect of the Al2O3 passivation layer created by RTCA strongly remains without depending on the gate voltage (VG)

  20. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-01

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg-1 by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high

  1. DETERMINATION OF HYDROGEN DESORBED THROUGH THERMAL CALORIMETRY IN A HIGH STRENGTH STEEL

    Directory of Open Access Journals (Sweden)

    Carolina A. Asmus

    2014-03-01

    Full Text Available The following study aims to quantify the release activation energy (Ea of hydrogen (H from lattice sites, reversible or irreversible, where the H can be trapped. Moreover, enthalpy changes associated with the main hydrogen (H trapping sites can be analyzed by means of differential scanning calorimetry (DSC. In this technique, the peak temperature measurement is determined at two different heating rates, 3ºC/min y 5ºC/min, from ambient temperature to 500°C. In order to simulate severe conditions of hydrogen income into resulfurized high strength steel, electrolytic permeation tests were performed on test tubes suitable for fatigue tests. Sometimes during charging, H promoters were aggregated to electrolytic solution. Subsequently, the test tubes were subjected to flow cycle fatigue tests. Finally, irreversible trap which anchor more strongly H atoms are MnS inclusions. Its role on hydrogen embrittlement during fatigue tests is conclusive.

  2. Synthesis and influence of annealing atmosphere on the luminescence properties of ZnGa2O4 nanowires

    Science.gov (United States)

    Kim, Hyunsu; An, Soyeon; Park, Sunghoon; Lee, Chongmu

    2013-12-01

    ZnGa2O4 nanowires were synthesized on Si substrates by using the thermal evaporation of a mixture of Zn and GaN powders. Scanning electron microscopy showed that the diameters and the lengths of the nanowires ranged from a few tens to a few hundreds of nanometers and up to a few hundreds of micrometers, respectively. The ZnGa2O4 nanowires were found to have a face-centered cubic-structured monocrystalline phase. The photoluminescence properties of the ZnGa2O4 nanowires appeared to depend strongly on the annealing atmosphere. The ZnGa2O4 nanowires annealed in a hydrogen atmosphere showed a relatively weak broad visible emission band, ranging from 500 to 700 nm. In contrast, the ZnGa2O4 nanowires annealed in an oxygen atmosphere showed a relatively strong near-ultraviolet emission band centered at approximately 380 nm. On the other hand, the ZnGa2O4 nanowires annealed in an argon atmosphere showed a sharp, taller ultraviolet emission peak centered at approximately 380 nm, as well as a broad green emission band centered at approximately 510 nm. The origins of the enhanced luminescence in ZnGa2O4 nanowires due to annealing in different atmospheres are discussed.

  3. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  4. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.

    Science.gov (United States)

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M

    2015-05-01

    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. On the effect of thermal treatment and hydrogen vibrational dynamics in sodium alanates: An inelastic neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Albinati, A., E-mail: Alberto.Albinati@unimi.it [Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Universita degli Studi di Milano, via G. Venezian 21, 20133 Milan (Italy); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto di Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino (Finland) (Italy); Georgiev, P.A. [Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Universita degli Studi di Milano, via G. Venezian 21, 20133 Milan (Italy); Jensen, C.M. [Department of Chemistry, University of Hawaii, Honolulu, HI 96822 (United States); Ramirez-Cuesta, A.J. [ISIS facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer High resolution INS spectra of thermally treated NaAlH{sub 4} and Na{sub 3}AlH{sub 6}. Black-Right-Pointing-Pointer Detailed spectral features assignments based on high quality DFT(GGA) calculations. Black-Right-Pointing-Pointer Treated materials spectra are described as sum of the corresponding reactants and products. Black-Right-Pointing-Pointer The existence of AlH{sub 3} and AlH{sub 5}{sup 2-} species is not observed in the bulk, under equilibrium. - Abstract: We have measured inelastic neutron scattering (INS) spectra from Ti-doped polycrystalline alanates (NaAlH{sub 4} and Na{sub 3}AlH{sub 6}), at low temperature, in the energy transfer range 3-500 meV, both for thermally treated and untreated samples. From the spectral range corresponding to the fundamental vibrational bands of these aluminohydrides, accurate one-phonon spectra and hydrogen-projected densities of phonon states have been extracted and analyzed using ab initio lattice dynamics calculations. Satisfactory agreement has been found for the untreated samples. In the case of thermally treated samples, due to thermal decomposition, different ionic species are present and the sample composition could be quantitatively evaluated. No evidence for the existence of intermediate species such as AlH{sub 3} or AlH{sub 5}{sup 2-} has been found.

  6. Influence of Annealing Conditions on the Luminescence and Photoelectric Properties of Pure and Mn2+-Activated ZnGa2O4 Thin Films

    Science.gov (United States)

    Bordun, O. M.; Bihday, V. G.; Kukharskyy, I. Yo.

    2013-11-01

    The cathodoluminescence and photoelectric properties of thin films of ZnGa2O4 and ZnGa2O4:Mn produced by rf magnetron sputtering are studied as a function of thermal processing conditions and atmosphere. It is found that, after annealing in a hydrogen reducing atmosphere at temperatures up to 750°C, the luminescence intensity and electrical conductivity of the films increase. After annealing in a reducing atmosphere, a photoconductivity effect appears in ZnGa2O4:Mn thin films with a maximum near 400 nm that is related to electronic transitions from deep Mn2+ levels into the conduction band. The increased conductivity of ZnGa2O4:Mn thin films after annealing in a reducing atmosphere arises from a high concentration of donor centers in the form of oxygen vacancies and interstitial cation defects, which leads to the development of n-type conductivity.

  7. Microsensors based on a whispering gallery mode in AlGaN microdisks undercut by hydrogen-environment thermal etching.

    Science.gov (United States)

    Kouno, Tetsuya; Sakai, Masaru; Takeshima, Hoshi; Suzuki, Sho; Kikuchi, Akihiko; Kishino, Katsumi; Hara, Kazuhiko

    2017-04-20

    AlGaN microdisks were fabricated via a top-down process using electron-beam lithography, inductively coupled plasma reactive-ion etching, and hydrogen-environment thermal etching from commercial epitaxial wafers with a 100-300 nm thick AlGaN layer grown on a c-plane GaN layer by metal-organic chemical vapor deposition. The hydrogen-environment thermal etching performed well in undercutting the AlGaN microdisks owing to the selective etching for the GaN layer. The AlGaN microdisks acted as the whispering gallery mode (WGM) optical microresonators, exhibiting sharp resonant peaks in room temperature photoluminescence spectra. The evanescent component of the whispering gallery mode (WGM) is influenced by the ambient condition of the microdisk, resulting in the shift of the resonant peaks. The phenomenon is considered to be used for microsensors. Using the WGM in the AlGaN microdisks, we demonstrated microsensors and a microsensor system, which can potentially be used to evaluate biological and chemical actions in a microscale area in real time.

  8. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    Science.gov (United States)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  9. Thermal Engineering Issues in Hydrogen Storage for Mobile and Portable Applications

    Science.gov (United States)

    2010-09-01

    have been studied for their hydrogen storage properties. •The physisorption of hydrogen in these materials depends primarily on the pore size ...BH.eh LNaMn(BH ) MOF 74 bridged cat./IRMOF-8 • o · PANI • · I 0 Na~r(BH..)s .PANI ~ (,) "’ fi" 8 0 ... ::r::: 6 , Q) ~ I 4 .c 0 2...weight and charging time. • Corresponding to each bed thickness, an optimum HX tube size could be determined for the lowest system weight. • Device at

  10. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    Science.gov (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  11. Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells

    NARCIS (Netherlands)

    Kind, R.; Van Swaaij, R.A.C.M.M.; Rubinelli, F.A.; Solntsev, S.; Zeman, M.

    2011-01-01

    The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate

  12. Core–shell reconfiguration through thermal annealing in FexO/CoFe2O4 ordered 2D nanocrystal arrays

    NARCIS (Netherlands)

    Yalcin, A. O.; de Nijs, B.; Fan, Z.; Tichelaar, F.D.; Vanmaekelbergh, D.A.M.; van Blaaderen, A.; Vlugt, T.J.H.; van Huis, M.A.; Zandbergen, H.W.

    2014-01-01

    A great variety of single- and multi-component nanocrystals (NCs) can now be synthesized and integrated into nanocrystal superlattices. However, the thermal and temporal stability of these superstructures and their components can be a limiting factor for their application as functional devices. On

  13. Infrared study on annealing effect on conformation of zinc stearate.

    Science.gov (United States)

    Ishioka, Tsutomu; Kiritani, Atsushi; Kojima, Takuya

    2007-04-01

    The molecular conformation and thermal transition behavior of two zinc stearate specimens, unannealed one and annealed one, were compared. The unannealed specimen has one thermal transition at 134 degrees C. Annealing was made by increasing temperature to 150 degrees C and cooling to room temperature slowly. This annealed specimen has an exothermic peak at 103 degrees C, and endothermic shoulders and a peak at 118, 124 and 131 degrees C, respectively. The observed frequencies of all bands of the unannealed specimen at room temperature are assigned to the all-trans conformation. We found new bands at 858, 823, 793, 766, 688, and 604 cm-1 for the annealed specimen. Based on the normal mode analyses, these bands are assigned to the TGT conformation at the COO end, where T means trans and G means gauche. The annealed specimen consists of almost all-trans molecule but partial molecules have the TGT conformation.

  14. Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, S. [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia); Kovač, J. [Jozef Stefan Institute, Jamova 19, 1000 Ljubljana (Slovenia); Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia)

    2016-10-15

    Highlights: • The effect of the ZDDP concentrations onto the steel, H-DLC and Si-DLC surfaces is investigated. • ZDDP film structure on the DLC coatings is different from steel. • Different concentrations of ZDDP do not affect the final chemical structure of the ZDDP film on any of the studied surfaces. • The thickness of the thermal film is linear with the concentration for a given surface. • The reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings. - Abstract: This work focuses on the ZDDP concentration (1, 5 and 20 wt%) to form a ZDDP film on surfaces during static thermal tests at 150 °C. Silicon-doped and hydrogenated DLC coatings, as well as steel as reference, were studied using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The results show that, on the three surfaces, the structure of the ZDDP thermal film consists of identical groups of pyrophosphate and zinc oxide, while the sulphuric groups are dissimilar. On the steel surface, the sulphuric part consists of a mixture of organic sulphide and sulphohydryl groups, but on H-DLC and Si-DLC only organic sulphide groups are found; there are no sulphohydryl groups. Moreover, both ATR-FTIR and XPS show that different concentrations of ZDDP do not affect the final chemical structure of the ZDDP thermal film on any of the studied surfaces. In addition, the XPS results show that the thickness of the thermal film is linear with the concentration for the whole range from 1 to 20 wt%, supporting also its uniform chemical structure. These thicknesses further show that the reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings.

  15. Formation of polymerization compounds during thermal oxidation of cottonseed oil, partially hydrogenated cottonseed oil and their blends

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D. Laboratório de Óleos e Gorduras, Departa

    2006-09-01

    Full Text Available Samples of cottonseed oil, partially hydrogenated cottonseed oil and their blends, with iodine values between 60 and 110, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C, for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and of tocopherols. The influence of the degree of hydrogenation on the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed a fast destruction rate for the tocopherols present in cottonseed fats and oil (α and γ-tocopherols, with residual levels close to zero after 10 hours under thermal oxidation conditions. Nevertheless, samples with their natural tocopherols presented a slower rate of thermal degradation. The unsaturation degree was apparently more important in the protection against thermal degradation than the content of tocopherolsMuestras de aceite de algodón, aceite de algodón parcialmente hidrogenado y sus mezclas, con índices de yodo de 60 a 110, tratadas o no con óxido de aluminio, fueron sometidas a termoxidación, a 180 °C, durante 10 horas. Se retiraron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la influencia del grado de hidrogenación sobre la formación de dímeros y polímeros, y también el papel de los tocoferoles originalmente presentes en el aceite y en las grasas, en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron una destrucción bastante rápida de los tocoferoles presentes en el aceite y en las grasas de algodón (α y γ-tocoferoles, con niveles residuales próximos a cero después de 10 horas de termoxidación. Aún así, muestras con sus

  16. Electrical transport properties of V{sub 2}O{sub 5} thin films obtained by thermal annealing of layers grown by RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giannetta, H.M.R., E-mail: hgiann@inti.gov.ar [Centro de Micro y Nano Electrónica del Bicentenario (CMNB), Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires (Argentina); Universidad Tecnológica Nacional (UTN) — Facultad Regional Buenos Aires (FRBA) (Argentina); Calaza, C. [Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Lamas, D.G. [Universidad Nacional del Comahue CONICET-CITEFA — Laboratorio de Caracterización de Materiales, Facultad de Ingeniería, Neuquen (Argentina); Fonseca, L. [Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Fraigi, L. [Centro de Micro y Nano Electrónica del Bicentenario (CMNB), Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires (Argentina); Universidad Tecnológica Nacional (UTN) — Facultad Regional Buenos Aires (FRBA) (Argentina)

    2015-08-31

    The present study investigates the main electrical transport mechanism in V{sub 2}O{sub 5} thin films deposited by RF magnetron sputtering on the basis of the Mott's small polaron hopping model. The material under test was obtained at room temperature from a V{sub 2}O{sub 5} target and then oxidized at high temperature under air atmosphere to obtain the desired V{sub 2}O{sub 5} phase. The dependence of the electrical conductivity of the V{sub 2}O{sub 5} thin films with temperature was analyzed using the Mott's small polarons hopping transport model under the Schnakenberg form. Model results suggest a polaron binding energy W{sub H} = 0.1682 eV, with a structural disorder energy W{sub D} = 0.2241 eV and an optical phonon frequency ν{sub 0} = 0.468 × 10{sup 13}s{sup −1}. These results are in agreement with data reported in literature for single crystal V{sub 2}O{sub 5}. However, the carrier mobility μ = 1.5019 × 10{sup −5} cm{sup 2}/Vs computed in the non-adiabatic regime is significantly smaller than that of the single crystal, suggesting a strong electron–phonon coupling in the V{sub 2}O{sub 5} thin films obtained with the proposed deposition method. - Highlights: • A two-stage deposition method compatible with lift-off patterning is proposed. • V{sub 2}O{sub 5} films are deposited by RF magnetron sputtering and then annealed in air. • Films are analyzed by SEM and its pure phase nature is confirmed by XRD. • Electrical conductivity was fitted using Mott's model for small polarons. • Fit derived parameters confirm charge transport through small-polarons hopping.

  17. Interfacial Hydrogen Bonds and Their Influence Mechanism on Increasing the Thermal Stability of Nano-SiO2-Modified Meta-Aramid Fibres

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2017-10-01

    Full Text Available For further analysis of the effect of nano-doping on the properties of high polymers and research into the mechanism behind modified interfacial hydrogen bonds, a study on the formation probability of nano-SiO2/meta-aramid fibre interfacial hydrogen bonds and the strengthening mechanism behind interfacial hydrogen bonds on the thermal stability of meta-aramid fibres using molecular dynamics is performed in this paper. First, the pure meta-aramid fibre and nano-SiO2/meta-aramid fibre mixed models with nanoparticle radiuses of 3, 5, 7 and 9 Å (1 Å = 10−1 nm are built, and then the optimization process and dynamics simulation of the models are conducted. The dynamics simulation results indicate that the number of hydrogen bonds increase due to the doping by nano-SiO2 and that the number of interfacial hydrogen bonds increases with the nanoparticle radius. By analysing the hydrogen bond formation probability of all the atom pairs in the mixed model with pair correlation functions (PCFs, it can be observed that the hydrogen bond formation probability between the oxygen atom and hydrogen atom on the nanoparticle surface is the greatest. An effective way to increase the number of interfacial hydrogen bonds in nano-SiO2 and meta-aramid fibres is to increase the number of hydrogen atoms on the nano-silica surface and oxygen atoms in the meta-aramid fibre. By using the radial distribution function (RDF, the conclusion can be further drawn that the hydrogen bond formation probability is at a maximum when the atomic distance is 2.7–2.8 Å; therefore, increasing the number of atoms within this range can significantly increase the formation probability of hydrogen bonds. According to the results of chain movement, the existence of interfacial hydrogen bonds effectively limits the free movement of the molecular chains of meta-aramid fibres and enhances the thermal stability of meta-aramid fibres. The existence of interfacial hydrogen bonds is one of the

  18. Hydrogen in carbon foils made by DC glow discharge in ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, P.; Armour, D.G. (Salford Univ. (UK). Dept. of Electrical Engineering); England, J.B.A. (Birmingham Univ. (UK). Dept. of Physics); Tait, N.R.S.; Tolfree, D.W.L. (Science and Engineering Research Council, Daresbury (UK). Daresbury Lab.)

    1983-08-01

    Thermal desorption has been studied from thin films of carbon prepared by dc glow discharge in ethylene. The only gases released in significant quantities are hydrogen and methane. Both releases can be characterised by a continuum of activation energies but the methane release peaks at a lower temperature than that from hydrogen. The estimated total hydrogen release is compared with the hydrogen content determined by nuclear scattering experiments. Infrared studies suggest that the majority of CH/sub 2/ and CH/sub 3/ bonds can be ruptured by annealing at 300/sup 0/C, a temperature well below the hydrogen and methane release rate maxima. Possible hydrogen bonding modes and desorption mechanisms are discussed.

  19. Thermal balance analysis of a micro-thermoelectric gas sensor using catalytic combustion of hydrogen.

    Science.gov (United States)

    Nagai, Daisuke; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-21

    A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Q(catalyst) required for 1 mV of ∆V(gas) was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Q(catalyst) for 200 and 1,000 ppm H₂ was 3.69 μW and 11.7 μW, respectively.

  20. Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen

    Directory of Open Access Journals (Sweden)

    Daisuke Nagai

    2014-01-01

    Full Text Available A thermoelectric gas sensor (TGS with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Qcatalyst required for 1 mV of ∆Vgas was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Qcatalyst for 200 and 1,000 ppm H2 was 3.69 μW and 11.7 μW, respectively.

  1. Hydrogen local vibrational modes in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  2. Discrepancy between ambient annealing and H+ implantation in optical absorption of ZnO

    Science.gov (United States)

    Lv, Jinpeng; Li, Chundong

    2016-05-01

    The discrepancy between sub-bandgap absorption in ZnO induced by thermal annealing and H+ implantation is investigated in this study for the first time. Results indicate that nonreductive annealing-induced optical absorption is independent of annealing ambient, and can be assigned to VO, whereas the absorption centers caused by H+ implantation and H2 annealing are primarily associated with VO and ionized Zni.

  3. Annealing temperature effect on the optical properties of thermally oxidized nano-crystalline ZrO2 thin films grown on glass substrates

    Science.gov (United States)

    Larijani, M. M.; Hasani, E.; Safa, S.

    2014-01-01

    Optical properties of zirconium oxide films on glass substrates deposited by thermal oxidation method have been studied at different temperatures. Optical characteristics of films such as refractive index, extinction coefficient, average thickness and optical dielectric constants were calculated using Swanepoel's method. X-ray diffraction analysis (XRD) and atomic force microscopy were performed to investigate the film structure and morphology. It was found out that the optical properties of zirconium oxide films are affected by oxidation temperature which are due to changes of film microstructure and surface roughness.

  4. Hydrogen production by auto-thermal reforming of ethanol over nickel catalyst supported on metal oxide-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Min Hye; Seo, Jeong Gil; Song, In Kyu [School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-744 (Korea)

    2010-04-15

    Metal oxide-stabilized mesoporous zirconia supports (M-ZrO{sub 2}) with different metal oxide stabilizer (M = Zr, Y, La, Ca, and Mg) were prepared by a templating sol-gel method. 20 wt% Ni catalysts supported on M-ZrO{sub 2} (M = Zr, Y, La, Ca, and Mg) were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. The effect of metal oxide stabilizer (M = Zr, Y, La, Ca, and Mg) on the catalytic performance of supported nickel catalysts was investigated. Ni/M-ZrO{sub 2} (M = Y, La, Ca, and Mg) catalysts exhibited a higher catalytic performance than Ni/Zr-ZrO{sub 2}, because surface oxygen vacancy of M-ZrO{sub 2} (M = Y, La, Ca, and Mg) and reducibility of Ni/M-ZrO{sub 2} (M = Y, La, Ca, and Mg) were enhanced by the addition of lower valent metal cation. Hydrogen yield over Ni/M-ZrO{sub 2} (M = Zr, Y, La, Ca, and Mg) catalyst was monotonically increased with increasing both surface oxygen vacancy of M-ZrO{sub 2} support and reducibility of Ni/M-ZrO{sub 2} catalyst. Among the catalysts tested, Ni catalyst supported on yttria-stabilized mesoporous zirconia (Ni/Y-ZrO{sub 2}) showed the best catalytic performance. (author)

  5. Electrical annealing of severely deformed copper: microstructure and hardness

    Science.gov (United States)

    Nobakht, Saeed; Kazeminezhad, Mohsen

    2017-10-01

    Commercial pure copper sheets were severely deformed after primary annealing to a strain magnitude of 2.32 through constrained groove pressing. After induction of an electrical current, the sheets were heated for 0.5, 1, 2, or 3 s up to maximum temperatures of 150, 200, 250, or 300°C. To compare the annealing process in the current-carrying system with that in the current-free system, four other samples were heated to 300°C at holding times of 60, 90, 120, or 150 s in a salt bath. The microstructural evolution and hardness values of the samples were then investigated. The results generally indicated that induction of an electrical current could accelerate the recrystallization process by decreasing the thermodynamic barriers for nucleation. In other words, the current effect, in addition to the thermal effect, enhanced the diffusion rate and dislocation climb velocity. During the primary stages of recrystallization, the grown nuclei of electrically annealed samples showed greater numbers and a more homogeneous distribution than those of the samples annealed in the salt bath. In the fully recrystallized condition, the grain size of electrically annealed samples was smaller than that of conventionally annealed samples. The hardness values and metallographic images obtained indicate that, unlike the conventional annealing process, which promotes restoration phenomena with increasing heating time, the electrical annealing process does not necessarily promote these phenomena. This difference is hypothesized to stem from conflicts between thermal and athermal effects during recrystallization.

  6. Solar thermal hydrogen production process. Annual technical progress report, January-December, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.H.

    1979-01-01

    Westinghouse is currently under contract to DOE for technology development of the Sulfur Cycle, a hybrid thermochemical-electrochemical process for the production of hydrogen and oxygen from water. Operational studies have been conducted and have resulted in definitions of operating modes for solar/hydrogen plants and in assessments of the day/night and annual variations in performance that will influence the operating modes and the sizing of plant subsystems. Conceptual design studies have been conducted for process components that interface with the solar receiver. From related trade-off studies, a preferred configuration emerged that involves an intermediate working fluid (e.g., hot gas) between the solar receiver and the sulfuric acid decomposition reactor. The design of the reactor has been based on a shell and tube type heat exchanger configuration with catalyst placement on the shell side. A number of candidate materials for structural use in the acid decomposition reactor also have been evaluated experimentally. Screening tests and endurance tests with potential catalysts (to accelerate the rate of sulfur trioxide cracking) have been conducted with encouraging results. Approximately three dozen candidate materials for use in constructing the acid vaporizer have been tested for corrosion resistance to the expected environment. Detailed discussions of the results obtained during 1979 are presented.

  7. III-Nitride Membranes for Thermal Bio-Sensing and Solar Hydrogen Generation

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2017-09-01

    III-nitride nanostructures have generated tremendous scientific and technological interests in studying and engineering their low dimensional physics phenomena. Among these, 2D planar, free standing III-nitride nanomembranes are unrivalled in their scalability for high yield manufacture and can be mechanically manipulated. Due to the increase in their surface to volume ratio and the manifestation of quantum phenomena, these nanomembranes acquire unique physical properties. Furthermore, III-nitride membranes are chemically stable and biocompatible. Finally, nanomembranes are highly flexible and can follow curvilinear surfaces present in biological systems. However, being free-standing, requires especially new techniques for handling nanometers or micrometers thick membrane devices. Furthermore, effectively transferring these membrane devices to other substrates is not a direct process which requires the use of photoresists, solvents and/or elastomers. Finally, as the membranes are transferred, they need to be properly attached for subsequent device fabrications, which often includes spin coating and rinsing steps. These engineering complications have impeded the development of novel devices based on III-nitride membranes. In this thesis, we demonstrate the versatility of III-nitride membranes where we develop a thermal bio-sensor nanomembrane and solar energy photo-anode membrane. First, we present a novel preparation technique of nanomembranes with new characteristics; having no threading dislocation cores. We then perform optical characterization to reveal changes in their defect densities compared to the bulk crystal. We also study their mechanical properties where we successfully modulate their bandgap emission by 55 meV through various external compressive and tensile strain fields. Furthermore, we characterize the effect of phonon-boundary scattering on their thermal properties where we report a reduction of thermal conductivity from 130 to 9 W/mK. We employ

  8. Hybrid annealing: Coupling a quantum simulator to a classical computer

    Science.gov (United States)

    Graß, Tobias; Lewenstein, Maciej

    2017-05-01

    Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Annealing strategies, either classical or quantum, explore the configuration space by evolving the system under the influence of thermal or quantum fluctuations. The thermal annealing dynamics can rapidly freeze the system into a low-energy configuration, and it can be simulated well on a classical computer, but it easily gets stuck in local minima. Quantum annealing, on the other hand, can be guaranteed to find the true ground state and can be implemented in modern quantum simulators; however, quantum adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here, we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such a hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasidegenerate ground states.

  9. Depth profile investigation of β-FeSi{sub 2} formed in Si(1 0 0) by high fluence implantation of 50 keV Fe ion and post-thermal vacuum annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lakshantha, Wickramaarachchige J.; Kummari, Venkata C.; Reinert, Tilo; McDaniel, Floyd D. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, 1155 Union Circle #311427, Denton, TX 76203 (United States); Rout, Bibhudutta, E-mail: bibhu@unt.edu [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, 1155 Union Circle #311427, Denton, TX 76203 (United States); Center for Advanced Research and Technology, University of North Texas, 3940 North Elm Street, Denton, TX 76207 (United States)

    2014-08-01

    A single phase polycrystalline β-FeSi{sub 2} layer has been synthesized at the near surface region by implantation in Si(1 0 0) of a high fluence (∼10{sup 17} atoms/cm{sup 2}) of 50 keV Fe ions and subsequent thermal annealing in vacuum at 800 °C. The depth profile of the implanted Fe atoms in Si(1 0 0) were simulated by the widely used transportation of ions in matter (TRIM) computer code as well as by the dynamic transportation of ions in matter code (T-DYN). The simulated depth profile predictions for this heavy ion implantation process were experimentally verified using Rutherford Backscattering Spectrometry (RBS) and X-ray Photoelectron Spectroscopy (XPS) in combination with Ar-ion etching. The formation of the β-FeSi{sub 2} phase was monitored by X-ray diffraction measurements. The T-DYN simulations show better agreement with the experimental Fe depth profile results than the static TRIM simulations. The experimental and T-DYN simulated results show an asymmetric distribution of Fe concentrated more toward the surface region of the Si substrate.

  10. The effect of thermal and vapor annealing treatments on the self-assembly of TiO{sub 2} /PS-b-PMMA nanocomposites generated via the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, J; Tercjak, A; Garcia, I; Mondragon, I [' Materials-Technologies' Group, Departamento IngenierIa Quimica y Medio Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: inaki.mondragon@ehu.es

    2009-06-03

    Polystyrene-block-poly(methyl methacrylate) (SMMA) block copolymer has been used as a structure-directing agent for generating TiO{sub 2} /SMMA nanocomposites via the sol-gel process using a hydrophobic surfactant. The aim of the work has been focused on the preparation of well-defined nanostructured composites based on the self-assembling capability of the block copolymer using two different annealing methods: thermal- and solvent-induced microphase separation. The addition of different amounts of nanoparticles caused strong variations in the self-assembled morphology of the TiO{sub 2} /SMMA nanocomposites with respect to the block copolymer, as observed by atomic force microscopy (AFM). To verify the confinement of the nanoparticles in the PMMA block 3D AFM images and corresponding AFM profiles have also been reported. UV light irradiation of the nanocomposite films provoked the removal of the organic matrix and consequently led to an array of TiO{sub 2} nanoparticles on the substrate surface.

  11. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang

    2017-10-12

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  12. An in vitro thermal analysis during different light-activated hydrogen peroxide bleaching

    Science.gov (United States)

    Kabbach, W.; Zezell, D. M.; Bandéca, M. C.; Pereira, T. M.; Andrade, M. F.

    2010-09-01

    This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups ( n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study.

  13. Inconsistent Regolith Thermal Control of Hydrogen Distributions at the Moons South Pole

    Science.gov (United States)

    McClanahan, T. P.; Mitrofanov, I.; Boynton, W. V.; Chin, G.; Litvak, M.; Livengood, Tim; Sanin, A.; Starr, R. D.; Su, Jian; Hamara, D.; hide

    2017-01-01

    Introduction: For over fifty years, intense interest has focused on determining if, where, and how much hydrogen (H) may be found near the Moons poles [1]. Driving the ongoing interest has been the critical role that H volatiles must play as a resource for human missions [2]. Now, with several lines of evidence consistently indicating that H concentrations are enhanced in some permanently shadowed regions (PSRs), plus the possibility of diurnally-dependent volatile H concentrations [3-8], investigations are shifting towards understanding the sources of H and factors that govern concentrations. For the last seven-plus years, the Lunar Reconnaissance Orbiter (LRO) has collected an unparalleled temporal and spatial record of geophysical factors that may govern the Moons H distribution [9]. XXXX

  14. The protein amide ¹H(N) chemical shift temperature coefficient reflects thermal expansion of the N-H···O=C hydrogen bond.

    Science.gov (United States)

    Hong, Jingbo; Jing, Qingqing; Yao, Lishan

    2013-01-01

    The protein amide (1)H(N) chemical shift temperature coefficient can be determined with high accuracy by recording spectra at different temperatures, but the physical mechanism responsible for this temperature dependence is not well understood. In this work, we find that this coefficient strongly correlates with the temperature coefficient of the through-hydrogen-bond coupling, (3h)J(NC'), based on NMR measurements of protein GB3. Parallel tempering molecular dynamics simulation suggests that the hydrogen bond distance variation at different temperatures/replicas is largely responsible for the (1)H(N) chemical shift temperature dependence, from which an empirical equation is proposed to predict the hydrogen bond thermal expansion coefficient, revealing responses of individual hydrogen bonds to temperature changes. Different expansion patterns have been observed for various networks formed by β strands.

  15. Electrical characteristics and hydrogen concentration of chemical vapor deposited silicon dioxide films: Effect of water treatment

    Science.gov (United States)

    Li, S. C.; Murarka, S. P.

    1992-11-01

    The effect of exposing chemical vapor deposited silicon dioxide directly to water has been investigated. Unlike the effect of the water-related traps in thermally grown silicon dioxide, the capacitance-voltage (C-V) shift due to diffused-in water molecules is directly observed without using the method of avalanche injection. The resonate nuclear reaction technique with 15N ion beam has been used to measure the hydrogen concentration of water-boiled, as-deposited, and rapid thermal-annealed silicon dioxide films. These depth profiles show that the hydrogen-containing species, that are most likely water molecules, diffuse in and out and redistribute in the as-deposited and rapid thermal-annealed films. These hydrogen depth profiles also indicate that the amount of diffused-in water molecules in the oxide is limited by the solubility of the water in the oxide. The solubility of water in the oxide annealed at high temperatures is found to be significantly lower than that in the as-deposited oxide. It is found that diffused-in water molecules, in order to satisfy the water solubility of the oxide, play a compensating role in controlling the oxide charges. Water molecules would continue to diffuse in, and interact with oxide charges and produce charges with reverse polarity that compensate the existing oxide charges until water solubility is satisfied.

  16. Note: A wide temperature range MOKE system with annealing capability

    Science.gov (United States)

    Chahil, Narpinder Singh; Mankey, G. J.

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  17. Defect evolution and dopant activation in laser annealed Si and Ge

    DEFF Research Database (Denmark)

    Cristiano, F.; Shayesteh, M.; Duffy, R.

    2016-01-01

    Defect evolution and dopant activation are intimately related to the use of ion implantation and annealing, traditionally used to dope semiconductors during device fabrication. Ultra-fast laser thermal annealing (LTA) is one of the most promising solutions for the achievement of abrupt and highly...... doped junctions. In this paper, we report some recent investigations focused on this annealing method, with particular emphasis on the investigation of the formation and evolution of implant/anneal induced defects and their impact on dopant activation. In the case of laser annealed Silicon, we show...... that laser anneal favours the formation of "unconventional" (001) loops that, following non-melt anneals; act as carrier scattering centres, leading to carrier mobility degradation. In contrast, in the case of melt anneals, the molten region itself is of excellent crystalline quality, defect...

  18. Investigation of thermal and optical properties of some quartet mixed hydrogen-bonded liquid crystals

    Science.gov (United States)

    Okumuş, Mustafa

    2017-11-01

    In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.

  19. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh [Primary Contact; Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra

    2011-03-28

    This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255°C; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (Go = -98.7 kJ/mol) is more negative than that of LiH (Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly

  20. Pulsed Laser Annealing of Carbon

    Science.gov (United States)

    Abrahamson, Joseph P.

    after 5 seconds of isothermal annealing at 2,600 °C is comprised almost entirely of quasi-spherical closed shell particles that are free of sp3 and oxygen content. With additional time at temperature the particles unravel and propagative particle opening occurs throughout the material. The irregular pore structure found in the end product is a result of particle unraveling. The structures found in heat treated sucrose char believed to contain odd membered rings are not manufactured during the annealing process due to impinging growth of stacks. Thus, odd membered rings are likely present in the starting non-graphitizable char. Furnace annealing of cokes and chars produced from: oxygen containing compounds (polyfurfuryl alcohol and anthanthrone), from a five membered ring containing polyaromatic hydrocarbon (fluorene), and from sulfur containing decant oil and a blend of anthracene-dibenzothiophene were compared to furnace annealed anthracene coke and sucrose char. The majority of initial oxygen content evolved out during low temperature carbonization. The intermediate species formed after oxygen evolution dictated the resulting carbon skeleton and thus the graphitizability. Carbonization of anthanthrone resulted in a graphitizable coke. It is proposed that carbon monoxide loss from anthanthrone results in the formation of perylene. An obvious resemblance was observed in structure between heat treated sucrose and polyfurfuryl alcohol char as compared to heated treated char embedded with 5 membered rings via carbonization of fluorene. Thus, providing evidence that 5 membered rings are present in the virgin chars and are the cause of non-graphitizability. The heteroatom sulfur effects carbon structure in a different way as compared to oxygen. Sulfur is thermally stable in carbon up to ˜ 1,000 °C and thus plays little role in the initial low temperature (500 °C) carbonization. As such it imparts a relatively unobservable impact on nanostructure, but rather acts to cause

  1. Anisotropic annealing of fission fragments in synthetic quartz

    CERN Document Server

    Sawamura, T; Narita, M

    1999-01-01

    A study on the thermal annealing behavior of fission fragments in synthetic quartz crystals was performed for application of synthetic quartz to track detectors under high temperature circumstances: x-, y-, and z-cut quartz plates were exposed to fission fragments from sup 2 sup 5 sup 2 Cf and were annealed up to 750 deg. C. It was found that track retention depended on the crystallographic structure: the annealing temperature, where the number of etched tracks was sharply reduced, was 550 deg. C for the x- and y-cut plates and 750 deg. C for z-cut plates. Track sizes decrease and disperse with reductions in the track retention.

  2. Quantum annealing of the traveling-salesman problem.

    Science.gov (United States)

    Martonák, Roman; Santoro, Giuseppe E; Tosatti, Erio

    2004-11-01

    We propose a path-integral Monte Carlo quantum annealing scheme for the symmetric traveling-salesman problem, based on a highly constrained Ising-like representation, and we compare its performance against standard thermal simulated annealing. The Monte Carlo moves implemented are standard, and consist in restructuring a tour by exchanging two links (two-opt moves). The quantum annealing scheme, even with a drastically simple form of kinetic energy, appears definitely superior to the classical one, when tested on a 1002-city instance of the standard TSPLIB.

  3. Precise annealing of focal plane arrays for optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Daniel A.

    2017-10-17

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  4. Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides

    KAUST Repository

    Swaidan, Raja

    2015-02-01

    A sub-Tg thermally-annealed (250°C, 24h) ultra-microporous PIM-polyimide bearing a 9,10-diisopropyl-triptycene contortion center and hydroxyl-functionalized diamine (2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, APAF) exhibited plasticization resistance up to 50bar for a 1:1 CO2/CH4 feed mixture, with a 9-fold higher CO2 permeability (30Barrer) and 2-fold increase in CO2/CH4 permselectivity (~50) over conventional dense cellulose acetate membranes at 10bar CO2 partial pressure. Interestingly, mixed-gas CO2/CH4 permselectivities were 10-20% higher than those evaluated under pure-gas conditions due to reduction of mixed-gas CH4 permeability by co-permeation of CO2. Gas transport, physisorption and fluorescence studies indicated a sieving pore-structure engaged in inter-chain charge transfer complexes (CTCs), similar to that of low-free-volume 6FDA-APAF polyimide. The isosteric heat of adsorption of CO2 as well as CO2/CH4 solubility selectivities varied negligibly upon replacement of OH with CH3 but CTC formation was hindered, CO2 sorption increased, CO2 permeability increased ~3-fold, CO2/CH4 permselectivity dropped to ~30 and CH4 mixed-gas co-permeation increased. These results suggest that hydroxyl-functionalization did not cause preferential polymer-gas interactions but primarily elicited diffusion-dominated changes owing to a tightened microstructure more resistant to CO2-induced dilations. Solution-processable hydroxyl-functionalized PIM-type polyimides provide a new platform of advanced materials that unites the high selectivities of low-free-volume polymers with the high permeabilities of PIM-type materials particularly for natural gas sweetening applications.

  5. Electrical properties improvement of high-k HfO{sub 2} films by combination of C{sub 4}F{sub 8} dual-frequency capacitively coupled plasmas treatment with thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y. [Department of Physics, Soochow University, Suzhou 215006 (China); Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); School of Tongda, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Ye, C.; Jin, C.G.; Wu, M.Z.; Wang, Y.Y.; Zhang, Z.; Huang, T.Y.; Yang, Y.; He, H.J. [Department of Physics, Soochow University, Suzhou 215006 (China); Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Zhuge, L.J. [Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Analysis and Testing Center, Soochow University, Suzhou 215123 (China); Wu, X.M., E-mail: xmwu@suda.edu.cn [Department of Physics, Soochow University, Suzhou 215006 (China); Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2014-08-30

    Highlights: • Fluorine atoms were incorporated into the HfO{sub 2} films by octafluorocyclobutane (C{sub 4}F{sub 8}) dual-frequency capacitively coupled plasmas (DF-CCP). • Appropriate fluorine incorporation could be obtained by optimizing the LF power. • Great improvement on electrical properties can be obtained by C{sub 4}F{sub 8} plasma treatment. • Both plasma parameter and the surface chemical states are measured to analysis the mechanism of the plasma surface treatment. - Abstract: The effect of fluorine incorporation on the electrical properties of HfO{sub 2} gate oxide were investigated, especially on the frequency dispersion, hysteresis and the density of interface states. By treating HfO{sub 2} films using octafluorocyclobutane (C{sub 4}F{sub 8}) 60 MHz/2 MHz dual-frequency capacitively coupled plasmas, fluorine atoms were incorporated into the HfO{sub 2} films, but thinner C:F films also deposited on the surface of the HfO{sub 2} films. After a following thermal annealing, the C:F films were removed, accompanied the formation of the C-C group and Hf-F bonds. By optimizing the low frequency (LF) power, the appropriate fluorine incorporation significantly improved the quality of the gate oxide, resulting in excellent electrical properties. At the LF power of 30 W, the smallest ΔV{sub fb}, hysteresis and the lowest interface state density were obtained. These improvements were attributed to the passivation of oxygen vacancies and the reduction of defects states density in the gap by forming Hf-F bonds.

  6. Annealing study of a bistable cluster defect

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra, E-mail: alexandra.junkes@desy.d [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Eckstein, Doris [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Pintilie, Ioana [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); NIMP Bucharest-Margurele (Romania); Makarenko, Leonid F. [Belarusian State University, Minsk (Belarus); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany)

    2010-01-11

    This work deals with the influence of neutron and proton induced cluster related defects on the properties of n-type silicon detectors. Defect concentrations were obtained by means of Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) technique, while the full depletion voltage and the reverse current were extracted from capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The annealing behaviour of the reverse current can be correlated with the annealing of the cluster related defect levels labeled E4a and E4b by making use of their bistability. This bistability was characterised by isochronal and isothermal annealing studies and it was found that the development with increasing annealing temperature is similar to that of divacancies. This supports the assumption that E4a and E4b are vacancy related defects. In addition we observe an influence of the disordered regions on the shape and height of the DLTS or TSC signals corresponding to point defects like the vacancy-oxygen complex.

  7. L1(0)-FePd nanocluster wires by template-directed thermal decomposition and subsequent hydrogen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Cui, BZ; Marinescu, M; Liu, JF

    2013-12-14

    This paper reports the nanostructure, formation mechanism, and magnetic properties of tetragonal L1(0)-type Fe55Pd45 (at. %) nanocluster wires (NCWs) fabricated by thermal decomposition of metal nitrates and subsequent hydrogen reduction in nanoporous anodized aluminum oxide templates. The as-synthesized NCWs have diameters in the range of 80-300 nm, and lengths in the range of 0.5-10 mu m. The NCWs are composed of roughly round-shaped nanoclusters in the range of 3-30 nm in size and a weighted average size of 10 nm with a mixture of single-crystal and poly-crystalline structures. The obtained intrinsic coercivity H-i(c) of 3.32 kOe at room temperature for the tetragonal Fe55Pd45 NCWs is higher than those of electrodeposited Fe-Pd solid nanowires while among the highest values reported so far for L1(0)-type FePd nanoparticles. (C) 2013 AIP Publishing LLC.

  8. Shock, post-shock annealing, and post-annealing shock in ureilites

    Science.gov (United States)

    Rubin, Alan E.

    2006-01-01

    The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post-shock annealing, and 4) post-annealing shock. Period 1 occurred ˜4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali-rich fine-grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact-induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral-appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb-Sr internal isochron age of ˜4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, ˜7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact-melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary-type noble gases from the ureilitic melts. Incomplete separation of metal from silicates during impact

  9. Effects of rapid thermal annealing on the properties of HfO{sub 2}/La{sub 2}O{sub 3} nanolaminate films deposited by plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duo; Cheng, Xinhong, E-mail: xh-cheng@mail.sim.ac.cn; Zheng, Li; Wang, Zhongjian; Xu, Dawei; Xia, Chao; Shen, Lingyan; Wang, Qian; Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, SIMIT, Chinese Academy of Sciences, Shanghai 200050, People' s Republic of China and University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, DaShen [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States)

    2015-01-15

    In this work, HfO{sub 2}/La{sub 2}O{sub 3} nanolaminate films were deposited on Si substrates by plasma enhanced atomic layer deposition with in situ plasma treatment. Different annealing treatments were adopted to change films structure and performance. The upper HfO{sub 2} layers in HfO{sub 2}/La{sub 2}O{sub 3} nanolaminates were easily crystallized after annealing at 800 °C, while all the La{sub 2}O{sub 3} layers kept amorphous. X-ray photoelectron spectroscopy results indicated that LaO(OH) and La(OH){sub 3} peaks became weak, H{sub 2}O molecules in laminates evaporated during high-temperature annealing. Band diagram analysis showed that valence band offset and band gap widened after 800 °C annealing. Annealing, especially 800 °C annealing, had gentle effect on leakage current, but could obviously change capacitance and permittivity due to tetragonal and cubic phase formed in the HfO{sub 2} film.

  10. Precision spectroscopy of the 2S-4P{sub 1/2} transition in atomic hydrogen on a cold thermal beam of optically excited 2S atoms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Axel; Kolachevsky, Nikolai; Alnis, Janis; Yost, Dylan C.; Matveev, Arthur; Parthey, Christian G.; Pohl, Randolf; Udem, Thomas [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Khabarova, Ksenia [FSUE ' VNIIFTRI' , 141570 Moscow (Russian Federation); Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet, 80799 Muenchen (Germany)

    2013-07-01

    The 'proton size puzzle', i.e. the discrepancy between the values for the proton r.m.s. charge radius deduced from precision spectroscopy of atomic hydrogen and electron-proton-scattering on one side and the value deduced from muonic hydrogen spectroscopy on the other side, has been persisting for more than two years now. Although huge efforts have been put into trying to resolve this discrepancy from experimental and theoretical side, no convincing argument could be found so far. In this talk, we report on a unique precision spectroscopy experiment on atomic hydrogen, which is aiming to bring some light to the hydrogen part of the puzzle: In contrast to any previous high resolution experiment probing a transition frequency between the meta-stable 2S state and a higher lying nL state (n=3,4,6,8,12, L=S,P,D), our measurement of the 2S-4P{sub 1/2} transition frequency is the first experiment being performed on a cold thermal beam of hydrogen atoms optically excited to the 2S state. We will discuss how this helps to efficiently suppresses leading systematic effects of previous measurements and present the preliminary results we obtained so far.

  11. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  12. Solvent vapor annealing of an insoluble molecular semiconductor

    KAUST Repository

    Amassian, Aram

    2010-01-01

    Solvent vapor annealing has been proposed as a low-cost, highly versatile, and room-temperature alternative to thermal annealing of organic semiconductors and devices. In this article, we investigate the solvent vapor annealing process of a model insoluble molecular semiconductor thin film - pentacene on SiO 2 exposed to acetone vapor - using a combination of optical reflectance and two-dimensional grazing incidence X-ray diffraction measurements performed in situ, during processing. These measurements provide valuable and new insight into the solvent vapor annealing process; they demonstrate that solvent molecules interact mainly with the surface of the film to induce a solid-solid transition without noticeable swelling, dissolving or melting of the molecular material. © 2010 The Royal Society of Chemistry.

  13. Embrittlement recovery due to annealing of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, E.D.; Wright, J.E.; Nelson, E.E. [Modeling and Computing Services, Boulder, CO (United States); Odette, G.R.; Mader, E.V. [Univ. of California, Santa Barbara, CA (United States)

    1996-03-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes.

  14. A new low-cost hydrogen sensor build with a thermopile IR detector adapted to measure thermal conductivity

    National Research Council Canada - National Science Library

    M Liess

    2015-01-01

    .... It is exposed to the measured gas environment in its housing. It is shown that, by using a simple driving circuitry, a mass-produced low-cost IR sensor can be used for hydrogen detection in applications such as hydrogen safety and smart gas metering...

  15. Effect of Secondary Annealing Process on Critical Current Density in Highly Textured Bi-2212 Superconducting System

    Science.gov (United States)

    Aksan, M. A.; Madre, M. A.; Rasekh, Sh.; Constantinescu, G.; Torres, M. A.; Diez, J. C.; Sotelo, A.; Yakinci, M. E.

    2015-09-01

    Bi-2212 samples prepared by a solid-state reaction technique have been grown from the melt using the laser floating zone method. After annealing the as-grown bars, the samples showed a good grain alignment and a high transport critical current density. Secondary annealing processes were performed on the annealed samples with the aim of producing Bi-2212 phase controlled decomposition. Hence, the Bi-2201 phase and the secondary phases, which act as effective pinning centers, were obtained with the secondary annealing process. After these thermal treatments, the transport critical current densities of samples significantly increased, when compared to the annealed ones. The maximum critical current density was achieved when the samples were subjected to secondary annealing at 680°C for 168 h with an improvement of ~80%, compared to the annealed ones. Moreover, it was found that magnetization of the secondarily annealed samples was also increased. The magnetic critical current densities in these secondary annealed samples were about 3 times higher than the values obtained for the annealed ones. These results clearly indicate that the secondary annealing processes lead to the formation of effective pinning centers in the bulk material.

  16. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  17. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square...

  18. Sensitivity enhancement using annealed polymer optical fibre based sensors for pressure sensing applications

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Saez-Rodriguez, D.

    2016-01-01

    Thermal annealing can be used to induce a permanent negative Bragg wavelength shift for polymer fibre grating sensors and it was originally used for multiplexing purposes. Recently, researchers showed that annealing can also provide additional benefits, such as strain and humidity sensitivity...... sensitivity of the devices. This can provide better performing sensors for use in stress, force and pressure sensing applications....

  19. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L., E-mail: TA@asu.edu [School of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); David Theodore, N. [CHD-Fab, Freescale Semiconductor Inc., 1300 N. Alma School Rd., Chandler, Arizona 85224 (United States); Lu, Wei; Lau, S. S. [Department of Electrical Engineering, University of California, San Diego, California 92093 (United States); Lanz, A. [Department of Mathematics, Norfolk State University, Norfolk, Virginia 23504 (United States)

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  20. Laser annealing heals radiation damage in avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Gyu [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2017-12-15

    Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at -80 C. This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs. (orig.)

  1. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Anderson Fuzer [Departamento de Química, CCE, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075-910 Vitória, Espírito Santo (Brazil); Porto, Arilza de Oliveira, E-mail: arilzaporto@yahoo.com.br [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Magela de Lima, Geraldo [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Paniago, Roberto [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Ardisson, José Domingos [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, Minas Gerais (Brazil)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  2. Growth, structural, optical, thermal and mechanical properties of cytosinium hydrogen selenite: A novel nonlinear optical single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jaikumar, P. [PG & Research Department of Physics, National College (Autonomous), Tiruchirappalli, 620 001 Tamil Nadu (India); Sathiskumar, S. [Crystal Growth Laboratory, Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli, 620 023 Tamil Nadu (India); Balakrishnan, T., E-mail: balacrystalgrowth@gmail.com [Crystal Growth Laboratory, Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli, 620 023 Tamil Nadu (India); Ramamurthi, K. [Crystal Growth & Thin Film laboratory, Department of Physics & Nanotechnology, SRM University, Kattankulathur, 603 203 Kancheepuram, Tamil Nadu (India)

    2016-06-15

    Highlights: • Growth of bulk single crystals of cytosinium hydrogen selenite (CHS) is reported. • Dielectric constant of CHS is measured as a function of Frequency and temperature. • Lower cut off value of UV–vis-NIR spectrum of CHS crystal is observed at 210 nm. • Meyer’s index value of CHS crystal calculated identifies it as a soft material. • Powder SHG efficiency of CHS is about 1.5 times that of KDP crystal. - Abstract: A novel nonlinear optical single crystal of cytosinium hydrogen selenite was grown from aqueous solution of cytosinium hydrogen selenite by slow solvent evaporation method at room temperature. The structural properties of grown crystal have been studied by single crystal and powder X-ray diffraction analysis. Presence of various functional groups was identified from Fourier transform infrared spectroscopy. The optical transmittance and absorbance spectra were recorded by UV–vis-NIR spectrometer and the grown crystal possesses good transparency in the entire visible region. The dielectric constant and dielectric loss of the crystal were calculated as a function of frequency at different temperatures. The mechanical strength of the cytosinium hydrogen selenite crystal was estimated using Vicker’s microhardness tester. Etch patterns of the cytosinium hydrogen selenite crystal were obtained using distilled water as etchant for different etching time. Second harmonic generation efficiency tested using Nd:YAG laser is about 1.5 times that of KDP.

  3. Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering

    OpenAIRE

    Panagiotopoulos, NT; Kalfagiannis, N.; Vasilopoulos, KC; Pliatsikas, N; Kassavetis, S; Vourlias, G.; Karakassides, MA; Patsalas, P.

    2015-01-01

    Perhaps the simplest method for creating metal nanoparticles on a substrate is by driving their self-assembly with the thermal annealing of a thin metal film. By properly tuning the annealing parameters one hopes to discover a recipe that allows the pre-determined design of the NP arrangement. However, thermal treatment is known for detrimental effects and is not really the manufacturer's route of choice when it comes to large-scale applications. An alternative method is the use of microwave ...

  4. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Mechanism and Kinetics of Methane Combustion, Part I: Thermal Rate Constants for Hydrogen-Abstraction Reaction of CH4 + O(3P).

    Science.gov (United States)

    Peng, Ya; Jiang, Zhong'an; Chen, Jushi

    2017-03-23

    The mechanism and kinetics of gas-phase hydrogen-abstraction by the O(3P) from methane are investigated using ab initio calculations and dynamical methods. Not only are the electronic structure properties including the optimized geometries, relative energies, and vibrational frequencies of all the stationary points obtained from state-averaged complete active space self-consistent field calculations, but also the single-point energies for all points on the intrinsic reaction coordinate are evaluated using the internally contracted multireference configuration interaction approach with modified optimized cc-pCVDZ basis sets. Our calculations give a fairly accurate description of the regions around the 3A″ transition state in the O(3P) attacking a near-collinear H-CH3 direction with a barrier height of 12.53 kcal/mol, which is lower than those reported before. Subsequently, thermal rate constants for this hydrogen-abstraction are calculated using the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in agreement with experiments. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(3P) from methane, and it is helpful for the understanding of methane combustion.

  6. Research of acceptor impurity thermal activation in GaN: Mg epitaxial layers

    Directory of Open Access Journals (Sweden)

    Aleksandr V. Mazalov

    2016-06-01

    The effect of thermal annealing of GaN:Mg layers on acceptor impurity activation has been investigated. Hole concentration increased and mobility decreased with an increase in thermal annealing temperature. The sample annealed at 1000 °C demonstrated the lowest value of resistivity. Rapid thermal annealing (annealing with high heating speed considerably improved the efficiency of Mg activation in the GaN layers. The optimum time of annealing at 1000 °C has been determined. The hole concentration increased by up to 4 times compared to specimens after conventional annealing.

  7. Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwal

    2009-07-01

    Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

  8. Impacts of excimer laser annealing on Ge epilayer on Si

    Science.gov (United States)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  9. NRC assessment of the Department of Energy annealing demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.A.; Malik, S.N. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-02-01

    Thermal annealing is the only known method for mitigating the effects of neutron irradiation embrittlement in reactor pressure vessel (RPV) steels. In May 1996, the US Department of Energy (DOE) in conjunction with the American Society of Mechanical Engineers, Westinghouse, Cooperheat, Electric Power Research Institute (with participating utilities), Westinghouse Owner`s Group, Consumers Power, Electricite` de France, Duquesne Light and the Central Research Institute of the Electric Power Industry (Japan) sponsored an annealing demonstration project (ADP) at Marble Hill. The Marble Hill Plant, located in Madison, Indiana, is a Westinghouse 4 loop design. The plant was nearly 70% completed when the project was canceled. Hence, the RPV was never irradiated. The paper will present highlights from the NRCs independent evaluation of the Marble Hill Annealing Demonstration Project.

  10. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen.

    Science.gov (United States)

    Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio

    2011-03-07

    We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions. © 2011 American Institute of Physics.

  11. Characterization of damaging in apatitic materials irradiated with heavy ions and thermally annealed; Caracterisation de l'endommagement de materiaux apatitiques irradies aux ions lourds et recuits thermiquement

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, R

    2004-12-15

    Some minerals belonging to the family of apatite are seen to be potential candidates for use as conditioning matrices or transmutation targets for high level nuclear waste management. Indeed, studies of natural nuclear reactors (Oklo) highlighted the strong ability of these minerals to anneal irradiation damage. In order to determine the global behaviour of these materials, we performed a fundamental study on the evolution of irradiation damage induced by various heavy ions in two apatites: a natural phospho-calcic fluor-apatite from Durango and a synthetic sintered mono-silicated fluor-apatite, called britholite. The damage in these materials was measured by using channelling R.B.S. and X-ray diffraction respectively and by determining an amorphization effective radius Re. The results revealed a similar behaviour for both apatites according to the electronic energy deposit at the entrance of the material. In addition, the effect of an isothermal annealing at 300 C was quantified on a mono-silicated britholite previously irradiated with Kr ions. We highlighted in this case the return of the lattice parameters to their initial values, followed by a partial and slow rebuilding of the crystalline lattice versus the annealing time. Finally, we followed the changes in the morphology of etch pits in the Durango fluor-apatite after acid dissolution as a function of the energy deposit by the ions. We showed that the influence of crystallography leads quickly to opening angles close to 30 degrees. The calculation of etching velocities within the irradiated material highlighted that there is a range of deposit energy where the velocity ratio increases strongly before becoming constant. (author)

  12. Thermal annealing of high dose radiation induced damage at room temperature in alkaline. Stored energy, thermoluminescence and coloration; Aniquilacion termica de dano inducido por irradiacion a altas dosis en haluros alcalinos a 300 k. energia almacenda. Termoluminiscencia y coloracion

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, L.

    1980-07-01

    The possible relation between stored energy, thermoluminescence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminescence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KC1 samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose.Capacity of alkali halides to store energy by irradiation increases as the cation size decreases. (Author) 51 refs.

  13. Ice XVII as a Novel Material for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Leonardo del Rosso

    2017-02-01

    Full Text Available Hydrogen storage is one of the most addressed issues in the green-economy field. The latest-discovered form of ice (XVII, obtained by application of an annealing treatment to a H 2 -filled ice sample in the C 0 -phase, could be inserted in the energy-storage context due to its surprising capacity of hydrogen physisorption, when exposed to even modest pressure (few mbars at temperature below 40 K, and desorption, when a thermal treatment is applied. In this work, we investigate quantitatively the adsorption properties of this simple material by means of spectroscopic and volumetric data, deriving its gravimetric and volumetric capacities as a function of the thermodynamic parameters, and calculating the usable capacity in isothermal conditions. The comparison of ice XVII with materials with a similar mechanism of hydrogen adsorption like metal-organic frameworks shows interesting performances of ice XVII in terms of hydrogen content, operating temperature and kinetics of adsorption-desorption. Any application of this material to realistic hydrogen tanks should take into account the thermodynamic limit of metastability of ice XVII, i.e., temperatures below about 130 K.

  14. Characterization of thermal and mechanical properties of polypropylene-based composites for fuel cell bipolar plates and development of educational tools in hydrogen and fuel cell technologies

    Science.gov (United States)

    Lopez Gaxiola, Daniel

    strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.

  15. Improvement on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Esakky, Papanasam, E-mail: papanasamte@gmail.com; Kailath, Binsu J

    2017-08-15

    Highlights: • Post deposition annealing (PDA) and post metallization annealing (PMA) on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors. • Post deposition N{sub 2}O plasma annealing inhibits crystallization of HfO{sub 2} during high temperature annealing. • Plasma annealing followed by RTA in N{sub 2} results in formation of hafnium silicate at the HfO{sub 2}-SiC interface. • PDA reduces interface state density (D{sub it}) and gate leakage current density (J{sub g}) by order. • PMA in forming gas for 40 min results in better passivation and reduces D{sub it} by two orders and J{sub g} by thrice. - Abstract: HfO{sub 2} as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO{sub 2}/SiC capacitors offer higher sensitivity than SiO{sub 2}/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO{sub 2}/SiC interface. Effect of post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO{sub 2}/SiC MIS capacitors are reported in this work. N{sub 2}O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N{sub 2} result in formation of Hf silicate at the HfO{sub 2}/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO{sub 2}/SiC capacitors.

  16. An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.; Macco, Bart; Kessels, Wilhelmus, M.M.; Stradins, Paul; Young, David, L.

    2017-06-26

    For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Voc exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.

  17. High pressure annealing of Europium implanted GaN

    KAUST Repository

    Lorenz, K.

    2012-02-09

    GaN epilayers were implanted with Eu to fluences of 1×10^13 Eu/cm2 and 1×10^15 Eu/cm2. Post-implant thermal annealing was performed in ultra-high nitrogen pressures at temperatures up to 1450 ºC. For the lower fluence effective structural recovery of the crystal was observed for annealing at 1000 ºC while optical activation could be further improved at higher annealing temperatures. The higher fluence samples also reveal good optical activation; however, some residual implantation damage remains even for annealing at 1450 ºC which leads to a reduced incorporation of Eu on substitutional sites, a broadening of the Eu luminescence lines and to a strongly reduced fraction of optically active Eu ions. Possibilities for further optimization of implantation and annealing conditions are discussed.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  18. Syntheses, Crystal Structures, Magnetic Behaviours, and Thermal Properties of Three Hydrogen-Bonding Networks Containing Dicyanamide and 4-Hydroxypyridine

    Directory of Open Access Journals (Sweden)

    Lingling Zheng

    2013-01-01

    Full Text Available Three new dicyanamide-bridged polymeric complexes of {[Mn(dca2(L2]·2H2O}n (1, {[Cd(dca2(L2]·2H2O}n (2, and {[Co(dca2(L2]2(L}n (3 (dca = dicyanamide, L = pyridinium-4-olate have been synthesized and structurally characterized. In the three compounds, the protons of hydroxyl groups of 4-hydroxypyridine transfer to pyridyl nitrogen atoms. Compounds 1 and 2 are isomorphous forming one-dimensional [M(dca2(L2]n chains where metals are connected by double dca anions. These one-dimensional chains are extended into two-dimensional layers through weak C–H⋯N hydrogen bonds. Further, these layers are assembled into a three-dimensional supramolecular network through N–H⋯O, O–H⋯O hydrogen bonds. Complex 3 is a coordination layer of (4, 4 topology with octahedral metal centers linked by four single μ1,5-bridges. These layers are interlocked by N–H⋯O, O–H⋯O hydrogen bonds from coordinated water molecules and free L molecules, which leads to a three-dimensional supramolecular architecture. The variable temperature magnetic susceptibilities measurement of compounds 1 and 3 shows the existence of weak antiferromagnetic interactions between the metal centers. The thermogravimetric analyses of the compounds 1–3 are also discussed.

  19. Tunable Electrical Properties of Vanadium Oxide by Hydrogen-Plasma-Treated Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Helen Hejin Park

    2017-04-01

    Full Text Available In this study, a plasma-modified process was developed to control the electrical properties of atomic layer deposition (ALD-grown vanadium dioxide (VO2, which is potentially useful for applications such as resistive switching devices, bolometers, and plasmonic metamaterials. By inserting a plasma pulse with varying H2 gas flow into each ALD cycle, the insulator-to-metal transition (IMT temperature of postdeposition-annealed crystalline VO2 films was adjusted from 63 to 78 °C. Film analyses indicate that the tunability may arise from changes in grain boundaries, morphology, and compositional variation despite hydrogen not remaining in the annealed VO2 films. This growth method, which enables a systematic variation of the electronic behavior of VO2, provides capabilities beyond those of the conventional thermal ALD and plasma-enhanced ALD.

  20. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    Science.gov (United States)

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  1. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This paper reports results of investigation carried out on sintered copper alloys (Cu, 8 at%; Zn,. Ni, Al and Cu–Au with 4 at%Au). The alloys were subjected to cold rolling (30, 50 and 70%) and annealed isochronally up to recrystallization temperature. Changes in hardness and electrical conductivity were fol-.

  2. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption from hydrocarbon plasma-discharge films from T-10 tokama

    Science.gov (United States)

    Stankevich, Vladimir G.; Sukhanov, Leonid P.; Svechnikov, Nicolay Yu.; Lebedev, Alexey M.; Menshikov, Kostantin A.; Kolbasov, Boris N.

    2017-10-01

    Investigations of the effect of Fe impurities on D2 thermal desorption (TD) from homogeneous CDx films (x ˜ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed two groups of peaks at 650-850 K and 900-1000 K for two adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe+ ion with the 1,3-C6H8 molecule was proposed. The potential energy surfaces of chemical reactions with the H2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe+ ion with the π-subsystem of the 1,3-C6H8 molecule leading to a redistribution of the double bonds along the carbon system. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)"", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  3. Entanglement in a Quantum Annealing Processor

    Science.gov (United States)

    Lanting, T.; Przybysz, A. J.; Smirnov, A. Yu.; Spedalieri, F. M.; Amin, M. H.; Berkley, A. J.; Harris, R.; Altomare, F.; Boixo, S.; Bunyk, P.; Dickson, N.; Enderud, C.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Ladizinsky, N.; Neufeld, R.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.; Rose, G.

    2014-04-01

    Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of architecturally scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for large-scale quantum computing.

  4. Radiation annealing of gallium arsenide implanted with sulphur

    CERN Document Server

    Ardyshev, V M

    2002-01-01

    Sulfur ions were implanted in a semi-insulating GaAs. Photon annealing (805 deg C/(10-12) s) and the thermal one (800 deg C/30 min) were conducted under SiO sub 2 -films coating obtained by different ways. Contents of GaAs components in films were determined from Rutherford backscattering spectra; concentration profiles of electrons were measured by the voltage-capacitance method. Diffusion of sulfur was shown to go in two directions - to the surface and into bulk of GaAs. The first process was induced by vacancies that had been formed near the surface of semiconductors during the dielectric coating. The coefficient of the bulk-diffusion and diffusion-to-surface of sulfur ions under photon annealing was twice as much as that under thermal one. The doping efficiency was also larger

  5. Implantation of plasmonic nanoparticles in SiO{sub 2} by pulsed laser irradiation of gold films on SiO{sub x}-coated fused silica and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Stolzenburg, H. [Laser-Laboratorium Göttingen, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany); Peretzki, P.; Wang, N.; Seibt, M. [IV. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ihlemann, J., E-mail: juergen.ihlemann@llg-ev.de [Laser-Laboratorium Göttingen, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany)

    2016-06-30

    Highlights: • Gold nanoparticles are implanted in glass by pulsed UV-laser irradiation. • Implantation of gold into SiO{sub x} and annealing leads to Au-particles in quartz glass. • TEM investigations reveal particles with 10–60 nm diameter in a depth of 40 nm. • Implanted particles show plasmon resonance at 540 nm. - Abstract: The pulsed UV-laser irradiation of thin noble metal films deposited on glass substrates leads to the incorporation of metal particles in the glass, if a sufficiently high laser fluence is applied. This process is called laser implantation. For the implantation of gold into pure fused silica, high laser fluences (∼1 J/cm{sup 2} at 193 nm laser wavelength) are required. Using a SiO{sub x} (x ≈ 1) coated SiO{sub 2}-substrate, the implantation of gold into this coating can be accomplished at significantly lower fluences starting from 0.2 J/cm{sup 2} (comparable to those used for standard glass). Particles with diameters in the range of 10–60 nm are implanted to a depth of about 40 nm as identified by transmission electron microscopy. An additional high temperature annealing step in air leads to the oxidation of SiO{sub x} to SiO{sub 2}, without influencing the depth distribution of particles significantly. Only superficial, weakly bound particles are released and can be wiped away. Absorption spectra show a characteristic plasmon resonance peak at 540 nm. Thus, pure silica glass (SiO{sub 2}) with near surface incorporated plasmonic particles can be fabricated with this method. Such material systems may be useful for example as robust substrates for surface enhanced Raman spectroscopy (SERS).

  6. Temperature- and roughness- dependent permittivity of annealed/unannealed gold films.

    Science.gov (United States)

    Shen, Po-Ting; Sivan, Yonatan; Lin, Cheng-Wei; Liu, Hsiang-Lin; Chang, Chih-Wei; Chu, Shi-Wei

    2016-08-22

    Intrinsic absorption and subsequent heat generation have long been issues for metal-based plasmonics. Recently, thermo-plasmonics, which takes the advantage of such a thermal effect, is emerging as an important branch of plasmonics. However, although significant temperature increase is involved, characterization of metal permittivity at different temperatures and corresponding thermo-derivative are lacking. Here we measure gold permittivity from 300K to 570K, which the latter is enough for gold annealing. More than one order difference in thermo-derivative is revealed between annealed and unannealed films, resulting in a large variation of plasmonic properties. In addition, an unusual increase of imaginary permittivity after annealing is found. Both these effects can be attributed to the increased surface roughness incurred by annealing. Our results are valuable for characterizing extensively used unannealed nanoparticles, or annealed nanostructures, as building blocks in future thermo-nano-plasmonic systems.

  7. Effects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures

    Directory of Open Access Journals (Sweden)

    Skåre Daniel

    2011-01-01

    Full Text Available Abstract The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and nanowires, whereas lower temperatures led to low nanostructure densities. Separate Au film annealing experiments at 700°C showed little variation in the size and density of the Au catalyst droplets with substrate annealing temperature. The observed variation in the density of nanostructures is attributed to the number of surface nucleation sites on the substrate, leading to a competition between nucleation promoted by the Au catalyst and surface nucleation sites on the rougher surfaces annealed below 1,200°C.

  8. The Insulator to Superconductor Transition in Ga-Doped Semiconductor Ge Single Crystal Induced by the Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Y. B. Sun

    2015-01-01

    Full Text Available We have fabricated the heavily Ga-doped layer in Ge single crystal by the implantation and rapid thermal annealing method. The samples show a crossover from the insulating to the superconducting behavior as the annealing temperature increases. Transport measurements suggest that the superconductivity is from the heavily Ga-doped layer in Ge.

  9. Ground state structures and properties of small hydrogenated silicon ...

    Indian Academy of Sciences (India)

    We present results for ground state structures and properties of small hydrogenated silicon clusters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two silicon ...

  10. Ground state structures and properties of small hydrogenated silicon ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We present results for ground state structures and properties of small hydrogenated silicon clus- ters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two ...

  11. Ultraviolet-induced birefringence in hydrogen-loaded optical fiber

    DEFF Research Database (Denmark)

    Canning, John; Deyerl, Hans-Jürgen; Sørensen, Henrik Rokkjær

    2005-01-01

    hydrogen being present in the system. Overall the birefringence, by deduction, is associated with anisotropy in hydrogen reactions within the fiber. As a result they lead, through known mechanisms of dilation in glass, to anisotropic stress relaxation that can be annealed out, with or without hydrogen...

  12. Annealing of silicon optical fibers

    Science.gov (United States)

    Gupta, N.; McMillen, C.; Singh, R.; Podila, R.; Rao, A. M.; Hawkins, T.; Foy, P.; Morris, S.; Rice, R.; Poole, K. F.; Zhu, L.; Ballato, J.

    2011-11-01

    The recent realization of silicon core optical fibers has the potential for novel low insertion loss rack-to-rack optical interconnects and a number of other uses in sensing and biomedical applications. To the best of our knowledge, incoherent light source based rapid photothermal processing (RPP) was used for the first time to anneal glass-clad silicon core optical fibers. X-ray diffraction examination of the silicon core showed a considerable enhancement in the length and amount of single crystallinity post-annealing. Further, shifts in the Raman frequency of the silicon in the optical fiber core that were present in the as-drawn fibers were removed following the RPP treatment. Such results indicate that the RPP treatment increases the local crystallinity and therefore assists in the reduction of the local stresses in the core, leading to more homogenous fibers. The dark current-voltage characteristics of annealed silicon optical fiber diodes showed lower leakage current than the diodes based on as-drawn fibers. Photons in UV and vacuum ultraviolet (VUV) regions play a very important role in improving the bulk and carrier transport properties of RPP-treated silicon optical fibers, and the resultant annealing permits a path forward to in situ enhancement of the structure and properties of these new crystalline core optical fibers.

  13. Shock tube study on the thermal decomposition of fluoroethane using infrared laser absorption detection of hydrogen fluoride.

    Science.gov (United States)

    Matsugi, Akira; Shiina, Hiroumi

    2014-08-28

    Motivated by recent shock tube studies on the thermal unimolecular decomposition of fluoroethanes, in which unusual trends have been reported for collisional energy-transfer parameters, the rate constants for the thermal decomposition of fluoroethane were investigated using a shock tube/laser absorption spectroscopy technique. The rate constants were measured behind reflected shock waves by monitoring the formation of HF by IR absorption at the R(1) transition in the fundamental vibrational band near 2476 nm using a distributed-feedback diode laser. The peak absorption cross sections of this absorption line have also been determined and parametrized using the Rautian-Sobel'man line shape function. The rate constant measurements covered a wide temperature range of 1018-1710 K at pressures from 100 to 290 kPa, and the derived rate constants were successfully reproduced by the master equation calculation with an average downward energy transfer, ⟨ΔEdown⟩, of 400 cm(-1).

  14. Analysis of intermediate pressure SiH4/He capacitively coupled plasma for deposition of an amorphous hydrogenated silicon film in consideration of thermal diffusion effects

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2017-08-01

    To achieve rapid, uniform deposition of an amorphous hydrogenated silicon (a-Si:H) film, a capacitively coupled plasma (CCP) is often used at an intermediate pressure (>100 Pa), with a silane (SiH4)-based mixture. At these pressures, heavy particle interactions (such as ion-ion, ion-neutral, and neutral-neutral reactions) contribute significantly to the formation of precursor radicals. By adding a consideration of the thermal diffusion effects to the neutral transport equation, the chemical processes have been numerically analyzed with variation in the number fraction of SiH4 and electrode spacing using a two-dimensional fluid model of radio frequency discharges in a cylindrically symmetric CCP reactor. The non-uniformity of the deposition rate profiles increases consistently as electrode spacing increases, although the non-uniformity of the plasma parameters decreases with the increase of electrode spacing. The simulated deposition rate profiles match well with the experimental data for the change of electrode spacing. Based on the validation of our model, we propose predictive designs to potentially improve the reactor and process by modifying the thermal and electrical surface conditions.

  15. Thermal/structural analyses of several hydrogen-cooled leading-edge concepts for hypersonic flight vehicles

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.; Mockler, Theodore T.; Tong, Mike

    1990-01-01

    The aerodynamic heating at high flight Mach numbers, when shock interference heating is included, can be extremely high and can exceed the capability of most conventional metallic and potential ceramic materials available. Numerical analyses of the heat transfer and thermal stresses are performed on three actively cooled leading-edge geometries (models) made of three different materials to address the issue of survivability in a hostile environment. These analyses show a mixture of results from one configuration to the next. Results for each configuration are presented and discussed. Combinations of enhanced internal film coefficients and high material thermal conductivity of copper and tungsten are predicted to maintain the maximum wall temperature for each concept within acceptable operating limits. The exception is the TD nickel material which is predicted to melt for most cases. The wide range of internal impingement film coefficients (based on correlations) for these conditions can lead to a significant uncertainty in expected leading-edge wall temperatures. The equivalent plastic strain, inherent in each configuration which results from the high thermal gradients, indicates a need for further cyclic analysis to determine component life.

  16. Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique

    Energy Technology Data Exchange (ETDEWEB)

    Tüzün Özmen, Ö., E-mail: ozgetuzun@duzce.edu.tr [Department of Physics, Düzce University, 81620 Düzce (Turkey); Karaman, M. [GÜNAM, Middle East Technical University, 06800 Ankara (Turkey); Department of Micro and Nanotechnology, Middle East Technical University, 06531 Ankara (Turkey); Turan, R. [GÜNAM, Middle East Technical University, 06800 Ankara (Turkey); Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2014-01-31

    In this work, a reformed crystallization annealing technique is presented for the solid phase crystallization (SPC) of amorphous silicon (a-Si) on SiN{sub x}-coated quartz substrate. This technique includes a two-step annealing process which consists of a low-temperature (475 °C) classical furnace annealing for nucleation of Si and a high-temperature (900 °C) grain growth process of polycrystalline silicon (poly-Si) during thermal annealing in classical tube furnace. The aim of this reformed two-step annealing technique is reducing the long (up to 48 h) crystallization annealing duration of single step annealing at low temperatures (∼ 600 °C) while maintaining the film quality, as low-temperature single step annealing, by using reformed technique. Continuous p-type poly-Si film was formed on quartz substrate thanks to exodiffusion of boron, which was deposited prior to a-Si, through Si film by thermal annealing. The stress and degree of crystallinity of the p-type poly-Si were studied by the micro-Raman Spectroscopy. The crystallization fraction value of 95% was deduced for annealed samples at 900 °C, independent from crystallization technique. On the other hand, the Raman analysis points out that compressive stress was induced by increasing the annealing duration at 900 °C. X-ray diffraction (XRD) analysis reveals that the preferred crystallite orientation of the films, independent from crystallization temperature and substrates, is <111>. Additionally, the average crystallite size calculated from XRD patterns increases from 69 Å to 165 Å by using reformed two-step annealing instead of single step annealing at 900 °C for 90 min. The exodiffusion of boron into the silicon film was deduced from secondary ion mass spectrometry (SIMS) analysis and the p{sup +}/p graded boron profile was obtained, which may result higher carrier diffusion length and longer carrier life time. Finally, the annealing duration dramatically decrease to 9 h by using reformed two

  17. Quantum Spin Glasses, Annealing and Computation

    Science.gov (United States)

    Tanaka, Shu; Tamura, Ryo; Chakrabarti, Bikas K.

    2017-05-01

    List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.

  18. Post-irradiation annealing effects on hardness and intergranular corrosion in type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Kyoichi [Tokyo Electric Power Co. Inc., Yokohama (Japan). Materials Engineering Dept.; Katsura, Ryoei; Kodama, Mitsuhiro; Nishimura, Seiji [Nippon Nuclear Fuel Development Co., Ltd., Ibaraki (Japan); Fukuya, Kouji [Toshiba Corp., Yokohama (Japan). Nuclear Engineering Lab.; Nakata, Kiyotomo [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.

    1995-12-31

    The effects of post-irradiation annealing on hardness and grain boundary corrosion were investigated on stainless steel irradiated to 1.2 {times} 10{sup 26}n/m{sup 2}(E > 1 MeV). A commercial purity type 304 steel sample was annealed at temperatures between 673K and 1,323K for terms between 300s and 360ks. Only a slight decrease in hardness was observed by annealing at 723K for 3.6ks, while significant recovery was observed at 923K and above. This dependence on annealing temperature reflected recovery in damage microstructures. Annealing at all temperatures resulted in improved corrosion resistance when evaluated by the HNO{sub 3}/Cr{sup 6+} test. In the oxalic acid test, Strauss test and double loop electrochemical potentiokinetic reactivation test, no significant change from as-irradiated material occurred at 723K and below regarding intergranular corrosion while at 773K to 923K, thermal sensitization was observed and the reactivation ratio was larger than in unirradiated material. Annealing at 1,173K led to the irradiation induced degradation in corrosion resistance being recovered to almost the same level as that in unirradiated material. Helium bubble formation was observed after annealing at 923K and above, however, no brittle grain boundary failure occurred through all the test procedures including post-annealing straining.

  19. Laser annealing of thin film polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Chowdhury A.

    2013-11-01

    Full Text Available Performances of thin film polycrystalline silicon solar cell grown on glass substrate, using solid phase crystallization of amorphous silicon can be limited by low dopant activation and high density of defects. Here, we investigate line shaped laser induced thermal annealing to passivate some of these defects in the sub-melt regime. Effect of laser power and scan speed on the open circuit voltage of the polysilicon solar cells is reported. The processing temperature was measured by thermal imaging camera. Enhancement of the open circuit voltage as high as 210% is achieved using this method. The results are discussed.

  20. Application of genetic algorithms to hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    Hydrogenated silicon; genetic algorithms; differential evolution; ab initio calculation. ... with the earlier work conducted using the simulated annealing technique. ... Department of Metallurgical and Materials Engineering, Indian Institute of ...

  1. a-Si:H crystallization from isothermal annealing and its dependence on the substrate used

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Orduna-Diaz, A.; Delgado-Macuil, R.; Gayou, V.L.; Bibbins-Martinez, M. [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Torres-Jacome, A.; Trevino-Palacios, C.G. [INAOE, Tonantzintla, Puebla, Pue. 72000 (Mexico)

    2010-10-25

    We present hydrogenated amorphous silicon (a-Si:H) films which were deposited on two different substrates (glass and mono-crystalline silicon) after an isothermal annealing treatment at 250 deg. C for up to 14 h. The annealed amorphous films were analyzed using atomic force microscopy, Raman and FTIR spectroscopy. Films deposited on glass substrate experienced an amorphous-crystalline phase transition after annealing because of the metal-induced crystallization effect, reaching approximately 70% conversion after 14 h of annealing. An absorption frequency of the TO-phonon mode that varies systematically with the substoichiometry of the silicon oxide in the 1046-1170 cm{sup -1} region was observed, revealing the reactivity of the film with the annealing time. For similar annealing time, films deposited on mono-crystalline silicon substrate remained mainly amorphous with minimal Si-crystalline formation. Therefore, the crystalline formations and the shape of the films surfaces depends on the annealing time as well as on the substrate employed during the deposition process of the a-Si:H film.

  2. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  3. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation.

    Science.gov (United States)

    Zhang, Zailei; Zhu, Yihan; Asakura, Hiroyuki; Zhang, Bin; Zhang, Jiaguang; Zhou, Maoxiang; Han, Yu; Tanaka, Tsunehiro; Wang, Aiqin; Zhang, Tao; Yan, Ning

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al(3+) centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  4. Blue thermoluminescence emission of annealed lithium rich aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V.; Rodriguez-Lazcano, Y., E-mail: v.correcher@ciemat.e [CIEMAT, Madrid (Spain); Garcia-Guinea, J.; Crespo-Feo, E. [Museo Nacional de Ciencias Naturales, Madrid (Spain)

    2010-09-15

    The blue thermoluminescence (TL) emission of different thermally annealed {beta}-eucryptite (LiAlSiO{sub 4}), virgilite-petalite (LiAlSi{sub 5}O{sub 12}) and virgilite-petalite-bikitaite (LiAlSi{sub 10}O{sub 22}) mixed crystals have been studied. The observed changes in the TL glow curves could be linked to simultaneous processes taking place in the lithium aluminosilicate lattice structure (phase transitions, consecutive breaking linking of bonds, alkali self-diffusion, redox reactions, etc). The stability of the TL signal after four months of storage performed at RT under red light, shows big differences between annealed (12 hours at 1200 deg C) and non-annealed samples. The fading process in non-annealed samples can be fitted to a first-order decay mathematical expression; however preheated samples could not be reasonably fitted due to the highly dispersion detected. The changes observed in the X-ray diffractograms are in the intensity of the peaks that denote modifications in the degree of crystallinity and, in addition, there are some differences in the appearance of new peaks that could suppose new phases (e.g. b-spodumene). (author)

  5. Photoelectron spectroscopy investigation of the temperature-induced deprotonation and substrate-mediated hydrogen transfer in a hydroxyphenyl-substituted porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Smykalla, Lars, E-mail: lars.smykalla@physik.tu-chemnitz.de [Technische Universität Chemnitz, Institute of Physics, Solid Surfaces Analysis Group, D-09107 Chemnitz (Germany); Shukrynau, Pavel [Technische Universität Chemnitz, Institute of Physics, Solid Surfaces Analysis Group, D-09107 Chemnitz (Germany); Mende, Carola; Lang, Heinrich [Technische Universität Chemnitz, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz (Germany); Knupfer, Martin [Electronic and Optical Properties Department, IFW Dresden, D-01171 Dresden (Germany); Hietschold, Michael [Technische Universität Chemnitz, Institute of Physics, Solid Surfaces Analysis Group, D-09107 Chemnitz (Germany)

    2015-04-01

    Highlights: • Photoelectron spectroscopy of tetra(p-hydroxyphenyl)porphyrin on Au(1 1 1) and Ag(1 1 0). • Ratio of amount of −NH− to −N= in the molecule on Au(1 1 1) decreases after annealing. • Dissociation of −OH groups and transfer of hydrogen atoms to −N= on Ag(1 1 0). • Cleavage of C−H bonds of porphyrin macro-cycle at high temperature. • Changes of the valence band of the molecule in dependance of annealing temperature. - Abstract: The temperature dependent stepwise deprotonation of 5,10,15,20-tetra(p-hydroxyphenyl)-porphyrin is investigated using photoelectron spectroscopy. An abundance of pyrrolic relative to iminic nitrogen and a decrease in the ratio of the amount of −NH− to −N= with increasing annealing temperature is found. In contrast to the molecules adsorbed on Au(1 1 1), on the more reactive Ag(1 1 0) surface, partial dissociation of the hydroxyl groups and subsequent diffusion and rebonding of hydrogen to the central nitrogen atoms resulting in a zwitterionic molecule was clearly observed. Moreover, partial C−H bond cleavage and the formation of new covalent bonds with adjacent molecules or the surface starts at a relatively high annealing temperature of 300 °C. This reaction is identified to occur at the carbon atoms of the pyrrole rings, which leads also to a shift in the N 1s signal and changes in the valence band of the molecules. Our results show that annealing can significantly alter the molecules which were deposited depending on the maximum temperature and the catalytic properties of the specific substrate. The thermal stability should be considered if a molecular monolayer is prepared from a multilayer by desorption, or if annealing is applied to enhance the self-assembly of molecular structures.

  6. Dolomite-Derived Ni-Based Catalysts with Fe Modification for Hydrogen Production via Auto-Thermal Reforming of Acetic Acid

    Directory of Open Access Journals (Sweden)

    Xinyan Zhong

    2016-06-01

    Full Text Available Bio-oil can be obtained via fast pyrolysis of biomass, and typically contains acetic acid (~30 mass %. The acetic acid has often been tested as a model compound for hydrogen production via reforming bio-oil, in which catalysts are a key factor for stable hydrogen production. However, deactivation of catalysts by coking and oxidation hinders the application of the reforming process. Dolomite-derived Ni-based catalysts with Fe additive, MgNi0.2Ca0.8−xFexO2±δ (x = 0–0.8, were successfully synthesized by the hydrothermal synthesis method, and then tested in auto-thermal reforming (ATR of acetic acid (AC. The MgNi0.2Ca0.5Fe0.3O2±δ catalyst performed a stable reactivity in ATR: the conversion of AC reached 100%, and the H2 yield remained stable around 2.6 mol-H2/mol-AC. The catalysts were characterized by X-ray diffraction (XRD, N2 physisorption, X-ray photoelectron spectra (XPS, H2-temperature-programmed reduction (TPR, inductively coupled plasma- atomic emission spectroscopy (ICP-AES and Thermogravimetry (TG; the results show that a periclase-like solid solution of Mg(Ni,FeO and lime were formed via the precursors of dolomite and hydrotalcite, and then transformed into Fe-rich Ni-Fe alloy with basic support of MgO-CaO after reduction. The stable Ni0 spices with basic support can explain the stability and resistance to coking during ATR of AC.

  7. Feasibility of Simulated Annealing Tomography

    CERN Document Server

    Vo, Nghia T; Moser, Herbert O

    2014-01-01

    Simulated annealing tomography (SAT) is a simple iterative image reconstruction technique which can yield a superior reconstruction compared with filtered back-projection (FBP). However, the very high computational cost of iteratively calculating discrete Radon transform (DRT) has limited the feasibility of this technique. In this paper, we propose an approach based on the pre-calculated intersection lengths array (PILA) which helps to remove the step of computing DRT in the simulated annealing procedure and speed up SAT by over 300 times. The enhancement of convergence speed of the reconstruction process using the best of multiple-estimate (BoME) strategy is introduced. The performance of SAT under different conditions and in comparison with other methods is demonstrated by numerical experiments.

  8. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  9. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  10. A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite

    Science.gov (United States)

    Willett, Chelsea D.; Fox, Matthew; Shuster, David L.

    2017-11-01

    Widely used to study surface processes and the development of topography through geologic time, (U-Th)/He thermochronometry in apatite depends on a quantitative description of the kinetics of 4He diffusion across a range of temperatures, timescales, and geologic scenarios. Empirical observations demonstrate that He diffusivity in apatite is not solely a function of temperature, but also depends on damage to the crystal structure from radioactive decay processes. Commonly-used models accounting for the influence of thermal annealing of radiation damage on He diffusivity assume the net effects evolve in proportion to the rate of fission track annealing, although the majority of radiation damage results from α-recoil. While existing models adequately quantify the net effects of damage annealing in many geologic scenarios, experimental work suggests different annealing rates for the two damage types. Here, we introduce an alpha-damage annealing model (ADAM) that is independent of fission track annealing kinetics, and directly quantifies the influence of thermal annealing on He diffusivity in apatite. We present an empirical fit to diffusion kinetics data and incorporate this fit into a model that tracks the competing effects of radiation damage accumulation and annealing on He diffusivity in apatite through geologic time. Using time-temperature paths to illustrate differences between models, we highlight the influence of damage annealing on data interpretation. In certain, but not all, geologic scenarios, the interpretation of low-temperature thermochronometric data can be strongly influenced by which model of radiation damage annealing is assumed. In particular, geologic scenarios involving 1-2 km of sedimentary burial are especially sensitive to the assumed rate of annealing and its