WorldWideScience

Sample records for hydrogen separation membrane

  1. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  2. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  3. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  4. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  5. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  6. Process, including membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  7. Hydrogen separation membranes annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

  8. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

  9. Mixed protonic-electronic conductors for hydrogen separation membranes

    Science.gov (United States)

    Song, Sun-Ju

    2003-10-01

    The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3-delta at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3-delta was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.

  10. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    Hwang, Gab-Jin; Onuki, Kaoru; Shimizu, Saburo

    1998-01-01

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H 2 /N 2 ) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  11. Highly hydrothermally stable microporous silica membranes for hydrogen separation.

    Science.gov (United States)

    Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan

    2008-08-07

    Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.

  12. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ

  13. Separation of hydrogen from dilute streams (e.g. using membranes)

    Energy Technology Data Exchange (ETDEWEB)

    Brueschke, H.E.A. [Sulzer Chemtech GmbH Membrantechnik, Neunkirchen (Germany)

    2003-07-01

    As a conclusion it can be stated that the use of membranes in the separation and purification of hydrogen is still limited. In areas where hydrogen at not too high purity can be recovered from otherwise low value gas mixtures, like in the examples given above, the application of membranes has developed into a proven state-of-art technology. Where high purity hydrogen at high pressure is demanded, still fairly large work is ahead for membrane and process developers. (orig.)

  14. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  15. Membrane pumping technology, helium and hydrogen isotopes separation in the fusion hydrogen

    International Nuclear Information System (INIS)

    Pigarov, A.Yu.; Pistunovich, V.I.; Busnyuk, A.O.

    1994-01-01

    A gas pumping system for the ITER, improved by implementation of superpermeable membranes for selective hydrogen isotope exhaust, is considered. The study of the pumping capability of a niobium membrane for a hydrogen-helium mixture has been fulfilled. The membrane superpermeability can be only realized for atomic hydrogen. Helium does not pass through the membrane, and its presence does not affect the hydrogen pumping. A detailed Monte Carlo simulation of gas behavior for the experimental facility has been done. The probability of permeation for a hydrogen atom for one collision with the membrane is ∼0.1; the same probability of molecule permeation is ∼10 -5 . The probability for atomization, i.e. re-emission of an atomizer is ∼0.2; the probability of recombination of an atom is ∼0.2

  16. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  17. Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Favuzza, Paolo; Tarquini, Pietro [ENEA, Dipartimento TER, C.R. ENEA Casaccia, Via Anguillarese 301, Roma (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy)

    2008-10-15

    A membrane reactor has been studied for separating the hydrogen produced by the dissociation of hydroiodic acid in the thermochemical-sulfur iodine process. A dense metal membrane tube of wall thickness 0.250 mm has been considered in this analysis for hosting a fixed-bed catalyst: the selective separation of hydrogen from an azeotropic H{sub 2}O-HI mixture has been studied in the temperature range of 700-800 K. The materials being considered for the construction of the membrane tube are niobium and tantalum; as a matter of fact, the most commonly used Pd-Ag membranes cannot withstand the corrosive environment generated by the hydroiodic acid. The Damkohler-Peclet analysis has been used for designing the membrane reactor, while a finite element method has simulated its behaviour: the effect of the temperature and pressure on the HI conversion and hydrogen yield has been evaluated. (author)

  18. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  19. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  20. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur; Shinde, Digambar B.; Wang, Xinbo; Gadwal, Ikhlas; Lai, Zhiping

    2017-01-01

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  1. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  2. Multi-component transport in polymers: hydrocarbon / hydrogen separation by reverse selectivity membrane; Transport multi-composants dans les polymeres: separation hydrocarbures / hydrogene par membrane a selectivite inverse

    Energy Technology Data Exchange (ETDEWEB)

    Mauviel, G.

    2003-12-15

    Hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional inter-dependency, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional inter-dependency is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected. (author)

  3. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    Science.gov (United States)

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  4. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...... in rejection between FFA and glycerides and the highest flux (27 kg h−1 m−2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended largely on the property matching between membrane and solvent, as observed (40 kg h−1 m−2) flux was achieved...... with methanol but no flux detected with hexane for PLAC. The polyvinyl alcohol (PVA, NTR-729 HF) and Polyamide (PA, NTR-759HR) membranes gave the second and third highest flux (10.1 and 5.7 kg h−1 m−2, respectively), where solute rejections for NTR-759HR were 95.9% for triacylglycerols (TG), 83...

  5. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.

    Science.gov (United States)

    Tao, Yehan; Xue, Qingzhong; Liu, Zilong; Shan, Meixia; Ling, Cuicui; Wu, Tiantian; Li, Xiaofang

    2014-06-11

    First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ES1 (3.2775 Å) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ES1 membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ES1 membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ES1 membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.

  6. Novel dense membrane for hydrogen separation for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bandopadhyay, Sukumar [Univ. of Alaska, Fairbanks, AL (United States); Balachandran, Uthamalingam [Argonne National Lab. (ANL), Argonne, IL (United States); Nag, Nagendra [Surmet Corp., Burlington, MA (United States)

    2013-10-24

    The main objectives of this project are: (1) Characterization of the thermo mechanical properties of the novel dense HTM bulk sample; (2) Development of a correlation among the intrinsic factors (such as grain size and phase distribution), and the extrinsic factors (such as temperature and atmosphere) and the thermo-mechanical properties (such as strengths and stress) to predict the performance of a HTM system (HTM membrane and porous substrate) ; and (3) Evaluation of the stability of the novel HTM membrane and its property correlations after thermal cycling. Based on all results and analysis of the thermo mechanical properties for the HTM cermet bulk samples, several important conclusions were made. The mean σfs at room temperature is approximately 356 MPa for the HTM cermet. The mean σfs value decreases to 284 MPa as the temperature increases to 850?C. The Difference difference in atmosphere, such as air or N2, had an insignificant effect on the flexural strength values at 850?C for the HTM cermet. The HTM cermet samples at room temperature and at 500?C fractured without any significant plastic deformation. Whereas, at 850?C, the HTM cermet samples fractured, preceded by an extensive plastic deformation. It seems that the HTM cermet behaves more like an elastic material such as a nonmetal ceramic at the room temperature, and more like a ductile material at increased temperature (850?C). The exothermic peak during the TG/DTA tests centered at 600?C is most likely associated with both the enthalpy change of transformation from the amorphous phase into crystalline zirconia and the oxidation of Pd phase in HTM cermet in air. The endothermic peak centered at 800?C is associated with the dissociation of PdO to Pd for the HTM cermet sample in both inert N2 environment and air. There is a corresponding weight gain as oxidation occurs for palladium (Pd) phase to form palladium oxide (PdO) and there is a weight loss as the unstable PdO is dissociated back to Pd and

  7. Analysis of Gas Separated for Silica Membrane in Hydrogen Gas Production by Using Nuclear Reactor Thermal

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2007-01-01

    One of the hydrogen production method that have been developed is a thermo-chemical method. This method is permissible to increase thermal efficiency up to 70 % and to decrease of operational temperature from 800℃ down to 450 ℃. One of several factor that can increase of the hydrogen production thermal efficiency at the above method is to apply a separated membrane that have a relative good for permeansce and selectivity performance. It had been carried out for analyzing of time and temperature CVD (Chemical Vapouration Deposition) that is affected to permeansce and power selecting performance of the membrane. The layering membrane silica process was carried out by means of the CVD method at atmosphere pressure. The membrane silica layering that was observed was developed by a CVD method in atmospheric pressure. The silica membrane was formed at the out side surface of the alumina gamma cylinder that had been coated by alumina gamma which it has average porosity about of 0.01 mic.meter. A permeansce and separation power performance of the membrane silica that was carried out by means of CVD method at 600 ℃ on H 2 , He and N 2 are : 2 x 10 -10 , 9 x 10 -9 and 4 x 10 -7 mol Pa/m 2 s and the selected power of H 2 /N 2 = 45. The permeansce of that membrane is relative good but the selected power is relative not so good. (author)

  8. Development of Hydrogen Separation Module with Structured Catalyst for Use in Membrane Reformer

    International Nuclear Information System (INIS)

    Isamu Yasuda; Tatsuya Tsuneki; Yoshinori Shirasaki; Toru Shimamori; Hidekazu Shigaki; Hiroyuki Tanaka

    2006-01-01

    A new type of hydrogen separation module for use in a membrane reformer was proposed and developed. The new module, what we call MOC (Membrane On Catalyst), was designed to have a membrane of palladium-based alloy prepared on the surface of the tubular structured catalyst that has catalytic activity for steam reforming reaction, thermal expansion matching with the membrane material, proper porosity, mechanical strength and thermal conductivity. The best composition of the structured catalyst was identified in the composites of metallic Ni and YSZ (Yttria-Stabilized Zirconia). A hydrogen separation module was manufactured by electroless plating of Pd with thickness of 7 to 15 microns on the surface of porous sintered tube of Ni-YSZ with an approximate size of 9 mm in diameter and 100 mm in length. The hydrogen permeability measurements have shown hydrogen flux of 25 to 35 cc/min at 550 to 600 C, which is higher than the permeability of the conventional modules using rolled Pd film. (authors)

  9. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  10. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  11. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  12. Precursors-Derived Ceramic Membranes for High-Temperature Separation of Hydrogen

    OpenAIRE

    Yuji, Iwamoto

    2007-01-01

    This review describes recent progress in the development of hydrogen-permselective ceramic membranes derived from organometallic precursors. Microstructure and gas transport property of microporous amorphous silica-based membranes are briefly described. Then, high-temperature hydrogen permselectivity, hydrothermal stability as well as hydrogen/steam selectivity of the amorphous silica-based membranes are discussed from a viewpoint of application to membrane reactors for conversion enhancement...

  13. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    Directory of Open Access Journals (Sweden)

    Afrooz Farjoo

    2017-10-01

    Full Text Available Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  14. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    Science.gov (United States)

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  15. Hydrogen separation from high temperature CO-containing syn-gas flow using molecular ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soudarev, A.; Konakov, G.; Souryaninov, A.; Molchanov, A. [Boyko Research Engineering Ceramic Heat Engines Center Ltd., St. Petersburg (Russian Federation); Lelait, L.; Stevens, P.H. [European Inst. for Power Studies, Karlsruhe (Germany)

    2006-07-01

    Poisoning of the platinum (Pt) metals used as catalysts for proton exchange membrane fuel cells (PEMFCs) can negatively impact on PEMFC operation efficiency. In order to address this issue, a supply of hydrogen with a carbon monoxide (CO) admixtures is required. This paper provided details of a new type of molecular ceramic membrane (MCM) that allows the separation of hydrogen (H{sub 2}) from the hydrocarbon fuel reforming products that contain CO and has higher temperature and pressure capacity than other membranes. After various tests, alumo-magnesium spinel (AMS) was selected as the most promising porous material for the ceramic multi-layer membrane. The crystalline structure of the AMS showed good thermo-dynamic stability during tests that ranged between 20 and 1400 degrees C, as well as a chemical resistance relative to the effects of the aggressive fuel cell environment, and no exposure to the oxidation-recovery processes in the CO and H{sub 2} flow. The macroporous substrate of the AMS and the membrane selection layers have the same composition. The formation of the carrier was conducted by a semi-dry molding on a hydraulic press. Formation of the nano-porous structure in the carrier macro-pores by the polysilicon acid sol solution treatment allowed the synthesis of the amorphous silica and crystobalite crystals with a developed surface and nano-dimension subporosity. Test results have shown that the MCM has optimum penetrability and selectivity values as well as admissible thermo-mechanical properties. H{sub 2} flow through the membrane was 1.5-1.7 times greater than the CO flow. It was concluded that the AMS-based membrane devices will increase the efficiency of the PEMFC power plants and reduce their degradation capacity. 2 refs., 1 tab., 1 fig.

  16. Pd Alloy Membranes for Hydrogen Separation from Coal-Derived Syngas

    National Research Council Canada - National Science Library

    Alptekin, Gokhan O; DeVoss, Sarah; Amalfitano, Bob; Way, Douglas; Thoen, Paul; Lusk, Mark

    2006-01-01

    TDA Research Inc., in collaboration with Colorado School of Mines (CSM) is developing a sulfur and CO-tolerant membrane to produce the clean hydrogen from syngas using Pd membrane films prepared on a variety of supports (e.g...

  17. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  18. Enhanced stability of Zr-doped Ba(CeTb)O(3-δ)-Ni cermet membrane for hydrogen separation.

    Science.gov (United States)

    Wei, Yanying; Xue, Jian; Fang, Wei; Chen, Yan; Wang, Haihui; Caro, Jürgen

    2015-07-25

    A mixed protonic and electronic conductor material BaCe(0.85)Tb(0.05)Zr(0.1)O(3-δ) (BCTZ) is prepared and a Ni-BCTZ cermet membrane is synthesized for hydrogen separation. Stable hydrogen permeation fluxes can be obtained for over 100 h through the Ni-BCTZ membrane in both dry and humid conditions, which exhibits an excellent stability compared with Ni-BaCe(0.95)Tb(0.05)O(3-δ) membrane due to the Zr doping.

  19. Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification

    Science.gov (United States)

    Wei, Shuxian; Zhou, Sainan; Wu, Zhonghua; Wang, Maohuai; Wang, Zhaojie; Guo, Wenyue; Lu, Xiaoqing

    2018-05-01

    Porous graphene (PG) and nitrogen-substituted PG monolayers of 3N-PG and 6N-PG were designed as effective membranes for the separation of He and H2 over Ne, Ar, N2, CO, and CH4 by using density functional theory. Results showed that PG and 3N-PG exhibited suitable pore sizes and relatively high stabilities for He and H2 separation. PG and 3N-PG membranes also presented excellent He and H2 selectivities over Ne, Ar, N2, CO and CH4 at a wide temperature range. 6N-PG membrane exerted unexceptionable permeances of the studied gases, especially He and H2, which could remarkably improve the separation efficiency of He and H2. Analyses on the most stable adsorption configurations and maximum adsorption energies indicated weak Van der Waals interactions between the gases and the three PG-based membranes. Microscopic permeation process analyses based on the minimum energy pathway, energy profiles, and electron density isosurfaces elucidated the remarkable selectivities of He over Ne/CO/N2/Ar/CH4 and H2 over CO/N2/CH4 and the high permeances of He and H2 passing through the three PG-based membranes. This work not only highlighted the potential use of the three PG-based membranes for He separation and H2 purification but also provided a superior alternative strategy to design and screen membrane materials for gas separation.

  20. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-02-03

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  2. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  3. Modelling of fast hydrogen permeability of alloys for membrane gas separation

    Science.gov (United States)

    Zaika, Yu. V.; Rodchenkova, N. I.

    2017-05-01

    The method of measuring the specific hydrogen permeability is used to study various alloys that are promising for gas separation installations. The nonlinear boundary value problem of hydrogen permeability complying with the specific features of the experiment and its modifications taking into account the high transfer rate is presented. Substantial difference from the quasi-equilibrium model (Richardson approximation in the assumption of the equilibrium Sieverts' law near the surface) has been discussed. The model is tested on published experimental data on Ta77Nb23 alloy.

  4. Gas separation membranes current status

    International Nuclear Information System (INIS)

    Puri, S.P.

    1996-01-01

    Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical and allied industries. Following their successful commercialization in the late Seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications

  5. A high stability Ni-La0.5Ce0.5O2-δ asymmetrical metal-ceramic membrane for hydrogen separation and generation

    Science.gov (United States)

    Zhu, Zhiwen; Sun, Wenping; Wang, Zhongtao; Cao, Jiafeng; Dong, Yingchao; Liu, Wei

    2015-05-01

    In this work, hydrogen permeation properties of Ni-La0.5Ce0.5O2-δ (LDC) asymmetrical cermet membrane are investigated, including hydrogen fluxes (JH2) under different hydrogen partial pressures, the influence of water vapor on JH2 and the long-term stability of the membrane operating under the containing-CO2 atmosphere. Ni-LDC asymmetrical membrane shows the best hydrogen permeability among LDC-based hydrogen separation membranes, inferior to Ni-BaZr0.1Ce0.7Y0.2O3-δ asymmetrical membrane. The water vapor in feed gas is beneficial to hydrogen transport process, which promote an increase of JH2 from 5.64 × 10-8 to 6.83 × 10-8 mol cm-2 s-1 at 900 °C. Stability testing of hydrogen permeation suggests that Ni-LDC membrane remains stable against CO2. A dual function of combining hydrogen separation and generation can be realized by humidifying the sweep gas and enhance the hydrogen output by 1.0-1.5 times. Ni-LDC membrane exhibits desirable performance and durability in dual-function mode. Morphologies and phase structures of the membrane after tests are also characterized by SEM and XRD.

  6. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceñ o, Kelly; Montané , Daniel; Garcia-Valls, Ricard; Iulianelli, Adolfo; Basile, Angelo

    2012-01-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  7. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceño, Kelly

    2012-10-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  8. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  9. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  10. Study of the bipolar electrolysis of the tritiated water applied to the hydrogen isotopes separation by electrochemical permeation threw Pd-Ag alloy membranes

    International Nuclear Information System (INIS)

    Heinze, S.

    2000-01-01

    The objective of the study is to enrich waters of poor tritium concentration, by electrolysis in the same time of an hydrogen emission of low activity. In this framework the hydrogen electrochemical permeation threw Pd-Ag alloy membranes has been used. The first part of the study concerns the hydrogen and the deuterium diffusion threw these membranes. The activation and the thermal treatments influence have been studied. A relation between the membrane microstructure and the diffusion mechanism has been proposed. The second part of the study is devoted to the hydrogen gate mechanism determination in the membrane by impedance spectroscopy. The last part concerns the determination of the isotopic separation factor hydrogen-deuterium. Experimental results agree the calculated theoretical data. The operation of an operational membrane cell has been simulated and the process feasibility has been proved. (A.L.B.)

  11. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  12. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  13. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  14. Development of proton conducting materials and membranes based on lanthanum tungstate for hydrogen separation from gas mixtures

    International Nuclear Information System (INIS)

    Seeger, Janka

    2013-01-01

    Lanthanum tungstate La 6-x WO 12-δ (named LWO) is a ceramic material with mixed protonic electronic conductivity. Thereby it is a good candidate membrane material for hydrogen separation from synthesis gas in a fossil pre-combustion power plant. This work shows a material optimization by substitution targeted to clearly enhance the mixed conductivity and thereby the hydrogen flow through the LWO membrane. The first part of the work shows the synthesis and characterization of unsubstituted LWO. It points out that monophase LWO powder can be reproducibly synthesized. The La/W-ratio has to be considerably smaller than the nominal ratio of La/W = 6.0. It also depends on the used sintering conditions. Different relevant properties of LWO like stability in conditions close to application, thermal expansion, sintering behavior or microstructure were determined. Furthermore, the electrical conductivity of the material was investigated. LWO exhibits a prevailing protonic conductivity up to 750 C in wet atmospheres. Under dry atmospheres n-type conductivity was dominating. Oxygen ion and n-type conductivity dominated in wet and dry atmospheres above 750 C. The main part of the work is concerned with the development of new LWO based materials by substitutions. The aim is to achieve an improved mixed protonic electronic conductivity. Substitution elements for lanthanum side were Mg, Ca, Sr, Ba, Ce, Nd, Tb, Y and Al, while for the tungsten side Mo, Re and Ir were used. The total conductivity of the developed materials was investigated and compared to that of the unsubstituted LWO. The substitution of lanthanum led to no appreciable enhancement of the conductivity whereas the substitution of tungsten with 20 mol% molybdenum or 20 mol% rhenium clearly improved it. This caused a hydrogen flow about seven times higher for 20 mol% molybdenum- and about ten times higher for 20 mol% rhenium-substituted LWO in comparison with the unsubstituted LWO at 700 C. In the last part of the

  15. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  16. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  17. Electrical properties and flux performance of composite ceramic hydrogen separation membranes

    DEFF Research Database (Denmark)

    Fish, J.S.; Ricote, Sandrine; O'Hayre, R.

    2015-01-01

    The electrical properties and hydrogen permeation flux behavior of the all-ceramic protonic/electronic conductor composite BaCe0.2Zr0.7Y0.1O3-δ/Sr0.95Ti0.9Nb0.1O3-δ (BCZY27/STN95: BS27) are evaluated. Conductivity and hydrogen permeability are examined as a function of phase volume ratios. Total ...

  18. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  19. Preparation and characterization of metallic supported thin Pd-Ag membranes for hydrogen separation

    OpenAIRE

    Fernandez, Ekain; Medrano, Jose Antonio; Melendez, Jon; Parco, Maria; Viviente, J.L.; van Sint Annaland, Martin; Gallucci, Fausto; Pacheco Tanaka, David A.

    2015-01-01

    This paper reports the preparation and characterization of thin-film (4-5 µm thick) Pd-Ag metallic supported membranes for high temperature applications. Various thin film membranes have been prepared by depositing a ceramic interdiffusion barrier layer prior to the simultaneous Pd-Ag electroless plating deposition. Two deposition techniques for ceramic layers (made of zirconia and alumina) have been evaluated: atmospheric plasma spraying and dip coating of a powder suspension. Initially, the...

  20. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  1. Structural characterization of hydrogen separating membranes based on lanthanide-tungstates

    International Nuclear Information System (INIS)

    Scherb, Tobias

    2011-01-01

    The global energy supply is currently the most controversial issue discussed in our society. Despite the increasing importance of renewable energies, the largest portion of electrical energy has its origin in fossil fuels. CO 2 , emitted during combustion in power plants is known to be one of the greenhouse gases that contributes significantly to global climate change. The development of technologies for environmentally friendly power generation from coal and gas is an area of significant interest. One possibility is the capture and long-term storage of CO 2 from the exhaust stream of fossil fuel power plants. In the pre-combustion process, CO 2 and H 2 can be separated after gasification of the fossil fuel. For this purpose gas-tight ceramic membranes with mixed electronic-protonic conductivity can be used. However, these materials have high requirements due to the extreme conditions in power plants. Mixed electronic-protonic conducting lanthanide tungstates (Ln 6 WO 12 Ln = lanthanide or yttrium) are promising materials, which are stable in CO 2 -containing harsh environments. This work presents a study on structure-property relationships of Ln 6 WO 12 . The structural analysis was performed by the use of neutron and high-resolution X-ray diffraction methods for three exemplary systems (Ln = La, Nd, Y). Samples were prepared via solid state reaction (SSR), and also via a sol-gel approach (Pechini). For the systems LaWO and NdWO, new structural models were developed by combined Rietveld analysis and Fourier density maps. The latter was applied to determine the electron and nuclear density distribution. LaWO with a La/W ratio from 5.3 to 5.7 crystallizes with the space group F-43m and forms a superstructure due to a partially ordered arrangement of cations. On Wyckoff site 48h, up to 4.6 % W can be substituted by La. The oxygen atoms around tungsten are highly delocalized and 6 out of 24 possible split positions are occupied. Thus, W has an octahedral coordination

  2. Membrane separation study for methane-hydrogen gas mixtures by molecular simulations

    Directory of Open Access Journals (Sweden)

    T. Kovács

    2017-06-01

    Full Text Available Direct simulation results for stationary gas transport through pure silica zeolite membranes (MFI, LTA and DDR types are presented using a hybrid, non-equilibrium molecular dynamics simulation methodology introduced recently. The intermolecular potential models for the investigated CH_4 and H_2 gases were taken from literature. For different zeolites, the same atomic (Si and O interaction parameters were used, and the membranes were constructed according to their real (MFI, LTA, or DDR crystal structures. A realistic nature of the applied potential parameters was tested by performing equilibrium adsorption simulations and by comparing the calculated results with the data of experimental adsorption isotherms. The results of transport simulations carried out at 25°C and 125°C, and at 2.5, 5 or 10 bar clearly show that the permeation selectivities of CH_4 are higher than the corresponding permeability ratios of pure components, and significantly differ from the equilibrium selectivities in mixture adsorptions. We experienced a transport selectivity in favor of CH_4 in only one case. A large discrepancy between different types of selectivity data can be attributed to dissimilar mobilities of the components in a membrane, their dependence on the loading of a membrane, and the unlike adsorption preferences of the gas molecules.

  3. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  4. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  6. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  7. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-05-13

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  8. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    International Nuclear Information System (INIS)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-01-01

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  9. A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation

    International Nuclear Information System (INIS)

    Bakonyi, Péter; Buitrón, Germán; Valdez-Vazquez, Idania; Nemestóthy, Nándor; Bélafi-Bakó, Katalin

    2017-01-01

    Highlights: • A Gas Separation Membrane Bioreactor was designed to improve H_2 production. • Headspace gas after enrichment by PDMS membranes was used for reactor sparging. • Stripping the bioreactor with a CO_2-enriched gas enhanced the H_2 fermentation. - Abstract: A Gas Separation Membrane Bioreactor (GSMBR) by integrating membrane technology with a continuous biohydrogen fermenter was designed. The feasibility of this novel configuration for the improvement of hydrogen production capacity was tested by stripping the fermentation liquor with CO_2- and H_2-enriched gases, obtained directly from the bioreactor headspace. The results indicated that sparging the bioreactor with the CO_2-concentrated fraction of the membrane separation unit (consisting of two PDMS modules) enhanced the steady-state H_2 productivity (8.9–9.2 L H_2/L-d) compared to the membrane-less control CSTR to be characterized with 6.96–7.35 L H_2/L-d values. On the other hand, purging with the H_2-rich gas strongly depressed the achievable productivity (2.7–3.03 L H_2/L-d). Microbial community structure and soluble metabolic products were monitored to assess the GSMBR behavior. The study demonstrated that stripping the bioH_2 fermenter with its own, self-generated atmosphere after adjusting its composition (to higher CO_2-content) can be a promising way to intensify dark fermentative H_2 evolution.

  10. Preparation and characterization of a nickel/alumina composite membrane for high temperature hydrogen separation. Application in a membrane reactor for the dry reforming of methane; De la synthese d'une membrane composite nikel/ceramique permselective a l'hydrogene au reacteur membranaire. Application au reformage du methane

    Energy Technology Data Exchange (ETDEWEB)

    Haag, St.

    2003-11-01

    The objective of this work was to develop composite inorganic membranes based on nickel or palladium supported on a porous ceramic for high temperature hydrogen separation. These membranes were used in a membrane reactor for the dry reforming of methane in order to shift the chemical equilibrium towards the production of hydrogen and carbon monoxide. The metal layers were deposited on a tubular alumina support by electroless plating. The Ni and the Pd layers are 1 micron thick. The hydrogen permeation tests were done for high temperatures. The Pd/ceramic membrane is permselective to hydrogen and the H{sub 2}/N{sub 2} separation factor (single gas) is 60 at 400 deg C with a transmembrane pressure difference of 1 bar. With a gas mixture, the H{sub 2}/N{sub 2} separation factor is 13. This membrane is not completely dense and the transport mechanism of hydrogen through the Pd layer is mixed: solution-diffusion through the metal bulk and surface diffusion through the defects of the film. However, an embrittlement of the palladium layer under hydrogen atmosphere was observed at 500 deg C. The Ni/ceramic membrane is stable until 600 deg C, its permselectivity to hydrogen increases with the temperature. The use of a sweep gas can provide a H{sub 2}/N{sub 2} separation factor (mixture) of about 25. The main diffusion mechanism is surface diffusion through the pores. Both membranes are not catalytic. Thus, some catalysts composed of nickel and cobalt supported on MgO, SiO{sub 2} or Al{sub 2}O{sub 3} were prepared. These systems allow to reach theoretical limits of conversion calculated for a conventional fixed bed reactor. In the membrane reactor, an enhancement of the methane conversion (15-20%) is observed with both membranes due the selective removal of hydrogen during the reaction. The Ni/ceramic membrane more stable, more permeable and as selective as the palladium one is a brand new material for high temperature hydrogen separation. (author)

  11. Investigation of a novel protonic/electronic ceramic composite material as a candidate for hydrogen separation membranes

    Science.gov (United States)

    Fish, Jason S.

    A novel ceramic protonic/electronic conductor composite BaCe 0.2Zr0.7Y0.1O3-delta / Sr0.95 Ti0.9Nb0.1O3-delta (BCZY27/STN95: BS27) has been synthesized, and its electrical properties and hydrogen permeability have been investigated. The volume ratio of the STN95 phase was varied from 50 - 70 % to test the effects on conductivity and hydrogen permeability. BCZY27 and STN95 powders were prepared by solid-state reaction, and membrane samples were fabricated through conventional and spark plasma sintering techniques. The phase composition, density, and microstructure were compared between the sintering methodologies. Total conductivities of 0.01 - 0.06 S·cm -1 were obtained in wet (+1 % H2O) dilute H2/(N 2, He, Ar) from 600 - 800 °C for 50 volume % STN95. With increasing STN content (60 and 70 volume %), conductivity generally increased, though remained lower than predicted by standard effective medium models, even at 70 volume % STN95. A new effective medium model was proposed, which accounted for an interfacial resistance term associated with the heterojunctions formed between the BCZY27 and STN95 phases. Better fits for the measured data were achieved with this new method, although some effects remain unexplained. Discrepancies between the model and experiment were attributed to space charge effects, grain boundary resistances, and insulating impurity phase formation during synthesis. Dense BS27 samples were tested for high-temperature hydrogen permeation and a measured flux of 0.006 mumol·cm-2·s -1 was recorded for a 50 volume % STN95 sample at 700 °C, using dry argon as a sweep gas. This value represents a modest improvement on other ceramic composite membranes, but remains short of targets for commercialization. Persistent leaks in the flux experiments generated a shallower hydrogen gradient across the samples, although this p(H2) on the sweep side simultaneously decreased the oxygen partial pressure gradient across the sample and preserved the reduced state

  12. Separation setup for the light water detritiation process in the water-hydrogen system based on the membrane contact devices

    International Nuclear Information System (INIS)

    Rozenkevich, M. B.; Rastunova, I. L.; Prokunin, S. V.

    2008-01-01

    Detritiation of light water wastes down to a level permissible to discharge into the environment while simultaneously concentrating tritium to decrease amount of waste being buried is a constant problem. The laboratory setup for the light water detritiation process is presented. The separation column consists of 10 horizontally arranged perfluorosulphonic acid Nafion-type membrane contact devises and platinum catalyst (RCTU-3SM). Each contact device has 42.3 cm 2 of the membrane and 10 cm 3 of the catalyst. The column is washed by tritium free light water (L H2O ) and the tritium-containing flow (F HTO ) feeds the electrolyser at λ = G H2 /L H2O = 2. A separation factor of 66 is noted with the device at 336 K and 0.145 MPa. (authors)

  13. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  14. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  15. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  16. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja

    2015-08-20

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable polymers of intrinsic microporosity (PIMs), with gas-sieving ultramicroporosity yields high-performance gas separation membranes. Highly ultramicroporous PIMs have redefined the state-of-the-art in large-scale air (e.g., O2/N2) and hydrogen recovery (e.g., H2/N2, H2/CH4) applications with unprecedented molecular sieving gas transport properties. Accordingly, presented herein are new 2015 permeability/selectivity “upper bounds” for large-scale commercial membrane-based air and hydrogen applications that accommodate the substantial performance enhancements of recent PIMs over preceding polymers. A subtle balance between intrachain rigidity and interchain spacing has been achieved in the amorphous microstructures of PIMs, fine-tuned using unique bridged-bicyclic building blocks (i.e., triptycene, ethanoanthracene and Tröger’s base) in both ladder and semiladder (e.g., polyimide) structures.

  17. Promising monolayer membranes for CO{sub 2}/N{sub 2}/CH{sub 4} separation: Graphdiynes modified respectively with hydrogen, fluorine, and oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lianming, E-mail: lmzhao@upc.edu.cn; Sang, Pengpeng; Guo, Sheng; Liu, Xiuping; Li, Jing; Zhu, Houyu; Guo, Wenyue, E-mail: wyguo@upc.edu.cn

    2017-05-31

    Graphical abstract: Graphdiyne monolayer membrane modified by fluorine or oxygen can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Highlights: • Three graphdiyne-like membranes were designed and their stabilities were confirmed. • The DFT and MD results claimed a tunable gas separation property of the membranes. • Graphdiyne modified with F or O can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Abstract: Three graphdiyne-like monolayers were designed by substituting one-third diacetylenic linkages with heteroatoms hydrogen, fluorine, and oxygen (GDY-X, X = H, F, and O), respectively. The CO{sub 2}/N{sub 2}/CH{sub 4} separation performance of the designed graphdiyne-like monolayers was investigated by using both first-principle density functional theory (DFT) and molecular dynamic (MD) simulations. The stabilities of GDY-X monolayers were confirmed by the calculated cohesive energies and phonon dispersion spectra. Both the DFT and MD calculations demonstrated that although the GDY-H membrane has poor selectivity for CO{sub 2}/N{sub 2}/CH{sub 4} gases, the GDY-F and GDY-O membranes can excellently separate CO{sub 2} and N{sub 2} from CH{sub 4} in a wide temperature range. Moreover, the CO{sub 2}/N{sub 2} mixture can be effectively separated by GDY-O at temperatures lower than 300 K. Based on the kinetic theory, extremely high permeances were found for CO{sub 2} and N{sub 2} passing through the GDY-X membranes (10{sup −4}–10{sup −2} mol/m{sup 2} s Pa at 298 K). In addition, the influence of relative concentration on selectivity was also investigated for gases in the binary mixtures. This work provides an effective way to modify graphdiyne for the separation of large molecular gases, which is quite crucial in the gas separation industry.

  18. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  19. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  20. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  1. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  2. Carbon Dioxide Separation Using Thermally Optimized Membranes

    Science.gov (United States)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique

  3. Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Schlasner, Steven

    2012-03-01

    Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200—500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels — some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU’ s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450°F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures

  4. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli; Salazar Moya, Octavio Ruben; Nunes, Suzana Pereira

    2016-01-01

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  5. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  6. Glovebox atmosphere detritiation process using gas separation membranes

    International Nuclear Information System (INIS)

    Le Digabel, M.; Truan, P.A.; Ducret, D.; Laquerbe, C.; Perriat, P.; Niepce, J.C.; Pelletier, T.

    2003-01-01

    The use of gas separation membranes in atmospheric detritiation systems has been studied. The main advantage of this new process is to reduce the number and/or the size of the equipment in comparison to conventional tritium removal systems. Owing to the constraints linked to tritium handling, the separation performances of several commercial hollow fiber organic membranes have been analyzed, under various operating conditions, with hydrogen/nitrogen or deuterium/nitrogen mixtures. The experiments are performed with small quantities of hydrogen or deuterium (5000 ppm). The experimental results allow to evaluate the separation efficiency of these membranes and to determine the appropriate operating conditions to apply to a membrane detritiation process

  7. Fabrication of Pd Micro-Membrane Supported on Nano-Porous Anodized Aluminum Oxide for Hydrogen Separation.

    Science.gov (United States)

    Kim, Taegyu

    2015-08-01

    In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C.

  8. Highly Hydrothermally Stable Microporous Membranes for Hydroge Separation

    NARCIS (Netherlands)

    Wei, Qi; Wang, Fei; Wang, F.; Nie, Zuo-Ren; Song, C.; Wang, Yan-Li; Li, Qun-Yan

    2008-01-01

    Fluorocarbon-modified silica membranes were deposited on γ-Al2O3/α-Al2O3 supports by the sol−gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is

  9. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja; Ghanem, Bader; Pinnau, Ingo

    2015-01-01

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable

  10. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda [Pall Corporation, Port Washington, NY (United States); Zhao, Hongbin [Pall Corporation, Port Washington, NY (United States); Hopkins, Scott [Pall Corporation, Port Washington, NY (United States)

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  11. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; T. Adams

    2008-09-12

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using gaseous hydrogen permeation testing techniques.

  12. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  13. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  14. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  15. Phosphazene membranes for gas separations

    Science.gov (United States)

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  16. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  17. Bench-Scale Study of Hydrogen Separation Using Pre-Commercial Membranes; Estudio, a Escala de Planta Piloto, del Proceso de Separacion de Hidrogeno mediante Membranas Pre-Comerciales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Hervas, J. M.; Marano, M.

    2011-11-10

    This report compiles the research undertaken by CIEMAT over 2009-2011 in the sub-project 8 Purification and Separation of Hydrogen of the PSE H2ENOV Project funded by the Spanish Ministry of Science and Innovation, MICINN. Permeability and hydrogen selectivity of a pre-commercial palladium membrane was studied at bench scale level. The effect of main operating parameters - pressure, temperature and feed-flow-rate- on permeate flow-rate was determined. The influence of other gas components on hydrogen permeation was evaluated. Mixtures of H{sub 2}-N{sub 2} and H{sub 2}-CO{sub 2} were studied. Although nitrogen and carbon dioxide did not permeate, both components decreased hydrogen permeation rate. Operating the membrane for around 1000 h under various conditions showed a small decrease in hydrogen permeation, but not in selectivity. A literature review was done in order to identify causes for permeation inhibition and reduction and for the definition of procedures for membrane regeneration. (Author) 29 refs.

  18. Development of Separation Materials Containing Palladium for Hydrogen Isotopes Separation

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qian Xiaojing

    2010-01-01

    Displacement chromatography (DC) is a ascendant technique for hydrogen isotopes separation. The performance of separation materials is a key factor to determine the separation effect of DC. At present,kinds of materials are researched, including palladium materials and non-palladium materials. It is hardly replaceable because of its excellent separation performance, although palladium is expensive. The theory of hydrogen isotopes separation using DC was introduced at a brief manner, while several palladium separation materials were expatiated in detail(Pd/K, Pd-Al 2 O 3 , Pd-Pt alloy). Development direction of separation materials for DC was forecasted elementarily. (authors)

  19. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  20. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  1. Anisotropic membranes for gas separation

    Science.gov (United States)

    Gollan, Arye Z.

    1987-01-01

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

  2. Hydrogen superpermeable membrane operation under plasma conditions

    International Nuclear Information System (INIS)

    Bacal, M.; Bruneteau, A.M.; Livshits, A.I.; Alimov, V.N.; Notkin, M.E.

    2003-01-01

    The effect of ion bombardment on hydrogen plasma-driven permeation through a superpermeable niobium membrane was investigated. It was found that the increase of membrane temperature and the doping of membrane material with oxygen results in the decrease of ion bombardment effect and in permeability increase. It was demonstrated that membrane decarbonization leads to the formation of a membrane state resistant to sputtering. Possible applications of the membrane resistant to ion bombardment as plasma facing components are considered

  3. Development and modification of glass membranes for aggressive gas separations

    Energy Technology Data Exchange (ETDEWEB)

    Lindbraaten, Arne

    2004-07-01

    Chlorine as a chemical is widespread in industry and found in a great variety of processes ranging from water purification to plastic production. In this thesis, a magnesium production factory was chosen as an example because it involved both chlorine - air separation and hydrogen -hydrogen chloride separation. Previously, various types of membrane materials have been tested out for their applicability in the chosen process. The materials previously tested either lacked sufficient membrane performance or sufficient membrane stability. As an attempt to improve both the membrane performance and stability, glass membranes are used in this thesis. Glass membranes are prepared from a borosilicate glass, via a phase separation followed by an acid leaching route. By choosing the appropriate phase separation temperature and acid to glass ratio, the membrane can be produced with an average pore diameter of 2 nm (or 4 nm). However, the 2 nm average pore size is still too large to separate gases with separation selectivities beyond the selectivities predicted from Knudsen diffusion theory. If the pores are narrowed, the selectivity may be raised while the flux hopefully is maintained. The narrowing of the pores was done by a silane coupling to the surface OH-groups on the glass. The silane coupling agent is of the dimethyl-acyl-chlorosilane type, where the length of the acyl chain varies from 1 carbon up to 18 carbons. Glass fibres are also tested in this work, which are produced without phase separation and their average pore size is smaller than the surface-modified glasses. To be able to compare the performance of the various membranes, performance measurements are performed and these measurements are evaluated by the separation power (product of the selectivity and the permeability of the fastest permeating compound). Because of the harsh chlorine or hydrogen chloride environment, to which the membranes are exposed in this work, the membrane stability is at least as

  4. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    Way, J.D.

    1993-01-01

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  5. Laser photochemical separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Fowler, M.C.

    1979-01-01

    A method of separating isotopes of hydrogen utilizing isotopically selective photodissociation of organic acid is disclosed. Specifically acetic or formic acid containing compounds of deuterated nd hydrogenated acid is irradiated by radiation having a wavelength in the infrared spectrum between 9.2 to 10.8 microns to produce deuterium hydroxide and deuterium hydride respectively. Maintaining the acid at an elevated temperature significantly improves the yield of isotope separation

  6. Analysis of hydrogen separation methods in low pressure industrial processes

    International Nuclear Information System (INIS)

    Milidoni, M.; Somoza, J.; Borzone, E.M.; Blanco, M.V.; Cestau, D.; Baruj, A.; Meyer, G.

    2012-01-01

    In this work we present strategies for removing part of the hydrogen contained in a tank of 500 1 at a total pressure of 95 kPa. Hydrogen is mixed with other gases in a relation 95:5. The gas is generated as an end product during the production of radioisotopes. Main impurities are N 2 , humidity and activated gases. Two separation methods are proposed: one of them based on the use of a commercial Pd/Cu membrane, while the other involves the use of materials capable of forming metal hydrides (HFM). Characterization of hydrogen separation properties using a Pd/Cu membrane from pure H 2 and H 2 /Ar mixture were performed in the laboratory. We present simulations of a device containing HFM of the LaNi 5 -xSnx (0.x.0,5), using the properties of reaction with hydrogen measured in our laboratory. The performance of the different options was evaluated. Results were compared using as evaluation criteria the value of the pressure in the tank after 3 h of separation process and the time needed to separate the same amount of hydrogen generated during a batch of the process (author)

  7. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  8. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  9. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  10. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  11. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  12. Membranes as separators of dispersed emulsion phases

    OpenAIRE

    Lefferts, A.G.

    1997-01-01

    The reuse or discharge of industrial waste waters, containing small fractions of dispersed oil, requires a purification treatment for which membranes can be used. If only little oil is present, removal of the dispersed phase might be preferable to the more commonly applied removal of the continuous phase. For this purpose dispersed phase separators can be applied, which combine the features of conventional coalescers and membrane filtration. The membrane surface promotes coalescence ...

  13. Thermal decomposition of hydroiodic acid and hydrogen separation

    International Nuclear Information System (INIS)

    Yeheskel, J.; Leger, D.; Courvoisier, P.

    1978-01-01

    The reaction of decomposition of hydroiodic acid is included in a promising water splitting process (sulfur-iodine cycle). An experimental program is running in order to overcome some basic difficulties and data shortcomings which stand in the way of achieving that target. The core of the experimental system is the palladium silver (23% Ag) membrane tube reactor in which the feed gas entered the inner side of the tube. Four series of different kinds of experiments have been performed: 1) diffusion of hydrogen from a pure feed hydrogen stream through the membrane; the results are statistically analyzed due to the present correlations of the H 2 specific permeability as a function of temperature and pressure (up to 600 0 C and 20 bar); 2) separation of hydrogen from a binary feed mixture H 2 -He; a mathematical model is developed for this operation; 3) indication of the poisoning effect of a little amount of hydroiodic acid on the hydrogen pereability; this effect is partly reversible at high temperatures; 4) a performance of one continuous experiment of HI decomposition into the membrane tube at steady pressure and temperature of 8 bar and 500 0 C; the results prove the catalytic activity of the membrane surface

  14. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  15. Development of proton conducting materials and membranes based on lanthanum tungstate for hydrogen separation from gas mixtures; Entwicklung protonenleitender Werkstoffe und Membranen auf Basis von Lanthan-Wolframat fuer die Wasserstoffabtrennung aus Gasgemischen

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Janka

    2013-07-01

    Lanthanum tungstate La{sub 6-x}WO{sub 12-δ} (named LWO) is a ceramic material with mixed protonic electronic conductivity. Thereby it is a good candidate membrane material for hydrogen separation from synthesis gas in a fossil pre-combustion power plant. This work shows a material optimization by substitution targeted to clearly enhance the mixed conductivity and thereby the hydrogen flow through the LWO membrane. The first part of the work shows the synthesis and characterization of unsubstituted LWO. It points out that monophase LWO powder can be reproducibly synthesized. The La/W-ratio has to be considerably smaller than the nominal ratio of La/W = 6.0. It also depends on the used sintering conditions. Different relevant properties of LWO like stability in conditions close to application, thermal expansion, sintering behavior or microstructure were determined. Furthermore, the electrical conductivity of the material was investigated. LWO exhibits a prevailing protonic conductivity up to 750 C in wet atmospheres. Under dry atmospheres n-type conductivity was dominating. Oxygen ion and n-type conductivity dominated in wet and dry atmospheres above 750 C. The main part of the work is concerned with the development of new LWO based materials by substitutions. The aim is to achieve an improved mixed protonic electronic conductivity. Substitution elements for lanthanum side were Mg, Ca, Sr, Ba, Ce, Nd, Tb, Y and Al, while for the tungsten side Mo, Re and Ir were used. The total conductivity of the developed materials was investigated and compared to that of the unsubstituted LWO. The substitution of lanthanum led to no appreciable enhancement of the conductivity whereas the substitution of tungsten with 20 mol% molybdenum or 20 mol% rhenium clearly improved it. This caused a hydrogen flow about seven times higher for 20 mol% molybdenum- and about ten times higher for 20 mol% rhenium-substituted LWO in comparison with the unsubstituted LWO at 700 C. In the last part

  16. Stabilized ultrathin liquid membranes for gas separations

    International Nuclear Information System (INIS)

    Deetz, D.W.

    1987-01-01

    Although immobilized liquid membranes have the desirable properties of high selectivity and permeability, their practical application to gas phase separations is hindered because of the instability of the liquid phase and the relative thickness of current membranes. The problem of liquid instability, which is due to both liquid volatilization and flooding, can be reduced, or eliminated, by immobilizing the liquid phase in pores small enough to significantly reduce the molar free energy of the solution via the Kelvin effect. The obstacle of membrane thickness can be overcome by selectively immobilizing the liquid phase into the skin of a porous asymmetric membranes

  17. Membrane reforming in converting natural gas to hydrogen (part one)

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D; Giacobbe, F; De Cesaris, A [Faculty of Chemical Engineering and Materials, University of L' Aquila (Italy); Farace, A; Iaquaniello, G; Pipino, A [TECHNIP-KTI S.p.a., Rome (Italy)

    2008-07-15

    Membrane reforming reactors (MRR) could play a key role in converting natural gas into hydrogen. The major advantage of MRR architecture is the possibility to shift the chemical equilibrium toward the right-hand side of the reaction, improving hydrogen production and allowing, the same time high methane conversion at relatively low temperatures such as 650 C. Such a low operating temperature makes it possible to locate the MRR downstream of a gas turbine, achieving an efficient hybrid system (power+hydrogen) with a significant reduction in energy consumption (around 10%). This paper discusses the whole innovative architecture where conventional tubular reforming is integrated with hydrogen permeable palladium membrane separators. The fundamental concepts are analyzed and integrated into a process scheme; the structural effects of variables design such as reactor temperature outlet, S/C ratio and recycle ratio throughout pinch and sensitivity analysis are described, and a comparison of the process economics with conventional hydrogen technology is presented at the end of the second part of this paper. The production of highly reliable, defect-free and reproducible, Pd-alloy membranes for selective hydrogen separation is a key issue in the proposed hybrid architecture. (author)

  18. Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures

    Science.gov (United States)

    Ivanova, Mariya E.; Escolástico, Sonia; Balaguer, Maria; Palisaitis, Justinas; Sohn, Yoo Jung; Meulenberg, Wilhelm A.; Guillon, Olivier; Mayer, Joachim; Serra, Jose M.

    2016-11-01

    Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ revealed unprecedented H2 permeation levels of 0.4 to 0.61 mL·min-1·cm-2 at 700 °C measured on 500 μm-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-δ phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ represents a very promising candidate for H2 separating membrane in energy- and environmentally-related applications.

  19. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation.

    Science.gov (United States)

    Liguori, Simona; Iulianelli, Adolfo; Dalena, Francesco; Pinacci, Pietro; Drago, Francesca; Broglia, Maria; Huang, Yan; Basile, Angelo

    2014-03-06

    The present work is focused on the investigation of the performance and long-term stability of two composite palladium membranes under different operating conditions. One membrane (Pd/porous stainless steel (PSS)) is characterized by a ~10 µm-thick palladium layer on a porous stainless steel substrate, which is pretreated by means of surface modification and oxidation; the other membrane (Pd/Al2O3) is constituted by a ~7 µm-thick palladium layer on an asymmetric microporous Al2O3 substrate. The operating temperature and pressure ranges, used for studying the performance of these two kinds of membranes, are 350-450 °C and 200-800 kPa, respectively. The H2 permeances and the H2/N2 selectivities of both membranes were investigated and compared with literature data. At 400 °C and 200 kPa as pressure difference, Pd/PSS and Pd/Al2O3 membranes exhibited an H2/N2 ideal selectivity equal to 11700 and 6200, respectively, showing stability for 600 h. Thereafter, H2/N2 selectivity of both membranes progressively decreased and after around 2000 h, dropped dramatically to 55 and 310 for the Pd/PSS and Pd/Al2O3 membranes, respectively. As evidenced by Scanning Electron Microscope (SEM) analyses, the pinholes appear on the whole surface of the Pd/PSS membrane and this is probably due to release of sulphur from the graphite seal rings.

  20. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  1. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  2. Application of gas chromatography in hydrogen isotope separation

    International Nuclear Information System (INIS)

    Ye Xiaoqiu; Sang Ge; Peng Lixia; Xue Yan; Cao Wei

    2008-01-01

    The principle of gas chromatographic separation of hydrogen isotopes was briefly introduced. The main technology and their development of separating hydrogen isotopes, including elution chromatography, hydrogen-displacement chromatography, self-displacement chromatography and frontal chromatography were discussed in detail. The prospect of hydrogen isotope separation by gas chromatography was presented. (authors)

  3. Immobilized fluid membranes for gas separation

    Science.gov (United States)

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  4. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  5. Membrane-less hydrogen bromine flow battery

    OpenAIRE

    Braff, W. A.; Bazant, M. Z.; Buie, C. R.

    2014-01-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less, hydrogen bromine laminar flow battery as a potential high power density solution. The membrane-less design enables power densiti...

  6. Hydrogen economy and polymer membranes

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Schauer, Jan

    2010-01-01

    Roč. 295, č. 1 (2010), s. 23-29 ISSN 1022-1360 R&D Projects: GA ČR GA104/09/1165; GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : foams * gas permeation * hydrogen Subject RIV: CD - Macromolecular Chemistry

  7. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  8. Separation of hydrogen isotope by hydrogen-water exchange

    International Nuclear Information System (INIS)

    Isomura, Shohei; Kaetsu, Hayato; Nakane, Ryohei

    1979-01-01

    The deuterium exchange reaction between gaseous hydrogen and liquid water is studied by use of three kinds of trickle bed exchange columns packed with hydrophobic catalysts supporting platinum. All columns have the effective lengths of 30 cm. They are 17 mm, 30 mm, and 95 mm in diameters, respectively. The separation experiments are carried out by the once-through methods. The separation efficiencies of the columns are evaluated by the parameters such as the height equivalent to a theoretical plate (H. E. T. P.) and the mass transfer co-efficient. It is found that the operating condition of the exchange column is optimum when the superficial hydrogen flow velocity is 0.3 m/sec. (author)

  9. GAS SEPARATION MEMBRANES COMPRISING PERMEABILITY ENHANCING ADDITIVES

    NARCIS (Netherlands)

    Wessling, Matthias; Sterescu, D.M.; Stamatialis, Dimitrios

    2007-01-01

    The present invention relates to polymer compositions comprising a (co)polymer comprising (a) an arylene oxide moiety and (b) a dendritic (co)polymer, a hyperbranched (co)polymer or a mixture thereof, and the use of these polymer compositions as membrane materials for the separation of gases. The

  10. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  12. Palladium based membranes and membrane reactors for hydrogen production and purification : An overview of research activities at Tecnalia and TU/e

    NARCIS (Netherlands)

    Fernandez, E.; Helmi Siasi Farimani, A.; Medrano Jimenez, J.A.; Coenen, K.T.; Arratibel Plazaola, A.; Melendez Rey, J.; de Nooijer, N.C.A.; Viviente, J.L.; Zuniga, J.; van Sint Annaland, M.; Gallucci, F.; Pacheco Tanaka, D.A.

    2017-01-01

    In this paper, the main achievements of several European research projects on Pd based membranes and Pd membrane reactors for hydrogen production are reported. Pd-based membranes have received an increasing interest for separation and purification of hydrogen. In addition, the integration of such

  13. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION; A

    International Nuclear Information System (INIS)

    Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

    2001-01-01

    Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H(sub 2) removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H(sub 2)-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H(sub 2) to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO(sub 2)-rich gases, a Cu-CeO(sub 2) catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H(sub 2) permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window

  14. Basic characteristics of hollow-filament polyimide membrane in gas separation and application to tritium monitors

    International Nuclear Information System (INIS)

    Sasaki, Sh.; Suzuki, T.; Kondo, K.; Tega, E.; Shimada, A.; Akahori, S.; Okuno, K.

    2003-01-01

    The separation efficiency of hollow-filament polyimide membranes for 3 H and 41 Ar is preliminarily examined for a potential application to continuous gas monitoring systems for analysis of stack emission from accelerator facilities. The basic gas separation characteristics of the membranes are experimentally investigated, and a preliminary gas monitor design is proposed. The membranes are capable of selectively enriching hydrogen by more than 25 times, with negligible variation with respect to the species of isotope. (author)

  15. Structural characterization of hydrogen separating membranes based on lanthanide-tungstates; Strukturelle Charakterisierung von Wasserstoff trennenden Gasseparationsmembranen auf Lanthanoid-Wolframat-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Scherb, Tobias

    2011-08-26

    The global energy supply is currently the most controversial issue discussed in our society. Despite the increasing importance of renewable energies, the largest portion of electrical energy has its origin in fossil fuels. CO{sub 2}, emitted during combustion in power plants is known to be one of the greenhouse gases that contributes significantly to global climate change. The development of technologies for environmentally friendly power generation from coal and gas is an area of significant interest. One possibility is the capture and long-term storage of CO{sub 2} from the exhaust stream of fossil fuel power plants. In the pre-combustion process, CO{sub 2} and H{sub 2} can be separated after gasification of the fossil fuel. For this purpose gas-tight ceramic membranes with mixed electronic-protonic conductivity can be used. However, these materials have high requirements due to the extreme conditions in power plants. Mixed electronic-protonic conducting lanthanide tungstates (Ln{sub 6}WO{sub 12} Ln = lanthanide or yttrium) are promising materials, which are stable in CO{sub 2}-containing harsh environments. This work presents a study on structure-property relationships of Ln{sub 6}WO{sub 12}. The structural analysis was performed by the use of neutron and high-resolution X-ray diffraction methods for three exemplary systems (Ln = La, Nd, Y). Samples were prepared via solid state reaction (SSR), and also via a sol-gel approach (Pechini). For the systems LaWO and NdWO, new structural models were developed by combined Rietveld analysis and Fourier density maps. The latter was applied to determine the electron and nuclear density distribution. LaWO with a La/W ratio from 5.3 to 5.7 crystallizes with the space group F-43m and forms a superstructure due to a partially ordered arrangement of cations. On Wyckoff site 48h, up to 4.6 % W can be substituted by La. The oxygen atoms around tungsten are highly delocalized and 6 out of 24 possible split positions are occupied

  16. New Developments in Membrane-Based Chemical Separations

    National Research Council Canada - National Science Library

    Jirage, Kshama

    1998-01-01

    Membrane based chemical separations is an emerging field of research. This is because membrane-based separations are potentially less energy intensive and more cost effective than competing separation methods...

  17. Metal oxide membranes for gas separation

    Science.gov (United States)

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  18. System design study of a membrane reforming hydrogen production plant using a small sized sodium cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Y.; Konomura, M.; Hori, T.; Sato, H.; Uchida, S.

    2004-01-01

    In this study, a membrane reforming hydrogen production plant using a small sized sodium cooled reactor was designed as one of promising concepts. In the membrane reformer, methane and steam are reformed into carbon dioxide and hydrogen with sodium heat at a temperature 500 deg-C. In the equilibrium condition, steam reforming proceeds with catalyst at a temperature more than 800 deg-C. Using membrane reformers, the steam reforming temperature can be decreased from 800 to 500 deg-C because the hydrogen separation membrane removes hydrogen selectively from catalyst area and the partial pressure of hydrogen is kept much lower than equilibrium condition. In this study, a hydrogen and electric co-production plant has been designed. The reactor thermal output is 375 MW and 25% of the thermal output is used for hydrogen production (70000 Nm 3 /h). The hydrogen production cost is estimated to 21 yen/Nm 3 but it is still higher than the economical goal (17 yen/Nm 3 ). The major reason of the high cost comes from the large size of hydrogen separation reformers because of the limit of hydrogen separation efficiency of palladium membrane. A new highly efficient hydrogen separation membrane is needed to reduce the cost of hydrogen production using membrane reformers. There is possibility of multi-tube failure in the membrane reformers. In future study, a design of measures against tube failure and elemental experiments of reaction between sodium and reforming gas will be needed. (authors)

  19. Separation of tritium from other hydrogen isotopes

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    The paper describes a plant that has been operated at Marcoule for tritium production and used thermal diffusion enrichment, a facility that was built in Saclay to enrich hydrogen in tritium for low level measurements, and the Laue Langevin Institute tritium extraction plant. Details are given on the project under construction for the tritium separation facility at JET using Gas Chromatography, and on proposals for circuits for NET. Studies on catalysers for liquid phase catalytic exchange, on electrolysers, or different gas chromatography arrangements, are described. Systems designed for reprocessing plants, for detritiation of heavy water by distillation are briefly accounted for

  20. Permeation of hydrogen through metal membranes

    International Nuclear Information System (INIS)

    Wienhold, P.; Rota, E.; Waelbroeck, F.; Winter, J.; Banno, Tatsuya.

    1986-08-01

    Experiments show that the permeant flux of hydrogen through a metal membrane at low driving pressures ( r is introduced into the model as a new material constant and the rate equations are given. After the description of the wall pump effect, a variety of different limiting cases are discussed for a symmetrical permeation membrane. This is modified to the asymmetric case and to the influence of particle implantation. The permeation number W turns out to be a dimensionless quantity which characterizes the permeation range and predicts the permeant flux in steady state. (orig.)

  1. Comparison of gas membrane separation cascades using conventional separation cell and two-unit separation cells

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    The adoption of two-unit separation cells in radioactive rare gas membrane separation equipment enhances the separation factor, but increases the required membrane area and compressive power. An analytical economic evaluation was undertaken to compare the conventional separation cell with the two-unit separation cells, adopting as parameters the number of cascade stages, the membrane area and the operating power requirements. This paper describes the models used for evaluating the separation performance and the economics of cascade embodying these different concepts of separation cell taken up for study, and the results obtained for the individual concepts are mutually compared. It proved that, in respect of the number required of cascade stages, of operating power requirements and of the annual expenditure, better performance could always be expected of the two-unit separation cells as compared with the conventional separation cell, at least in the range of parameters adopted in this study. As regards the minimum membrane area, the conventional separation cell and the series-type separation cell yielded almost the same values, with the parallel-type separation cell falling somewhat behind. (auth.)

  2. Membrane-less hydrogen bromine flow battery

    Science.gov (United States)

    Braff, William A.; Bazant, Martin Z.; Buie, Cullen R.

    2013-08-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less hydrogen bromine laminar flow battery as a potential high-power density solution. The membrane-less design enables power densities of 0.795 W cm-2 at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92% at 25% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high-power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.

  3. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  4. Inorganic membranes for hydrogen production and purification: a critical review and perspective.

    Science.gov (United States)

    Lu, G Q; Diniz da Costa, J C; Duke, M; Giessler, S; Socolow, R; Williams, R H; Kreutz, T

    2007-10-15

    Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In thermochemical processes for hydrogen production from fossil fuels, separation and purification is a critical technology. Where water-gas shift reaction is involved for converting the carbon monoxide to hydrogen, membrane reactors show great promises for shifting the equilibrium. Membranes are also important to the subsequent purification of hydrogen. For hydrogen production and purification, there are generally two classes of membranes both being inorganic: dense phase metal and metal alloys, and porous ceramic membranes. Porous ceramic membranes are normally prepared by sol-gel or hydrothermal methods, and have high stability and durability in high temperature, harsh impurity and hydrothermal environments. In particular, microporous membranes show promises in water gas shift reaction at higher temperatures. In this article, we review the recent advances in both dense phase metal and porous ceramic membranes, and compare their separation properties and performance in membrane reactor systems. The preparation, characterization and permeation of the various membranes will be presented and discussed. We also aim to examine the critical issues in these membranes with respect to the technical and economical advantages and disadvantages. Discussions will also be made on the relevance and importance of membrane technology to the new generation of zero-emission power technologies.

  5. Development of new microporous silica membranes for gas separation

    International Nuclear Information System (INIS)

    Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Serge de Perthuis; Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Anne Julbe; Jose Sanchez

    2006-01-01

    This paper presents the synthesis and the application of molecular sieving ceramic membranes to purify hydrogen or helium from various gas mixtures. The membranes prepared in this work consist of an ultra-microporous silica-based separative layer produced via a sol-gel process. Ultra microporous silica containing boron is synthesized by the acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate in ethanol. The layer is deposited inside a tubular asymmetric alumina support with a meso-porous y alumina inner layer. The thickness of the silica layers after treatment is about 200 nm, estimated from their cross-section SEM micrographs. Ultra-microporous membranes (with pore sizes less than 0.7 nm) are thus required to get high selectivity. Such membranes enable to carry out gas separation up to 500 deg C under a transmembrane pressure lower than 8 bars. He and H 2 permeance values close to 10 -7 mol.m -2 s -1 Pa -1 are obtained, associated with ideal selectivities α(He/CO 2 ) and α(H 2 /CO 2 ) between 10 and 20 at 300 deg C. (authors)

  6. Electrically Driven Ion Separations in Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Merlin [Michigan State Univ., East Lansing, MI (United States)

    2017-04-21

    Membranes are attractive for a wide range of separations due to their low energy costs and continuous operation. To achieve practical fluxes, most membranes consist of a thin, selective skin on a highly permeable substrate that provides mechanical strength. Thus, this project focused on creating new methods for forming highly selective ultrathin skins as well as modeling transport through these coatings to better understand their unprecedented selectivities. The research explored both gas and ion separations, and the latter included transport due to concentration, pressure and electrical potential gradients. This report describes a series of highlights of the research and then provides a complete list of publications supported by the grant. These publications have been cited more than 4000 times. Perhaps the most stunning finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers (PEMs). This discovery builds on many years of exciting research. (Citation numbers refer to the journal articles in the bibliography.)

  7. Refining of biodiesel by ceramic membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong; Ou, Shiyi; Tan, Yanlai; Tang, Shuze [Department of Food Science and Engineering, Jinan University, Guangzhou 510632 (China); Wang, Xingguo; Liu, Yuanfa [School of Food Science and Technology, Jiangnan University, Wuxi 214112 (China)

    2009-03-15

    A ceramic membrane separation process for biodiesel refining was developed to reduce the considerable usage of water needed in the conventional water washing process. Crude biodiesel produced by refined palm oil was micro-filtered by ceramic membranes of the pore size of 0.6, 0.2 and 0.1 {mu}m to remove the residual soap and free glycerol, at the transmembrane pressure of 0.15 MPa and temperature of 60 C. The flux through membrane maintained at 300 L m{sup -} {sup 2} h{sup -} {sup 1} when the volumetric concentrated ratio reached 4. The content of potassium, sodium, calcium and magnesium in the whole permeate was 1.40, 1.78, 0.81 and 0.20 mg/kg respectively, as determined by inductively coupled plasma-atomic emission spectroscopy. These values are lower than the EN 14538 specifications. The residual free glycerol in the permeate was estimated by water extraction, its value was 0.0108 wt.%. This ceramic membrane technology was a potential environmental process for the refining of biodiesel. (author)

  8. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  9. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  10. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Tom [Western Research Inst. (WRI), Laramie, WY (United States)

    2013-09-01

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  11. Four-port gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  12. Latest development on the membrane formation for gas separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The first scientific observation related to gas separation was encountered by J.K Mitchell in 1831. However, the most remarkable and influential contribution to membrane gas separation technology was the systematic study by Thomas Graham in 1860. However only in 1979, membrane based gas separation technology was available and recognized as one of the most recent and advanced unit operations for gas separation processes. Membrane is fabricated by various methods and the parameters involved to a certain extent are very complicated. The phase inversion technique that is normally employed to produce membranes are dry/wet, wet, dry and thermal induced phase separation. Other techniques used to produce membrane are also reviewed. This paper reports the latest development in membrane formation for gas separation. The route to produce defect-free and ultrathin-skinned asymmetric membrane is also presented that represents the cutting edge technology in membrane gas separation process

  13. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  14. Palladium alloy membrane process for the treatment of hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee [KAERI, Daejeon (Korea, Republic of); Shim, Myunghwa [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2005-11-15

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  15. Palladium alloy membrane process for the treatment of hydrogen isotopes

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee; Shim, Myunghwa

    2005-01-01

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  16. Functionalized inorganic membranes for gas separation

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Molaison, Jennifer Lynn [Marietta, GA; Schick, Louis Andrew ,; Ramaswamy, Vidya [Niskayuna, NY

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  17. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  18. Design study of fuel circulating system using Pd-alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Yamanaka, T.; Aizawa, T.; Kasahara, T.; Nishikawa, M.; Asami, N.

    1980-01-01

    Design study on the fuel circulating system (FCS) for a tokamak experimental fusion reactor (JXFR) has been carried out to establish the system concept, to plan the development program, and to evaluate the feasibility of diffusion system. The FCS consists of main vacuum system, fuel gas refiners, isotope separators, fuel feeders, and auxiliary systems. In the system design, Pd-alloy membrane permeation method is adopted for fuel refining and isotope separating. All impurities are effectively removed and hydrogen isotopes are sufficiently separated by Pd-alloy membrane. The isotope separation system consists of 1st (47 separators) and 2nd (46 separators) cascades for removing protium and separating deuterium, respectively. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane diffusion method is attractive for isotope separation and refining of fuel gas. The choice will have to be based on reliability, economic, and safety analyses

  19. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  20. Membranes for separation of carbon dioxide

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  1. Separation of hydrogen isotopes via single column pressure swing adsorption

    International Nuclear Information System (INIS)

    Wong, Y.W.; Hill, F.B.

    1981-01-01

    Separation of hydrogen isotopes based on kinetic isotope effects was studied. The mixture separated was hydrogen containing a trace of tritium as HT and the hydride was vanadium monohydride. The separation was achieved using the single-column pressure swing process. Stage separation factors are larger and product cuts smaller than for a two-column pressure swing process operated in the same monohydride phase

  2. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  3. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  4. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  5. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  6. Membrane systems for energy efficient separation of light gases

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Archuleta, T.; Barbero, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  7. Parametric study of hydrogen production from ethanol steam reforming in a membrane microreactor

    Directory of Open Access Journals (Sweden)

    M. de-Souza

    2013-06-01

    Full Text Available Microreactors are miniaturized chemical reaction systems, which contain reaction channels with characteristic dimensions in the range of 10-500 µm. One possible application for microreactors is the conversion of ethanol to hydrogen used in fuel cells to generate electricity. In this paper a rigorous isothermal, steady-state two-dimensional model was developed to simulate the behavior of a membrane microreactor based on the hydrogen yield from ethanol steam reforming. Furthermore, this membrane microreactor is compared to a membraneless microreactor. A potential advantage of the membrane microreactor is the fact that both ethanol steam reforming and the separation of hydrogen by a permselective membrane occur in one single microdevice. The simulation results for steam reforming yields are in agreement with experimental data found in the literature. The results show that the membrane microreactorpermits a hydrogen yield of up to 0.833 which is more than twice that generated by the membraneless reactor. More than 80% of the generated hydrogen permeates through the membrane and, due to its high selectivity, the membrane microreactor delivers high-purity hydrogen to the fuel cell.

  8. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  9. Les techniques de séparation de gaz par membranes Gas Separation Techniques by Membranes

    Directory of Open Access Journals (Sweden)

    Avrillon R.

    2006-11-01

    through the membrane by applying a pressure difference on either side of the membrane. This pressure difference causes a difference in dissolved gas concentration between the two faces of the membrane and hence a diffusional gas flow through the membrane. Choice of Polymer - The gas sorption capacity of the polymer depends on its free volume and its physical affinity for the gas. For a gas mixture, differences in affinity are selectivity factors. The mobility of sorbed molecules depends on the free volume of the polymer and on the degree of rigidity of the chains. Vitreous polymers are more selective in this respect than rubbery polymers. This is why they are generally chosen for manufacturing gas permeation membranes. Permeability and selectivity are somewhat antinomic properties, especially when the selectivity is of a diffusional type, i. e. when the polymer acts as a molecular sieve. The definition of new polymers providing a better compromise between permeability and selectivity thus goes via research on the relationships between structure and the permeability to the gas to be separated. In polymers in a vitreous state, the chains are fixed overall, but small local movements, for example such as the rotation of an aromatic nucleus around bonds in the para position, remain possible. It seems that such small movements are beneficial for permeability, while not detracting very much from the selectivity. Structures of chains that are unfavorable for compact piling increase permeability in general to the detriment of selectivity. This is true for chains having non-coplanar aromatic nuclei or ones having bulky groups. Tables 2, 3 and 4 give some structural and permeability data for various polyimides. Figures 4 and 5 show the performances for hydrogen/ methane and carbon-dioxide/methane separations of various polyimides synthesized in our laboratories. Asymmetric MembranesThe membranes used in practice have a particular structure that is called asymmetric, which combines

  10. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  11. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-01-01

    , the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes

  12. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  13. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  14. Adsorbent filled polymeric membranes : applications to pervaporation and gas separation

    NARCIS (Netherlands)

    Duval, Jean-Marc

    1993-01-01

    Nowadays research in membrane technology aims at improving the efficiency of the separation process to make it more competitive in comparison to conventional separation techniques. The improvement of the membrane material is a way to achieve this goal, especially in the case of pervaporation and gas

  15. Boundaries of the Realizability Region of Membrane Separation Processes

    Science.gov (United States)

    Tsirlin, A. M.; Akhrenemkov, A. A.

    2018-01-01

    The region of realizability of membrane separation systems having a constant total membrane area has been determined for a definite output of a final product at a definite composition of a mixture flow. The law of change in the pressure in the mixture, corresponding to the minimum energy required for its separation, was concretized for media close in properties to ideal gases and solutions.

  16. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  18. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  19. Software for the simulation of gases separation instalations with zeolite membranes

    OpenAIRE

    Yoenia M. Martínez Díaz; Dr. Carlos R. González González; MSc. Osmar Leyet Fernández; Dr. Omar J. Ochoa Rodríguez

    2013-01-01

    The simulation of gases separation processes is a very important field of the scientific work; it affects directly the chemical technologies related to petroleum refining, petrochemical, fine chemistry, gaseous fuels (methane, synthetic gas and hydrogen) and biotechnology, among other economic activities. This paper, presents an important tool for the simulation of gas separation processes using zeolite membranes in several configurations. The tool is based on a mathematic...

  20. Ion transport restriction in mechanically strained separator membranes

    Science.gov (United States)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  1. Laser separation of isotopes of hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1980-01-01

    Laser isotope separation technique is explained and various methods based on the technique are discussed in detail. Requirements of any laser isotope separation method to be acceptable for the production of heavy water are mentioned and economic viability of this process for heavy water production is examined. Investigations carried out to use this technique for deuterium separation using methanol, formaldehyde, propynal, 2,2,-dichloro-1-1-1,-trifluoroethane (Freon 123), polyvinyl chloride and fluoroform-d are reviewed. (M.G.B.)

  2. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  3. Robust membrane systems for actinide separations

    International Nuclear Information System (INIS)

    Jarvinen, Gordon D.; McCleskey, T. Mark; Bluhm, Elizabeth A.; Abney, Kent D.; Ehler, Deborah S.; Bauer, Eve; Le, Quyen T.; Young, Jennifer S.; Ford, Doris K.; Pesiri, David R.; Dye, Robert C.; Robison, Thomas W.; Jorgensen, Betty S.; Redondo, Antonio; Pratt, Lawrence R.; Rempe, Susan L.

    2000-01-01

    Our objective in this project is to develop very stable thin membrane structures containing ionic recognition sites that facilitate the selective transport of target metal ions, especially the actinides

  4. Combined electrolysis catalytic exchange (CECE) process for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Butler, J.P.

    1978-01-01

    Hydrogen isotopes can be separated efficiently by a process which combines an electrolysis cell with a trickle bed column packed with a hydrophobic platinum catalyst. The column effects isotopic exchange between countercurrent streams of electrolytic hydrogen and liquid water while the electrolysis cell contributes to isotope separation by virtue of the kinetic isotope effect inherent in the hydrogen evolution reaction. The main features of the CECE process for heavy water production are presented as well as a discussion of the inherent positive synergistic effects, and other advantages and disadvantages of the process. Several potential applications of the process in the nuclear power industry are discussed. 3 figures, 2 tables

  5. Chorioamniotic membrane separation and preterm premature rupture of membranes complicating in utero myelomeningocele repair.

    Science.gov (United States)

    Soni, Shelly; Moldenhauer, Julie S; Spinner, Susan S; Rendon, Norma; Khalek, Nahla; Martinez-Poyer, Juan; Johnson, Mark P; Adzick, N Scott

    2016-05-01

    Since the results of the Management of Myelomeningocele Study were published, maternal-fetal surgery for the in utero treatment of spina bifida has become accepted as a standard of care alternative. Despite promise with fetal management of myelomeningocele repair, there are significant complications to consider. Chorioamniotic membrane separation and preterm premature rupture of membranes are known complications of invasive fetal procedures. Despite their relative frequency associated with fetal procedures, few data exist regarding risk factors that may be attributed to their occurrence or the natural history of pregnancies that are affected with chorionic membrane separation or preterm premature rupture of membranes related to the procedure. The objective of this study was to review chorioamniotic membrane separation and preterm premature rupture of membranes in a cohort of patients undergoing fetal management of myelomeningocele repair including identification of risk factors and outcomes. This was a retrospective review of patients undergoing fetal management of myelomeningocele repair and subsequent delivery from January 2011 through December 2013 at 1 institution. Patients were identified through the institutional fetal management of myelomeningocele repair database and chart review was performed. Perioperative factors and outcomes among patients with chorioamniotic membrane separation and preterm premature rupture of membranes were compared to those without. Risk factors associated with the development of chorioamniotic membrane separation and preterm premature rupture of membranes were determined. A total of 88 patients underwent fetal management of myelomeningocele repair and subsequently delivered during the study period. In all, 21 patients (23.9%) were diagnosed with chorioamniotic membrane separation by ultrasound and preterm premature rupture of membranes occurred in 27 (30.7%). Among the chorioamniotic membrane separation patients, 10 (47.6%) were

  6. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Kinetic Characteristics of Hydrogen Transfer Through Palladium-Modified Membrane

    Science.gov (United States)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2018-01-01

    The paper deals with hydrogen transfer through Pd-23%Ag alloy membrane, the surface of which is modified by the electrolytic deposition of highly dispersed palladium. The dependence between the density of hydrogen flow and its excess pressure on the input surface of membrane is well approximated by the first-order curve. This fact indicates that the process of hydrogen permeability is defined by its dissociation on the input surface. Activation energy of this process is 47.9 kJ/mol which considerably exceeds that of the process of hydrogen transfer through palladium (22-30 kJ/mol). This confirms the fact that the chemisorption is a rate-controlling step of the hydrogen transfer through membrane.

  8. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  9. Multicomponent Matrimid Membrane for Gas Separation

    KAUST Repository

    Irerua, Olayinka

    2012-07-01

    Matrimid was utilized for the preparation of membranes with asymmetric structures. A combination of well-known solvents for Matrimid which include 1- methyl-2-Pyrrolidone (NMP), tetrahydrofuran (THF), dichloromethane, tetrachloroethane as well as non-solvents n-butanol, xylene, and acetic acid were used. Cast solutions were prepared at room temperature for different combinations and compositions of polymer/solvent/non-solvent systems. PEG and Octa-(amino phenyl) POSS were introduced in some of the cast solutions. The membranes obtained were characterized by permeation test for gas permeabilities and selectivities, Scanning Electron Microscopy (SEM) and Nuclear Magnetic Resonance (NMR) Spectroscopy. The gas permeation test showed that the use of mixture of dichloromethane and tetrachloroethane as solvents with xylene non-solvent and acetic acid as stabilizer gave membranes with very high gas selectivity of 133 for CO2/N2 and 492 for CO2/CH4. Also, cast solutions containing PEG resulted in membranes with slightly enhanced selectivities from 30 to 42 for CO2/N2. Permeation results for CO2, N2 and H2 and the selectivities for gas pairs such as CO2/N2, CO2/CH4, are discussed in relation to the effect of pressure on the membrane permeance, they are also compared with existing results.

  10. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  11. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  12. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  13. Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes

    NARCIS (Netherlands)

    Sapountzi, F. M.; Tsampas, M. N.; Fredriksson, H. O. A.; Gracia, J. M.; Niemantsverdriet, J. W.

    2017-01-01

    This study investigates the production of hydrogen from the electrochemical reforming of short-chain alcohols (methanol, ethanol, iso-propanol) and their mixtures. High surface gas diffusion Pt/C electrodes were interfaced to a Nafion polymeric membrane. The assembly separated the two chambers of an

  14. Polyether based block copolymer membranes for CO2 separation

    NARCIS (Netherlands)

    Reijerkerk, Sander

    2010-01-01

    The work described in this thesis is dedicated to the development of polymeric membrane materials for the separation of CO2 from light gases, and in particular to the separation of CO2 from nitrogen as required in a post-combustion capture conguration for the separation of CO2 from flue gases. An

  15. Use of membrane separation processes for the separation of radionuclides from liquid and gas streams

    International Nuclear Information System (INIS)

    Vladisavljevic, G.T.; Rajkovic, M.B.

    1999-01-01

    Use of membranes for the separation and recovery of radionuclides from contaminated liquid and gas streams has been discussed in this paper. The special attention has been paid to the use of ion-exchange membranes for electrodialysis and Donnan dialysis, as well as the use of facilitated liquid membranes for liquid pertraction. (author)

  16. Affinity separation based on hydrogen bonding

    NARCIS (Netherlands)

    Gruijters, B.W.T.

    2007-01-01

    The purification - work up and separation from other compounds - of chemical reactions is a crucial step in the synthesis of organic molecules. Therefore, organic chemists have developed a variety of work up and purification techniques throughout the last centuries, and novel methods are being

  17. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  18. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  19. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  20. Polymer membranes as separators for supercapacitors

    Science.gov (United States)

    Szubzda, Bronisław; Szmaja, Aleksandra; Ozimek, Mariusz; Mazurkiewicz, Sławomir

    2014-12-01

    The purpose of the studies described was to examine the influence of low-energy plasma modification of polyamide and polypropylene polymer nonwoven fabrics on the usable properties of supercapacitors when using these fabrics as the separator material. To achieve this goal the following investigations were carried out: testing the time required for electrolyte saturation of separators and the conductivity of the electrolyte contained in the separator, as well as electrochemical examinations of supercapacitor models in which the modified fabric separators were used. The tests conducted fully confirm the usability of this modification for cleaning the surface and improving the wettability of separators by the electrolyte, which in turn results in a significant decrease of the internal resistance of the supercapacitor, thus increasing the usable power of the device.

  1. Membranes as separators of dispersed emulsion phases

    NARCIS (Netherlands)

    Lefferts, A.G.

    1997-01-01

    The reuse or discharge of industrial waste waters, containing small fractions of dispersed oil, requires a purification treatment for which membranes can be used. If only little oil is present, removal of the dispersed phase might be preferable to the more commonly applied removal of the

  2. Ceramic membrane technologies for gas separation

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Ciacchi, F.T.

    2000-01-01

    Solid state electrochemical cells based on oxygen-ion or proton conduction (pure ionic or mixed ionic/electronic conductors) allow selective transport of oxygen (oxygen-ion conducting materials) or hydrogen (for proton conducting materials) in the form of ionic flux at high temperatures. Thus these systems can act as filters for molecular oxygen or hydrogen and can be used for both generation or removal of these gases selectively. The usage of such devices are numerous including control of atmosphere in industrial environments to production of power and chemicals, in petroleum and medical industries, and in combustion processes. In this paper, a brief overview of the technology has been given and various doped materials for construction of such devices, such as zirconia, ceria, bismuth oxides or lanthanum gallates have been briefly reviewed. Copyright (2000) The Australian Ceramic Society

  3. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-04-01

    Industrial separation processes consume a significant portion of the energy used in the United States. A 1986 survey by the Office of Industrial Programs estimated that about 4.2 quads of energy are expended annually on distillation, drying and evaporation operations. This survey also concluded that over 0.8 quads of energy could be saved in the chemical, petroleum and food industries alone if these industries adopted membrane separation systems more widely. Membrane separation systems offer significant advantages over existing separation processes. In addition to consuming less energy than conventional processes, membrane systems are compact and modular, enabling easy retrofit to existing industrial processes. The present study was commissioned by the Department of Energy, Office of Program Analysis, to identify and prioritize membrane research needs in light of DOE's mission. Each report will be individually cataloged.

  4. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-01-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation

  5. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  6. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  7. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  8. Gas separation performance of tapered cascade with membrane

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    Membrane gas separation cascades are analyzed at steady state. The method of calculating the flow rate and concentration profiles in the cascade are examined, using formulas expressing the various membrane separation cell characteristics. The method adopted is applicable to relatively high concentrations and separation factors. Considerations are further given on the steady state performance of four theoretical forms of cascade: (a) with common value of cut for all stages, (b) with symmetric separation cells, (c) with no mixing at the junction at each stage, and (d) ideal cascade. The analysis showed that, with membrane cells, the ideal cascade would have a pressure ratio varying from stage to stage. The symmetric separation cascade would provide a separation performance lower than the ideal cascade on account of the mixing at the junctions of streams possessing different concentrations, whereas the cut and separation factor of the no-mixing cascade requiring minimum membrane area exhibits zig-zag curves when plotted against stage number. Both these circumstances contribute to the lower separation performance obtained with these two forms as compared with the ideal cascade, and results in larger total membrane area; but these semi-ideal forms retain the advantage of easy practical treatment with their pressure ratio common to all stages. (auth.)

  9. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  10. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  11. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  12. Separation of Process Water using Hydroxy Sodalite Membranes

    NARCIS (Netherlands)

    Khajavi, S.

    2010-01-01

    This thesis describes the synthesis, characterization, and application of Hydroxy Sodalite (H-SOD) membranes in selective separation of water from aqueous solutions and reaction media. The emphasis has been put on the development of a tight membrane film that could be primarily used for water

  13. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  14. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha; Koros, William J.

    2011-01-01

    and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air

  15. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  16. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Ghosh, Asim K.; Hoek, E.M.V.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  17. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Application of polymeric foams for separation, storage and absorption of hydrogen

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Nemestóthy, N.; Bélafi-Bakó, K.

    2009-01-01

    Roč. 241, 1-3 (2009), s. 106-110 ISSN 0011-9164. [Membrane Science and Technology Conference of Visegrad Countries PERMEA 2007 /3./. Siofok, 02.09.2007-06.09.2007] R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas separation * hydrogen * polymeric foam Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  19. Hydrogen selective NH{sub 2}-MIL-53(Al) MOF membranes with high permeability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zou, Xiaoqin; Gao, Xue; Fan, Songjie; Sun, Fuxing; Ren, Hao; Zhu, Guangshan [State Key Laboratory of Inorganic, Synthesis and Preparative Chemistry, Jilin University, Changchun (China)

    2012-09-11

    Hydrogen-based energy is a promising renewable and clean resource. Thus, hydrogen selective microporous membranes with high performance and high stability are demanded. Novel NH{sub 2}-MIL-53(Al) membranes are evaluated for hydrogen separation for this goal. Continuous NH{sub 2}-MIL-53(Al) membranes have been prepared successfully on macroporous glass frit discs assisted with colloidal seeds. The gas sorption ability of NH{sub 2}-MIL-53(Al) materials is studied by gas adsorption measurement. The isosteric heats of adsorption in a sequence of CO{sub 2}> N{sub 2}> CH{sub 4}{approx} H{sub 2} indicates different interactions between NH{sub 2}-MIL-53(Al) framework and these gases. As-prepared membranes are measured by single and binary gas permeation at different temperatures. The results of singe gas permeation show a decreasing permeance in an order of H{sub 2}> CH{sub 4}> N{sub 2}> CO{sub 2}, suggesting that the diffusion and adsorption properties make significant contributions in the gas permeation through the membrane. In binary gas permeation, the NH{sub 2}-MIL-53(Al) membrane shows high selectivity for H{sub 2} with separation factors of 20.7, 23.9 and 30.9 at room temperature (288 K) for H{sub 2} over CH{sub 4}, N{sub 2} and CO{sub 2}, respectively. In comparison to single gas permeation, a slightly higher separation factor is obtained due to the competitive adsorption effect between the gases in the porous MOF membrane. Additionally, the NH{sub 2}-MIL-53(Al) membrane exhibits very high permeance for H{sub 2} in the mixtures separation (above 1.5 x 10{sup -6} mol m{sup -2} s{sup -1} Pa{sup -1}) due to its large cavity, resulting in a very high separation power. The details of the temperature effect on the permeances of H{sub 2} over other gases are investigated from 288 to 353 K. The supported NH{sub 2}-MIL-53(Al) membranes with high hydrogen separation power possess high stability, resistance to cracking, temperature cycling and show high reproducibility

  20. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping; Huang, Kuo-Wei; Chen, Wei

    2016-01-01

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  1. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping

    2016-01-21

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  2. Biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2009-01-01

    preventing the passage of others, a property critical for the overall conservation of the cells internal pH and salt concentration. Both ion and water channels are highly efficient membrane pore proteins capable of transporting solutes at very high rates, up to 109 molecules per second. Carrier proteins...... and biomimetic support matrix. Also the stability of the incorporated protein must be addressed and the protein-biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here I will review and discuss these challenges and how they are met in some...

  3. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  4. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  5. Optimization of a membrane reactor for hydrogen production with genetic algorithms

    International Nuclear Information System (INIS)

    Raceanu, Mircea; Iordache, Ioan; Curuia, Marian; Rasoi, Gabriel; Patularu, Laurentiu; Enache, Adrian

    2009-01-01

    Full text: Hydrogen is produced via steam reforming of hydrocarbons such as natural gas or methane by using conventional systems. Unfortunately, these systems need at least four different stages, consisting of three reactors and a purification system. Moreover, the steam reforming reaction is an endothermic thermodynamically limited system, meaning that high temperature energy supply is needed for complete conversion. Among different technologies related to production, separation and purification of H 2 , membrane technologies seem to really play a fundamental role. The specific thermodynamic limits are overcome using the so-called membrane reactors, systems in which both reaction and separation occur simultaneously. The hydrogen is driven across the membrane by the pressure difference, depending on the temperature, pressure and reactor length the methane can be completely converted and consequently very pure hydrogen is produced. A membrane reactor has two components which can be optimized namely, the membrane and the reactor dimensions. This paper presents a study on optimization of membrane reactor for enhancing the overall production. A mathematical heterogeneous model of the reactor was used for optimization of reactor performance. Genetic algorithms were used as powerful methods for optimization of complex problems. (authors)

  6. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Directory of Open Access Journals (Sweden)

    Christopher John Davey

    2016-02-01

    Full Text Available Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s, Greater understanding of the compatibility between the polymer and inorganic phase(s, Improved methods for homogeneously dispersing the inorganic phase.

  7. Hybrid and Mixed Matrix Membranes for Separations from Fermentations.

    Science.gov (United States)

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-02-29

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase.

  8. Simulation of startup period of hydrogen isotope separation distillation column

    International Nuclear Information System (INIS)

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, Eh.P.

    2003-01-01

    Kinetic procedure for the mathematical simulation of start-up regime of rectification columns for molecular hydrogen isotope separation was developed. Nonstationary state (start-up period) of separating column for rectification of multi-component mixture was calculated. Full information on equilibrium and kinetic physicochemical properties of components in separating mixtures was used for the calculations. Profile of concentration of components by height of column in task moment of time was calculated by means of differential equilibriums of nonstationary mass transfer. Calculated results of nonstationary state of column by the 2 m height, 30 mm diameter during separation of the mixture: 5 % protium, 70 % deuterium, 25 % tritium were illustrated [ru

  9. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  10. On the use of ultrafiltration membranes in oily water separators

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, A.Y.; Nottegar, M. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; Veinot, D.E. [Defence Research Establishment Atlantic, Halifax, NS (Canada)

    2000-07-01

    Laboratory studies were conducted on the use of ultrafiltration membranes for oil water purification from ships bilges. Bilge water is a complex and highly variable mixture of several components such as seawater, lubricating oil, greases, marine diesel fuel, hydraulic oil, detergents, metal oxides, corrosion inhibitors, asbestos and other wastes. This laboratory study examined the performance of ultrafiltration membranes when separating oily waste water of similar composition to that of bilge water. Ultrafiltration membranes are nanoporous materials produced from ceramic, polymeric or metallic substrates. The ability of the membrane to retain macromolecules, colloids, sub-micron particles and oil emulsions depends on the size of the nanopores. The best results in this study occurred when upper and lower bounds on the membrane pore size were found to exist. It was determined that ultrafiltration is a viable separation process for the treatment of bilge water for compliance with overboard discharge regulations. 7 refs., 1 tab., 3 figs.

  11. Membrane reforming in converting natural gas to hydrogen: Production costs, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Iaquaniello, G; Cosenza, S [Technip-KTI S.p.A., via Castello della Magliana 75, Rome (Italy); Giacobbe, F; Morico, B; Farace, A [Processi Innovativi s.r.l., L' Aquila (Italy)

    2008-11-15

    This paper evaluates the production costs of a hybrid system based on a new membrane reforming MRR concept to convert natural gas to hydrogen and electricity. Membrane reforming with hydrogen-selective, palladium-silver membranes pushes the chemical equilibrium and allows higher methane conversions at lower temperature such as 650 C. The new MRR concept formed of a series of modules is put forward herein. Each module is made up of a reforming step and an external membrane separation unit. The estimates, based on utilities costs of a typical Italian refinery (end of 2006), show that the production costs for the hybrid system are 30% less than conventional tubular steam reforming technology, and 13% less than a gas-fired cogeneration plant coupled with a conventional H{sub 2} plant. (author)

  12. Polymeric membranes containing silver salts for propylene/propane separation

    Directory of Open Access Journals (Sweden)

    L. D. Pollo

    2012-06-01

    Full Text Available The separation of olefin/paraffin mixtures is one of the most important processes of the chemical industry. This separation is typically carried out by distillation, which is an energy and capital intensive process. One promising alternative is the use of facilitated transport membranes, which contain specific carrier agents in the polymer matrix that interact reversibly with the double bond in the olefin molecule, promoting the simultaneous increase of its permeability and selectivity. In this study, polyurethane (PU membranes were prepared using two different silver salts (triflate and hexafluorantimonate. The membranes were structurally characterized and their performance for the separation of propylene/propane mixtures was evaluated. The results of the characterization analyses indicated that the triflate salt was the most efficient carrier agent. The membranes containing this salt showed the best performance, reaching an ideal selectivity of 10 and propylene permeability of 188 Barrer.

  13. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  14. Emerging trends in chemical separations with liquid membranes: an overview

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1997-01-01

    It can be concluded that varied configurations of liquid membranes (LMs) will definitely play an important role in metal separations particularly in situations where other conventional chemical separation techniques fail to deliver goods. Potential areas include decontamination of biotoxic/ radioactive wastes, recovery of precious and strategic metals from lean/ extremely dilute solutions, add on to existing units, hydrometallurgy, etc

  15. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

    Directory of Open Access Journals (Sweden)

    Shah Nasrullah

    2016-09-01

    Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

  16. Separation of hydrogen isotopes for tritium waste removal

    International Nuclear Information System (INIS)

    Wilkes, W.R.

    1975-01-01

    A distillation cascade for separating hydrogen isotopes was simulated by means of a multicomponent, multistage computer code. A hypothetical test mixture containing equal atomic fractions of protium, deuterium and tritium, equilibrated to high temperature molecular concentrations was used as feed. The results show that a two-column cascade can be used to separate the protium from the tritium. Deuterium appears both in the protium and the tritium product streams. (auth)

  17. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  18. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  19. Closed-cell polymeric foam for hydrogen separation and storage

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Pokorný, P.; Bélafi-Bakó, K.

    2007-01-01

    Roč. 304, 1-2 (2007), s. 82-87 ISSN 0376-7388 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymeric foam * gas separation * hydrogen storage Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.432, year: 2007

  20. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  1. Membrane reactor technology for ultrapure hydrogen production

    NARCIS (Netherlands)

    Patil, Charudatta Subhash

    2005-01-01

    The suitability of polymer electrolyte membrane fuel cells (PEMFC) for stationary and vehicular applications because of its low operating temperatures, compactness, higher power density, cleaner exhausts and higher efficiencies compared to conventional internal combustion engines and gas turbines

  2. Study of Aging ion exchange membranes used in separation processes

    International Nuclear Information System (INIS)

    Bellakhal, N.; Ghalloussi, R.; Dammak, L.

    2009-01-01

    Presently, the most important application of ion exchange membranes (IEM) is the electrodialysis. This technique consists of a membrane separation using a series of anion exchange membranes alternately and cations, often used for the desalination of brackish water. These membranes are confronted with problems of aging. Indeed, the more they are used more physical and chemical properties will change. A comparative study of the behavior of both EMI and new but the same treatment is carried out by measuring a magnitude transfer characteristic: ion permeability. Ionic permeability is a physical quantity can have an idea about the selectivity of the membrane towards the charged species and the p orosity o f the membrane. It is a transport of ions (cations + anions) through the membrane. Thus, determining the ion permeability is to determine the diffusion flux of a strong electrolyte through a membrane separating two compartments (one containing electrolytes and other water initially ultrapure who will gradually electrolyte through the membrane). The measurement technique used is that by conductimetric detection because of the ease of its implementation and its accuracy. Thus, the variation of the concentration of the electrolyte is continuously monitored by measuring the conductivity of the solution diluted with time. The curves s = f (t) MEA and MEC new and used varying concentration of the electrolyte membranes show that let in less waste of strong electrolyte (NaCl and HCl) than new ones. This can be explained by: - The functional sites are combined with polyvalent ions present even in trace amounts in the solution process and become inactive. The membrane loses its hydrophilic character and turns into a film almost hydrophobic. - The chemical attacks and electrodialysis operations have degraded and eliminated much of the fixed sites leading to the same effects on the hydrophilic membrane. - These two assumptions have been reinforced by the extent of exchange

  3. Actinide separations by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution

  4. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  5. Separation of tritiated water using graphene oxide membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Motkuri, Radha K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Frost, Anthony P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bratton, Wesley [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-06-28

    In future nuclear fuel reprocessing plants and possibly for nuclear power plants, the cleanup of tritiated water will be needed for hundreds of thousands of gallons of water with low activities of tritium. This cleanup concept utilizes graphene oxide laminar membranes (GOx) for the separation of low-concentration (10-3-10 µCi/g) tritiated water to create water that can be released to the environment and a much smaller waste stream with higher tritium concentrations. Graphene oxide membranes consist of hierarchically stacked, overlapping molecular layers and represent a new class of materials. A permeation rate test was performed with a 2-µm-thick cast Asbury membrane using mixed gas permeability testing with zero air (highly purified atmosphere) and with air humidified with either H2O or D2O to a nominal 50% relative humidity. The membrane permeability for both H2O and D2O was high with N2 and O2 at the system measurement limit. The membrane water permeation rate was compared to a Nafion® membrane and the GOx permeation was approximately twice as high at room temperature. The H2O vapor permeation rate was 5.9 × 102 cc/m2/min (1.2 × 10-6 g/min-cm2), which is typical for graphene oxide membranes. To demonstrate the feasibility of such isotopic water separation through GOX laminar membranes, an experimental setup was constructed to use pressure-driven separation by heating the isotopic water mixture at one side of the membrane to create steam while cooling the other side. Several membranes were tested and were prepared using different starting materials and by different pretreatment methods. The average separation result was 0.8 for deuterium and 0.6 for tritium. Higher or lower temperatures may also improve separation efficiency but neither has been tested yet. A rough estimate of cost compared to current technology was also included as an indication of potential viability of the process. The relative process costs were based on the rough size of facility to

  6. Effects of ZnO Nanoparticle on the Gas Separation Performance of Polyurethane Mixed Matrix Membrane.

    Science.gov (United States)

    Soltani, Banafsheh; Asghari, Morteza

    2017-08-11

    Polyurethane (PU)-ZnO mixed matrix membranes (MMM) were fabricated and characterized for gas separation. A thermogravimetric analysis (TGA), a scanning electron microscope (SEM) test and an atomic-force microscopy (AFM) revealed that the physical properties and thermal stability of the membranes were improved through filler loading. Hydrogen Bonding Index, obtained from the Fourier transform infrared spectroscopy (FTIR), demonstrate that the degree of phase separation in PU-ZnO 0.5 wt % MMM was more than the neat PU, while in PU-ZnO 1.0 wt % MMM, the phase mixing had increased. Compared to the neat membrane, the CO₂ permeability of the MMMs increased by 31% for PU-ZnO 0.5 wt % MMM and decreased by 34% for 1.0 wt % ZnO MMM. The CO₂/CH₄ and CO₂/N₂ selectivities of PU-ZnO 0.5 wt % were 18.75 and 64.75, respectively.

  7. Recent advances on mixed matrix membranes for CO2 separation

    Institute of Scientific and Technical Information of China (English)

    Ming Wang; Zhi Wang; Song Zhao; Jixiao Wang; Shichang Wang

    2017-01-01

    Recent advances on mixed matrix membrane for CO2 separation are reviewed in this paper. To improve CO2 separation performance of polymer membranes, mixedmatrixmembranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized.Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eightmethods including silane coupling, Grignard treatment, incorporation of additive,grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application,mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixedmatrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.

  8. Simulation Model of Membrane Gas Separator Using Aspen Custom Modeler

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong-keun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Shin, Gahui; Yun, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-12-15

    Membranes are used to separate pure gas from gas mixtures. In this study, three different types of mass transport through a membrane were developed in order to investigate the gas separation capabilities of a membrane. The three different models typically used are a lumped model, a multi-cell model, and a discretization model. Despite the multi-cell model producing similar results to a discretization model, the discretization model was selected for this investigation, due to the cell number dependence of a multi-cell model. The mass transport model was then used to investigate the effects of pressure difference, flow rate, total exposed area, and permeability. The results showed that the pressure difference increased with the stage cut, but the selectivity was a trade-off for the increasing pressure difference. Additionally, even though permeability is an important parameter, the selectivity and stage cut of the membrane converged as permeability increased.

  9. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  10. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    International Nuclear Information System (INIS)

    Susanto, H.; Roihatin, A.; Aryanti, N.; Anggoro, D.D.; Ulbricht, M.

    2012-01-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 ± 4.2 o to 37.8 ± 4.2 o to 42.5 ± 4.3 o depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: ► We compared different methods to prepare low fouling ultrafiltration (UF) membranes.

  11. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Susanto, H., E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Roihatin, A.; Aryanti, N.; Anggoro, D.D. [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Ulbricht, M. [Lehrstuhl fuer Technische Chemie, Universitaet Duisburg-Essen, Germany, Universitaetstr. 5, Essen (Germany)

    2012-10-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 {+-} 4.2{sup o} to 37.8 {+-} 4.2{sup o} to 42.5 {+-} 4.3{sup o} depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: Black-Right-Pointing-Pointer We compared different methods to prepare low

  12. Membrane Separation of 2-Ethyl Hexyl Amine/1-Decene

    KAUST Repository

    Bawareth, Bander

    2012-12-01

    1-Decene is a valuable product in linear alpha olefins plants that is contaminated with 2-EHA (2-ethyl hexyl amine). Using organic solvent nanofiltration membranes for this separation is quite challengeable. A membrane has to be a chemically stable in this environment with reasonable and stable separation factor. This paper shows that Teflon AF 2400 and cellulose acetate produced interesting results in 1-decene/2-EHA separation. The separation factor of Teflon AF 2400 is 3 with a stable permeance of 1.1x10-2 L/(m2·h·bar). Likewise, cellulose acetate gave 2-EHA/1-decene separation factor of 2 with a lower permeance of 3.67x10-3 L/(m2·h·bar). A series of hydrophilic membranes were tested but they did not give any separation due to high degree of swelling of 2-EHA with these polymers. The large swelling causes the membrane to lose its diffusivity selectivity because of an increase in the polymer\\'s chain mobility.

  13. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu [Grambling State Univ., LA (United States); Siriwardane, Upali [Louisiana Tech Univ., Ruston, LA (United States)

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  14. Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2006-03-10

    In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential

  15. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  16. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  17. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang; Wang, Bo; Lai, Zhiping

    2012-01-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  18. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang

    2012-12-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  19. Liquid membranes: an emerging area in separation science

    International Nuclear Information System (INIS)

    Mohapatra, P.K.; Manchanda, V.K.

    2010-01-01

    Full text: With the ever increasing energy demands, nuclear energy is poised to make a significant contribution as one of the major clean energy resources. The public acceptability of the nuclear energy programme, however, depends largely on the management of radioactive waste by mitigating its long term adverse impact on the environment. Separation of long-lived radionuclides such as actinides and fission products from high level radioactive waste is a challenging task for the chemists involved at the back end of the nuclear fuel cycle. Amongst the various separation techniques, liquid membrane based separation methods are becoming increasingly popular due to factors such as ligand economy, high efficiency and low power consumption. Techniques such as emulsion liquid membrane (ELM) and hollow fibre supported liquid membrane (HFSLM) methods are reported to be more efficient than the solvent extraction based separation methods which have limitations of emulsion/third phase or crud formation. HFSLM technique offers the advantages of active transport, possible usage of exotic carriers and easy scale-up. For the past few years, Radiochemistry Division has been actively involved in the development of HFSLM separation processes for actinide partitioning, lanthanide/actinide separation, Sr/Y separation as well as recovery of radio-cesium from nuclear waste solutions. Similarly, ELM has major advantages of fast processing and large volume reduction factors. This lecture will give an overview of the HFSLM and ELM work carried out at Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai

  20. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Bo; Ho, W S Winston; Figueroa, Jose D; Dutta, Prabir K

    2015-06-23

    Separation and sequestration of CO2 emitted from fossil energy fueled electric generating units and industrial facilities will help in reducing anthropogenic CO2, thereby mitigating its adverse climate change effects. Membrane-based gas separation has the potential to meet the technical challenges of CO2 separation if high selectivity and permeance with low costs for large-scale manufacture are realized. Inorganic zeolite membranes in principle can have selectivity and permeance considerably higher than polymers. This paper presents a strategy for zeolite growth within the pores of a polymer support, with crystallization time of an hour. With a thin coating of 200-300 nm polydimethylsiloxane (PDMS) on the zeolite-polymer composite, transport data for CO2/N2 separation indicate separation factors of 35-45, with CO2 permeance between 1600 and 2200 GPU (1 GPU = 3.35 × 10(-10) mol/(m(2) s Pa)) using dry synthetic mixtures of CO2 and N2 at 25 °C. The synthesis process results in membranes that are highly reproducible toward transport measurements and exhibit long-term stability (3 days). Most importantly, these membranes because of the zeolite growth within the polymer support, as contrasted to conventional zeolite growth on top of a support, are mechanically flexible.

  1. Method of making a hydrogen transport membrane, and article

    Science.gov (United States)

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  2. Development of thin film inorganic membranes for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyo Jeong

    2012-08-22

    Membrane-based gas separation systems are noteworthy among technological options for carbon capture and storage (CCS), which is an important strategy to reduce CO{sub 2} emitted from point sources, e.g. mainly fossil power plants. In Oxyfuel-Combustion and Pre-Combustion of CCS power plant concepts oxygen separation from air is required. To meet this requirement oxygen transport membranes (OTM) consisting of gastight mixed ionic electronic conductors (MIEC) are proposed, which are associated with significantly lower efficiency losses compared with conventional air separation technologies. For cost effective application a maximum oxygen flux has to be achieved to reduce the membrane area. This can be met by reduction of membrane thickness. Therefore, the reduction of the membrane thickness to the micrometer range or even below is aimed in the present thesis. Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO) with fluorite crystal structure and La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) with perovskite crystal structure were developed as thin film membrane. CGO is expected to be more stable than other potential MIEC membranes in reducing atmospheres and to achieve sufficient oxygen permeation, e.g. in syngas production or petrol chemistry. LSCF is expected to be highly permeable with an acceptable chemical stability in Oxyfuel-combustion. Various porous ceramic substrates were prepared by vacuum-slip-casting and warm-pressing, and then characterized for porosity, gas-permeability and surface roughness. Subsequently, two approaches to fabrication of thin film membranes were investigated, which are wetchemical deposition (WCD) and physical vapor deposition (PVD). For WCD, nano-dispersions and colloidal sols were prepared for membrane top-layer and/or interlayer. When CGO nano-dispersion (NDCGO) was spin-coated as thin film membrane, the gastightness of sintered membranes was increased with decrease in spinning time and increase in concentration of

  3. Retrofit with membrane the Paraffin/Olefin separation

    Energy Technology Data Exchange (ETDEWEB)

    Motelica, A.; Bruinsma, O.S.L.; Kreiter, R.; Den Exter, M.J.; Vente, J.F. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-10-15

    Olefins, such as ethylene, propylene, and butadiene, are among the most produced intermediates in petrochemical industry. They are produced from a wide range of hydrocarbon feedstocks (ethane, propane, butane, naphtha, gas oil) via a cracking process. The last step in this process is the separation of olefins from other hydrocarbons, which is traditionally performed with distillation. As the physicochemical properties, such as volatility and boiling point, of the compounds are very similar, the purification becomes capital and energy intensive. For example, the top of an ethylene/ethane distillation column needs to be chilled to -30C and this requires large amount of electric energy consumption. The separation of butadiene from the C4-fraction is performed with the aid of an additional solvent. This solvent has to be regenerated at the cost of additional high temperature steam. To overcome these separation disadvantages of olefin/paraffin separation, different separation methods have been investigated and proposed in recent years. Suggested options are based on better heat integration of the overall process, or on novel separation systems such as Heat Integrated Distillation Columns, membrane separation, adsorption-desorption systems or on hybrid separation methods, for example, distillation combined with membrane separation.

  4. Separation of Gas Mixtures by New Type of Membranes – Dynamic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Setničková, Kateřina; Šíma, Vladimír; Petričkovič, Roman; Řezníčková Čermáková, Jiřina; Uchytil, Petr

    2016-01-01

    Roč. 160, FEB 29 (2016), s. 132-135 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * methane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  5. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  6. Two-dimensional materials for novel liquid separation membranes.

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-19

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  7. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M.(Lummus)

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort

  8. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  9. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  10. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  11. Determination of the deuterium separation factor between ammonia and hydrogen

    International Nuclear Information System (INIS)

    Ravoire, J.; Grandcollot, P.; Dirian, G.; Montel, J.

    1963-01-01

    The separation factors between hydrogen and gaseous ammonia (α g ) and between hydrogen and liquid ammonia (α l ) have been determined by experimental measurements and by calculations from spectrographic data, using existing data concerning the separation factor between liquid ammonia and gaseous ammonia (α v ). The values of α v , α g and α l are given in a table for a temperature range between - 70 deg C and + 40 deg C. The following equations have been established: log α g = 218 ± 1/T - 0.1841, from - 70 deg. C to + 40 deg. C. log α g = 216 ± 1/T + Q, valid at every temperature, Q being known as a function of temperature. log α l = 233 ± 1/T - 0.2283, from - 70 deg. C a -25 deg. C. (authors) [fr

  12. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices

    Energy Technology Data Exchange (ETDEWEB)

    Benicewicz, Brian C. [Rensselaer Polytechnic Institute, Troy, NY (United States). Department of Chemistry and Chemical Biology; Eisman, Glenn A. [Rensselaer Polytechnic Institute, Troy, NY (United States). Department of Materials Science and Engineering; Kumar, S. K. [Columbia Univ., New York, NY (United States). Department of Chemical Engineering; Greenbaum, S. G. [Hunter College, New York, NY (United States). Department of Physics

    2014-02-26

    Electrochemical hydrogen pumping using a high temperature (>100°C) PBI membrane was demonstrated under non-humidified and humidified conditions at ambient pressures. Relatively low voltages were required to operate the pump over a wide range of hydrogen flow rates. The advantages of the high temperature capability were shown by operating the pump on reformate feed gas mixtures containing various amounts of CO and CO2. Gas purity measurements on the cathode gas product were conducted and significant reductions in gas impurities were detected. The applicability of the PBI membrane for electrochemical hydrogen pumping and its durability under typical operating conditions was established with tests that lasted for nearly 4000 hours.

  13. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  14. Functionalized membranes for environmental remediation and selective separation

    Science.gov (United States)

    Xiao, Li

    Membrane process including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) have provided numerous successful applications ranging from drinking water purification, wastewater treatment, to material recovery. The addition of functional moiety in the membranes pores allows such membranes to be used in challenging areas including tunable separations, toxic metal capture, and catalysis. In this work, polyvinylidene fluoride (PVDF) MF membrane was functionalized with temperature responsive (poly(N-isopropylacrylamide), PNIPAAm) and pH responsive (polyacrylic acid, PAA) polymers. It's revealed that the permeation of various molecules (water, salt and dextran) through the membrane can be thermally or pH controlled. The introduction of PAA as a polyelectrolyte offers an excellent platform for the immobilization of metal nanoparticles (NPs) applied for degradation of toxic chlorinated organics with significantly increased longevity and stability. The advantage of using temperature and pH responsive polymers/hydrogels also includes the high reactivity and effectiveness in dechlorination. Further advancement on the PVDF functionalization involved the alkaline treatment to create partially defluorinated membrane (Def-PVDF) with conjugated double bounds allowing for the covalent attachment of different polymers. The PAA-Def-PVDF membrane shows pH responsive behavior on both the hydraulic permeability and solute retention. The sponge-like PVDF (SPVDF) membranes by phase inversion were developed through casting PVDF solution on polyester backing. The SPVDF membrane was demonstrated to have 4 times more surface area than commercial PVDF MF membrane, allowing for enhanced nanoparticles loading for chloro-organics degradation. The advanced functionalization method and process were also validated to be able to be scaled-up through the evaluation of full-scale functionalized membrane provided by Ultura Inc. California, USA. Nanofiltration (NF

  15. Preparation of hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Li, Shu-Guang

    1994-01-01

    Today, immersion precipitation is the most often used process for the preparation of gas separation membranes from polymeric materials. In this process a polymer solution in the form of a thin liquid film or hollow fiber is immersed in a nonsolvent bath where the polymer precipitates and forms a

  16. Substituted polynorbornenes as promising materials for gas separation membranes

    International Nuclear Information System (INIS)

    Finkelshtein, Evgenii Sh; Bermeshev, Maksim V; Gringolts, Mariya L; Starannikova, L E; Yampolskii, Yu P

    2011-01-01

    Published results concerning the synthesis and study of the transport characteristics of polynorbornenes are considered and analyzed. Conclusions are drawn regarding the effect of the backbone rigidity and the nature of side groups on the gas permeability level. The prospects of using addition organosilicon polynorbornenes as gas separating membrane materials are discussed.

  17. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  18. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltik, M.B.; Ozkan, L.; Jacobs, M.; van der Padt, A.

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process

  19. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  20. Gas separation properties of new polyoxadiazole and polytriazole membranes

    NARCIS (Netherlands)

    Hensema, E.R.; Hensema, E.R.; Borges-Sena, M.E.R.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    The gas separation properties of new aromatic poly-1,2,4-triazole and poly-1,3,4-oxadiazole membranes have been systematically investigated. Various functional groups were incorporated as pendent groups onto the polymer backbone of poly-1,2,4-triazoles. A wide permeability/selectivity spectrum was

  1. Design of a tubular ceramic membrane for gas separation in a PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Kamarudin, S.K.; Daud, W.R.W.; Mohammad, A.W.; Som, A.Md.; Takriff, M.S. [Department of Chemical and Process Engineering, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2004-01-01

    The objective of this study is to introduce a shortcut in the method of design for a tubular ceramic membrane (TCM) for gas separation. Generally, it explains the permeation of the multi component gas using cross flow models in a porous membrane and the surface area of the membrane required. The novel aspect of this method is that the expression for the length of the membrane is simplified to a number unit (NTU) and a height of transfer unit (HTU). The HTU term for porous membranes is characterised by the physical properties of the membrane; the feed flow rate, n{sub F}, membrane thickness, l{sub M}, feed pressure, P{sub F}, K the permeability of gas and the diameter of the membrane, D{sub M}. The integral for NTU of a porous membrane is the solution for the local permeate along the length of the membrane. It is found that, NTU mainly depends on the rejection stream, x{sub R,}, along the membrane and it describes the relative degree of separation. The Proton Electrolyte Membrane Fuel Cell (PEMFC) system is taken as the case study. CO is the main culprit in reducing the performance of the PEMFC and will act as a catalyst poison for the fuel cell anode at a concentration as low as 100 ppm. Thus, the reformate, from primary reforming, contains a significant amount of CO and must be purified. The effect of some important parameters such as temperature, pressure and the thickness of membrane to the degree of separation are presented in this paper. From the results, it can be seen that the system could reduce the CO concentration from 2000 - 500 ppm. Basically the TCM will operate, in series, with a pressure swing adsorber in order to further reduce the concentration of CO to less than 10 ppm before entering the fuel cell stack. However, this paper only focuses on the design of the TCM. Besides this, it is observed that the purity of the hydrogen increased from 72.8 - 96% (at {theta} = 0.5) after the membrane. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  2. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  3. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  4. Proposed configuration for ITER hydrogen isotope separation system (ISS)

    International Nuclear Information System (INIS)

    Lazar, A.; Brad, S.; Sofalca, N.; Vijulie, M.; Cristescu, I.; Doer, L; Wurster, W.

    2008-01-01

    Full text: The isotope separation system utilizes cryogenic distillation and catalytic reaction for isotope exchange to separate elemental hydrogen isotope gas mixtures. The ISS shall separate hydrogen isotope mixtures from two sources to produce up to five different products. These are: protium, effluent for discharge to the atmosphere, deuterium for fuelling, deuterium for NB injector (NBI) source gas, 50 % and 90% T fuelling streams. The concept of equipment 3D layout for the ISS main components were developed using the Part Design, Assembly Design, Piping Design, Equipment Arrangement and Plant Layout application from CATIA V5. The 3D conceptual layouts for ISS system were created having as reference the DDD -32-B report, the drawings 0028.0001.2D. 0100. R 'Process Flow Diagram'; 0029.0001.2D. 0200.R 'Process Instrumentation Diagram -1' (in the cold box); 0030.0001.2D. 0100. R 'Process Instrumentation Diagram -2' (in the hard shell confinement) and imputes from TLK team. The main components designed for ISS are: ISS cold box system (CB) with cryogenic distillation columns (CD) and recovery heat exchangers (HX), ISS hard shell containment (HSC) system with metals bellow pumps (MB) and chemical equilibrators (RC), valve box system, instrumentation box system, vacuum system and hydrogen expansion vessels. Work related to these topics belongs to the contract FU06-CT-2006-00508 (EFDA 06-1511) from the EFDA Technology Workprogramm 2006 and was done in collaboration with FZK Association team during the period January 2007 - September 2008. (authors)

  5. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  6. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana

    2018-02-26

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring bio-polyphenol morin. For the manufacture of this type of OSN membrane a crosslinked PAN support was coated by interfacial polymerization using morin as the monomer of the aqueous phase and terephtaloyl chloride as the monomer of the organic phase. These membranes showed an exceptional performance and resistance to NMP by having a a permeance of 0.3L/m2 h bar in NMP with a rejection of 96% of Brilliant Blue dye which has a molecular weight of 825.97g/mol, making these membranes attractive for harsh industrial separation processes due to their ease of manufacture, low cost, and excellent performance.

  7. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production.

    Science.gov (United States)

    Alique, David; Martinez-Diaz, David; Sanz, Raul; Calles, Jose A

    2018-01-23

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  8. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    . Recently, sulfonated SEBS became commercially available and has been extensively explored for membrane-mediated water purification technology. The sulfonated block copolymer creates a well developed nano-sale phase-separated morphologies composed of hydrophilic domains (sulfonated polystyrene) and hydrophobic domains (polyethylene/polybutylene). The hydrophilic domains determines transport properties (water transport, salt and/or ion rejection, etc) and the hydrophobic domains provides mechanical stability of the membrane. Unfortunately, a high degree of sulfonation of SEBS induces excessive swelling and deterioration of mechanical stability of the membrane. In an effort to develop robust polymeric membrane materials for water purification technology, phosphonic acid-functionalized SEBS membranes are investigated during this report period. In compare to sulfonated polymers, the corresponding phosphonated polymers are known to swell less because of the formation of extensive hydrogen bonding networks between phosphonates. In addition to the expected better mechanical stability, phosphonated polymers has another advantage over sulfonated polymers for the use water purification membrane; each phosphonate can accommodate two ions while each sulfonate accommodates only one ion. Membrane properties (ion type, ionic density, etc) of new membranes will be studied and their separation performance will be evaluated in water purification and desalination process. Through systematic study of the relationship of chemical structure–surface property–membrane performance, we aim to better understand the nature of membrane fouling and develop more fouling-resistant water purification membranes. The basic understanding of this relationship will lead to the development of advanced membrane materials which can offer a solution to environmentally sustainable production of fresh water.

  9. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  10. Membrane Modeling, Simulation and Optimization for Propylene/Propane Separation

    KAUST Repository

    Alshehri, Ali

    2015-06-01

    Energy efficiency is critical for sustainable industrial growth and the reduction of environmental impacts. Energy consumption by the industrial sector accounts for more than half of the total global energy usage and, therefore, greater attention is focused on enhancing this sector’s energy efficiency. It is predicted that by 2020, more than 20% of today’s energy consumption can be avoided in countries that have effectively implemented an action plan towards efficient energy utilization. Breakthroughs in material synthesis of high selective membranes have enabled the technology to be more energy efficient. Hence, high selective membranes are increasingly replacing conventional energy intensive separation processes, such as distillation and adsorption units. Moreover, the technology offers more special features (which are essential for special applications) and its small footprint makes membrane technology suitable for platform operations (e.g., nitrogen enrichment for oil and gas offshore sites). In addition, its low maintenance characteristics allow the technology to be applied to remote operations. For these reasons, amongst other, the membrane technology market is forecast to reach $16 billion by 2017. This thesis is concerned with the engineering aspects of membrane technology and covers modeling, simulation and optimization of membranes as a stand-alone process or as a unit operation within a hybrid system. Incorporating the membrane model into a process modeling software simplifies the simulation and optimization of the different membrane processes and hybrid configurations, since all other unit operations are pre-configured. Various parametric analyses demonstrated that only the membrane selectivity and transmembrane pressure ratio parameters define a membrane’s ability to accomplish a certain separation task. Moreover, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is only defined by the feed composition

  11. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    Science.gov (United States)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  12. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.

    Science.gov (United States)

    Mazzuca, James W; Haut, Nathaniel K

    2018-06-14

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  13. Hydrogen isotope separation experience at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, M.W.

    1993-01-01

    Savannah River Site (SRS) is a sole producer of tritium for US Weapons Program. SRS has built Facilities, developed the tritium handling processes, and operated safely for the last forty years. Tritium is extracted from the irradiated reactor target, purified, mixed with deuterium, and loaded to the booster gas bottle in the weapon system for limited lifetime. Tritium is recovered from the retired bottle and recycled. Newly produced tritium is branded into the recycled tritium. One of the key process is the hydrogen isotope separation that tritium is separated from deuterium and protium. Several processes have been used for the hydrogen isotope separation at SRS: Thermal Diffusion Column (TD), Batch Cryogenic Still (CS), and Batch Chromatography called Fractional Sorption (FS). TD and CS requires straight vertical columns. The overall system separation factor depends on the length of the column. These are three story building high and difficult to put in glove box. FS is a batch process and slow operation. An improved continuous chromatographic process called Thermal Cycling Absorption Process (TCAP) has been developed. It is small enough to be about to put in a glove box yet high capacity comparable to CS. The SRS tritium purification processes can be directly applicable to the Fusion Fuel Cycle System of the fusion reactor

  14. Reforming and filtration Dual membrane for the production of hydrogen by cracking reaction

    International Nuclear Information System (INIS)

    Hafsaoui, J.

    2009-02-01

    In a context of rarefaction and increasing of prices of fossil energetic resources, it is necessary to diversify the energetic offer. Hydrogen seems to be one of the most promising vectors, although technological matters associated to its production slow down its development. In this context, the present work aims at elaborating a system able to produce pure hydrogen from hydrocarbon, and in particularly from methane. It is constituted of three membranes, which specific roles are reforming, separation and restitution of molecular hydrogen. The first membrane is porous and is made of a cermet BaCe 0.85 Y 0.15 O 3-α / nickel. The second one is dense and is elaborated either simply from BaCe 0.85 Y 0.15 O 3-α , or from the same cermet as the first membrane, depending whether the system operates in a galvanic or in a non-galvanic mode. The last one is of the same nature and morphology as the first one. The three membranes are fabricated and coupled one with the others by the process called co-tape-casting in organic solvent followed by a step of co-sintering. Hydrogen enters then in the porosity of the first membrane where it is oxidized when meeting with triple phases boundaries. In a non-galvanic system, protons and electrons can go through the second membrane, following the percolating proton and ion conducting paths, to reach the third membrane. In a galvanic system, electrons are transported toward the third membrane via an external circuit, which imposes a voltage. At the third membrane triple phase boundaries, electrons and protons recombine to form pure molecular hydrogen. These two systems galvanic and non galvanic have been designed and fabricated, and the motivation that has led to the choice of the materials used was given at each step of the process. Thanks to the comprehension of the different phenomena taking place during operating conditions, a rather optimized process leading to a system of production and purification of hydrogen was realized

  15. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha; Zhang, Chen; Koros, William J.; Xu, Liren

    2013-01-01

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized

  16. Recovery of hydrogen from impurities using a palladium membrane reactor

    International Nuclear Information System (INIS)

    Willms, R.S.; Okuno, K.

    1993-01-01

    One of the important steps in processing the exhaust from a fusion reactor is recovering tritium which is incorporated into molecules such as water and methane. One device which may prove to be very effective for this purpose is a palladium membrane reactor. This is a reactor which incorporates a Pd/Ag membrane in the reactor geometry. Reactions such as water gas shift, steam reforming and methane cracking can be carried out over the reactor catalyst, and the product hydrogen can be simultaneously removed from the reacting mixture. Because product is removed, greater than usual conversions can be obtained. In addition ultrapure hydrogen is produced, eliminating the need for an additional processing step. A palladium membrane reactor has been built and tested with three different catalysts. Initial results with a Ni-based catalyst show that it is very effective at promoting all three reactions listed above. Under the proper conditions, hydrogen recoveries approaching 100% have been observed. This study serves to experimentally validate the palladium membrane reactor as potentially important tool for fusion fuel processing

  17. Novel Concept For Hydrogen And CO2 Separation

    International Nuclear Information System (INIS)

    Adam Campen; Kanchan Mondal; Tomasz Wiltowski; Tomasz Wiltowski

    2006-01-01

    The process was developed for the separation of hydrogen from coal gasification based syngas components for end uses such as clean energy production. The process is flexible such that it can be used within the gasifier to separate hydrogen or as a separate unit process, depending on the requirements of the process design. The basic idea of the research was to design and apply solids to be used in a fixed bed reactor that will increase the hydrogen yield as well as capture greenhouse gases in its matrix through reaction. The end product envisioned in this process is pure hydrogen. The spent solids were then regenerated thermo neutrally while releasing sequestration-ready carbon dioxide. The research involved the validation of the process along with the evaluation of the process parameters to maximize the hydrogen content in the product stream. The effect of sulfur (present as H 2 S) in the product stream on the process efficiency was also evaluated. Most importantly, the solids were designed such that they have the maximum selectivity to the beneficial reactions while maintaining their structure and activity through the reaction-regeneration cycles. Iron (created by reduction of hematite with syngas) was selected as the Boudouard catalyst and CaO was selected as the carbon dioxide removal material. Thermogravimetric (TG) and Temperature Programmed Reduction (TPR) Analysis were utilized to evaluate the reaction rate parameters, and capacity for CO 2 . Specially synthesized CaO (wherein the surface properties were modified) was found to provide better capacity and reaction rates as compared to commercially available CaO. In addition, these specially synthesized CaO-based sorbent showed lower deactivation over multiple cycles. Experiments were also performed with different compositions of syngas to identify the optimal conditions for pure H 2 production. Finally, simultaneous coal gasification and hydrogen enrichment experiments were conducted. It was found that for a

  18. Large scale gas chromatographic demonstration system for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Cheh, C.H.

    1988-01-01

    A large scale demonstration system was designed for a throughput of 3 mol/day equimolar mixture of H,D, and T. The demonstration system was assembled and an experimental program carried out. This project was funded by Kernforschungszentrum Karlsruhe, Canadian Fusion Fuel Technology Projects and Ontario Hydro Research Division. Several major design innovations were successfully implemented in the demonstration system and are discussed in detail. Many experiments were carried out in the demonstration system to study the performance of the system to separate hydrogen isotopes at high throughput. Various temperature programming schemes were tested, heart-cutting operation was evaluated, and very large (up to 138 NL/injection) samples were separated in the system. The results of the experiments showed that the specially designed column performed well as a chromatographic column and good separation could be achieved even when a 138 NL sample was injected

  19. Separation of gases through gas enrichment membrane composites

    Science.gov (United States)

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  20. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  1. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  2. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    International Nuclear Information System (INIS)

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q 2 ) must be separated from an inert gas such as He, Ar and N 2 . Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q 2 from N 2 . Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q 2 pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies

  3. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    Science.gov (United States)

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  4. Carbon Nano tubes Based Mixed Matrix Membrane for Gas Separation

    International Nuclear Information System (INIS)

    Sanip, S.M.; Ismail, A.F.; Goh, P.S.; Norrdin, M.N.A.; Soga, T.; Tanemura, M.; Yasuhiko, H.

    2011-01-01

    Carbon nano tubes based mixed matrix membrane (MMM) was prepared by the solution casting method in which the functionalized multi walled carbon nano tubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt % on the gas separation properties were looked into. The morphologies of the MMM also indicated that at 0.7 % loading of f- MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity. (author)

  5. Supported liquid inorganic membranes for nuclear waste separation

    Science.gov (United States)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  6. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  7. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  8. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Wei-Heng Shih; Qiang Zhao; Tejas Patil

    2002-01-01

    The authors propose to use microporous silica as a suitable candidate for CO(sub 2)/N(sub 2) separation because the pore size is less than 10(angstrom). If a CO(sub 2)adsorbent is added to the microporous silica, the adsorption of CO(sub 2) can block the passage of N(sub 2) and an effective CO(sub 2)/N(sub 2) separator will be found. It was first demonstrated that microporous silica could be synthesized. The microporous silica was then impregnated with Ba(OH)(sub 2). The results of GC study showed that at temperatures between 50 C and 90 C, Ba-doped microporous silica can separate CO(sub 2) from N(sub 2) and the idea of a microporous membrane for CO(sub 2)/N(sub 2) separation is feasible. The new result gives strong support to the proposed research that was outlined in the Phase II proposal. They hope to be able to continue the research and build an effective CO(sub 2)/N(sub 2) membrane separator in the Phase II of this project

  9. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  10. Ionic Liquid Membranes for Carbon Dioxide-Methane Separation

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Schauer, Jan; Petričkovič, Roman; Setničková, Kateřina; Suen, S.Y.

    2011-01-01

    Roč. 383, 1-2 (2011), s. 262-271 ISSN 0376-7388 R&D Projects: GA ČR GA104/09/1165; GA ČR GCP106/10/J038; GA MŠk ME 889 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40500505 Keywords : ionic liquid membrane * gas separation * gas transport Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.850, year: 2011

  11. Nanoporous Membrane Technologies for Pathogen Collection, Separation, and Detection

    National Research Council Canada - National Science Library

    Lee, Sang W; Shang, Hao; Lee, Gil U; Griffin, Matthew T; Fulton, Jack

    2003-01-01

    Partial contents: Nanoporous Membranes, Membrane Chemistries, Characterization of Membrane Chemistries,Protein Fouling, Collector,Gas and Liquid Permeabilities, Membrane Permeabilities in the Presence of Water...

  12. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  13. Hydrothermally stable molecular separation membranes from organically linked silica

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A highly hydrothermally stable microporous network material has been developed that can be applied in energy-efficient molecular sieving. The material was synthesized by employing organically bridged monomers in acid-catalysed sol-gel hydrolysis and condensation, and is composed of covalently bonded organic and inorganic moieties. Due to its hybrid nature, it withstands higher temperatures than organic polymers and exhibits high solvolytical and acid stability. A thin film membrane that was prepared with the hybrid material was found to be stable in the dehydration of n-butanol at 150C for almost two years. This membrane is the first that combines a high resistance against water at elevated temperatures with a high separation factor and permeance. It therefore has high potential for energy-efficient molecular separation under industrial conditions, including the dehydration of organic solvents. The organically bridged monomers induce increased toughness in the thin film layer. This suppresses hydrolysis of Si-O-Si network bonds and results in a high resistance towards stress-induced cracking. The large non-hydrolysable units thus remain well incorporated in the surrounding matrix such that the material combines high (pore) structural and mechanical stability. The sol mean particle size was found to be a viable parameter to tune the thickness of the membrane layer and thus optimize the separation performance. We anticipate that other hybrid organosilicas can be made in a similar fashion, to yield a whole new class of materials with superior molecular sieving properties and high hydrothermal stability.

  14. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  15. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  16. Next-generation TCAP hydrogen isotope separation process

    International Nuclear Information System (INIS)

    Heung, L. K.; Sessions, H. T.; Poore, A. S.; Jacobs, W. D.; Williams, C. S.

    2008-01-01

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed. (authors)

  17. Preparation of a Facilitated Transport Membrane Composed of Carboxymethyl Chitosan and Polyethylenimine for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Jiang-Nan Shen

    2013-02-01

    Full Text Available The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf ultrafiltration membranes as support layer for the separation of CO2/N2 mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO2 gas is 3.6 × 10−7 cm3 cm−2 s−1 cmHg−1 and the corresponding separation factor for CO2 and N2 gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10−4 cm3 cm−2 s−1 cmHg−1 for CO2 gas and a separation factor of 325 for CO2/N2 mixtures at the same feed pressure. This indicates that the CO2 separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO2/N2 mixture separation.

  18. Study of hydrogen isotopes super permeation through vanadium membrane on 'Prometheus' setup

    International Nuclear Information System (INIS)

    Musyaev, R. K.; Yukhimchuk, A. A.; Lebedev, B. S.; Busnyuk, A. O.; Notkin, M. E.; Samartsev, A. A.; Livshits, A. I.

    2008-01-01

    To develop the membrane pumping technology by means of superpermeable membranes at RFNC-VNIIEF in the 'Prometheus' setup, the experiments on superpermeation of hydrogen isotopes through metal membranes were carried out. The experimental results on superpermeation of thermal atoms of hydrogen isotopes including tritium through a cylindrical vanadium membrane are presented. The possibility of effective pumping, compression and recuperation of hydrogen isotopes by means of superpermeable membrane was demonstrated. The evaluation of membrane pumping rates and asymmetry degree of pure vanadium membrane was given. The work was performed under the ISTC-2854 project. (authors)

  19. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  20. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  1. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  2. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1988-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current of the extraction side stands for the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the charging electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the time lag of tritium and hydrogen permeation. For annealed specimens at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9% cold-worked specimens at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  3. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1987-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electro-chemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current on the extraction side is produced by the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the potentiostatic current, and that of permeated tritium was determined by measuring the radioactivity of the electrolyte sampled from the anodic side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the cathodic electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the tritium and hydrogen permeation by using time lag technique. For annealed iron at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9 % cold-worked iron at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  4. Cross-linked polymeric membranes for carbon dioxide separation

    Science.gov (United States)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  5. Separation Process by Porous Membranes: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Acto de Lima Cunha

    2014-07-01

    Full Text Available A major problem associated with the membrane separation processes is the permeate flux drop, limiting the widespread of industrial application of this process. This occurs due to the accumulation of solute concentration near the membrane surface. An exact quantification of the concentration polarization as a function of process conditions is essential to estimate the system performance satisfactorily. In this sense, this work aims to predict the behavior of the concentration polarization boundary layer along the length of a permeable tubular membrane, over various operation conditions. The numerical solution of the Navier-Stokes equation, coupled to Darcy's and mass transfer equations, is obtained by the commercial software ANSYS CFX 12, considering a two-dimensional computational domain. The study evaluates the effects of axial Reynolds and Schmidt numbers on the concentration polarization boundary layer thickness during the cross-flow filtration process. Numerical results have shown that the mathematical model is able to predict the formation and growth of the concentration polarization boundary layer along the length of the tubular membrane.

  6. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  7. High throughput screening of Pd-alloys for H2 separation membranes studied by hydrogenography and CVM

    Energy Technology Data Exchange (ETDEWEB)

    Westerwaal, R.J.; Dam, B. [Delft University of Technology, Department of Chemical Engineering, Materials for Energy Conversion and Storage, Julianaweg 136, 2628 BL Delft (Netherlands); Den Besten, C.; Slaman, M. [Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Nanuc, D.E.; Boettger, A.J. [Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Haije, W.G. [Energy research Centre of The Netherlands, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2011-01-15

    The search for and development of stable Pd-based membranes for hydrogen separation applications with resistance to hydrogen embrittlement and cracking is a challenging and time-consuming task. Membrane failure is most often caused by the occurrence of the {alpha}-{beta} phase transition during hydrogen absorption and desorption by the Pd-alloy below the critical temperature. By finding a suitable alloy with a critical temperature below room temperature, the membrane lifetime can be extended tremendously. Here we present a combinatorial approach that enables the fast screening of phase transitions in multi-component Pd-alloys for hydrogen separation membranes by experiments and thermodynamic calculations. The method is applied to the well-documented Pd-Cu alloy compositions. Hydrogenography, a compositional gradient thin film technique, is used to experimentally investigate the alloy compositions. Using a new phenomenological method to determine the critical temperature from hydrogenography measurements, we show that the experimental results and the calculations, using the Cluster Variation Method (CVM), agree well with the phase boundaries and critical temperatures reported in literature. Our results show that the combined capabilities of hydrogenography and CVM enable an efficient screening of promising multi-component alloys for which thermodynamic data are scarce or absent.

  8. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-01-01

    technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic

  9. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  10. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  11. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    Science.gov (United States)

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  12. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    Science.gov (United States)

    Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.

    2017-05-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.

  13. A distributed dynamic model of a monolith hydrogen membrane reactor

    International Nuclear Information System (INIS)

    Michelsen, Finn Are; Wilhelmsen, Øivind; Zhao, Lei; Aasen, Knut Ingvar

    2013-01-01

    Highlights: ► We model a rigorous distributed dynamic model for a HMR unit. ► The model includes enough complexity for steady-state and dynamic analysis. ► Simulations show that the model is non-linear within the normal operating range. ► The model is useful for studying and handling disturbances such as inlet changes and membrane leakage. - Abstract: This paper describes a distributed mechanistic dynamic model of a hydrogen membrane reformer unit (HMR) used for methane steam reforming. The model is based on a square channel monolith structure concept, where air flows adjacent to a mix of natural gas and water distributed in a chess pattern of channels. Combustion of hydrogen gives energy to the endothermic steam reforming reactions. The model is used for both steady state and dynamic analyses. It therefore needs to be computationally attractive, but still include enough complexity to study the important steady state and dynamic features of the process. Steady-state analysis of the model gives optimum for the steam to carbon and steam to oxygen ratios, where the conversion of methane is 92% and the hydrogen used as energy for the endothermic reactions is 28% at the nominal optimum. The dynamic analysis shows that non-linear control schemes may be necessary for satisfactory control performance

  14. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  15. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO 2 separation

    KAUST Repository

    Wu, Yingzhen

    2018-06-01

    Water-swollen hydrogel membranes are good candidates for CO2 separations due to the favorable solubility of CO2 in water. However, the excessive amount of water often causes the poor mechanical property and low selectivity. Herein, we propose a bioadhesion-inspired method to construct robust and high-performance CO2 separation membranes via in situ generation of polydopamine (PDA) nanoaggregates within poly (vinyl alcohol) (PVA) matrix. PDA nanoaggregates entangled with PVA chains and formed hydrogen bonding with hydroxyl groups from PVA chains. Physical cross-linking occurred between PVA chains and PDA nanoaggregates. Compared with the PVA membrane, the PVA-PDA hybrid membrane with the dopamine content of 0.5mol% exhibited a 1.7-fold increase in tensile strength and a 2.2-fold increase in the tensile modulus. The membranes were used for CO2/CH4 separation. The physical cross-linking resulted in a PVA chain rigidification region around PDA nanoaggregates, which hindered the penetration of larger-size gas molecules and thus enhancing the CO2/CH4 selectivity. Moreover, the abundant amine groups from PDA nanoaggregates could facilitate CO2 transport. The optimized hybrid hydrogel membrane exhibited CO2/CH4 selectivity of 43.2, which was 43.85% higher than that of the PVA membrane. The bioadhesion-inspired method opens up new opportunities to exploit the potential application of hydrogel membranes.

  16. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    Science.gov (United States)

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  17. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  18. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  19. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian; Koros, William J.; Johnson, J.R.; Karvan, Oguz

    2013-01-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  20. Polymeric membrane systems of potential use for battery separators

    Science.gov (United States)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  1. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  2. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Hydrogen selective membrane for the natural gas system. Development of CO{sub 2}-selective biogas membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vestboe, A.P.

    2012-02-15

    The project started as a literature study and technology development project for a hydrogen selective membrane for the natural gas system. The introduction of hydrogen (for example produced from wind turbines by surplus electricity) in the gas system makes it possible to store energy which can be selectively used with high energy conversion in fuel cells directly located at the end users. In order to make this possible, it is necessary to have a separating unit that can selectively remove hydrogen from the gas mixture and deliver it as fuel to the electrical generator (a fuel cell). In the project, several existing technologies were evaluated with regard to the application in view. It was concluded that while other technologies are ripe, they are costly in energy and unsuitable for the relatively low capacity application that are in question close to the end users. Membrane technology was evaluated to be the most suitable, although the technology is still under development in many cases. In the project it was found that metallic membranes in the form of palladium coated stainless discs would answer the needs for the high purity needed. Laboratory development yielded discs that could separate hydrogen from natural gas, however, the flux was low compared to the needs of the application. It was found that at least 2 bar pressure difference of hydrogen would be needed to get a high enough flux. The way to achieve this pressure would necessitate a compressor which would consume an energy amount high enough to invalidate the concept. When concluding on the results and the study it was found that the direction of the project could be changed towards developing CO{sub 2}-selective membranes with the goal of developing membrane technology that could upgrade biogas by removing CO{sub 2}. The laboratory equipment and setup that were developed in the first part of the project could be used directly in this second part of the project. In this second part of the project it was

  4. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  5. Hybrid membrane--PSA system for separating oxygen from air

    Science.gov (United States)

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  6. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  7. Hydrocyclone Separation of Hydrogen Decrepitated NdFeB

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-11-01

    Full Text Available Hydrogen decrepitation (HD is an effective and environmentally friendly technique for recycling of neodymium-iron-boron (NdFeB magnets. During the HD process, the NdFeB breaks down into a matrix phase (Nd2Fe14BHx and RE-rich grain boundary phase. The grain boundary phase in the HD powder is <2 μm in size. Recycled NdFeB material has a higher oxygen content compared to the primary source material. This additional oxygen mainly occurs at the Rare Earth (RE rich grain boundary phase (GBP, because rare earth elements oxidise rapidly when exposed to air. This higher oxygen level in the material results in a drop in density, coercivity, and remanence of sintered NdFeB magnets. The particle size of the GBP is too small to separate by sieving or conventional screening technology. In this work, an attempt has been made to separate the GBP from the matrix phase using a hydrocyclone, and to optimise the separation process. HD powder, obtained from hard disk drive (HDD scrap NdFeB sintered magnets, was used as a starting material and passed through a hydrocyclone a total number of six times. The X-ray fluorescence (XRF analysis and sieve analysis of overflows showed the matrix phase had been directed to the underflow while the GBP was directed to the overflow. The optimum separation was achieved with three passes. Underflow and overflow samples were further analysed using an optical microscope and MagScan and matrix phase particles were found to be magnetic.

  8. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  9. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  10. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    Science.gov (United States)

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  11. Radioactive rare gas separation using a separation cell with two kinds of membrane differing in gas permeability tendency

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Ozaki, Osamu; Sato, Hajime; Kimura, Shoji; Miyauchi, Terukatsu.

    1977-01-01

    A separation cell embodying two kinds of membrane-porous and nonporous, i.e. differing in gas permeability - has a separation factor higher than possible with a conventional separation cell with a single kind of membrane. The performance of such separation cells and of cascades constituted thereof are analyzed theoretically and measured experimentally for different conditions of operation, to determine the applicability of the concept to the separation of rare gases from gaseous waste out of nuclear plants. Theoretical considerations indicate that, in a cascade composed of symmetric separation cells, the separation performance can be improved by recycling part of the effluent from a cell back through the same cell (recycling cascade). It is shown that its performance is better than with the arrangement of diverting another effluent several stages upstream. With the recycling cascade, the symmetric separation recycling rate is determined by the depletion separation and enrichment separation factors relevant to the respective membranes. The separation performance of a 9-stage recycling cascade composed of separation cells with silicone rubber tubular membranes and cellulose acetate tubular membranes is derived for a case of Kr separation from N 2 -Kr mixture. The experimental data coincide well with the analytical results. From both the experimental and the analytical results, it is found that the attainable separation coefficient per stage of the cascade comes to average approximately 0.97. (auth.)

  12. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  13. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  14. Investigation related to hydrogen isotopes separation by cryogenic distillation

    International Nuclear Information System (INIS)

    Bornea, A.; Zamfirache, M.; Stefanescu, I.; Preda, A.; Balteanu, O.; Stefan, I.

    2008-01-01

    Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)

  15. ITER hydrogen isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1990-01-01

    This paper presents integrated hydrogen Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar with the only major difference being the requirement for an additional large water distillation column for ALSB water detritiation. The extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600 g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180 g, which is less than the ITER single-failure release limit of 200 g. Further design optimization and isolation of components is expected to reduce the inventory further. (orig.)

  16. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  17. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren; Rungta, Meha; Koros, William J.

    2011-01-01

    materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation

  18. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-01-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from

  19. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  20. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  1. Synergistic production of hydrogen using fossil fuels and nuclear energy application of nuclear-heated membrane reformer

    International Nuclear Information System (INIS)

    Hori, M.; Matsui, K.; Tashimo, M.; Yasuda, I.

    2004-01-01

    Processes and technologies to produce hydrogen synergistically by the steam reforming reaction using fossil fuels and nuclear heat are reviewed. Formulas of chemical reactions, required heats for reactions, saving of fuel consumption or reduction of carbon dioxide emission, possible processes and other prospects are examined for such fossil fuels as natural gas, petroleum and coal. The 'membrane reformer' steam reforming with recirculation of reaction products in a closed loop configuration is considered to be the most advantageous among various synergistic hydrogen production methods. Typical merits of this method are: nuclear heat supply at medium temperature below 600 deg. C, compact plant size and membrane area for hydrogen production, efficient conversion of feed fuel, appreciable reduction of carbon dioxide emission, high purity hydrogen without any additional process, and ease of separating carbon dioxide for future sequestration requirements. With all these benefits, the synergistic production of hydrogen by membrane reformer using fossil fuels and nuclear energy can be an effective solution in this century for the world which has to use. fossil fuels any way to some extent while reducing carbon dioxide emission. For both the fossil fuels industry and the nuclear industry, which are under constraint of resource, environment and economy, this production method will be a viable symbiosis strategy for the coming hydrogen economy era. (author)

  2. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2011-09-01

    Full Text Available Composite inorganic membranes were synthesised for gas component separation of N2, CF4 and C3F6. Selectivities lower than Knudsen selectivities were obtained due to membrane defects. A composite ceramic membrane consisting of a ceramic support structure, a MFI intermediate zeolite layer and a Teflon top layer, was developed to improve separation.

  3. Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation

    KAUST Repository

    Wang, Chongqing

    2016-09-09

    Continuous ZIF-67 polycrystalline membranes with effective propylene/propane separation performances were successfully fabricated through the incorporation of zinc ions into the ZIF-67 framework. The separation factor increases from 1.4 for the pure ZIF-67 membrane to 50.5 for the 90% zinc-substituted ZIF-67 membrane.

  4. Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector

    International Nuclear Information System (INIS)

    Sjardin, M.; Damen, K.J.; Faaij, A.P.C.

    2006-01-01

    The membrane reactor is a novel technology for the production of hydrogen from natural gas. It promises economic small-scale hydrogen production, e.g. at refuelling stations and has the potential of inexpensive CO 2 separation. Four configurations of the membrane reactor have been modelled with Aspen plus to determine its thermodynamic and economic prospects. Overall energy efficiency is 84% HHV without H 2 compression (78% with compression up to 482bar). The modelling results also indicate that by using a sweep gas, the membrane reactor can produce a reformer exit stream consisting mainly of CO 2 and H 2 O (>90% mol ) suited for CO 2 sequestration after water removal with an efficiency loss of only 1% pt . Reforming with a 2MW membrane reactor (250 unit production volume) costs 14$/GJ H 2 including compression, which is more expensive than conventional steam reforming+compression (12$/GJ). It does, however, promise a cheap method of CO 2 separation, 14$/t CO 2 captured, due to the high purity of the exit stream. The well-to-wheel chain of the membrane reactor has been compared to centralised steam reforming to assess the trade-off between production scale and the construction of a hydrogen and a CO 2 distribution infrastructure. If the scale of centralised hydrogen production is below 40MW, the trade-off could be favourable for the membrane reactor with small-scale CO 2 capture (18$/GJ including H 2 storage, dispensing and CO 2 sequestration for 40MW SMR versus 19$/GJ for MR). The membrane reactor might become competitive with conventional steam reforming provided that thin membranes can be combined with high stability and a cheap manufacturing method for the membrane tubes. Thin membranes, industrial utility prices and larger production volumes (i.e. technological learning) might reduce the levelised hydrogen cost of the membrane reactor at the refuelling station to less than 14$/GJ including CO 2 sequestration cost, below that of large-scale H 2 production with

  5. Diffusion characteristics of specific metals at the high temperature hydrogen separation; Diffusionseigenschaften bestimmter Metalle bei der Hochtemperatur-Wasserstoffabtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Christian

    2010-09-07

    This paper evaluates the metals palladium, nickel, niobium, tantalum, titanium and vanadium according to their ability to separate hydrogen at high temperatures. This evaluation is chiefly based on a thorough consideration of the properties of diffusion for these metals. The various known hydrogen permeabilities of the metals in a temperature range from 300 to 800 C, as well as their physical and mechanical properties will be presented consistent with the current state of technology. The theory of hydrogen diffusion in metals and the mathematical basis for the calculation of diffusion will also be shown. In the empirical section of the paper, permeability measurements are taken in a temperature range of 400 to 825 C. After measurement, the formation of the oxide coating on these membranes is examined using a light-optical microscope. The results of these examinations allow a direct comparison of the different permeabilities of the various metals within the temperature range tested, and also allow for a critical evaluation of the oxide coating formed on the membranes. The final part of the paper shows the efficiency of these metals in the context of in-situ hydrogen separation in a biomass reformer. (orig.)

  6. Hydrogen recovery process

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  7. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    International Nuclear Information System (INIS)

    Ida, Jun-ichi; Yang, Zhaohui; Lin, Jerry Y.S.

    2002-01-01

    A new CO 2 semi-permeable dense inorganic membrane consisting of a porous metal phase and molten carbonate was proposed. A simple direct infiltration method was used to synthesize the metal-carbonate dual-phase membrane. Hermetic (gas-tight) dual phase membrane was successfully obtained. Permeation data showed that nitrogen or helium is not permeable through the membrane (only CO 2 , with O 2 can permeate through the membrane based on transport mechanism)

  8. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    Science.gov (United States)

    2015-10-13

    412TW-PA-15560 Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...TITLE AND SUBTITLE Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...density storage of gases remains a major technological hurdle for many fields. The U.S. Department of Energy (DOE), for example, reduced their hydrogen

  9. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Zhang,Chunjing; Zhong,Shian; Yang,Zhengpeng

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  10. Nanoporous MoS2 monolayer as a promising membrane for purifying hydrogen and enriching methane

    Science.gov (United States)

    Zhang, Yadong; Meng, Zhaoshun; Shi, Qi; Gao, Haiqi; Liu, Yuzhen; Wang, Yunhui; Rao, Dewei; Deng, Kaiming; Lu, Ruifeng

    2017-09-01

    We present a theoretical prediction of a highly efficient membrane for hydrogen purification and natural gas upgrading, i.e. laminar MoS2 material with triangular sulfur-edged nanopores. We calculated from first principles the diffusion barriers of H2 and CO2 across monolayer MoS2 to be, respectively, 0.07 eV and 0.17 eV, which are low enough to warrant their great permeability. The permeance values for H2 and CO2 far exceed the industrially accepted standard. Meanwhile, such a porous MoS2 membrane shows excellent selectivity in terms of H2/CO, H2/N2, H2/CH4, and CO2/CH4 separation (>103, >  103, >  106, and  >  104, respectively) at room temperature. We expect that the findings in this work will expedite theoretical or experimental exploration on gas separation membranes based on transition metal dichalcogenides.

  11. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  12. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  13. Separation of Peptides with Forward Osmosis Biomimetic Membranes

    OpenAIRE

    Bajraktari, Niada; Madsen, Henrik T.; Gruber, Mathias F.; Truelsen, Sigurd; Jensen, Elzbieta L.; Jensen, Henrik; H?lix-Nielsen, Claus

    2016-01-01

    Forward osmosis (FO) membranes have gained interest in several disciplines for the rejection and concentration of various molecules. One application area for FO membranes that is becoming increasingly popular is the use of the membranes to concentrate or dilute high value compound solutions such as pharmaceuticals. It is crucial in such settings to control the transport over the membrane to avoid losses of valuable compounds, but little is known about the rejection and transport mechanisms of...

  14. Separation of Peptides with Forward Osmosis Biomimetic Membranes

    DEFF Research Database (Denmark)

    Bajraktari, Niada; Madsen, Henrik T; Gruber, Mathias Felix

    2016-01-01

    Forward osmosis (FO) membranes have gained interest in several disciplines for the rejection and concentration of various molecules. One application area for FO membranes that is becoming increasingly popular is the use of the membranes to concentrate or dilute high value compound solutions...

  15. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  16. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Peinemann, Klaus-Viktor

    2010-01-01

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  17. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  18. Laser-induced separation of hydrogen isotopes in the liquid phase

    International Nuclear Information System (INIS)

    Beattie, W.; Freund, S.; Holland, R.; Maier, W.

    1980-01-01

    A process for separating hydrogen isotopes which comprises (A) forming a liquid phase of hydrogen-bearing feedstock compound at a temperature at which the spectral features of the feedstock compound are narrow enough or the absorption edges sharp enough to permit spectral features corresponding to the different hydrogen isotopes to be separated to be distinguished, (B) irradiating the liquid phase at said temperature with monochromatic radiation of a first wavelength which selectively or at least preferentially excites those molecules of said feedstock compound containing a first hydrogen isotope, and (C) subjecting the excited molecules to physical or chemical processes or a combination thereof whereby said first hydrogen isotope contained in said excited molecules is separated from other hydrogen isotopes contained in the unexcited molecules in said liquid phase

  19. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-07-01

    Full Text Available The development of multilayer composite membranes for CO2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO2 separation performance in the past 15–20 years. In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO2/CH4 separation, CO2/N2 and CO2/H2 separation were summarized with detailed data, and challenges facing for the CO2 separation using composite membranes, such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. Keywords: Composite membrane, CO2 separation, Membrane fabrication, Membrane aging, Long-term stability

  20. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.

    Science.gov (United States)

    Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu

    2017-08-03

    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.

  1. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  2. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation

    KAUST Repository

    Ning, Xue; Koros, William J.

    2014-01-01

    A commercial polyimide, Matrimid® 5218, was pyrolyzed under an inert argon atmosphere to produce carbon molecular sieve (CMS) dense film membranes for nitrogen/methane separation. The resulting CMS dense film separation performance was evaluated

  3. Investigation into periodic process of hydrogen isotope separation by counterflow method in the hydrogen-palladium system

    International Nuclear Information System (INIS)

    Andreev, B.M.; Selivanenko, I.L.; Vedeneev, A.I.; Golubkov, A.N.; Tenyaev, B.N.

    1999-01-01

    The key diagram and results of the investigation into working conditions of the pilot plant for hydrogen isotope separation embodying the concept of continuous counterflow separation in the hydrogen-palladium system are shown. The counterflow of phases in the plant is attained under the motion of palladium solid hydride phase relative to stationary blocks of flow rotation. The column separator is defined as section type one. The plant performs in periodic regime with accumulating vessels for light and heavy components of the separated mixture. Maximum concentration of the separated tritium ranged up to ∼ 96 % in the experiments of the deuterium-tritium separation. Minimum concentration of the residual tritium in the mixture ranged up to ∼ 0.1 %. The plant provides to reprocessing 4.5 moles of the gas a day [ru

  4. Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant

    International Nuclear Information System (INIS)

    Sanusi, Yinka S.; Mokheimer, Esmail M.A.; Habib, Mohamed A.

    2017-01-01

    Highlights: •A methane reforming reactor integrated to an oxy-combustion plant is proposed. •Co-production of power and hydrogen was investigated and presented. •Optimal thermo-economic operating conditions of the system were identified and presented. •The ion transport membrane oxygen separation unit has the highest capital cost. •The combustor has the highest exergy destruction. -- Abstract: The demand for hydrogen has greatly increased in the last decade due to the stringent regulations enacted to address environmental pollution concerns. Natural gas reforming is currently the most mature technology for large-scale hydrogen production. However, it is usually associated with greenhouse gas emissions. As part of the strategies to reduce greenhouse gas emissions, new designs need to be developed to integrate hydrogen production facilities that are based on natural gas reforming with carbon capture facilities. In this study, we carried out energy, exergy and economic analysis of hydrogen production in a steam methane reforming reactor integrated with an oxy-combustion plant for co-production of power and hydrogen. The results show that the overall system efficiency and hydrogen production efficiency monotonically increase with increasing the combustor exit temperature (CET), increasing the amount of hydrogen extracted and decreasing the auxiliary fuel added to the system. The optimal thermo-economic operating conditions of the system were obtained as reformer pressure of 15 bar, auxiliary fuel factor of 0.8 and hydrogen extraction factor of 0.6. The production cost of hydrogen using the proposed system, under these optimal operating conditions, is within the range suggested by the International Energy Agency (IEA). Further analysis shows that the capital cost of the membrane-air separation unit (ITM) has the major share in the total investment cost of the system and constitutes 37% of the total capital cost of the system at the CET of 1500 K. The exergy

  5. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  6. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  7. Study of mechanism of hydrogen diffusion in separation devices. Progress report for 1980-1983

    International Nuclear Information System (INIS)

    Lee, M.H.

    1983-01-01

    For the purpose of studying the mechanisms of hydrogen diffusion in separation devices e.g. transition-metal membranes, we have developed a microscopic dynamic model appropriate for describing the nonequilibrium statistical mechanics of hydrogen-in-a-metal. Using this model we have carried out a detailed analysis to obtain the autocorrelation function of density fluctuations in the model. Our model is built on the physical idea that, at low temperatures, spin clusters are the basic units or aggregates of transport. Our work can explain the reversed isotope effect in diffusion. We have also obtained an expression for the relative diffusivity, verifiable by experiments with tritium in metals. Our notion of spin clusters is novel. There is some evidence of their existence. The interstitial spin clusters are comparable to atomic and nuclear spin clusters, the only other natural spin clusters. Our demonstration of a long-time tail in the autocorrelation function is also novel. Diffusion can be anomalous if long time tails exist, a current topic in nonlinear behavior of fluids and solids. Our progress has been made possible by our development in the mathematical method of solving the generalized Langevin equation. This method is applicable to any time-dependent quantum many-body model. The underlying basis of this method is our discovery of a new orthogonalization process in Hilbert space, first since Gram and Schmidt over 100 years ago. Our process is simpler if Hilbert space is realized as is for all physical problems. To demonstrate the power and utility of our method we considered a well established model of metals, thereby discovering the existence of a low-frequency electronic mobility. This kind of intrinsic conductivity should exist in ensembles of all light particles, hence also relevant to hydrogen and its isotopes in metals

  8. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  9. Parameter study on Japanese proposal of ITER hydrogen isotope separation system

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Enoeda, Mikio; Tanaka, Shigeru; Ohokawa, Yoshinao; Ohara, Atsushi; Nagakura, Masaaki; Naito, Taisei; Nagashima, Kazuhiro.

    1991-01-01

    As part of Japanese design contribution in the ITER activity, conceptual design of an entire ITER tritium system and their safety analysis have been carried out through the three-year period since 1988. The tritium system includes the following subsystems; - Fuelling (gas puffing and pellet injection) subsystem, - Torus vacuum pumping subsystem, - Plasma exhaust gas purification subsystem, - Hydrogen isotope separation subsystem, - NBI gas processing subsystem, - Blanket tritium recovery subsystem, - Tritiated water processing subsystem, - Tritium safety subsystem. Hydrogen isotope separation system is a key subsystem in the ITER tritium system because it is connected to all above subsystems. This report describes an analytical study on the Japanese concept of hydrogen isotope separation system. (author)

  10. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  11. Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation

    NARCIS (Netherlands)

    Ingole, Pravin G.; Baig, Muhammad Irshad; Choi, Wook; An, Xinghai; Choi, Won Kil; Lee, Hyung Keun

    2017-01-01

    To improve the water vapor/gas separation the hydroxylated TiO2(OH-TiO2) nanopartilces have been synthesized and surface of polysulfone (PSf) hollow fiber membrane (HFM) has been coated as thin film nanocomposite (TFN) membranes. To remove the water vapor from mixture gas, hollow fiber membrane has

  12. Synthesis and separation properties of an α-alumina-supported high-silica MEL membrane

    NARCIS (Netherlands)

    Kosinov, N.; Hensen, E.J.M.

    2013-01-01

    A thin high-silica MEL membrane was synthesized on a porous a-alumina hollow fiber support by a secondary growth approach. The membrane quality was evaluated by permporometry, single-gas permeation and butane isomer separation. Comparison of the pervaporation performance of MEL membranes with a MFI

  13. CO2 separation from biogas with ceramic membranes

    International Nuclear Information System (INIS)

    Fassauer, Burkhardt; Richter, Hannes; Schwarz, Bjoern; Reger-Wagner, Norman; Kaemnitz, Susanne; Lubenau, Udo; Mothes, Raimund

    2015-01-01

    Biogas contains after the production of up to 55% CO 2 . In order to use biogas as a fuel or to feed it into the natural gas network, it must be purified before. Adsorption and scrubbing processes are primarily used technically. Membrane processes offer the advantage of continuous operation and a simple modular and flexible system design, which imply relatively low investment costs and low energy needs. Moreover, membrane systems can be started up and shut down quickly without any problems. Ceramic membranes are characterised by high stability (thermal, chemical, mechanical) and very high flows in comparison to polymeric membranes. [de

  14. Separation of tritiated water from water using composite membranes

    International Nuclear Information System (INIS)

    Duncan, J.; Nelson, D.

    1996-01-01

    Polymeric composite membranes are being developed to remove tritium from contaminated water at DOE sites. Industrial membrane systems are being developed that have proven to be energy efficient, and membrane technologies such as reverse-osmosis have been well developed for desalination and other industrial/municipal applications. Aromatic polyphosphazene membranes are being investigated because they have excellent radiological, thermal, and chemical stability. The FY 1996 effort is directed toward delineating a potential mechanism, providing a statistical approach to data acquisition, refining a mass balance, and designing a staged array module

  15. Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

    Science.gov (United States)

    Ma, Xiaoli

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H 8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H 6/C3H8 separation properties of MFI zeolite membrane and CMS membrane. MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H 6/C3H8 mixture separation. CMS membranes were synthesized by coating/pyrolysis method on mesoporous gamma-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H 6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N 2 and C3H6 and C3H6/C 3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores. CMS membranes demonstrate excellent C3H6/C 3H8 separation

  16. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  17. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Franglin [Univ. of South Carolina, Columbia, SC (United States); Sholl, David [Georgia Inst. of Technology, Atlanta, GA (United States); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Iyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2015-01-22

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  18. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2015-01-01

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  19. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  20. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  1. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  2. Novel Protic Ionic Liquid Composite Membranes with Fast and Selective Gas Transport Nanochannels for Ethylene/Ethane Separation.

    Science.gov (United States)

    Dou, Haozhen; Jiang, Bin; Xiao, Xiaoming; Xu, Mi; Tantai, Xiaowei; Wang, Baoyu; Sun, Yongli; Zhang, Luhong

    2018-04-25

    Protic ionic liquids (PILs) were utilized for the fabrication of composite membranes containing silver salt as the C 2 H 4 transport carrier to perform C 2 H 4 /C 2 H 6 separation for the first time. The intrinsic nanostructures of PILs were adopted to construct fast and selective C 2 H 4 transport nanochannels. The investigation of structure-performance relationships of composite membranes suggested that transport nanochannels (polar domains of PILs) could be tuned by the sizes of cations, which greatly manipulated activity of the carrier and determined the separation performances of membranes. The role of different carriers in the facilitated transport was studied, which revealed that the PILs were good solvents for dissolution and activation of the carrier due to their hydrogen bond networks and waterlike properties. The operating conditions of separation process were investigated systemically and optimized, confirming C 2 H 4 /C 2 H 6 selectivity was enhanced with the increase of silver salt concentration, the flow rate of sweep gas, and the feed ratio of C 2 H 4 to C 2 H 6 , as well as the decrease of the transmembrane pressure and operating temperature. Furthermore, the composite membranes exhibited long-term stability and obtained very competitive separation performances compared with other results. In summary, PIL composite membranes, which possess good long-term stability, high C 2 H 4 /C 2 H 6 selectivity, and excellent C 2 H 4 permeability, may have a good perspective in industrial C 2 H 4 /C 2 H 6 separation.

  3. Separation of Peptides with Forward Osmosis Biomimetic Membranes

    Science.gov (United States)

    Bajraktari, Niada; Madsen, Henrik T.; Gruber, Mathias F.; Truelsen, Sigurd; Jensen, Elzbieta L.; Jensen, Henrik; Hélix-Nielsen, Claus

    2016-01-01

    Forward osmosis (FO) membranes have gained interest in several disciplines for the rejection and concentration of various molecules. One application area for FO membranes that is becoming increasingly popular is the use of the membranes to concentrate or dilute high value compound solutions such as pharmaceuticals. It is crucial in such settings to control the transport over the membrane to avoid losses of valuable compounds, but little is known about the rejection and transport mechanisms of larger biomolecules with often flexible conformations. In this study, transport of two chemically similar peptides with molecular weight (Mw) of 375 and 692 Da across a thin film composite Aquaporin Inside™ Membrane (AIM) FO membrane was investigated. Despite the relative large size, both peptides were able to permeate the dense active layer of the AIM membrane and the transport mechanism was determined to be diffusion-based. Interestingly, the membrane permeability increased 3.65 times for the 692 Da peptide (1.39 × 10−12 m2·s−1) compared to the 375 Da peptide (0.38 × 10−12 m2·s−1). This increase thus occurs for an 85% increase in Mw but only for a 34% increase in peptide radius of gyration (Rg) as determined from molecular dynamics (MD) simulations. This suggests that Rg is a strong influencing factor for membrane permeability. Thus, an increased Rg reflects the larger peptide chains ability to sample a larger conformational space when interacting with the nanostructured active layer increasing the likelihood for permeation. PMID:27854275

  4. Use of reverse osmosis membranes for the separation of lemongrass essential oil and supercritical CO2

    Directory of Open Access Journals (Sweden)

    L.A.V. Sarmento

    2004-06-01

    Full Text Available Although it is still used very little by industry, the process of essential oil extraction from vegetable matrices with supercritical CO2 is regarded as a potentially viable technique. The operation of separating the extract from the solvent is carried out by reducing the pressure in the system. Separation by membranes is an alternative that offers lower energy consumption and easier operation than traditional methods of separation. Combining the processes essential oil extraction with supercritical CO2 and separation by membranes permits the separation of solvent and oil without the need for large variations in extraction conditions. This results in a large energy savings in the case of solvent repressurisation and reuse. In this study, the effectiveness of reverse osmosis membranes in separating lemongrass essential oil from mixtures with supercritical CO2 was tested. The effects of feed oil concentration and transmembrane pressure on CO2 permeate flux and oil retention were studied for three membrane models.

  5. Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes for Kr/Xe Separation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting; Feng, Xuhui; Elsaidi, Sameh K.; Thallapally, Praveen K.; Carreon, Moises A.

    2017-01-30

    Herein, we demonstrate that a prototypical type of metal organic framework, zeolitic imidazolate framework-8 (ZIF-8), in membrane form, can effectively separate Kr/Xe gas mixtures at industrially relevant compositions. The best membranes separated Kr/Xe mixtures with average Kr permeances as high as 1.5 × 10-8 ± 0.2 mol/m2 s Pa and average separation selectivities of 14.2 ± 1.9 for molar feed compositions corresponding to Kr/Xe ratio encountered typically in air. Molecular sieving, competitive adsorption, and differences in diffusivities were identified as the prevailing separation mechanisms. These membranes potentially represent a less-energy-intensive alternative to cryogenic distillation, which is the benchmark technology used to separate this challenging gas mixture. To our best knowledge, this is the first example of any metal organic membrane composition displaying separation ability for Kr/Xe gas mixtures.

  6. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures.

    Science.gov (United States)

    Altintas, Cigdem; Keskin, Seda

    2017-11-11

    Metal organic framework (MOF) membranes have been widely investigated for gas separation applications. Several MOFs have been recently examined for selective separation of C 2 H 6 . Considering the large number of available MOFs, it is not possible to fabricate and test the C 2 H 6 separation performance of every single MOF membrane using purely experimental methods. In this study, we used molecular simulations to assess the membrane-based C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 separation performances of 175 different MOF structures. This is the largest number of MOF membranes studied to date for C 2 H 6 separation. We computed adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs for C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 mixtures. Our results show that a significant number of MOF membranes are C 2 H 6 selective for C 2 H 6 /C 2 H 4 separation in contrast to traditional nanoporous materials. Selectivity and permeability of MOF membranes were compared with other membrane materials, such as polymers, zeolites, and carbon molecular sieves. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes exhibited higher gas permeabilities than zeolites and carbon molecular sieves. Examining the structure-performance relations of MOF membranes revealed that MOFs with cavity diameters between 6 and 9 Å, porosities lower than 0.50, and surface areas between 500-1000 m 2 g -1 have high C 2 H 6 selectivities. The results of this study will be useful to guide the experiments to the most promising MOF membranes for efficient separation of C 2 H 6 and to accelerate the development of new MOFs with high C 2 H 6 selectivities.

  7. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2018-01-01

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring

  8. Gas-separation membranes loaded with porous aromatic frameworks that improve with age.

    Science.gov (United States)

    Lau, Cher Hon; Konstas, Kristina; Thornton, Aaron W; Liu, Amelia C Y; Mudie, Stephen; Kennedy, Danielle F; Howard, Shaun C; Hill, Anita J; Hill, Matthew R

    2015-02-23

    Porosity loss, also known as physical aging, in glassy polymers hampers their long term use in gas separations. Unprecedented interactions of porous aromatic frameworks (PAFs) with these polymers offer the potential to control and exploit physical aging for drastically enhanced separation efficiency. PAF-1 is used in the archetypal polymer of intrinsic microporosity (PIM), PIM-1, to achieve three significant outcomes. 1) hydrogen permeability is drastically enhanced by 375% to 5500 Barrer. 2) Physical aging is controlled causing the selectivity for H2 over N2 to increase from 4.5 to 13 over 400 days of aging. 3) The improvement with age of the membrane is exploited to recover up to 98% of H2 from gas mixtures with N2 . This process is critical for the use of ammonia as a H2 storage medium. The tethering of polymer side chains within PAF-1 pores is responsible for maintaining H2 transport pathways, whilst the larger N2 pathways gradually collapse. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polymer-derived microporous ceramics for membranes and sensors for high temperature hydrogen purification and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Ravi Mohan

    2012-06-11

    The growing interest in the use of hydrogen as main fuel has increased the need for pure hydrogen (H{sub 2}) production and purification. There are several by-products (CO, H{sub 2}O, CO{sub 2}) associated with the production of hydrogen which might damage the production rate. Therefore, separation of hydrogen from other gases is an important step in the hydrogen production process. If H{sub 2} can be selectively removed from the product side during hydrogen production in membrane reactors, then it would be possible to achieve complete CO conversion in a single-step under high temperature conditions. The main goal of the present work is the high temperature H{sub 2} purification and sensing by applying polymer-derived ceramics. To prove the concept, the microporous SiBCN, Si{sub 3}N{sub 4} and SiCN ceramic membranes have been synthesized by the polymer-pyrolysis route and their performance for the hydrogen separation have been evaluated in tubular membranes as well as in planar chemiresistors. The synthesis of amorphous SiBCN ceramics has been realized through pyrolysis of poly(organoborosilazanes) in argon. Multilayered amorphous SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membranes with gradient porosity have been realized and assessed with respect to the thermal stability, pore-size distribution and H{sub 2}/CO permeance. N{sub 2}-adsorption measurement indicates micropores in the range of 0.68-0.73 nm for three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane. SEM characterization of three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane shows the thickness of SiBCN membrane layer is 2.8 {mu}m; gas permeance measurements of the membrane shows H{sub 2}/CO selectivity of about 10.5 and the H{sub 2} permeance of about 1.05 x 10{sup -8} mol m{sup -2}s{sup -1}Pa{sup -1}. The observed gas permeation properties point out that the transportation of gas molecules through the membrane is governed by both

  10. Membrane Separation of 2-Ethyl Hexyl Amine/1-Decene

    KAUST Repository

    Bawareth, Bander

    2012-01-01

    in this environment with reasonable and stable separation factor. This paper shows that Teflon AF 2400 and cellulose acetate produced interesting results in 1-decene/2-EHA separation. The separation factor of Teflon AF 2400 is 3 with a stable permeance of 1.1x10-2 L

  11. RF plasma-driven hydrogen permeation through a biased iron membrane

    International Nuclear Information System (INIS)

    Banno, T.; Waelbroeck, F.; Winter, J.

    1984-01-01

    The steady-state RF plasma-driven hydrogen permeation through an electrically biased iron membrane has been investigated as a function of the bias potential Vsub(M) for membrane temperatures in the range of 150-400 0 C. Vsub(M) has been gradually increased positively from the floating potential of the membrane. The permeation flux decreases when Vsub(M) increases at low voltages: positive hydrogen ions are repelled. The membrane temperature does not influence this effect measurably. The permeation flux starts to increase when Vsub(M) is raised higher, i.e. when energetic electrons strike the surface. This phenomenon shows a pronounced temperature dependence - the enhancement is largest for the lowest temperatures. The effect is interpreted in terms of an electron-induced dissociation of hydrogen molecules on the membrane surface. (orig.)

  12. pH-sensitive membranes for lithium separation

    International Nuclear Information System (INIS)

    Smolinska, Katarzyna; Bryjak, Marek; Wolska, Joanna; Kujawski, Wojciech

    2014-01-01

    Dielectric barrier discharge plasma was used to modify track etched poly(ethylene terephthalate) membranes followed by grafting of poly(acrylic acid) and copolymers of acrylic acid and di(ethylene glycol)methyl ether methacrylate. The evaluation by IR and XPS spectroscopies showed that both polymers were successfully grafted to the porous membranes. Determination of permeate fluxes pointed the membranes to have excellent responses to pH changes when grafting yield was not so high. When grafting exceeded 0.1 mg cm −2 stimuli response gel-filled membranes were formed that could be used for transport of alkaline ions. The best permselectivity was observed for poly(ethylene terephthalate) membranes grafted with 1:2 copolymer of acrylic acid and di(ethylene glycol)methyl ether methacrylate. The dialysis was more effectively facilitated for lithium than for potassium or sodium salts at solution of pH = 5.5. - Highlights: • Preparation of pore-filled stimuli response membranes that facilitate transport of alkaline salts. • pH controlled transport of alkaline salts. • Facilitation of lithium transport over sodium and potassium

  13. A review of recent advances in molecular simulation of graphene-derived membranes for gas separation

    Science.gov (United States)

    Fatemi, Seyyed Mahmood; Abbasi, Zeynab; Rajabzadeh, Halimeh; Hashemizadeh, Seyyed Ali; Deldar, Amir Noori

    2017-07-01

    To obtain an ideal membrane for gas separation the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have well-defined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. These attractive properties of graphene-derived membranes introduce them as appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions. The current effort has focused on two issues, including the review of the most newly progression on drilling holes in single graphene membranes for making ultrathin membranes for gas separation, and studying functionalized nanoporous sheet and graphene-derived membranes, including doped graphene, graphene oxide, fluorographene, and reduced graphene oxide from theoretical perspectives for making functional coatings for nano ultrafiltration for gas separation. We investigated the basic mechanism of separation by membranes derived from graphene and relevant possible applications. Functionalized nanoporous membranes as novel approach are characterized by low energy cost in realizing high throughput molecular-sieving separation.

  14. Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Meltem Yanilmaz

    2015-04-01

    Full Text Available Electrospun nanofiber membranes have been extensively studied as separators in Li-ion batteries due to their large porosity, unique pore structure, and high electrolyte uptake. However, the electrospinning process has some serious drawbacks, such as low spinning rate and high production cost. The centrifugal spinning technique can be used as a fast, cost-effective and safe technique to fabricate high-performance fiber-based separators. In this work, polymethylmethacrylate (PMMA/polyacrylonitrile (PAN membranes with different blend ratios were produced via centrifugal spinning and characterized by using different electrochemical techniques for use as separators in Li-ion batteries. Compared with commercial microporous polyolefin membrane, centrifugally-spun PMMA/PAN membranes had larger ionic conductivity, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. Centrifugally-spun PMMA/PAN membrane separators were assembled into Li/LiFePO4 cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using centrifugally-spun PMMA/PAN membrane separators showed superior C-rate performance compared to those using microporous polypropylene (PP membranes. It is, therefore, demonstrated that centrifugally-spun PMMA/PAN membranes are promising separator candidate for high-performance Li-ion batteries.

  15. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Servili, S.

    2008-01-01

    With the rapid development of industry, more and more waste gases are emitted into the atmosphere. In terms of total air emissions, CO 2 is emitted in the greatest amount, accounting for 99 wt% of the total air emissions, therefore contributing to global warming, the so-called 'Greenhouse Effect'. The recovery and disposal of CO 2 from flue gas is currently the object of great international interest. Most of the CO 2 comes from the combustion of fossil fuels in power generation, industrial boilers, residential and commercial heating, and transportation sectors. Consequently, in the last years' interest in hydrogen as an energy carrier has significantly increased both for vehicle fuelling and stationary energy production from fuel cells. The benefits of a hydrogen energy policy are the reduction of the greenhouse effect, principally due to the centralization of the emission sources. Moreover, an improvement to the environmental benefits can be achieved if hydrogen is produced from renewable sources, as biomass. The present paper provides an overview of the steam methane reforming (SMR) process and methodologies for performances improvement such as hydrogen removal, by selective permeation through a membrane or simultaneous reaction of the targeted molecule with a chemical acceptor, and equilibrium shift by the addition of a CO 2 acceptor to the reactor. In particular, attention was focused on the sorption-enhanced steam methane reforming (SE-SMR) process in which sorbents are added in order to enhance the reactions and realize in situ CO 2 separation. The major operating parameters of SE-SMR are described by the authors in order to project and then realize the innovative carbonation reactor developed in previous studies

  16. Carbon-coated ceramic membrane reactor for production of hydrogen via aqueous phase reforming of sorbitol

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2014-01-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of

  17. Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures

    Directory of Open Access Journals (Sweden)

    Nadine Schmeling

    2010-08-01

    Full Text Available Functionalized copolyimides continue to attract much attention as membrane materials because they can fulfill the demands for industrial applications. Thus not only good separation characteristics but also high temperature stability and chemical resistance are required. Furthermore, it is very important that membrane materials are resistant to plasticization since it has been shown that this phenomenon leads to a significant increase in permeability with a dramatic loss in selectivity. Plasticization effects occur with most polymer membranes at high CO2 concentrations and pressures, respectively. Plasticization effects are also observed with higher hydrocarbons such as propylene, propane, aromatics or sulfur containing aromatics. Unfortunately, these components are present in mixtures of high commercial relevance and can be separated economically by single membrane units or hybrid processes where conventional separation units are combined with membrane-based processes. In this paper the advantages of carboxy group containing 6FDA (4,4′-hexafluoroisopropylidene diphthalic anhydride -copolyimides are discussed based on the experimental results for non cross-linked, ionically and covalently cross-linked membrane materials with respect to the separation of olefins/paraffins, e.g. propylene/propane, aromatic/aliphatic separation e.g. benzene/cyclohexane as well as high pressure gas separations, e.g. CO2/CH4 mixtures. In addition, opportunities for implementing the membrane units in conventional separation processes are discussed.

  18. Study of ion separation through solid-supported liquid membrane

    International Nuclear Information System (INIS)

    Kang, Young Ho; Kim, Jung Do; Kim, Kyoung Ho

    1990-01-01

    The membranes used in this study consist of a microporous polymeric support with the solvent contraining alamine 336, Tri-N-Octyl phosphine oxide, Tri-N-butyl phosphate, Di-(2-ethylhexyl) phosphoric acid as a carrier within the pores by the capillary forces. When this liquid membrane is interposed between aqueous feed and product solutions, the carrier serving as a complexing agent, can pick up the uranium ions on the feed side of the membrane and carry them across the membrane by diffusion. In this study, the uranium flux through the solid-supported liquid membrane was analyzed as a function of carrier concentration and acidity of the feed solution for the carrier species. Also, the Gel-liquid extraction of uranium ions from aqueous solution was performed. The adsorbents were prepared by casting the polymer solution composed of polyvinyl chloride, TOPO, and additions. The extraction of uranyl nitrate ions has been investigated as a function of TOPO/PVC ratio, evaporation time, and the stability. The results show that is maybe possible to develop an alternative uranium purification process. (author)

  19. Tunable Nanocomposite Membranes for Water Remediation and Separations

    Science.gov (United States)

    Sierra, Sebastian Hernandez

    Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes. Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these responsive materials prevent the loss of nanomaterials to the environment and improve reactivity due to their larger surface areas, expanding their range of applications. The present work describes different techniques used to create nanocomposites based on poly(vinylidene fluoride) (PVDF) hollow fiber and flat sheet membranes, both thick sponge-like and thin. Due to their hydrophobicity, hollow fiber membranes were hydrophilized by a water-based green process of cross-linking polyvinylpyrrolidone (PVP) onto their surface. Commercial hydrophilic and hydrophilized lab-prepared membranes were subsequently functionalized with a poly(acrylic acid) (PAA) hydrogel through free radical polymerizations. This work advanced membrane functionalization, specifically flat sheet membranes, from lab-scale to full-scale by modifications of the polymerization procedures. The hydrogel functionalized membranes by redox polymerization showed an expected responsive behavior, represented by permeability variation at various pH values (4.0 ≤ pH ≤ 9.0), from 53.9 to 3.4 L/(m2EhEbar) and a change in effective pore size from 222 to 111 nm, being 3800 L/(m 2EhEbar) and 650 nm the former permeability and pore size values of the

  20. Membrane separation principle used for gas drying processes in fuel cells and life support systems

    International Nuclear Information System (INIS)

    Nigsch, H.A.; Fleck, W.U.

    1991-07-01

    Different membrane separation principles as applied to fuel cell powerplants and ECLSS are described. A new separator type that enables smaller weight and geometries and requires less energy than conventional mechanical separator techniques for space applications is presented. Module optimization and investigations concerning ECLSS applications are discussed. 5 refs

  1. High-flux membrane separation using fluid skimming dominated convective fluid flow

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    We here report on the separation of yeast cells, with micro-engineered membranes having pores that are typically five times larger than the cells. The separation is due to neither shear-induced diffusion, nor initial lift, but to an effect similar to fluid skimming. The separation performance is

  2. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.

  3. Photochemical hydrogen production through solar radiation by means of the membrane principle

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This report was written by Enelbert Broda from the University of Vienna for the UNESCO-Solar-Energy-Symposium in Geneva in 1976. Nuclear experts are considering a 'hydrogen economy' where H 2 serves as a fuel to make electricity, as a chemical reactant, as a metallurgical reductant and as a source of food. Now H 2 could also be made by photolysis of water. Theoretically, a quantum of green light carries enough energy for the reaction H 2 0 = H 2 + 0.5 0 2 . With long-wave light, photolysis could be achieved by combination of 2 quanta. Yet attempts to photolyze water, in presence of sensitizers (photocatalysts), have failed. In the last analysis, this is due to re-combination of the primary, highly reactive, products of the photochemical reaction. A solution of the problem is to be found by the spatial separation of the primary production by development of suitable membranes where these products, and therefore also the stable gases H 2 and 0 2 , come out on opposite sides. The feasibility of this 'membrane principle' has been shown in Nature for 3 giga-years. Using membranes, all photosynthetic cells (photosynthetic bacteria and plants) succeed in the photo-production of a reductant (in many cases at least ferredoxin in the reduced form) with a redox potential equal to that of H 2 in neutral solution (-0.4 v). The reductant can, but need not, be used by the cells for C0 2 assimilation. In man-made technology, the reducing power would be diverted as H 2 . Here it is not suggested to use or copy living cells. Rather their operation is to be studied so that technically useful membranes for water photolysis can be constructed abiotically. The scientific and practical aspects of large-scale photolytic H 2 production are discussed. (author)

  4. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2010-04-01

    Full Text Available This paper describes the fabrication of novel modified polyethylene (PE membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer batteries. The modified PE membrane via plasma modification process plays a critical role in improving wettability and electrolyte retention, interfacial adhesion between separators and electrodes, and cycle performance of lithium-ion polymer batteries. This paper suggests that the performance of lithium-ion polymer batteries can be greatly enhanced by the plasma modification of commercial separators with proper functional materials for targeted application.

  5. Development of natural rubber membranes for separation of methyl tert-butyl ether and methanol

    International Nuclear Information System (INIS)

    Nur Azrini Ramlee; Ghazali Mohd Nawawi; Khairul Zaman Dahlan

    2010-01-01

    As a new commercial process, membrane separation raises significant expectations in the process plant of the future and therefore this research was being initiated to develop and characterize pervaporation membrane based on natural rubber (NR). Natural Rubber SMR-L grade which was supplied by Malaysia Rubber Research Institute (MRRI) was used for the development of the membranes via interpenetrating polymer network (IPN) techniques. Polystyrene (PS) was used to modify the natural rubber to further improve their mechanical and chemical properties. The membranes were prepared with various blend ratios of natural rubber, polystyrene and divinyl benzene as cross linker with constant 1 % of dicumyl peroxide as the initiator. The developed membranes were then characterized to study the functional group presence, membranes morphology, crosslink density, tear strength, adsorption of the membranes and pervaporation separation of Methyl-Tert-Butyl-Ether (MTBE) and Methanol. Pervaporation process was conducted by using varies of MTBE concentration 10, 30, 50 and 70 wt % and at differ operation temperature, 25 degree Celsius and 55 degree Celsius. Separation performance of IPN NR/ PS membranes were based on the presented permeation flux and separation factor. Examination through Fourier Transform Infrared Spectroscopy (FTIR), determined crosslink density and tear strength, 6 series of IPN NR/ PS membranes were successfully developed using natural rubber. Observation from Scanning Electron Microscopy (SEM) showed that the membranes were dense and appropriated for the pervaporation process application. From the pervaporation of MTBE and Methanol, IPN NR/ PS membranes of series D4N30 shown low permeation flux of MTBE but high separation factor while D2N70 membranes was vice versa for both temperature of 25 degree Celsius and 55 degree Celsius. (author)

  6. Recent progress in molecular simulation of nanoporous graphene membranes for gas separation

    Science.gov (United States)

    Fatemi, S. Mahmood; Baniasadi, Aminreza; Moradi, Mahrokh

    2017-07-01

    If an ideal membrane for gas separation is to be obtained, the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have welldefined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. Graphene is made up of a hexagonal honeycomb lattice of carbon atoms with sp 2 hybridization state forming a one-atom-thick sheet of graphite. Following conversion of the honeycomb lattices into nanopores with a specific geometry and size, a nanoporous graphene membrane that offers high efficiency as a separation membrane because of the ultrafast molecular permeation rate as a result of its one-atom thickness is obtained. Applications of nanoporous graphene membranes for gas separation have been receiving remarkably increasing attention because nanoporous graphene membranes show promising results in this area. This review focuses on the recent advances in nanoporous graphene membranes for applications in gas separation, with a major emphasis on theoretical works. The attractive properties of nanoporous graphene membranes introduce make them appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions.

  7. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    to microfluidic designs involving protein delivery to biomimetic membranes developed for sensor and separation applications. Finally, an OMP functionality modulation with β-cyclodextrin (β-CD) was shown and revealed the protein potential application as a sensor. Moreover, the β-CD blocker may be used to prevent...... for industrial applications. Among them are the inherent fragility of lipid membranes, the challenge of up-scaling the effective membrane area and the quantification of the protein delivery to the lipid membrane which may determined the biomimetic membrane application. This PhD thesis addresses the above...

  8. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  9. Separation of gaseous air pollutants using membrane contactors

    Science.gov (United States)

    Sverak, T.; Bulejko, P.; Ostrezi, J.; Kristof, O.; Kalivoda, J.; Kejik, P.; Mayerova, K.; Adamcik, M.

    2017-10-01

    This work deals with the separation of CO2 gaseous pollutant from gas mixtures to a water solution using the laboratory contactor. The laboratory set process parameters showed the rate of carbon dioxide transition through the interface in a so promising level the contactor separators can be considered as a very promising pathway to reduce the content of this greenhouse gas from the air.

  10. Specific oriented metal-organic framework membranes and their facet-tuned separation performance.

    Science.gov (United States)

    Mao, Yiyin; Su, Binbin; Cao, Wei; Li, Junwei; Ying, Yulong; Ying, Wen; Hou, Yajun; Sun, Luwei; Peng, Xinsheng

    2014-09-24

    Modulating the crystal morphology, or the exposed crystal facets, of metal-organic frameworks (MOFs) expands their potential applications in catalysis, adsorption, and separation. In this article, by immobilizing the citrate modulators on Au nanoparticles and subsequently being fixed on solid copper hydroxide nanostrands, a well-intergrown and oriented HKUST-1 cube crystal membrane was formed at room temperature. In contrast, in the absence of Au nanoparticles, well-intergrown and oriented cuboctahedron and octahedron membranes were formed in water/ethanol and ethanol, respectively. The gas separation performances of these HKUST-1 membranes were tuned via their exposed facets with defined pore sizes. The HKUST-1 cube membrane with exposed {001} facets demonstrated the highest permeance but lowest gas binary separation factors, while the octahedron membrane with exposed {111} facets presented the highest separation factors but lowest permeance, since the window size of {111} facets is 0.46 nm which is smaller than 0.9 nm of {001} facets. Separation of 0.38 nm CO2 from 0.55 nm SF6 was realized by the HKUST-1 octahedron membrane. As a proof of concept, this will open a new way to design MOF-related separation membranes by facet controlling.

  11. Ethanol-water separation by pervaporation using silicone and polyvinyl alcohol membranes

    Directory of Open Access Journals (Sweden)

    Chinchiw, S.

    2006-09-01

    Full Text Available In this research, experiments were carried out to investigate the effects of operating parameters onthe pervaporation performance for the separation of ethanol-water solutions. Composite silicone membranessupported on polysulfone prepared with varied silicone contents and commercial polyvinyl alcohol (Pervap®2211, Sulzer membranes were used. The results showed that the composite silicone/polysulfone membranescoated with 3 wt% of silicone exhibited highest permeation flux with slightly lower separation factor forethanol. Furthermore, it was found that the composite silicone/polysulfone membranes were suitable for theseparation of ethanol from a dilute ethanol solutions. Both the separation factor and permeation flux of the composite membranes increased with increasing temperature and feed concentration. A membrane coated with a 7 wt% silicone gave highest separation factor of 7.32 and permeation flux of 0.44 kg/m2h at 5 wt% ethanol feed concentration and feed temperature of 70ºC. For polyvinyl alcohol membranes, the results showed that the membranes were suitable for the dehydration of concentrated ethanol solutions. The permeation flux increased and the separation factor for water decreased with increasing water feed concentration and temperature. The membrane gave highest separation factor of 248 and permeation flux of 0.02 kg/m2h at 5 wt% water feed concentration and feed temperature of 30ºC.

  12. Separation of Peptides with Forward Osmosis Biomimetic Membranes

    DEFF Research Database (Denmark)

    Bajraktari, Niada; Madsen, Henrik T; Gruber, Mathias Felix

    2016-01-01

    such as pharmaceuticals. It is crucial in such settings to control the transport over the membrane to avoid losses of valuable compounds, but little is known about the rejection and transport mechanisms of larger biomolecules with often flexible conformations. In this study, transport of two chemically similar peptides...

  13. A Membrane Gas Separation Experiment for the Undergraduate Laboratory.

    Science.gov (United States)

    Davis, Richard A.; Sandall, Orville C.

    1991-01-01

    Described is a membrane experiment that provides students with experience in fundamental engineering skills such as mass balances, modeling, and using the computer as a research tool. Included are the experimental design, theory, method of solution, sample calculations, and conclusions. (KR)

  14. CO2 sorption of a ceramic separation membrane

    NARCIS (Netherlands)

    Wormeester, Herbert; Benes, Nieck Edwin; Spijksma, G.I.; Verweij, H.; Poelsema, Bene

    2004-01-01

    The ellipsometric characterization of the CO2 sorption of a silica membrane provides a fast and accurate technique for the characterization of maximum sorption and the heat of adsorption. Both parameters are evaluated for the 73 nm thick silica layer as well as the 1650 nm thick supporting γ-layer.

  15. Modelling of biohydrogen production and recovery by membrane gas separation

    Czech Academy of Sciences Publication Activity Database

    Búcsú, D.; Nemestóthy, N.; Pientka, Zbyněk; Gubicza, L.; Bélafi-Bakó, K.

    2009-01-01

    Roč. 240, 1-3 (2009), s. 306-310 ISSN 0011-9164 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : integrated system * Escherichia coli * PES-PI membrane Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  16. Separation of Azeotropic Mixture Acetone + Hexane by Using Polydimethylsiloxane Membrane.

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Kačírková, Marie; Ledesma, Oscar Iván Hernández; Červenková Šťastná, Lucie; Izák, Pavel; Žitková, Andrea; Friess, K.

    2016-01-01

    Roč. 170, OCT 1 (2016), s. 256-263 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : azeotropic mixture * PDMS membrane * pervaporation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  17. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab

    2013-02-01

    This paper analysed the performance of a membrane system over key design/operation parameters. A computation methodology is developed to solve the model of hollow fibre membrane systems for multicomponent gas feeds. The model represented by a nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality, pressure, area, selectivity and permeance, resulted in better understanding of operating and design optima. Particularly, high selectivities and/or permeabilities are shown not to be necessary targets for optimal operation. Rather, a medium selectivity (<60 in the given example) combined with medium permeance (∼300-500×10-10mol/sm2Pa in the given case study) is more advantageous. This model-based membrane systems engineering approach is proposed for the synthesis of efficient and cost-effective multi-stage membrane networks. © 2012 The Institution of Chemical Engineers.

  18. Preparation and characterization of new zeolite membranes. Application to gaseous separation; Preparation et caracterisation de nouvelles membranes de zeolithe application a la separation gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, M.

    1996-11-25

    Zeolites are interesting for the preparation of inorganic membranes which could be used for the continuous separation of gas and liquids by gas permeation and pervaporation. Zeolites membranes are obtained by hydrothermal synthesis and are characterized by XRD, SEM, TDA, IR, chemical analysis, EPMA, NMR, MAS NMR and gas permeation. After some tests of preparation of zeolite CHA and MFI self supporting membranes, the work is turned towards the preparation of zeolite MFI membranes supported by porous disks or {alpha} alumina, glass and tubes of carbon covered with a thin layer or zirconium dioxide. It is shown that the characteristics of the support (reactivity, pores dimensions, ...) strongly influence the quality of the prepared membrane. Two originals preparation processes are finalized. For the alumina disks, a gel precursor of zeolite is firs formed at the surface of the support by immersing successively that support in two non miscible liquids before the crystallisation. The gel is then converted into the zeolite by contact with water vapor. The zeolite layer obtained is localized at the surface of the support and present not only at the outside but also at the inside of the support. The characteristics of the zeolite layer can be controlled and the method can be adapted to various porous supports. The membrane obtained is interesting for hydrocarbons separations, for example the separation of methane and isobutane. In the case of Vycor glass disks, the reactivity of the support is first enhanced by contact with saturated water vapour. The temperature of the synthesis is then chosen relatively low in order to limit the attack of the support. With that method, a basic solution can be used without degradation of the support.The basicity leads to the formation of little crystals whose assembling is compact and homogeneous. The membrane obtained is interesting for example for the separation of normal butane and isobutane. (author) 71 refs.

  19. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    Science.gov (United States)

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. Process efficiency of casein separation from milk using polymeric spiral-wound microfiltration membranes.

    Science.gov (United States)

    Mercier-Bouchard, D; Benoit, S; Doyen, A; Britten, M; Pouliot, Y

    2017-11-01

    Microfiltration is largely used to separate casein micelles from milk serum proteins (SP) to produce a casein-enriched retentate for cheese making and a permeate enriched in native SP. Skim milk microfiltration is typically performed with ceramic membranes and little information is available about the efficiency of spiral-wound (SW) membranes. We determined the effect of SW membrane pore size (0.1 and 0.2 µm) on milk protein separation in total recirculation mode with a transmembrane pressure gradient to evaluate the separation efficiency of milk proteins and energy consumption after repeated concentration and diafiltration (DF). Results obtained in total recirculation mode demonstrated that pore size diameter had no effect on the permeate flux, but a drastic loss of casein was observed in permeate for the 0.2-µm SW membrane. Concentration-DF experiments (concentration factor of 3.0× with 2 sequential DF) were performed with the optimal 0.1-µm SW membrane. We compared these results to previous data we generated with the 0.1-µm graded permeability (GP) membrane. Whereas casein rejection was similar for both membranes, SP rejection was higher for the 0.1-µm SW membrane (rejection coefficient of 0.75 to 0.79 for the 0.1-µm SW membrane versus 0.46 to 0.49 for the GP membrane). The 0.1-µm SW membrane consumed less energy (0.015-0.024 kWh/kg of permeate collected) than the GP membrane (0.077-0.143 kWh/kg of permeate collected). A techno-economic evaluation led us to conclude that the 0.1-µm SW membranes may represent a better option to concentrate casein for cheese milk; however, the GP membrane has greater permeability and its longer lifetime (about 10 yr) potentially makes it an interesting option. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange.

    Science.gov (United States)

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon

    2018-01-02

    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ceramic membranes applied in separation of hot gases; Membranas Ceramicas para Separacion de Gases en Caliente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this project is to develop and evaluate inorganic membranes of a ceramic type, with nanometric pore size, applied in separation of contaminants and fuel enrichment, gas mixture in coal gasification . etc. Using ceramic materials have the advantage of being highly physical and chemical resistance, which makes these membranes more adequate then metal equivalent for these applications. A support manufacture and the development of natricum membranes technology to estimate the potential fields of applications and industrial viability of ceramic membranes are the intermediate goals so that the project could be considered successful one. The project has been carried out jointly by the following entities: TGI, S. A. (Tecnologia y Gestion de la Innovacion, Spain). CIEMAT (Centro de Investigaciones energeticas, Medioambientales y Tecnologicas, Spain) and CSIC-UAM (Centro mixto Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid. Instituto de Ciencias de Materiales, Spain). The range of activities proposed in this project is to get the sufficient knowledge of preparation and behaviour of separation membranes to be able to procede to the desing and manufacture of an industrial filter. The project phases include; the ameiloration of ceramic support processing methods, the fluid dynamic evaluation, technology for membrane desing and manufacturing, the mounting (setting up) of an experimental installation for testing and evaluation. As a previous step a state of the art review about the following topics was made: high temperature inorganic membranes, technology separation mechanisms, gasifications process and its previous experience applications of membranes and determination of membranes specifications and characteristics of testing conditions. At the end a new inorganic ceramic membrane, with nanometric pore size and useful in several industrial processes (filtration, separation of contaminants, fuel enrichment, purification of gas mixtures

  3. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    Science.gov (United States)

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  4. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.; Pan, Yinjin; Li, Minghua; Hoek, Eric M. V.

    2011-01-01

    . The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many

  5. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2017-01-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication

  6. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang

    2012-02-01

    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed excellent separation performances for a wide range of propylene/propane mixtures. The membrane showed a permeability of propylene up to 200. barrers and a propylene to propane separation factor up to 50 at optimal separation conditions, well surpassing the "upper-bound trade-off" lines of existing polymer and carbon membranes. The experimental data also showed that the membranes had excellent reproducibility, long-term stability and thermal stability. © 2011 Elsevier B.V.

  7. Electrodialytic separation of alkali-element ions with the aid of ion-exchange membranes

    International Nuclear Information System (INIS)

    Gurskii, V.S.; Moskvin, L.N.

    1988-01-01

    Electrodialytic separation of ions bearing charges of the same sign with the aid of ion-exchange membranes has been examined in the literature in relation to the so-called ideal membranes, which do not exhibit selectivity with respect to one ion type in ion exchange. It has been shown that separation on such membranes is effective only for counterions differing in size of charge. A matter of greater importance from the practical standpoint is the possibility of using electrodialysis for separating ions bearing like charges and having similar properties, including ionic forms of isotopes of the same element. In this paper they report a comparative study of ion separation, with reference to the Cs-Na pair, by electrodialysis through various types of cation-exchange membranes. Changes of the solution concentration in the cathode compartment were monitored by measurement of 22 Na and 137 Cs activities

  8. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang; Li, Tao; Lestari, Gabriella; Lai, Zhiping

    2012-01-01

    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed

  9. The practical use of resistance modelling to interpret the gas separation properties of hollow fiber membranes

    International Nuclear Information System (INIS)

    Ahmad Fauzi Ismail; Shilton, S.J.

    2000-01-01

    A simple resistance modelling methodology is presented for gas transport through asymmetric polymeric membranes. The methodology allows fine structural properties such as active layer thickness and surface porosity, to be determined from experimental gas permeation data. This paper, which could be regarded as a practical guide, shows that resistance modeling, if accompanied by realistic working assumptions, need not be difficult and can provide a valuable insight into the relationships between the membrane fabrication conditions and performance of gas separation membranes. (Author)

  10. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Masashi [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580 (Japan); Noda, Kei, E-mail: nodakei@elec.keio.ac.jp [Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522 (Japan)

    2015-12-01

    Graphical abstract: - Highlights: • A bilayer membrane composed of TiO{sub 2} nanotube array and palladium was fabricated. • The TiO{sub 2}/Pd bilayer membrane was prepared with an all-electrochemical process. • The membrane consists of pure Pd and anatase TiO{sub 2} nanotubes with no alloy formation. • Photocatalytic H{sub 2} production and concomitant separation were demonstrated. • High-purity H{sub 2} production rate and apparent quantum yield were evaluated. - Abstract: We developed an all-electrochemical technique for fabricating a bilayer structure of a titanium dioxide (TiO{sub 2}) nanotube array (TNA) and a palladium film (TNA/Pd membrane), which works for photocatalytic high-purity hydrogen production. Electroless plating was used for depositing the Pd film on the TNA surface prepared by anodizing a titanium foil. A 3-μm-thick TNA/Pd membrane without any pinholes in a 1.5-cm-diameter area was fabricated by transferring a 1-μm-thick TNA onto an electroless-plated 2-μm-thick Pd film with a mechanical peel-off process. This ultrathin membrane with sufficient mechanical robustness showed photocatalytic H{sub 2} production via methanol reforming under ultraviolet illumination on the TNA side, immediately followed by the purification of the generated H{sub 2} gas through the Pd layer. The hydrogen production rate and the apparent quantum yield for high-purity H{sub 2} production from methanol/water mixture with the TNA/Pd membrane were also examined. This work suggests that palladium electroless plating is more suitable and practical for preparing a well-organized TNA/Pd heterointerface than palladium sputter deposition.

  11. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  12. Inorganic membranes for separative techniques: from uranium isotope separation to non-nuclear fields

    International Nuclear Information System (INIS)

    Charpin, J.; Rigny, P.

    1989-01-01

    Uranium enrichment leads to the development of inorganic porous barriers - either ceramic or metallic. A wide range of these products had considerable potential for the improvement of filtration techniques in liquid media (ultrafiltration and microfiltration). This is how a new generation of inorganic membranes was created reputed for their performance and especially for their lifetime and their behaviour (mechanical and temperature stability, corrosion resistance). These membranes now have a respectable position in applications in the agro-food biotechnology industries, to give only two examples. Before the non-nuclear applications of inorganic membranes are presented, their success in the nuclear power industry are pointed out

  13. Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

    NARCIS (Netherlands)

    Czyperek, M.; Zapp, P.; Bouwmeester, Henricus J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.

    2010-01-01

    The objective of the “MEM-BRAIN” project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO2 capture

  14. Thin film composite membranes of glossy polymers for gas separation : preparation and characterization

    NARCIS (Netherlands)

    Ebert, Katrin

    1995-01-01

    The application of polymeric composite membranes can be very interesting in the field of gas separation. The two main parameters which determine the applicability of membranes are the selectivity and the permeability. Good selectivities can be achieved by developing proper materials, high permeation

  15. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren; Zhang, Chen; Rungta, Meha; Qiu, Wulin; Liu, Junqiang; Koros, William J.

    2014-01-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family

  16. Ionizable polyethers as specific metal ion carriers in liquid-liquid extraction and liquid membrane separations

    International Nuclear Information System (INIS)

    Walkowiak, W.; Charewicz, W.A.; Bartsch, R.A.; Ndip, G.M.

    1988-01-01

    Consideration is given to results of investigations into competitive extraction and penetration through a liquid membrane of alkali and alkaline earth cations from aqueous solutions by a series of lipophilic and ionizable acyclic polyethers of various molecular structure. It is shown that specificity and selectiviy of cation carriers in liquid-liquid extraction and liquid membrane separation depend on molecular structure of acyclic polyethers

  17. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha

    2013-08-02

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized, and an experimental ethylene/ethane polymeric upper bound based on literature data is presented. A theoretical prediction of the ethylene/ethane upper bound is also presented, and shows good agreement with the experimental upper bound. Further, two ways to overcome the ethylene/ethane upper bound, based on increasing the sorption or diffusion selectivity, is also discussed, and a review on advanced membrane types such as facilitated transport membranes, zeolite and metal organic framework based membranes, and carbon molecular sieve membranes is presented. Of these, carbon membranes have shown the potential to surpass the polymeric ethylene/ethane upper bound performance. Furthermore, a convenient, potentially scalable method for tailoring the performance of carbon membranes for ethylene/ethane separation based on tuning the pyrolysis conditions has also been demonstrated. © 2013 American Institute of Chemical Engineers.

  18. Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Morthensen, Sofie Thage; Lewandowski, Daniel Jacob

    2012-01-01

    Continuous hydrolysis of an active pharmaceutical ingredient intermediate, and subsequent liquid–liquid (L-L) separation of the resulting organic and aqueous phases, have been achieved using a simple PTFE tube reactor connected to a miniscale hydrophobic membrane separator. An alkoxide product......, obtained in continuous mode by a Grignard reaction in THF, reacted with acidic water to produce partially miscible organic and aqueous phases containing Mg salts. Despite the partial THF–water miscibility, the two phases could be separated at total flow rates up to 40 mL/min at different flow ratios, using...

  19. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    NARCIS (Netherlands)

    Duval, J.M.; Duval, J.-M.; Folkers, Albertje; Mulder, M.H.V.; Desgrandchamps, G.; Smolders, C.A.; Smolders, C.A.

    1993-01-01

    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the

  20. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  1. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  2. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kim, Kwang Hee; Park, Hyeon Cheol; Lee, Jaeho; Cho, Eunseog; Lee, Sang Mock

    2013-01-01

    The structural properties and hydrogen permeation characteristics of ternary vanadium–iron–aluminum (V–Fe–Al) alloy were investigated. To achieve not only high hydrogen permeability but also strong resistance to hydrogen embrittlement, the alloy composition was modulated to show high hydrogen diffusivity but reduced hydrogen solubility. We demonstrated that matching the lattice constant to the value of pure V by co-alloying lattice-contracting and lattice-expanding elements was quite effective in maintaining high hydrogen diffusivity of pure V

  3. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  4. Determination of the deuterium separation factor between ammonia and hydrogen; Determination du facteur de separation du deuterium entre l'ammoniac et l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Ravoire, J; Grandcollot, P; Dirian, G; Montel, J

    1963-07-01

    The separation factors between hydrogen and gaseous ammonia ({alpha}{sub g}) and between hydrogen and liquid ammonia ({alpha}{sub l}) have been determined by experimental measurements and by calculations from spectrographic data, using existing data concerning the separation factor between liquid ammonia and gaseous ammonia ({alpha}{sub v}). The values of {alpha}{sub v}, {alpha}{sub g} and {alpha}{sub l} are given in a table for a temperature range between - 70 deg C and + 40 deg C. The following equations have been established: log {alpha}{sub g} = 218 {+-} 1/T - 0.1841, from - 70 deg. C to + 40 deg. C. log {alpha}{sub g} = 216 {+-} 1/T + Q, valid at every temperature, Q being known as a function of temperature. log {alpha}{sub l} = 233 {+-} 1/T - 0.2283, from - 70 deg. C a -25 deg. C. (authors) [French] Les facteurs de separation hydrogene-ammoniac gazeux ({alpha}{sub g}) et hydrogene-ammoniac liquide ({alpha}{sub l}) ont ete determines a l'aide de mesures experimentales et de calculs a partir des donnees spectrographiques, en utilisant les donnees existantes relatives au facteur de separation ammoniac liquide-ammoniac gazeux ({alpha}{sub v}) Les valeurs de {alpha}{sub v}, {alpha}{sub g}, et {alpha}{sub l} sont donnees sous forme de tableau pour des temperatures allant de - 70 deg. C a + 40 deg. C. Les relations suivantes ont ete etablies: log {alpha}{sub g} = 218 {+-} 1/T - 0.1841, valable de - 70 deg. C a + 40 deg. C. log {alpha}{sub g} = 216 {+-} 1/T + Q, valable a toute temperature, Q etant connu en fonction de la temperature. log {alpha}{sub l} = 233 {+-} 1/T - 0.2283, valable de - 70 deg. C a -25 deg. C. (auteurs)

  5. Separation of argon isotopes by porous membrane method, (2)

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Fujine, Sachio; Saito, Keiichiro; Ouchi, Misao; Naruse, Yuji

    1979-08-01

    Separation characteristics of an engineering-scale cascade equipment, which is composed of five stages using Al 2 O 3 barriers, were examined under different operating conditions. This report describes the results of the separation experiment of argon isotopes by the square cascade operated under total reflux. The results are as follows: (1) Mean pore diameter and tortuosity of the barriers were estimated to be 400A and 13-15, respectively. (2) Flow mechanism through the barriers was proved to be ideal Knudsen flow by measurement of the permeability. (3) The cascade was equilibriated in 30-40 minutes, depending on stage gas inventory. (4) The effect of an operating pressure on the separation factor could be estimated by Knudsen's and Present-deBethune's theories. (5) The stage separation factor could be estimated by the conventional theoretical equations by introducing a correction factor as a function of Reynolds number of the permeating flow through the barriers. (6) An experimental equation to estimate the flow effect on the separation factor was obtained considering velocity and physical properties of the gas in the vicinity of the barrier surface. (author)

  6. Effect of template on chiral separation of phenylalanine using molecularly imprinted membrane in aqueous medium

    International Nuclear Information System (INIS)

    Haq, N.U.

    2014-01-01

    Wet phase inversion method was used to prepare L-Phenylalanine (L-Phe) and D-Phenylalanine (D-Phe) imprinted poly ((acrylonitrile)-co-(acrylic acid)) membranes for chiral separation. Ultrafiltration experiments were conducted to evaluate the chiral separation ability of the prepared membrane towards racemate aqueous solution of Phenylalanine. The continuous permselectivity was observed by novel membrane. The chiral resolution ability of L-Phe imprinted membrane was much better than that of D-Phe. It was observed that both membranes simultaneously, selectively reject, selectively adsorbed and selectively permeate solute. The achieved adsorption selectivities of L-Phe imprinted membrane (AlphaAds)L and D-Phe imprinted membrane (AlphaAds)D were 2.6 and 2.40 respectively. Permselectivity of L-Phe imprinted membrane (AlphaPerm)L was 2.56 while D-Phe imprinted membrane permselectivity (AlphaPerm)D was 2.03. The rejection selectivities of L-Phe and D-Phe imprinted membranes were (AlphaRej)L=0.32 and (AlphaRej)D =0.28 respectively. (author)

  7. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  8. Derivation of basic equations for rigorous dynamic simulation of cryogenic distillation column for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-08-01

    The basic equations are derived for rigorous dynamic simulation of cryogenic distillation columns for hydrogen isotope separation. The model accounts for such factors as differences in latent heat of vaporization among the six isotopic species of molecular hydrogen, decay heat of tritium, heat transfer through the column wall and nonideality of the solutions. Provision is also made for simulation of columns with multiple feeds and multiple sidestreams. (author)

  9. Adaptation of Boynton's mathematical model to hydrogen isotope separation column by cryogenic distillation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-08-01

    Boynton's mathematical simulation procedure for multi-component distillation calculations has the advantage that the Jacobian matrix is calculated analytically. The purpose of the present study is to adapt this procedure to hydrogen isotope separation columns by cryogenic distillation. The Boynton's model is modified so that the model can incorporate decay heat of tritium, nonideality of the hydrogen isotope solutions, multiple feeds and multiple sidestreams. Basic equations are derived and the mathematical simulation procedure is briefly explained. (author)

  10. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    Science.gov (United States)

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures

    KAUST Repository

    Lai, Zhiping

    2012-12-06

    Certain embodiments are directed to processes for fabrication of zeolitic imidazolate framework (ZIF) membranes. These ZIF membranes can be used in separating C2-hydrocarbons from C3+ hydrocarbons and propylene/propane mixtures.

  12. Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures

    KAUST Repository

    Lai, Zhiping; Pan, Yichang

    2012-01-01

    Certain embodiments are directed to processes for fabrication of zeolitic imidazolate framework (ZIF) membranes. These ZIF membranes can be used in separating C2-hydrocarbons from C3+ hydrocarbons and propylene/propane mixtures.

  13. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation

    Science.gov (United States)

    Ying, Yulong; Ying, Wen; Guo, Yi; Peng, Xinsheng

    2018-04-01

    A graphene oxide (GO) membrane is promising for molecule separation. However, it is still a big challenge to achieve highly stable pristine GO membranes, especially in water. In this work, an ultrathin and robust GO membrane is assembled via the cross-flow method. The as-prepared 12 nm thick GO membrane (GOCF membrane) presents high stability with water permeance of 1505 ± 65 litres per hour per square meter per bar (LHM bar-1) and Evans Blue (EB) rejection of 98.7 ± 0.4%, 21-fold enhancement in water permeance compared with that of a pristine GO membrane (50-70 LHM bar-1) and 100 times higher than that of commercial ultrafiltration membranes (15 LHM.bar-1, GE2540F30, MWCO 1000, GE Co., Ltd) with similar rejection. Attributed to the surface cross-flow, the GO nanosheets will be refolded, crumpled, or wrinkled, resulting in a very strong inter-locking structure among the GO membrane, which significantly enhances the stability and facilitates their separation performance. This cross-flow assembling technique is also easily extended to assemble GO membranes onto other various backing filter supports. Based on the Donnan effect and size sieving mechanism, selective membrane separation of dyes with a similar molecular structure from their mixture (such as Rhodamine B (RhB) and Rose Bengal, and RhB and EB) are achieved with a selectivity of 133 ± 10 and 227 ± 15, respectively. Assembly of this ultrathin GO membrane with high stability and separation performance, via a simple cross-flow method, shows great potential for water purification.

  14. Studies on cryogenic distillation columns for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro

    1984-08-01

    Cryogenic distillation is applicable to a number of situations. The feed condition, column cascade configuration, input and output specifications vary greatly from situation to situation. In the mainstream fuel circulation system for a fusion reactor, the feed composition may fluctuate greatly during the operation. The radiological standards for tritium lost to the environment are increasingly becoming stricter. Systematic studies are needed to achieve the goal of long-term operation meeting the strict requirements for products even under great fluctuation of the feed condition in all the situations. The present report gives a critical, brief review of the studies which have been made by the author. The subjects treated are development of computer simulation procedures, analysis on an H-T separation column with a feedback stream, dynamics and control, proposal of a new cascade, analysis on helium effects on column behavior, start-up analysis for a cascade, and preliminary experimental study on dependence of HETP on operational conditions. (author)

  15. Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation.

    Science.gov (United States)

    Chiappe, Cinzia; Pomelli, Christian Silvio

    2017-06-01

    Economical and environmental concerns are the main motivations for development of energy-efficient processes and new eco-friendly materials for the capture of greenhouse gases. Currently, H 2 S capture is dominated by physical and/or chemical absorption technologies, which are, however, energy intensive and often problematic from an environmental point of view due to emission of volatile solvent components. Ionic liquids have been proposed as a promising alternative to conventional solvents because of their low volatility and other interesting properties. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that have been encountered in finding suitable ionic liquids for H 2 S capture. The effect of ionic liquid anions, cations, and functional groups on the H 2 S absorption, separation, and oxidation are highlighted. Recent developments on yet scarcely available molecular simulations and on the development of robust predictive methods are also discussed.

  16. Hydrogen separation from coke oven gas using PSA

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M.: Tanibashi, N.; Nishida, S

    1983-01-01

    Twin column apparatus was used to study the adsorption characteristics of various components of coke oven gas at an adsorption pressure of 5 kg/cm/SUP/2G. The following results were obtained. Over 99.99% Of the H/sub 2/ could be separated, and for this a 5 angstrom zeolite was optimal. Since the break-through order is H/sub 2/, O/sub 2/, N/sub 2/, CH/SUB/4, CO there is a tendency for the product H/sub 2/ to be adulterated with O/sub 2/ and N/sub 2/. Although there was a large adsorption of CO/sub 2/ and C/sub 2/H/sub 4/, desorption was difficult, even under reduced pressure and H/sub 2/ flushing. Hence, the industrial version of this apparatus will have to include activated carbon. 5 references.

  17. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  18. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  19. Reverse osmosis performance of cellulose acetate membranes in the separation of uranium from dilute solutions

    International Nuclear Information System (INIS)

    Sastri, V.S.; Ashbrook, A.W.

    1976-01-01

    Batch 316-type cellulose acetate membranes were characterized in terms of pure water permeability constant, solute transport parameter, and mass transfer coefficient with a reference system of aqueous sodium chloride solution. These membranes were used in the determination of reverse osmosis characteristics such as product rate and solute separation in the case of uranium sulfate solutions of different concentrations (100 to 8000 ppM) in the feed solutions. A long-term test extending over a week has been carried out with dilute uranium solutions. Reverse osmosis treatment of synthetic mine water sample showed satisfactory performance of the membranes in the separation of metal ions

  20. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Maloncy, M.L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology (Netherlands)

    2004-07-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branch ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. A model studies using C6 components are conduct. Separated n-C6 from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  1. Bifurcation behavior during the hydrogen production in two compatible configurations of a novel circulating fluidized bed membrane reformer

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.

    2004-01-01

    'Full text:' Multiplicity of steady states (Static Bifurcation Behavior, SBB) in a novel Circulating Fluidized Bed (CFB) membrane reformer for the efficient production of hydrogen by steam reforming of heptane (model component of heavy hydrocarbons and renewable bio-oils) is investigated. The present paper highlights the practical implications of this phenomenon on the behavior of this novel reformer with special focusing on hydrogen production. Two configurations are considered and compared. One is with the catalyst regeneration before the gas-solid separation and the other one is with the catalyst regeneration after the gas-solid separation. Multiplicity of the steady states prevails over a number of design and operating parameters with important impact on the reformer performance. The basis of process evaluation is focused on the net hydrogen production. The dependence of the behavior of this autothermal CFB is shown to be quite complex and defy the simple logic of non-autothermal processes. The unit can be a very efficient hydrogen producer provided its bifurcation behavior is well understood and correctly exploited. (author)

  2. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    Science.gov (United States)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is

  3. Concentration gradient driven molecular dynamics: a new method for simulations of membrane permeation and separation.

    Science.gov (United States)

    Ozcan, Aydin; Perego, Claudio; Salvalaglio, Matteo; Parrinello, Michele; Yazaydin, Ozgur

    2017-05-01

    In this study, we introduce a new non-equilibrium molecular dynamics simulation method to perform simulations of concentration driven membrane permeation processes. The methodology is based on the application of a non-conservative bias force controlling the concentration of species at the inlet and outlet of a membrane. We demonstrate our method for pure methane, ethane and ethylene permeation and for ethane/ethylene separation through a flexible ZIF-8 membrane. Results show that a stationary concentration gradient is maintained across the membrane, realistically simulating an out-of-equilibrium diffusive process, and the computed permeabilities and selectivity are in good agreement with experimental results.

  4. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    Science.gov (United States)

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  5. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  6. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  7. Evaluation of the permeability of microporous membranes polyamide 6 / clay bentonite for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, P.S.S.; Medeiros, K.M.; Araujo, E.M.; Lira, H.L.

    2014-01-01

    The petroleum refining industries have faced major problems in relation to the treatment of their effluents before disposal into the environment. Among the conventional technologies treatment of these effluents, the process of oil-water separation by means of membranes has been extensively used, for having enormous potentiality. Therefore, in this study, hybrid membranes of polyamide 6/ bentonite clay were produced by the technique of phase inversion and by precipitation of the solution from the nanocomposites obtained by melt intercalation. The clay was organically modified with the quaternary ammonium salt (Cetremide®). The nanocomposites were obtained from (PA6) with untreated (AST) and treated clay (ACT), which were subsequently characterized by X-ray diffraction (XRD). Already membranes were characterized by XRD, scanning electron microscopy (SEM) and flow measurements. From the XRD results, it was observed an exfoliated and/or partially exfoliated structure for the nanocomposites and for the membranes. From SEM images it was observed that the presence of AST and ACT clays in the polymeric matrix caused changes in membrane morphology and pore formation. The flow with distilled water in the membranes showed a decrease initially and then followed by stability. All membranes tested in the process of separating emulsions of oil in water, particularly those of nanocomposites obtained a significant reduction of oil concentration in the permeate, thus showing that these membranes have a great potential to be applied to the water-oil separation. (author)

  8. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  9. FABRICATION AND CHARACTERIZATION OF POLYIMIDE/POLYETHERSULFONE-FUMED SILICA MIXED MATRIX MEMBRANE FOR GAS SEPARATION

    Directory of Open Access Journals (Sweden)

    A. F. Ismail

    2012-01-01

    Full Text Available This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/polyethersulfone (PES-fumed silica mixed matrix membranes were casted using dry/wet technique. The results from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM’s cross-section view indicated good compatibility between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membranes with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.

  10. A new type separation column for the water-hydrogen isotope catalytic exchange process

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Trenin, V.D.

    2001-01-01

    The catalytic water/hydrogen isotope exchange process is by right considered the most attractive for the solution a number of urgent problems of hydrogen isotope separation. A new type exchange reaction column is described and studied in details by computer simulation and with the help of McCabe-Thiele diagrams. It is shown that the new column in comparison with a traditional one needs less catalyst quantity and a smaller diameter for the solving of the same separation tasks. Generalized calculation data are presented in graphical form

  11. A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, B.R. [Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Noori, Md.T. [Department of Agriculture and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Ghangrekar, M.M., E-mail: ghangrekar@civil.iitkgp.ernet.in [Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India)

    2016-10-01

    Composite membranes were developed from PVA-borosilicate (MP) and PVA-Nafion-borosilicate (MPN) for application in microbial fuel cells (MFCs). The membranes were characterized in terms of water uptake, PBS uptake, oxygen diffusion and proton conductivity. Proton conductivity for MPN (0.07 Scm{sup −1}) was found to be higher as compared to that of MP (0.03 Scm{sup −1}). Oxygen diffusion coefficient for MPN was 1.47 fold lower than that for MP. As a result, MFC with PVA-Nafion-borosilicate membrane exhibited maximum power density of 6.8 Wm{sup −3}, which was 151% higher than the power produced by MFC having PVA-borosilicate membrane and it was comparable with MFC using Nafion 117 (7.1 Wm{sup −3}) membrane separator. This study demonstrates that borosilicate glass membrane incorporated with PVA-Nafion matrix can be a suitable alternative to costly polymeric membrane to increase power output of MFC. Using such membranes MFC can be fabricated at around 11 fold reduced cost as compared to Nafion 117. - Highlights: • Novel membranes using PVA and borosilicate composite were fabricated. • Proton diffusion for MPN was comparable with Nafion117. • MFC-PN produced power density comparable to MFC with Nafion 117 membrane. • MPN was fabricated at almost 11 times reduced cost than Nafion 117 membranes.

  12. Modelling carbon membranes for gas and isotope separation.

    Science.gov (United States)

    Jiao, Yan; Du, Aijun; Hankel, Marlies; Smith, Sean C

    2013-04-14

    Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

  13. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    International Nuclear Information System (INIS)

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used

  14. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    Science.gov (United States)

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  15. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  16. Hypercrosslinked Additives for Ageless Gas-Separation Membranes.

    Science.gov (United States)

    Lau, Cher Hon; Mulet, Xavier; Konstas, Kristina; Doherty, Cara M; Sani, Marc-Antoine; Separovic, Frances; Hill, Matthew R; Wood, Colin D

    2016-02-05

    The loss of internal pores, a process known as physical aging, inhibits the long-term use of the most promising gas-separation polymers. Previously we reported that a porous aromatic framework (PAF-1) could form a remarkable nanocomposite with gas-separation polymers to stop aging. However, PAF-1 synthesis is very onerous both from a reagent and reaction-condition perspective, making it difficult to scale-up. We now reveal a highly dispersible and scalable additive based on α,α'-dichloro-p-xylene (p-DCX), that inhibits aging more effectively, and crucially almost doubles gas-transport selectivity. These synergistic effects are related to the intimately mixed nanocomposite that is formed though the high dispersibility of p-DCX in the gas-separation polymer. This reduces particle-size effects and the internal free volume is almost unchanged over time. This study shows this inexpensive and scalable polymer additive delivers exceptional gas-transport performance and selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigation of La1−xSrxCrO3−∂ (x ~ 0.1 as Membrane for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Yngve Larring

    2012-09-01

    Full Text Available Various inorganic membranes have demonstrated good capability to separate hydrogen from other gases at elevated temperatures. Hydrogen-permeable, dense, mixed proton-electron conducting ceramic oxides offer superior selectivity and thermal stability, but chemically robust candidates with higher ambipolar protonic and electronic conductivity are needed. In this work, we present for the first time the results of various investigations of La1−xSrxCrO3−∂ membranes for hydrogen production. We aim in particular to elucidate the material’s complex transport properties, involving co-ionic transport of oxide ions and protons, in addition to electron holes. This opens some new possibilities for efficient heat and mass transfer management in the production of hydrogen. Conductivity measurements as a function of pH2 at constant pO2 exhibit changes that reveal a significant hydration and presence of protons. The flux and production of hydrogen have been measured under different chemical gradients. In particular, the effect of water vapor in the feed and permeate gas stream sides was investigated with the aim of quantifying the ratio of hydrogen production by hydrogen flux from feed to permeate and oxygen flux the opposite way (“water splitting”. Deuterium labeling was used to unambiguously prove flux of hydrogen species.

  18. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Directory of Open Access Journals (Sweden)

    Byung-Sik Lee

    2015-12-01

    Full Text Available The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  19. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Sik [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2015-12-15

    The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  20. Selective separation of oil and water with special wettability mesh membranes

    KAUST Repository

    Liu, Defei

    2017-02-24

    Due to the different interfacial effects of oil and water, utilizing the special wettability of solid surfaces to design an oil and water separation process has been demonstrated to be an effective approach for oil/water separation. In this report, a simple process has been developed to fabricate special surface wettability mesh membranes. The carbon nanoparticles with diameters of 10 nm were first coated onto the surface of steel wires based on a candle soot coating process. These templates of carbon nanoparticles were then coated with a more stable layer of silica (SiO2) particles via a facile chemical vapor deposition route. After being modified by two separate methods, a superhydrophobic/superoleophilic membrane was obtained by the use of 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) and a oleophobic/superhydrophilic membrane was obtained by using poly(diallyldimethylammonium-perfluorooctanoate) (PDDA–PFO). Separation experiments show that these superhydrophobic/superoleophilic or oleophobic/superhydrophilic mesh membranes can be used to selectively separate oil/water with a high flux of more than 930 L m−2 h−1 and a collecting efficiency of over 97%. Furthermore, the repetitions of the separation experiments demonstrate that these superhydrophobic/superoleophilic or oleophobic/superhydrophilic mesh membranes are durable, stable and reusable, making them encouraging candidates for practical oil-polluted water treatment.