WorldWideScience

Sample records for hydrogen storage tank

  1. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  2. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  3. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  4. A lumped-parameter model for cryo-adsorber hydrogen storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, V.; Raghunathan, K. [India Science Lab, General Motors R and D, Creator Building, International Technology Park, Bangalore 560066 (India); Kumar, Sudarshan [Chemical and Environmental Sciences Lab, General Motors R and D, 30500 Mound Road, Warren, MI 48090 (United States)

    2009-07-15

    One of the primary requirements for commercialization of hydrogen fuel-cell vehicles is the on-board storage of hydrogen in sufficient quantities. On-board storage of hydrogen by adsorption on nano-porous adsorbents at around liquid nitrogen temperatures and moderate pressures is considered viable and competitive with other storage technologies: liquid hydrogen, compressed gas, and metallic or complex hydrides. The four cryo-adsorber fuel tank processes occur over different time scales: refueling over a few minutes, discharge over a few hours, dormancy over a few days, and venting over a few weeks. The slower processes i.e. discharge, dormancy and venting are expected to have negligible temperature gradients within the bed, and hence are amenable to a lumped-parameter analysis. Here we report a quasi-static lumped-parameter model for the cryo-adsorber fuel tank, and discuss the results for these slower processes. We also describe an alternative solution method for dormancy and venting based on the thermodynamic state description. (author)

  5. Composite high-pressure vessels for hydrogen storage in mobile application. Pt. 1 / Light weight composite cylinders for compressed hydrogen. Pt. 2 - custom made hydrogen storage tanks and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, C. [MCS Cylinder Systems GmbH, Dinslaken (Germany)

    2000-07-01

    Recent developments on fuel cell technology demonstrated the feasibility of propelling vehicles by converting fuel directly into electricity. Fuel cells conveniently use either compressed (CGH{sub 2}) or liquid hydrogen (LH{sub 2}) or methanol as the fuel source from a tank. Mobile storage of these fuelling will become an urgent need as this technology will come into series production expected for 2010. Due to the requirements on mobile hydrogen storage and the energy losses in the hydrogen-to-application-chain, a light-weight and energetic qualities and minimise ist bulky nature. Mobile storage of hydrogen can be realised either at high pressure values (> 20 MPa) or at deep temperatures (<-253 C). CGH{sub 2}: In the last few years, the introduction of natural gas driven vehicles has seen the development of compact mobile pressurised gas tanks in principle, this storage technique is also applicable for the compressed storage of hydrogen at filling pressures of > 20 MPa. LH{sub 2} : Storing hydrogen or natural gases in general in the liquid phase is accomplished either by applying a overpressure or keeping it below the phase transition temperature at ambient pressure in super insulated devices. (orig.)

  6. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  7. Hydrogen Peroxide Storage in Small Sealed Tanks

    International Nuclear Information System (INIS)

    Whitehead, J.

    1999-01-01

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results

  8. Development of Automotive Liquid Hydrogen Storage Systems

    Science.gov (United States)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  9. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  10. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    Science.gov (United States)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  11. Annular Air Leaks in a liquid hydrogen storage tank

    Science.gov (United States)

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  12. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank

    Science.gov (United States)

    Lototskyy, Mykhaylo V.; Tolj, Ivan; Parsons, Adrian; Smith, Fahmida; Sita, Cordellia; Linkov, Vladimir

    2016-06-01

    We present test results of a commercial 3-tonne electric forklift (STILL) equipped with a commercial fuel cell power module (Plug Power) and a MH hydrogen storage tank (HySA Systems and TF Design). The tests included: (i) performance evaluation of "hybrid" hydrogen storage system during refuelling at low (fuel cell power module (alone) - power module with integrated MH tank; and (iii) performance tests of the forklift during its operation under working conditions. It was found that (a) the forklift with power module and MH tank can achieve 83% of maximum hydrogen storage capacity during 6 min refuelling (for full capacity 12-15 min); (b) heavy-duty operation of the forklift is characterised by 25% increase in energy consumption, and during system operation more uniform power distribution occurs when operating in the fuel cell powering mode with MH, in comparison to the battery powering mode; (c) use of the fully refuelled fuel cell power module with the MH extension tank allows for uninterrupted operation for 3 h 6 min and 7 h 15 min, for heavy- and light-duty operation, respectively.

  13. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualification of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed

  14. The methods of hydrogen storage

    International Nuclear Information System (INIS)

    Joubert, J.M.; Cuevas, F.; Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Hydrogen may be an excellent energy vector owing to its high specific energy. Its low density is however a serious drawback for its storage. Three techniques exist to store hydrogen. Storage under pressure is now performed in composite tanks under pressures around 700 bar. Liquid storage is achieved at cryogenic temperatures. Solid storage is possible in reversible metal hydrides or on high surface area materials. The three storage means are compared in terms of performance, energetic losses and risk. (authors)

  15. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  16. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  17. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  18. Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

    2008-12-31

    The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay

  19. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks. Final report, October 1992-September 1994

    International Nuclear Information System (INIS)

    Murty, K.L.; Elleman, T.S.

    1994-01-01

    The processing of high-level radioactive wastes now stored at Hanford and Savannah River Laboratories will continue over many years and it will be necessary for some of the liquids to remain in the tanks until well into the next century. Continued tank integrity is therefore an issue of prime importance and it will be necessary to understand any processes which could lead to tank failure. Hydrogen embrittlement resulting from absorption of radiolytic hydrogen could alter tank fracture behavior and be an issue in evaluating the effect of stresses on the tanks from rapid chemical oxidation-reduction reactions. The intense radiation fields in some of the tanks could be a factor in increasing the hydrogen permeation rates through protective oxide films on the alloy surface and be an additional factor in contributing to embrittlement. The project was initiated in October 1992 for a two year period to evaluate hydrogen uptake in low carbon steels that are representative of storage tanks. Steel specimens were exposed to high gamma radiation fields to generate radiolytic hydrogen and to potentially alter the protective surface films to increase hydrogen uptake. Direct measurements of hydrogen uptake were made using tritium as a tracer and fracture studies were undertaken to determine any alloy embrittlement. The rates of hydrogen uptake were noted to be extremely low in the experimental steels. Gamma radiation did not reveal any significant changes in the mechanical and fracture characteristics following exposures as long as a month. It is highly desirable to investigate further the tritium diffusion under stress in a cracked body where stress-assisted diffusion is expected to enhance these rates. More importantly, since welds are the weakest locations in the steel structures, the mechanical and fracture tests should be performed on welds exposed to tritium with and without stressed crack-fronts

  20. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  1. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  2. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  3. Prospects for hydrogen storage in graphene.

    Science.gov (United States)

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  4. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  5. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    Science.gov (United States)

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  6. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  7. Fundamental study on hydrogen storage with hydrogen absorbing alloys. Operating characteristics of storage tank; Suiso kyuzo gokin wo mochiita suiso chozo ni kansuru kiso kenkyu. Chozo yoki no dosa tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, S.; Sekiguchi, N.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Hydrogen absorption by a hydrogen storage (MH storage) is investigated for static characteristics, with a constant current applied to the hydrogen generator, and dynamic characteristics, with a fluctuating current applied to the same simulating actual insolation. In the experiment, alloy temperature (MH temperature) in the storage and a current for the generator are preset, and then automatic measurement is allowed to proceed at 10-second intervals of the differential pressure, hydrogen temperature in the piping, absolute pressure, MH temperature, room temperature, and water tank temperature. It is found as the result of the experiment that absorption performance is improved when the MH storage is cooled; that the mean absorption rate which is 1 without cooling increases to 1.62 at 7degC; that the mean absorption rate changes in proportion to the applied current (introduced hydrogen flow rate); that the rate which is 1 at 32A decreases to 0.53 that at 16A; that the absorption rate is dependent more on the current applied to the storage than the temperature of the heat exchanging medium; and that, even in the presence of fluctuation halfway in the applied current, the total absorption will be equal to a case of constant current application if the total amount of applied current is equal. 2 refs., 7 figs., 5 tabs.

  8. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  9. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  10. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  11. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  12. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  13. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  14. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  15. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    Science.gov (United States)

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  16. Storage of hydrogen in advanced high pressure container. Appendices

    International Nuclear Information System (INIS)

    Bentzen, J.J.; Lystrup, A.

    2005-07-01

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  17. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  18. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  19. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  20. McPhy-Energy’s proposal for solid state hydrogen storage materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    Jehan, Michel, E-mail: michel.jehan@mcphy.com [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Fruchart, Daniel, E-mail: daniel.fruchart@grenoble.cnrs.fr [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Institut Néel and CRETA, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •Mechanical alloying with nano-structurizing highly reactive magnesium metal hydrides particles. •Solid reversible hydrogen storage at scale of kg to tons of hydrogen using MgH{sub 2} composite discs. •Natural Expanded Graphite draining heat of reaction during sorption. •Change Phase Material storing reversibly heat of reaction within tank storage as adiabatic system. •Technology fully adapted for renewable energy storage and network energy peak shavings through H{sub 2}. -- Abstract: The renewable resources related, for instance, to solar energies exhibit two main characteristics. They have no practical limits in regards to the efficiency and their various capture methods. However, their intermittence prevents any direct and immediate use of the resulting power. McPhy-Energy proposes solutions based on water electrolysis for hydrogen generation and storage on reversible metal hydrides to efficiently cover various energy generation ranges from MW h to GW h. Large stationary storage units, based on MgH{sub 2}, are presently developed, including both the advanced materials and systems for a total energy storage from ∼70 to more than 90% efficient. Various designs of MgH{sub 2}-based tanks are proposed, allowing the optional storage of the heat of the Mg–MgH{sub 2} reaction in an adjacent phase changing material. The combination of these operations leads to the storage of huge amounts of hydrogen and heat in our so-called adiabatic-tanks. Adapted to intermittent energy production and consumption from renewable sources (wind, sun, tide, etc.), nuclear over-production at night, or others, tanks distribute energy on demand for local applications (on-site domestic needs, refueling stations, etc.) via turbine or fuel cell electricity production.

  1. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  2. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  3. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  4. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  5. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    International Nuclear Information System (INIS)

    Shatla, M.N; El Hady, M.

    2004-01-01

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  6. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 5. Development of hydrogen transportation and storage technology - Edition 3. Development of liquid hydrogen storage facility); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 5: Suiso yuso chozo gijutsu no kaihatsu - Dai 3 hen. Ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    With an intention to establish a technology required to build a hydrogen storage tank with a storage capacity of 50,000 m{sup 3} as the target shown in the basic plan for WE-NET, the current fiscal year has performed the technical literature surveys to identify the existing technologies. In the survey on the similar large storage system, a liquefied natural gas (LNG) was taken up, and the survey on the LNG bases in Japan was carried out. With regard to the existing liquefied hydrogen storage system, surveys were performed on the test site for developing the liquefied hydrogen/liquefied oxygen engines, the rocket launch sites, and liquefied hydrogen manufacturing plant. In relation with peripheral technologies for the underground storage tank being an excellent anti-seismic form, the LNG underground storage facilities were surveyed. Regarding the rock mass storage tank, surveys were carried out on the LPG rock mass storage having been used practically, and the LNG rock mass storage that is in the demonstration phase. In the research on storage facilities, surveys were executed on the forms and heat insulation structures of the similar large low-temperature storage tanks, the use record of the existing liquefied hydrogen storage tanks, heat insulating materials, and heat insulating structures. (NEDO)

  7. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  8. Study of the storage of hydrogen in carbon nanostructures

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Cossement, D.; Tessier, A.; Belanger, M.; Bose, T.K.; Dodelet, J-P.; Dellero, T.

    2000-01-01

    The storage of hydrogen is one of the points of development in industrial applications of fuel cells (CAP) of type PEMFC (Proton Exchange Membrane Fuel Cell). An effective system of storage would be a major step in the large scale utilization of this energy source. Process improvements concerning the storage density of energy, the cost, and facilities and the reliability of the storage must be sought in particular for the mobile applications. Among the different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seems the most promising way.The storage of hydrogen gas at ambient temperature today appears as the technical solution simplest, more advanced and more economic. However the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  9. Properties of thermoplastic polymers used for hydrogen storage under pressure

    International Nuclear Information System (INIS)

    Jousse, F.; Mazabraud, P.; Icard, B.; Mosdale, R.; Serre-Combe, P.

    2000-01-01

    The storage of hydrogen is one of the points of development of industrial applications of fuel cells of type PEMFC ( Proton Exchange Membrane Fuel Cell). Developing an effective system of storage remains major. Ameliorations concerning the storage density of energy, the cost and facilities and the storage must be considered especially for the mobile applications. Among different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seem the most promising way. The storage of hydrogen gas at ambient temperature today appears as the simplest technical solution, the most advanced and the most economic solution. However, the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  10. Two-dimensional thermal analysis of liquid hydrogen tank insulation

    Energy Technology Data Exchange (ETDEWEB)

    Babac, Gulru; Sisman, Altug [Istanbul Technical University, Energy Institute, Ayazaga campus, 34469 Maslak, Istanbul (Turkey); Cimen, Tolga [Jaguar and Landrover, Banbury Road, Gaydon, Warwick CV35 0RR (United Kingdom)

    2009-08-15

    Liquid hydrogen (LH{sub 2}) storage has the advantage of high volumetric energy density, while boil-off losses constitute a major disadvantage. To minimize the losses, complicated insulation techniques are necessary. In general, Multi Layer Insulation (MLI) and a Vapor-Cooled Shield (VCS) are used together in LH{sub 2} tanks. In the design of an LH{sub 2} tank with VCS, the main goal is to find the optimum location for the VCS in order to minimize heat leakage. In this study, a 2D thermal model is developed by considering the temperature dependencies of the thermal conductivity and heat capacity of hydrogen gas. The developed model is used to analyze the effects of model considerations on heat leakage predictions. Furthermore, heat leakage in insulation of LH{sub 2} tanks with single and double VCS is analyzed for an automobile application, and the optimum locations of the VCS for minimization of heat leakage are determined for both cases. (author)

  11. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Murty, K.L.; Elleman, T.S.

    1993-01-01

    Since the high-level radioactive waste at Savannah River and Hanford may have to occupy steel tanks for many years before processing, research was directed toward examination of hydrogen effects in carbon steels and identification of radiation-enhanced hydrogen uptake in steels. Results to date are too preliminary for any conclusions to be made; however, experimental methods for measuring hydrogen gradients appear to be satisfactory. 5 figs, 1 fig

  12. Permeation barrier for lightweight liquid hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, D.

    2007-04-16

    For the future usage of hydrogen as an automotive fuel, its on-board storage is crucial. One approach is the storage of liquid hydrogen (LH2, 20 K) in double-walled, vacuum insulated tanks. The introduction of carbon fiber reinforced plastics (CFRP) as structural material enables a high potential of reducing the weight in comparison to the state-of-the-art stainless steel tanks. The generally high permeability of hydrogen through plastics, however, can lead to long-term degradation of the insulating vacuum. The derived objective of this dissertation was to find and apply an adequate permeation barrier (liner) on CFRP. The investigated liners were either foils adhered on CFRP specimens or coatings deposited on CFRP specimens. The coatings were produced by means of thermal spraying, metal plating or physical vapor deposition (PVD). The materials of the liners included Al, Au, Cu, Ni and Sn as well as stainless steel and diamond-like carbon. The produced liners were tested for their permeation behavior, thermal shock resistance and adherence to the CFRP substrate. Additionally, SEM micrographs were used to characterize and qualify the liners. The foils, although being a good permeation barrier, adhered weakly to the substrate. Furthermore, leak-free joining of foil segments is a challenge still to be solved. The metal plating liners exhibited the best properties. For instance, no permeation could be detected through a 50 {mu}m thick Cu coating within the accuracy of the measuring apparatus. This corresponds to a reduction of the permeation gas flow by more than factor 7400 compared to uncoated CFRP. In addition, the metal platings revealed a high adherence and thermal shock resistance. The coatings produced by means of thermal spraying and PVD did not show a sufficient permeation barrier effect. After having investigated the specimens, a 170 liter CFRP tank was fully coated with 50 {mu}m Cu by means of metal plating. (orig.)

  13. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  14. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  15. The development of a computational platform to design and simulate on-board hydrogen storage systems

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2017-01-01

    A computational platform is developed in the Modelica® language within the Dymola™ environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...... the vehicular tank within the frame of a complete refueling system. The two technologies that are integrated in the platform are solid-state hydrogen storage in the form of metal hydrides and compressed gas systems. In this work the computational platform is used to compare the storage performance of two tank...... to a storage capacity four times larger than a tube-in-tube solution of the same size. The volumetric and gravimetric densities of the shell and tube are 2.46% and 1.25% respectively. The dehydriding ability of this solution is proven to withstand intense discharging conditions....

  16. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    Science.gov (United States)

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  17. FFTF vertical sodium storage tank preliminary thermal analysis

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1995-01-01

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  18. 30 CFR 56.4401 - Storage tank foundations.

    Science.gov (United States)

    2010-07-01

    ... tanks settling. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied...

  19. NRC Information No. 89-44: Hydrogen storage on the roof of the control room

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    During the Region V Chemistry Team Inspection at the Trojan Nuclear Plant the week of April 17, 1989, the inspectors identified a potential safety problem concerning the location of the hydrogen storage facility. Hydrogen is used on pressurized water reactor (PWR) plants for (1) providing a cover gas in the volume control tank, and (2) for cooling the main turbine generator. At boiling water reactor (BWR) plants, hydrogen is also used for cooling the main turbine generator and for injection into the feed system for plants which have implemented hydrogen water chemistry. The Trojan hydrogen storage facility is located on the control room roof which is 30-inch-thick reinforced concrete. The Trojan plant hydrogen facility does not meet guidelines from the standpoint of (1) the separation distance needed between a hydrogen pipe break and the control room ventilation intake to prevent buildup of a flammable or explosive gas mixture inside the control room, and (2) the separation distance needed to prevent damage to safety-related structures resulting from the explosion of an 8,000-scf hydrogen tank

  20. 30 CFR 57.4401 - Storage tank foundations.

    Science.gov (United States)

    2010-07-01

    ... leaks caused by tanks settling. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed...

  1. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  2. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  3. “Distributed hybrid” MH–CGH2 system for hydrogen storage and its supply to LT PEMFC power modules

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Tolj, I.; Davids, M.W.; Bujlo, P. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Smith, F. [Impala Platinum Ltd, Springs (South Africa); Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • Prototype hydrogen storage and supply system for LTPEMFC applications was developed. • Combination of MH and CGH2 tanks with common gas manifold was used. • Thermal coupling of fuel cell stack and MH tank was applied. • The system uses AB2-type MH; H2 equilibrium pressure ∼10 bar at room temperature. • Shorter H2 charge time and stable H2 supply at a fluctuating load were observed. - Abstract: This paper describes the layout and presents the results of the testing of a novel prototype “distributed hybrid” hydrogen storage and supply system that has the potential to be used for Low Temperature Proton Exchange Membrane Fuel Cell (LT-PEMFC) applications. The system consists of individual Metal Hydride (MH) and Compressed Gas (CGH2) tanks with common gas manifold, and a thermal management system where heat exchanger of the liquid heated-cooled MH tank is integrated with the cooling system of the LT-PEMFC BoP. The MH tank is filled with a medium-stability AB{sub 2}-type MH material (H{sub 2} equilibrium pressure of about 10 bar at room temperature). This innovative solution allows for (i) an increase in hydrogen storage capacity of the whole gas storage system and the reduction of H{sub 2} charge pressure; (ii) shorter charging times in the refuelling mode and smoother peaks of H{sub 2} consumption during its supply to the fuel cell stack; (iii) the use of standard parts with simple layout and lower costs; and (iv) adding flexibility in the layout and placement of the components of the hydrogen storage and supply system.

  4. “Distributed hybrid” MH–CGH2 system for hydrogen storage and its supply to LT PEMFC power modules

    International Nuclear Information System (INIS)

    Lototskyy, M.; Tolj, I.; Davids, M.W.; Bujlo, P.; Smith, F.; Pollet, B.G.

    2015-01-01

    Highlights: • Prototype hydrogen storage and supply system for LTPEMFC applications was developed. • Combination of MH and CGH2 tanks with common gas manifold was used. • Thermal coupling of fuel cell stack and MH tank was applied. • The system uses AB2-type MH; H2 equilibrium pressure ∼10 bar at room temperature. • Shorter H2 charge time and stable H2 supply at a fluctuating load were observed. - Abstract: This paper describes the layout and presents the results of the testing of a novel prototype “distributed hybrid” hydrogen storage and supply system that has the potential to be used for Low Temperature Proton Exchange Membrane Fuel Cell (LT-PEMFC) applications. The system consists of individual Metal Hydride (MH) and Compressed Gas (CGH2) tanks with common gas manifold, and a thermal management system where heat exchanger of the liquid heated-cooled MH tank is integrated with the cooling system of the LT-PEMFC BoP. The MH tank is filled with a medium-stability AB 2 -type MH material (H 2 equilibrium pressure of about 10 bar at room temperature). This innovative solution allows for (i) an increase in hydrogen storage capacity of the whole gas storage system and the reduction of H 2 charge pressure; (ii) shorter charging times in the refuelling mode and smoother peaks of H 2 consumption during its supply to the fuel cell stack; (iii) the use of standard parts with simple layout and lower costs; and (iv) adding flexibility in the layout and placement of the components of the hydrogen storage and supply system

  5. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  6. Empirical Profiling of Cold Hydrogen Plumes Formed from Venting Of LH2 Storage Vessels: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Ciotti, Michael [H2 Fueling and CIP Markets Engineering

    2017-11-16

    Liquid hydrogen (LH2) storage is a viable approach to assuring sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery process. The behaviour of cold hydrogen plumes has not been well-characterized because empirical field data is essentially non-existent. The NFPA 2 Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and CFD modellers, has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessel as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the NREL sensor laboratory, in collaboration with the NFPA 2 Safety Task Group developed the Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. A prototype Analyzer was developed and field-deployed at an actual LH2 venting operation with critical findings that included: - H2 being detected as much as 2 m lower than the release point, which is not predicted by existing models - A small and inconsistent correlation between oxygen depletion and the hydrogen concentration - A negligible to non-existent correlation between in-situ temperature and the hydrogen concentration The Analyzer is currently being upgraded for enhanced metrological capabilities including improved real-time spatial and temporal profiling of the plume and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behaviour under different wind, humidity, and temperatures. This data will be shared with the NFPA 2 Safety Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.

  7. Impacts of external convection on release rates in metal hydride storage tanks. Paper no. IGEC-1-080

    International Nuclear Information System (INIS)

    MacDonald, B.; Rowe, A.; Tomlinson, J.; Ho, J.

    2005-01-01

    Reversible metal hydrides can be used to store hydrogen at relatively low pressures, with very high volumetric density. The rate hydrogen can be drawn from a given tank is strongly influenced by the rate heat can be transferred to the reaction zone. Because of this, enhancing and controlling heat transfer is a key area of research in the development of metal hydride storage tanks. In this work, the impacts of external convection resistance on hydrogen release rates are examined. A one-dimensional resistive analysis determines the thermal resistances in the system based on one case where no external heat transfer enhancements are used, and a second case where external fins are used. A two-dimensional, transient model, developed in FEMLAB, is used to determine the impact of the external fins on the mass flow rate of hydrogen in more detail. For the particular metal hydride alloy (LaNi 4.8 Sn 0.2 ) and tank geometry studied, it was found that the fins have a large impact on the hydrogen flow rate during the initial stages of desorption. The flow rate with no fins is only 20% of the flow rate with fins for a full tank, 57% when the tank is 33% full, and 74% when the tank is 5% full. As the reaction proceeds, the resistance of the metal hydride alloy within the tank increases and becomes dominant. Therefore, the impact of the fins becomes less significant as the tank empties. (author)

  8. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... deals with the development of a simulation tool to design and compare different vehicular storage options with respect to targets based upon storage and fueling efficiencies. The set targets represent performance improvements with regard to the state-of-the-art technology and are separately defined...... volume. Heat transfer augmentation techniques (e.g. encapsulation) are found to be the reward strategy to achieve the same stored mass and fueling time of the standard technology, while enabling ambient temperature fueling and save the energy cooling demand (4.2 MJ per fueling) at the refueling station....

  9. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  10. Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

    Directory of Open Access Journals (Sweden)

    Zaļeskis Genadijs

    2016-12-01

    Full Text Available This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

  11. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  12. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  13. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  14. Compartmentalized storage tank for electrochemical cell system

    Science.gov (United States)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  15. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...

  16. Action plan for response to abnormal conditions in Hanford high level radioactive liquid waste storage tanks containing flammable gases

    International Nuclear Information System (INIS)

    Sherwood, D.J.

    1994-03-01

    Radioactive liquid waste tends to produce hydrogen as a result of the interaction of gamma radiation and water. In tanks containing organic chelating agents, additional hydrogen gas as well as nitrous oxide and ammonia can be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site, contain waste that retains the gases produced in them until large quantities are released rapidly to the tank vapor space. Tanks filled to near capacity have relatively little vapor space; therefore, if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture may result. The most notable waste tank with a flammable gas problem is tank 241-SY-101. Waste in this tank has occasionally released enough flammable gas to burn if an ignition source had been present inside of the tank. Several other waste tanks exhibit similar behavior to a lesser magnitude. Administrative controls have been developed to assure that these Flammable Gas Watch List tanks are safely maintained. Responses have also been developed for off-normal conditions which might develop in these tanks. In addition, scientific and engineering studies are underway to further understand and mitigate the behavior of the Flammable Gas Watch List tanks

  17. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  18. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  19. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  20. Low-cost storage options for solar hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Suhaib Muhammad Ali; John Andrews

    2006-01-01

    Equipment for storing hydrogen gas under pressure typically accounts for a significant proportion of the total capital cost of solar-hydrogen systems for remote area power supply (RAPS). RAPS remain a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. In the present paper the storage requirements of PV-based solar-hydrogen RAPS systems employing PEM electrolysers and fuel cells to meet a range of typical remote area daily and annual demand profiles are investigated using a spread sheet-based simulation model. It is found that as the costs of storage are lowered the requirement for longer-term storage from summer to winter is increased with consequent potential gains in the overall economics of the solar-hydrogen system. In many remote applications, there is ample space for hydrogen storages with relatively large volumes. Hence it may be most cost-effective to store hydrogen at low to medium pressures achievable by using PEM electrolysers directly to generate the hydrogen at the pressures required, without a requirement for separate electrically-driven compressors. The latter add to system costs while requiring significant parasitic electricity consumption. Experimental investigations into a number of low-cost storage options including plastic tanks and low-to-medium pressure metal and composite cylinders are reported. On the basis of these findings, the economics of solar-hydrogen RAPS systems employing large-volume low-cost storage are investigated. (authors)

  1. Storage of hydrogen in advanced high pressure container. Appendices; Lagring af brint i avancerede hoejtryksbeholdere. Appendiks 1

    Energy Technology Data Exchange (ETDEWEB)

    Bentzen, J.J.; Lystrup, A. [Forskningscenter Risoe, Roskilde (Denmark)

    2005-07-15

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  2. Large Scale Production of Densified Hydrogen Using Integrated Refrigeration and Storage

    Science.gov (United States)

    Notardonato, William U.; Swanger, Adam Michael; Jumper, Kevin M.; Fesmire, James E.; Tomsik, Thomas M.; Johnson, Wesley L.

    2017-01-01

    Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage (IRAS) technology at NASA Kennedy Space Center led to the production of large quantities of solid densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. System energy balances and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing (up to 1 K), and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. Twenty silicon diode temperature sensors were recorded over approximately one month for testing at two different fill levels (33 67). The phenomenon, observed at both two fill levels, is described and presented detailed and explained herein., and The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.

  3. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  4. Ice XVII as a Novel Material for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Leonardo del Rosso

    2017-02-01

    Full Text Available Hydrogen storage is one of the most addressed issues in the green-economy field. The latest-discovered form of ice (XVII, obtained by application of an annealing treatment to a H 2 -filled ice sample in the C 0 -phase, could be inserted in the energy-storage context due to its surprising capacity of hydrogen physisorption, when exposed to even modest pressure (few mbars at temperature below 40 K, and desorption, when a thermal treatment is applied. In this work, we investigate quantitatively the adsorption properties of this simple material by means of spectroscopic and volumetric data, deriving its gravimetric and volumetric capacities as a function of the thermodynamic parameters, and calculating the usable capacity in isothermal conditions. The comparison of ice XVII with materials with a similar mechanism of hydrogen adsorption like metal-organic frameworks shows interesting performances of ice XVII in terms of hydrogen content, operating temperature and kinetics of adsorption-desorption. Any application of this material to realistic hydrogen tanks should take into account the thermodynamic limit of metastability of ice XVII, i.e., temperatures below about 130 K.

  5. Hydrogen storage compositions

    Science.gov (United States)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  6. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    -up storage systems are designed, tested and described numerically by finite elements simulation. The influence of the tank diameter on sorption rates, hydrogen capacities and temperature profiles inside the material beds is demonstrated. Key aspects for the design of future light metal hydride storage tank systems were derived from the experimental obtained results and the theoretical simulation of Li-RHC as a representative model system for RHCs.

  7. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  8. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  9. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  10. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  11. Hydrogen storage materials at INCDTIM Cluj - Napoca. Achievements and outlook

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A.R.; Misan, I.

    2005-01-01

    Introducing hydrogen fuel to the transportation area poses key challenges for research on hydrogen storage materials. As one of the most promising alternative fuels for transport, hydrogen offers the long-term potential for an energy system that produces near-zero emissions and can be based on renewable energy sources. The Joint Research Centre (JRC), a Directorate-General of the European Commission fosters research for safe methods for storing hydrogen, for use in fuel cells or modified combustion engines in cars and other road vehicles. Hydrogen storage materials focused, in the last 30 years, the attention of the research programs in the many countries. Due to the fast development of the fuel cell technologies, the subject is much more stringent now. For mobile applications to fuel cell powered vehicles, on-board storage materials with hydrogen absorption/desorption capacities of at least 6.5%H are needed. For an efficient storage system the goal is to pack hydrogen as close as possible. Hydrogen storage implies the reduction of an enormous volume of H 2 gas (1 kg of gas has a volume of 11 m 3 at ambient temperature and pressure). To reach the high volumetric and gravimetric density suitable for mobile applications, basically six reversible storage methods are known today according to A. Zuettel: 1) high-pressure gas cylinders, 2) liquid in cryogenic tanks, 3) physisorbed on a solid surface e.g. carbon-nanotubes 4) metal hydrides of the metals or intermetallic compounds. 5) complex hydrides of light elements such as alanates and boranates, 6) storage via chemical reactions. Recently, the storage as hydrogen hydrates at 50 bar using promoters has been reported by F. Peetom. The paper discusses the feasibility of each of these storing alternatives. The authors presents their experience and results of the work in the field of metal hydrides and application obtained since 1975. All classes of hydrogen absorbing intermetallic compounds were studied: LaNi 5 , FeTi, Ti

  12. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG... 49 Transportation 3 2010-10-01 2010-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193...

  13. Computer modeling of ORNL storage tank sludge mobilization and mixing

    International Nuclear Information System (INIS)

    Terrones, G.; Eyler, L.L.

    1993-09-01

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks

  14. Development of Improved Composite Pressure Vessels for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, Norman L. [Hexagon Lincoln, Lincoln, NE (United States)

    2016-04-29

    Hexagon Lincoln started this DOE project as part of the Hydrogen Storage Engineering Center of Excellence (HSECoE) contract on 1 February 2009. The purpose of the HSECoE was the research and development of viable material based hydrogen storage systems for on-board vehicular applications to meet DOE performance and cost targets. A baseline design was established in Phase 1. Studies were then conducted to evaluate potential improvements, such as alternate fiber, resin, and boss materials. The most promising concepts were selected such that potential improvements, compared with the baseline Hexagon Lincoln tank, resulted in a projected weight reduction of 11 percent, volume increase of 4 percent, and cost reduction of 10 percent. The baseline design was updated in Phase 2 to reflect design improvements and changes in operating conditions specified by HSECoE Partners. Evaluation of potential improvements continued during Phase 2. Subscale prototype cylinders were designed and fabricated for HSECoE Partners’ use in demonstrating their components and systems. Risk mitigation studies were conducted in Phase 3 that focused on damage tolerance of the composite reinforcement. Updated subscale prototype cylinders were designed and manufactured to better address the HSECoE Partners’ requirements for system demonstration. Subscale Type 1, Type 3, and Type 4 tanks were designed, fabricated and tested. Laboratory tests were conducted to evaluate vacuum insulated systems for cooling the tanks during fill, and maintaining low temperatures during service. Full scale designs were prepared based on results from the studies of this program. The operating conditions that developed during the program addressed adsorbent systems operating at cold temperatures. A Type 4 tank would provide the lowest cost and lightest weight, particularly at higher pressures, as long as issues with liner compatibility and damage tolerance could be resolved. A Type 1 tank might be the choice if the

  15. 40 CFR 52.1931 - Petroleum storage tank controls.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Petroleum storage tank controls. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oklahoma § 52.1931 Petroleum... plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be subject...

  16. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank

    Science.gov (United States)

    Werkheiser, Arthur

    2015-01-01

    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  17. Hydrogen storage using borohydrides

    International Nuclear Information System (INIS)

    Bernard BONNETOT; Laetitia LAVERSENNE

    2006-01-01

    The possibilities of hydrogen storage using borohydrides are presented and discussed specially in regard of the recoverable hydrogen amount and related to the recovering conditions. A rapid analysis of storage possibilities is proposed taking in account the two main ways for hydrogen evolution: the dehydrogenation obtained through thermal decomposition or the hydrolysis of solids or solutions. The recoverable hydrogen is related to the dehydrogenation conditions and the real hydrogen useful percentage is determined for each case of use. The high temperature required for dehydrogenation even when using catalyzed compounds lead to poor outlooks for this storage way. The hydrolysis conditions direct the chemical yield of the water consuming, and this must be related to the experimental conditions which rule the storage capacity of the 'fuel' derived from the borohydride. (authors)

  18. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  19. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  20. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  1. LH2 on-orbit storage tank support trunnion design and verification

    International Nuclear Information System (INIS)

    Bailey, W.J.; Fester, D.A.; Toth, J.M.

    1986-01-01

    A subcritical liquid hydrogen orbital storage and transfer experiment is being designed for flight in the shuttle cargo bay. The Cryogenic Fluid Management Facility (CFMF) includes a liquid hydrogen storage tank supported in a vacuum jacket by two fiberglass epoxy composite trunnion mounts. The capability of the CFMF to meet a seven mission requirement is extremely sensitive to the fatigue life of the composite trunnions at cryogenic temperatures. An E-glass/S-glass epoxy composite material was selected for the trunnions since it provided desirable strength, weight and thermal characteristics. Because of the limited extent of analytical or experimental treatment of the fatigue life of this composite at cryogenic temperature, an experimental program was conducted to provide verification of the trunnion design and performance capability at ambient and liquid hydrogen temperatures. Basic material fatigue property data were obtained for the laminate of interest using specifically prepared test specimens. Full-scale trunnions were manufactured and subjected to cyclic load testing to verify fatigue life. An analytical evaluation of the thermal performance of the trunnions was conducted, and a test setup is being manufactured to correlate analytical predictions with test results

  2. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  3. Integrity assessment of a storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Osorio Correa; Santos, Jose Henrique Gomes dos; Carvalho, Alexis Fernandes [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In the last internal inspection of a 5000 bbl freshwater storage tank located in a shipping terminal, widespread pitting corrosion was detected on the shell courses. In some of these pits, its depth was such that the remaining thickness was bellow the minimum thickness required according to the design code. Nevertheless, this approach is overly conservative since it does not consider the pits size, depth and spacing. Thanks to advances in stress analysis, new tools are available for the evaluation of damaged equipment widely employed in the oil industry such as pressure vessels, piping and storage tanks. In the present work, the authors present the integrity assessment performed on this tank using the Fitness for Service approach using the methods and procedures contained in the document API RP 579 (Fitness-for-service). (author)

  4. Leak detection for underground storage tanks

    International Nuclear Information System (INIS)

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  5. Fiscal 1975 Sunshine Project research report. Research on refining, transport and storage systems for hydrogen, and their safety technologies (Research on measurement/control system for safety management in low-temperature storage and refining processes of hydrogen); 1975 nendo suiso no seisei, yuso, chozo system oyobi hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso no teion chozo, seisei dankai no anzen no tame no keisoku seigyo system ni kansuru kenkyu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-28

    The following were selected as themes necessary and important for the safety of the forthcoming hydrogen energy system, based on the fiscal 1974 document survey result, and the fiscal 1975 research results. First as for low- temperature storage of hydrogen, since safe discharge of hydrogen gas generated in a storage tank is important, gas motor discharging usually used for such transport tanks as tank lorry, and burn bond discharging suitable for discharge of a large amount of hydrogen were selected as test items. Next as for storage and transport of low-temperature hydrogen such as liquid hydrogen, a low-temperature control valve to control the amount of liquid hydrogen for transport was selected as a test item. Under the assumption of the model tests on the above 3 items in fiscal 1976, various studies and trial designs were made on concrete test equipment. The test plans were also prepared for some ones among them. (NEDO)

  6. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  7. Storage Tank Legionella and Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage Tank Legionella and Community. This dataset is associated with the following publication: Qin, K., I. Struewing, J. Santodomingo, D. Lytle, and J. Lu....

  8. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  9. Nondestructive assay of plutonium residue in horizontal storage tanks

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1985-01-01

    Aqueous plutonium recovery and purification processes often involve the temporary storage of plutonium solutions in holding tanks. Because plutonium is known to precipitate from aqueous solutions under certain conditions, there is a continuing need to assay emptied tanks for plutonium residue. A portable gamma spectrometer system, specifically designed for this purpose, provides rapid assay of such plutonium residues in horizontal storage tanks. A means is thus available for the nondestructive analysis of these tanks on a regular schedule to ensure that significant deposits of plutonium are not allowed to accumulate. 5 figs

  10. Safety considerations on LPG storage tanks

    International Nuclear Information System (INIS)

    Paff, R.

    1993-01-01

    The safety of liquefied petroleum gas (LPG) storage tanks, in refineries, petrochemicals plants, or distribution storage, is an important concern. Some serious accidents in recent years, have highlighted the need for a good safety policy for such equipment. Accidents in LPG storage are mainly due to losses of containment of the LPG. Formation of a cloud can lead to a ''Unconfined Vapor Cloud Explosion'' (UVCE). Liquid leakage can lead to pool fires in the retention area. In some circumstances the heat input of the tank, combined with the loss of mechanical resistance of the steel under high temperature, can lead to a BLEVE ''Boiling Liquid Expanding Vapor Explosion''. It is obvious that such equipment needs a proper design, maintenance and operating policy. The details to be considered are set out. (4 figures). (Author)

  11. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    Phase 1 to Phase 2 review in favor of studying the slurry-form of AB as it appeared to be difficult to transport a solid form of AB through the thermolysis reactor. UTRC demonstrated the operation of a compact GLS in the laboratory at a scale that would be required for the actual automotive application. The GLS met the targets for weight and volume. UTRC also reported about the unresolved issue associated with the high vapor pressure of fluids that could be used for making a slurry-form of AB. Work on the GLS was halted after the Phase 2 to Phase 3 review as the off-board regeneration efficiency of the spent AB was below the DOE target of 60%. UTRC contributed to the design of an adsorbent-based hydrogen storage system through measurements of the thermal conductivity of a compacted form of Metal Organic Framework (MOF) number 5 and through the development and sizing of a particulate filter. Thermal conductivity is important for the design of the modular adsorbent tank insert (MATI), as developed by Oregon State University (OSU), in order to enable a rapid refueling process. Stringent hydrogen quality requirements can only be met with an efficient particulate filtration system. UTRC developed a method to size the particulate filter by taking into account the effect of the pressure drop on the hydrogen adsorption process in the tank. UTRC raised awareness about the potential use of materials-based H2 storage systems in applications outside the traditional light-duty vehicle market segment by presenting at several conferences about niche application opportunities in Unmanned Aerial Vehicles (UAV), Autonomous Underwater Vehicles (AUV), portable power and others.

  12. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  13. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  14. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    Science.gov (United States)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  15. Mobilization and mixing of settled solids in horizontal storage tanks

    International Nuclear Information System (INIS)

    Cummins, R.L.

    1995-01-01

    Studies were conducted using submerged jets for the mobilization and mixing of settled solids to form a suspension that can easily be removed from storage tanks. These studies focus on the specific problems relating to horizontal, cylindrical storage tanks. Of primary consideration are the storage tanks located at the Oak Ridge National Laboratory which are used for the collection of remote-handled, radioactive liquid wastes. These wastes are in two phases. A layer of undissolved, settled solids varying from 2 to 4 feet in depth under a layer of supernate. Using a surrogate of the tank contents and an approximate 2/3 dimensional scale tank, tests were performed to determine the optimum design and location of suction and discharge nozzles as well as the minimum discharge velocity required to achieve complete mobilization of the solids in the tank

  16. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    Science.gov (United States)

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  17. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  18. Design criteria tank farm storage and staging facility

    International Nuclear Information System (INIS)

    Lott, D.T.

    1995-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Safety issues based on poor housekeeping and material deterioration due to weather damage has resulted from inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This document provides the design criteria for the design of the storage and staging buildings near 272AW and 272WA buildings

  19. Effect of viscosity on seismic response of waste storage tanks

    International Nuclear Information System (INIS)

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  20. Developing business opportunities for hydrogen storage

    International Nuclear Information System (INIS)

    Thompson, R.

    2001-01-01

    A quick review of the history of Dynetek Industries Limited was provided. During the period 1991-1995, it began research and development efforts in the field of advanced lightweight fuel storage systems and the DyneCell R Fuel Storage Systems was introduced on the market. In 1997, it began supplying Ballard Power Systems with hydrogen fuel tanks. Trading on the Toronto Stock Exchange started in September 2000, and in 2001 Dynetek incorporated a 100 per cent European subsidiary, Dynetek Europe GmbH. The advantages of the product are numerous: lightest cylinder on the market with a metallic liner, highest storage capacity of all lightweight designs, non-permeable, one piece, seamless aluminium liner, and true fast-fill capabilities to name but a few. Dynetek's vision of market development was introduced. It involves a California demonstration project for the period 2001-2003 which should lead to transit vehicles in 2005-2008. Fleet vehicles are expected to follow suit during the same period, and the consumer market should be ripe in 2010-2015. Some of the challenges facing the industry were discussed and Dynetek's role in meeting them was examined. figs

  1. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  2. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  3. Single bi-temperature thermal storage tank for application in solar thermal plant

    Science.gov (United States)

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  4. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  5. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  6. NRCan's hydrogen storage R and D program

    International Nuclear Information System (INIS)

    Scepanovic, V.

    2004-01-01

    'Full text:' Natural Resources Canada (NRCan) has been working in partnership with industry, other government departments and academia to expedite the development of hydrogen technologies. NRCan's Hydrogen and Fuel Cell R and D Program covers all aspects of hydrogen technologies: production, storage, utilization and codes and standards. Hydrogen storage is a key enabling technology for the advancement of fuel cell power systems in transportation, stationary, and portable applications. NRCan's storage program has been focused on developing storage materials and technologies for a range of applications with the emphasis on transportation. An overview of most recent hydrogen storage projects including pressurized hydrogen, liquid hydrogen and storage in hydrides and carbon-based materials will be given. (author)

  7. Magnesium mechanical alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Ivanov, E.; Konstanchuk, I.; Stepanov, A.; Boldyrev, V.

    1985-01-01

    Metal hybrides are currently being used to store and handle hydrogen and its isotopes. They are also being tested in hydrogen compressors and in heat energy, refrigerators and in hydrogen and thermal storage devices. Metal hydrides have been proposed as one of the possible media for hydrogen storage to overcome the limitations of other techniques in regard to safety hydrogen weight and volume ration. The suitability of metal hybrides as a hydrogen storage media depends on a number of factors such as storage capacity, reactivity with hydrogen at various pressures and temperatures, and the cost of base materials. Magnesium based alloys are promising materials for storing hydrogen. They are generally made by argon melting and no attention has been payed to other fabrication techniques such as mechanical alloying or powder technique

  8. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  9. Decision analysis of Hanford underground storage tank waste retrieval systems

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-05-01

    A decision analysis approach has been proposed for planning the retrieval of hazardous, radioactive, and mixed wastes from underground storage tanks. This paper describes the proposed approach and illustrates its application to the single-shell storage tanks (SSTs) at Hanford, Washington

  10. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  11. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  12. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate

  13. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  14. Method of storing the fuel storage pot in a fuel storage tank for away-from-reactor-storage

    International Nuclear Information System (INIS)

    Ishiguro, Jun-ichi.

    1980-01-01

    Purpose: To prevent the contact of sodium in the away-from-reactor-storage fuel storage tank with sodium in a fuel storage pool having radioactivity ana always retain clean state therein. Method: Sodium is filled in a container body of the away-from-reactor-storage fuel storage tank, and a conduit, a cycling pump, and cooling means are disposed to form a sodium coolant cycling loop. The fuel storage pool is so stored in the container body that the heat of the pool is projected from the liquid surface of the sodium in the container. Therefore, the sodium in the container is isolated from the sodium in the pool containing strong radioactivity to prevent contact of the former sodium from the latter sodium. (Sekiya, K.)

  15. Hydrogen storage - are we making progress?

    International Nuclear Information System (INIS)

    Blair, L.; Milliken, J.; Satyapal, S.

    2004-01-01

    'Full text:' The efficient storage of hydrogen in compact, lightweight systems that allow greater than 300-mile range has been identified as one of the major technical challenges facing the practical commercialization of fuel cell power systems for light-duty vehicles. Following the hydrogen vision announced by President Bush in his 2003 State of the Union address, the U.S. Department of Energy issued a Grand Challenge, soliciting ideas from universities, national laboratories, and industry. DOE's National Hydrogen Storage Project, an aggressive and innovative research program focused on materials R and D, will be launched in Fiscal Year 2005. An intensive effort is also underway in the private sector, both in the U.S. and abroad, to meet the challenging on-board hydrogen storage requirements. A historical perspective of hydrogen storage research and development will be provided and the current DOE technical targets for hydrogen storage systems will be discussed. The state-of-the-art in hydrogen storage will be summarized and recent progress assessed. Finally future research directions and areas of technical emphasis will be described. (author)

  16. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K. [Argonne National Lab. (ANL), Argonne, IL (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  17. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    Science.gov (United States)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  18. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  19. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  20. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  1. Analysis of large concrete storage tank under seismic response

    Energy Technology Data Exchange (ETDEWEB)

    Le, Jingyuan; Cui, Hongcheng; He, Qiang; Ju, Jinsan [China Agricultural University, Beijing (China); You, Xiaochuan [Tsinghua University, Beijing (China)

    2015-01-15

    This study adopted the finite element software ABAQUS to trace the dynamic response history of large reinforced concrete storage tank during different seismic excitations. The dynamic characteristics and failure modes of the tank's structure were investigated by considering the rebar's effect. Calculation results show that the large concrete storage tank remains in safe working conditions under a seismic acceleration of 55 cm/s{sup 2}. The joint of the concrete wall and dome begins to crack when seismic acceleration reaches 250 cm/s{sup 2}. As the earthquake continues, cracks spread until the top of the wall completely fails and stops working. The maximum displacement of the concrete tank and seismic acceleration are in proportion. Peak displacement and stress of the tank always appear behind the maximum acceleration.

  2. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  3. Design of hydroforming processes for metallic liners used in high pressure hydrogen storage

    International Nuclear Information System (INIS)

    Gelin, J.C.; Labergere, C.; Thibaud, S.; Boudeau, N.

    2005-01-01

    Within the framework of an European project concerning hydrogen storage, one analyze the way to manufacture high pressure tanks (700bars) for hydrogen storage, intended to be embarked for using in motor vehicles. These tanks consist of a metallic liner, which ensure a barrier role compared to the hydrogen atoms as well as a part of the mechanical resistance, and of a composite envelope built by filament rolling up which ensures the complementary part of the mechanical resistance. The paper describes the work completed within this framework, on the basis of the simulation of the hydroforming process thanks to the complete control of the process, in volume of fluid injected. One was thus brought to develop an optimization module based on finite element calculations. This optimization module includes MPI library in order to launch several calculations in parallel on a Linux cluster. It consists in seeking the optimal evolution of the fluid volume injected vs. time to obtain a good quality component. In our case, the optimization criterion is based on the variation thickness of the tube and the possible appearance of necking. It is shown that such a way for controlling the process provide the way to get minimal thickness variation, comparatively to standard optimization approaches where the process parameters are discretized through processing time in a more standard way

  4. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    Science.gov (United States)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  5. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  6. Storage of hydrogen in advanced high pressure container. Final report for PSO projekt; Lagring af brint i avancerede hoejtryksbeholdere. Slutrapport for PSO-projekt

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Jens

    2006-04-15

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  7. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...

  8. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...

  9. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    International Nuclear Information System (INIS)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  10. Risk management guidelines for petroleum storage tank sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    These guidelines provide a site management process designed particularly for soil and groundwater pollution originating from existing or former petroleum storage tank (PST) facilities and provide uniform standards for the remediation of polluted PST sites in Alberta. The numerical criteria, risk management objectives and technical information described in this document were compiled from four documents including Remediation Guidelines for Petroleum Storage Tank Sites 1994, the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities, and Guidelines for Managing Risks at Contaminated Sites in Alberta. The changes in these updated guidelines reflect new remediation criteria and provide a process for determining alternate site-specific management objectives for more petroleum storage tank sites. The guidelines were developed using a risk-based approach that ensures the protection of human health, safety and the environment. The guidelines apply to aboveground and underground storage tank facilities that contain gasoline, diesel, heating oil, and aviation fuel. The guidelines specify requirements by Alberta Environment and the Alberta Fire Code. The chapter on risk management process included information on site investigation, determination of soil type, pollution source removal, land use assessment, selection of exposure pathways, depth of remediation, human inhalation and groundwater protection pathways, and verification of remediation. figs, 4 tabs., 2 appendices.

  11. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  12. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  13. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  14. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  15. Organic chemical hydrides as storage medium of hydrogen on the basis of superheated liquid-film concept

    International Nuclear Information System (INIS)

    Shinya Hodoshima; Atsushi Shono; Kazumi Satoh; Yasukazu Saito

    2006-01-01

    A catalysis pair of tetralin dehydrogenation / naphthalene hydrogenation has been proposed in the present paper as an organic chemical hydride for operating stationary fuel cells. Catalytic naphthalene hydrogenation, having been commercialized since the 1940's, proceeds to generate decalin via tetralin as an intermediate. The storage capacities of tetralin (3.0 wt%, 28.2 kg-H 2 / m 3 ) are lower than decalin (7.3 wt%, 64.8 kg-H 2 / m 3 ) but both tetralin dehydrogenation and naphthalene hydrogenation are much faster than the decalin / naphthalene pair. Moreover, existing infrastructures, e.g., gas station and tank lorry, are available for storage, transportation and supply of hydrogen. As for the stationary fuel cells with large space for hydrogen storage, tetralin as a hydrogen carrier is superior to decalin in terms of fast hydrogen supply. Rapid hydrogen supply from tetralin under mild conditions was only accomplished with the carbon supported metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions. In contrast to the ordinary suspended states, the catalyst layer superheated in the liquid-film state gave high catalytic performances at around 250 C. As a result, serious coke formation over the catalyst surface and excessive exergy consumption were prevented simultaneously. (authors)

  16. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  17. Dynamic modeling of stratification for chilled water storage tank

    International Nuclear Information System (INIS)

    Osman, Kahar; Al Khaireed, Syed Muhammad Nasrul; Ariffin, Mohd Kamal; Senawi, Mohd Yusoff

    2008-01-01

    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  18. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  19. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  20. Risk based inspection for atmospheric storage tank

    Science.gov (United States)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  1. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  2. Chemical-clathrate hybrid hydrogen storage: storage in both guest and host.

    Science.gov (United States)

    Strobel, Timothy A; Kim, Yongkwan; Andrews, Gary S; Ferrell, Jack R; Koh, Carolyn A; Herring, Andrew M; Sloan, E Dendy

    2008-11-12

    Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.

  3. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  4. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  5. Storage, transmission and distribution of hydrogen

    Science.gov (United States)

    Kelley, J. H.; Hagler, R., Jr.

    1979-01-01

    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  6. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  7. An optimal hydrogen control analysis for the in-containment refueling storage tank (IRWST) of the Korean next generation reactor (KNGR) containment under severe accidents

    International Nuclear Information System (INIS)

    Byung-Chul, Lee; Hee-Jin, Ko; Se-Won, Lee

    2001-01-01

    Under severe accidents that a large amount of hydrogen is expected to release, the In-Containment Refueling Water Storage Tank (IRWST) air space has more worse condition with respect to the hydrogen control since, as one of hydrogen source compartment, normally it is separated from the other compartments and has relatively small volume. The hydrogen concentrations in the IRWST gas space, when the hydrogen was directly released into this area, were analyzed using the MAAP4 code in order to investigate if locally very high concentrations could be reduced so that inadvertent detonation or detonation-to-deflagration (DDT) in this area might be prevented. For this purpose, the thermo-hydraulic and combustion phenomena being capable of occurring in the IRWST were also considered. As a result of numerical calculations with 12-compartment containment model, the time duration that the flammable gas mixture was formed was greatly decreased via oxygen-starved or steam-rich conditions, although instantaneously peak concentration itself could not be avoided. Moreover, if the diffusion flame or steam stripping can be occurred in the IRWST, it was expected to have more chance to control the hydrogen in the IRWST gas space. After the hydrogen finished to be rapidly released, the hydrogen in this area could be controlled by the PARs' hydrogen depletion and by igniter's deliberate burning. Especially, the review on the analyses for two typical, but most probable sequences of quite a different hydrogen release modes gives an insight that the flammable gas mixture in the IRWST can be avoid by rapid depressurization operation, which is recommendable for being implemented into accident management program. (authors)

  8. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  9. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  10. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    Science.gov (United States)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  11. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    Bacon, R.F.; Babad, H.; Lerch, R.E.

    1996-01-01

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  12. Hydrogen storage in carbon nanostruc

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Quintel, A.; Skakalova, V.; Choi, M.; Dettlaff-Weglikowska, U.; Roth, S.; Stepanek, I.; Bernier, P.; Leonhardt, A.; Fink, J.

    2002-01-01

    The paper gives a critical review of the literature on hydrogen storage in carbon nanostructures. Furthermore, the hydrogen storage of graphite, graphite nanofibers (GNFs), and single-walled carbon nanotubes (SWNTs) was measured by thermal desorption spectroscopy (TDS). The samples were ball milled

  13. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    B Buczek; E Wolak

    2005-01-01

    In the present century hydrogen will be the most important source of energy and will replace petroleum and petroleum-derived products in the next future. Hydrogen is an almost ideal fuel, both because of its unlimited accessibility and for ecological reasons; the product of its combustion - water vapour - is neither any gaseous contamination nor a component of greenhouse gases. Nowadays hydrogen is applied in industrial processes, but may be also used as a source of house lighting and heating energy, for production of electricity, and as fuel for car engines. Fuel cells, applying reaction between hydrogen and oxygen for production of electricity have been for a long time used in the space technology. Application of hydrogen as fuel should give a possibility of storage and transfer of the high quality energy, i.e. the energy of a high exo-energetic ratio. Due to its low density, one of the main obstacles to the widespread use of hydrogen in energy sector is an efficient storage technology. At present, the methods of hydrogen storage are to liquefy and store in refrigerated containers, which is very expensive, or to store it in high - pressure gas cylinders at room temperature. Unfortunately, low storage density of hydrogen for the latter technique is a significant drawback. Between alternatives have been considered (chemical storage in irreversible hydrogen carriers like methanol or ammonia, reversible metal and chemical hydrides and adsorption in porous media), the latter one seems to lie the most promising. Physical adsorption is a method by which more gas can be stored at a lower pressure by means of Van der Waals interactions at the gas solid interface. Adsorptive storage is particularly promising for permanent gases, which need to be stored, transported, or used in ambient temperature. Thanks to the high density of adsorbed phase, adsorptive storage system could allow the storage of a high density of hydrogen at much lower pressures than compression and higher

  14. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  15. Analysis of hydrogen content and distribution in hydrogen storage alloys using neutron radiography

    International Nuclear Information System (INIS)

    Sakaguchi, Hiroki; Hatakeyama, Keisuke; Satake, Yuichi; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    2000-01-01

    Small amounts of hydrogen in hydrogen storage alloys, such as Mg 2 Ni, were detected using neutron radiography (NRG). Hydrogen concentrations in a hydrogenated solid solution were determined by this technique. Furthermore, we were able to obtain NRG images for an initial stage of hydrogen absorption in the hydrogen storage alloys. NRG would be a new measurement method to clarify the behavior of hydrogen in hydrogen storage alloys. (author)

  16. Hydrogen Storage Performance in Pd/Graphene Nanocomposites.

    Science.gov (United States)

    Zhou, Chunyu; Szpunar, Jerzy A

    2016-10-05

    We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).

  17. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  18. Conception of modular hydrogen storage systems for portable applications

    International Nuclear Information System (INIS)

    Paladini, V.; Miotti, P.; Manzoni, G.; Ozebec, J.

    2003-01-01

    Hydrogen, till now the most prominent candidate as a future sustainable energy carrier, yields a gravimetric energy density three times as high as liquid hydrocarbon. Furthermore it is proven to be the most environmentally friendly fuel. Unfortunately, a few components regarding storage and tank solutions have not yet reached a technology level required for broad use. Thus, we intend to propose solutions and device concepts for both devices everyday use and space applications. This contribution assesses both state of the art of storage materials and existing technologies of power generation systems for application in portable devices. The aim of this work is to define the characteristics of a modular system, being suitable for a wide range of different devices, operating on advanced metal hydrides as the active hydrogen supply component. The concept has been studied and modelled with respect to volumes, mass and power requirements of different devices. The smallest system developed is intended to run, for example, a mobile phone. Minor tuning and straightforward scale up of this power supply module should make it suitable for general applicability in any portable device. (author)

  19. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  20. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  1. Energetic and economic evaluations on hydrogen storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Arca, S.; Di Profio, P.; Germani, R. [Perugia Univ., Perugia (Italy). Centro di Eccellenza Materiali Innovativi Nanostrutturati, Dip. Chimica; Savelli, G.; Cotana, F.; Rossi, F.; Amantini, M. [Universita degli Studi di Perugia, Perugia (Italy). Dipartimento di Ingegneria Industriale, Sezione di Fisica Tecnica

    2008-07-01

    With the development of the hydrogen economy and fuel cell vehicles, a major technological issue has emerged regarding the storage and delivery of large amounts of hydrogen. Several hydrogen storage methodologies are available while other technologies are being developed aside from the classical compression and liquefaction of hydrogen. A novel technology is also in rapid process, which is based on clathrate hydrates of hydrogen. The features and performances of available storage systems were evaluated in an effort to determine the best technology throughout the hydrogen chain. For each of the storage solutions presented, the key parameters were compared. These key parameters included interaction energy between hydrogen and support; real and practical storage capacity; and specific energy consumption. The paper presented the study methods and discussed hydrogen storage technologies using compressed hydrogen; metal hydrides; liquefied hydrogen; carbon nanotubes; ammonia; and gas hydrates. Carbon dioxide emissions were also evaluated for each storage system analyzed. The paper also presented the worst scenario. It was concluded that a technology based on clathrate hydrates of hydrogen, while being far from optimized, was highly competitive with the classical approaches. 21 refs., 9 figs.

  2. Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks.

    Science.gov (United States)

    Han, M Y; Mun, J S

    2007-01-01

    Design of a rainwater storage tank is mostly based on the mass balance of rainwater with respect to the tank, considering aspects such as rainfall runoff, water usage and overflow. So far, however, little information is available on the quality aspects of the stored rainwater, such as the behavior of particles, the effect of retention time of the water in the tank and possible influences of system configuration on water quality in the storage tank. In this study, we showed that the performance of rainwater storage tanks could be maximized by recognizing the importance of water quality improvement by sedimentation and the importance of the system configuration within the tank, as well as the efficient collection of runoff. The efficiency of removal of the particles was increased by there being a considerable distance between the inlet and the outlet in the rainwater storage tank. Furthermore, it is recommended that the effective water depth in a rainwater tank be designed to be more than 3 m and that the rainwater be drawn from as close to the water surface as possible by using a floating suction device. An operation method that increases the retention time by stopping rainwater supply when the turbidity of rainwater runoff is high will ensure low turbidity in the rainwater collected from the tank.

  3. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  4. A robotic end effector for inspection of storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, G.; Gittleman, M. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work.

  5. A robotic end effector for inspection of storage tanks

    International Nuclear Information System (INIS)

    Hughes, G.; Gittleman, M.

    1995-01-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work

  6. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  7. Response of a Type III waste tank to hydrogen deflagration

    International Nuclear Information System (INIS)

    Gong, Chung; Jerrell, J.W.; Pelfrey, J.R.; Yau, W.W.F.

    1992-01-01

    The type III waste tank is built with ASTM A516 Grade 70 steel shells in the shape of a torus with a central concrete core. The tank is buried underground and covered with a four foot thick reinforced concrete slab. The tank is enriched by 2.5 foot thick reinforced concrete wall. Between the tank surface and the wall there is a 2.5 foot annular space. The tank itself is called the ''primary liner.'' The interior surface of the concrete wall is line with steel plates, called the ''secondary liner.'' The base of the tank rests on a concrete mat. Underneath the mat the secondary liner extends from the wall to the central column surfaces. The bottom liner is attached to the reinforced concrete foundation. Based on the conditions that the tank is filled with liquid wastes to 50% of the design capacity, and that the accumulation of hydrogen becomes 20% inside its free board, the resulting deflagration would cause an overpressure of 100 psig in the tank [Wallace and Yau, 1986]. The task of this analysis is to simulate the ''hydrogen deflagration'' scenario in the Type III Waste Tank complex. During the deflagration, the stresses in the steel tank would be expected to exceed the elastic limit of the steel and the tank would then undergo large deformation. The concrete roof slab could be fractured by the expansion of the tank. The central concrete column would start to exhibit large deformation first. All the structural members in the system are expected to interact drastically during the deflagration

  8. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  9. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  10. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  11. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  12. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  13. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    Science.gov (United States)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  14. Thermomechanical behavior modeling and experimental validation of polymer-wound composite multi-layers. Hydrogen storage application

    International Nuclear Information System (INIS)

    Gentilleau, Benoit

    2012-01-01

    The purpose of this research is to study the thermomechanical behavior of the constituent materials of a type IV hydrogen storage tank: a composite, ensuring the strength, is wound around the polyurethane liner that ensures sealing of the tank and thermal insulation; at the extremities, stainless steel parts are used to allow the process connection. In this type of tank, during filling, there is a significant increase in hydrogen temperature, resulting in a gradual heating of the structure and the presence of temperature gradients. The purpose of this study is primarily to characterize the behavior of such a structure when subjects to complex thermomechanical loading. Initially, mechanical and thermal characterization tests have been made over the service life range of temperature of the tank to obtain the necessary data for the realization of a thermomechanical numerical model. Then, a behavior law of the composite, easily transferable to a complex structure such as the whole tank and taking into account the non-linearity, the matrix damage, the progressive loss of shear modulus, and the thermo-dependence of the materials parameters, is developed. The tests on technological representative specimens have been performed to better understand the mechanisms that can appear in the tank and to validate the model. Finally, a numerical study of a tank was performed. The coupled influence of temperature and damage matrix on the behavior of this structure is analyzed. (author)

  15. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Jianding Li

    2018-02-01

    Full Text Available Magnesium (Mg-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed.

  16. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  17. Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment

    International Nuclear Information System (INIS)

    Fischer, S.R.; Clark, J.

    1993-01-01

    The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations

  18. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  19. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  20. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  1. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    Buczek, B.; Wolak, E.

    2005-01-01

    In the present century hydrogen will lie the most important source of energy and will replace petroleum and petroleum-derived products in the next future. Hydrogen is an almost ideal fuel, both because of its unlimited accessibility and for ecological reasons; the product of its combustion - water vapour - is neither any gaseous contamination nor a component of greenhouse gases. Nowadays hydrogen is applied in industrial processes, but may be also used as a source of house lighting and heating energy, for production of electricity, and as fuel for car engines. Fuel cells, applying reaction between hydrogen and oxygen for production of electricity have been for a long time used in the space technology. Application of hydrogen as fuel should give a possibility of storage and transfer of the high quality energy, i.e. the energy of a high exo-energetic ratio[l]. Due to its low density, one of the main obstacles to the widespread use of hydrogen in energy sector is an efficient storage technology. At present, the methods of hydrogen storage are to liquefy and store in refrigerated containers, which is very expensive, or to store it in high - pressure gas cylinders at room temperature. Unfortunately, low storage density of hydrogen for the latter technique is a significant drawback. Between alternatives have been considered (chemical storage in irreversible hydrogen carriers like methanol or ammonia, reversible metal and chemical hydrides and adsorption in porous media), the latter one seems to be the most promising [2]. Physical adsorption is a method by which more gas can be stored at a lower pressure by means of Van der Waals interactions at the gas solid interface. Adsorptive storage is particularly promising for permanent gases, which need to be stored, transported, or used in ambient temperature. Thanks to the high density of adsorbed phase, adsorptive storage system could allow the storage of a high density of hydrogen at much lower pressures than compression and

  2. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering

  3. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    Science.gov (United States)

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  4. Storage of hydrogen in metals

    International Nuclear Information System (INIS)

    Wiswall, R.

    1981-01-01

    A review is dedicated to a problem of hydrogen storage as fuel of future, that can be used under various conditions, is easily obtained with the help of other types of energy and can be transformed into them. Data on reversible metal-hydrogen systems, where hydrogen can be obtained by the way of reaction of thermal decomposition are presented. Pressure-temperature-content diagrams, information on concrete Pd-H, TiFe-H, V-N systems are presented and analyzed from the point of view of thermodynamics. A table with thermodynamical characteristics of several hydrides is presented. The majority of known solid hydrides in relation to their use for hydrogen storage are characterized. The review includes information on real or supposed uses in concrete systems: in fuel cells, for levelling of loading of electric plants, in automobile engines, in hydride engines, for heat storage [ru

  5. Thermal stratification in storage tanks of integrated collector storage solar water heaters

    International Nuclear Information System (INIS)

    Oshchepkov, M.Y.; Frid, S.E.

    2015-01-01

    To determine the influence of the shape of the tank, the installation angle, and the magnitude of the absorbed heat flux on thermal stratification in integrated collector-storage solar water heaters, numerical simulation of thermal convection in tanks of different shapes and same volume was carried out. Idealized two-dimensional models were studied; auto model stratification profiles were obtained at the constant heat flux. The shape of the tank, the pattern of the heat flux dynamics, the adiabatic mixing on the circulation rate and the degree of stratification were shown to have significant influence. (authors)

  6. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  7. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  8. Experiences from the operation of a wind-hydrogen pilot unit

    International Nuclear Information System (INIS)

    Varkaraki, E.; Lymberopoulos, N.; Zoulias, E.; Kalyvas, E.; Christodoulou, C.; Karagiorgis, G.

    2006-01-01

    A pilot wind-hydrogen system has been erected and tested at the wind park of the Centre for Renewable Energy Sources, near Athens, Greece, composed of an alkaline water electrolyser, metal hydride tanks for long term storage and a hydrogen compressor for filling high pressure hydrogen cylinders. The 25 kW electrolyser produces 0.45 kg/h hydrogen under 20 bar pressure, which may be compressed up to 220 bar in one stage. A small conventional tank acts as hydrogen buffer to smooth the pressure and flow variations at the compressor inlet. The metal hydride tanks have a storage capacity of 3.6 kg hydrogen and contain a LaNi5-type alloy. The preliminary results show that the hydrogen system has an overall efficiency of 58%, considering the electrical power of the wind turbine consumed by the whole plant, including utilities. (authors)

  9. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  10. Multi-component hydrogen storage material

    Science.gov (United States)

    Faheem, Syed A.; Lewis, Gregory J.; Sachtler, J.W. Adriaan; Low, John J.; Lesch, David A.; Dosek, Paul M.; Wolverton, Christopher M.; Siegel, Donald J.; Sudik, Andrea C.; Yang, Jun

    2010-09-07

    A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0hydrogen storage compared to binary systems such as MgH.sub.2--LiNH.sub.2.

  11. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  12. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  13. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  14. Safety considerations for compressed hydrogen storage systems

    International Nuclear Information System (INIS)

    Gleason, D.

    2006-01-01

    An overview of the safety considerations for various hydrogen storage options, including stationary, vehicle storage, and mobile refueling technologies. Indications of some of the challenges facing the industry as the demand for hydrogen fuel storage systems increases. (author)

  15. Maintaining of the demineralized water quality in storage tanks

    International Nuclear Information System (INIS)

    Hochmueller, K.; Wandelt, E.

    1981-03-01

    Two processes for maintaining the quality of the mineralized water in storage tanks are considered. A slight overpressure of nitrogen can be created above the water, or the air flowing in the tank can be cleaned by passing it through a soda-containing lime filter [fr

  16. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  18. Energy, The Storage Challenge. Better Batteries Included. Running Hot and Cold. A Tank-full of Hydrogen

    International Nuclear Information System (INIS)

    Bourdet, Julien; Hait, Jean-Francois; Demarthon, Fabrice; Brault, Pascal; Dollet, Alain; Py, Olivier; Tarascon, Jean-Marie; Gonbeau, Danielle; Simon, Patrice; Pourcelly, Gerald; Latroche, Michel; Rango, Patricia de; Miraglia, Salvatore

    2013-01-01

    To secure its future and that of the planet, humanity must find alternatives to oil. But this vital transition toward renewable energy (currently the subject of a national debate in France), is highly dependent on the development of efficient storage solutions. Today's technologies make it relatively easy to produce electricity, heat, and even hydrogen, but their long-term storage remains a daunting scientific and technical challenge-a high priority for CNRS researchers

  19. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  20. Design of crude oil storage tank for acoustic emission testing

    International Nuclear Information System (INIS)

    Shukri Mohd; Masrul Nizam Salleh; Abd Razak Hamzah; Norasiah Abd Kasim

    2005-01-01

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  1. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  2. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  3. Elephant's foot phenomenon in liquid storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Q.

    1983-01-01

    This paper presents a method for analyzing the seismic response of a flat bottomed cylindrical liquid storage tank to vertical earthquake excitation. Here, vertical earthquake acceleration is considered to correspond to an increase in the density of a stored liquid. Taking into account the vertical and horizontal earthquake loads, hydrostatic pressure, and considering restrictive moment and shear forces at shell-bottom welded joint, the author has calculated circumferential and longitudinal stresses. These are combined to more accurately approximate the stresses at the base shell course. The calculated result closely conforms to the actual damage, termed ''elephant's foot,'' observed in the fuel storage tanks damaged in the Tangshan earthquake. This result shows that the ''elephant's foot'' phenomenon is not caused by buckling of the tank shell due to longitudinal compressive stresses resulting from horizontal earthquake acceleration, but rather by the combined stresses in the base shell course of the storage tank exceeding the yield strength of the shell course material. The effect due to vertical earthquake load is more than the effect from the horizontal load. Finally, some earthquake resistant methods to prevent the ''elephant's foot'' phenomenon are suggested by the author.

  4. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    Science.gov (United States)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  5. Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Fort, III, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kallman, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maes, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skolnik, Edward G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiner, Steven C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-12-22

    Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of the company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.

  6. Petroleum storage tank cleaning using commercial microbial culture products

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  7. Impact analysis of a water storage tank

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Jeong, Sang Jin

    2006-01-01

    This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed

  8. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  9. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  10. Underground storage tank soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.S.

    1993-01-01

    The primary objective of this task is to demonstrate potential technical solutions and to acquire engineering data and information on the retrieval technologies applicable for use in retrieving waste from underground storage tanks. This task focuses on soft waste dislodging and conveyance technologies that would be used in conjunction with a manipulator-based retrieval system. This retrieval task focuses on Hanford single-shell tanks, but the results may also have applications to other waste retrieval problems. This work is part of the U.S. Department of Energy's (DOE's) Office of Technology Development, sponsored by the DOE's Richland Operations Office under the Underground Storage Tanks Integrated Demonstration (USTID) program. This task is one element of the whole waste dislodging and conveyance system in the USTID. The tank wastes contain both hazardous and radioactive constituents. This task focuses on the processes for dislodging and retrieving soft wastes, mainly sludge. Sludge consists primarily of heavy-metal, iron, and aluminum precipitates. Sludges vary greatly in their physical properties and may contain pockets of liquid. Sludges have been described as varying in consistency from thick slurry to sticky clay and as sandy with hard chunks of material. The waste is believed to have adhesive and cohesive properties. The quantitative physical properties of the wastes have yet to be measured. The waste simulants used in the testing program emulate the physical properties of the tank waste

  11. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  12. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  13. Hydrogen storage alloy electrode for nickel-hydrogen storage battery use; Nikkeru-suiso chikudenchiyo suiso kyuzo gokin denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Nagase, H.; Tadokoro, M.

    1995-06-16

    In the conventional hydrogen storage alloy electrode, water soluble polymer is employed as for the binder. Employing the water soluble polymer as for the binder may cause the film formation on the surface of the hydrogen storage alloy to hinder the hydrogen absorption at the alloy surface, resulting in the decrease in activity of electrode and in the discharge characteristic at a low temperature. This invention proposes the addition of Vinylon fiber in the binder of the hydrogen storage alloy electrode made by kneading the hydrogen storage alloy and the binder. The Vinylon fiber improves the strength of the electrode, as it forms a network in the electrode. Furthermore, the point contact between the alloy and the Vinylon fiber in the electrode prevents the film formation which hinders the oxygen absorption and chemical reaction on the surface of the alloy. As for the binder, carboxymethyl cellulose is used. The preferable size of Vinylon fiber is fiber diameter of 0.1 - 0.5 denier and fiber length of 0.5 - 5.0 mm. 4 figs., 4 tabs.

  14. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  15. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Xiang, Jing

    2014-01-01

    Highlights: • Two microgrids with different structure are simulated. • Their performance are comprehensively evaluated and compared. • The one with DES and a FC stack has high environmental and quality indexes. - Abstract: In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance

  16. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Johnson, M.G.; Badden, J.J.

    1995-01-01

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford

  17. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  18. DESIGN OF LIQUID-STORAGE TANK: RESULTS OF SOFTWARE MODELING VS CALCULATIONS ACCORDING TO EUROCODE

    Directory of Open Access Journals (Sweden)

    Matko Gulin

    2017-01-01

    Full Text Available The objective of this article is to show the design process of a liquid-storage tank shell according to Eurocode and compare the results obtained using the norms with those from a finite element method (FEM analysis. The calculations were performed for an aboveground vertical steel water-storage tank with a variable thickness wall and stiffening ring on top. First, the types of liquid storage tanks are briefly explained. Second, the given tank is described. Third, an analysis of the tank wall according to the Eurocode was carried out. The FEM analysis was performed using the Scia Engineer ver. 17 software. Finally, all the results are presented in tables and compared.

  19. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-15

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solution excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.

  20. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  1. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  2. The safe removal of frozen air from the annulus of an LH2 storage tank

    Science.gov (United States)

    Krenn, A.; Starr, S.; Youngquist, R.; Nurge, M.; Sass, J.; Fesmire, J.; Cariker, C.; Bhattacharya, A.

    2015-12-01

    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modelling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods.

  3. Metal-functionalized silicene for efficient hydrogen storage.

    Science.gov (United States)

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  5. Refurbishment and retrofitting of SF6 gas storage tanks of the pelletron accelerator

    International Nuclear Information System (INIS)

    Reddy, G.R.; Datar, V.M.; Parulekar, Y.M.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator Facility has completed more than twenty six years of successful round-the-clock operation, serving diverse users from institutions within and outside DAE. The main accelerating structure and associated subsystems are housed in the accelerator tank under SF 6 gas medium. During maintenance of the accelerator, the SF 6 gas present in the accelerator tank is transferred in the four storage tanks located on the terrace of the building open to outside environment. These four storage tanks (with ∼ 1/4th of the main tank volume each) are ∼ 4.27 m in diameter and ∼ 10 m in height each and are supported on RCC ring beams which are monolithically connected with the RCC structure below. Over the years, the anchor bolts and the base plates of support structure of storage tanks were found corroded and the foundation RCC ring beam indicated a few corrosion cracks. Health assessment of relevant structures and components were carried out. Considering the limitations of existing anchorage and also giving due considerations for reparability and replaceability, a new anchorage system was designed. The entire refurbishment and retrofitting works pertaining to the four SF 6 gas storage tanks was executed in a time bound manner to comply with the then PASC (Particle Accelerator Safety Committee) recommendations successfully, without disrupting the operations of the round-the-clock running Pelletron Accelerator facility. In addition, the thickness measurements for the storage tanks were performed. The relief valves and rupture disc assemblies across the storage tanks were replaced and reinstalled after introducing appropriate manual valves as suggested by the PASC. A new test set up was fabricated to perform pneumatic testing at the recommended pressure off-line for these relief valves and rupture disc assemblies prior to reinstallation. This paper describes the comprehensive rehabilitation and retrofitting procedures that were carried out at the

  6. Modeling and analysis of ORNL horizontal storage tank mobilization and mixing

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Terrones, G.; Eyler, L.L.

    1994-06-01

    The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m 3 (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m 3 (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents

  7. Enhanced Hydrogen Dipole Physisorption, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Channing [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-01-03

    The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.

  8. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  9. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  10. A model to predict the permeation of type IV hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Julien; Perreux, Dominique; Chapelle, David; Thiebaud, Frederic [MaHyTec, Dole (France); Nardin, Philippe [Franche Comte Univ. (France)

    2010-07-01

    In the frame of the certification process of the type IV hydrogen storage tanks MaHyTec aims to manufacture, this innovative SME is developing a numerical model dedicated to the study of permeation issues. Such an approach aims at avoiding complicated, time-consuming and expensive testing. Experimental results obtained under real conditions can moreover be significantly influenced by the scattering of material properties and liner dimensions. From simple testing on small-size flat membranes, the model allows to predict the gas diffusion flow through the whole structure by means of numerous parameters. On every step, theory can be compared with the results obtained from the samples. This document presents a brief review of the mathematical theory describing gas diffusion and the different aspects of the study for better understanding the proposed approach. (orig.)

  11. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1994-04-20

    New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

  12. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  13. High-pressure torsion for new hydrogen storage materials.

    Science.gov (United States)

    Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji

    2018-01-01

    High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials.

  14. Capacitive density measurement for supercritical hydrogen

    Science.gov (United States)

    Funke, Th; Haberstroh, Ch; Szoucsek, K.; Schott, S.; Kunze, K.

    2017-12-01

    A new approach for automotive hydrogen storage systems is the so-called cryo-compressed hydrogen storage (CcH2). It has a potential for increased energy densities and thus bigger hydrogen amounts onboard, which is the main attractiveness for car manufacturers such as BMW. This system has further advantages in terms of safety, refueling and cooling potential. The current filling level measurement by means of pressure and temperature measurement and subsequent density calculation faces challenges especially in terms of precision. A promising alternative is the capacitive gauge. This measuring principle can determine the filling level of the CcH2 tank with significantly smaller tolerances. The measuring principle is based on different dielectric constants of gaseous and liquid hydrogen. These differences are successfully leveraged in liquid hydrogen storage systems (LH2). The present theoretical analysis shows that the dielectric values of CcH2 in the relevant operating range are comparable to LH2, thus achieving similarly good accuracy. The present work discusses embodiments and implementations for such a sensor in the CcH2 tank.

  15. Soil load above Hanford waste storage tanks (2 volumes)

    International Nuclear Information System (INIS)

    Pianka, E.W.

    1995-01-01

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  16. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  17. Computer modeling of forced mixing in waste storage tanks

    International Nuclear Information System (INIS)

    Eyler, L.L.; Michener, T.E.

    1992-01-01

    In this paper, numerical simulation results of fluid dynamic and physical process in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity an flow settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations

  18. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  19. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen (WE-NET) (Sub-task 5. Development of hydrogen transportation and storage technology) (Edition 5. Development of hydrogen absorbing alloys for discrete transportation and storage); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) . Sub tusk 5. Suiso yuso chozo gijutsu no kaihatsu - Dai 5 hen. Bunsan yuso chozo you suiso kyuzo gokin no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Surveys and researches have been performed with an objective to accumulate knowledge required for R and D of a hydrogen transportation and storage technology. With respect to the hydrogen absorbing alloys for hydrogen transportation and storage, surveys have been carried out on the rare earth-nickel based alloy, magnesium based alloy, titanium/zirconium based alloy, vanadium based alloy, and other alloys. Regarding the hydrogen transportation and storage technology using hydrogen absorbing alloys, surveys have been made on R and D cases for hydrogen transporting containers, stationary hydrogen storing equipment, and hydrogen fuel tank for mobile equipment such as automobiles. For the R and D situation in overseas countries, site surveys have been executed on research organizations in Germany and Switzerland, the leader nations in R and D of hydrogen absorbing alloys. As a result of the surveys, the hydrogen absorbing alloys were found to have such R and D assignments as increase of effective hydrogen absorbing quantity, compliance with operating conditions, life extension, development of alloys easy in initial activation and fast in hydrogen discharge speed, and cost reduction. Items of the transportation and storage equipment have such assignments as making them compact, acceleration of heat conduction in alloy filling layers, handling of volume variation and internal stress, and long-term durability. (NEDO)

  20. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2018-04-01

    Full Text Available A large amount of energy is consumed by heating and cooling systems to provide comfort conditions for commercial building occupants, which generally contribute to peak electricity demands. Thermal storage tanks in HVAC systems, which store heating/cooling energy in the off-peak period for use in the peak period, can be used to offset peak time energy demand. In this study, a theoretical investigation on stratified thermal storage systems is performed to determine the factors that significantly influence the thermal performance of these systems for both heating and cooling applications. Five fully-insulated storage tank geometries, using water as the storage medium, were simulated to determine the effects of water inlet velocity, tank aspect ratio and temperature difference between charging (inlet and the tank water on mixing and thermocline formation. Results indicate that thermal stratification enhances with increased temperature difference, lower inlet velocities and higher aspect ratios. It was also found that mixing increased by 303% when the temperature difference between the tank and inlet water was reduced from 80 °C to 10 °C, while decreasing the aspect ratio from 3.8 to 1.0 increased mixing by 143%. On the other hand, increasing the inlet water velocity significantly increased the storage mixing. A new theoretical relationship between the inlet water velocity and thermocline formation has been developed. It was also found that inlet flow rates can be increased, without increasing the mixing, after the formation of the thermocline.

  1. Regulatory approaches to hydrocarbon contamination from underground storage tanks

    International Nuclear Information System (INIS)

    Daugherty, S.J.

    1991-01-01

    Action or lack of action by the appropriate regulatory agency is often the most important factor in determining remedial action or closure requirements for hydrocarbon contaminated sites. This paper reports that the diversity of regulatory criteria is well known statewide and well documented nationally. In California, the diversity of approaches is due to: that very lack of a clear understanding of the true impact of hydrocarbon contamination: lack of state or federal standards for soil cleanup, and state water quality objectives that are not always achievable; vagueness in the underground storage tank law; and the number and diversity of agencies enforcing the underground storage tank regulations

  2. Design, fabrication and operating experience of Monju ex-vessel fuel storage tank

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Yamagishi, Yoshiaki; Kuroha, Mitsuo; Inoue, Tatsuya

    1995-01-01

    In FBRs there are two methods of storing and cooling the spent fuel - the in-vessel storage and the ex-vessel storage. Because of the sodium leaks through the tank at the beginning of pre-operation, the utilization of the ex-vessel fuel storage tank (EVST) of some FBR plant has been changed from the ex-vessel fuel storage to the interim fuel transfer tank. This led to reactor designers focusing on the material, structure and fabrication of the carbon steel sodium storage tanks worldwide. The Monju EVST was at the final stage of the design, when the leaks occurred. The lesson learned from that experience and the domestic fabrication technology are reflected to the design and fabrication of the Monju EVST. This paper describes the design, fabrication and R and D results for the tank, and operating experience in functional test. The items to be examined are as follows: (1) Overall structure of the tank and design philosophy on the function, (2) Structure of the cover shielding plug and its design philosophy, (3) Structures of the rotating rack and its bearings, and their design philosophy, (4) Cooling method and its design philosophy, (5) Structure and fabrication of the cooling coil support inside EVST with comparison of leaked case, (6) R and D effort for items above. The fabrication of the Monju EVST started in August 1986 and it was shipped to the site in March 1990. Installation was completed in November 1990, and sodium fill after pre-heating started in 1991. The operation has been continued since September 1992. In 1996 when the first spent fuel is stored, its total functions will be examined. (author)

  3. Capacity retention in hydrogen storage alloys

    Science.gov (United States)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  4. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  5. 200 Area plateau inactive miscellaneous underground storage tanks locations

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years

  6. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage

    NARCIS (Netherlands)

    Tapeinos, I.; Koussios, S.; Groves, R.M.

    2015-01-01

    This paper outlines the structural performance of a conformable pressurizable tank consisting of intersecting spherical shells (multi-cell tank). Multi-cell tanks outrival conventional multiple cylindrical tanks in volumetric efficiency when required to fit in a rectangular envelope in the

  7. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  8. Increasing hydrogen storage capacity using tetrahydrofuran.

    Science.gov (United States)

    Sugahara, Takeshi; Haag, Joanna C; Prasad, Pinnelli S R; Warntjes, Ashleigh A; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-21

    Hydrogen hydrates with tetrahydrofuran (THF) as a promoter molecule are investigated to probe critical unresolved observations regarding cage occupancy and storage capacity. We adopted a new preparation method, mixing solid powdered THF with ice and pressurizing with hydrogen at 70 MPa and 255 +/- 2 K (these formation conditions are insufficient to form pure hydrogen hydrates). All results from Raman microprobe spectroscopy, powder X-ray diffraction, and gas volumetric analysis show a strong dependence of hydrogen storage capacity on THF composition. Contrary to numerous recent reports that claim it is impossible to store H(2) in large cages with promoters, this work shows that, below a THF mole fraction of 0.01, H(2) molecules can occupy the large cages of the THF+H(2) structure II hydrate. As a result, by manipulating the promoter THF content, the hydrogen storage capacity was increased to approximately 3.4 wt % in the THF+H(2) hydrate system. This study shows the tuning effect may be used and developed for future science and practical applications.

  9. Underground storage tanks: State regulations and compliance strategies

    International Nuclear Information System (INIS)

    Robinson, J.E.

    1988-01-01

    In an effort to resolve underground storage tank (UST) management problems, several states and localities have moved ahead of EPA in the promulgation of UST regulations. Developed independently, these regulations represent different strategies for ensuring compliance: from an extensive set of permitting requirements that allow for the implementation of site-specific control measures to a uniform set of technical and operational requirements that vary according to installation date. For the tank owner, complying with these regulations can be a time-consuming and frustrating endeavor. However, during the course of several environmental audits of similar facilities in different states, useful strategies were observed or developed that enabled facilities to respond more effectively to requirements: these included computerization of files, designation of tank custodians, installation of low-maintenance equipment, and increased use of above-ground tanks. Of special additional interest was the wide variation in costs for similar tank services quoted by both private and government sources. These strategies are coupled with general observations on the efficacy of the various regulatory approaches to provide a field view that may be useful to tank owners and others involved in underground tank management and evaluation

  10. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    . A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling......This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up...

  11. Computer modeling of forced mixing in waste storage tanks

    International Nuclear Information System (INIS)

    Eyler, L.L.; Michener, T.E.

    1992-04-01

    Numerical simulation results of fluid dynamic and physical processes in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for a centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity and high settling velocity. It results in nonuniform distribution. The other case is with high jet velocity and low settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations

  12. Treatment and storage of hydrogen isotopes

    International Nuclear Information System (INIS)

    Jung, H. S.; Lee, H. S.; An, D. H.; Kim, K. R.; Lee, S. H.; Choi, H. J.; Back, S. W.; Kang, H. S.; Eom, K. Y.; Lee, M. S.

    2000-01-01

    Storage of gaseous hydrogen isotopes in a cylinder is a well-established technology. However, Immobilization in the solid form is preferred for long-term storage of radioactive isotope gas because of the concern for leakage of the gas. The experimental thermodynamic p-c-T data show that Ti and U soak up hydrogen isotope gas at a temperature of a few hundred .deg. C and modest pressures. It was found that more hydrogen is dissolved in the metal than deuterium at constant pressure. Thus, the lighter isotope tends to be enriched in the solid phase

  13. Thermal Stratification in Small Solar Domestic Storage Tanks caused by Draw-offs

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Furbo, Simon

    2005-01-01

    As shown in many research studies in the past, the thermal stratification of the tank caused by draw-offs has a high impact on the performance of a Solar Domestic Hot Water (SDHW) system. Nevertheless, in most tank models for system simulations the influence of the draw-off pattern on the mixing...... behaviour is not taken into account sufficiently. Two typical Danish domestic water storage tanks, each with a volume of about 150 l, were investigated. In both tanks the inlet pipes are placed at the bottom and hot water is drawn from the upper part of tank. Above the inlet pipes, differently shaped plates...... are placed in order to reduce the mixing of the incoming cold water with the warmer storage water. To measure the thermal stratification thermocouples were placed in a vertical glass tube inside the tank. Measurements were carried out with different draw-off volumes, flow rates, and initial temperatures...

  14. Analysis on engineering application of CNP1000 in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Wang Bin; Wang Yong; Qiu Jian; Weng Minghui

    2005-01-01

    Based on the basic design of CNP1000 (three loops), which is self-reliance designed by China National Nuclear Cooperation, and investigation results from abroad advanced nuclear power plant design of In-containment Refueling Water Storage tank, this paper describe the system flowsheet, functional requirements, structural design and piping arrangement about In-containment Refueling Water Storage Tank. The design takes the lower structural space as the IRWST. Four areas are configured to meet the diverse functional requirements, including depressurization area, water collection area, safety injection and/or containment spray suction area, TSP storage area / reactor cavity flooding holdup tank. Also the paper depict the corresponding analysis and demonstration, such as In-containment Refueling Water Storage Tank pressure transient on depressurization area of IRWST, suction and internal flow stream of IRWST, configuration of strains, the addition method and amount of chemical addition, design and engineering applicant of Reactor Cavity Flooding System. All the analysis results show the basic design of IRWST meeting with the Utility Requirement Document's requirements on performance of safety function, setting of overfill passage, overpressure protection, related interference, etc., and show the reliability of Engineering Safety Features being improved for CNP1000 (three loops). Meanwhile, it is demonstrated that the design of In-containment Refueling Water Storage Tank can apply on the future nuclear power plant project in China. (authors)

  15. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  16. Economical Aspects of Sodium Borohydride for Hydrogen Storage

    International Nuclear Information System (INIS)

    Ture, I. Engin; Tabakoglu, F. Oznur; Kurtulus, Gulbahar

    2006-01-01

    Hydrogen is the best fuel among others, which can minimize the cause to global warming. Turkey has an important location with respect to hydrogen energy applications. Moreover, Turkey has 72.2% of the world's total boron reserves. Sodium borohydride (NaBH 4 ) which can be produced from borax has high hydrogen storage capacity. Hence, it is important for Turkey to lead studies about sodium borohydride to make it one of the most feasible hydrogen storage methods. In this paper an approximate process cost analysis of a NaBH 4 -H 2 system is given, starting with NaBH 4 production till recycling of it. It is found that, the usage of NaBH 4 as hydrogen storage material is relatively an expensive method but after improving reactions and by-product removal in the system and reducing the energy and reactant costs, sodium borohydride is one of the best candidates among hydrogen storage technologies. (authors)

  17. High capacity hydrogen storage nanocomposite materials

    Science.gov (United States)

    Zidan, Ragaiy; Wellons, Matthew S.

    2017-12-12

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  18. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  19. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  20. Environmental Protection: Improved Inspections and Enforcement Would Ensure Safer Underground Storage Tanks

    National Research Council Canada - National Science Library

    Stephenson, John

    2001-01-01

    ...) Underground Storage Tank (UST) program. 1 The program is relevant to today's hearing because studies have shown that tanks that leak hazardous substances, such as methyl tertiary butyl ether (MTBE...

  1. Hydrogen storage in planetary physics

    International Nuclear Information System (INIS)

    Baltensperger, W.

    1984-01-01

    Hydrogen in contact with most substances undergoes first order phase transitions with increasing pressure during which hydrides are formed. This applies to the core of hydrogen rich planets. It is speculated that a partial hydrogen storage in the early history of the earth could have lead to the formation of continents. Primordial carbon hydrides are synthesized during this process. (Author) [pt

  2. Status of containment integrity studies for continued in-tank storage of Hanford defense high-level waste

    International Nuclear Information System (INIS)

    Baca, R.G.; Beitel, G.A.; Mercier, P.F.; Moore, E.L.; Vollert, F.R.

    1978-09-01

    Information is provided on the technical studies that have been implemented for evaluating the containment integrity of the single-shell waste storage tanks. The major areas of study are an analysis of storage tank integrity, a failure mode analysis, and storage tank improvements. Evaluations of tank structural integrity include theoretical studies on static and dynamic load responses, laboratory studies on concrete durability, and experimental studies on the potential for exothermic reactions of salt cake. The structural analyses completed to date show that the tanks are in good condition and have a safety margin against overload. Environmental conditions that could cause a loss of durability are limited to the waste chemicals stored (which do not have access to the concrete). Concern that a salt cake exothermic reaction may initiate a loss of containment is not justifiable based on extensive testing completed. A failure mode analysis of a tank liner failure, a sidewall failure, and a dome collapse shows that no radiologic hazard to man results. Storage tank improvement studies completed show that support of a tank dome is achievable. Secondary containment provided by chemical grouts and bentonite clay slurry walls does not appear promising. It is now estimated that the single-shell tanks will be serviceable for the storage of salt cake waste for decades under currently established operating temperature and load limits

  3. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  4. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  5. Modeling of storage tank settlement based on the United States standards

    Directory of Open Access Journals (Sweden)

    Gruchenkova Alesya

    2018-01-01

    Full Text Available Up to 60% of storage tanks in operation have uneven settlement of the outer bottom contour, which often leads to accidents. Russian and foreign regulatory documents have different requirements for strain limits of metal structures. There is an increasing need for harmonizing regulatory documents. The aim of this study is to theoretically justify and to assess the possibility of applying the U.S. standards for specifying the allowable settlement of storage tanks used in Russia. The allowable uneven settlement was calculated for a vertical steel tank (VST-20000 according to API-653, a standard of the American Petroleum Institute. The calculated allowable settlement levels were compared with those established by Russian standards. Based on the finite element method, the uneven settlement development process of a storage tank was modeled. Stress-strain state parameters of tank structures were obtained at the critical levels established in API-653. Relationships of maximum equivalent stresses in VST metal structures to the vertical settlement component for settlement zones of 6 to 72 m in length were determined. When the uneven settlement zone is 6 m in length, the limit state is found to be caused by 30-mm vertical settlement, while stresses in the wall exceed 330 MPa. When the uneven settlement zone is 36 m in length, stresses reach the yield point only at 100-mm vertical settlement.

  6. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  7. Combined Solid State and High Pressure Hydrogen Storage

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Jensen, Torben René

    Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia.......Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia....

  8. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  9. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  10. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    Science.gov (United States)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  11. Anti-seismic analysis for air storage tank used in the nuclear power plant

    International Nuclear Information System (INIS)

    Hua Jun; Ren Xin; Feng Ping

    2011-01-01

    This text calculates and analyses the structure of the air storage tank used for the SBO diesel generator set of Taishan nuclear power plant through finite element method, and simply introduces the mechanical modeling, loading condition and seismic response spectrum analyzing method for the structure, then get the natural frequency, vibration mode and response under seismic load of the structure through calculation. Evaluate the stress under the combined load such as gravity, internal stress, earthquake of the structure according to RCCM. The result shows that the structure intensity of the air storage tank meets the requirements of the specification. The calculating result gives the accordance for the seismic design of the air storage tank. (authors)

  12. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  13. A summary description of the flammable gas tank safety program

    International Nuclear Information System (INIS)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks

  14. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo-Jin; Lee, Seul-Yi [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2010-12-15

    In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N{sub 2}/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. (author)

  15. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of storage facility for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the storage facility for a large amount of liquid hydrogen (LH) was studied. Gasification loss caused by heat input of LH delivery pumps was studied for liquefaction and power generation bases assuming an pump efficiency of 70%, and the total heat and mass balance such as interface conditions for calculating the amount of boil-off gas was reviewed. The target storage capacity of 50,000m{sup 3} was reasonable, however, the performance of loading arms should be examined. The capacity around 5,000m{sup 3} of coastal localized bases was reasonable for control delivery loss caused by coastal tanker or LH container system to 2.6%. The capacity of 500m{sup 3} was suitable for inland bases, resulting in the loss of 1.2%. The concept design of the storage tank of 50,000m{sup 3} extracted confirmation of low-temperature characteristics of adiabatic materials and structures, and development of leakage inspection technology and vacuum holding technology as issues. The concept design of the underground storage tank showed that the material specifications for LNG ones are applicable to it by using proper adiabatic structures. 4 refs., 72 figs., 27 tabs.

  16. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Accident scenarios triggered by lightning strike on atmospheric storage tanks

    International Nuclear Information System (INIS)

    Necci, Amos; Argenti, Francesca; Landucci, Gabriele; Cozzani, Valerio

    2014-01-01

    Severe Natech accidents may be triggered by lightning strike affecting storage tanks containing relevant inventories of hazardous materials. The present study focused on the identification of event sequences and accident scenarios following lightning impact on atmospheric tanks. Reference event trees, validated using past accident analysis, are provided to describe the specific accident chains identified, accounting for reference protection and mitigation safety barriers usually adopted in current industrial practice. An overall methodology was outlined to allow the calculation of the expected frequencies of final scenarios following lightning impact on atmospheric storage tanks, taking into account the expected performance of available safety barriers. The methodology was applied to a case study in order to better understand the data that may be obtained and their importance in the framework of quantitative risk assessment (QRA) and of the risk management of industrial facilities with respect to external hazards due to natural events. - Highlights: • Event sequences following lightning impact on atmospheric tanks were identified. • Reference event trees including standard safety barriers were obtained. • Safety barriers applied in industrial practice were assessed to quantify event trees. • Frequencies of final scenarios following lightning impact on tanks were calculated. • Natech scenarios caused by lightning have an important influence on risk profiles

  18. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  19. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  20. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank's highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format

  1. An Underground Storage Tank Integrated Demonstration report

    International Nuclear Information System (INIS)

    Quadrel, M.J.; Hunter, V.L.; Young, J.K.; Lini, D.C.; Goldberg, C.

    1993-04-01

    The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study's products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge

  2. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  3. Composite-Material Tanks with Chemically Resistant Liners

    Science.gov (United States)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  4. Economic Dispatch of Hydrogen Systems in Energy Spot Markets

    DEFF Research Database (Denmark)

    You, Shi; Nørgård, Per Bromand

    2015-01-01

    of energy spot markets. The generic hydrogen system is comprised of an electrolysis for hydrogen production, a hydrogen storage tank and a fuel cell system for cogeneration of electricity and heat. A case study is presented with information from practical hydrogen systems and the Nordic energy markets...

  5. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    Science.gov (United States)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  6. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  7. Estimating Residual Solids Volume In Underground Storage Tanks

    International Nuclear Information System (INIS)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-01

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  8. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    In the last one decade hydrogen has attracted worldwide interest as an energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and applications of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel and richest in energy per unit mass. Hydrogen as a fuel can be used to cook food, drive cars, jet planes, run factories and for all our domestic energy requirements. It can provide cheap electricity. In short, hydrogen shows the solution and also allows the progressive and non-traumatic transition of today's energy sources, towards feasible safe reliable and complete sustainable energy chains. The present article deals with the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials. Many metals combine chemically with Hydrogen to form a class of compounds known as Hydrides. These hydrides can discharge hydrogen as and when needed by raising their temperature or pressure. An optimum hydrogen-storage material is required to have various properties viz. high hydrogen capacity per unit mass and unit volume which determines the amount of available energy, low dissociation temperature, moderate dissociation pressure, low heat of formation in order to minimize the energy necessary for hydrogen release, low heat dissipation during the exothermic hydride formation, reversibility, limited energy loss during charge and discharge of hydrogen, fast kinetics, high stability against O 2 and moisture for long cycle life, cyclibility, low cost of recycling and charging infrastructures and high safety. So far most of the hydrogen storage alloys such as LaNi 5 , TiFe, TiMn 2 , have hydrogen storage capacities, not more than 2 wt% which is not satisfactory for practical application as per DOE Goal. A group of Mg based

  9. Performance of liquid storage tanks during the 1989 Loma Prieta earthquake

    International Nuclear Information System (INIS)

    Haroun, M.A.; Mourad, S.A.; Izzeddine, W.

    1991-01-01

    Utilities and industrial facilities in the strong shaking area of the 1989 Loma Prieta earthquake include a large inventory of tanks of all types. The earthquake induced a few incidents of damage to tanks of old and modern design, and even to a retrofitted tank. This paper documents the performance of tank structures during this seismic event through a detailed description of the damage sustained by ground-based petroleum and water storage tanks and by elevated water tanks. It appears that site amplification of the long period ground motion components was a cause of large amplitude sloshing and the associated damage to tanks built on Bay Mud. It is also apparent that design procedures for ground-based unanchored tanks require a substantial updating to reflect the recent technical advances and the lessons learned for such a type of tanks

  10. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  11. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  12. Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks

    International Nuclear Information System (INIS)

    Liu Xiu-Ying; He Jie; Yu Jing-Xin; Fan Zhi-Qin; Li Zheng-Xin

    2014-01-01

    Molecular hydrogen and spiltover hydrogen storages on five two-dimensional (2D) covalent-organic frameworks (COFs) (PPy-COF, TP-COF, BTP-COF, COF-18 Å, and HHTP-DPB COF) are investigated using the grand canonical Monte Carlo (GCMC) simulations and the density functional theory (DFT), respectively. The GCMC simulated results show that HHTP-DPB COF has the best performance for hydrogen storage, followed by BTP-COF, TP-COF, COF-18 Å, and PPy-COF. However, their adsorption amounts at room temperature are all too low to meet the uptake target set by US Department of Energy (US-DOE) and enable practical applications. The effects of pore size, surface area, and isosteric heat of hydrogen on adsorption amount are considered, which indicate that these three factors are all the important factors for determining the H 2 adsorption amount. The chemisorptions of spiltover hydrogen atoms on these five COFs represented by the cluster models are investigated using the DFT method. The saturation cluster models are constructed by considering all possible adsorption sites for these cluster models. The average binding energy of a hydrogen atom and the saturation hydrogen storage density are calculated. The large average binding energy indicates that the spillover process may proceed smoothly and reversibly. The saturation hydrogen storage density is much larger than the physisorption uptake of H 2 molecules at 298 K and 100 bar (1 bar = 10 5 Pa), and is close to or exceeds the 2010 US-DOE target of 6 wt% for hydrogen storage. This suggests that the hydrogen storage capacities of these COFs by spillover may be significantly enhanced. Thus 2D COFs studied in this paper are suitable hydrogen storage media by spillover

  13. Positron annihilation study of hydrogen storage alloys

    International Nuclear Information System (INIS)

    Shirai, Yasuharu; Araki, Hideki; Sakaki, Kouji

    2003-01-01

    Some AB 5 and AB 2 hydrogen storage alloys have been characterized by using positron-annihilation lifetime spectroscopy. It has been shown that they contain no constitutional vacancies and that deviations from the stoichiometric compositions are all compensated by antistructure atoms. Positron lifetimes in fully-annealed LaNi 5-x Al x and MmNi 5-x Al x alloys show good correlation with their hydrogen desorption pressures. On the other hand, surprising amounts of vacancies together with dislocations have been found to be generated during the first hydrogen absorption process of LaNi 5 and ZrMn 2 . These lattice defects play important role in hydrogen absorption-desorption processes of hydrogen storage alloys. (author)

  14. Solid-State Hydrogen Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a method for converting metals to metal hydrides at low pressures for hydrogen storage systems with high efficiency with respect to volume...

  15. Potassium doped MWCNTs for hydrogen storage enhancement

    International Nuclear Information System (INIS)

    Adabi Qomi, S.; Gashtasebi, M.; Khoshnevisan, B.

    2012-01-01

    Here we have used potassium doped MWCNTs for enhancement of hydrogen storage process. XRD and SEM images have confirmed the doping of potassium. For studying the storage process a hydrogenic battery set up has been used. In the battery the working electrode has been made of the silver foam deposited by the doped MWCNTs electrophoretically.

  16. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Dehghan, A.A.; Barzegar, A.

    2011-01-01

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ω model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  17. Basic and acidic leaching of Melton Valley Storage Tank sludge at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.

    1995-01-01

    Basic and acidic leaching tests were conducted with samples of sludge taken from an underground storage tank at the US Department of Energy Melton Valley Storage Tank facility at Oak Ridge National Laboratory. The tests evaluated separation technologies for use in sludge processing to concentrate the radionuclides and reduce the volumes of storage tank waste for final disposal. Study results of sludge characterization, caustic leaching of sludge samples at ambient temperature and at 95 degrees C, and acid leaching of sludge samples at ambient temperature are reported in detail

  18. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  19. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.

    Science.gov (United States)

    Hoang, Tuan K A; Webb, Michael I; Mai, Hung V; Hamaed, Ahmad; Walsby, Charles J; Trudeau, Michel; Antonelli, David M

    2010-08-25

    In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.

  20. Energy storage

    International Nuclear Information System (INIS)

    Odru, P.

    2010-01-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  1. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-02-28

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. This analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers. This paper will describe the matching of current glass microspheres with the useful application in commercial hydrogen bulk transport and storage.

  2. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  3. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Porous polymeric materials for hydrogen storage

    Science.gov (United States)

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  5. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    Science.gov (United States)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  6. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model

    International Nuclear Information System (INIS)

    Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D.

    2017-01-01

    Highlights: •Techno-economic model of future hydrogen supply chains. •Implementation of liquid organic hydrogen carriers into a hydrogen mobility analysis. •Consideration of large-scale seasonal storage for fluctuating renewable hydrogen production. •Implementation of different technologies for hydrogen storage and transportation. -- Abstract: A viable hydrogen infrastructure is one of the main challenges for fuel cells in mobile applications. Several studies have investigated the most cost-efficient hydrogen supply chain structure, with a focus on hydrogen transportation. However, supply chain models based on hydrogen produced by electrolysis require additional seasonal hydrogen storage capacity to close the gap between fluctuation in renewable generation from surplus electricity and fuelling station demand. To address this issue, we developed a model that draws on and extends approaches in the literature with respect to long-term storage. Thus, we analyse Liquid Organic Hydrogen Carriers (LOHC) and show their potential impact on future hydrogen mobility. We demonstrate that LOHC-based pathways are highly promising especially for smaller-scale hydrogen demand and if storage in salt caverns remains uncompetitive, but emit more greenhouse gases (GHG) than other gaseous or hydrogen ones. Liquid hydrogen as a seasonal storage medium offers no advantage compared to LOHC or cavern storage since lower electricity prices for flexible operation cannot balance the investment costs of liquefaction plants. A well-to-wheel analysis indicates that all investigated pathways have less than 30% GHG-emissions compared to conventional fossil fuel pathways within a European framework.

  7. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  8. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  9. Experimental study and modelization of a propane storage tank depressurization

    International Nuclear Information System (INIS)

    Veneau, Tania

    1995-01-01

    The risks associated with the fast depressurization of propane storage tanks reveals the importance of the 'source term' determination. This term is directly linked, among others, to the characteristics of the jet developed downstream of the breach. The first aim of this work was to provide an original data bank concerning drop velocity and diameter distributions in a propane jet. For this purpose, a phase Doppler anemometer bas been implemented on an experimental set-up. Propane blowdowns have been performed with different breach sizes and several initial pressures in the storage tank. Drop diameter and velocity distributions have been investigated at different locations in the jet zone. These measurements exhibited the fragmentation and vaporisation trends in the jet. The second aim of this work concerned the 'source term'. lt required to study the coupling between the fluid behaviour inside the tank and the flow through the breach. This model took into account the phase exchange when flashing occurred in the tank. The flow at the breach was described with an homogeneous relaxation model. This coupled modelization has been successfully and exhaustively validated. lt originality lies on the application to propane flows. (author) [fr

  10. Polyaniline-polypyrrole composites with enhanced hydrogen storage capacities.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-06-13

    A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline-polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  12. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  13. A risk-based approach to prioritize underground storage tanks

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-01-01

    The purpose of this paper is to present a risk-based approach for rapid prioritization of low level liquid radioactive waste underground storage tanks (LLLW USTs) for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at the Oak Ridge National Laboratory (ORNL) were pumped out at the time the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include, the radionuclides, 9O Sr, 137 Cs and 233 U and the chemicals, carbon tetrachloride, trichloroethene, tetrachloroethene, methyl ethyl ketone, mercury, lead and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank; (2) location of the tanks; and (3) toxic potential of the tank contents

  14. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  15. A computational study on the performance of a solar air-conditioning system with a partitioned storage tank

    International Nuclear Information System (INIS)

    Li, Z.F.; Sumathy, K.

    2003-01-01

    This paper reports the performance of a modified solar powered air-conditioning system, which is integrated with a partitioned storage tank. In addition, the effect of two main parameters that influence the system performance is presented and discussed. The study shows that by partitioning the storage tank, the solar cooling effect can be realized much earlier and could attain a total solar cooling COP of 12% higher compared to the conventional whole-tank mode. Simulation results also indicate that there exists an optimum ratio of storage tank volume over collector area

  16. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  17. Lunar-derived titanium alloys for hydrogen storage

    Science.gov (United States)

    Love, S.; Hertzberg, A.; Woodcock, G.

    1992-01-01

    Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.

  18. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  19. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  20. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  1. Equipment design guidance document for flammable gas waste storage tank new equipment

    International Nuclear Information System (INIS)

    Smet, D.B.

    1996-01-01

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas

  2. Dynamic analysis of liquid storage tank including hydrodynamic interaction by boundary element method

    International Nuclear Information System (INIS)

    Hwang, I.T.; Ting, K.

    1987-01-01

    Dynamic response of liquid storage tanks considering the hydrodynamic interactions due to earthquake ground motion has been extensively studied. Several finite element procedures, such as Balendra et. al. (1982) and Haroun (1983), have been devoted to investigate the dynamic interaction between the deformable wall of the tank and the liquid. Further, if the geometry of the storage tank can not be described by axi-symmetric case, the tank wall and the fluid domain must be discretized by three dimensional finite elements to investigate the fluid-structure-interactions. Thus, the need of large computer memory and expense of vast computer time usually make this analysis impractical. To demonstrate the accuracy and reliability of the solution technique developed herein, the dynamic behavior of ground-supported, deformed, cylindrical tank with incompressible fluid conducted by Haroun (1983) are analyzed. Good correlations of hydrodynamic pressure distribution between the computed results with the referenced solutions are noted. The fluid compressibility significantly affects the hydrodynamic pressures of the liquid-tank-interactions and the work which is done on this discussion is still little attention. Thus, the influences of the compressibility of the liquid on the reponse of the liquid storage due to ground motion are then drawn. By the way, the complex-valued frequency response functions for hydrodynamic forces of Haroun's problem are also displayed. (orig./GL)

  3. Hydrogen storage capacity of titanium met-cars

    International Nuclear Information System (INIS)

    Akman, N; Durgun, E; Yildirim, T; Ciraci, S

    2006-01-01

    The adsorption of hydrogen molecules on the titanium metallocarbohedryne (met-car) cluster has been investigated by using the first-principles plane wave method. We have found that, while a single Ti atom at the corner can bind up to three hydrogen molecules, a single Ti atom on the surface of the cluster can bind only one hydrogen molecule. Accordingly, a Ti 8 C 12 met-car can bind up to 16 H 2 molecules and hence can be considered as a high-capacity hydrogen storage medium. Strong interaction between two met-car clusters leading to the dimer formation can affect H 2 storage capacity slightly. Increasing the storage capacity by directly inserting H 2 into the met-car or by functionalizing it with an Na atom have been explored. It is found that the insertion of neither an H 2 molecule nor an Na atom could further promote the H 2 storage capacity of a Ti 8 C 12 cluster. We have also tested the stability of the H 2 -adsorbed Ti 8 C 12 met-car with ab initio molecular dynamics calculations which have been carried out at room temperature

  4. Ageing of Mg-Ni-H hydrogen storage alloys

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2012-01-01

    Roč. 37, OCT (2012), s. 14257-14264 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA106/09/0814; GA ČR(CZ) GAP108/11/0148 Institutional research plan: CEZ:AV0Z20410507 Keywords : Magnesium alloys * Hydrogen desorption * Hydrogen storage * Hydrogen-storage materials * Ageing Subject RIV: JG - Metallurgy Impact factor: 3.548, year: 2012

  5. A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey

    Directory of Open Access Journals (Sweden)

    Aytac Yildiz

    2013-06-01

    Full Text Available In this paper, we aim to select the most appropriate Hydrogen Energy Storage (HES method for Turkey from among the alternatives of tank, metal hydride and chemical storage, which are determined based on expert opinions and literature review. Thus, we propose a Buckley extension based fuzzy Analytical Hierarchical Process (Fuzzy-AHP and linear normalization based fuzzy Grey Relational Analysis (Fuzzy-GRA combined Multi Criteria Decision Making (MCDM methodology. This combined approach can be applied to a complex decision process, which often makes sense with subjective data or vague information; and used to solve to solve HES selection problem with different defuzzification methods. The proposed approach is unique both in the HES literature and the MCDM literature.

  6. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf

    2009-01-01

    the possibilities of a thermal coupling of a high temperature PEM fuel cell operating at 160-200 degrees C. The starting temperatures and temperature hold-times before starting fuel cell operation, the heat transfer characteristics of the hydride storage tanks, system temperature, fuel cell electrical power......Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...... decomposition step, i.e. the decomposition of the hexahydride to sodium hydride and aluminium which refers to 1.8 wt% hydrogen is supposed to happen above 110 degrees C. The discharge of the material is thus limited by the level of heat supplied to the hydride storage tank. Therefore, we evaluated...

  7. Tetrahydroborates: Development and Potential as Hydrogen Storage Medium

    Directory of Open Access Journals (Sweden)

    Julián Puszkiel

    2017-10-01

    Full Text Available The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative, hydrogen is widely regarded as a key element for a potential energy solution. However, different from fossil fuels such as oil, gas, and coal, the production of hydrogen requires energy. Alternative and intermittent renewable sources such as solar power, wind power, etc., present multiple advantages for the production of hydrogen. On one hand, the renewable sources contribute to a remarkable reduction of pollutants released to the air. On the other hand, they significantly enhance the sustainability of energy supply. In addition, the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of the renewable energy sources. In this regard, hydrogen storage technology presents a key roadblock towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen, solid-state storage is the most attractive alternative both from the safety and the volumetric energy density points of view. Because of their appealing hydrogen content, complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review, the progresses made over the last century on the development in the synthesis and research on the decomposition reactions of homoleptic tetrahydroborates is summarized. Furthermore, theoretical and experimental investigations on the thermodynamic and kinetic tuning of tetrahydroborates for hydrogen storage purposes are herein reviewed.

  8. Hydrogen-based energy storage unit for stand alone PV systems

    International Nuclear Information System (INIS)

    Labbe, J.

    2006-12-01

    Stand alone systems supplied only by a photovoltaic generator need an energy storage unit to be fully self sufficient. Lead acid batteries are commonly used to store energy because of their low cost, despite several operational constraints. A hydrogen-based energy storage unit (HESU) could be another candidate, including an electrolyser, a fuel cell and a hydrogen tank. However many efforts still need to be carried out for this technology to reach an industrial stage. In particular, market outlets must be clearly identified. The study of small stationary applications (few kW) is performed by numerical simulations. A simulator is developed in the Matlab/Simulink environment. It is mainly composed of a photovoltaic field and a storage unit (lead acid batteries, HESU, or hybrid storage HESU/batteries). The system component sizing is achieved in order to ensure the complete system autonomy over a whole year of operation. The simulator is tested with 160 load profiles (1 kW as a yearly mean value) and three locations (Algeria, France and Norway). Two coefficients are set in order to quantify the correlation between the power consumption of the end user and the renewable resource availability at both daily and yearly scales. Among the tested cases, a limit value of the yearly correlation coefficient came out, enabling to recommend the use of the most adapted storage to a considered case. There are cases for which using HESU instead of lead acid batteries can increase the system efficiency, decrease the size of the photovoltaic field and improve the exploitation of the renewable resource. In addition, hybridization of HESU with batteries always leads to system enhancements regarding its sizing and performance, with an efficiency increase by 10 to 40 % depending on the considered location. The good agreement between the simulation data and field data gathered on real systems enabled the validation of the models used in this study. (author)

  9. Cryogenic storage tank with built-in pump

    International Nuclear Information System (INIS)

    Zwick, E.B.

    1984-01-01

    A cryogenic storage tank with a built-in pump for pumping cryogen directly from the primary storage container consistent with low boil-off losses of cryogen has an outer vessel, an inner vessel and an evacuated insulation space therebetween. A pump mounting tube assembly extends into the interior of the inner vessel and includes an inner pump mounting tube and an outer pump mounting tube joined at their lower rims to define an insulating jacket between the two tubes. The inner pump mounting tube is affixed at its upper end to the outer vessel while the outer pump mounting tube is affixed at its upper end to the inner vessel. The inner pump mounting tube defines a relatively long heat path into the cryogenic container and is itself insulated from the liquid cryogen by a pocket of trapped gas formed within the inner pump mounting tube by heated cryogen. A pump may be introduced through the inner pump mounting tube and is also insulated against contact with liquid cryogen by the trapped gas such that only the lowermost end of the pump is immersed in cryogen thereby minimizing heat leakage into the tank

  10. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    International Nuclear Information System (INIS)

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  11. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  12. Hydrogen storage in engineered carbon nanospaces.

    Science.gov (United States)

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  13. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  14. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  16. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  17. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  18. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  19. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  20. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  1. Modern concepts of conversion and storage of energy by dispersed materials absorption

    Directory of Open Access Journals (Sweden)

    Minić-Popović Dragica M.

    2002-01-01

    Full Text Available Once hydrogen is generated, the question asked: How do we store hydrogen? Hydrogen can be stored in a variety of ways, each with specific advantages and disadvantages. The overall criteria for choosing a storage method should be safety and ease of use. Described in this paper and listed below are different storage methods available today (compressed hydrogen, liquid carrier storage, glass microsphere, chemically stored hydrogen in addition to some techniques that are still in the research and development stage: power balls, metal hydride tanks and carbon clusters.

  2. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  3. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  4. The electrochemistry and modelling of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Vermeulen, P.; Ledovskikh, A.V.; Danilov, D.; Notten, P.H.L.

    2007-01-01

    Mg-based alloys are promising hydrogen storage materials because of the high gravimetric energy density of MgH 2 (7.6 wt.%). A major disadvantage, however, is its very slow desorption kinetics. It has been argued that, in contrast to the well-known rutile-structured Mg hydride, hydrided Mg-transition metal alloys have a much more open crystal structure facilitating faster hydrogen transport. In this paper, the electrochemical aspects of new Mg-Sc and Mg-Ti materials will be reviewed. Storage capacities as high as 6.5 wt.% hydrogen have been reached with very favourable discharge kinetics. A theoretical description of hydrogen storage materials has also been developed by our group. A new lattice gas model is presented and successfully applied to simulate the thermodynamic properties of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, for example mutual atomic hydrogen interaction energies. A good fit of the lattice gas model to the experimental data is found in all cases

  5. Borazine-boron nitride hybrid hydrogen storage system

    Science.gov (United States)

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  6. Hydriding properties of an Mg-Al-Ni-Nd hydrogen storage alloy

    International Nuclear Information System (INIS)

    Duarte, G.I.; Bustamante, L.A.C.; Miranda, P.E.V. de

    2007-01-01

    This work presents the development of an Mg-Al-Ni-Nd alloy for hydrogen storage purposes. The hydrogen storage properties of the alloy were analyzed using pressure-composition isotherms and hydrogen desorption kinetic curves at different temperatures. The characterization of the microstructures, before and after hydrogenation, was performed using X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Hydrogenation caused significant changes in the alloy microstructure. Two pressure plateaus were observed. The maximum hydrogen storage reversible capacity measured was 4 wt.% at 573 K

  7. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  8. Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank.

    Science.gov (United States)

    Liu, Zhan; Li, Cui

    2018-03-15

    A calibrated CFD model is built to investigate the influence of slosh baffles on the pressurization performance in liquid hydrogen (LH 2 ) tank. The calibrated CFD model is proven to have great predictive ability by compared against the flight experimental results. The pressure increase, thermal stratification and wall heat transfer coefficient of LH 2 tank have been detailedly studied. The results indicate that slosh baffles have a great influence on tank pressure increase, fluid temperature distribution and wall heat transfer. Owning to the existence of baffles, the stratification thickness increases gradually with the distance from tank axis to tank wall. While for the tank without baffles, the stratification thickness decreases firstly and then increases with the increase of the distance from the axis. The "M" type stratified thickness distribution presents in tank without baffles. One modified heat transfer coefficient correlation has been proposed with the change of fluid temperature considered by multiplying a temperature correction factor. It has been proven that the average relative prediction errors of heat transfer coefficient reduced from 19.08% to 4.98% for the wet tank wall of the tank, from 8.93% to 4.27% for the dry tank wall, respectively, calculated by the modified correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  10. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    Energy Technology Data Exchange (ETDEWEB)

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  11. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    International Nuclear Information System (INIS)

    Vail, T.S.

    1997-01-01

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective

  12. Pursing other deep pockets: California's underground storage tank cleanup fund and insurance policies

    International Nuclear Information System (INIS)

    Almanza, P.R.

    1995-01-01

    When faced with a potentially very expensive environmental cleanup, most companies and individuals try to do the only sensible thing, which is to find out if anyone else will pay the bill. This presentation will outline two avenues that may provide a substantial financial contribution to environmental cleanups: (a) California's Underground Storage Tank Cleanup Fund and (b) insurance policies. The Underground Storage Tank Cleanup Fund was established in 1989 to help eligible owners and operators of petroleum underground storage tanks (USTs) to: (a) get reimbursed for costs of unauthorized releases of petroleum from USTs; (b) get reimbursed for damages awarded to third parties as a result of unauthorized releases of petroleum from USTs; and (c) meet federal and state requirements that the UST owner and/or operator be able to pay for cleanup costs and damages to third parties caused by unauthorized releases of petroleum

  13. Interim storage of sodium in ferritic steel tanks at ambient temperature

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1994-01-01

    Sodium tanks originally fabricated for elevated temperature service in the Clinch River Breeder Reactor Plant (CRBRP) will be used to store sodium removed from the Fast Flux Test Facility (FFTF) in the Sodium Storage Facility (SSF) at ambient temperature. This report presents an engineering review to confirm that protection against brittle fracture of the ferritic steel tanks is adequate for the intended service

  14. New insights into designing metallacarborane based room temperature hydrogen storage media.

    Science.gov (United States)

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  15. Hydrogen storage inside graphene-oxide frameworks

    International Nuclear Information System (INIS)

    Chan Yue; Hill, James M

    2011-01-01

    In this paper, we use applied mathematical modelling to investigate the storage of hydrogen molecules inside graphene-oxide frameworks, which comprise two parallel graphenes rigidly separated by perpendicular ligands. Hydrogen uptake is calculated for graphene-oxide frameworks using the continuous approximation and an equation of state for both the bulk and adsorption gas phases. We first validate our approach by obtaining results for two parallel graphene sheets. This result agrees well with an existing theoretical result, namely 1.85 wt% from our calculations, and 2 wt% arising from an ab initio and grand canonical Monte Carlo calculation. This provides confidence to the determination of the hydrogen uptake for the four graphene-oxide frameworks, GOF-120, GOF-66, GOF-28 and GOF-6, and we obtain 1.68, 2, 6.33 and 0 wt%, respectively. The high value obtained for GOF-28 may be partly explained by the fact that the benzenediboronic acid pillars between graphene sheets not only provide mechanical support and porous spaces for the molecular structure but also provide the higher binding energy to enhance the hydrogen storage inside graphene-oxide frameworks. For the other three structures, this binding energy is not as large in comparison to that of GOF-28 and this effect diminishes as the ligand density decreases. In the absence of conflicting data, the present work indicates GOF-28 as a likely contender for practical hydrogen storage.

  16. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  17. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    Science.gov (United States)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  18. Structural Performance Optimization and Verification of an Improved Thin-Walled Storage Tank for a Pico-Satellite

    Directory of Open Access Journals (Sweden)

    Lai Teng

    2017-11-01

    Full Text Available This paper presents an improved mesh storage tank structure obtained using 3D metal printing. The storage tank structure is optimized using a multi-objective uniform design method. Each parameter influencing the storage tank is considered as the optimization factor, and the compression stress ( σ , volume utilization ratio ( v , and weight ( m , are considered as the optimization objectives. Regression equations were established between the optimization factors and targets, the orders of the six factors affecting three target values are analyzed, and the relative deviations between the regression equation and calculation results for σ , v , and m were 9.72%, 4.15%, and 2.94%, respectively. The optimization results showed that the regression equations can predict the structure performance of the improved storage tank, and the values of the influence factors obtained through the optimization are effective. In addition, the compression stress was improved by 24.98%, the volume utilization ratio was increased by 26.86%, and the weight was reduced by 26.83%. The optimized storage tank was developed through 3D metal printing, and the compressive stress was improved by 58.71%, the volume utilization ratio was increased by 24.52%, and the weight was reduced by 11.67%.

  19. Corrosion resistance of tank material for flock storage in the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sano, Yuichi; Anbai, Hiromu; Takeuchi, Masayuki; Ogino, Hideki; Koizumi, Kenji

    2014-01-01

    The installation of the storage tank made of SS400 is under planning in the Fukushima Daiichi nuclear power plant for the flock which was generated in the coagulation process for radioactive contaminated water. The flock contains the seawater and has a possibility to make a crevice and local corrosion on the surface of the tank. Air agitation will be applied in the storage tank to prevent the accumulation of the flock and hydrogen generated by radiolysis, which will increase the diffusion of oxygen and the corrosion of SS400. In addition, the effect of radiation from the flock on the corrosion should be considered. In this study, we investigated the corrosion behavior of SS400 in the flock under the aeration-agitation condition with γ-ray irradiation. Based on the flock storage condition announced by Tokyo Electric Power Company (TEPCO), immersion tests were performed with SS400 coupons under several conditions and corrosion rates were estimated by the weight loss of the coupons. After the immersion tests, the surfaces of the coupons were observed by microscopy for evaluating the local corrosion. To evaluate corrosion mechanism in detail, electrochemical tests were also carried out. In all of these tests, the non-radioactive flock as a surrogate and artificial seawater were used. Corrosion rates of SS400 increased significantly with aeration flow rates in the seawater with/without the flock, but this tendency was weaker in the seawater with the flock, especially under the condition where coupons were buried in the flock. The electrochemical tests indicated the suppression of the cathodic reaction, i.e. dissolved oxygen reduction, in the seawater with the flock. The effect of γ-ray irradiation on the corrosion rates was not remarkable under the assumed dose rate. Microscopic analysis of the immersed coupons showed no severe corrosion including local corrosion occurred. The corrosion rate could be decreased effectively by suppressing the dissolved oxygen reduction

  20. Hydrogen Storage using Physisorption : Modified Carbon Nanofibers and Related Materials

    NARCIS (Netherlands)

    Nijkamp, Marije Gessien

    2002-01-01

    This thesis describes our research on adsorbent systems for hydrogen storage for small scale, mobile application. Hydrogen storage is a key element in the change-over from the less efficient and polluting internal combustion engine to the pollution-free operating hydrogen fuel cell. In general,

  1. Production method of hydrogen storage alloy electrode and hydrogen storage alloy for rechageable battery; Suiso kyuzo gokin denkyoku oyobi chikudenchiyo suiso kyuzo gokin no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Mizutaki, F.; Ishimaru, M.

    1995-04-07

    This invention relates to the hydrogen storage alloy electrode in which the misch metal-nickel system hydrogen storage alloy is employed. The grain of the hydrogen storage alloy is controlled so as to reduce the dendrite cell size. Since the hydrogen storage alloy having such small dendrite cell size has no part where the metal structure is too brittle, the alloy has a sufficient mechanical strength. It can stand for the swell and shrink stress associated with the sorption and desorption of hydrogen. The disintegration, therefore, due to the cracking of the alloy is hardly to take place. In addition, the quenching of molten alloy at a cooling rate of 1000{degree}C/sec or faster suppresses the occurrence of segregation of any alloy element at the grain boundary, making it possible to produce the homogeneous and mechanically strong alloy. In other words, it can be achieved to produce a hydrogen storage alloy electrode having an excellent cycle property. 4 figs., 1 tab.

  2. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  3. Model based, sensor-directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Thunborg, S.

    1990-01-01

    Sensor-rich, intelligent robots that function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories (SNL) is performing technology development and experimental investigations into the application of intelligent robot control technology to the problem of cleaning up waste stored in underground tanks. The tasks addressed in the SNL experiments are in situ physical characterizations of underground storage tanks (USTs) as well as the contained waste and the removal of the waste from the tank both for laboratory analysis and as part of the tank cleanup process. Both fully automatic and manual robot control technologies are being developed and demonstrated. The SNL-developed concept of human-assisted computer control will be employed whenever manual control of the robot is required. The UST Robot Technology Development Laboratory (URTDL) consists of a commercial gantry robot modified to allow hybrid force/position control

  4. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  5. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  6. Redox Flow Batteries, Hydrogen and Distributed Storage.

    Science.gov (United States)

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  7. Thermal analysis elements of liquefied gas storage tanks

    Science.gov (United States)

    Yanvarev, I. A.; Krupnikov, A. V.

    2017-08-01

    Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.

  8. Improving hydrogen storage in Ni-doped carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Menendez, J.A.; Pis, J.J.; Arenillas, A. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2009-04-15

    The effect of nickel distribution and content in Ni-doped carbon nanospheres on hydrogen storage capacity under conditions of moderate temperature and pressure was studied. It was found that the nickel distribution, obtained by using different doping techniques and conditions, has a noticeable influence on hydrogen storage capacity. The samples with the most homogeneous nickel distribution, obtained by pre-oxidising the carbon nanospheres, displayed the highest storage capacity. In addition, storage capacity is influenced by the amount of nickel. It was found a higher storage capacity in samples containing 5 wt.% of Ni. This is due to the greater interactions between the nickel and the support that produce a higher activation of the solid through a spillover effect. (author)

  9. Summary of Activities for Nondestructive Evaluation of Insulation in Cryogenic Tanks

    Science.gov (United States)

    Arens, Ellen

    2012-01-01

    This project was undertaken to investigate methods to non-intrusively determine the existence and density of perlite insulation in the annular region of the cryogenic storage vessels, specifically considering the Launch Complex 39 hydrogen tanks at Kennedy Space Center. Lack of insulation in the tanks (as existed in the pad B hydrogen tank at Kennedy Space Center) results in an excessive loss of commodity and can pose operational and safety risks if precautions are not taken to relieve the excessive gas build-up. Insulation with a density that is higher than normal (due to settling or compaction) may also pose an operational and safety risk if the insulation prevents the system from moving and responding to expansions and contractions as fluid is removed and added to the tank.

  10. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...... change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C....

  11. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  12. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-04-18

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for our engineered glass microspheres is about 150,000 psi, permitting a threefold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers.

  13. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  14. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  15. Underside corrosion of above ground storage tanks (ASTs) | Rim ...

    African Journals Online (AJOL)

    ... above statutory safe limits. The results showed that the physico-chemical characteristics of the water sample have diagnostic and predictive values to implicate and promote underside corrosion of the studied above ground storage tank. Journal of Applied Sciences and Environmental Management Vol. 9(1) 2005: 161-163.

  16. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  17. Computer simulation study of in-zeolites templated carbon replicas: structural and adsorption properties for hydrogen storage application

    International Nuclear Information System (INIS)

    Roussel, T.

    2007-05-01

    Hydrogen storage is the key issue to envisage this gas for instance as an energy vector in the field of transportation. Porous carbons are materials that are considered as possible candidates. We have studied well-controlled microporous carbon nano-structures, carbonaceous replicas of meso-porous ordered silica materials and zeolites. We realized numerically (using Grand Canonical Monte Carlo Simulations, GCMC) the atomic nano-structures of the carbon replication of four zeolites: AlPO 4 -5, silicalite-1, and Faujasite (FAU and EMT). The faujasite replicas allow nano-casting of a new form of carbon crystalline solid made of tetrahedrally or hexagonally interconnected single wall nano-tubes. The pore size networks are nano-metric giving these materials optimized hydrogen molecular storage capacities (for pure carbon phases). However, we demonstrate that these new carbon forms are not interesting for room temperature efficient storage compared to the void space of a classical gas cylinder. We showed that doping with an alkaline element, such as lithium, one could store the same quantities at 350 bar compared to a classical tank at 700 bar. This result is a possible route to achieve interesting performances for on-board docking systems for instance. (author)

  18. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  19. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    Science.gov (United States)

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advanced nanostructured materials as media for hydrogen storage

    International Nuclear Information System (INIS)

    David, E.; Niculescu, V.; Armeanu, A.; Sandru, C.; Constantinescu, M.; Sisu, C.

    2005-01-01

    Full text: In a future sustainable energy system based on renewable energy, environmentally harmless energy carriers like hydrogen, will be of crucial importance. One of the major impediments for the transition to a hydrogen based energy system is the lack of satisfactory hydrogen storage alternatives. Hydrogen storage in nanostructured materials has been proposed as a solution for adequate hydrogen storage for a number of applications, in particular for transportation. This paper is a preliminary study with the focus on possibilities for hydrogen storage in zeolites, alumina and nanostructured carbon materials. The adsorption properties of these materials were evaluated in correlation with their internal structure. From N 2 physisorption data the BET surface area (S BET ) , total pore volume (PV), micropore volume (MPV) and total surface area (S t ) were derived. H 2 physisorption measurements were performed at 77 K and a pressure value of 1 bar. From these data the adsorption capacities of sorbent materials were determined. Apparently the microporous adsorbents, e.g activated carbons, display appreciable sorption capacities. Based on their micropore volume, carbon-based sorbents have the largest adsorption capacity for H 2 , over 230 cm 3 (STP)/g, at the previous conditions. By increasing the micropore volume (∼ 1 cm 3 /g) of sorbents and optimizing the adsorption conditions it is expected to obtain an adsorption capacity of ∼ 560 cm 3 (STP)/g, close to targets set for mobile applications. (authors)

  1. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  2. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  3. Development Potentials for LH2 Storage System with Advanced Boil-off Management

    International Nuclear Information System (INIS)

    Takashi Maemura; Takanobu Kamiya; Shuichi Kawasaki; Ryo Nakamura; Kenji Nakamichi

    2006-01-01

    This paper describes our R and D until 2004 for liquid hydrogen components and system, and current development status summary from 2005 for the LH2 storing, transporting, and refuelling system with the advanced boil-off management using 'slush hydrogen', sponsored by NEDO (domestic projects). The objectives of our study from 2005 are to prove the reduction of the evaporation loss (BOG loss) by utilizing the slush hydrogen, which is the mixture of solids and triple point liquid hydrogen. Use of slush hydrogen rather than atmospheric pressure liquid hydrogen provides the advantage in density and cooling capacity. Assuming a vehicle storage tank size such as 100 to 200 litter ones, the BOG rate can be reduced to 30 percent less than the atmospheric pressure liquid hydrogen is. Present execution plan is to develop, built, and test experimental equipments composed of a slush hydrogen generator, a transfer line, and a storage tank during three years from 2005 to 2007. (authors)

  4. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    International Nuclear Information System (INIS)

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale

  5. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  6. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening

    Science.gov (United States)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.

    2018-04-01

    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  7. Structural analysis of ORNL underground gunite waste storage tanks

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1995-01-01

    The North Tank Farm (NTF) and the South Tank Farm (STF) located at ORNL contains 8 underground waste storage tanks which were built around 1943. The tanks were used to collect and store the liquid portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at ORNL, but are no longer part of the active Low Level Liquid Waste system of the Laboratory. The tanks were constructed of gunite. The six STF tanks are 50 ft in diameter, and have a 12 ft sidewall, and an arched dome rising another 6.25 ft. The sidewall are 6 in. thick and have an additional 1.5 in. gunite liner on the inside. There is a thickened ring at the wall-dome juncture. The dome consists of two 5 in. layers of gunite. The two tanks in the NTF are similar, but smaller, having a 25 ft diameter, no inner liner, and a dome thickness of 3.5 in. Both sets of tanks have welded wire mesh and vertical rebars in the walls, welded wire mesh in the domes, and horizontal reinforcing hoop bars pre-tensioned to 35 to 40 ksi stress in the walls and thickened ring. The eight tanks are entirely buried under a 6 ft layer of soil cover. The present condition of the tanks is not accurately known, since access to them is extremely limited. In order to evaluate the structural capability of the tanks, a finite element analysis of each size tank was performed. Both static and seismic loads were considered. Three sludge levels, empty, half-full, and full were evaluated. In the STF analysis, the effects of wall deterioration and group spacing were evaluated. These analyses found that the weakest element in the tanks is the steel resisting the circumferential (or hoop) forces in the dome ring, a fact verified separately by an independent reviewer. However, the hoop steel has an adequate demand/capacity ratio. Buckling of the dome and the tank walls is not a concern

  8. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  9. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  10. Experimental study on uranium alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Deaconu, M.; Meleg, T.; Dinu, A.; Mihalache, M.; Ciuca, I.; Abrudeanu, M.

    2013-01-01

    The heaviest isotope of hydrogen is one of critically important elements in the field of fusion reactor technology. Conventionally, uranium metal is used for the storage of heavier isotopes of hydrogen (D and T). Under appropriate conditions, uranium absorbs hydrogen to form a stable UH 3 compound when exposed to molecular hydrogen at the temperature range of 300-500 O C at varied operating pressure below one atmosphere. However, hydriding-dehydriding on pure uranium disintegrates the specimen into fine powder. The powder is highly pyrophoric and has low heat conductivity, which makes it difficult to control the temperature, and has a high possibility of contamination Due to the powdering effect as hydrogen in uranium, alloying uranium with other metal looks promising for the use of hydrogen storage materials. This paper has the aim to study the hydriding properties of uranium alloys, including U-Ti U-Mo and U-Ni. The uranium alloys specimens were prepared by melting the constituent elements by means of simultaneous measurements of thermo-gravimetric and differential thermal analyses (TGA-DTA) and studied in as cast condition as hydrogen storage materials. Then samples were thermally treated under constant flow of hydrogen, at various temperatures between 573-973 0 K. The structural and absorption properties of the products obtained were examined by thermo-gravimetric analysis (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM). They slowly reacted with hydrogen to form the ternary hydride and the hydrogenated samples mainly consisted of the pursued ternary hydride bat contained also U or UO 2 and some transient phase. (authors)

  11. Theoretical maximal storage of hydrogen in zeolitic frameworks.

    Science.gov (United States)

    Vitillo, Jenny G; Ricchiardi, Gabriele; Spoto, Giuseppe; Zecchina, Adriano

    2005-12-07

    Physisorption and encapsulation of molecular hydrogen in tailored microporous materials are two of the options for hydrogen storage. Among these materials, zeolites have been widely investigated. In these materials, the attained storage capacities vary widely with structure and composition, leading to the expectation that materials with improved binding sites, together with lighter frameworks, may represent efficient storage materials. In this work, we address the problem of the determination of the maximum amount of molecular hydrogen which could, in principle, be stored in a given zeolitic framework, as limited by the size, structure and flexibility of its pore system. To this end, the progressive filling with H2 of 12 purely siliceous models of common zeolite frameworks has been simulated by means of classical molecular mechanics. By monitoring the variation of cell parameters upon progressive filling of the pores, conclusions are drawn regarding the maximum storage capacity of each framework and, more generally, on framework flexibility. The flexible non-pentasils RHO, FAU, KFI, LTA and CHA display the highest maximal capacities, ranging between 2.86-2.65 mass%, well below the targets set for automotive applications but still in an interesting range. The predicted maximal storage capacities correlate well with experimental results obtained at low temperature. The technique is easily extendable to any other microporous structure, and it can provide a method for the screening of hypothetical new materials for hydrogen storage applications.

  12. Second law characterization of stratified thermal storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Fraidenraich, N [Departamento de Energia Nuclear-UFPE (Brazil)

    2000-07-01

    It is well known that fluid stratification in thermal storage tanks improves the overall performance of solar thermal systems, when compared with systems operating with uniform fluid temperature. From the point of view of the first law of thermodynamics, no difference exists between storage tanks with the same mass and average temperature, even if they have different stratified thermal structures. Nevertheless, the useful thermal energy that can be obtained from them might differ significantly. In this work, we derive an expression able to characterize the stratified configuration of thermal fluid. Using results obtained by thermodynamics of irreversible processes, the procedure adopted consists in calculating the maximum work available from the tank's thermal layer is able to develop. We arrive, then, at a dimensionless expression, the stratification parameter (SP), which depends on the mass fraction and absolute temperature of each thermal layer as well as the thermal fluid average temperature. Numerical examples for different types of tank stratification are given and it is verified that the expression obtained is sensitive to small differences in the reservoir thermal configuration. For example a thermal storage with temperatures equal to 74 Celsius degrees, 64 Celsius degrees and 54 Celsius degrees, with its mass equally distributed along the tank yields, for the parameter SP, a figure equal to 0.000294. On the other hand a storage tank with the same average temperature but with different layer's temperatures 76 Celsius degrees, 64 and 52 Celsius degrees, also with uniform mass distribution, yields for SP a value equal to quantitative evaluation of the stratification structure of thermal reservoirs. [Spanish] Es bien conocido que la estratificacion fluida en tanques de almacenamiento termico mejora el rendimiento total de los sistemas termicos solares en comparacion con sistemas que operan con temperatura uniforme del fluido. Desde el punto de vista

  13. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  14. Mass spectrometry analysis of tank wastes at the Hanford Site

    International Nuclear Information System (INIS)

    Campbell, J.A.; Mong, G.M.; Clauss, S.A.

    1995-01-01

    Twenty-five of the 177 high-level waste storage tanks at the Hanford Site in southeastern Washington are being watched closely because of the possibility that flammable gas mixtures may be produced from the mixed wastes contained in the storage tanks. One tank in particular, Tank 241-SY-101 (Tank 101-SY), has exhibited episodic releases of flammable gas mixtures since its final filling in the early 1980s. It has been postulated that the organic compounds present in the waste may be precursors to the production of hydrogen. Mass spectrometry has proven to be an invaluable tool for the identification of organic components in wastes from Tank 101-SY and C-103. A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unresolved Safety Question concerning the potential for a floating organic layer in Hanford Waste Tank 241-C-103 to sustain a pool fire. The aqueous layer underlying the floating organic material was also analyzed for organic components

  15. Hydrogen storage in thin film magnesium-scandium alloys

    International Nuclear Information System (INIS)

    Niessen, R.A. H.; Notten, P.H. L.

    2005-01-01

    Thorough electrochemical materials research has been performed on thin films of novel magnesium-scandium hydrogen storage alloys. It was found that palladium-capped thin films of Mg x Sc (1-x) with different compositions (ranging from x=0.50 -0.90) show an increase in hydrogen storage capacity of more than 5-20% as compared to their bulk equivalents using even higher discharge rates. The maximum reversible hydrogen storage capacity at the optimal composition (Mg 80 Sc 20 ) amounts to 1795-bar mAh/g corresponding to a hydrogen content of 2.05 H/M or 6.7-bar wt.%, which is close to five times that of the commonly used hydride-forming materials in commercial NiMH batteries. Galvanostatic intermittent titration technique (GITT) measurements show that the equilibrium pressure during discharge is lower than that of bulk powders by one order of magnitude (10 -7 -bar mbar versus 10 -6 -bar mbar, respectively)

  16. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  17. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  18. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.

    Science.gov (United States)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E

    2011-03-01

    The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.

  19. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  20. Hydrogen storage in microwave-treated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Hong-Zhang [BK21 Physics Division, Department of Energy Science, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea); School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Kim, Tae Hyung; Lim, Seong Chu; Jeong, Hae-Kyung; Jin, Mei Hua; Jo, Young Woo; Lee, Young Hee [BK21 Physics Division, Department of Energy Science, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea)

    2010-03-15

    Multiwalled carbon nanotubes (MWCNTs) treated by microwave and heat treatment were used for hydrogen storage. Their storage capacity was measured using a quadruple quartz crystal microbalance in a moisture-free chamber at room temperature and at relatively low pressure (0.5 MPa). Deuterium was also used to monitor the presence of moisture. The hydrogen storage capacity of the microwave-treated MWCNTs was increased to nearly 0.35 wt% over 0.1 wt% for the pristine sample and increased further to 0.4 wt%, with improved stability after subsequent heat-treatment. The increase in the storage capacity by the microwave treatment was mostly attributed to the introduction of micropore surfaces, while the stability improvement after the subsequent heat treatment was related to the removal of functional groups. We also propose a measurement method that eliminates the moisture effect by measuring the storage capacity with hydrogen and deuterium gas. (author)

  1. Seismic response of unanchored and partially anchored liquid-storage tanks. Final report

    International Nuclear Information System (INIS)

    Malhotra, P.K.; Veletsos, A.S.

    1995-12-01

    Ground-mounted vertical storage tanks are important components of nuclear plant safety systems. A systematic study is made of the principal effects of base uplifting on the seismic response of laterally excited, unanchored and partially anchored cylindrical liquid-storage tanks. The study consists of two parts: the first deals with the static uplifting resistance of the flexible base plate, and the second deals with the dynamic response of the uplifting system. An insight into the behavior of the uplifting base plate is first gained with the help of a prismatic beam solution. In Section 2, the solution is implemented exactly, whereas in Section 3 it is implemented approximately by use of the Ritz energy procedure. Solutions are next presented for axisymmetrically and asymmetrically uplifted base plate of tanks, in Section 4. For the axisymmetric case the solution is implemented exactly, as well as approximately by modeling the plate by a series of semiinfinite prismatic beams. The accuracy of the latter approach is confirmed by comparing its predictions with those of the former. In Section 5, a highly efficient and rational method is presented for the dynamic response analysis of uplifting tanks. Both unanchored tanks and partially anchored tanks, for which the number of anchor bolts at the base is insufficient to ensure full fixity, are considered. It is shown that base uplifting may reduce significantly the hydrodynamic pressures, but these reductions may be associated with increased axial compressive stresses in the tank wall and large plastic rotations at the plate-shell junction. For partially anchored tanks, energy loss due to bolt yielding is found to be small

  2. Experimental Study of a Thermosyphon Solar Water Heater Coupled to a Fibre-Reinforced Plastic (FRP) Storage Tank

    International Nuclear Information System (INIS)

    Nwosu, P. N.; Oparaku, O. U.; Okonkwo, W. I.; Unachukwu, G. O.; Agbiogwu, D.

    2011-01-01

    The thermal performance of the thermosyphon solar water heater was analyzed to show its applicability in a tropical climate using data of cloudy, sunny and hazy days. The average daily efficiency of the parallel-connected module, ranged between 35 and 40%. Also, an analysis of the temperature storage characteristics of a novel fibre-reinforced plastic (FRP) storage tank was undertaken. The inlet andoutlet positions were determined using the recommendation of Simon and Wenxian [1]: the optional position for the inlet/outlet was around the very top/bottom of the tank. The obtained results showed that the coupled FRP tank substantially retained and delivered the stored hot water during off-sunshine hours with minimal losses, and stratification occurred in the tank as a result. In view of the thermal performance, FRP materials can be efficiently employed in the design of solar hot water storage tanks. (authors)

  3. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  4. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  5. Simultaneous purification and storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Weber, R.; Carlson, E. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-08-01

    Specially coated magnesium particles have been shown to selectively absorb hydrogen from a hydrogen-rich gas stream such as reformate. These coated magnesium particles can store the absorbed hydrogen as required and subsequently deliver pure hydrogen, just as uncoated magnesium particles can. These coated magnesium particles could be used in a device that accepts a steady stream of reformate, as from a methane reformer, stores the selectively absorbed hydrogen indefinitely, and delivers purified hydrogen on demand. Unfortunately, this coating (magnesium nitride) has been shown to degrade over a period of several weeks, so that the magnesium within evidences progressively lower storage capacity. The authors are investigating two other coatings, one of which might be applicable to hydridable metals other than magnesium, to replace magnesium nitride.

  6. Nippon oil's activities toward realization of hydrogen society

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kojiro; Okazaki, Junji; Kobori, Yoshihiro; Iki, Hideshi [Nippon Oil Corporation (Japan)

    2010-07-01

    Nippon Oil Corporation, a major Japanese energy distributor, has been devoting extensive efforts toward the establishment of hydrogen supply systems. The Council on Competitiveness-Nippon (COCN), an advisory organization which has influence on Japanese government policy, has announced that the establishment of hydrogen infrastructure should be started in 2015. By that time, we plan to have completed the development of necessary technologies for the infrastructure. It is well recognized that the storage and transportation of hydrogen is the sticking point on the path to realization of a hydrogen economy. The scope of our research covers key technologies for hydrogen storage and transportation, including carbon fiber reinforced plastic (CFRP) tanks for compressed hydrogen gas, hydrogen storage materials, and hydrogen transportation systems which utilize organic chemical hydride (OCH). This article describes Nippon Oil's strategy for realization of the hydrogen economy. (orig.)

  7. Corrosion Evaluation of INTEC Waste Storage Tank WM-182

    International Nuclear Information System (INIS)

    Dirk, W. J.; Anderson, P. A.

    1999-01-01

    ). For purposes of waste storage, this is a negligible amount of metal loss. Localized corrosion such as cracking, pitting, preferential weld attack, or weld heat affected zone attack is not expected to be a materials problem in the tank

  8. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  9. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  10. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    Sneddon, Larry G.

    2011-01-01

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH 3 BH 3 (AB), 19.6-wt% H 2 , and ammonia triborane NH 3 B 3 H 7 (AT), 17.7-wt% H 2 , were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H 2 -release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H 2 -release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H 2 -release, the tunability of both their H 2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These

  11. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  12. Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks

    International Nuclear Information System (INIS)

    González, Ignacio; Pérez-Segarra, Carlos David; Lehmkuhl, Oriol; Torras, Santiago; Oliva, Assensi

    2016-01-01

    Highlights: • A numerical model of packed-bed thermocline thermal storage for CSP is presented. • Up-to-date commercial configurations are tested both thermally and structurally. • Promising thermal performance is obtained with a temperature difference of 100 °C. • Reliable factors of safety against material yielding and ratcheting can be obtained. • Cyclic relaxation-traction elastic wall stresses arise with plant normal operation. - Abstract: A packed-bed thermocline tank represents a proved cheaper thermal energy storage for concentrated solar power plants compared with the commonly-built two-tank system. However, its implementation has been stopped mainly due to the vessel’s thermal ratcheting concern, which would compromise its structural integrity. In order to have a better understanding of the commercial viability of thermocline approach, regarding energetic effectiveness and structural reliability, a new numerical simulation platform has been developed. The model dynamically solves and couples all the significant components of the subsystem, being able to evaluate its thermal and mechanical response over plant normal operation. The filler material is considered as a cohesionless bulk solid with thermal expansion. For the stresses on the tank wall the general thermoelastic theory is used. First, the numerical model is validated with the Solar One thermocline case, and then a parametric analysis is carried out by settling this storage technology in two real plants with a temperature rise of 100 °C and 275 °C. The numerical results show a better storage performance together with the lowest temperature difference, but both options achieve suitable structural factors of safety with a proper design.

  13. Hydrogen storage in clathrate hydrates: Current state of the art and future directions

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Rajnish; Linga, Praveen

    2014-01-01

    Hydrogen is looked upon as the next generation clean energy carrier, search for an efficient material and method for storing hydrogen has been pursued relentlessly. Improving hydrogen storage capacity to meet DOE targets has been challenging and research efforts are continuously put forth to achieve the set targets and to make hydrogen storage a commercially realizable process. This review comprehensively summarizes the state of the art experimental work conducted on the storage of hydrogen as hydrogen clathrates both at the molecular level and macroscopic level. It identifies future directions and challenges for this exciting area of research. Hydrogen storage capacities of different clathrate structures – sI, sII, sH, sVI and semi clathrates have been compiled and presented. In addition, promising new approaches for increasing hydrogen storage capacity have been described. Future directions for achieving increased hydrogen storage and process scale up have been outlined. Despite few limitations in storing hydrogen in the form of clathrates, this domain receives prominent attention due to more environmental-friendly method of synthesis, easy recovery of molecular hydrogen with minimum energy requirement, and improved safety of the process

  14. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    Science.gov (United States)

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  15. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  16. Impact of environmental conditions on sub-surface storage tanks ...

    African Journals Online (AJOL)

    Cast iron made storage tanks with gasoline fluid were buried under the soil at a depth of 4 m under various environment conditions. The simulated conditions include natural rain fail, temperature and acidic, alkaline and neutral soils. A control condition of neutral sea sand as base and filling materials were also investigated.

  17. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  18. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  19. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  20. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  1. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  2. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  3. 100-N Area underground storage tank closures

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  4. 100-N Area underground storage tank closures

    International Nuclear Information System (INIS)

    Rowley, C.A.

    1993-01-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D

  5. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    Thomas, T.R.

    2002-01-01

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP)

  6. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

    CSIR Research Space (South Africa)

    Annamalai, Perushini

    2017-01-01

    Full Text Available -defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1...

  7. Final test results for the ground operations demonstration unit for liquid hydrogen

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.

  8. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    Science.gov (United States)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  9. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, Mike [Ford Motor Company, Dearborn, MI (United States); Purewal, Justin [Ford Motor Company, Dearborn, MI (United States); Xu, Chunchuan [Ford Motor Company, Dearborn, MI (United States); Yang, Jun [Ford Motor Company, Dearborn, MI (United States); Blaser, Rachel [Ford Motor Company, Dearborn, MI (United States); Sudik, Andrea [Ford Motor Company, Dearborn, MI (United States); Siegel, Don [Univ. of Michigan, Ann Arbor, MI (United States); Ming, Yang [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Dong' an [Univ. of Michigan, Ann Arbor, MI (United States); Chi, Hang [Univ. of Michigan, Ann Arbor, MI (United States); Gaab, Manuela [BASF SE, Ludwigshafen (Germany); Arnold, Lena [BASF SE, Ludwigshafen (Germany); Muller, Ulrich [BASF SE, Ludwigshafen (Germany)

    2015-06-30

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence for materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis

  10. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  11. Enhanced hydrogen storage in sandwich-structured rGO/Co1-xS/rGO hybrid papers through hydrogen spillover

    Science.gov (United States)

    Han, Lu; Qin, Wei; Jian, Jiahuang; Liu, Jiawei; Wu, Xiaohong; Gao, Peng; Hultman, Benjamin; Wu, Gang

    2017-08-01

    Reduced graphene oxide (rGO) based two-dimensional (2D) structures have been fabricated for electrochemical hydrogen storage. However, the effective transfer of atomic hydrogen to adjacent rGO surfaces is suppressed by binders, which are widely used in conventional electrochemical hydrogen storage electrodes, leading to a confining of the performance of rGO for hydrogen storage. As a proof of concept experiment, a novel strategy is developed to fabricate the binder-free sandwich-structured rGO/Co1-xS/rGO hybrid paper via facile ball milling and filtration process. Based on the structure investigation, Co1-xS is immobilized in the space between the individual rGO sheets by the creation of chemical "bridges" (Csbnd S bonds). Through the Csbnd S bonds, the atomic hydrogen is transferred from Co1-xS to rGO accompanying a Csbnd H chemical bond formation. When used as an electrode, the hybrid paper exhibits an improved hydrogen storage capacity of 3.82 wt% and, most importantly, significant cycling stability for up to 50 cycles. Excluding the direct hydrogen storage contribution from the Co1-xS in the hybrid paper, the hydrogen storage ability of rGO is enhanced by 10× through the spillover effects caused by the Co1-xS modifier.

  12. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  13. Using virtual objects to aid underground storage tank teleoperation

    International Nuclear Information System (INIS)

    Anderson, R.J.; Davies, B.

    1994-01-01

    In this paper we describe an algorithm by which obstructions and surface features in an underground storage tank can be modeled and used to generate virtual barrier function for a real-time telerobotic system, which provides an aid to the operator for both real-time obstacle avoidance and for surface tracking. The algorithm requires that the slave's tool and every object in the waste storage tank be decomposed into convex polyhedral primitives, with the waste surface modeled by triangular prisms. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert's polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results using a PUMA 560 and a simulated waste surface validate the approach, showing that it is possible to compute the algorithm and generate smooth, realistic pseudo forces for the teleoperator system using standard VME bus hardware

  14. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of... Criteria, Emission Limits, and Management Practices for Storage Tanks If you own or operate Then you must 1...

  15. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  16. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  17. Innovative tank emptying system for the retrieval of salt, sludge and IX resins from storage tanks of NPPs

    International Nuclear Information System (INIS)

    Karl Froschauer; Holger Witing; Bernhard Christ

    2006-01-01

    RWE NUKEM recently developed a new Tank Emptying System (TESY) for the extraction of stored radioactive boric acid/borate salt blocks, sludge and IX resin from NPP stainless steel tanks of several hundred cubic meters content in Russia. RWE NUKEM has chosen the emptying concept consisting of a tracked submersible vehicle ('Crawler'), with jet nozzles for solution, agitation and fluidization, and a suction head to pick up the generated solution or suspension respectively. With the employment of RWE NUKEM's TESY system, spent radioactive salt deposits, ion-exchange resins and sludge, can be emptied and transferred out of the tank. The sediment, crystallized and settled during storage, will be agitated with increased temperature and suitable pH value and then picked up in form of a suspension or solution directly at the point of mobilization. This new Tank Emptying System concept enables efficiently to retrieve stored salt and other sediment waste, reduces operating time, safes cost for spare parts, increases the safety of operation and minimizes radiation exposure to personnel. All emptying tasks are performed remotely from a panel board and TV monitor located in a central control room. The TESY system consists of the following main components: glove box, crawler, submersible pump, heater, TV camera and spot light, control panel and monitor, water separation and feed unit, sodium hydroxide dosing unit. The system is specially requested for the removal of more than 2,500 cubic meter salt solution generated from the dissolution of some 300 cubic meter crystallized salt deposit per tank and per year. The TESY system is able to dissolve efficiently the salts and retrieve solutions and other liquefied suspensions. TESY is adaptable to all liquid waste storage facilities and especially deployable for tanks with limited access openings (<550 mm)

  18. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions.

    Science.gov (United States)

    Lueking, Angela D; Yang, Ralph T; Rodriguez, Nelly M; Baker, R Terry K

    2004-02-03

    A series of graphite nanofibers (GNFs) that were subjected to various pretreatments were used to determine how modifications in the carbon structure formed during either synthesis or pretreatment steps results in active or inactive materials for hydrogen storage. The nanofibers possessing a herringbone structure and a high degree of defects were found to exhibit the best performance for hydrogen storage. These materials were exposed to several pretreatment procedures, including oxidative, reductive, and inert environments. Significant hydrogen storage levels were found for several in situ pretreatments. Examination of the nanofibers by high-resolution transmission electron microscopy (TEM) after pretreatment and subsequent hydrogen storage revealed the existence of edge attack and an enhancement in the generation of structural defects. These findings suggest that pretreatment in certain environments results in the creation of catalytic sites that are favorable toward hydrogen storage. The best pretreatment resulted in a 3.8% hydrogen release after exposure at 69 bar and room temperature.

  1. Enhanced hydrogen storage by using lithium decoration on phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyuan; Wan, Neng, E-mail: wn@seu.edu.cn, E-mail: lsy@seu.edu.cn; Lei, Shuangying, E-mail: wn@seu.edu.cn, E-mail: lsy@seu.edu.cn; Yu, Hong [Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096 (China)

    2016-07-14

    The hydrogen storage characteristics of Li decorated phosphorene were systematically investigated based on first-principle density functional theory. It is revealed that the adsorption of H{sub 2} on pristine phosphorene is relatively weak with an adsorption energy of 0.06 eV. While this value can be dramatically enhanced to ∼0.2 eV after the phosphorene was decorated by Li, and each Li atom can adsorb up to three H{sub 2} molecules. The detailed mechanism of the enhanced hydrogen storage was discussed based on our density functional theory calculations. Our studies give a conservative prediction of hydrogen storage capacity to be 4.4 wt. % through Li decoration on pristine phosphorene. By comparing our calculations to the present molecular dynamic simulation results, we expect our adsorption system is stable under room temperature and hydrogen can be released after moderate heating.

  2. Hydrogen storage: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Tzimas, E.; Filiou, C.; Peteves, S.D.; Veyret, J.B.

    2003-01-01

    The EU aims at establishing a sustainable energy supply, able to provide affordable and clean energy without increasing green house gas emissions. Hydrogen and fuel cells are seen by many as key energy system solutions for the 21. century, enabling clean and efficient production of power and heat from a broad range of primary energy sources. To be effective, there is a crucial need for well-coordinated research, development and deployment at European Level. The particular segment of hydrogen storage is one key element of the full hydrogen chain and it must meet a number of challenges before it is introduced into the global energy system. Regarding its energy characteristics, the gravimetric energy density of hydrogen is about three times higher than gasoline, but its energy content per volume is about a quarter. Therefore, the most significant problem for hydrogen (in particular for on-board vehicles) is to store sufficient -amounts of hydrogen. The volumetric energy density of hydrogen can be increased by compression or liquefaction which are both the most mature technologies. Still the energy required for both compression and liquefaction is one element to be properly assessed in considering the different pathways in particular for distribution. As far as on-board vehicle storage is concerned all possible options (compressed, liquid, metal hydrides and porous structures) have their own advantages and disadvantages with respect to weight, volume, energy efficiency, refuelling times, cost and safety aspects. To address these problems, long-term commitments to scientific excellence in research, coupled with co-ordination between the many different stakeholders, is required. In the current state-of-the-art in hydrogen storage, no single technology satisfies all of the criteria required by manufacturers and end-users, and a large number of obstacles have to be overcome. The current hydrogen storage technologies and their associated limitations/needs for improvement

  3. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    Science.gov (United States)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  4. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  5. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  6. Property changes of some hydrogen storage alloys upon hydrogen absorption-desorption cycling

    International Nuclear Information System (INIS)

    Park, C.N.; Cho, S.W.; Choi, J.

    2005-01-01

    Hydrogen absorption-desorption cycling induced by pressure change in a closed system were carried out with LaNi 5 , La 0.7 Ce 0.3 Ni 4 Cu and TiFe 0.9 Ni 0.1 alloys. PC isotherms measured during the cycling showed some changes in hydrogen storage capacity, plateau pressure and hysteresis of the alloys. The half capacity life of LaNi 5 alloy can be projected as 70,000 cycles for room temperature pressure cycling. When La 0.7 Ce 0.3 Ni 4 Cu alloy was pressure cycled both of the plateau pressures were decreased significantly and continuously. TiFe 0.9 Ni 0.1 alloy showed a good resistance to cyclic degradation. Heat treatments of the degraded alloys under 1 atm of hydrogen gas recovered most of the hydrogen storage properties to the initial level even though they were degraded again more rapidly upon subsequent cycling. (orig.)

  7. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    Science.gov (United States)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  8. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  9. Preliminary study of acoustic emission (ae) noise signal identification for crude oil storage tank

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Shukri Mohd

    2008-08-01

    This preliminary work was carried out to simulate the Acoustic Emission (AE) signal contributed by pitting corrosion, and noise signal from environment during crude oil storage tanks monitoring. The purpose of this study is to prove that acoustic emission (AE) could be used to detect the formation of pitting corrosion in the crude oil storage tank and differentiated it from other sources of noise signal. In this study, the pitting corrosion was simulated by inducing low voltage and low amperage current onto the crude oil storage tank material (ASTM 516 G 70). Water drop, air blow and surface rubbing were applied onto the specimen surface. To simulate the noise signal produce by rain fall, wind blow and other sources of noise during AE crude oil storage tanks monitoring. AE sensor was attached onto the other surface of specimen to acquire all of these AE signals which then has send to AE DiSP 24 data acquisition system for signal conditioning. AE win software has been used to analyse this entire signal. It is found that, simulated pitting corrosion could be detected by AE system and differentiated from other sources of noise by using amplitude analysis. From the amplitude analysis is shown that 20-30 dB is the range amplitude for the blow test, 50-60 dB for surface rubbing test and over than 60 dB for water drop test. (Author)

  10. Oak Ridge National Laboratory Melton Valley Storage Tanks Waste filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Oak Ridge National Laboratory wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning.The Gunite Tanks at the Oak Ridge National Laboratory contain heels which are a mixture of sludge, wash water, and bentonite clay. The tanks are to be cleaned out with a variety of flushing techniques and the dilute mixture transferred to another storage tank. One proposal is to transfer this mixture into existing Melton Valley Storage Tanks (MVST), which already contain a large amount of sludge and supernate. The mixed aqueous phase will then be transferred to new MVST, which are prohibited from containing insoluble solids. To separate the solid from the liquid and thereby prevent solids transfer into the new MVST, a technique is needed that can cleanly separate the sludge and bentonite clay from the supernate. One proposed method for solid liquid separation is cross-flow filtration. Cross-flow filtration has been used at the Savannah River and West Valley sites for treatment of tank waste, and is being tested for applicability at other sites. The performance of cross-flow filters with sludge has been tested, but the impact of sludge combined with bentonite clay has not. The objective of this test was to evaluate the feasibility of using cross-flow filters to perform the solid liquid separation required for the mixture of Gunite and MVST tank wastes

  11. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    D Cazorla Amoros; D Lozano Castello; F Suarez Garcia; M Jorda Beneytoa; A Linares Solano

    2005-01-01

    Full text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ). [1] A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous carbons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  12. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    Cazorla-Amoros, D.; Lozano-Castello, D.; Suarez-Garcia, F.; Jorda-Beneyto, M.; Linares-Solano, A.

    2005-01-01

    Complete text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ) [1]. A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous cartons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  13. Regulatory analysis of the Underground Storage Tank-Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Smith, E.H.

    1992-01-01

    The Underground Storage Tank-Integrated Demonstration (UST-ID) Program has been developed to identify, demonstrate, test, and evaluate technologies that will provide alternatives to the current underground storage tank remediation program. The UST-ID Program is a national program that consists of five participating US Department of Energy (DOE) sites where technologies can be developed an ultimately demonstrated. Once these technologies are demonstrated, the UST-ID Program will transfer the developed technology system to industry (governmental or industrial) for application or back to Research and Development for further evaluation and modification, as necessary. In order to ensure that the UST-ID Program proceeds without interruption, it will be necessary to identify regulatory requirements along with associated permitting and notification requirements early in the technology development process. This document serves as a baseline for identifying certain federal and state regulatory requirements that may impact the UST-ID Program and the demonstration of any identified technologies

  14. Activation of hydrogen storage materials in the Li-Mg-N-H system: Effect on storage properties

    International Nuclear Information System (INIS)

    Yang, Jun; Sudik, Andrea; Wolverton, C.

    2007-01-01

    We investigate the thermodynamics, kinetics, and capacity of the hydrogen storage reaction: Li 2 Mg(NH) 2 + 2H 2 ↔ Mg(NH 2 ) 2 + 2LiH. Starting with LiNH 2 and MgH 2 , two distinct procedures have been previously proposed for activating samples to induce the reversible storage reaction. We clarify here the impact of these two activation procedures on the resulting capacity for the Li-Mg-N-H reaction. Additionally, we measure the temperature-dependent kinetic absorption data for this hydrogen storage system. Finally, our experiments confirm the previously reported formation enthalpy (ΔH), hydrogen capacity, and pressure-composition-isotherm (PCI) data, and suggest that this system represents a kinetically (but not thermodynamically) limited system for vehicular on-board storage applications

  15. Review of theoretical calculations of hydrogen storage in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2001-02-01

    In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)

  16. Cathodic Protection for Above Ground Storage Tank Bottom Using Data Acquisition

    Directory of Open Access Journals (Sweden)

    Naseer Abbood Issa Al Haboubi

    2015-07-01

    Full Text Available Impressed current cathodic protection controlled by computer gives the ideal solution to the changes in environmental factors and long term coating degradation. The protection potential distribution achieved and the current demand on the anode can be regulated to protection criteria, to achieve the effective protection for the system. In this paper, cathodic protection problem of above ground steel storage tank was investigated by an impressed current of cathodic protection with controlled potential of electrical system to manage the variation in soil resistivity. Corrosion controller has been implemented for above ground tank in LabView where tank's bottom potential to soil was manipulated to the desired set point (protection criterion 850 mV. National Instruments Data Acquisition (NI-DAQ and PC controllers for tank corrosion control system provides quick response to achieve steady state condition for any kind of disturbances.

  17. Behaviour of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Gue, J.P.; Mercier, J.P.

    1990-12-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30.000 MW day ·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 deg. C, the total fraction of volatilized ruthenium reaches 12%, - in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source. It is probable that, in an industrial storage tank, the heat losses from the tank and the offgas discharge ducts will cause recondensation and internal reflux, which will commensurately delay

  18. Feasibility of applying cathodic protection to double-wall waste storage tanks

    International Nuclear Information System (INIS)

    Moore, E.L.

    1977-01-01

    A study was conducted to determine the feasibility of applying impressed current cathodic protection to double-wall storage tanks containing terminal waste solutions. Norton Corrosion Limited concluded that such a system could be designed for installation on the tanks. Under their direction, Battelle Northwest Laboratories conducted a laboratory study to develop necessary data for design of the system. A separate study conducted by Battelle Columbus Laboratories indicated that, while terminal waste solutions by themselves do not promote stress corrosion cracking, cathodic protection may promote this type of corrosion under certain conditions. As a result of these findings, the recommendation was made not to install cathodic protection on the double-wall tanks containing terminal waste solutions

  19. Theory of Hydrogen Storage: A New Strategy within Organometallic Chemistry

    Science.gov (United States)

    Zhao, Yufeng

    2006-03-01

    As one of the most vigorous fields in modern chemistry, organometallic chemistry has made vast contributions to a broad variety of technological fields including catalysis, light emitters, molecular devices, liquid crystals, and even superconductivity. Here we show that organometallic chemistry in nanoscale could be the frontier in hydrogen storage. Our study is based on the notion that the 3d transition metal (TM) atoms are superb absorbers for H storage, as their empty d orbital can bind dihydrogen ligands (elongated but non-dissociated H2) with high capacity at nearly ideal binding energy for reversible hydrogen storage. By embedding the TM atoms into a carbon-based nanostructures, high H capacity can be maintained. This presentation contains four parts. First, by comparing the conventional hydrogen storage media, e.g., metal hydrides and carbon-based materials, the general principles for designing hydrogen storage materials are outlined. Second, organometallic buckyballs are studied to demonstrate the novel strategy. The amount of H2 adsorbed on a Sc-coated fullerene, C48B12 [ScH]12, could approach 9 wt%, with binding energies of 30-40 kJ/mol. Third, the method is applied to the transition-metal carbide nanoparticles that have been synthesized experimentally. The similar non-dissociative H2 binding is revealed in our calculation, thereby demonstrating the resilience of the overall mechanism. Moreover, a novel self-catalysis process is identified. In the fourth part, transition-metal functionalization of highly porous carbon-based materials is discussed heuristically to foresee macroscopic media for hydrogen storage. Finally follows the summary and discussion of the remaining challenges to practical hydrogen storage. Work in collaboration with A. C. Dillon, Y.-H. Kim, M. Heben & S. B. Zhang and supported by the U.S. DOE/EERE under contract No. DE-AC36-99GO10337.

  20. Static tilt tests of a full-sized cylindrical liquid storage tank model

    International Nuclear Information System (INIS)

    Sakai, F.

    1988-01-01

    This paper is explaining a static tilt test with a full-scaled tank model, the objects of which are the above-ground type LNG,LPG and oil storage tanks. Main points of view to investigate are as follows: Stress and deformation at each part of the tank wall, the bottom plate and the anchor straps in case that the anchor straps are very effective; Behavior in case that the anchor straps are not very effective; Behavior in case of no anchors; Influence of the roof above the shell; and Influence of the foundation rigidity under the bottom plate

  1. Safe production and application of hydrogen at Munich airport

    Energy Technology Data Exchange (ETDEWEB)

    Szamer, R.

    2005-07-01

    At Munich International Airport the world's first public filling station for liquid and gaseous hydrogen with on-site hydrogen gas production has been installed. In order to prove the safety, liability and economic feasibility of hydrogen this pilot project examined the complete sequence of hydrogen production and application: on-site production with pressurized electrolyser and steam reformer, storage and filling of gaseous and liquid hydrogen, application of hydrogen for propelling several vehicles, e.g. airport busses in day to day operation, cars, fork lifter. TUV SUD Group, one of the largest service provider for technical safety and quality, was involved in the safety evaluation of the hydrogen project from the very beginning with the following services: safety consultancy throughout all project phases, e.g. for licensing procedures, plant design and operation safety analysis of the overall plant and of subsystems (electrolyser, filling stations, storage tanks, control systems etc.) safety assessment and acceptance testing of CH2 busses, CH2 fork lifter and LH2 passenger cars inspections and tests The challenges of this complex project relating to safety will be presented in the lecture, e.g. identification of potential hazards, safety requirements for the design and operation of the hydrogen plant as wells as for the various applications. Project description The hydrogen plant (cf. Figure 1) comprises two supply paths, one for compressed gaseous hydrogen (CH2) and one for cryogenic liquid hydrogen. Gaseous hydrogen is produced via high-pressure electrolysis at an operating pressure of 3 MPa (30 bar) and/or steam reforming process. The hydrogen will be led into a compressor, compressed to 35 MPa (350 bar) and stored in high pressure cylinders with a total geometrical storage volume of 10 m. The cylinders supply the high-pressure filling stations which refuels the 3 hydrogen buses and the fork lifter. Liquid hydrogen (LH2) is delivered in tank trucks and

  2. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands.

    Science.gov (United States)

    Porteiro, Jacobo; Míguez, José Luis; Crespo, Bárbara; de Lara, José; Pousada, José María

    2016-03-21

    Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials) in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  3. Hydrogen storage behavior of ZrCo1-xNix alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Parida, S.C.; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Intermetallic compound ZrCo is proposed as a candidate material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER) Storage and Delivery System (SDS). However, it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes disproportionation as per the reaction; 2ZrCo + H 2 ↔ ZrH 2 + ZrCO 2 . This results in reduction in hydrogen storage capacity of ZrCo, which is not a desirable property for SDS. Konishi et al. reported that the disproportionation reaction can be suppressed by decreasing the desorption temperature. It is anticipated that suitable ternary alloying of ZrCo can elevated the hydrogen equilibrium pressure and hence decrease the desorption temperature for supply of 100 kPa of hydrogen. In this study, we have investigated the effect of Ni content on the hydrogenation behavior of ZrCo 1-x Ni x alloys

  4. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm, 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO 3 - , CO 3 2- , OH - , and O 2- . The organic carbon content was 3.0 ± 1.0%. The pH was 13

  5. Radiation exposure rate and liquid level measurement inside a high level liquid waste (HLLW) storage tank

    International Nuclear Information System (INIS)

    Sur, B.; Yue, S.; Thekkevarriam, A.

    2007-01-01

    An instrument based on an inexpensive, small silicon diode has been developed and used to measure, for the first time, the gamma radiation exposure rate profile inside a 6.4 mm diameter reentrant thermo-well tube, immersed in the highly radioactive liquid solution in an HLLW storage tank. The measurement agrees with previous calculations of exposure rate, and provides confirmation for safe and effective radiation work plans and material selection for investigations and remediation of the storage tank facility. The measured radiation exposure rate profile is also used to confirm that the position of tank internal structures have not changed because of aging and corrosion, and to obtain, within a few mm, the level of liquid inside the tank. (author)

  6. A nanostructured Ni/graphene hybrid for enhanced electrochemical hydrogen storage

    International Nuclear Information System (INIS)

    Choi, Moon-Hyung; Min, Young-Je; Gwak, Gyeong-Hyeon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    Highlights: • Graphene oxide(GO) was hybridized with the Ni(OH) 2 . • The Ni(OH) 2 /GO was reduced to Ni/graphene. • XRD, TEM, and X-ray absorption spectroscopy were examined. • The hydrogen storage property of Ni/graphene was significantly enhanced. - Abstract: To fabricate electrochemical hydrogen storage materials with delaminated structure, the graphene oxide (GO) in the ethylene glycol solution was reassembled in the presence of the precursor of Ni nanoparticles, and then, the reassembled hybrid was reduced under hydrogen atmosphere to obtain Ni/graphene hybrid. X-ray diffraction patterns and X-ray absorption spectscopic (XAS) analysis clearly show that Ni nanoparticles in Ni/graphene hybrid maintain its nanosized nature even after hybridization with graphene nanosheet (GNS). According to the TEM analysis, the Ni nanoparticles with an average size of 5.2 nm are homogeneously distributed onto the GNS in such a way that the nanoporous structure with much amount of void spaces could be fabricated. The obtained Ni/GNS exhibits a hydrogen storage capacity of 160 mA h/g, while the specific capacity of the graphene nanosheet was only 21 mA h/g. A flexible delaminated structure of Ni/GNS nanocomposite could provide additional intercalation sites for accommodation of hydrogen, leading to the enhancement of hydrogen storage capacity

  7. Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage.

    Science.gov (United States)

    Fujita, Ken-Ichi; Wada, Tomokatsu; Shiraishi, Takumi

    2017-08-28

    A new hydrogen storage system based on the hydrogenation and dehydrogenation of nitrogen heterocyclic compounds, employing a single iridium catalyst, has been developed. Efficient hydrogen storage using relatively small amounts of solvent compared with previous systems was achieved by this new system. Reversible transformations between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine, accompanied by the uptake and release of three equivalents of hydrogen, could be repeated almost quantitatively at least four times without any loss of efficiency. Furthermore, hydrogen storage under solvent-free conditions was also accomplished. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and carbon containing alloys

  9. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  10. Solid NMR characterization of hydrogen solid storage matrices

    International Nuclear Information System (INIS)

    Pilette, M.A.; Charpentier, T.; Berthault, P.

    2007-01-01

    The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)

  11. Safety of atmospheric storage tanks during accidental explosions

    OpenAIRE

    Noret , E.; Prod'Homme , Gaëtan; Yalamas , Thierry; Reimeringer , Mathieu; Hanus , Jean-Luc; Duong , Duy-Hung

    2012-01-01

    International audience; The occurrence of a chain reaction from blast on atmospheric storage tanks in oil and chemical facilities is hard to predict. The current French practice for SEVESO facilities ignores projectiles and assumes a critical peak overpressure value observed from accident data. This method could lead to conservative or dangerous assessments. This study presents various simple mechanical models to facilitate quick effective assessment of risk analysis, the results of which are...

  12. High Capacity Hydrogen Storage on Nanoporous Biocarbon

    Science.gov (United States)

    Burress, Jacob; Wood, Mikael; Gordon, Michael; Parilla, Phillip; Benham, Michael; Wexler, Carlos; Hawthorne, Fred; Pfeifer, Peter

    2008-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) has been optimizing nanoporous biocarbon for high capacity hydrogen storage. The hydrogen storage was measured gravimetrically and volumetrically (Sievert's apparatus). These measurements have been validated by NREL and Hiden Isochema. Sample S-33/k, our current best performer, stores 73-91 g H2/kg carbon at 77 K and 47 bar, and 1.0-1.6 g H2/kg carbon at 293 K and 47 bar. Hydrogen isotherms run by Hiden Isochema have given experimental binding energies of 8.8 kJ/mol compared to the binding energy of graphite of 5 kJ/mol. Results from a novel boron doping technique will also be presented. The benefits and validity of using boron-doping on carbon will also be discussed.

  13. GAT 4 production and storage of hydrogen. Report July 2004; GAT 4 procduction et stockage de l'hydrogene. Rapport juillet 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  14. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  15. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    International Nuclear Information System (INIS)

    Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.

    1995-01-01

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  16. Simplified design and evaluation of liquid storage tanks relative to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Poole, A.B.

    1994-06-01

    A summary of earthquake-induced damage in liquid storage tanks is provided. The general analysis steps for dynamic response of fluid-filled tanks subject to horizontal ground excitation are discussed. This work will provide major attention to the understanding of observed tank-failure modes. These modes are quite diverse in nature, but many of the commonly appearing patterns are believed to be shell buckling. A generalized and simple-to-apply shell loading will be developed using Fluegge shell theory. The input to this simplified analysis will be horizontal ground acceleration and tank shell form parameters. A dimensionless parameter will be developed and used in predictions of buckling resulting from earthquake-imposed loads. This prediction method will be applied to various tank designs that have failed during major earthquakes and during shaker table tests. Tanks that have not failed will also be reviewed. A simplified approach will be discussed for early design and evaluation of tank shell parameters and materials to provide a high confidence of low probability of failure during earthquakes.

  17. Inspection and repair of storage tank bottoms and foundations using airbag lifting

    International Nuclear Information System (INIS)

    Wildin, I.P.; Adams, N.J.

    1992-01-01

    This paper reports that within the past five years the environmental impact on the operation of petro-chemical product storage tanks, constructed to standards such as API 650, has taken on critical implications for refineries and distribution centers. Pollution of the supporting foundation and possible widespread effects on ground water has resulted in moves to require the installation of double integrity bottoms. That is not to say, necessarily, a tank with two steel bottoms, but alternative means of reducing the failure probability to an acceptable public or statutory level. Clearly increased inspection of the tank bottom has merit and visual examination of the bottom from inside the tank can be supplemented by ultrasonic methods, acoustic leak detection and magnetic flux scanning. Tank lifting now offers a very cost effective method for underfloor inspection, combined with the opportunity to undertake repairs to the bottom and underside painting, together with improvements and repairs to the Bitsand surface of the tank pad. if necessary, an impervious membrane can also be installed with a leak detection trough formed around the tank edge

  18. Hydrogen storage stability of nanoconfined MgH2 upon cycling

    DEFF Research Database (Denmark)

    Huen, Priscilla; Paskevicius, Mark; Richter, Bo

    2017-01-01

    It is of utmost importance to optimise and stabilise hydrogen storage capacity during multiple cycles of hydrogen release and uptake to realise a hydrogen-based energy system. Here, the direct solvent-based synthesis of magnesium hydride, MgH2, from dibutyl magnesium, MgBu2, in four different...... issues are highlighted relating to the presence of unwanted gaseous by-products, Mg/MgH2 containment within the scaffold, and the purity of the carbon aerogel scaffold. The results presented provide a research path for future researchers to improve the nanoconfinement process for hydrogen storage...... carbon aerogels with different porosities, i.e., pore sizes, 15 hydrogenations, are conducted for each scaffold...

  19. High-capacity hydrogen storage in Li-adsorbed g-C{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianfeng; Huang, Chengxi; Wu, Haiping, E-mail: mrhpwu@njust.edu.cn; Kan, Erjun, E-mail: ekan@njust.edu.cn

    2016-09-01

    Since hydrogen is a kind of potential source of efficient and pollution-free energy, it has attracted great research interests in recent years. However, the lack of safe and efficient hydrogen storage materials has blocked the rapid development of hydrogen energy. Here, we explored the possibility of Li-decorated g-C{sub 3}N{sub 4} as a kind of potential hydrogen storage materials based on first-principles calculations. Our results demonstrated that the adsorption energy of Li atoms on g-C{sub 3}N{sub 4} is much larger than the cohesive energy of bulk Li. Importantly, we find that the binding energy of each H{sub 2} molecule is about 0.29 eV, which is quite suitable for hydrogen storage. Furthermore, the estimated hydrogen storage capacity is around 9.2 wt %, which beyonds the goal of DOE. Thus, we predicted that Li-decorated g-C{sub 3}N{sub 4} may act as the potential hydrogen storage materials. - Highlights: • We explored the possibility of Li-decorated g-C{sub 3}N{sub 4} as a kind of potential hydrogen storage material. • We demonstrated the binding energy of each H{sub 2} molecule is 0.29 eV, which is quite suitable for hydrogen storage materials. • The hydrogen storage capacity is estimated around 9.2 wt %.

  20. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the