WorldWideScience

Sample records for hydrogen rich steam

  1. Recycling a hydrogen rich residual stream to the power and steam plant

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250 Buenos Aires, Ciudad Autonoma de Buenos Aires (Argentina); Eliceche, A.M. [Chemical Engineering Department, Universidad Nacional del Sur, PLAPIQUI-CONICET, Camino La Carrindanga Km 7 (8000) Bahia Blanca (Argentina)

    2010-06-15

    The benefits of using a residual hydrogen rich stream as a clean combustion fuel in order to reduce Carbon dioxide emissions and cost is quantified. A residual stream containing 86% of hydrogen, coming from the top of the demethanizer column of the cryogenic separation sector of an ethylene plant, is recycled to be mixed with natural gas and burned in the boilers of the utility plant to generate high pressure steam and power. The main advantage is due to the fact that the hydrogen rich residual gas has a higher heating value and less CO{sub 2} combustion emissions than the natural gas. The residual gas flowrate to be recycled is selected optimally together with other continuous and binary operating variables. A Mixed Integer Non Linear Programming problem is formulated in GAMS to select the operating conditions to minimize life cycle CO{sub 2} emissions. (author)

  2. Hydrogen rich gas generator

    Science.gov (United States)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  3. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Liu, Jing; Yan, Beibei; Shan, Rui

    2015-12-01

    The catalytic steam gasification of bio-oil/biochar slurry (bioslurry) for hydrogen-rich syngas production was investigated in a fixed-bed reactor using LaXFeO3 (X=Ce, Mg, K) perovskite-type catalysts. The effects of elemental substitution in LaFeO3, temperature, water to carbon molar ratio (WCMR) and bioslurry weight hourly space velocity (WbHSV) were examined. The results showed that La0.8Ce0.2FeO3 gave the best performance among the prepared catalysts and had better catalytic activity and stability than the commercial 14 wt.% Ni/Al2O3. The deactivation caused by carbon deposition and sintering was significantly depressed in the case of La0.8Ce0.2FeO3 catalyst. Both higher temperature and lower WbHSV contributed to more H2 yield. The optimal WCMR was found to be 2, and excessive introducing of steam reduced hydrogen yield. The La0.8Ce0.2FeO3 catalyst gave a maximum H2 yield of 82.01% with carbon conversion of 65.57% under the optimum operating conditions (temperature=800°C, WCMR=2 and WbHSV=15.36h(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Catalytic steam gasification of pig compost for hydrogen-rich gas production in a fixed bed reactor.

    Science.gov (United States)

    Wang, Jingbo; Xiao, Bo; Liu, Shiming; Hu, Zhiquan; He, Piwen; Guo, Dabin; Hu, Mian; Qi, Fangjie; Luo, Siyi

    2013-04-01

    The catalytic steam gasification of pig compost (PC) for hydrogen-rich gas production was experimentally investigated in a fixed bed reactor using the developed NiO on modified dolomite (NiO/MD) catalyst. A series of experiments have been performed to explore the effects of catalyst, catalytic temperature, steam to PC ratio and PC particle size on the gas quality and yield. The results indicate that the NiO/MD catalyst could significantly eliminate the tar in the gas production and increase the hydrogen yield, and the catalyst lives a long lifetime in the PC steam gasification. Moreover, the higher catalytic temperature and smaller PC particle size can contribute to more hydrogen production and gas yield. Meanwhile, the optimal ratio of steam to PC (S/P) is found to be 1.24. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification

    Directory of Open Access Journals (Sweden)

    Po-Chih Kuo

    2014-12-01

    Full Text Available In this article, the conceptual design of biomass steam gasification (BSG processes using raw oil palm (ROP and torrefied oil palm (TOP are examined in an Aspen Plus simulator. Through thermodynamic analysis, it is verified that the BSG process with torrefied feedstock can effectively enhance the hydrogen yield. When the heat recovery design is added into the BSG process, the system energetic efficiency (SEE is significantly improved. Finally, an optimization algorithm with respect to SEE and hydrogen yield is solved, and the optimum operating conditions are validated by simulations.

  6. Biogas Upgrading to Hydrogen Rich Gas by Steam Reforming: Comparison and Optimization of Plant Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafi, Mojdeh; Proell, Tobias; Hofbauer, Hermann [Vienna Univ. of Technology, Vienna (Austria). Institute for Chemical Engineering

    2006-07-15

    Two process configurations for the production of H{sub 2}-rich gas from biogas through steam reforming are investigated: The autothermic reformer and the externally heated reformer. A mathematical model of the reformer is developed and implemented in a steady state simulation environment. The model is based on thermodynamic equilibrium using the free energy minimisation method. Heat integration is taken into consideration for the overall process scheme and plant operation is analysed at different operating parameters such as steam to organic carbon ratio in the reformer, the reformer exit temperature, and the CH{sub 4}/CO{sub 2} ratio of the raw biogas. The performance is described by the CH{sub 4} conversion rate, H{sub 2} concentration in the reformed gas, and the energetic efficiency of the plant. Finally, it can be concluded that, depending on downstream technology, the autothermic reformer may suit because of higher energetic efficiency in the case of combined heat and power production and, on the other hand, the externally heated approach is advantageous if a nitrogen-free product gas is required for synthesis of upgraded fuels or products (e.g. H{sub 2})

  7. Method of steam reforming methanol to hydrogen

    Science.gov (United States)

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  8. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.

    Science.gov (United States)

    Yan, Feng; Luo, Si-yi; Hu, Zhi-quan; Xiao, Bo; Cheng, Gong

    2010-07-01

    Steam gasification experiments of biomass char were carried out in a fixed-bed reactor. The experiments were completed at bed temperature of 600-850 degrees C, a steam flow rate of 0-0.357 g/min/g of biomass char, and a reaction time of 15min. The aim of this study is to determine the effects of bed temperature and steam flow rate on syngas yield and its compositions. The results showed that both high gasification temperature and introduction of proper steam led to higher yield of dry gas and higher carbon conversion efficiency. However, excessive steam reduced gas yield and carbon conversion efficiency. The maximum dry gas yield was obtained at the gasification temperature of 850 degrees C and steam flow rate of 0.165 g/min/g biomass char. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Hydrogen-Rich Gas Production by Sorption Enhanced Steam Reforming of Woodgas Containing TAR over a Commercial Ni Catalyst and Calcined Dolomite as CO2 Sorbent

    Directory of Open Access Journals (Sweden)

    Vincenzo Naso

    2013-07-01

    Full Text Available The aim of this work was the evaluation of the catalytic steam reforming of a gaseous fuel obtained by steam biomass gasification to convert topping atmosphere residue (TAR and CH4 and to produce pure H2 by means of a CO2 sorbent. This experimental work deals with the demonstration of the practical feasibility of such concepts, using a real woodgas obtained from fluidized bed steam gasification of hazelnut shells. This study evaluates the use of a commercial Ni catalyst and calcined dolomite (CaO/MgO. The bed material simultaneously acts as reforming catalyst and CO2 sorbent. The experimental investigations have been carried out in a fixed bed micro-reactor rig using a slipstream from the gasifier to evaluate gas cleaning and upgrading options. The reforming/sorption tests were carried out at 650 °C while regeneration of the sorbent was carried out at 850 °C in a nitrogen environment. Both combinations of catalyst and sorbent are very effective in TAR and CH4 removal, with conversions near 100%, while the simultaneous CO2 sorption effectively enhances the water gas shift reaction producing a gas with a hydrogen volume fraction of over 90%. Multicycle tests of reforming/CO2 capture and regeneration were performed to verify the stability of the catalysts and sorbents to remove TAR and capture CO2 during the duty cycle.

  10. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  11. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  12. Hydrogen-rich gas generator

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1976-01-01

    A process and apparatus are described for producing hydrogen-rich product gases. A spray of liquid hydrocarbon is mixed with a stream of air in a startup procedure and the mixture is ignited for partial oxidation. The stream of air is then heated by the resulting combustion to reach a temperature such that a signal is produced. The signal triggers a two way valve which directs liquid hydrocarbon from a spraying mechanism to a vaporizing mechanism with which a vaporized hydrocarbon is formed. The vaporized hydrocarbon is subsequently mixed with the heated air in the combustion chamber where partial oxidation takes place and hydrogen-rich product gases are produced.

  13. Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts

    OpenAIRE

    Chen, F; Wu, C; Dong, L; Jin, F; Williams, PT; Huang, J

    2015-01-01

    Thermo-chemical processing of biomass is a promising alternative to produce renewable hydrogen as a clean fuel or renewable syngas for a sustainable chemical industry. However, the fast deactivation of catalysts due to coke formation and sintering limits the application of catalytic thermo-chemical processing in the emerging bio-refining industry. In this research, Fe–Zn/Al2O3 nanocatalysts have been prepared for the production of hydrogen through pyrolysis catalytic reforming of wood sawdust...

  14. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  15. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  16. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  17. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    Science.gov (United States)

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  18. Ceres' hydrogen-rich regolith

    Science.gov (United States)

    Prettyman, Thomas H.; Yamashita, Naoyuki; Castillo-Rogez, Julie C.; Feldman, William C.; Lawrence, David J.; McSween, Harry Y.; Schorghofer, Norbert; Toplis, Michael J.; Forni, Olivier; Joy, Steven P.; Marchi, Simone; Platz, Thomas; Polanskey, Carol A.; De Sanctis, Maria Cristina; Rayman, Marc D.; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    Low-altitude mapping of Ceres by Dawn's Gamma Ray and Neutron Detector (GRaND) began in December of 2015. GRaND will continue to acquire data for at least six months in a circular-polar orbit, at an altitude of about 0.8 body radii. Close-proximity enables global mapping of the elemental composition of Ceres' regolith, with regional-scale spatial resolution, similar to that achieved at Vesta. An initial analysis of the data shows that Ceres' regolith is rich in H, consistent with the detection of ammoniated phyllosilicates by Dawn's Visible to InfraRed (VIR) spectrometer. Global maps of neutron and gamma ray counting data reveal a strong latitude variation, with suppressed counts at the poles. Lower bound estimates of the concentration of polar H exceed that found in carbonaceous chondrites, which are the best meteorite analogs for Ceres. Thermal modeling predicts that water ice is stable near the surface at high latitudes, and, given Ceres' low obliquity, water ice and other volatile species may be concentrated in permanently shadowed regions near the poles. Excess hydrogen at high latitudes is likely in the form of water ice within the decimeter depths sensed by GRaND. Changes in the hydration state of phyllosilicates and hydrated salt minerals with temperature could also contribute to observed spatial variations. Some GRaND signatures show evidence for layering of hydrogen, consistent with ice stability models. Differences in the gamma ray spectra of Ceres and Vesta indicate that Ceres' surface is primitive (closely related to carbonaceous chondrite-like compositions), in contrast to Vesta's fractionated igneous composition. Strong gamma rays are observed at 7.6 MeV (Fe), 6.1 MeV (O), and 2.2 MeV (H). With additional accumulation time, it may be possible to quantify or bound the concentration of other elements, such as Mg, Ni, and C. Elements diagnostic of hydrothermal activity (K, Cl, and S) may be detectable if they are present in high concentrations over

  19. Optimizing a steam-methane reformer for hydrogen production

    NARCIS (Netherlands)

    de Jong, M.; Reinders, Angelina H.M.E.; Kok, Jacobus B.W.; Westendorp, G.

    2009-01-01

    By means of steam reforming, natural gas is converted to carbon dioxide and hydrogen. The reactions take place in reactor tubes which are covered with catalyst at the inside, where the reactive mixture flows. At the outside they are heated by combustion of natural gas with air. In this paper the

  20. Production of hydrogen from solar zinc in steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vishnevetsky, Irina; Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)

    2007-09-15

    Production of hydrogen via hydrolysis of zinc with steam is an essential step in the Zn/ZnO thermochemical cycle for splitting of water. Recent studies on reducing ZnO to Zn metal with the aid of concentrated solar energy stimulated the interest in the hydrolysis of the zinc for hydrogen production. One of these studies was focusing on solar carbothermal reduction of ZnO to produce zinc powder (EC/FP5-SOLZINC project). The current paper deals with the hydrolysis process of this material which will be referred to, hereafter, as SOLZINC. Test results obtained during the hydrolysis of SOLZINC powder in batch experiments at atmospheric pressure demonstrate possibilities of fast and high conversion of SOLZINC powder with steam to ZnO powder and hydrogen without intermediate melting or evaporation of zinc and indicate that the reaction occurs in two different rates, depending on the preheating temperature. A slow reaction starts at about 250 {sup circle} C and the hydrogen output increases with reactor temperature. The fast stage starts as the reactor temperature approaches 400 {sup circle} C. Above this temperature, the reaction develops vigorously due to fast increase of the reaction rate with temperature resulting in releasing additional exothermic heat by the reacted powder. Increasing the preheating temperature (when the steam flow starts) from 200 to 550 {sup circle} C can improve the SOLZINC conversion during the fast stage from 24% to 81% and increase the hydrogen yield. When the fast stage decays, slow reaction can be continued on for a long time until the hydrogen production is fully achieved. (author)

  1. Oxygen-hydrogen torch is a small-scale steam generator

    Science.gov (United States)

    Maskell, C. E.

    1966-01-01

    Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.

  2. Generation of hydrogen rich gas through fluidized bed gasification of biomass.

    Science.gov (United States)

    Karmakar, M K; Datta, A B

    2011-01-01

    The objective of this study was to investigate the process of generating hydrogen rich syngas through thermo chemical fluidized bed gasification of biomass. The experiments were performed in a laboratory scale externally heated biomass gasifier. Rice husk had been taken as a representative biomass and, steam had been used as the fluidizing and gasifying media. A thermodynamic equilibrium model was used to predict the gasification process. The work included the parametric study of process parameters such as reactor temperature and steam biomass ratio which generally influence the percentage of hydrogen content in the product gas. Steam had been used here to generate nitrogen free product gas and also to increase the hydrogen concentration in syngas with a medium range heating value of around 12 MJ/Nm3. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  4. Pure hydrogen from pyrolysis oil by the steam-iron process

    NARCIS (Netherlands)

    Bleeker, M.F.

    2009-01-01

    The steam-iron process is an old process, which was used for the production of hydrogen from cokes at the beginning of the twentieth century. In this thesis the steam-iron process is used to produce pure hydrogen from pyrolysis oil. Pyrolysis oil, obtained from the pyrolysis of biomass, is used to

  5. Thermodynamic evaluation of methanol steam reforming for hydrogen production

    Science.gov (United States)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0-10), reforming temperature (25-1000 °C), pressure (0.5-3 atm), and product species. The chemical species considered were methanol, water, hydrogen, carbon dioxide, carbon monoxide, carbon (graphite), methane, ethane, propane, i-butane, n-butane, ethanol, propanol, i-butanol, n-butanol, and dimethyl ether (DME). Coke-formed and coke-free regions were also determined as a function of S/C ratio. Based upon a compound basis set MeOH, CO 2, CO, H 2 and H 2O, complete conversion of MeOH was attained at S/C = 1 when the temperature was higher than 200 °C at atmospheric pressure. The concentration and yield of hydrogen could be achieved at almost 75% on a dry basis and 100%, respectively. From the reforming efficiency, the operating condition was optimized for the temperature range of 100-225 °C, S/C range of 1.5-3, and pressure at 1 atm. The calculation indicated that the reforming condition required from sufficient CO concentration (<10 ppm) for polymer electrolyte fuel cell application is too severe for the existing catalysts (T r = 50 °C and S/C = 4-5). Only methane and coke thermodynamically coexist with H 2O, H 2, CO, and CO 2, while C 2H 6, C 3H 8, i-C 4H 10, n-C 4H 10, CH 3OH, C 2H 5OH, C 3H 7OH, i-C 4H 9OH, n-C 4H 9OH, and C 2H 6O were suppressed at essentially zero. The temperatures for coke-free region decreased with increase in S/C ratios. The impact of pressure was negligible upon the complete conversion of MeOH.

  6. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  8. Selective internal oxidation in Ni-Cr-Fe alloys during exposure in hydrogenated steam

    Energy Technology Data Exchange (ETDEWEB)

    Was, G.S.; Capell, B.M. [Univ. of Michigan, Ann Arbor, Michigan (United States)

    2007-07-01

    Selective internal oxidation (SIO) in hydrogenated steam was observed to occur in high-purity Ni-Cr-Fe alloys. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe and Ni-30Cr-9Fe) were exposed to hydrogen-to-water vapor partial pressure ratios (PPR) of 0.09 and 0.5 at 400{sup o}C. The Ni-9Fe, Ni-5Cr and Ni-5Cr-9Fe alloys formed a uniform Ni(OH){sub 2} film at a PPR up to 0.09 and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Intergranular oxides formed by oxygen diffusion down the grain boundary. The formation of grain boundary chromium oxides is correlated with cracked grain boundary fraction and crack growth rate at 400{sup o}C. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on intergranular (IG) cracking and oxidation support SIO as a mechanism for intergranular stress corrosion cracking (IGSCC). (author)

  9. Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen

    OpenAIRE

    Xinhai Xu; Kaipeng Shuai; Ben Xu

    2017-01-01

    Methanol steam reforming is a promising technology for producing hydrogen for onboard fuel cell applications. The methanol conversion rate and the contents of hydrogen, carbon monoxide and carbon dioxide in the reformate, significantly depend on the reforming catalyst. Copper-based catalysts and palladium-based catalysts can effectively convert methanol into hydrogen and carbon dioxide. Copper and palladium-based catalysts with different formulations and compositions have been thoroughly inve...

  10. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  11. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  12. Novel Recycling Method for Boron Removal from Silicon by Thermal Plasma Treatment Coupled with Steam and Hydrogen Gases

    Directory of Open Access Journals (Sweden)

    Su-Hyun Baek

    2017-09-01

    Full Text Available Boron (B separation from photovoltaic silicon (Si remains a research challenge in the recycling field. In this study, a novel B-removal process was developed using thermal plasma treatment coupled with steam and hydrogen gases. Experiments were performed on artificially B-doped Si using various plasma conditions of mixed argon (Ar/steam/hydrogen gases and varied refining time. The B concentration in all of the samples decreased with increasing refining time. The use of the plasma mixed with Ar/steam/hydrogen gases resulted in a significant improvement of the efficiency of B removal compared with the Ar/steam plasma refining. In addition, with increasing steam content in the plasma with mixed Ar/steam/hydrogen gases, the B-removal rates increased.

  13. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek

    2008-01-01

    distillation fractions of technical 2nd generation bioethanol, produced in a pilot plant, influence the performance of nickel- and ruthenium-based catalysts during steam reforming, and we discuss what is required to obtain high activity and long catalyst lifetime. We conclude that the use of technical...

  14. Hydrogen diffusivity in oxide layers formed in Zr alloy in air or steam

    Science.gov (United States)

    Kato, Taro; Takagi, Ikuji; Sakamoto, Kan; Aomi, Masaki

    2017-10-01

    The effect of the oxidation conditions on hydrogen diffusion in oxide layers in Zr alloy was experimentally studied. Samples of GNF-Ziron (high-iron Zircaloy-2-type alloy) sheets were oxidized in air or steam and then exposed to deuterium plasma to charge them with deuterium. Deuterium depth profiles in each sample were observed by nuclear reaction analysis during plasma exposure, and the deuterium diffusion coefficient D was estimated. The results showed that the D values of the steam-oxidized samples were high, whereas that of a steam-oxidized sample that was subsequently heated in vacuum was as low as those of air-oxidized samples. The difference in D was not attributed to the structure but is probably due to the presence of OH groups absorbed during steam oxidation.

  15. Direct steam reforming of diesel and diesel–biodiesel blends for distributed hydrogen generation

    OpenAIRE

    Martin, Stefan; Kraaij, Gerard; Ascher, Torsten; Baltzopoulou, Penelope; Karagiannakis, George; Wails, David; Wörner, Antje

    2015-01-01

    Distributed hydrogen generation from liquid fuels has attracted increasing attention in the past years. Petroleum-derived fuels with already existing infrastructure benefit from high volumetric and gravimetric energy densities, making them an interesting option for cost competitive decentralized hydrogen production. In the present study, direct steam reforming of diesel and diesel blends (7 vol.% biodiesel) is investigated at various operating conditions using a proprietary precious metal ...

  16. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  17. Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, K.; Aika, Ken-ichi; Seshan, Kulathuiyer; Lefferts, Leonardus

    2004-01-01

    Steam reforming of acetic acid over Pt/ZrO2 catalysts has been investigated. Pt/ZrO2 catalysts are very active, completely converting acetic acid, and give a hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers which block the active sites. The

  18. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.

    2000-09-28

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

  19. Deactivation of iron oxide used in the steam-iron process to produce hydrogen

    NARCIS (Netherlands)

    Bleeker, M.F.; Veringa, H.J.; Kersten, Sascha R.A.

    2009-01-01

    In the steam-iron process pure hydrogen can be produced from any hydrocarbon feedstock by using a redox cycle of iron oxide. One of the main problems connected to the use of the iron oxide is the inherent structural changes that take place during oxygen loading and unloading leading to severe

  20. Parametric study of hydrogen production from ethanol steam reforming in a membrane microreactor

    Directory of Open Access Journals (Sweden)

    M. de-Souza

    2013-06-01

    Full Text Available Microreactors are miniaturized chemical reaction systems, which contain reaction channels with characteristic dimensions in the range of 10-500 µm. One possible application for microreactors is the conversion of ethanol to hydrogen used in fuel cells to generate electricity. In this paper a rigorous isothermal, steady-state two-dimensional model was developed to simulate the behavior of a membrane microreactor based on the hydrogen yield from ethanol steam reforming. Furthermore, this membrane microreactor is compared to a membraneless microreactor. A potential advantage of the membrane microreactor is the fact that both ethanol steam reforming and the separation of hydrogen by a permselective membrane occur in one single microdevice. The simulation results for steam reforming yields are in agreement with experimental data found in the literature. The results show that the membrane microreactorpermits a hydrogen yield of up to 0.833 which is more than twice that generated by the membraneless reactor. More than 80% of the generated hydrogen permeates through the membrane and, due to its high selectivity, the membrane microreactor delivers high-purity hydrogen to the fuel cell.

  1. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.

    Science.gov (United States)

    He, Li; Chen, De

    2012-03-12

    Concerning energy and environmental sustainability, it is appealing to produce hydrogen from sugars or sugar alcohols that are readily obtained from the hydrolysis of cellulosic biomass. Nevertheless, the conversion of such compounds for hydrogen production poses great technical challenges. In this paper, we report that hydrogen purity and yield can be significantly improved by integrating in situ CO(2) capture into the steam reforming reaction of the model compounds-glucose and sorbitol. The experimental assessment was conducted at a steam-to-carbon ratio of 1.8 for sorbitol and 6 for glucose from 450-625 °C. As predicted by thermodynamic analysis, combining CO(2) capture and reforming reactions at favorable operating conditions yielded very high purity hydrogen, for instance, 98.8 mol % from sorbitol and 99.9 mol % from glucose. However, there are trade-offs between hydrogen purity and yield in practice. The lower operating temperatures in the examined range helped to increase the hydrogen purity and reduce the CO content in the gas product, whereas a high hydrogen yield was more likely to be obtained at higher temperatures. Coupling CO(2) capture lowered the risk of coke formation during the steam reforming of glucose. Coke accumulated in the reactor for the sorption-enhanced steam reforming of glucose was mostly from the slow pyrolysis of glucose before it came into contact with the catalyst-acceptor bed. This problem may be solved by improving heat transfer or reconstructing the reactor, for instance, by using a fluidized-bed reactor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hydrogen generation having CO2 removal with steam reforming

    Science.gov (United States)

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  3. Comparative thermoeconomic analysis of hydrogen production by water electrolysis and by ethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Riveros-Godoy, Gustavo; Chavez-Rodriguez, Mauro; Cavaliero, Carla [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Mechanical Engineering School], Email: garg@fem.unicamp.br

    2010-07-01

    Hydrogen is the focus of this work that evaluates in comparative form through thermo economic analysis two hydrogen production processes: water electrolysis and ethanol steam reforming. Even though technical-economical barriers still exist for the development of an economy based on hydrogen, these difficulties are opportunities for the appearance of new business of goods and services, diversification of the energy mix, focus of research activities, development and support to provide sustainability to the new economy. Exergy and rational efficiency concept are used to make a comparison between both processes. (author)

  4. Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen

    Directory of Open Access Journals (Sweden)

    Xinhai Xu

    2017-06-01

    Full Text Available Methanol steam reforming is a promising technology for producing hydrogen for onboard fuel cell applications. The methanol conversion rate and the contents of hydrogen, carbon monoxide and carbon dioxide in the reformate, significantly depend on the reforming catalyst. Copper-based catalysts and palladium-based catalysts can effectively convert methanol into hydrogen and carbon dioxide. Copper and palladium-based catalysts with different formulations and compositions have been thoroughly investigated in the literature. This work summarized the development of the two groups of catalysts for methanol steam reforming. Interactions between the activity components and the supports as well as the effects of different promoters were discussed. Compositional and morphological characteristics, along with the methanol steam reforming performances of different Cu/ZnO and Pd/ZnO catalysts promoted by Al2O3, CeO2, ZrO2 or other metal oxides, were reviewed and compared. Moreover, the reaction mechanism of methanol steam reforming over the copper based and palladium based catalysts were discussed.

  5. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  6. Catalytic Cracking of Heavy Oil with Iron Oxide-based Catalysts Using Hydrogen and Oxygen Species from Steam

    National Research Council Canada - National Science Library

    Eri Fumoto; Yoshikazu Sugimoto; Shinya Sato; Toshimasa Takanohashi

    2015-01-01

      This study investigated the transfer of oxygen and hydrogen species from steam to product during the catalytic cracking of heavy oil with iron oxide-based catalysts containing zirconia and alumina...

  7. Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts

    Science.gov (United States)

    Umegaki, Tetsuo; Kuratani, Kentaro; Yamada, Yusuke; Ueda, Atsushi; Kuriyama, Nobuhiro; Kobayashi, Tetsuhiko; Xu, Qiang

    2008-05-01

    Mesoporous and worm-like In2O3 catalysts have been prepared using KIT-6 and MCM-41 silicas as templates, which show low crystallinities and high surface areas. Compared with commercial In2O3 catalyst with low surface area, these two nano-structured In2O3 catalysts exhibit higher catalytic activity for steam reforming of ethyl alcohol at low temperature to produce hydrogen containing no detectable CO impurity, presenting an advantage in comparison with the previous reported catalysts.

  8. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    OpenAIRE

    Zhang, Xiaoqing; Xu, Bingqing; Xu, Yan; Shang, Shuyong; Yin, Yongxiang

    2013-01-01

    An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energ...

  9. Environmental impact comparison of steam methane reformation and thermochemical processes of hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G.F.; Jaber, O.; Dincer, I. [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2010-07-01

    This paper compares the environmental impact of various processes of hydrogen production, particularly steam methane reforming (SMR) and the copper-chlorine (Cu-Cl) and modified sulfur-iodine (S-I) thermochemical cycles. Natural gas is used as the energy source for each of the different methods. Also, an integrated Cu-Cl and SMR plant is examined to show the reduction of greenhouse gas emissions by modifying existing SMR plants with thermochemical processes. The analysis shows that the thermochemical Cu-Cl cycle outperforms the other conventional methods of hydrogen production, with lower fuel requirements and carbon dioxide emissions. (orig.)

  10. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Sato, K.; Kinoshita, M. [Nuclear Power Engineering Corp., Tokyo (Japan)

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  11. The role of CFD combustion modelling in hydrogen safety management – VI: Validation for slow deflagration in homogeneous hydrogen-air-steam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cutrono Rakhimov, A., E-mail: cutrono@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Visser, D.C., E-mail: visser@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, T., E-mail: tadej.holler@ijs.si [Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2017-01-15

    Highlights: • Deflagration of hydrogen-air-steam homogeneous mixtures is modeled in a medium-scale containment. • Adaptive mesh refinement is applied on flame front positions. • Steam effect influence on combustion modeling capabilities is investigated. • Mean pressure rise is predicted with 18% under-prediction when steam is involved. • Peak pressure is evaluated with 5% accuracy when steam is involved. - Abstract: Large quantities of hydrogen can be generated during a severe accident in a water-cooled nuclear reactor. When released in the containment, the hydrogen can create a potential deflagration risk. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor. Therefore, accurate prediction of these pressure loads is an important safety issue. In previous papers, we validated a Computational Fluid Dynamics (CFD) based method to determine the pressure loads from a fast deflagration. The combustion model applied in the CFD method is based on the Turbulent Flame Speed Closure (TFC). In our last paper, we presented the extension of this combustion model, Extended Turbulent Flame Speed Closure (ETFC), and its validation against hydrogen deflagration experiments in the slow deflagration regime. During a severe accident, cooling water will enter the containment as steam. Therefore, the effect of steam on hydrogen deflagration is important to capture in a CFD model. The primary objectives of the present paper are to further validate the TFC and ETFC combustion models, and investigate their capability to predict the effect of steam. The peak pressures, the trends of the flame velocity, and the pressure rise with an increase in the initial steam dilution are captured reasonably well by both combustion models. In addition, the ETFC model appeared to be more robust to mesh resolution changes. The mean pressure rise is evaluated with 18% under-prediction and the peak pressure is evaluated with 5

  12. Kinetic Studies on State of the Art Solid Oxide Cells – A Comparison between Hydrogen/Steam and Reformate Fuels

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    /steam and reformate fuels hydrogen/carbon-dioxide and hydrogen/methane/steam. It was found that the kinetics at the fuel electrode were exactly the same in both reformates. The hydrogen/steam fuel displayed slightly faster kinetics than the reformate fuels. Furthermore the gas conversion impedance in the hydrogen...... into a single process as the gas conversion was reduced. The SOC with finer electrode microstructure displayed improved kinetics.......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen...

  13. Simulation of performance and nitrogen oxide formation of a hydrogen-enriched diesel engine with the steam injection method

    Directory of Open Access Journals (Sweden)

    Gonca Guven

    2015-01-01

    Full Text Available In the present study, steam injection method (SIM is implemented to a hydrogen-enriched diesel engine in order to improve the levels of performance and NO emissions. As hydrogen enrichment method increases effective efficiency, NO emissions could be increased. However, the SIM is used to control NO emissions and improve the engine performance. Due to these positive effects, hydrogen enrichment and the SIMare applied into a diesel engine by using a two-zone combustion model for30% hydrogen enrichment of the fuel volume and 20% steam ratio of the fuel mass at full load conditions. The results obtained are compared with conventional diesel engine (D, steam injected diesel engine (D+S20, hydrogen-enriched diesel engine (D+H30 and hydrogen-enriched diesel engine with steam injection (D+H30+S20 in terms of performance and NO emissions. In the results, the effective efficiency and effective power improve up to 22.8% and %3.1, as NO emissions decrease up to 22.1%. Hence, the hydrogen enrichment with steam injection method is more environmentally friendly with better performance.

  14. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    Science.gov (United States)

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C.

  15. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liguras, Dimitris K.; Kondarides, Dimitris I.; Verykios, Xenophon E. [Department of Chemical Engineering, University of Patras, GR-26504 Patras (Greece)

    2003-07-25

    The catalytic performance of supported noble metal catalysts for the steam reforming (SR) of ethanol has been investigated in the temperature range of 600-850C with respect to the nature of the active metallic phase (Rh, Ru, Pt, Pd), the nature of the support (Al{sub 2}O{sub 3}, MgO, TiO{sub 2}) and the metal loading (0-5wt.%). It is found that for low-loaded catalysts, Rh is significantly more active and selective toward hydrogen formation compared to Ru, Pt and Pd, which show a similar behavior. The catalytic performance of Rh and, particularly, Ru is significantly improved with increasing metal loading, leading to higher ethanol conversions and hydrogen selectivities at given reaction temperatures. The catalytic activity and selectivity of high-loaded Ru catalysts is comparable to that of Rh and, therefore, ruthenium was further investigated as a less costly alternative. It was found that, under certain reaction conditions, the 5% Ru/Al{sub 2}O{sub 3} catalyst is able to completely convert ethanol with selectivities toward hydrogen above 95%, the only byproduct being methane. Long-term tests conducted under severe conditions showed that the catalyst is acceptably stable and could be a good candidate for the production of hydrogen by steam reforming of ethanol for fuel cell applications.

  16. Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M.; Sanz, J.L.; Isabel, R.; Padilla, R.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), Campus Cantoblanco, 28049 Madrid (Spain); Arjona, R. [Greencell (ABENGOA BIOENERGIA), Av. de la Buhaira 2, 41018 Sevilla (Spain)

    2005-10-10

    New catalysts for hydrogen production by steam reforming of bio-ethanol have been developed. Catalytic tests have been performed at laboratory scale, with the reaction conditions demanded in a real processor: i.e. ethanol and water feed, without a diluent gas. Catalyst ICP0503 has shown high activity and good resistance to carbon deposition. Reaction results show total conversion, high selectivity to hydrogen (70%), CO{sub 2}, CO and CH{sub 4} being the only by-products obtained. The reaction yields 4.25mol of hydrogen by mol of ethanol fed, close to the thermodynamic equilibrium prediction. The temperature influence on the catalytic activity for this catalyst has been studied. Conversion reaches 100% at temperature higher than 600{sup o}C. In the light of reaction results obtained, a reaction mechanism for ethanol steam reforming is proposed. Long-term reaction experiments have been performed in order to study the stability of the catalytic activity. The excellent stability of the catalyst ICP0503 indicates that the reformed stream could be fed directly to a high temperature fuel cell (MCFC, SOFC) without a further purification treatment. These facts suggest that ICP0503 is a good candidate to be implemented in a bio-ethanol processor for hydrogen production to feed a fuel cell. (author)

  17. A novel reforming method for hydrogen production from biomass steam gasification.

    Science.gov (United States)

    Gao, Ningbo; Li, Aimin; Quan, Cui

    2009-09-01

    In this work, an experimental study of biomass gasification in different operation conditions has been carried out in an updraft gasifier combined with a porous ceramic reformer. The effects of gasifier temperature, steam to biomass ratio (S/B), and reforming temperature on the gas characteristic parameters were investigated with and without porous ceramic filled in reformer. The results indicated that considerable synergistics effects were observed as the porous ceramic was filled in reformer leading to an increase in the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 degrees C, hydrogen yield increased from 49.97 to 79.91 g H(2)/kg biomass. Steam/biomass ratio of 2.05 seemed to be optimal in all steam-gasification runs. The effect of reforming temperature for water-soluble tar produced in porous ceramic reforming was also investigated, and it was found that the conversion ratio of total organic carbon (TOC) contents is between 71.08% and 75.74%.

  18. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  19. PRODUCTION OF HYDROGEN FROM THE STEAM AND OXIDATIVE REFORMING OF LPG: THERMODYNAMIC AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    P. P. Silva

    2015-09-01

    Full Text Available AbstractThe objective of this paper was to use a thermodynamic analysis to find operational conditions that favor the production of hydrogen from steam and oxidative reforming of liquefied petroleum gas (LPG. We also analyzed the performance of a catalyst precursor, LaNiO3, in order to compare the performance of the obtained catalyst with the thermodynamic equilibrium predictions. The results showed that it is possible to produce high concentrations of hydrogen from LPG reforming. The gradual increase of temperature and the use of high water concentrations decrease the production of coke and increase the formation of H2. The reaction of oxidative reforming of LPG was more suitable for the production of hydrogen and lower coke formation. Furthermore the use of an excess of water (H2O/LPG =7.0 and intermediate temperatures (973 K are the most suitable conditions for the process.

  20. a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing

    Science.gov (United States)

    Peantong, Sasitorn; Tangjitsitcharoen, Somkiat

    2017-06-01

    Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.

  1. Experimental investigation on combustion of hydrogen-oxygen and methane-oxygen mixtures in the medium of low-superheated steam

    Science.gov (United States)

    Pribaturin, N. A.; Fedorov, V. A.; Alekseev, M. V.; Bogomolov, A. R.; Sorokin, A. L.; Azikhanov, S. S.; Shevyrev, S. A.

    2016-05-01

    Experimental data are represented on the investigation of combustion of hydrogen-oxygen and methane-oxygen mixtures in the medium of low-superheated (initial temperature of approximately 150°C) steam at atmospheric pressure. The influence of the ratio of mass flows of the combustible mixture and steam on the qualitative composition of combustion products and the temperature of produced steam is revealed. Main laws for combustion of the hydrogen-oxygen mixture within the steam flow, which affect the completeness of mixture combustion, are determined. Experimental data on the influence of concentrations of the hydrogen-oxygen mixture within the flow of the steam and the combustible mixture upon the completeness of combustion are given. It is found that, when burning the hydrogen-oxygen mixture within the steam flow with a temperature of 1000-1200°C, it is possible using a variation of the combustible mixture flow. At the same time, the volume fraction of noncondensable gases in the produced steam is no more than 2%. It is revealed that there are several combustion modes of the hydrogen-oxygen mixture within the steam flow, in which, in one case, the steam always suppresses combustion and, in another one, detonation of the combustible mixture combustible mixture occurs. It is found that with the excess air factor close to unit, the combustion of the methane-oxygen mixture within steam and the vapor conversion of methane, which result in the appearance of free hydrogen in the produced high-temperature steam, are possible. The description and the principle of the operation of the experimental bench for investigation of combustion of methane-oxygen and hydrogen-oxygen mixtures in the medium of steam are given. Results of experimental investigations of burning fuel and oxygen in the medium of steam are used in the development of a steam superheater for a hightemperature steam turbine.

  2. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Li-Qun Wang

    2013-01-01

    Full Text Available This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T, steam to biomass mass ratio (SBMR, and biomass to coal mass ratio (BCMR on hydrogen-rich (H2-rich gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  3. Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim Abdul Mutalib

    2010-08-01

    Full Text Available Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.

  4. Modelling of methanol-to-hydrogen steam reforming with a heat flux distributed along a microchannel

    Science.gov (United States)

    Kuznetsov, V. V.; Kozlov, S. P.

    2008-09-01

    The flow of reacting mixture of methanol and steam in a 2D microslot was studied numerically at activation of the reactions on the channel wall. This modelling was carried out in the framework of Navier — Stokes equations for a laminar flow of multicomponent compressible gas. Correlations between thermal, diffusion, and physical-chemical processes were studied under the conditions of intense endothermic reaction and external heat supply distributed along the channel. It is shown that not only the amount of heat supplied to the reaction zone is essential, but also the mode of heat supply along the channel length is important, which allows optimization of the compact reactor for hydrogen production.

  5. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    Science.gov (United States)

    Zahnle, K.

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  6. LOX vaporization in high-pressure, hydrogen-rich gas

    Science.gov (United States)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    LOX droplet vaporization in high-pressure hydrogen-rich gas is analyzed, with special attention to thermodynamic effects which compel the surface to heat to the critical state and to supercritical vaporization processes on heating to criticality. Subcritical vaporization is modeled using a quasi-steady diffusion-controlled gas-phase transport formulation coupled to an effective-conductivity internal-energy-transport model accounting for circulation effects. It is demonstrated how the droplet surface might heat to the critical state, for ambient pressures slightly greater than the critical pressure of oxygen, such that the bulk of propellant within the droplet remains substantially below the critical mixing temperature.

  7. Modeling of Spray System Operation under Hydrogen and Steam Emissions in NPP Containment during Severe Accident

    Directory of Open Access Journals (Sweden)

    Vadim E. Seleznev

    2011-01-01

    Full Text Available The paper describes one of the variants of mathematical models of a fluid dynamics process inside the containment, which occurs in the conditions of operation of spray systems in severe accidents at nuclear power plant. The source of emergency emissions in this case is the leak of the coolant or rupture at full cross-section of the main circulating pipeline in a reactor building. Leak or rupture characteristics define the localization and the temporal law of functioning of a source of emergency emission (or accrued operating of warmed up hydrogen and steam in the containment. Operation of this source at the course of analyzed accident models should be described by the assignment of the relevant Dirichlet boundary conditions. Functioning of the passive autocatalytic recombiners of hydrogen is described in the form of the complex Newton boundary conditions.

  8. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  9. Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Martin Khzouz

    2017-12-01

    Full Text Available Low temperature methane steam reforming for hydrogen production, using experimental developed Ni/Al2O3 catalysts is studied both experimentally and numerically. The catalytic activity measurements were performed at a temperature range of 500–700 °C with steam to carbon ratio (S/C of 2 and 3 under atmospheric pressure conditions. A mathematical analysis to evaluate the reaction feasibility at all different conditions that have been applied by using chemical equilibrium with applications (CEA software and in addition, a mathematical model focused on the kinetics and the thermodynamics of the reforming reaction is introduced and applied using a commercial finite element analysis software (COMSOL Multiphysics 5.0. The experimental results were employed to validate the extracted simulation data based on the yields of the produced H2, CO2 and CO at different temperatures. A maximum hydrogen yield of 2.7 mol/mol-CH4 is achieved at 700 °C and S/C of 2 and 3. The stability of the 10%Ni/Al2O3 catalyst shows that the catalyst is prone to deactivation as supported by Thermogravimetric Analysis TGA results.

  10. Evaluation of the high temperature electrolysis of steam to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Park, Wonseok; Chang, Jonghwa; Park, Jongkuen [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong-gu, Daejeon (Korea)

    2007-07-15

    A very high temperature gas-cooled reactor (VHTR) can be effectively used for hydrogen production through several CO{sub 2}-free alternative technologies, such as the Sulfur-Iodine (SI) cycle, the high temperature electrolysis of steam (HTES), and others. In our current study, the electrochemical thermodynamic properties and the overall thermal efficiency of the VHTR-assisted hydrogen production system by using the HTES technology have been calculated as a function of the operating temperature in the range of 600-1000 {sup circle} C. On the other hand, the effect of not only the gas turbine efficiency but also the recovery of waste heat for the overall hydrogen production thermal efficiency has also been evaluated. The thermal efficiency defined by a high heat value of the produced hydrogen (HHV) divided by the total energy of the heat and the electricity required to produce the hydrogen was adopted in our evaluation scheme. As a result, a maximized overall thermal efficiency of about 48% can be anticipated at 1000 {sup circle} C. Compared with a thermal efficiency of 27% by a conventional alkaline solution electrolysis at lower temperatures, a hydrogen production by the VHTR-assisted HTES can save on the required energy by about 2 times. The sensitivity of the operating temperature for the overall thermal efficiency defined by {delta}{eta}{sub {delta}} {sub T}/{eta}{sub T} is about 14.3% in the range of 600 to 1000 {sup circle} C. From the aspect of a conservative gas turbine efficiency and a reasonable recovery of the waste heat, an overall feasible efficiency of 46% is anticipated at 850 {sup circle} C. (author)

  11. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  12. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, A.J.; Carrero, A.; Calles, J.A. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, Escuela Superior de Ciencias Experimentales y Tecnologia (ESCET), c/ Tulipan s/n, 28933 Mostoles (Spain)

    2007-07-15

    In the present work, Cu-Ni supported catalysts were tested in ethanol steam reforming reaction. Two commercial amorphous solids (SiO{sub 2} and {gamma}-Al{sub 2}O{sub 3}) and three synthesized materials (MCM-41, SBA-15 and ZSM-5 nanocrystalline) were used as support. A series of Cu-Ni/SiO{sub 2} catalysts with different Cu and Ni content were also prepared. It was found that aluminium containing supports favour ethanol dehydration to ethylene in the acid sites, which in turn, promotes the coke deactivation process. The highest hydrogen selectivity is achieved with the Cu-Ni/SBA-15 catalyst, due to a smaller metallic crystallite size. Nevertheless, the Cu-Ni/SiO{sub 2} catalyst showed the best catalytic performance, since a better equilibrium between high hydrogen selectivity and CO{sub 2}/CO{sub x} ratio is obtained. It was seen that nickel is the phase responsible for hydrogen production in a greater grade, although both CO production and coke deposition are decreased when copper is added to the catalyst. (author)

  13. Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury.

    Science.gov (United States)

    Takahashi, Mamoru; Chen-Yoshikawa, Toyofumi F; Saito, Masao; Tanaka, Satona; Miyamoto, Ei; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi

    2017-03-01

    Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P  hydrogen-rich saline group than in the normal saline group ( P  hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI.

  14. Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST Plant

    Directory of Open Access Journals (Sweden)

    Juanjo Ugartemendia

    2013-09-01

    Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.

  15. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.

    Science.gov (United States)

    Wu, Chunfei; Williams, Paul T

    2010-08-01

    Catalytic steam reforming of ethanol has been regarded as a promising way to produce hydrogen. However, catalytic deactivation is a key problem in the process. In this paper, a novel nano-Ni/SiO2 catalyst was prepared by a simple sol-gel method and compared to catalysts prepared by an impregnation method in relation to the steam reforming ethanol process. Good Ni dispersion and high BET surface areas (>700 m2 g(-1)) were obtained for sol-gel catalysts, whereas only 1 m2 g(-1) surface area was obtained for the Ni/SiO2 impregnation catalyst. The results of catalytic steam reforming of ethanol showed that about twice of the hydrogen production was produced with the Ni/SiO2 catalyst prepared by sol-gel (around 0.2 g h(-1)) compared with that prepared by impregnation (around 0.1 g h(-1)). The analysis of the used catalysts showed that 10Ni/SiO2-B and 20Ni/SiO2-B presented the highest stability, while other catalysts were fragmented into small pieces after the reforming process, especially the catalysts prepared by impregnation. A novel catalyst has been produced that has been shown to be effective in the production of hydrogen from the steam reforming of ethanol.

  16. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    Science.gov (United States)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  17. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    Directory of Open Access Journals (Sweden)

    Shubin Zhang

    Full Text Available This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC. In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  18. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor

    Science.gov (United States)

    Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067

  19. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    Science.gov (United States)

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  20. Hydrogen-rich saline attenuates hippocampus endoplasmic reticulum stress after cardiac arrest in rats.

    Science.gov (United States)

    Gao, Yu; Gui, Qinfang; Jin, Li; Yu, Pan; Wu, Lin; Cao, Liangbin; Wang, Qiang; Duan, Manlin

    2017-02-15

    Hydrogen-rich saline can selectively scavenge reactive oxygen species (ROS) and protect brain against ischemia reperfusion (I/R) injury. Endoplasmic reticulum stress (ERS) has been implicated in the pathological process of cerebral ischemia. However, very little is known about the role of hydrogen-rich saline in mediating pathophysiological reactions to ERS after I/R injury caused by cardiac arrest. The rats were randomly divided into three groups, sham group (n=30), ischemia/reperfusion group (n=40) and hydrogen-rich saline group (n=40). The rats in experimental groups were subjected to 4min of cardiac arrest and followed by resuscitation. Then they were randomized to receive 5ml/kg of either hydrogen-rich saline or normal saline. Hydrogen-rich saline significantly improves survival rate and neurological function. The beneficial effects of hydrogen-rich saline were associated with decreased levels of oxidative products, as well as the increased levels of antioxidant enzymes. Furthermore, the protective effects of hydrogen-rich saline were accompanied by the increased activity of glucose-regulated protein 78 (GRP78), the decreased activity of cysteinyl aspartate specific proteinase-12 (caspase-12) and C/EBP homologous protein (CHOP). Hydrogen-rich saline attenuates brain I/R injury may through inhibiting hippocampus ERS after cardiac arrest in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Production of HBR from bromine and steam for off-peak electrolytic hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Schlief, R.E.; Hanrahan, R.J.; Stoy, M.A. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1995-09-01

    Progress is reported on the development of a renewable energy source based solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy and supplemental electrical power. The concept is being developed by Solar Reactor Technologies, Inc., (SRT), with the U.S. Department of Energy (DOE). An overview of the nature and objectives of this program is provided here, and technical progress made during the first (three-month) performance period of the Phase I work effort is reported. The SRT concept entails (1) absorption of concentrated solar radiation by bromine vapor Br{sub 2(g)} in a high-temperature reactor producing Br{sub (g)} atoms, (2) reaction of Br{sub (g)} with water yielding hydrogen bromide (HBr), and (3) electrolysis of stored hydrogen bromide for production of H{sub 2(g)} and recovery of Br{sub 2(I)}. Incorporation of solar radiation in the primary photochemical step (1) reduces by 50 - 70% the electrical power required to split water. The SRT concept is very attractive from an economic viewpoint as well. The reversible fuel cell, employed in the SRT electrolysis concept is capitalized via its use in load leveling by the utility. A 1 kW solar reactor was designed and constructed during the first three-month performance period by SRT personnel at the University of Florida, Gainesville. It was employed in taking survey data of the reaction between bromine and steam at temperatures between 900 and 1300 K. This reaction was run under purely thermal conditions, i.e. in the absence of solar photons. The experimental data are reported and interpreted employing concomitant thermodynamic calculations. The anticipated improvement is discussed briefly as well as the effect of a photochemical boost to the reaction. The amount of this enhancement will be studied in the next three month performance period.

  2. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  3. Hydrogen-rich PBS protects cultured human cells from ionizing radiation-induced cellular damage

    Directory of Open Access Journals (Sweden)

    Qian Liren

    2010-01-01

    Full Text Available Hydroxyl radicals play an important role in ionizing radiation-induced cellular damage, while hydrogen can selectively reduce hydroxyl radicals in vitro. This study was designed to test the hypothesis that hydrogen-rich PBS may be an effective radioprotective agent in vitro. Compared to cells pretreated without hydrogen, we demonstrated that treating cells with hydrogen-rich PBS before irradiation could significantly inhibit IR-induced apoptosis, increase viability of human intestinal crypt cells, significantly increase endogenous antioxidant, and decrease malondialdehyde and 8-hydroxydeoxyguanosine concentrations of human lymphocyte AHH-1 cells. It is concluded that hydrogen has a potential as an effective and safe radioprotective agent.

  4. Steam reforming of biomass derived oxygenates to hydrogen : Importance of metal-support boundary

    NARCIS (Netherlands)

    Takanabe, K.; Aika, Ken-ichi; Seshan, Kulathu Iyer; Lefferts, L.

    2006-01-01

    Steam reforming of acetic acid over Pt/ZrO2 catalysts was studied as a model reaction of steam reforming of biomass derived oxygenates. Pt/ZrO2 catalysts were very active; however, the catalyst deactivated in time by formation of oligomers which block the active sites for steam reforming.

  5. Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Bert

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  6. Feasability of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphta

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Albertus B.M.

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  7. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    Science.gov (United States)

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. On the nature of hydrogen-rich superluminous supernovae

    Science.gov (United States)

    Inserra, C.; Smartt, S. J.; Gall, E. E. E.; Leloudas, G.; Chen, T.-W.; Schulze, S.; Jerkstrand, A.; Nicholl, M.; Anderson, J. P.; Arcavi, I.; Benetti, S.; Cartier, R. A.; Childress, M.; Della Valle, M.; Flewelling, H.; Fraser, M.; Gal-Yam, A.; Gutiérrez, C. P.; Hosseinzadeh, G.; Howell, D. A.; Huber, M.; Kankare, E.; Krühler, T.; Magnier, E. A.; Maguire, K.; McCully, C.; Prajs, S.; Primak, N.; Scalzo, R.; Schmidt, B. P.; Smith, M.; Smith, K. W.; Tucker, B. E.; Valenti, S.; Wilman, M.; Young, D. R.; Yuan, F.

    2018-03-01

    We present two hydrogen-rich superluminous supernovae (SLSNe): SN2103hx and PS15br. These objects, together with SN2008es, are the only SLSNe showing a distinct, broad H α feature during the photospheric phase; also, they show no sign of strong interaction between fast moving ejecta and circumstellar shells in their early spectra. Despite the fact that the peak luminosity of PS15br is fainter than that of the other two objects, the spectrophotometric evolution is similar to SN2103hx and different from any other supernova in a similar luminosity space. We group all of them as SLSNe II and hence they are distinct from the known class of SLSN IIn. Both transients show a strong, multicomponent H α emission after 200 d past maximum, which we interpret as an indication of the interaction of the ejecta with an asymmetric, clumpy circumstellar material. The spectra and photometric evolution of the two objects are similar to Type II supernovae, although they have much higher luminosity and evolve on slower time-scales. This is qualitatively similar to how SLSNe I compare with normal type Ic, in that the former are brighter and evolve more slowly. We apply a magnetar and an interaction semi-analytical code to fit the light curves of our two objects and SN2008es. The overall observational data set would tend to favour the magnetar, or central engine, model as the source of the peak luminosity, although the clear signature of late-time interaction indicates that interaction can play a role in the luminosity evolution of SLSNe II at some phases.

  9. Durable Cu composite catalyst for hydrogen production by high temperature methanol steam reforming

    Science.gov (United States)

    Matsumura, Yasuyuki

    2014-12-01

    Durable catalysts are necessitated for the high temperature methanol steam reforming in compact hydrogen processors. The high durability at 400 °C can be obtained with a composite Cu catalyst where a small amount of Cu-ZnO-ZrO2-Y2O3-In2O3 is coprecipitated on a zirconia support. The lifetime of the composite catalyst containing 3 wt.% Cu is estimated to be as long as 53 × 102 h at 400 °C to produce the full conversion at a contact time of 250 g h m-3. The deactivation rate empirically relates to the cube of the activity. The gradual deactivation is caused by the gradual reduction of the Cu surface amount and also by the reduction of the surface activity which is believed to decrease with an increase in the Cu particle size. The interaction between the thin layer of the coprecipitate and the support surface probably suppresses the aggregation of the coprecipitate leading to Cu sintering.

  10. Hydrogen production from ethanol steam reforming over cerium and nickel based oxyhydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jalowiecki-Duhamel, L.; Pirez, C.; Capron, M.; Dumeignil, F.; Payen, E. [Unite de Catalyse et de Chimie du Solide, UMR CNRS 8181, Bat. C3, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)

    2010-12-15

    Hydrogen production from ethanol steam reforming (H{sub 2}O/C{sub 2}H{sub 5}OH = 3) was investigated over cerium-nickel CeNi{sub x}O{sub Y} (0 < x {<=} 5) mixed oxide catalysts. The influence of different parameters was analysed, such as reaction temperature, Ni content and in-situ pre-treatment in H{sub 2}. While an ethanol conversion of 100% is reached at 400 C, a stable activity i.e., ethanol conversion, and H{sub 2} selectivity can be obtained at very low temperature (200 C) when the solid is previously in-situ treated in H{sub 2} in a temperature range between 200 C and 300 C. After such a treatment, the solids studied are hydrogen reservoirs, called oxyhydrides, with the presence of hydrogen species of hydride nature in the anionic vacancies of the solid. Different physicochemical techniques, including XPS, ion sputtering, XRD, TPR were used to characterize the catalysts. Depending on the composition and metal loading, a solid solution and/or a highly dispersed nickel oxide in ceria can be obtained. Ion sputtering followed by XPS analysis allowed estimating the size of NiO nanoparticles (2-3 nm) present in the compounds, too small to be detected by XRD. The characterization of CeNi{sub x}O{sub Y} solids, evidenced the existence of high interactions between Ce and Ni cations located either in the solid solution of cerium-nickel or at the interface between NiO and CeO{sub 2} (or solid solution). The active nickel species belonging to the small particles and/or to the solid solution, participating actively in the catalytic reaction, present the characteristic of being able to be reduced and reoxidized easily and reversibly (redox process), allowed by their close interaction with Ce species. Finally, correlations among the species present in the solid, and the catalytic performances are discussed, and an active site based on the formation of anionic vacancies and a mechanism involving a heterolytic abstraction of a hydride species from ethanol are envisaged

  11. Effects of hydrogen-rich water on depressive-like behavior in mice

    Science.gov (United States)

    Zhang, Yi; Su, Wen-Jun; Chen, Ying; Wu, Teng-Yun; Gong, Hong; Shen, Xiao-Liang; Wang, Yun-Xia; Sun, Xue-Jun; Jiang, Chun-Lei

    2016-01-01

    Emerging evidence suggests that neuroinflammation and oxidative stress may be major contributors to major depressive disorder (MDD). Patients or animal models of depression show significant increase of proinflammatory cytokine interleukin-1β (IL-1β) and oxidative stress biomarkers in the periphery or central nervous system (CNS). Recent studies show that hydrogen selectively reduces cytotoxic oxygen radicals, and hydrogen-rich saline potentially suppresses the production of several proinflammatory mediators. Since current depression medications are accompanied by a wide spectrum of side effects, novel preventative or therapeutic measures with fewer side effects might have a promising future. We investigated the effects of drinking hydrogen-rich water on the depressive-like behavior in mice and its underlying mechanisms. Our study show that hydrogen-rich water treatment prevents chronic unpredictable mild stress (CUMS) induced depressive-like behavior. CUMS induced elevation in IL-1β protein levels in the hippocampus, and the cortex was significantly attenuated after 4 weeks of feeding the mice hydrogen-rich water. Over-expression of caspase-1 (the IL-1β converting enzyme) and excessive reactive oxygen species (ROS) production in the hippocampus and prefrontal cortex (PFC) was successfully suppressed by hydrogen-rich water treatment. Our data suggest that the beneficial effects of hydrogen-rich water on depressive-like behavior may be mediated by suppression of the inflammasome activation resulting in attenuated protein IL-1β and ROS production. PMID:27026206

  12. Structure and stabilization of hydrogen-rich transverse.

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Sgouria [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilde, B [Georgia Inst. of Technology, Atlanta, GA (United States); Kolla, Hemanth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seitzman, J. [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, T. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    This paper reports the results of a joint experimental and numerical study of the ow characteristics and flame stabilization of a hydrogen rich jet injected normal to a turbulent, vitiated cross ow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air cross ow, the present conditions lead to an autoigniting, burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/cross flow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the reacting JICF. Vorticity spectra extracted from the windward shear layer reveal that the reacting jet is globally unstable and features two high frequency peaks, including a fundamental mode whose Strouhal number of ~0.7 agrees well with previous non-reacting JICF stability studies. The paper concludes with an analysis of the ignition, ame stabilization, and global structure of the burner-attached flame. Chemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after

  13. Effects of Hydrogen-Rich Saline on Hepatectomy-Induced Postoperative Cognitive Dysfunction in Old Mice.

    Science.gov (United States)

    Tian, Yue; Guo, Shanbin; Zhang, Yan; Xu, Ying; Zhao, Ping; Zhao, Xiaochun

    2017-05-01

    This study aims to investigate the protective effects and underlying mechanisms of hydrogen-rich saline on the cognitive functions of elder mice with partial hepatectomy-induced postoperative cognitive dysfunction (POCD). Ninety-six old male Kunming mice were randomly divided into 4 groups (n = 24 each): control group (group C), hydrogen-rich saline group (group H), POCD group (group P), and POCD + hydrogen-rich saline group (group PH). Cognitive function was subsequently assessed using Morris water-maze (MWM) test. TNF-α and IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, along with NF-κB activity determined by ELISA. The morphology of hippocampal tissues were further observed by HE staining. Learning and memory abilities of mice were significantly impaired at day 10 and day 14 post-surgery, as partial hepatectomy significantly prolonged the escape latency, decreased time at the original platform quadrant and frequency of crossing in group P when compared to group C (p hydrogen-rich saline (group PH) partially rescued spatial memory and learning as it shortened escape latency and increased time and crossing frequency of original platform compared to group P (p hydrogen-rich saline. Hydrogen-rich saline can alleviate POCD via inhibiting NF-κB activity in the hippocampus and reducing inflammatory response.

  14. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.

    Science.gov (United States)

    Homsi, Doris; Rached, Jihane Abou; Aouad, Samer; Gennequin, Cédric; Dahdah, Eliane; Estephane, Jane; Tidahy, Haingomalala Lucette; Aboukaïs, Antoine; Abi-Aad, Edmond

    2017-04-01

    The performances of different 5Cu/Co x Mg 6-x Al 2 (x = 0; 2; 4; 6) catalysts prepared by the wet impregnation method were investigated in the ethanol steam-reforming reaction (ESR) at 450 °C during 4 h under a steam/ethanol ratio of 3 (S/E = 3). The best catalyst among the prepared solids was 5Cu/Co 6 Al 2 as it showed a complete ethanol conversion and the highest hydrogen and carbon dioxide productivities. However, following 50 h of aging, the catalyst deactivated due to the formation of a high amount of carbonaceous products detected by differential scanning calorimetry/thermogravimetry. On the other hand, the 5Cu/Co 2 Mg 4 Al 2 catalyst showed a much lower quantity of coke deposition with no deactivation due to the basic character conferred by the magnesium oxide phase.

  15. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  16. Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier

    Directory of Open Access Journals (Sweden)

    Sanaz Daneshmand-Jahromi

    2017-09-01

    Full Text Available In this work, the modification of Ni/SBA-16 oxygen carrier (OC with yttrium promoter is investigated. The yttrium promoted Ni-based oxygen carrier was synthesized via co-impregnation method and applied in chemical looping steam methane reforming (CL-SMR process, which is used for the production of clean energy carrier. The reaction temperature (500–750 °C, Y loading (2.5–7.4 wt. %, steam/carbon molar ratio (1–5, Ni loading (10–30 wt. % and life time of OCs over 16 cycles at 650 °C were studied to investigate and optimize the structure of OC and process temperature with maximizing average methane conversion and hydrogen production yield. The synthesized OCs were characterized by multiples techniques. The results of X-ray powder diffraction (XRD and energy dispersive X-ray spectroscopy (EDX of reacted OCs showed that the presence of Y particles on the surface of OCs reduces the coke formation. The smaller NiO species were found for the yttrium promoted OC and therefore the distribution of Ni particles was improved. The reduction-oxidation (redox results revealed that 25Ni-2.5Y/SBA-16 OC has the highest catalytic activity of about 99.83% average CH4 conversion and 85.34% H2 production yield at reduction temperature of 650 °C with the steam to carbon molar ratio of 2.

  17. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  18. Superconductivity in hydrogen-rich materials at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, Alexander

    2016-07-01

    A room temperature superconductor is probably one of the most desired systems in solid state physics. The highest critical temperature (T{sub c}) that has been achieved so far is in the copper oxide system: 133 kelvin (K) at ambient pressure ([82]Schilling et al. 1993) and 160 K under pressure ([42]Gao et al. 1994). The nature of superconductivity in the cuprates and in the recently discovered iron-based superconductor family (T{sub c}=57 K) is still not fully understood. In contrast, there is a class of superconductors which is well-described by the Bardeen, Cooper, Schrieffer (BCS) theory - conventional superconductors. Great efforts were spent in searching for high-temperature (T{sub c} > 77 K) conventional superconductor but only T{sub c} = 39 K has been reached in MgB2 ([68]Nagamatsu et al. 2001). BCS theory puts no bounds for T{sub c} as follows from Eliashberg's formulation of BCS theory. T{sub c} can be high, if there is a favorable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. It does not predict however in which materials all three parameters are large. At least it gives a clear indication that materials with light elements are favorable as light elements provide high frequencies in the phonon spectrum. The lightest element is hydrogen, and Ashcroft made a first prediction that metallic hydrogen will be a high-temperature superconductor ([6]Ashcroft 1968). As pressure of hydrogen metallization was too high (about 400-500 GPa) for experimental techniques then he proposed that compounds dominated by hydrogen (hydrides) also might be good high temperature superconductors ([6]Ashcroft 1968; [7]Ashcroft 2004). A lot of the followed calculations supported this idea. T{sub c} in the range of 50-235 kelvin was predicted for many hydrides. Unfortunately, only a moderate T{sub c} of 17 kelvin has been observed experimentally ([27]Eremets et al. 2008) so far. A goal of the present work is to find a

  19. Hydrogen production from raw bioethanol steam reforming : optimization of catalyst composition with improved stability against various impurities

    Energy Technology Data Exchange (ETDEWEB)

    Le Valant, A.; Can, F.; Bion, N.; Epron, F.; Duprez, D. [Poitiers Univ., Poitiers (France). Laboratoire de Catalyse en Chimie organique

    2009-07-01

    This study investigated the effects of raw ethanol impurities on catalytic performance during ethanol steam reforming processes. An Rh/MgAI{sub 2}O{sub 4} reference catalyst was used. Steam reforming was conducted in a fixed bed reactor. The study showed that aldehyde, amine, and methanol have no negative impacts on catalytic performance. Deactivation is caused by coke formation as a result of the presence of the impurities in the feed. The composition of the support and metallic phases of the catalyst formulation were then modified in order to improve the stability of the catalyst in the presence of deactivating impurities. Rare earth elements were used to replace magnesium and decrease strong and medium acid sites. Ethanol conversion and hydrogen yield were both increased when the dehydration reaction was disfavoured. The metallic phase was modified by the addition of a second metal. It was concluded that the Rh-NiY-Al{sub 2}O{sub 3} catalyst has the highest hydrogen yield, and is more stable than the reference catalyst. 16 refs., 7 figs.

  20. Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats.

    Science.gov (United States)

    Muramatsu, Yukako; Ito, Mikako; Oshima, Takahiro; Kojima, Seiji; Ohno, Kinji

    2016-09-01

    Bronchopulmonary dysplasia (BPD) is characterized by developmental arrest of the alveolar tissue. Oxidative stress is causally associated with development of BPD. The effects of hydrogen have been reported in a wide range of disease models and human diseases especially caused by oxidative stress. We made a rat model of BPD by injecting lipopolysaccharide (LPS) into the amniotic fluid at E16.5. The mother started drinking hydrogen-rich water from E9.5 and also while feeding milk. Hydrogen normalized LPS-induced abnormal enlargement of alveoli at P7 and P14. LPS increased staining for nitrotyrosine and 8-OHdG of the lungs, and hydrogen attenuated the staining. At P1, LPS treatment decreased expressions of genes for FGFR4, VEGFR2, and HO-1 in the lungs, and hydrogen increased expressions of these genes. In contrast, LPS treatment and hydrogen treatment had no essential effect on the expression of SOD1. Inflammatory marker proteins of TNFα and IL-6 were increased by LPS treatment, and hydrogen suppressed them. Treatment of A549 human lung adenocarcinoma epithelial cells with 10% hydrogen gas for 24 hr decreased production of reactive oxygen species in both LPS-treated and untreated cells. Lack of any known adverse effects of hydrogen makes hydrogen a promising therapeutic modality for BPD. Pediatr Pulmonol. 2016; 51:928-935. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Steam Plasma Treatment of Organic Substances for Hydrogen and Syngas Production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Hlína, Michal; Kopecký, Vladimír; Mašláni, Alan; Živný, Oldřich; Křenek, Petr; Serov, Anton; Hurba, Oleksiy

    2017-01-01

    Roč. 37, č. 3 (2017), s. 739-762 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA15-19444S Institutional support: RVO:61389021 Keywords : Plasma gasification * Thermal plasma * Steam plasma * Syngas * Organic waste Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.355, year: 2016

  2. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Aika, Ken-ichi; Seshan, K.; Lefferts, Leon

    Studies were conducted with acetic acid (HAc) as model oxygenate for the design of active and stable catalysts for steam reforming of bio-oil. Pt/ZrO2 catalysts were prepared by wet impregnation technique. The Pt/ZrO2 catalysts showed high activities at initial time on stream, but lost its activity

  3. Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Stefan; Stidl, Martin; Proell, Tobias; Rauch, Reinhard; Hofbauer, Hermann [Vienna University of Technology, Institute of Chemical Engineering-Future Energy Technology, Vienna (Austria)

    2011-03-15

    Hydrogen is used as an important feedstock for the chemical industry. Common production technologies for the production of hydrogen from fossil fuels today cause relevant CO{sub 2} emissions. Hydrogen from renewable energy sources is discussed as an alternative option to replace traditional feedstock and can therefore be part of a low-carbon energy system. This paper describes the results of a simulation of a concept for the production of hydrogen with biomass as feedstock. The described investigations include a possible process design, the process simulation using the software IPSEpro, a description of the operation characteristics, and a profitability analysis of the applied hydrogen production concept. The simulation result shows that 61 MW of hydrogen can be produced from 100 MW wood chips and 6 MW of electricity. As a result, hydrogen production costs of 54 EUR/MWh can be estimated. For the investigated concept, the wood chip price is the most important factor for the hydrogen production cost followed by investment costs for the plant and the realized plant operation time per year. (orig.)

  4. Steam reforming of biodiesel by-product to make renewable hydrogen.

    Science.gov (United States)

    Slinn, Matthew; Kendall, Kevin; Mallon, Christian; Andrews, James

    2008-09-01

    The aim of this paper was to investigate the viability of steam reforming the combined glycerol and water by-product streams of a biodiesel plant. A platinum alumina catalyst was used to optimise the operating conditions for glycerol steam reforming and mass spectroscopy was chosen to measure reformer gas yield. The problem is that glycerol steam reforming is relatively untested even with pure glycerol and the by-product quality may be too poor. The strategy was therefore to optimise the process using pure glycerol and compare the performance with by-product glycerol. To test catalyst degradation caused by carbon deposition, a Solid Oxide fuel cell (SOFC) was used as a separate reformer and electrical performance was measured to indicate carbon deposition. This is the first time a SOFC has been run on glycerol. The results showed that thermodynamic theory can be used to predict reformer performance. At high temperatures high gas yield can be reached (almost 100%) and selectivities of 70% (dry basis) obtained. The optimum conditions for glycerol reforming were 860 degrees C temperature (maximum tested), 0.12 mols/min glycerol flow per kg of catalyst and 2.5 steam/carbon ratio. Reforming catalysts lasted for several days of continuous operation with minimal degradation, 0.4% of feed deposited. By-product glycerol performed slightly worse with a lower yield and more carbon deposition, 2% of feed. The results show that glycerol steam reforming is a viable alternative use for glycerol and potentially a better option than purification.

  5. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature.

    Science.gov (United States)

    Xin, Ya; Cao, Hongliang; Yuan, Qiaoxia; Wang, Dianlong

    2017-10-01

    Two-step gasification process was proposed to dispose cattle manure for hydrogen rich gas production. The effect of temperature on product distribution and biochar properties were first studied in the pyrolysis-carbonization process. The steam gasification of biochar derived from different pyrolysis-carbonization temperatures was then performed at 750°C and 850°C. The biochar from the pyrolysis-carbonization temperatures of 500°C had high carbon content and low volatiles content. According to the results of gasification stage, the pyrolysis-carbonization temperature of 500°C and the gasification temperature of 850°C were identified as the suitable conditions for hydrogen production. We obtained 1.61m 3 /kg of syngas production, 0.93m 3 /kg of hydrogen yield and 57.58% of hydrogen concentration. This study shows that two-step gasification is an efficient waste-to-hydrogen energy process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Catalytic Steam Reforming of Bio-Oil to Hydrogen Rich Gas

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus

    , was observed and the yield of these compounds decreased with increasing temperature. A large formation of aromatic compounds, benzenediols and phenol, was observed in the SR of guaiacol even at 600 ‰ and temperatures as high as 780 ‰ were needed to eliminate the formation of these compounds. Temperatures...... the Fischer-Tropsch synthesis. In the SR of bio-oil or biooil model compounds high degrees of conversion and high yields of H2 can be achieved, but stability with time-on-stream is rarely achieved. The deactivation is mainly due to carbon deposition and is one of the major hurdles in the SR of bio...... precursor to carbon deposition. CeO2, ZrO2, K, or mixtures hereof were added to Ni/MgAl2O4, and all of them lowered the carbon deposition and increased the activity. The addition of CeO2 gave the lowest carbon deposition probably due to an increased oxidation of carbon by CeO2. Stability tests over 24 h...

  7. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    DEFF Research Database (Denmark)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario

    2014-01-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitude...

  8. Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review

    Science.gov (United States)

    Perfect, E.; Cheng, C.-L.; Kang, M.; Bilheux, H. Z.; Lamanna, J. M.; Gragg, M. J.; Wright, D. M.

    2014-02-01

    Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed.

  9. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Han; Sun, Yan Ping; Li, Yang [Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003 (China); Liu, Wen Wu [Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433 (China); Xiang, Hong Gang [Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003 (China); Fan, Lie Ying [Department of Clinical Laboratory, Shanghai East Hospital, Tong Ji University, Shanghai 200120 (China); Sun, Qiang [Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433 (China); Xu, Xin Yun [Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003 (China); Cai, Jian Mei [Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433 (China); Ruan, Can Ping; Su, Ning; Yan, Rong Lin [Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003 (China); Sun, Xue Jun, E-mail: sunxjk@hotmail.com [Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433 (China); Wang, Qiang, E-mail: wang2929@hotmail.com [Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003 (China)

    2010-03-05

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-{kappa}B) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-{kappa}B activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-{kappa}B activation and to promote acinar cell proliferation.

  11. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  12. A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde sterilization.

    Science.gov (United States)

    Kanemitsu, Keiji; Imasaka, Takayuki; Ishikawa, Shiho; Kunishima, Hiroyuki; Harigae, Hideo; Ueno, Kumi; Takemura, Hiromu; Hirayama, Yoshihiro; Kaku, Mitsuo

    2005-05-01

    To compare the efficacies of ethylene oxide gas (EOG), hydrogen peroxide gas plasma (PLASMA), and low-temperature steam formaldehyde (LTSF) sterilization methods. The efficacies of EOG, PLASMA, and LTSF sterilization were tested using metal and plastic plates, common medical instruments, and three process challenge devices with narrow lumens. All items were contaminated with Bacillus stearothermophilus spores or used a standard biological indicator. EOG and LTSF demonstrated effective killing of B. stearothermophilus spores, with or without serum, on plates, on instruments, and in process challenge devices. PLASMA failed to adequately sterilize materials on multiple trials in several experiments, including two of three plates, two of three instruments, and all process challenge devices. Our results suggest that PLASMA sterilization may be unsuccessful under certain conditions, particularly when used for items with complex shapes and narrow lumens. Alternatively, LTSF sterilization demonstrates excellent efficacy and is comparable to EOG sterilization. LTSF could potentially act as a substitute if EOG becomes unavailable due to environmental concerns.

  13. Hydrogen production from raw bioethanol steam reforming: optimization of catalyst composition with improved stability against various impurities

    Energy Technology Data Exchange (ETDEWEB)

    Le Valant, A.; Can, F.; Bion, N.; Epron, F.; Duprez, D. [Laboratoire de Catalyse en Chimie organique, Univ. de Poitiers, Poitiers Cedex (France)], E-mail: florence.epron.cognet@univ-poitiers.fr

    2009-07-01

    Usually, ethanol steam reforming is performed using pure ethanol, whereas the use of raw bioethanol is of major importance for a cost effective industrial application. Raw bioethanol contains higher alcohols as the main impurities and also aldehydes, amines, acids and esters. The effect of these impurities on the catalytic performances for ethanol steam reforming (ESR) has been studied, using a reference catalyst, Rh/MgAl{sub 2}O{sub 4}. It was shown that the aldehyde, the amine and methanol has no negative effect on the catalytic performances, contrary to the ester, acid and higher alcohols. The deactivation is mainly explained by coke formation favored by the presence of these impurities in the feed. In order to improve the stability of the catalyst and its performances in the presence of these deactivating impurities, the catalyst formulation, i.e. the composition of the support and of the metallic phase, was modified. The addition of rare earth elements instead of magnesium to the alumina support leads to a decrease of the strong and medium acid sites and to an increase of the basicity. On these modified supports, the dehydration reaction, leading to olefins, which are coke precursors, is disfavored, the ethanol conversion and the hydrogen yield are increased. The best catalytic performances were obtained with Rh/Y-Al{sub 2}O{sub 3}. Then, the metallic phase was also modified by adding a second metal (Ni, Pt or Pd). The Rh-Ni/Y-Al{sub 2}O{sub 3} catalyst leads to the highest hydrogen yield. This catalyst, tested in the presence of raw bioethanol during 24h was very stable compared to the reference catalyst Rh/MgAl{sub 2}O{sub 4}, which was strongly deactivated after 2h of time-on-stream. (author)

  14. Evaluation of the operating resource of the most loaded rotor element of the additional steam turbine with steam-hydrogen overheat of the working fluid at a nuclear power station

    Science.gov (United States)

    Bairamov, A. N.

    2017-11-01

    The operation of a nuclear power plant with a hydrogen energy complex and a constantly operating low capacity additional steam turbine makes it possible to improve the reliability of the power supply to the needs of a nuclear power plant in the face of major systemic accidents. In this case, the additional steam turbine is always in operation. This determines the alternation of the operating conditions of the additional steam turbine, and, at the same time, the alternation of the loads attributable to the rotor, which affects its working life. The aim of the article is to investigate the effect of cyclic loads on the number of cycles before the destruction of the most important elements of the rotor of an additional steam turbine due to the alternation of operating conditions when entering the peak load and during unloading at night. The article demonstrates that the values of the stress range intensity index for the most important elements of the rotor of an additional steam turbine lie in the area of the threshold values of the fatigue failure diagram. For this region, an increase in the frequency of loading is associated with the phenomenon of closure of the fatigue crack and, as a consequence, a possible slowing of its growth. An approximate number of cycles before failure for the most loaded element of the rotor is obtained.

  15. Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    Directory of Open Access Journals (Sweden)

    Jianxin Zou

    2012-01-01

    Full Text Available In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.

  16. Hydrogen production enhancement and the effect of passive mixing using flow disturbers in a steam-reforming reactor

    Science.gov (United States)

    Liao, Chang-Hsien

    This study investigates the influence of changing the flow pathway inside a methanol steam reformer by introduction of flow disturbers in the flow field. In a reforming reaction, it is known that fuel conversion from hydrocarbons to hydrogen can be limited by chemical kinetics, which is a function of local temperature. For a typical cylindrical reactor, large thermal gradients inside the packed bed result from insufficient heat and mass transfer. This causes a non-ideal condition for complete conversion to hydrogen. Active mixing methods in critical fluid pathways have been proven to improve heat and mass transfer inside reforming reactors. A new method of passive mixing in the fluid pathways by introducing flow disturbers inside the packed catalyst bed is presented. A principle of characteristic time of a 1st order reaction is also presented and studied. The reactor output parameters of fuel conversion, temperature profile, characteristic time, pressure drop, reactor efficiency, and power demand are analyzed and compared to quantify the influence of the passive mixing technique. Input variables in this study are packing density of flow disturbers, space velocity and catalyst size. This study is expected to provide a basic analysis and contribute to the improvement of reformer design for better fuel processing system performance.

  17. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    Science.gov (United States)

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  18. Ethanol steam reforming with Co0 (111 for hydrogen and carbon nanofilament generation

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2017-12-01

    Full Text Available The cobalt metal catalysts are highly active at low temperature ESR. In this study, ESR was studied over barren Co metal (Co0 from oxalate precursor without any pre-reduction to find out its role in hydrogen and carbon nano-filament generation. The ethanol conversion was found to be 100% with 96.5% hydrogen selectivity at 723K. The time on stream (TOS study has shown stability up to 19h for Co catalyst. The diameter of Co-carbon nanofilament was calculated and found to be typically in the range of 70–80 nm by the TEM image analysis of spent catalyst. The SEM with EDS analysis revealed that Co0 state was found in between the carbon nanofilament as well as at the tip of carbon nanofilament. The obtained Co-C nanofilament displayed an adsorption capacity of 552 mg/g at optimum parameter of pH = 2, contact time = 60 minute, concentration = 30 ppm, dose = 0.05g for Orange G dye removal without any chemical or physical treatment. This approach has shown significant results in terms of hydrogen generation and method of Co carbon nanofilament for further utilization in different prospects. Keywords: Catalyst deactivation, Characterization, ESR, Hydrogen production

  19. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.

    Science.gov (United States)

    Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian

    2017-12-01

    It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Polygeneration-IGCC concepts for the production of hydrogen rich fuels based on lignite

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bernd; Ogriseck, Katrin

    2007-08-15

    This paper presents three IGCC-power plant concepts for central production of a hydrogen-rich fuel (methanol, hydrogen, synthetic natural gas SNG) from lignite. Each concept contains a CO{sub 2} separation, which produces a sequestration-ready CO{sub 2} rich stream. Thus, CO{sub 2} emissions caused by use of lignite are considerably reduced. Furthermore, the produced low-carbon fuels are converted in decentralised Combined Heat and Power Plants (CHPP). CHPP leads to high efficiencies of fuel utilisation between 54 and 62%, which exceed the efficiencies of single power generation. Regarding to the CO{sub 2} emissions of a natural gas fired CHPP, heat and power can be generated by lignite as clean as by natural gas. The specific CO{sub 2} emissions are even much lower in the case of hydrogen production. Costs for the centrally produced methanol and hydrogen are with 29 and 19 EUR/MWh(LHV) already within an economic range. Synthetic natural gas can be produced for 23 EUR/MWh (LHV).

  1. Steam reforming catalyst

    Science.gov (United States)

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  2. Protective effect of hydrogen rich saline solution on experimental ovarian ischemia reperfusion model in rats.

    Science.gov (United States)

    Gokalp, Nurcan; Basaklar, Abdullah Can; Sonmez, Kaan; Turkyilmaz, Zafer; Karabulut, Ramazan; Poyraz, Aylar; Gulbahar, Ozlem

    2017-03-01

    The present study aimed to investigate the effects of hydrogen rich saline solution (HRSS) in a rat model of ovarian ischemia-reperfusion injury. Thirty-six female Wistar-albino rats were grouped randomly, into six groups of six rats. The groups were classified as: sham (S), hydrogen (H), torsion (T), torsion/detorsion (TD), hydrogen-torsion (HT), and hydrogen-torsion/detorsion (HTD). Bilateral adnexal torsion was performed for 3h in all torsion groups. HRSS was given 5ml/kg in hydrogen groups intraperitoneally. Malondialdehyde (MDA) and glutathione-S-transferase (GST) levels were measured in both the plasma and tissue samples. Tissue sections were evaluated histopathologically, and the apoptotic index was detected by TUNEL assay. The results were analyzed by Kruskal-Wallis and Pearson chi-square tests using computer software, SPSS Version 20.0 for Windows. The MDA levels were higher and GST levels were lower in the torsion and detorsion groups when compared to other groups, but the differences were insignificant (P>0.05). The MDA levels were lower and GST levels were higher in the HT and HTD groups compared with the T and TD groups (P>0.05). Follicular injury, edema, vascular congestion, loss of cohesion and apoptotic index were higher in the torsion groups but decreased in the groups that received HRSS. According to histopathological and biochemical examinations, HRSS is effective in attenuating ischemia-reperfusion induced ovary injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Hydrogen production from raw bioethanol steam reforming: Optimization of catalyst composition with improved stability against various impurities

    Energy Technology Data Exchange (ETDEWEB)

    Le Valant, Anthony; Can, Fabien; Bion, Nicolas; Duprez, Daniel; Epron, Florence [Laboratoire de Catalyse en Chimie organique, UMR6503 CNRS, Universite de Poitiers, 40 avenue du recteur Pineau, 86022 Poitiers Cedex (France)

    2010-05-15

    The use of raw bioethanol is of major importance for a cost effective industrial application. Raw bioethanol contains higher alcohols as the main impurities and also aldehydes, amines, acids and esters. The effect of these impurities on the catalytic performances for ethanol steam reforming (ESR) has been studied, using a reference catalyst, Rh/MgAl{sub 2}O{sub 4}. It was shown that the aldehyde, the amine and methanol have no negative effect on the catalytic performances, contrary to the ester, acid and higher alcohols. The deactivation is mainly explained by coke formation favored by the presence of these impurities in the feed. In order to improve the stability of the catalyst and its performances in the presence of these deactivating impurities, the catalyst formulation, i.e. the composition of the support and of the metallic phase, was modified. The addition of rare earth elements instead of magnesium to the alumina support leads to a decrease of the strong and medium acid sites and to an increase of the basicity. On these modified supports, the dehydration reaction, leading to olefins, which are coke precursors, is disfavored, the ethanol conversion and the hydrogen yield are increased. The best catalytic performances were obtained with Rh/Y-Al{sub 2}O{sub 3}. Then, the metallic phase was also modified by adding a second metal (Ni, Pt or Pd). The Rh-Ni/Y-Al{sub 2}O{sub 3} catalyst leads to the highest hydrogen yield. This catalyst, tested in the presence of raw bioethanol during 24 h was very stable compared to the reference catalyst Rh/MgAl{sub 2}O{sub 4}, which was strongly deactivated after 2 h of time-on -stream. (author)

  4. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  5. Direct methanol steam reforming to hydrogen over CuZnGaOx catalysts without CO post-treatment: mechanistic considerations.

    Science.gov (United States)

    Tong, Weiyi; Cheung, Kevin; West, Adam; Yu, Kai-Man; Tsang, Shik Chi Edman

    2013-05-21

    Utilization of hydrogen gas (and carbon dioxide) from methanol steam reforming reaction directly without CO post-treatment to supply proton exchange membrane fuel cells for mobile applications is an attractive option. CuZnGaOx based mixed oxides prepared by co-precipitation are found to be active as catalysts for the reforming reaction. It is also found that the use of lower temperature and a faster substrate flow rate with a shorter contact time with the catalyst bed can significantly reduce the CO level in the product gas stream. At 150 °C this class of oxides gives a decent methanol conversion but can also totally suppress the CO production at a short contact time, which is in a sharp contrast with conventional CuZnOx based catalysts that give a significant degree of CO formation. Characterization using Diffuse Reflectance Infrared Fourier Transform (DRIFT) analysis presented in this work clearly suggests the importance of the interface between copper metal-defective oxides for the catalysis. Mechanistic aspects of this reaction are therefore discussed in this paper.

  6. Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer

    Science.gov (United States)

    Sari, Ataallah; Sabziani, Javad

    2017-06-01

    Modeling and CFD simulation of a three-dimensional microreactor includes thirteen structured parallel channels is performed to study the hydrogen production via methanol steam reforming reaction over a Cu/ZnO/Al2O3 catalyst. The well-known Langmuir-Hinshelwood macro kinetic rate expressions reported by Peppley and coworkers [49] are considered to model the methanol steam reforming reactions. The effects of inlet steam to methanol ratio, pre-heat temperature, channels geometry and size, and the level of external heat flux on the hydrogen quality and quantity (i.e., hydrogen flow rate and CO concentration) are investigated. Moreover, the possibility of reducing the CO concentration by passing the reactor effluent through a water gas shift channel placed in series with the methanol reformer is studied. Afterwards, the simulation results are compared with the experimental data reported in the literature considering two different approaches of mixture-averaged and Maxwell-Stefan formulations to evaluate the diffusive flux of mass. The results indicate that the predictions of the Maxwell-Stefan model is in better agreement with experimental data than mixture-averaged one, especially at the lower feed flow rates.

  7. Hydrogen-rich saline injection into the subarachnoid cavity within 2 weeks promotes recovery after acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jian-long Wang

    2015-01-01

    Full Text Available Hydrogen can relieve tissue-damaging oxidative stress, inflammation and apoptosis. Injection of hydrogen-rich saline is an effective method for transporting molecular hydrogen. We hypothesized that hydrogen-rich saline would promote the repair of spinal cord injury induced by Allen′s method in rats. At 0.5, 1, 2, 4, 8, 12 and 24 hours after injury, then once daily for 2 weeks, 0.25 mL/kg hydrogen-rich saline was infused into the subarachnoid space through a catheter. Results at 24 hours, 48 hours, 1 week and 2 weeks after injury showed that hydrogen-rich saline markedly reduced cell death, inflammatory cell infiltration, serum malondialdehyde content, and caspase-3 immunoreactivity, elevated serum superoxide dismutase activity and calcitonin gene-related peptide immunoreactivity, and improved motor function in the hindlimb. The present study confirms that hydrogen-rich saline injected within 2 weeks of injury effectively contributes to the repair of spinal cord injury in the acute stage.

  8. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei, E-mail: xmma@bjut.edu.cn; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  9. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.

    2007-01-01

    addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts...... for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between...... 673 and 873 K, and a 25 vol% ethanol -water mixture was employed. Deactivation of the catalysts by carbon formation is the main obstacle for industrial use of this process. Carbon formation was found to be highly affected by the operating temperature and the choice of catalyst. The effect of Ag...

  10. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    Science.gov (United States)

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  11. Fuel-rich hydrogen-air combustion for a gas-turbine system without CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Noriyuki; Namo, Takamitsu; Arai, Norio [Nagoya Univ. (Japan). Research Center for Advanced Energy Conversion

    1997-02-01

    We propose a new and innovative gas-turbine system using fuel-rich hydrogen combustion, which we call a chemical gas-turbine system. It involves a fuel-rich hydrogen-air combustor as a major component. We have focused on a coaxial diffusion flame under normal pressure. The effects of equivalence ratio and swirl number have been investigated by measuring temperature profiles, gas composition, and flame structures using direct observations of OH radical emissions. The flames were shortened and NO{sub x} emission decreased with swirling under fuel-rich conditions. (author)

  12. Effects of sterilization with hydrogen peroxide gas plasma, ethylene oxide, and steam on bioadhesive properties of nylon and polyethylene lines used for stabilization of canine stifle joints.

    Science.gov (United States)

    Gatineau, Matthieu; El-Warrak, Alexander O; Bolliger, Christian; Mourez, Michael; Berthiaume, Frederic

    2012-10-01

    To compare effects of sterilization with hydrogen peroxide gas plasma (HPGP), ethylene oxide, and steam on bioadhesive properties of nylon and polyethylene lines used for stabilization of canine stifle joints. Samples of a 36.3-kg test nylon leader line, 57.8-kg test nylon fishing line, and 2-mm ultrahigh-molecular weight polyethylene (UHMWPE) were used. In this in vitro study, samples of nylon leader line, fishing line, and UHMWPE sterilized by use of HPGP, ethylene oxide, and steam or unsterilized samples were used. Bacterial adherence on unsterilized and sterilized samples was tested with Staphylococcus epidermidis and Escherichia coli. Five samples were examined for each line type and sterilization condition, and final colony counts were obtained. Bacterial adherence was significantly affected by method of sterilization for all 3 line types. For most of the samples, bacterial adherence was similar or lower when HPGP sterilization was used, compared with results for sterilization via ethylene oxide and steam, respectively. Bacterial adherence was significantly higher for UHMWPE, compared with adherence for the nylon line, regardless of the sterilization method used. Bacterial adherence was higher for nylon fishing line than for nylon leader line for S epidermidis after ethylene oxide sterilization and for E coli after HPGP and ethylene oxide sterilization. Effects of HPGP sterilization on bioadhesive properties of nylon and polyethylene lines compared favorably with those for ethylene oxide and steam sterilization. Also, nylon line may be a more suitable material than UHMWPE for suture prostheses on the basis of bacterial adherence properties.

  13. Hydrogen-rich saline attenuates anxiety-like behaviors in morphine-withdrawn mice.

    Science.gov (United States)

    Wen, Di; Zhao, Peng; Hui, Rongji; Wang, Jian; Shen, Qianchao; Gong, Miao; Guo, Hongyan; Cong, Bin; Ma, Chunling

    2017-05-15

    Hydrogen therapy is a new medical approach for a wide range of diseases. The effects of hydrogen on central nervous system-related diseases have recently become increasingly appreciated, but little is known about whether hydrogen affects the morphine withdrawal process. This study aims to investigate the potential effects of hydrogen-rich saline (HRS) administration on naloxone-precipitated withdrawal symptoms and morphine withdrawal-induced anxiety-like behaviors. Mice received gradually increasing doses (25-100 mg/kg, i.p.) of morphine over 3 days. In the naloxone-precipitated withdrawal procedure, the mice were treated with three HRS (20 μg/kg, i.p.) injections, and naloxone (1 mg/kg, i.p.) was given 30 min after HRS administration. Body weight, jumping behavior and wet-dog shakes were immediately assessed. In the spontaneous withdrawal procedure, the mice were treated with HRS (20 μg/kg, i.p.) every 8-h. Mice underwent naloxone-precipitated or spontaneous withdrawal were tested for anxiety-like behaviors in the elevated plus-maze (EPM) and light/dark box (L/D box) paradigm, respectively. In addition, the levels of plasma corticosterone were measured. We found that HRS administration significantly reduced body weight loss, jumping behavior and wet-dog shakes in mice underwent naloxone-precipitated withdrawal, and attenuated anxiety-like behaviors in the EPM and L/D box tests after naloxone-precipitated withdrawal or a 2-day spontaneous withdrawal period. Hypo-activity or motor impairment after HRS administration was not observed in the locomotion tests. Furthermore, HRS administration significantly decreased the levels of corticosterone in morphine-withdrawn mice. These are the first findings to indicate that hydrogen might ameliorate withdrawal symptoms and exert an anxiolytic-like effect in morphine-withdrawal mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Beneficial effects of hydrogen-rich saline on early burn-wound progression in rats.

    Directory of Open Access Journals (Sweden)

    Song Xue Guo

    Full Text Available Deep burn wounds undergo a dynamic process known as wound progression that results in a deepening and extension of the initial burn area. The zone of stasis is more likely to develop more severe during wound progression in the presence of hypoperfusion. Hydrogen has been reported to alleviate injury triggered by ischaemia/reperfusion and burns in various organs by selectively quenching oxygen free radicals. The aim of this study was to investigate the possible protective effects of hydrogen against early burn-wound progression.Deep-burn models were established through contact with a boiled, rectangular, brass comb for 20 s. Fifty-six Sprague-Dawley rats were randomly divided into sham, burn plus saline, and burn plus hydrogen-rich saline (HS groups with sacrifice and analysis at various time windows (6 h, 24 h, 48 h post burn. Indexes of oxidative stress, apoptosis and autophagy were measured in each group. The zone of stasis was evaluated using immunofluorescence staining, ELISA, and Western blot to explore the underlying effects and mechanisms post burn.The burn-induced increase in malondialdehyde was markedly reduced with HS, while the activities of endogenous antioxidant enzymes were significantly increased. Moreover, HS treatment attenuated increases in apoptosis and autophagy postburn in wounds, according to the TUNEL staining results and the expression analysis of Bax, Bcl-2, caspase-3, Beclin-1 and Atg-5 proteins. Additionally, HS lowered the level of myeloperoxidase and expression of TNF-α, IL-1β, and IL-6 in the zone of stasis while augmenting IL-10. The elevated levels of Akt phosphorylation and NF-κB p65 expression post burn were also downregulated by HS management.Hydrogen can attenuate early wound progression following deep burn injury. The beneficial effect of hydrogen was mediated by attenuating oxidative stress, which inhibited apoptosis and inflammation, and the Akt/NF-κB signalling pathway may be involved in regulating the

  15. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.

    Science.gov (United States)

    Li, Xinbao; Wang, Shurong; Cai, Qinjie; Zhu, Lingjun; Yin, Qianqian; Luo, Zhongyang

    2012-09-01

    Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work has been to investigate the effects of the preparation method of Ni/Al(2)O(3) catalysts on their performance in hydrogen production by bio-oil steam reforming. The Ni/Al(2)O(3) catalysts were prepared by impregnation, co-precipitation, and sol-gel methods. XRD, XPS, H(2)-TPR, SEM, TEM, TG, and N(2) physisorption measurements were performed to characterize the texture and structure of the catalysts obtained after calcination and after their subsequent use. Ethanol and bio-oil model compound were selected for steam reforming to evaluate the catalyst performance. The catalyst prepared by the co-precipitation method was found to display better performance than the other two. Under the optimized reaction conditions, an ethanol conversion of 99% and a H(2) yield of 88% were obtained.

  16. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion.

    Science.gov (United States)

    Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun

    2016-05-01

    In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.

  17. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario; Gutiérrez, Claudia P.; Antezana, Roberto; De Jaeger, Thomas; Förster, Francisco; González, Luis [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Stritzinger, Maximilian D.; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Olivares E, Felipe [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Phillips, Mark M.; Campillay, Abdo; Castellón, Sergio; Hsiao, Eric [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Schulze, Steve [Instituto de Astrofísica, Facultad de Física, Pontifícia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Bolt, Luis [Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53111 Bonn (Germany); Folatelli, Gastón [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Krzemiński, Wojtek, E-mail: janderso@eso.org [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); and others

    2014-05-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the 'plateau' phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the 'plateau' stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply 'SN II' with an 's {sub 2}' value giving the decline rate during the 'plateau' phase, indicating its morphological type.

  18. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    Energy Technology Data Exchange (ETDEWEB)

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  19. Density functional theory (DFT) studies of hydrogen rich solids and boron carbide under extreme conditions

    Science.gov (United States)

    Shamp, Andrew James

    Since the first prediction that compressed hydrogen would metallize in 1935 and the further prediction that the metallic allotrope would be a superconductor at high temperatures, metallic hydrogen has been termed the "holy grail" of high-pressure science. A tremendous amount of theoretical and experimental research has been carried out, with the ultimate goal of metallizing hydrogen via the application of external pressure. It has been previously proposed that doping hydrogen with another element can lower the pressure at which metallization occurs. A number of experimental and theoretical studies have investigated doping hydrogen by either a group XIII or XIV element. Experiments in diamond anvil cells have illustrated that it is indeed possible to synthesize hydrogen-rich phases under conditions of extreme pressures, and SiH4 (H2)2, GeH4(H2) n, and Xe(H2)n have been shown to behave as true compounds. The focus herein is on the theoretical exploration of hydrogen-rich phases with novel stoichiometries, which contain a dopant element up to pressures of 350 GPa. In particular, the alkali-metal and alkaline Earth metal polyhydrides (MHn where n > 1) have been considered. Within this thesis the XtalOpt evolutionary algorithm was employed in order to complete this work, and predict the most stable structures of cesium and beryllium polyhydrides under pressure. In addition, we explore the possibility of mixing excess hydrogen with an electronegative element, iodine and phosphorus. The phases found are examined via detailed first principles calculations. In addition, because of its outstanding hardness, thermodynamic stability, low density, electronic properties, thermal stability, and high melting point boron carbide has many uses: i.e. as a refractory material, in abrasive powders and ballistics, as a neutron radiation absorbent, and in electronic applications. However, little is known about the behavior of boron carbide when under the external stress of pressure. The

  20. Process for purifying geothermal steam

    Science.gov (United States)

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  1. Synthesis and Activity Test of Cu/ZnO/Al2O3 for the Methanol Steam Reforming as a Fuel Cell’s Hydrogen Supplier

    Directory of Open Access Journals (Sweden)

    IGBN Makertihartha

    2009-05-01

    Full Text Available The synthesis of hydrogen from hydrocarbons through the steam reforming of methanol on Cu/ZnO/Al2O3 catalyst has been investigated. This process is assigned to be one of the promising alternatives for fuel cell hydrogen process source. Hydrogen synthesis from methanol can be carried out by means of methanol steam reforming which is a gas phase catalytic reaction between methanol and water. In this research, the Cu/ZnO/Al2O3 catalyst prepared by the dry impregnation was used. The specific surface area of catalyst was 194.69 m2/gram.The methanol steam reforming (SRM reaction was carried out by means of the injection of gas mixture containing methanol and water with 1:1.2 mol ratio and 20-90 mL/minute feed flow rate to a fixed bed reactor loaded by 1 g of catalyst. The reaction temperature was 200-300 °C, and the reactor pressure was 1 atm. Preceding the reaction, catalyst was reduced in the H2/N2 mixture at 160 °C. This study shows that at 300 °C reaction temperature, methanol conversion reached 100% at 28 mL/minute gas flow rate. This conversion decreased significantly with the increase of gas flow rate. Meanwhile, the catalyst prepared for SRM was stable in 36 hours of operation at 260 °C. The catalyst exhibited a good stability although the reaction condition was shifted to a higher gas flow rate.

  2. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  3. Estimating explosion properties of normal hydrogen-rich core-collapse supernovae

    Science.gov (United States)

    Pejcha, Ondrej

    2017-08-01

    Recent parameterized 1D explosion models of hundreds of core-collapse supernova progenitors suggest that success and failure are intertwined in a complex pattern that is not a simple function of the progenitor initial mass. This rugged landscape is present also in other explosion properties, allowing for quantitative tests of the neutrino mechanism from observations of hundreds of supernovae discovered every year. We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of normal hydrogen-rich core-collapse supernovae based on their photometric measurements and expansion velocities. We construct SED and bolometric light curves, determine explosion energies, ejecta and nickel masses while taking into account all uncertainties and covariances of the model. We describe the efforts to compare the inferences to the predictions of the neutrino mechanim. The model can be adapted to include more physical assumptions to utilize primarily photometric data coming from surveys such as LSST.

  4. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases

    Directory of Open Access Journals (Sweden)

    A. Mishra

    2011-05-01

    Full Text Available In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC. It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, which is highly poisonous for the Pt anode of the PEMFC so that further removal of CO is needed. Catalytic preferential oxidation of CO (CO-PROX is one of the most suitable methods of purification of H2 because of high CO conversion rate at low temperature range, which is preferable for PEMFC operating conditions. Catalysts used for COPROX are mainly noble metal based; gold based and base metal oxide catalysts among them Copper-Ceria based catalysts are the most appropriate due to its low cost, easy availability and result obtained by these catalysts are comparable with the conventional noble metal catalysts. Copyright © 2011 BCREC UNDIP. All rights reserved(Received: 22nd October 2010, Revised: 12nd January 2011, Accepted: 19th January 2011[How to Cite: A. Mishra, R. Prasad. (2011. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (1: 1-14. doi:10.9767/bcrec.6.1.191.1-14][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.191.1-14 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/191] | View in 

  5. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water.

    Science.gov (United States)

    Cui, Weiti; Gao, Cunyi; Fang, Peng; Lin, Guoqing; Shen, Wenbiao

    2013-09-15

    Hydrogen gas (H₂) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H₂ in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H₂ in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

    Science.gov (United States)

    Arcavi, Iair; Howell, D. Andrew; Kasen, Daniel; Bildsten, Lars; Hosseinzadeh, Griffin; McCully, Curtis; Wong, Zheng Chuen; Katz, Sarah Rebekah; Gal-Yam, Avishay; Sollerman, Jesper; Taddia, Francesco; Leloudas, Giorgos; Fremling, Christoffer; Nugent, Peter E.; Horesh, Assaf; Mooley, Kunal; Rumsey, Clare; Cenko, S. Bradley; Graham, Melissa L.; Perley, Daniel A.; Nakar, Ehud; Shaviv, Nir J.; Bromberg, Omer; Shen, Ken J.; Ofek, Eran O.; Cao, Yi; Wang, Xiaofeng; Huang, Fang; Rui, Liming; Zhang, Tianmeng; Li, Wenxiong; Li, Zhitong; Zhang, Jujia; Valenti, Stefano; Guevel, David; Shappee, Benjamin; Kochanek, Christopher S.; Holoien, Thomas W.-S.; Filippenko, Alexei V.; Fender, Rob; Nyholm, Anders; Yaron, Ofer; Kasliwal, Mansi M.; Sullivan, Mark; Blagorodnova, Nadja; Walters, Richard S.; Lunnan, Ragnhild; Khazov, Danny; Andreoni, Igor; Laher, Russ R.; Konidaris, Nick; Wozniak, Przemek; Bue, Brian

    2017-11-01

    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.

  7. Hydrogen Production from Methanol Steam Reforming over TiO2 and CeO2 Pillared Clay Supported Au Catalysts

    Directory of Open Access Journals (Sweden)

    Rongbin Zhang

    2018-01-01

    Full Text Available Abstract: Methanol steam reforming is a promising process for the generation of hydrogen. In this study, Au catalysts supported on modified montmorillonite were prepared and their catalytic activity for methanol steam reforming was investigated at 250–500 °C. The physical and chemical properties of the as-prepared catalysts were characterized by Brunauer–Emmet–Teller method (BET, X-ray diffraction (XRD, transmission electron microscopic (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, Inductively Coupled Plasma (ICP, and thermogravimetrc analysis (TGA. For the catalysts examined, Au-Ti-Ce/Na-ABen exhibits the best catalytic performance with methanol conversion of 72% and H2 selectivity of 99% at 350 °C. This could be attributed to Au, Ce, and Ti species which form a solid solution and move into the interlayer space of the bentonite leading to a high surface area, large average pore volume, large average pore diameter, and small Au particle size. We considered that the synergistic effect of the crosslinking agent, the Ce species, and the Au active sites were responsible for the high activity of Au-Ti-Ce/Na-ABen catalyst for methanol steam reforming.

  8. The thermodynamic properties of the high-pressure superconducting state in the hydrogen-rich compounds

    Science.gov (United States)

    Szcz&şacute; niak, Radosław; Durajski, Artur P.

    2013-11-01

    The ab initio calculations suggest that the superconducting state in CaH6 under the pressure (p) at 150 GPa has the highest critical temperature among the examined hydrogen-rich compounds. For this reason, the relevant thermodynamic parameters of the superconducting state in CaH6 have been determined; a wide range of the Coulomb pseudopotential has been assumed: μ⋆∈. It has been found that: (i) The critical temperature (TC) changes in the range from 243 K to 180 K (ii) The values of the ratio of the energy gap to the critical temperature (RΔ ≡ 2Δ(0)/kBTC) can be found in the range from 5.42 to 5.02. (iii) The ratio of the specific heat jump (ΔC(TC)) to the value of the specific heat in the normal state (CN(TC)), which has been represented by the symbol RC, takes the values from 3.30 to 3.18. (iv) The ratio R≡TC(T)/HC2(0), where HC(0) denotes the critical thermodynamic field, changes from 0.122 to 0.125. The above results mean that even for the strong electron depairing correlations the superconducting state in CaH6 is characterized by a very high value of TC, and the remaining thermodynamic parameters significantly deviate from the predictions of the BCS theory. The study has brought out the expressions that correctly predict the values of the thermodynamic parameters for the superconducting state in CaH6 and for the compounds: SiH4(H2)2, Si2H6, B2H6, SiH4, GeH4, and PtH. Next, in the whole family of the hydrogen-rich compounds, the possible ranges of the values have been determined for TC, RΔ, RC, and RH. It has been found that the maximum value of the critical temperature can be equal to 764 K, which very well correlates with TC for metallic hydrogen (p = 2 TPa). Other parameters (RΔ, RC, and RH) should not deviate from the predictions of the BCS theory more than the analogous parameters for CaH6.

  9. Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1-x catalyst.

    Science.gov (United States)

    Li, Chunshan; Hirabayashi, Daisuke; Suzuki, Kenzi

    2010-01-01

    Series nickel catalysts Ni/MgO(x)/CaO(1-)(x) (x=0.3, 0.5, 0.7, Ni: 5 wt%) were prepared and tested in fixed-bed reactor for biomass tar steam reforming, toluene as tar destruction model compound. Different ratios of MgO and CaO were mixed to simulate dolomite as Ni support. Two preparation methods: solid mixing with (SMW) and without water (SM) were used, the preparation methods and concentration of MgO had an important influence on toluene conversion and products. Catalysts prepared by SM method exhibited higher performance on toluene conversion, resulted in higher H(2) yield, and also, higher CO(2) and lower CO selectivity with higher temperature. For the same preparation method, higher concentration of MgO resulted in higher toluene conversion, and also influence on CO, CO(2) selectivity, but no obvious influence on the H(2) yield. Catalysts were characterized by BET, X-ray diffraction (XRD), SEM.

  10. Study on the continous generation of hydrogen by decomposing steam with metals. Studie zur kontinuierlichen Wasserstoffgewinnung durch Wasserdampfzersetzung an Metallen

    Energy Technology Data Exchange (ETDEWEB)

    Block, F.R.; Ahlers, M.; Behr, A.; Gorny, R.; Speicher, R.F.

    1980-01-01

    The study firstly deals with the state of technology in the iron-steam process, as well as with new technically tested methods to reduce iron oxides and their usefulness for the metal-steam process. Model calculations are performed a) for the reduction of iron oxide and the oxidation of iron in a shaft furnace, as well as b) for the reduction in a rotary furnace and oxidation in the shaft furnace. Reducing gases from an external coal gasification are used for the reduction steps or the circuit material is directly mixed with coal.

  11. Hydrogen-rich gas as a product of two-stage co-gasification of lignite/waste mixtures

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Bičáková, Olga

    2014-01-01

    Roč. 39, č. 21 (2014), s. 10987-10995 ISSN 0360-3199 Institutional support: RVO:67985891 Keywords : co- gasification * waste plastics * lignite * hydrogen-rich gas Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.313, year: 2014 http://authors.elsevier.com/sd/article/S0360319914014025

  12. Onboard hydrogen generation for automobiles

    Science.gov (United States)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  13. Bridging the Gap: From Model Surfaces to Nanoparticle Analogs for Selective Oxidation and Steam Reforming of Methanol and Selective Hydrogenation Catalysis

    Science.gov (United States)

    Boucher, Matthew B.

    Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (methanol-water mixtures with model catalyst surfaces. Model catalysts were studied in a UHV chamber where the base pressure was maintained at 10-10 mbar. High resolutions surface science techniques show that hydrogen-bonded networks of water are capable of deprotonating methanol to methoxy on low index surfaces in the absence of atomic oxygen. These UHV studies show that adsorbates, other than oxygen, are capable of activating methanol on Group IB metal surfaces. The second reaction involves the selective hydrogenation of

  14. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Weiti; Gao, Cunyi; Fang, Peng [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lin, Guoqing [Laboratory Center of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095 (China); Shen, Wenbiao, E-mail: wbshenh@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-09-15

    Highlights: • HRW can alleviate Cd-induced alfalfa seedling growth inhibition and DNA laddering. • HRW alleviates Cd-induced oxidative stress by activating antioxidant enzymes. • Cd uptake in alfalfa seedling roots was decreased by HRW. • HRW can re-establish glutathione homeostasis under Cd stress. -- Abstract: Hydrogen gas (H{sub 2}) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H{sub 2} in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H{sub 2} in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems.

  15. SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium

    Science.gov (United States)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.

    2018-02-01

    SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the

  16. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  17. The chemical kinetics and thermodynamics of sodium species in oxygen-rich hydrogen flames

    Science.gov (United States)

    Hynes, A. J.; Steinberg, M.; Schofield, K.

    1984-01-01

    Results are presented which, it is claimed, lead to a correction of previous misconceptions over the relative importance and kinetics of NaO2. It is shown that its rapid conversion to NaO and NaOH is such that it can severely perturb the NaOH/Na ratio and produce significant concentration overshoots over that predicted from the balance of the reaction of Na with H2O. This becomes increasingly the case in flames of large O2 concentrations and temperatures below 2500 K; and the corresponding large rate constants for the termolecular formation of the other alkali peroxides imply that similar considerations will be necessary for them. Depending on the rate constants for the exothermic conversions of MO2 to MO or MOH, the steady-state concentrations of MO2 could be more or less significant than for sodium. Owing to numerous reactions that produce these conversions, the MOH species will probably be the dominant species in all cases in oxygen-rich hydrogen or hydrocarbon flames, with MO concentrations at not greater than 1 percent of the bound metal.

  18. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, C.S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen View the MathML source from light hydrocarbons

  19. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  20. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge

    Energy Technology Data Exchange (ETDEWEB)

    O-Thong, Sompong [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hatyai 90112, Songkhla (Thailand); Department of Biology, University of Bergen, P.O. Box 7800, N-5020, Bergen (Norway); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hatyai 90112, Songkhla (Thailand); Intrasungkha, Nugul [Department of Biology, Faculty of Science, Thaksin University, Songkhla (Thailand); Dhamwichukorn, Srisuda [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Birkeland, Nils-KAare [Department of Biology, University of Bergen, P.O. Box 7800, N-5020, Bergen (Norway); Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020, Bergen (Norway)

    2008-02-15

    Thermoanaerobacterium-rich sludge acclimated with palm oil mill effluent (POME) in an anaerobic sequencing batch reactor operating at 60 C was used as a seed in batch experiments to investigate the effects of C/N (carbon/nitrogen) ratio, C/P (carbon/phosphate) ratio and iron concentration in POME on fermentative hydrogen production. A central composite design was performed with the aim of optimizing the hydrogen yield together with POME degradation using response surface methodology (RSM). The RSM results indicated that the presence of 257 mg Fe{sup 2+}/l, a C/N ratio of 74 and a C/P ratio of 559 were optimal for simultaneous hydrogen production and COD (chemical oxygen demand) removal. C/N ratio, C/P ratio and iron concentration all had an individual effect on hydrogen production and COD removal, while iron concentration and C/N ratio had the greatest interactive effect on hydrogen production (P<0.05) while C/N and C/P ratio gave more profound interactive effect on COD removal (P<0.05). The predicted maximum simultaneous hydrogen production and COD removal were 6.5 l H{sub 2}/l-POME and 58%, respectively. In a confirmation experiment under optimized conditions highly reproducible results were obtained, with a hydrogen production and COD removal efficiency of 6.33{+-}0.142lH{sub 2}/l-POME and 44{+-}1.5%, respectively. The total carbohydrate conversion was 92{+-}2.7%. The hydrogen production rate reached 25.9mmolH{sub 2}/l/day and increased by 60% as compared with the use of raw POME. Thermoanaerobacterium spp. were found to be dominant and present at a higher population density under optimized conditions than in raw POME fermentation. Optimization of the culture cultivation conditions in POME resulted in a simultaneous increase in biohydrogen production and COD reduction. (author)

  1. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    Science.gov (United States)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  2. H{sub 2} rich product gas by steam gasification of biomass with in situ CO{sub 2} absorption in a dual fluidized bed system of 8 MW fuel input

    Energy Technology Data Exchange (ETDEWEB)

    Koppatz, Stefan; Pfeifer, Christoph; Rauch, Reinhard; Hofbauer, Hermann [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, 1060 Vienna (Austria); Marquard-Moellenstedt, Tonja; Specht, Michael [Center for Solar Energy and Hydrogen Research (ZSW), Industriestrasse 6, 70565 Stuttgart (Germany)

    2009-07-15

    The steam gasification of solid biomass by means of the absorption enhanced reforming process (AER process) yields a high quality product gas with increased hydrogen content. The product gas can be used for a wide range of applications which covers the conventional combined heat and power production as well as the operation of fuel cells, the conversion into liquid fuels or the generation of synthetic natural gas and hydrogen. On the basis of a dual fluidized bed system, steam gasification of biomass is coupled with in situ CO{sub 2} absorption to enhance the formation of hydrogen. The reactive bed material (limestone) used in the dual fluidized bed system realizes the continuous CO{sub 2} removal by cyclic carbonation of CaO and calcination of CaCO{sub 3}. Biomass gasification with in situ CO{sub 2} absorption has been substantially proven in pilot plant scale of 100 kW fuel input. The present paper outlines the basic principles of steam gasification combined with the AER process the investigations in reactive bed materials, and concentrates further on the first time application of the AER process on industrial scale. The first time application has been carried out within an experimental campaign at a combined heat and power plant of 8 MW fuel input. The results are outlined with regard to the process conditions and achieved product gas composition. Furthermore, the results are compared with standard steam gasification of biomass as well as with application of absorption enhanced reforming process at pilot plant scale. (author)

  3. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa-Serra, J.F.; Chica, A. [Instituto de Tecnolgia Quimica (UPV-CSIC), Universidad Politecnica de Valencia, Consejo Superior de Investigaciones Cientificas, Avenida de los naranjos s/n, 46022 Valencia (Spain); Guil-Lopez, R. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Renewable hydrogen production from steam reforming of bioethanol is an interesting approach to produce sustainable hydrogen. However, simultaneous competitive reactions can occur, decreasing the hydrogen production yield. To overcome this problem, modifications in the steam reforming catalysts are being studied. Ni and Co active phases supported over modified ZnO have been widely studied in hydrogen production from steam reforming of bioethanol. However, the influence of the morphology and particle size of ZnO supports on the catalytic behaviour of the supported Ni and Co has not been reported. In the present work, we show how the morphology, shape, and size of ZnO support particles can control the impregnation process of the metal active centres, which manages the properties of active metallic particles. It has been found that nanorod particles of ZnO, obtained by calcination of Zn acetate, favour the metal-support interactions, decreasing the metallic particle sizes and avoiding metal (Co or Ni) sinterization during the calcination of metal precursors. Small metallic particle sizes lead to high values of active metal exposure surface, increasing the bioethanol conversion and hydrogen production. (author)

  4. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    Science.gov (United States)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  5. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Science.gov (United States)

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  7. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Directory of Open Access Journals (Sweden)

    Naofumi Tamaki

    2016-01-01

    Full Text Available The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  8. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    Science.gov (United States)

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  9. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO 2/Al 2O 3 catalyst

    Science.gov (United States)

    Jeong, Heondo; Kim, Kweon Ill; Kim, Tae Hwan; Ko, Chang Hyun; Park, Hwa Choon; Song, In Kyu

    Hydrogen production by steam reforming of methanol is studied over Cu/Zn-based catalysts (Cu/ZnO, Cu/ZnO/Al 2O 3, Cu/ZnO/ZrO 2/Al 2O 3). Cu/Zn-based catalysts are derived from hydrotalcite-like precursors prepared by a co-precipitation method. The catalysts are characterized by N 2O chemisorption, XRD, and BET surface area measurements. ZrO 2 added to the Cu/Zn-based catalyst enhances copper dispersion on the catalyst surface. Among the catalysts tested, Cu/ZnO/ZrO 2/Al 2O 3 exhibits the highest methanol conversion and the lowest CO concentration in the outlet gas. A micro-channel reactor coated with a Cu/ZnO/ZrO 2/Al 2O 3 catalyst in the presence of an undercoated Al 2O 3 buffer layer exhibits higher methanol conversion and lower CO concentration in the outlet gas than in the absence of an undercoated Al 2O 3 buffer layer. The micro-channel reactor with a undercoated Al 2O 3 buffer layer produces large amounts of hydrogen compared with one without a buffer layer. The undercoated Al 2O 3 buffer layer enhances the adhesion between catalysts and micro-channel walls, which leads to improvement in reactor performance.

  10. Thermodynamic properties of dissociated steam

    Science.gov (United States)

    Aminov, R. Z.; Gudym, A. A.

    2017-11-01

    In connection with the development of hydrogen technologies and the generation of dissociated steam as a result of the oxidation of hydrogen in an oxygen environment, it became necessary to determine the calorific parameters of dissociated steam. In the existing tables, the caloric parameters of dissociated steam are presented at a reference temperature of 0 K. By contrast, the authors have developed tables of dissociated steam using a reference temperature of 0°C, within the pressure range 0.01–20.0 MPa and the temperature range 1250–4000 K, along with a system of equations for the industrial calculation of the properties of dissociated steam within the temperature range 1250–2300 K and pressure range 0.01–10.0 MPa, followed by a temperature range of 2200–3600 K. During the dissociation of steam, a mixture of eight components are formed including hydrogen H, oxygen O, radicals OH and HO2, molecules of hydrogen H2, oxygen O2, steam H2O, and hydrogen peroxide H2O2. All existing tables of the properties of dissociated steam are based on a mixture of six components: H2, O2, OH, H, O, and H2O. For evaluate whether this is an oversimplification, the composition of the mixture comprising all eight components was calculated, taking into account additional chemical reactions for the formation of HO2 and H2O2. At a pressure of 0.01 MPa, the maximum mole fraction of HO2 was 2.8·10‑5 at a temperature of 3000 K, and at a pressure of 10 MPa, the maximum mole fraction was 5·10‑5 at a temperature of 4000 K. The mole fraction of H2O2 was much lower. Thus at temperatures up to 3000 K, calculations of the properties of dissociated steam are restricted to six components.

  11. Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) Over Nickel-Phosphorus-Alumina Xerogel Catalyst Prepared by a Carbon-Templating Epoxide-Driven Sol-Gel Method.

    Science.gov (United States)

    Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu

    2016-05-01

    A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

  12. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    Science.gov (United States)

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  13. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.

    Science.gov (United States)

    Fermoso, Javier; Gil, María V; Rubiera, Fernando; Chen, De

    2014-11-01

    High yield of high-purity H2 from acetic acid, a model compound of bio-oil obtained from the fast pyrolysis of biomass, was produced by sorption-enhanced steam reforming (SESR). An oxygen carrier was introduced into a chemical loop (CL) coupled to the cyclical SESR process to supply heat in situ for the endothermic sorbent regeneration to increase the energy efficiency of the process. A new multifunctional 1 %Pd/20 %Ni-20 %Co catalyst was developed for use both as oxygen carrier in the CL and as reforming catalyst in the SESR whereas a CaO-based material was used as CO2 sorbent. In the sorbent-air regeneration step, the Ni-Co atoms in the catalyst undergo strong exothermic oxidation reactions that provide heat for the CaO decarbonation. The addition of Pd to the Ni-Co catalyst makes the catalyst active throughout the whole SESR-CL cycle. Pd significantly promotes the reduction of Ni-Co oxides to metallic Ni-Co during the reforming stage, which avoids the need for a reduction step after regeneration. H2 yield above 90 % and H2 purity above 99.2 vol % were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supported metal catalysts for alcohol/sugar alcohol steam reforming.

    Science.gov (United States)

    Davidson, Stephen D; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  15. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C.

    Science.gov (United States)

    Margutti, Raffaella; Kamble, A; Milisavljevic, D; Zapartas, E; de Mink, S E; Drout, M; Chornock, R; Risaliti, G; Zauderer, B A; Bietenholz, M; Cantiello, M; Chakraborti, S; Chomiuk, L; Fong, W; Grefenstette, B; Guidorzi, C; Kirshner, R; Parrent, J T; Patnaude, D; Soderberg, A M; Gehrels, N C; Harrison, F

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ~40 keV. SN 2014C shows ordinary explosion parameters (Ek ~ 1.8 × 10(51) erg and Mej ~ 1.7 M⊙). However, over an ~1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ~1 M⊙of hydrogen-rich material at ~6 × 10(16) cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ~10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10(3)-10(4) years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.

  16. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    Science.gov (United States)

    Margutti, Raffaella; Kamble, A.; Milisavljevic, D.; Zapartas, E.; de Mink, S. E.; Drout, M.; Chornock, R.; Risaliti, G.; Zauderer, B. A.; Bietenholz, M.; Cantiello, M.; Chakraborti, S.; Chomiuk, L.; Fong, W.; Grefenstette, B.; Guidorzi, C.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M.; Gehrels, N. C.; Harrison, F.

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ˜40 keV. SN 2014C shows ordinary explosion parameters (Ek ˜ 1.8 × 1051 erg and Mej ˜ 1.7 M⊙). However, over an ˜1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ˜1 M⊙ of hydrogen-rich material at ˜6 × 1016 cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ˜10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 103-104 years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.

  17. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    Energy Technology Data Exchange (ETDEWEB)

    Margutti, Raffaella [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Kamble, A.; Milisavljevic, D.; Drout, M.; Chakraborti, S.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Zapartas, E.; De Mink, S. E. [Anton Pannenkoek Institute for Astronomy, University of Amsterdam, 1090 GE Amsterdam (Netherlands); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Risaliti, G. [INAF-Arcetri Astrophysical Observatory, Largo E. Fermi 5, I-50125 Firenze (Italy); Zauderer, B. A. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bietenholz, M. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Cantiello, M. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Fong, W. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grefenstette, B. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Guidorzi, C. [University of Ferrara, Department of Physics and Earth Sciences, via Saragat 1, I-44122 Ferrara (Italy); and others

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.

  18. Investigations of charge-changing processes for light proton-rich nuclei on carbon and solid-hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Sawahata, K. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Saito, Y.; Abe, Y.; Ichikawa, Y.; Inaba, N.; Ishibashi, Y. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Matsunaga, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Moriguchi, T.; Nagae, D.; Okada, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Sato, S. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Suzuki, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T.; Takeuchi, Y.; Yamaguchi, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Zenihiro, J. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    We investigated charge-changing processes (total charge-changing cross sections and partial charge-changing cross sections) for light proton-rich nuclei ({sup 34–36}Ar, {sup 33}Cl, {sup 25–28}Si) at around 300A MeV on carbon and solid-hydrogen targets. We estimated the nuclear proton point radii of {sup 33}Cl and {sup 25,26,27}Si from the observed total charge-changing cross sections by using Glauber-model calculations with a phenomenological correction factor. Furthermore, we estimated the proton skin thickness for {sup 33}Cl coupled with its previously observed matter radius. From investigations of the partial charge-changing cross sections, clear zigzag pattern was observed for all isotopes. The present studies suggest that the pattern may be common in the proton-rich side, and depends on the odd–even nature of the fragment charge.

  19. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  20. Hydrogen production by absorption-assisted steam gasification of biomass; Wasserstoffherstellung durch absorptionsunterstuetzte Wasserdampf-Vergasung von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Marquard-Moellenstedt, T.; Pichler, P.; Specht, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany); Michel, M.; Berger, R.; Hein, K.R.G. [Inst. fuer Verfahrenstechnik und Dampfkesselwesen, Univ. Stuttgart (Germany); Hoeftberger, E.; Rauch, R.; Hofbauer, H. [Technische Univ. Wien, Inst. fuer Verfahrentechnik und technische Biowissenschaften, Wien (Austria)

    2004-07-01

    A wood gasification process is presented for continuous production of a raw gas with a hydrogen content of nearly 70 mol-%. For gas production from biomass - e.g. for fuel synthesis, gas supply to the public grid, or electric power generation -, gasification processes are suited which produce high-quality product gas by means of internal gas conditioning. One of these, the AER process (Absorption Enhanced Reforming), is presented here. In this process, CO2 is separated inside the reactor by means of an absorption agent. The resulting product gas has a high concentration of hydrogen and low concentrations of CO and CO2. CO2 absorption shifts the reaction equilibria in the direction of the desired products and also provides heat for the endothermal reactions. (orig.) [German] In diesem Beitrag wird ein Holzvergasungsprozess vorgestellt, mit dem durch Primaermassnahmen die kontinuierliche Produktion eines Rohgases mit einem Wasserstoffanteil von nahezu 70 mol-% gelang. Fuer die Gaserzeugung aus Biomasse zur Kraftstoffsynthese, Gaseinspeisung oder Verstromung eignen sich Vergasungsverfahren, die durch interne Gaskonditionierung ein Produktgas hoher Qualitaet liefern. Ein Ansatz hierfuer ist der AER-Prozess (Absorption Enhanced Reforming). Bei diesem wird das waehrend der Wasserdampfvergasung bzw. Dampfreformierung entstehende CO{sub 2} durch ein Absorptionsmittel im Reaktor abgetrennt, so dass ein Produktgas mit hohem Wasserstoffgehalt und geringen Anteilen an CO und CO{sub 2} resultiert. Durch die CO{sub 2}-Absorption werden nicht nur die Reaktionsgleichgewichte in Richtung der gewuenschten Produkte verschoben, sondern auch die Waerme fuer die endothermen Reaktionen aufgebracht. (orig.)

  1. The role of metal-support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh-Fe catalysts.

    Science.gov (United States)

    Choong, Catherine K S; Chen, Luwei; Du, Yonghua; Schreyer, Martin; Daniel Ong, S W; Poh, Chee Kok; Hong, Liang; Borgna, Armando

    2017-02-08

    Rh-Fe catalysts supported on Ca-Al2O3, MgO and ZrO2 were evaluated in ethanol steam reforming at 623 K and compared to Rh catalysts on the same supports without iron promotion. The metal-support interaction among the three entities, i.e. Rh ↔ Fe2O3 ← support (ZrO2, MgO and Ca-Al2O3) was investigated using H2-chemisorption, TEM, XPS and in situ techniques such as DRIFTS, temperature-resolved XRD and XAS. As compared to the unpromoted Rh catalysts on the same supports, the CO selectivity is depressed in the presence of iron on Rh/MgO and Rh/Ca-Al2O3, the latter being significantly superior. The role of metal-support interaction for CO-free hydrogen generation was unravelled using a combination of techniques. It was found that the reducibility of iron oxide determines the extent of the strong metal support interaction between Rh and Fe2O3 and the reducibility of iron oxide was affected by the support. On Rh-Fe/Ca-Al2O3, a good balance of the interaction between Rh, Fe2O3 and Ca-Al2O3 prevents strong metal support interaction between Rh and Fe2O3 and thus promotes CO elimination via water-gas-shift reaction on Rh-FexOy sites.

  2. Downhole Upgrading of Orinoco Basin Extra-Heavy Crude Oil Using Hydrogen Donors under Steam Injection Conditions. Effect of the Presence of Iron Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Cesar Ovalles

    2015-03-01

    Full Text Available An extra-heavy crude oil underground upgrading concept and laboratory experiments are presented which involve the addition of a hydrogen donor (tetralin to an Orinoco Basin extra-heavy crude oil under steam injection conditions (280–315 °C and residence times of at least 24-h. Three iron-containing nanocatalysts (20 nm, 60 nm and 90 nm were used and the results showed increases of up to 8° in API gravity, 26% desulfurization and 27% reduction in the asphaltene content of the upgraded product in comparison to the control reaction using inert sand. The iron nanocatalysts were characterized by SEM, XPS, EDAX, and Mössbauer spectroscopy before and after the upgrading reactions. The results indicated the presence of hematite (Fe2O3 as the predominant iron phase. The data showed that the catalysts were deactivating by particle sintering (~20% increase in particle size and also by carbon deposition. Probable mechanisms of reactions are proposed.

  3. Promotion of Ca-Co Bifunctional Catalyst/Sorbent with Yttrium for Hydrogen Production in Modified Chemical Looping Steam Methane Reforming Process

    Directory of Open Access Journals (Sweden)

    Samira Akbari-Emadabadi

    2017-09-01

    Full Text Available In this study, the application of a calcium-based bifunctional catalyst/sorbent is investigated in modified chemical looping steam methane reforming (CLSMR process for in situ CO2 sorption and H2 production. The yttrium promoted Ca-Co samples were synthesized and applied as bifunctional catalysts/sorbent. The influence of reduction temperature (500–750 °C, Ca/Co and Ca/Y ratios (1.5–∞ and 3–18, respectively and catalyst life time are determined in CLSMR process. The physicochemical transformation of fresh, used and regenerated samples after 16 redox cycles are determined using X-ray powder diffraction (XRD, N2 adsorption–desorption, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX and transmission electron microscopy (TEM techniques. The effect of yttrium promoter on the structure of catalyst and regeneration step on the reversibility of bifunctional catalyst/sorbent was two important factors. The characterization results revealed that the presence of yttrium in the structure of Ca-9Co sample could improve the morphology and textural properties of catalyst/sorbents. The suitable reversibility of bifunctional catalyst/sorbents during the repeated cycles is confirmed by characterization of calcined samples. The Ca-9Co-4.5Y as optimal catalyst illustrated superior performance and stability. It showed about 95.8% methane conversion and 82.9% hydrogen yield at 700 °C and stable activity during 16 redox cycles.

  4. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise.

    Science.gov (United States)

    Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L; Sylva, Sean; Seewald, Jeffrey; German, Christopher R; Huber, Julie A

    2016-06-01

    Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes

    Directory of Open Access Journals (Sweden)

    Aoki Kosuke

    2012-07-01

    Full Text Available Abstract Background Muscle contraction during short intervals of intense exercise causes oxidative stress, which can play a role in the development of overtraining symptoms, including increased fatigue, resulting in muscle microinjury or inflammation. Recently it has been said that hydrogen can function as antioxidant, so we investigated the effect of hydrogen-rich water (HW on oxidative stress and muscle fatigue in response to acute exercise. Methods Ten male soccer players aged 20.9 ± 1.3 years old were subjected to exercise tests and blood sampling. Each subject was examined twice in a crossover double-blind manner; they were given either HW or placebo water (PW for one week intervals. Subjects were requested to use a cycle ergometer at a 75 % maximal oxygen uptake (VO2 for 30 min, followed by measurement of peak torque and muscle activity throughout 100 repetitions of maximal isokinetic knee extension. Oxidative stress markers and creatine kinase in the peripheral blood were sequentially measured. Results Although acute exercise resulted in an increase in blood lactate levels in the subjects given PW, oral intake of HW prevented an elevation of blood lactate during heavy exercise. Peak torque of PW significantly decreased during maximal isokinetic knee extension, suggesting muscle fatigue, but peak torque of HW didn’t decrease at early phase. There was no significant change in blood oxidative injury markers (d-ROMs and BAP or creatine kinease after exercise. Conclusion Adequate hydration with hydrogen-rich water pre-exercise reduced blood lactate levels and improved exercise-induced decline of muscle function. Although further studies to elucidate the exact mechanisms and the benefits are needed to be confirmed in larger series of studies, these preliminary results may suggest that HW may be suitable hydration for athletes.

  6. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  7. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Toshiki Yoneda

    2017-01-01

    Full Text Available Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18 were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water. The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  8. Metallic Cobalt Encapsulated in Bamboo-Like and Nitrogen-Rich Carbonitride Nanotubes for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Dai, Xiaoping; Li, Zhanzhao; Ma, Yangde; Liu, Mengzhao; Du, Kangli; Su, Haixia; Zhuo, Hongying; Yu, Lei; Sun, Hui; Zhang, Xin

    2016-03-01

    Despite being technically possible, the hydrogen production by means of electrocatalytic water splitting is still practically unreachable mainly because of the lack of inexpensive and high active catalysts. Herein, a novel and facile approach by melamine polymerization, exfoliation and Co(2+)-assisted thermal annealing is developed to fabricate Co nanoparticles embedded in bamboo-like and nitrogen-rich carbonitride nanotubes (Co@NCN). The electronic interaction between the embedded Co nanoparticles and N-rich carbonitride nanotubes could strongly promote the HER performance. The optimized Co@NCN-800 exhibits outstanding HER activity with an onset potential of -89 mV (vs RHE), a large exchange current density of 62.2 μA cm(-2), and small Tafel slope of 82 mV dec(-1), as well as excellent stability (5000 cycles) in acid media, demonstrating the potential for the replacement of Pt-based catalysts. Control experiments reveal that the superior performance should be ascribed to the synergistic effects between embedded Co nanoparticles and N-rich carbonitride nanotubes, which originate from the high pyridinic N content, fast charge transfer rate from Co particles to electrodes via electronic coupling, and porous and bamboo-like carbonitride nanotubes for more active sites in HER.

  9. Compressed hydrogen-rich fuel gas (CHFG) from wet biomass by reforming in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Penninger, Johannes M.L.; Maass, Georg J.J. [SPARQLE International B.V., Hasebroekstraat 1, 7552 VX Hengelo (Netherlands); Rep, Marco [BTG Biomass Technology Group B.V., Pantheon 12, 7521 PR Enschede (Netherlands)

    2007-07-15

    Aqueous condensate produced from biomass by flash pyrolysis is a clean feedstock for gas production by reforming at supercritical water conditions of 600-650 {sup circle} C and 28-30 MPa. Low concentrations of soda ash in the condensate reduce the CO content of the reformer gas to about 2% and proportionally increase the hydrogen content. This lean-CO gas appears as a primary candidate for upgrading to CHFG quality. Desk studies, reported in this paper, concern the design of a conceptual gas conditioning process and reveal interesting potential for production of CHFG, free of CO and CO{sub 2}, a hydrogen content of 50% with a pressure of 30 MPa, without the need for gas compression. The high processing pressure provides for small equipment size and low energy consumption. (author)

  10. Characterization of catalysts Rh and Ni/Ce{sub x}Zr{sub 1-x}O{sub 2} for hydrogen production by ethanol steam reforming; Caracterisation de catalyseurs Rhodium et Nickel/ Ce{sub x}Zr{sub 1-x}O{sub 2} pour la production d'hydrogene par vaporeformage de l'ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Birot, A

    2005-07-01

    This work concerned a study on catalytic behaviour of metallic catalysts (Rh or Ni) supported on earth rare oxides Ce{sub x}Zr{sub 1-x}O{sub 2} in ethanol steam reforming in order to produce hydrogen. Catalyst 1%Rh/Ce0,50Zr0,50O{sub 2} showed a good activity with a good hydrogen yield. We turned a study onto understanding inter-conversion reaction between H{sub 2}, CO and CO{sub 2} which lead to CH{sub 4} formation. We also studied intrinsic properties of catalysts. We confirmed basic character of catalysts and a good hydrogenation activity. A good activity in CO hydrogenation allowed to evidence a necessity to use a catalyst which is less active in hydrogenation reaction and with a basic character in order to improve hydrogen yield. (author)

  11. First principle investigations of the physical properties of hydrogen-rich MgH2

    KAUST Repository

    Zarshenas, Mohammed

    2013-11-28

    Hydrogen being a cleaner energy carrier has increased the importance of hydrogen-containing light metal hydrides, in particular those with large gravimetric hydrogen density like magnesium hydride (MgH2). In this study, density functional and density functional perturbation theories are combined to investigate the structural, elastic, thermodynamic, electronic and optical properties of MgH2. Our structural parameters calculated with those proposed by Perdew, Burke and Ernzerof generalized gradient approximation (PBE-GGA) and Wu-Cohen GGA (WC-GGA) are in agreement with experimental measurements, however the underestimated band gap values calculated using PBE-GGA and WC-GGA were greatly improved with the GGA suggested by Engle and Vosko and the modified Becke-Johnson exchange correlation potential by Trans and Blaha. As for the thermodynamic properties the specific heat values at low temperatures were found to obey the T3 rule and at higher temperatures Dulong and Petit\\'s law. Our analysis of the optical properties of MgH2 also points to its potential application in optoelectronics. © 2013 The Royal Swedish Academy of Sciences.

  12. Steam reforming of acetic acid as a biomass derived oxygenate: Bifunctional pathway for hydrogen formation over Pt/ZrO2 catalysts.

    NARCIS (Netherlands)

    Takanabe, K.; Aika, Ken-ichi; Inazu, Koji; Baba, Toshihide; Seshan, Kulathuiyer; Lefferts, Leonardus

    2006-01-01

    Mechanistic studies on steam reforming of acetic acid over Pt/ZrO2 catalysts were performed as extension of our previous work [K. Takanabe, K. Aika, K. Seshan, L. Lefferts, J. Catal. 227 (2004) 101]. An overall picture of the bifunctional mechanism is established for steam reforming of acetic acid,

  13. Nitrogen-Rich Polyacrylonitrile-Based Graphitic Carbons for Hydrogen Peroxide Sensing

    Directory of Open Access Journals (Sweden)

    Brandon Pollack

    2017-10-01

    Full Text Available Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2, reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN mats and its use in H2O2 sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT prior to the pyrolysis step. The electrochemical testing showed a limit of detection (LOD 0.609 µM and sensitivity of 2.54 µA cm−2 mM−1. The promising sensing performance of the developed carbon electrodes can be attributed to the presence of high content of pyridinic and graphitic nitrogens in the pyrolytic carbons, as confirmed by X-ray photoelectron spectroscopy. The reported results suggest that, despite their simple fabrication, the hydrogen peroxide sensors developed from pyrolytic carbon nanofibers are comparable with their sophisticated nitrogen-doped graphene counterparts.

  14. Characteristics of Carbon Monoxide Oxidization in Rich Hydrogen by Mesoporous Silica with TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Akira Nishimura

    2010-01-01

    Full Text Available Hydrogen (H2 is normally used as the fuel to power polymer electrolyte fuel cell (PEFC. However, the power generation performance of PEFC is harmed by the carbon monoxide (CO in the H2 that is often produced frommethane (CH4. The purpose of this study is to investigate the experimental conditions in order to improve the CO oxidization performance of mesoporous silica loaded with TiO2. The impact of loading ratio of TiO2 and initial concentration ratio of O2 to CO on CO oxidization performance is investigated. As a result, the optimum loading ratio of TiO2 and initial concentration ratio of O2 to CO were 20 wt% and 4 vol%, respectively, under the experimental conditions. Under this optimumexperimental condition, the CO in rich H2 in the reactor can be completely eliminated from initial 12000 ppmV after UV light illumination of 72 hours.

  15. Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Bamidele V. Ayodele

    2016-08-01

    Full Text Available Production of CO-rich hydrogen gas from methane dry reforming was investigated over CeO2-supported Co catalyst. The catalyst was synthesized by wet impregnation and subsequently characterized by field emission scanning electron microscope (FESEM, energy dispersion X-ray spectroscopy (EDX, liquid N2 adsorption-desorption, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA for the structure, surface and thermal properties. The catalytic activity test of the Co/CeO2 was investigated between 923-1023 K under reaction conditions in a stainless steel fixed bed reactor. The composition of the products (CO2 and H2 from the methane dry reforming reaction was measured by gas chromatography (GC coupled with thermal conductivity detector (TCD. The effects of feed ratios and reaction temperatures were investigated on the catalytic activity toward product selectivity, yield, and syngas ratio. Significantly, the selectivity and yield of both H2 and CO increases with feed ratio and temperature. However, the catalyst shows higher activity towards CO selectivity. The highest H2 and CO selectivity of 19.56% and 20.95% respectively were obtained at 1023 K while the highest yield of 41.98% and 38.05% were recorded for H2 and CO under the same condition. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 23rd February 2016; Accepted: 23rd February 2016 How to Cite: Ayodele, B.V., Khan, M.R., Cheng, C. K. (2016. Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 210-219 (doi:10.9767/bcrec.11.2.552.210-219 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.552.210-219

  16. Observations of hydrogen-rich supernovae in the first days after explosion and new instruments to study them

    Science.gov (United States)

    Rubin, Adam; PTF

    2018-01-01

    I will discuss our results studying light curves of hydrogen-rich supernovae during the first few days after explosion. The first days of emission encode important information about the physical system, and it is possible to relate the early-time light curve to the radius of the progenitor star by using shock-cooling models. I will show the first systematic application of these models to data from the Palomar Transient Factory (PTF). We found that R-band data alone at PTF cadence cannot constrain the radius but can constrain the energy per unit mass of the explosion, uncovering new correlations with other supernova observables. We constrained the radii for events with multi-wavelength observations, and for two events observed with the Kepler mission at 30 min cadence. I will discuss improved observing strategies to obtain more constraining results in the future. Some tensions have arisen between our results and the expected radii from identified progenitors of hydrogen-rich supernovae. The resolution of these tensions may be related to the effect of circumstellar material on the light curves, motivating future systematic spectroscopic sequencing of these events. To this end, we have designed a new medium resolution UV-VIS spectrograph. The Multi-Imaging Transient Spectrograph (MITS) is the R~4500 UV-VIS arm of the Son Of X-Shooter (SOXS) spectrograph proposed for ESO’s 3.6 m New Technology Telescope. Our design divides the spectrum into several sub-bands, allowing optimization for each narrow part of the spectrum. We estimate a 50-100% improvement in throughput relative to a classical 4-C echelle design. Our design has passed a preliminary design review and is expected on the telescope in early 2021.

  17. Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohanakrishna, G.; Venkata Mohan, S.; Sarma, P.N. [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology (IICT), Hyderabad 500 607 (India)

    2010-04-15

    Lower substrate degradation is one of the limiting factors associated with fermentative hydrogen production process. To overcome this, an attempt was made to integrate microbial fuel cell (MFC) as a secondary energy generating process with the fermentative hydrogen (H{sub 2}) production. The acid-rich effluents generated from the acidogenic sequential batch biofilm reactor (AcSBBR) producing H{sub 2} by fermenting vegetable waste was subsequently used as substrate for bioelectricity generation in single chambered MFC (air cathode; non-catalyzed electrodes). AcSBBR was operated at 70.4 kg COD/m{sup 3}-day and the outlet was fed to the MFC at three variable organic loading rates. The final outlet from AcSBBR was composed of fermentative soluble acid intermediates along with residual carbon source. Experimental data illustrated the feasibility of utilizing acid-rich effluents by MFC for both additional energy generation and wastewater treatment. Higher power output (111.76 mW/m{sup 2}) was observed at lower substrate loading condition. MFC also illustrated its function as wastewater treatment unit by removing COD (80%), volatile fatty acids (79%), carbohydrates (78%) and turbidity (65.38%) effectively. Fermented form of vegetable wastewater exhibited higher improvement (94%) in power compared to unfermented wastewater. The performance of MFC was characterized with respect to polarization behavior, cell potentials, cyclic voltammetry and sustainable power. This integration approach enhanced wastewater treatment efficiency (COD removal, 84.6%) along with additional energy generation demonstrating both environmental and economic sustainability of the process. (author)

  18. Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres.

    Science.gov (United States)

    Lammer, Helmut; Kislyakova, K G; Odert, P; Leitzinger, M; Schwarz, R; Pilat-Lohinger, E; Kulikov, Yu N; Khodachenko, M L; Güdel, M; Hanslmeier, M

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  19. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice.

    Science.gov (United States)

    Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa

    2017-10-07

    Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our

  20. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis.

    Science.gov (United States)

    Huang, Y F; Kuan, W H; Lo, S L; Lin, C F

    2010-03-01

    This study aimed to research the productivity of H(2)-rich fuel gas from rice straw using the microwave-induced pyrolysis. The formation constituents of gas product and the mechanism of its production were also discussed. The primary components of gas product were H(2), CO(2), CO, and CH(4), with average percentages of 50.67, 22.56, 16.09, and 7.42vol.%, respectively. According to the TA-MS analysis, it was suggested that focused heating by microwaves made the microwave-induced pyrolysis different from the traditional pyrolysis. A chemical equation could be nearly balanced to illustrate the gas composition generated from rice straw. From the viewpoint of energy consumption, close to 60% of the input energy could be derived and utilized as bioenergy. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...

  2. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  3. The effects of the hydrogen addition on the HCN profiles in fuel-rich-premixed, burner-stabilized C1-C3 alkane flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    2011-01-01

    The effects of hydrogen addition on HCN formation and consumption in fuel-rich, burnerstabilized methane, ethane and propane flames are reported. The HCN mole fraction was measured using quartz-microprobe sampling followed by direct absorption spectroscopy. Experiments were performed at equivalence

  4. The effects of hydrogen addition on Fenimore NO formation in low-pressure, fuel-rich-premixed, burner-stabilized CH4/O-2/N-2 flames

    NARCIS (Netherlands)

    Sepman, A. V.; van Essen, V. M.; Mokhov, A. V.; Levinsky, H. B.

    2008-01-01

    We investigate the effects of hydrogen addition on Fenimore NO formation in fuel-rich, low-pressure burner-stabilized CH4/O-2/N-2 flames. Towards this end, axial profiles of temperature and mole fractions of CH and NO are measured using laser-induced fluorescence (LIF). The experiments are performed

  5. The effects of hydrogen addition on NO formation in atmospheric-pressure, fuel-rich-premixed, burner-stabilized methane, ethane and propane flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    The effects of hydrogen addition on NO formation in fuel-rich, burner-stabilized methane, ethane and propane flames are reported. Profiles of temperature and NO mole fraction were obtained using spontaneous Raman scattering and laser-induced fluorescence (LIF), respectively. Experiments were

  6. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Noel [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  7. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.

    Science.gov (United States)

    Sanchez-Sanchez, Maria Cruz; Navarro Yerga, Rufino M; Kondarides, Dimitris I; Verykios, Xenophon E; Fierro, Jose Luis G

    2010-03-25

    Mechanistic aspects of ethanol steam reforming on Pt, Ni, and PtNi catalysts supported on gamma-Al(2)O(3) are investigated from the analysis of adsorbed species and gas phase products formed on catalysts during temperature-programmed desorption of ethanol and during ethanol steam reforming reaction. DRIFTS-MS analyses of ethanol decomposition and ethanol steam reforming reactions show that PtNi and Ni catalysts are more stable than the Pt monometallic counterpart. Ethanol TPD results on Ni, Pt, and NiPt catalysts point to ethanol dehydrogenation and acetaldehyde decomposition as the first reaction pathways of ethanol steam reforming over the studied catalysts. The active sites responsible for the acetaldehyde decomposition are easily deactivated in the first minutes on-stream by carbon deposits. For Ni and PtNi catalysts, a second reaction pathway, consisting in the decomposition of acetate intermediates formed over the surface of alumina support, becomes the main reaction pathway operating in steam reforming of ethanol once the acetaldehyde decomposition pathway is deactivated. Taking into account the differences observed in the mechanism of ethanol decomposition, the better stability observed for PtNi catalyst is proposed to be related with a cooperative effect between Pt and Ni activities together with the enhanced ability of Ni to gasify the methyl groups formed by decomposition of acetate species. On the contrary, monometallic catalysts are believed to dehydrogenate these methyl groups forming coke that leads to deactivation of metal particles.

  8. Drinking Hydrogen-Rich Water Has Additive Effects on Non-Surgical Periodontal Treatment of Improving Periodontitis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tetsuji Azuma

    2015-07-01

    Full Text Available Oxidative stress is involved in the pathogenesis of periodontitis. A reduction of oxidative stress by drinking hydrogen-rich water (HW might be beneficial to periodontal health. In this pilot study, we compared the effects of non-surgical periodontal treatment with or without drinking HW on periodontitis. Thirteen patients (3 women, 10 men with periodontitis were divided into two groups: The control group (n = 6 or the HW group (n = 7. In the HW group, participants consumed HW 4–5 times/day for eight weeks. At two to four weeks, all participants received non-surgical periodontal treatment. Oral examinations were performed at baseline, two, four and eight weeks, and serum was obtained at these time points to evaluate oxidative stress. At baseline, there were no significant differences in periodontal status between the control and HW groups. The HW group showed greater improvements in probing pocket depth and clinical attachment level than the control group at two, four and eight weeks (p < 0.05. The HW group also exhibited an increased serum level of total antioxidant capacity at four weeks, compared to baseline (p < 0.05. Drinking HW enhanced the effects of non-surgical periodontal treatment, thus improving periodontitis.

  9. Applied potentials regulate recovery of residual hydrogen from acid-rich effluents: Influence of biocathodic buffer capacity over process performance.

    Science.gov (United States)

    Nikhil, G N; Venkata Mohan, S; Swamy, Y V

    2015-01-01

    An absolute biological microbial electrolysis cell (MEC) was operated for a prolonged period under different applied potentials (Eapp, -0.2V to -1.0V) and hydrogen (H2) production was observed using acid-rich effluent. Among these potentials, an optimal voltage of -0.6 V influenced the biocathode by which maximum H2 production of 120 ± 9 ml was noticed. This finding was corroborated with dehydrogenase activity (1.8 ± 0.1 μg/ml) which is the key enzyme for H2 production. The in situ biocathode regulated buffer overpotentials which was remarkably observed by the change in peak heights of dissociation value (pKa) from the titration curve. Substrate degradation analysis gave an estimate of coulombic efficiency of about 72 ± 5% when operated at optimal voltage. Evidently, the electron transfer from solid carbon electrode to biocathode was analyzed by cyclic voltammetry and its derivatives showed the involvement of redox mediators. Despite, the MEC endures certain activation overpotentials which were estimated from the Tafel slope analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations

    Science.gov (United States)

    Ghrib, Amina; Friaa, Athar; Ouerghi, Aymen; Naoui, Slim; Belayouni, Habib

    2017-01-01

    Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02  9.96 MJ/kg for gasification) due to their high contents of H2 (up to 11 and 7 wt%, resp.) and CH4 (up to 17 and 5 wt%, resp.). The yields of combustible gases (H2 and CH4) show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization. PMID:28856162

  11. Fuel-rich catalytic combustion: A soot-free technique for in situ hydrogen-like enrichment

    Science.gov (United States)

    Brabbs, T. A.; Olson, S. L.

    1985-01-01

    An experimental program on the catalytic oxidation of iso-octane demonstrated the feasibility of the two-stage combustion system for reducing particulate emissions. With a fuel-rich (phi = 4.8 to 7.8) catalytic combustion preburner as the first stage the combustion process was soot free at reactor outlet temperatures of 1200 K or less. Although soot was not measured directly, its absence was indicated. Reaction products collected at two positions downstream of the catalyst bed were analyzed on a gas chromatograph. Comparison of these products indicated that pyrolysis of the larger molecules continued along the drift tube and that benzene formation was a gas-phase reaction. The effective hydrogen-carbon ratio calculated from the reaction products increased by 20 to 68 percent over the range of equivalence ratios tested. The catalytic partial oxidation process also yielded a large number of smaller-containing molecules. The fraction of fuel carbon in compounds having two or fewer carbon atoms ranged from 30 percent at 1100 K to 80 percent at 1200 K.

  12. Hydrogen engines based on liquid fuels, a review

    Science.gov (United States)

    Houseman, J.; Voecks, G. E.

    1981-01-01

    The concept of storing hydrogen as part of a liquid fuel, such as gasoline or methanol, and subsequent onboard generation of the hydrogen from such liquids, is reviewed. Hydrogen generation processes, such as steam reforming, partial oxidation, and thermal decomposition are evaluated in terms of theoretical potential and practical limitations, and a summary is presented on the major experimental work on conversion of gasoline and methanol. Results of experiments indicate that onboard hydrogen generation from methanol is technically feasible and will yield substantial improvements in fuel economy and emissions, especially if methanol decomposition is brought about by the use of engine exhaust heat; e.g., a methanol decomposition reactor of 3.8 provides hydrogen-rich gas for a 4 cylinder engine (1.952), and 80% of the methanol is converted, engine exhaust gas being the only heat supply. A preliminary outline of the development of a methanol-based hydrogen engine and a straight hydrogen engine is presented.

  13. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition.

    Science.gov (United States)

    Gonzalez-Cortes, S; Slocombe, D R; Xiao, T; Aldawsari, A; Yao, B; Kuznetsov, V L; Liberti, E; Kirkland, A I; Alkinani, M S; Al-Megren, H A; Thomas, J M; Edwards, P P

    2016-10-19

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV's). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.

  14. The STEAM-Powered Classroom

    Science.gov (United States)

    Harper, Charlie

    2017-01-01

    An instructional coach argues that STEAM (science, technology, engineering, arts, and mathematics) programming combined with problem-based learning can offer rich academic experiences--and not just in science classrooms. He outlines relevant problem-based lesson ideas, and discusses ways school leaders can better support instructional practices…

  15. Steam Reforming of Bio-oil Model Compounds

    DEFF Research Database (Denmark)

    Trane, Rasmus; Jensen, Anker Degn; Dahl, Søren

    The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst.......The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst....

  16. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  17. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  18. Hydrogen-rich medium protects mouse embryonic fibroblasts from oxidative stress by activating LKB1-AMPK-FoxO1 signal pathway.

    Science.gov (United States)

    Lee, Jihyun; Yang, Goowon; Kim, Young-Joo; Tran, Quynh Hoa; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun

    2017-09-23

    Persistent oxidative stress is recognized as a major cause of many pathological conditions as well as ageing. However, most clinical trials of dietary antioxidants have failed to produce successful outcomes in treating oxidative stress-induced diseases. Molecular hydrogen (H 2 ) has recently received considerable attention as a therapeutic agent owing to its novel antioxidant properties, a selective scavenger of hydroxyl and peroxynitrite radicals. Beyond this, numerous reports support that H 2 can modulate the activity of various cellular signal pathways. However, its effect on AMP-activated protein kinase (AMPK) signal pathway, a central regulator of energy hemostasis, has remained almost elusive. Here, we report that hydrogen-rich medium activated LKB1-AMPK signal pathway without ATP depletion, which in turn induced FoxO1-dependent transcription of manganese superoxide dismutase and catalase in mouse embryonic fibroblasts. Moreover, hydrogen-rich media effectively reduced the level of reactive oxygen species in cells treated with hydrogen peroxide and protected these cells from apoptosis in an AMPK-dependent manner. These results suggest that the LKB1-AMPK-FoxO1 signaling pathway is a critical mediator of the antioxidant properties of H 2 , further supporting the idea that H 2 acts as a signaling molecule to serve various physiological functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Steam drum design for direct steam generation

    Science.gov (United States)

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus

    2017-06-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.

  20. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Hydrogen Production by Ethanol Steam Reforming (ESR over CeO2 Supported Transition Metal (Fe, Co, Ni, Cu Catalysts: Insight into the Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Michalis Konsolakis

    2016-03-01

    Full Text Available The aim of the present work was to investigate steam reforming of ethanol with regard to H2 production over transition metal catalysts supported on CeO2. Various parameters concerning the effect of temperature (400–800 °C, steam-to-carbon (S/C feed ratio (0.5, 1.5, 3, 6, metal entity (Fe, Co, Ni, Cu and metal loading (15–30 wt.% on the catalytic performance, were thoroughly studied. The optimal performance was obtained for the 20 wt.% Co/CeO2 catalyst, achieving a H2 yield of up to 66% at 400 °C. In addition, the Co/CeO2 catalyst demonstrated excellent stability performance in the whole examined temperature range of 400–800 °C. In contrast, a notable stability degradation, especially at low temperatures, was observed for Ni-, Cu-, and Fe-based catalysts, ascribed mainly to carbon deposition. An extensive characterization study, involving N2 adsorption-desorption (BET, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM/EDS, X-ray Photoelectron Spectroscopy (XPS, and Temperature Programmed Reduction (H2-TPR was undertaken to gain insight into the structure-activity correlation. The excellent reforming performance of Co/CeO2 catalysts could be attributed to their intrinsic reactivity towards ethanol reforming in combination to their high surface oxygen concentration, which hinders the deposition of carbonaceous species.

  2. Generating steam efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1997-12-31

    This paper outlines a few methods or options for generating steam efficiently in cogeneration plants when using conventional steam generators (boilers) and gas turbine Heat Recovery Steam Generators (HRSGS). By understanding the performance characteristics of these systems and operating them at their most efficient loads, steam can be generated at low cost. Suggestions are also made to improve the efficiency of existing HRSGS.

  3. Steam coal forecaster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This quarterly forecasting service provides a short-term analysis and predictions of the international steam coal trade. Sections are entitled: market review; world steam coal at a glance; economics/foreign exchange; demand (reviewing the main purchasing companies country-by-country); supply (country-by-country information on the main producers of steam coal); and freight. A subscription to Steam Coal Forecaster provides: a monthly PDF of McCloskey's Steam Coal Forecaster sent by email; access to database of stories in Steam Coal Forecaster via the search function; and online access to the latest issue of Steam Coal.

  4. Parametric study on density stratification erosion caused by a horizontal steam jet interacting with a vertical plate obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, S., E-mail: Sidharth.paranjape@psi.ch; Kapulla, R., E-mail: ralf.kapulla@psi.ch; Mignot, G., E-mail: guillaume.mignot@psi.ch; Paladino, D., E-mail: domenico.paladino@psi.ch

    2017-02-15

    Highlights: • Helium layer breakup by horizontal steam jet impinging on vertical plate. • A small change in geometric configuration lead to a large change in flow pattern. • The functional dependence of erosion front motion on time. • Creation of a concentration stratification in adjacent vessel. - Abstract: During postulated severe accident scenarios in nuclear power plants, a hydrogen-rich layer might form at the top of the reactor containment. Various flow patterns resulting from the release of steam from the primary circuit might break the layer and redistribute hydrogen in the containment. The prediction of the gas transport during the accident requires detailed modeling of the processes involved. Advanced lumped parameter codes or computational fluid dynamics codes are used for this purpose. These codes need to be validated against experimental data obtained in large scale experimental facilities, where scale distortions are reduced. In order to obtain the required data with high spatial and temporal resolution, experiments were carried out in the PANDA facility in Switzerland as a part of OECD/HYMERES (HYdrogen Mitigation Experiments for Reactor Safety) project. The present experiments address the breakup of a layer rich in helium (used as simulant for hydrogen), under steam environment and its redistribution in two interconnected vessels (total volume of 183.3 m{sup 3}) under the action of a diffused flow resulting from the interaction of a horizontal steam jet with a vertical plate obstruction. The influence of the distance between the jet exit and the obstruction on the flow pattern was investigated. Spatial and temporal distribution of the gas concentration, the temperature and local gas velocity field were measured. It was found that a small change in the geometric configuration lead to a large change in the flow pattern. Reducing the jet-obstruction distance slowed down the helium-layer erosion process by a factor of two. Additionally, the

  5. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  6. Cooperative catalysis: electron-rich Fe-H complexes and DMAP, a successful "joint venture" for ultrafast hydrogen production.

    Science.gov (United States)

    Rommel, Susanne; Hettmanczyk, Lara; Klein, Johannes E M N; Plietker, Bernd

    2014-08-01

    A series of defined iron-hydrogen complexes was prepared in a straightforward one-pot approach. The structure and electronic properties of such complexes were investigated by means of quantum-chemical analysis. These new complexes were then applied in the dehydrogenative silylation of methanol. The complex (dppp)(CO)(NO)FeH showed a remarkable activity with a TOF of more than 600 000 h(-1) of pure hydrogen gas within seconds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst

    DEFF Research Database (Denmark)

    Jakobsen, Jon Geest; Jakobsen, M.; Chorkendorff, Ib

    2010-01-01

    Methane steam reforming is the key reaction to produce synthesis gas and hydrogen at the industrial scale. Here the kinetics of methane steam reforming over a rhodium-based catalyst is investigated in the temperature range 500-800 A degrees C and as a function of CH4, H2O and H-2 partial pressures...

  8. Removing hydrogen sulphide from a gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Baar, J.F. Van; Lith, W.J. Van.

    1990-05-08

    A process is provided for selectively removing hydrogen sulfide from a gas mixture containing hydrogen sulfide and carbon dioxide, such as natural gas or a reduced off-gas from the Claus process. The process comprises contacting the gas mixture with a liquid absorbent composition including an aminopyridine, such as 4-dimethylaminopyridine. The absorbent composition suitably contains between 1 and 2 moles of aminopyridine per liter of physical solvent (such as sulfolane). Contacting is carried out at 20-80{degree}C and at approximately atmospheric pressure, usually in countercurrent fashion in a gas/liquid contacting column. The rich absorbent composition laden with hydrogen sulfide is regenerated by heating the solution and/or stripping the composition with an inert gas such as steam. Experiments are described to illustrate the process of the invention. 2 tabs.

  9. Effect study of the support in nickel and cobalt catalysts for obtaining hydrogen from ethanol steam reforming; Estudo do efeito do suporte em catalisadores de cobalto e niquel para obtencao de hidrogenio a partir da reforma a vapor do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sirlane Gomes da

    2013-09-01

    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol for the production of hydrogen and subsequent application in fuel cells. The catalysts were synthesized by the co-precipitation and internal gelification methods using cobalt and nickel as active metals supported on aluminum, zirconium, lanthanum and cerium oxides. After prepared and calcined at 550 C Masculine-Ordinal-Indicator the solids were fully characterized by different techniques such as X-rays diffraction(DRX), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy, nitrogen adsorption (B.E.T), temperature-programmed reduction in H2 (TPR-H2) and thermogravimetric analysis. The catalytic tests were performed in a monolithic quartz reactor and submitted to different thermodynamic conditions of steam reforming of ethanol at temperatures varying from 500 Masculine-Ordinal-Indicator C to 800 Masculine-Ordinal-Indicator C. The product gas streams from the reactor were analyzed by an on-line gas chromatograph. The cobalt/nickel catalyst supported on a ceria-lanthania mixture (Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}) showed good catalytic performance in hydrogen selectivity reaching a concentration greater than 65%, when compared to other catalytic systems such as: Co{sub 10%} / Ni5% - CeO{sub 2}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - La{sub 2}O{sub 3}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}/K{sub 2%}; Co{sub 10}% / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3} / Na{sub 2%}; Ni{sub 10%} / Co{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}; Co-Al{sub 2}O{sub 3} e Co-Al{sub 2}O{sub 3}CeO{sub 2}. (author)

  10. Thermal steam plasma decomposition of organochlorine compounds

    Science.gov (United States)

    Surov, A. V.; Subbotin, D. I.; Popov, V. E.; Popov, S. D.; Litvyikova, A. I.; Nakonechniy, Gh V.; Serba, E. O.; Obraztsov, N. V.

    2017-11-01

    For the almost complete processing of organochlorine compounds are required a high temperature, hydrogen to produce hydrogen chloride and a high degree of mixing. Reforming chlorobenzene by steam and carbon dioxide in the presence of methane using a three-phase AC plasma torch was carried out. Soot composition was analyzed by energy dispersive X-ray analysis. The yield of soot was 0.84% wt. of raw materials, the content of chlorine in the soot was 2.08% by wt.

  11. Investigations on catalyzed steam gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    The purpose of the study is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from December 1977 to October 1980. The study was comprised of laboratory studies, process development, and economic analyses. The laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit (PDU) was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses, performed by Davy McKee, Inc. for PNL, evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas (SNG) from wood via catalytic gasification with steam.

  12. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  13. Optimal Integration of a Solid-Oxide Electrolyser Cell into a Direct Steam Generation Solar Tower Plant for Zero-Emission Hydrogen Production

    OpenAIRE

    Sanz Bermejo, Javier

    2015-01-01

    Tesis Doctoral leída en la Universidad Rey Juan Carlos de Madrid en 2015. Director de la Tesis: Manuel Romero Álvarez. Co-director: Javier Muñoz Antón. Tutor: Raúl Sanz Martín Electrolysis systems have a great potential for CO2-free hydrogen production because its relative simplicity facilitates the interconnection with renewable electrical energy systems like wind and solar. Additionally, this hybridization makes it possible to interconnect power and fuel networks (natural gas and transpo...

  14. Next Generation Steam Cracking Reactor Concept

    NARCIS (Netherlands)

    Van Goethem, M.W.M.

    2010-01-01

    The steam cracking process is an important asset in the hydrocarbon processing industry. The main products are lower olefins and hydrogen, with ethylene being the world's largest volume organic chemical at a worldwide capacity of ~ 120 million tonnes per year. Feed stocks are hydrocarbons such as:

  15. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  16. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  17. Steam Digest: Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  18. Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production.

    Science.gov (United States)

    Safari, Farid; Norouzi, Omid; Tavasoli, Ahmad

    2016-12-01

    A tubular batch micro-reactor system was used for hydrothermal gasification (HTG) of Cladophora glomerata (C. glomerata) as green macroalgae found in the southern coast of the Caspian Sea, Iran. Non-catalytic tests were performed to determine the optimum condition for hydrogen production. Hydrochar, as a solid residue of non-catalytic HTG was characterized by BET, FESEM, and ICP-OES methods to determine its physiochemical properties. Surface area and pore volume of C. glomerata increased drastically after HTG. Also, the aqueous products were identified and quantified by GC-MS and GC-FID methods. Hydrochar was loaded to the reactor to determine its catalytic effect on HTG. HTG was promoted by inorganic compounds in the hydrochar and its porosity. The maximum hydrogen yield of 9.63mmol/g was observed in the presence of algal hydrochar with the weight ratio of 0.4 to feedstock. Also, acids production was inhibited while phenol production was promoted in the presence of hydrochar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Effects of hydrogen rich water on the expression of Nrf 2 and the oxidative stress in rats with traumatic brain injury].

    Science.gov (United States)

    Yuan, Jia; Wang, Difen; Liu, Ying; Chen, Xianjun; Zhang, Hailin

    2015-11-01

    To investigate the effects of hydrogen rich water on the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and oxidative stress in rats with traumatic brain injury (TBI). Ninety healthy male Sprague-Dawley (SD) rats were randomly divided into sham operation group, TBI group and hydrogen rich water treatment group (HW group), with 30 rats in each group. TBI model was reproduced by the modified Feeney weight dropping method. The skulls of rats in sham operation group underwent only craniotomy without direct hit. The rats in HW group received brain injury by hitting after craniotomy, followed by injection of hydrogen rich water (5 mL/kg) intraperitoneally once a day for 5 days after successful reproduction of the model. The rats in sham operation group and TBI group were given an equal amount of normal saline in same manner. Six rats from each group were sacrificed at 6, 12, 24, 48 hours and 5 days after evaluating neurological severity scores (NSS). The brain tissue in injured ipsilateral cortex was harvested. The activity of catalase (CAT), glutathione peroxidase (GSH-Px), and content of malondialdehyde (MDA) were determined by spectrophotometry. The expressions of mRNA and nucleoprotein of Nrf2 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) and Western Blot. The pathological changes were observed with microscopy after hematoxylin and cosin (HE) staining. (1) NSS score: compared with TBI group, NSS in HW group at 12, 24, 48 hours and 5 days were significantly decreased (12 hours: 9.83 ± 2.32 vs. 13.17 ± 2.71, 24 hours: 9.83 ± 2.79 vs. 13.50 ± 2.43, 48 hours: 7.50 ± 2.07 vs. 11.83 ± 2.14, 5 days: 5.50 ± 1.87 vs. 10.50 ± 2.43, all P operation group, the activity of GSH-Px and CAT in TBI group were markedly declined after operation, while the MDA content was elevated significantly, especially at 24 hours [CAT (kU/g): 1.080 ± 0.312 vs. 3.571 ± 0.758, GSH-Px (kU/g): 9.195 ± 3.173 vs. 32.385 ± 10.619; MDA (µmol

  20. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  1. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    Science.gov (United States)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  2. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al2O3 Catalyst Using Response Surface Methodology (RSM)

    Science.gov (United States)

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-01-01

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-water molar ratio (X5) on the H2 yield (Y1) and the conversion of glycerol to gaseous products (Y2) were explored. Using multiple regression analysis; the experimental results of the H2 yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H2 yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied. PMID:28788567

  3. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...... on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion...... of ethanol over the most active catalysts at the applied conditions. At these temperatures the offgas composition was close to the thermodynamical equilibrium. Operation at high temperatures, 700 °C and 750 °C, gave the lowest carbon deposition corresponding to 30–60 ppm of the carbon in the feed ending...

  4. Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam

    Science.gov (United States)

    Chen, Yiqing; Fan, Zhidong; Ma, Lixia; Yin, Juan; Luo, Man; Cai, Wangfeng

    2014-01-01

    Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m−3 h−1 with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis–Menten equation was adopted to describe the characteristics of the BTF, and Ks and Vm values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m−3 h−1, respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems. PMID:25313280

  5. Polyphenol-Rich Strawberry Extract Protects Human Dermal Fibroblasts against Hydrogen Peroxide Oxidative Damage and Improves Mitochondrial Functionality

    Directory of Open Access Journals (Sweden)

    Francesca Giampieri

    2014-06-01

    Full Text Available Strawberry bioactive compounds are widely known to be powerful antioxidants. In this study, the antioxidant and anti-aging activities of a polyphenol-rich strawberry extract were evaluated using human dermal fibroblasts exposed to H2O2. Firstly, the phenol and flavonoid contents of strawberry extract were studied, as well as the antioxidant capacity. HPLC-DAD analysis was performed to determine the vitamin C and β-carotene concentration, while HPLC-DAD/ESI-MS analysis was used for anthocyanin identification. Strawberry extract presented a high antioxidant capacity, and a relevant concentration of vitamins and phenolics. Pelargonidin- and cyanidin-glycosides were the most representative anthocyanin components of the fruits. Fibroblasts incubated with strawberry extract and stressed with H2O2 showed an increase in cell viability, a smaller intracellular amount of ROS, and a reduction of membrane lipid peroxidation and DNA damage. Strawberry extract was also able to improve mitochondrial functionality, increasing the basal respiration of mitochondria and to promote a regenerative capacity of cells after exposure to pro-oxidant stimuli. These findings confirm that strawberries possess antioxidant properties and provide new insights into the beneficial role of strawberry bioactive compounds on protecting skin from oxidative stress and aging.

  6. Produção de hidrogênio a partir da reforma a vapor de etanol utilizando catalisadores Cu/Ni/gama-Al2o3 Hydrogen production by ethanol steam reforming using Cu/Ni/gamma-Al2o3 catalysts

    Directory of Open Access Journals (Sweden)

    Thaísa A. Maia

    2007-04-01

    Full Text Available Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.

  7. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.

    Science.gov (United States)

    Kumagai, Shogo; Hosaka, Tomoyuki; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-11-17

    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g(-1) of a H2 and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents.

  8. Equations for calculating the properties of dissociated steam

    Science.gov (United States)

    Aminov, R. Z.; Gudym, A. A.

    2017-08-01

    The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.

  9. An Isothermal Steam Expander for an Industrial Steam Supplying System

    OpenAIRE

    Chen-Kuang Lin; Guang-Jer Lai; Yoshiyuki Kobayashi; Masahiro Matsuo; Min-Chie Chiu

    2015-01-01

    Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure) is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator i...

  10. Steampunk: Full Steam Ahead

    Science.gov (United States)

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  11. STEAM by Design

    Science.gov (United States)

    Keane, Linda; Keane, Mark

    2016-01-01

    We live in a designed world. STEAM by Design presents a transdisciplinary approach to learning that challenges young minds with the task of making a better world. Learning today, like life, is dynamic, connected and engaging. STEAM (Science, Technology, Environment, Engineering, Art, and Math) teaching and learning integrates information in…

  12. Safety Picks up "STEAM"

    Science.gov (United States)

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  13. Steam generator specifications

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-12-31

    This paper describes some of the recent trends in steam generator designs and how engineers should develop specifications for them. Purchasing a steam generator based on standard designs available in the form of tabular data or based on square feet of surface can lead to a poor selection as will be explained later. Several aspects such as emissions, steam parameters, special plant requirements can affect the design and configuration of steam generators. A custom designed steam generator is the best choice as it has several advantages over standard design. Also, to arrive at the optimum design one has to consider not only the initial costs but also the operating costs. Going by thumb rules or misleading and outdated surface area norms should be avoided.

  14. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  15. Draft, development and optimization of a fuel cell system for residential power generation with steam reformer; Entwurf, Aufbau und Optimierung eines PEM-Brennstoffzellensystems zur Hausenergieversorgung mit Dampfreformer

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.

    2006-05-17

    The first development cycle of a residential power generation system is described. A steam reformer was chosen to produce hydrogen out of natural gas. After carbon monoxide purification with a preferential oxidation (PrOx) unit the hydrogen rich reformat gas is feed to the anode of the PEM-fuel cell, where due to the internal reaction with air oxygen form the cathode side water, heat and electricity is produced. Due to an incomplete conversion the anode off gas contains hydrogen and residual methane, which is feed to the burner of the steam reformer to reduce the needed amount of external fuel to heat the steam reformer. To develop the system the components are separately investigated and optimized in their construction or operation to meet the system requirements. After steady state and dynamic characterization of the components they were coupled one after another to build the system. To operate the system a system control was developed to operate and characterize this complex system. After characterization the system was analyzed for further optimization. During the development of the system inventions like a water cooled PrOx, an independent fuel cell controller or a burner for anodic off gas recirculation were made. The work gives a look into the interactions between the components and allows to understand the problems by coupling such components. (orig.)

  16. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    Science.gov (United States)

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  17. GASFLOW Validation with Panda Tests from the OECD SETH Benchmark Covering Steam/Air and Steam/Helium/Air Mixtures

    Directory of Open Access Journals (Sweden)

    Peter Royl

    2009-01-01

    Full Text Available The CFD code GASFLOW solves the time-dependent compressible Navier-Stokes Equations with multiple gas species. GASFLOW was developed for nonnuclear and nuclear applications. The major nuclear applications of GASFLOW are 3D analyses of steam/hydrogen distributions in complex PWR containment buildings to simulate scenarios of beyond design basis accidents. Validation of GASFLOW has been a continuously ongoing process together with the development of this code. This contribution reports the results from the open posttest GASFLOW calculations that have been performed for new experiments from the OECD SETH Benchmark. Discussed are the steam distribution tests 9 and 9bis, 21 and 21bis involving comparable sequences with and without steam condensation and the last SETH test 25 with steam/helium release and condensation. The latter one involves lighter gas mixture sources like they can result in real accidents. The helium is taken as simulant for hydrogen.

  18. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fatsikostas, Athanasios N.; Kondarides, Dimitris I.; Verykios, Xenophon E. [Department of Chemical Engineering, University of Patras, GR-26500 Patras (Greece)

    2002-07-03

    The reformation of biomass-derived ethanol to a hydrogen-rich gas stream suitable for feeding fuel cells is investigated as an efficient and environmentally friendly process for the production of electricity for mobile and stationary applications. Steam reforming of ethanol is investigated over Ni catalysts supported on La{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, YSZ and MgO. The influence of several parameters on the catalytic activity and selectivity is examined including reaction temperature, water-to-ethanol ratio and space velocity. Results reveal that the Ni/La{sub 2}O{sub 3} catalyst exhibits high activity and selectivity toward hydrogen production and, most important, long term stability for steam reforming of ethanol. The enhanced stability of this catalyst may be due to scavenging of coke deposition on the Ni surface by lanthanum oxycarbonate species which exist on top of the Ni particles under reaction conditions.

  19. Effects of ionophores and antibiotics on in vitro hydrogen sulfide production, dry matter disappearance, and total gas production in cultures with a steam-flaked corn-based substrate with or without added sulfur.

    Science.gov (United States)

    Quinn, M J; May, M L; Hales, K E; DiLorenzo, N; Leibovich, J; Smith, D R; Galyean, M L

    2009-05-01

    Effects of 3 ionophores and 2 antibiotics on in vitro H(2)S production, IVDMD, total gas production, and VFA profile with or without added S were examined. In Exp. 1, ruminal fluid from 2 ruminally cannulated steers fed a steam-flaked corn-based diet (75% concentrate) without ionophore and antibiotics for 28 d before collection was used to inoculate in vitro cultures. Treatments were control (no ionophore or antibiotic), 3 ionophores (lasalocid sodium and monensin sodium at 5 mg/L or laidlomycin propionate at 1.65 mg/L), and 2 antibiotics (chlortetracycline hydrochloride at 5 mg/L and tylosin tartarate at 1.25 mg/L). Cultures also had 0 or 1.75 mg of S/L (from sodium sulfate). No S x ionophore-antibiotic treatment interactions were noted (P > 0.53) for IVDMD, total gas production, and H(2)S production. Hydrogen sulfide (mumol/g of fermentable DM) was increased (P ionophores or antibiotics (P > 0.18). On average, IVDMD (P = 0.05) was greater for ionophores than for antibiotics, whereas total gas production was less for ionophores than for control (P ionophore treatments when no S was added, but when S was added there were no differences (P > 0.20) in acetate, propionate, or acetate:propionate between ionophores and control (S x treatment interaction, P = 0.03). In Exp. 2, the effects of ionophore-antibiotic combinations with added S were examined using the same procedures as in Exp. 1. Treatments were control, monensin plus tylosin (MT), and lasalocid plus chlortetracycline (LCTC), with concentrations of the ionophores and antibiotics as in Exp. 1. No differences were observed among treatments for H(2)S production (P > 0.55). Treatments MT and LCTC tended (P = 0.06) to increase IVDMD and decreased (P = 0.02) gas production vs. control. Proportion of acetate (P = 0.01) and acetate:propionate (P ionophores and 2 antibiotics we evaluated did not affect production of H(2)S gas in an in vitro rumen culture system.

  20. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2003-07-01

    This book is the published version of the e-book with the same name. The interactive lecture slides, which accompany most chapters, exist only in the online version and on the attached CD-Rom. The Steam Boiler Technology e-book is the main course book for the course on steam boiler technology provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers. The chapters of the second edition have been corrected based on reader and reviewer comments, and four new chapters have been added. The user interface of the electronic version has also been updated. The password for the online book will be changed once a year. If you have problems accessing the online book, or need a new password, please contact sebastian.teir@hut.fi.

  1. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  2. Understand steam generator performance

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Abilene, TX (United States))

    1994-12-01

    Several variables affect the design and performance of packaged steam generators. Engineers should understand these parameters and their effects so that they can select cost-effective design options and write good specifications. Knowing how the steam parameters and efficiency vary with load can also help plant engineers plan their operation better. This article discusses the effects of such variables as excess air, fuel type, exit gas temperature, load, and emissions on generator design and operation. It also discusses some of the potential benefits of customized steam generators over standard, prepackaged designs, which often compromise on overall performance. The focus of the article is limited to gaseous and oil fuels.

  3. Hydrogen-rich water inhibits glucose and α,β -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney

    Directory of Open Access Journals (Sweden)

    Katakura Masanori

    2012-07-01

    Full Text Available Abstract Background Reactive oxygen species (ROS production induced by α,β-dicarbonyl compounds and advanced glycation end products causes renal dysfunction in patients with type 2 diabetes and metabolic syndrome. Hydrogen-rich water (HRW increases the H2 level in blood and tissues, thus reducing oxidative stress in animals as well as humans. In this study, we investigated the effects of HRW on glucose- and α,β-dicarbonyl compound-induced ROS generation in vitro and in vivo. Methods Kidney homogenates from Wistar rats were incubated in vitro with glucose and α,β-dicarbonyl compounds containing HRW, following which ROS levels were measured. In vivo animal models of metabolic syndrome, SHR.Cg-Leprcp/NDmcr rats, were treated with HRW for 16 weeks, following which renal ROS production and plasma and renal α,β-dicarbonyl compound levels were measured by liquid chromatograph mass spectrometer. Results HRW inhibited glucose- and α,β-dicarbonyl compound-induced ROS production in kidney homogenates from Wistar rats in vitro. Furthermore, SHR.Cg-Leprcp/NDmcr rats treated with HRW showed a 34% decrease in ROS production. Moreover, their renal glyoxal, methylglyoxal, and 3-deoxyglucosone levels decreased by 81%, 77%, and 60%, respectively. Positive correlations were found between renal ROS levels and renal glyoxal (r = 0.659, p = 0.008 and methylglyoxal (r = 0.782, p = 0.001 levels. Conclusion These results indicate that HRW inhibits the production of α,β-dicarbonyl compounds and ROS in the kidneys of SHR.Cg-Leprcp/NDmcr rats. Therefore, it has therapeutic potential for renal dysfunction in patient with type 2 diabetes and metabolic syndrome.

  4. Method for the production of methane-rich gases by catalytic cracking of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hupfen, L.; Triebskorn, B.; Rall, W.; Baron, G.; Gross, H.W.; Ehrhardt, E.

    1976-08-26

    Hydrocarbons low in sulphur content having a boiling point similar to gasoline, gas oils having a boiling point of 165 - 360/sup 0/C and mixtures of saturated and/or unsaturated hydrocarbons with carbon numbers between C/sub 2/ and C/sub 30/ are converted in a mixture with steam in the presence of nickel catalysts in the temperature range between 350 and 550/sup 0/C to a methane-rich gas by releasing hydrogen by the cracking process of the invention and using a catalyst carrier of magnesium silicate.

  5. Steam Properties Database

    Science.gov (United States)

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  6. Steam explosion studies review

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  7. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  8. Catalytic steam reforming of model biogas

    Energy Technology Data Exchange (ETDEWEB)

    Philipp Kolbitsch; Christoph Pfeifer; Hermann Hofbauer [Vienna University of Technology, Vienna (Austria). Institute of Chemical Engineering

    2008-05-15

    Catalytic steam reforming of a model biogas (CH{sub 4}/CO{sub 2} = 60/40) is investigated to produce H{sub 2}-rich synthesis gas. Gas engines benefit from synthesis gas fuel in terms of higher efficiency and lower NOx production when compared to raw biogas or CH{sub 4}. The process is realized in a fixed bed reactor with a Ni-based catalyst on CaO/Al{sub 2}O{sub 3} support. To optimize the performance, the reactor temperature and the amount of excess steam are varied. The experimental results are compared to the theoretical values from thermodynamic calculation and the main trends of CH{sub 4} conversion and H{sub 2} yield are analyzed and verified. Finally, optimal reactor temperature is pointed out and a range of potential steam to methane ratios is presented. The experimental results will be applied to design a steam reformer at an existing anaerobic biomass fermentation plant in Strem, Austria. 20 refs., 8 figs., 4 tabs.

  9. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...... steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D......Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...

  10. Semi-pilot scale test for production of hydrogen-rich fuel gas from different wastes by means of a gasification and smelting process with oxygen multi-blowing

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, R. [Department of Basic Science and Environment CERNAS, ESAC-Polytechnic Institute of Coimbra, Bencanta, 3040-316 Coimbra (Portugal); Sato, H.; Matsukura, Y.; Yamamoto, T. [Corporate Research and Development Laboratories, Sumitomo Metal Industries Ltd., 16-1 Sunayama, Hasaki-machi 314-0255 (Japan)

    2005-08-25

    In Europe, most wastes are deposited in landfills, but a European Council directive has called for a 30% reduction of the landfill amount. Though the cement industry commonly burns waste as an alternative fuel together with fossil fuel (so-called waste co-incineration), it is necessary to reconsider this co-incineration from the viewpoints of sustainable development and cement quality. Gasification and smelting processes (GSPs) for waste can convert waste to slag and fuel gas, which can be used by the energy sector and industry, so these processes are desirable in that they provide wide social benefit. Considering its low environmental impact and good economic performance, a GSP that uses a one-process furnace and oxygen multi-blowing was tested on a semi-pilot scale (1.7 tons/day) to convert different wastes (municipal waste, plastic waste and refuse of polyvinyl chloride with a chlorine content of 48%) to slag and hydrogen-rich fuel gas. The results show that the techniques applied in this test increase the quality of the produced fuel gas, strictly control pollutants, and prolong the life of the plant. Furthermore, the tested GSP has the potential to be linked with a hydrogen-based system through its production of hydrogen-rich fuel gas.

  11. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  12. STEAM GENERATOR GROUP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R. A.; Lewis, M

    1985-09-01

    This report is a summary of progress in the Surry Steam Generator Group Project for 1984. Information is presented on the analysis of two baseline eddy current inspections of the generator. Round robin series of tests using standard in-service inspection techniques are described along with some preliminary results. Observations are reported of degradation found on tubing specimens removed from the generator, and on support plates characterized in-situ. Residual stresses measured on a tubing specimen are reported. Two steam generator repair demonstrations are described; one for antivibration bar replacement, and one on tube repair methods. Chemical analyses are shown for sludge samples removed from above the tube sheet.

  13. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  14. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  15. Open Distribution of Virtual Containers as a Key Framework for Open Educational Resources and STEAM Subjects

    Science.gov (United States)

    Corbi, Alberto; Burgos, Daniel

    2017-01-01

    This paper presents how virtual containers enhance the implementation of STEAM (science, technology, engineering, arts, and math) subjects as Open Educational Resources (OER). The publication initially summarizes the limitations of delivering open rich learning contents and corresponding assignments to students in college level STEAM areas. The…

  16. In silico search for novel methane steam reforming catalysts

    DEFF Research Database (Denmark)

    Xu, Yue; Lausche, Adam C; Wang, Shengguang

    2013-01-01

    App’) with a microkinetic modeling technique to predict the rates and selectivities of a prospective material. This paper illustrates this screening technique using the steam reforming of methane to carbon monoxide and hydrogen as a test reaction. While catalysts are already commercially available for this process...

  17. Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equivalents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment.

    Science.gov (United States)

    Xiao, Li; Miwa, Nobuhiko

    2017-04-01

    The aim of the present study is to investigate protective effects of hydrogen-rich water (HW) against reactive oxygen species (ROS)-induced cellular harmful events and cell death in human gingival fibroblasts (HGF) and three-dimensional (3D-) gingival tissue equivalents. HW was prepared with a magnesium stick in 600-mL double distilled water (DDW) overnight. Dissolved hydrogen was about 1460 ± 50 μg/L versus approximately 1600 μg/L for the saturated hydrogen. Under cell-free conditions, HW, dose-dependently, significantly scavenged peroxyl radicals (ROO·) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Extract from HW-treated HGF cells scavenged ROO· more markedly than that from DDW-treated cells, suggesting that HW can increase the intracellular antioxidant capacity. Hydrogen peroxide dose-dependently increased the intracellular ROS generation, which was significantly repressed by HW, both in the cytoplasm and nuclei. LIVE/DEAD staining and our original cell viability dye-extraction assay showed that HW significantly protected HGF cells from hydrogen peroxide-induced cell death. Hydrogen peroxide also diminished the contents of intracellular glutathione, which were appreciably relieved by HW-pretreatment. Additionally, HW noticeably prevented cumene hydroperoxide-induced generation of cellular ROS in epidermis parts of 3D-gingival equivalents. The in vitro scratch assay showed that HW was able to diminish physical injury-induced ROS generation and promote wound healing in HGF cell monolayer sheets. In summary, HW was able to increase intracellular antioxidative capacity and to protect cells and tissue from oxidative damage. Thus, HW might be used for prevention/treatment of oxidative stress-related diseases.

  18. Steam generators in cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [Abco Industries, Inc., Abilene, TX (United States)

    1994-12-31

    This paper addresses the performance aspects of packaged steam generators and small to medium sized single pressure gas turbine heat recovery steam generators (HRSGs) used in cogeneration plants. HRSGs in combined cycle plants are not addressed here as they usually involve multiple steam pressure operation and comparison with steam generators, which operate at single pressure, would be difficult. Also,the paper deals with simple Brayton cycles with heat recovery for cogeneration only and hence discussions on steam turbines is avoided. The paper addresses the behavior of the steam generators with respect to load with emphasis on fuel utilization, efficiency and performance. The information, it is hoped, would be of interest to plant engineers who would like to operate the steam generators at their best efficiency points.

  19. Fluidized-bed steam methane reforming with oxygen input

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Pruden, B.B. [University of Calgary, Alberta (Canada). Dept. of Chemical and Petroluem Engineering; Adris, A.M. [SABIC R and D, Riyadh (Saudi Arabia). Dept. of Research and Technology Support; Grace, J.R.; Lim, C.J. [University of British Columbia, Vancouver (Canada). Dept. of Chemical Engineering

    1999-07-01

    A study was undertaken to determine whether oxygen could be added directly to a fluidized bed of catalyst to provide all of the endothermic heat for the reforming reaction. It is shown that oxygen can be successfully introduced onto a reforming reactor to provide for the endothermic heat of reforming reactions. The methane conversion increased with increasing reactor temperature, oxygen input flow rate and steam-methane ratio and decreased with increasing reactor pressure as expected. Methane conversion and hydrogen yield are compared to those expected at equilibrium. There was 100% conversion of oxygen under all conditions. Most experimental runs reached and maintained autothermal conditions. The hydrogen yield increased with increasing temperature and steam-methane ratio. The hydrogen yield decreased minimally with increasing reactor pressure and oxygen flowrate. (author)

  20. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  1. Hydrogen production from methane steam reforming over Ni on high surface area CeO2 and CeO2-ZrO supports synthesized by surfactant-assisted method

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul

    2006-11-01

    Full Text Available Methane steam reforming performances of Ni on high surface area (HSA CeO2 and CeO2-ZrO2 supports have been studied under solid oxide fuel cell (SOFC operating conditions. Their performances were compared to general Ni/CeO2, Ni/CeO2-ZrO2, and Ni/Al2O3. It was firstly observed that Ni/CeO2-ZrO2 (HSA with the Ce/Zr ratio of 3/1 showed the best performance in terms of activity and stability toward the methane steam reforming among those with the Ce/Zr ratios of 1/1, 1/3, and 3/1. Both Ni/CeO2-ZrO2 (HSA and Ni/CeO2 (HSA presented better resistance toward carbon formation than the general Ni/CeO2, Ni/CeO2- ZrO2, and Ni/Al2O3 at the same operating conditions. These benefits are related to the high oxygen storage capacity (OSC of CeO2-ZrO2. During the steam reforming process, in addition to the reactions on Ni surface (*, the redox reactions between the gaseous components presented in the system and the lattice oxygen (Ox on CeO2-ZrO2 surface also take place. Among these reactions, the redox reactions between the high carbon formation potential compounds (CH4, CHx-*n and CO and the lattice oxygen (Ox can prevent the formation of carbon species from the methane decomposition and Boudard reactions at the inlet H2O/CH4 ratio of 3.0/1.0.

  2. Process design and simulation of H2-rich gases production from biomass pyrolysis process.

    Science.gov (United States)

    Li, Chunshan; Suzuki, Kenzi

    2010-01-01

    In this study, biomass pyrolysis process for producing H(2)-rich gas is presented. The whole biomass pyrolysis process is established and simulated based on rigorous thermodynamic model, which includes pyrolysis reactor connecting one oil cracking reactor, water gas reactor and a gasifier. The simulation results are verified by the laboratory scale experimental measurements. Then, the influence of main operation parameters such as seam/biomass ratio, temperature (pyrolysis reactor, oil thermal cracking and gasifier) on the composition of fuel gas and hydrogen yield is discussed. Lastly, the optimization results are available. The results indicate that higher gas products and hydrogen yield can be obtained from the process, the H(2) yield can reach 83g/kg biomass, the H(2) concentration can reach 55% (mol) at the optimal temperature and steam/biomass ratio.

  3. Steam condenser developments

    Science.gov (United States)

    Lang, H. V.

    Factors determining condenser size and tube arrangement are reviewed, including steam side pressure drop; incondensible blanketing; effect of incondensibles on heat transfer; vent requirements; deaeration; condensate depression; cooling water velocity; tube material and diameter selection; fouling; and enhanced heat transfer tubes. Tube nest shapes and condenser concepts are described. Thermal design, and condenser acceptance testing are treated; field test results on "Church Window'' condensers are reported.

  4. Heat transfer during condensation of steam from steam-gas mixtures in the passive safety systems of nuclear power plants

    Science.gov (United States)

    Portnova, N. M.; Smirnov, Yu B.

    2017-11-01

    A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.

  5. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  6. A Phenomenological Study on the Synergistic Role of Precious Metals and the Support in the Steam Reforming of Logistic Fuels on Monometal Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2010-01-01

    Full Text Available Clean power source utilizing vast logistic fuel reserves (jet fuels, diesel, and coal would be the main driver in the 21st century for high efficiency. Fuel processors are required to convert these fuels into hydrogen-rich reformate for extended periods in the presence of sulfur, and deliver hydrogen with little or no sulfur to the fuel cell stack. However, the jet and other logistic fuels are invariably sulfur-laden. Sulfur poisons and deactivates the reforming catalyst and therefore, to facilitate continuous uninterrupted operation of logistic fuel processors, robust sulfur-tolerant catalysts ought to be developed. New noble metal-supported ceria-based sulfur-tolerant nanocatalysts were developed and thoroughly characterized. In this paper, the performance of single metal-supported catalysts in the steam-reforming of kerosene, with 260 ppm sulfur is highlighted. It was found that ruthenium-based formulation provided an excellent balance between hydrogen production and stability towards sulfur, while palladium-based catalyst exhibited rapid and steady deactivation due to the highest propensity to sulfur poisoning. The rhodium supported system was found to be most attractive in terms of high hydrogen yield and long-term stability. A mechanistic correlation between the role of the nature of the precious metal and the support for generating clean desulfurized H2-rich reformate is discussed.

  7. Steam Oxidation Testing in the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    After the March 2011 accident at Fukushima Daiichi, Oak Ridge National Laboratory (ORNL) began conducting high temperature steam oxidation testing of candidate materials for accident tolerant fuel (ATF) cladding in August 2011 [1-11]. The ATF concept is to enhance safety margins in light water reactors (LWR) during severe accident scenarios by identifying materials with 100× slower steam oxidation rates compared to current Zr-based alloys. In 2012, the ORNL laboratory equipment was expanded and made available to the entire ATF community as the Severe Accident Test Station (SATS) [4,12]. Compared to the current UO2/Zr-based alloy fuel system, an ATF alternative would significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [13-14]. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models [15-17]. However, initial modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. Also, because many accident scenarios include steadily increasing temperatures, the required data are not traditional isothermal exposures but exposures with varying “ramp” rates. In some cases, the steam oxidation behavior has been surprising and difficult to interpret. Thus, more fundamental information continues to be collected. In addition, more work continues to focus on commercially-manufactured tube material. This report summarizes recent work to characterize the behavior of candidate alloys exposed to high temperature steam, evaluate steam oxidation behavior in various ramp scenarios and continue to collect integral data on FeCrAl compared to conventional Zr-based cladding.

  8. One-pot Synthesis of CdS Irregular Nanospheres Hybridized with Oxygen-Incorporated Defect-Rich MoS2Ultrathin Nanosheets for Efficient Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Zhang, Shouwei; Yang, Hongcen; Gao, Huihui; Cao, Ruya; Huang, Jinzhao; Xu, Xijin

    2017-07-19

    Robust and highly active photocatalysts, CdS@MoS 2 , for hydrogen evolution were successfully fabricated by one-step growth of oxygen-incorporated defect-rich MoS 2 ultrathin nanosheets on the surfaces of CdS with irregular fissures. Under optimized experimental conditions, the CdS@MoS 2 displayed a quantum yield of ∼24.2% at 420 nm and the maximum H 2 generation rate of ∼17203.7 umol/g/h using Na 2 S-Na 2 SO 3 as sacrificial agents (λ ≥ 420 nm), which is ∼47.3 and 14.7 times higher than CdS (∼363.8 μmol/g/h) and 3 wt % Pt/CdS (∼1173.2 μmol/g/h), respectively, and far exceeds all previous hydrogen evolution reaction photocatalysts with MoS 2 as co-catalysts using Na 2 S-Na 2 SO 3 as sacrificial agents. Large volumes of hydrogen bubbles were generated within only 2 s as the photocatalysis started, as demonstrated by the photocatalytic video. The high hydrogen evolution activity is attributed to several merits: (1) the intimate heterojunctions formed between the MoS 2 and CdS can effectively enhance the charge transfer ability and retard the recombination of electron-hole pairs; and (2) the defects in the MoS 2 provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H 2 evolution and increases the electric conductivity of the MoS 2 . Considering its low cost and high efficiency, this highly efficient hybrid photocatalysts would have great potential in energy-generation and environment-restoration fields.

  9. Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C

    2007-04-06

    The goal of this project is to develop an indirectly heated gasification system that converts switchgrass into hydrogen-rich gas suitable for powering fuel cells. The project includes investigations of the indirectly-heated gasifier, development of particulate removal equipment, evaluation of catalytic methods for upgrading producer gas, development of contaminant measurement and control techniques, modeling of the thermal performance of the ballasted gasifier, and estimation of the cost of hydrogen from the proposed gasification system. Specific technologies investigated include a thermally ballasted gasifier, a moving bed granular filter, and catalytic reactors for steam reforming and water-gas shift reaction. The approach to this project was to employ a pilot-scale (5 ton per day) gasifier to evaluate the thermally ballasted gasifier as a means for producing hydrogen from switchgrass. A slipstream from the gasifier was used to evaluate gas cleaning and upgrading options. Other tests were conducted with laboratory-scale equipment using simulated producer gas. The ballasted gasifier operated in conjunction with a steam reformer and two-stage water-gas shift reactor produced gas streams containing 54.5 vol-% H2. If purge gas to the feeder system could be substantially eliminated, hydrogen concentration would reach 61 vol-%, which closely approaches the theoretical maximum of 66 vol-%. Tests with a combined catalyst/sorbent system demonstrated that steam reforming and water-gas shift reaction could be substantially performed in a single reactor and achieve hydrogen concentrations exceeding 90 vol-%. Cold flow trials with a laboratory-scale moving bed granular filter achieved particle removal efficiencies exceeding 99%. Two metal-based sorbents were tested for their ability to remove H2S from biomass-derived producer gas. The ZnO sorbent, tested at 450° C, was effective in reducing H2S from 200 ppm to less than 2 ppm (>99% reduction) while tests with the MnO sorbent

  10. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    Science.gov (United States)

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  11. Hydrogen production from lignocellulosic biomass by two-step gasification method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Hydrogen can be produced from woody biomass by conventional gasification methods such as partial oxidation or steam gasification. Since these methods produce gas products with low content of hydrogen as well as high content of tar from gasification reactors, posttreatment processes including tar cracker and water-gas shift reaction process are usually necessary for obtaining clean hydrogen-rich gas from woody biomass. In this work, a twostep gasification method was experimentally studied as an alternative to the conventional methods. The first step of the gasification is the fast pyrolysis of biomass to obtain liquid-phase product (bio-oil) and the second step is to gasify the bio-oil to hydrogen-rich gas in supercritical water. The fast pyrolysis of woody biomass was carried out using a bench-scale fluidized-bed reactor. The gasification of bio-oil in supercritical water was performed using a continuous-flow reactor packed with catalyst. The effect of major reaction conditions such as temperature and catalyst on hydrogen yield will be discussed. (orig.)

  12. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  13. Program computes turbine steam rates and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

    1988-11-01

    BASIC computer program quickly evaluates steam properties and rates during expansion in a steam turbine. Engineers involved in cogeneration projects and power plant studies often need to calculate the steam properties during expansion in a steam turbine to evaluate the theoretical and actual steam rates and hence, the electrical power output. With the help of this program written in BASIC, one can quickly evaluate all the pertinent data. Correlations used for steam property evaluation are also presented.

  14. Steam reforming of light oxygenates

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Resasco, Daniel E; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of ethanol, acetic acid, acetone, acetol, 1-propanol, and propanal has been investigated over Ni/MgAl2O4 at temperatures between 400 and 700 degrees C and at a steam-to-carbon-ratio (S/C) of 6. The yield of H-2 and conversion increased with temperature, while the yield of by...

  15. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  16. Evaluate deaerator steam requirements quickly

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

    1991-02-01

    Steam plant engineers frequently have to perform energy balance calculations around the deaerator to estimate the steam required to preheat and deaerate the make-up water and condensate returns. This calculation involves solving two sets of equations, one for mass and the other for energy balance. Reference to steam tables is also necessary. However, with the help of this program written in BASIC, one can arrive at the make-up water and steam requirements quickly, without referring to steam tables. This paper shows the mass and energy balance equations for the deaerator. This paper gives the program listing. An number of condensate returns can be handled. An example illustrates the use of the program.

  17. Microchannel Membrane Reactor for production of pure Hydrogen - Inhibition effects on thin self-supported Pd/Ag membranes

    OpenAIRE

    Johannesen, Bengt Arild

    2014-01-01

    Hydrogen gas is one of the most produced gases in the world for industrial purposes, generally produced by methane steam reforming. The demand for clean hydrogen is rising as technology is advancing. Combining a hydrogen seperation step with methane steam reforming can be advantagous as pure hydrogen can be produced, total operating cost reduced and CO2 can possibly be stored. Palladium based membranes have high hydrogen selectivity, solubility and permeability, and are seen as a viable way t...

  18. Steam-air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature.

    Science.gov (United States)

    Kumar, Ajay; Eskridge, Kent; Jones, David D; Hanna, Milford A

    2009-03-01

    In this study, thermochemical biomass gasification was performed on a bench-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Distillers grains, a non-fermentable byproduct of ethanol production, were used as the biomass feedstock for the gasification. The goal was to investigate the effects of furnace temperature, steam to biomass ratio and equivalence ratio on gas composition, carbon conversion efficiency and energy conversion efficiency of the product gas. The experiments were conducted using a 3x3x3 full factorial design with temperatures of 650, 750 and 850 degrees C, steam to biomass ratios of 0, 7.30 and 14.29 and equivalence ratios of 0.07, 0.15 and 0.29. Gasification temperature was found to be the most influential factor. Increasing the temperature resulted in increases in hydrogen and methane contents, carbon conversion and energy efficiencies. Increasing equivalence ratio decreased the hydrogen content but increased carbon conversion and energy efficiencies. The steam to biomass ratio was optimal in the intermediate levels for maximal carbon conversion and energy efficiencies.

  19. Hydrogen production with CO 2 capture by coupling steam reforming of methane and chemical-looping combustion: Use of an iron-based waste product as oxygen carrier burning a PSA tail gas

    Science.gov (United States)

    Ortiz, María; Gayán, Pilar; de Diego, Luis F.; García-Labiano, Francisco; Abad, Alberto; Pans, Miguel A.; Adánez, Juan

    In this work it is analyzed the performance of an iron waste material as oxygen carrier for a chemical-looping combustion (CLC) system. CLC is a novel combustion technology with the benefit of inherent CO 2 separation that can be used as a source of energy for the methane steam reforming process (SR). The tail gas from the PSA unit is used as fuel in the CLC system. The oxygen carrier behaviour with respect to gas combustion was evaluated in a continuous 500 W th CLC prototype using a simulated PSA off-gas stream as fuel. Methane or syngas as fuel were also studied for comparison purposes. The oxygen carrier showed enough high oxygen transport capacity and reactivity to fully convert syngas at 880 °C. However, lower conversion of the fuel was observed with methane containing fuels. An estimated solids inventory of 1600 kg MW th -1 would be necessary to fully convert the PSA off-gas to CO 2 and H 2O. An important positive effect of the oxygen carrier-to-fuel ratio up to 1.5 and the reactor temperature on the combustion efficiency was found. A characterization of the calcined and after-used particles was carried out showing that this iron-based material can be used as oxygen carrier in a CLC plant since particles maintain their properties (reactivity, no agglomeration, high durability, etc.) after more than 111 h of continuous operation.

  20. Design and Activation of a LOX/GH Chemical Steam Generator

    Science.gov (United States)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  1. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  2. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  3. ULTRA-SUPERCRITICAL STEAM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

    2003-04-22

    Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

  4. General purpose steam table library :

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, John H.; Belcourt, Kenneth Noel; Nourgaliev, Robert

    2013-08-01

    Completion of the CASL L3 milestone THM.CFD.P7.04 provides a general purpose tabular interpolation library for material properties to support, in particular, standardized models for steam properties. The software consists of three parts, implementations of analytic steam models, a code to generate tables from those models, and an interpolation package to interface the tables to CFD codes such as Hydra-TH. Verification of the standard model is maintained through the entire train of routines. The performance of interpolation package exceeds that of freely available analytic implementation of the steam properties by over an order of magnitude.

  5. Trends in packaged steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  6. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  7. Catalytic steam reforming of bio-oil

    DEFF Research Database (Denmark)

    Trane, R.; Dahl, S.; Skjøth-Rasmussen, M.S.

    2012-01-01

    Hydrogen and synthesis gas can be produced in an environmentally friendly and sustainable way through steam reforming (SR) of bio-oil and this review presents the state-of-the-art of SR of bio-oil and model compounds hereof. The possible reactions, which can occur in the SR process...... been obtained in both fluidized and fixed bed reactors, but the coke formation appears to be less significant in fluidized beds. The addition of O2 to the system can decrease the coke formation and provide autothermal conditions at the expense of a lower H2 and CO-yield.The SR of bio-oil is still...... in an early stage of development and far from industrial application mainly due the short lifetime of the catalysts, but there are also other aspects of the process which need clarification. Future investigations in SR of bio-oil could be to find a sulfur tolerant and stable catalyst, or to investigate...

  8. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  9. 21 CFR 186.1551 - Hydrogenated fish oil.

    Science.gov (United States)

    2010-04-01

    ... catalysts composed of either elemental nickel, elemental copper, or a mixture of these elements. The crude hydrogenated fish oil is further processed by alkali refining, bleaching, and deodorization by steam stripping...

  10. Simplify heat recovery steam generator evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Abilene, TX (US))

    1990-03-01

    Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

  11. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  12. Evaluation of nickel-rich alloys for the electrolytic generation of hydrogen in an alkaline medium; Evaluacion de aleaciones ricas en niquel para la generacion electrolitica de hidrogeno en medio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Verdin, A.A.; Ortega Borges, R.; Trejo Cordova, G.; Meas Vong, Y. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Pedro Escobedo, Queretaro (Mexico)]. E-mail: aortiz@cideteq.mx

    2009-09-15

    The simultaneous electrodeposition of Ni with metals such as Zn to form alloys enables obtaining surfaces with high electrocatalytic activity or particular characteristics that resist wear and abrasion. This work presents the results of the study of the electrochemical characterization of different types of nickel electrodeposition and compositions, used as cathodes, and measurements of the electrocatalytic activity in the release of hydrogen in an alkaline medium. Curves I through IV were generated, which were potentiostatically obtained in a nitrogen atmosphere in a NaOH alkaline solution. The morphology of the deposits was evaluated with sweep electron micrscopy(SEM). The results enabled evaluating its potential application as electrode materials for the generation of electrolytic hydrogen in alkaline medium, given the good electrocatalytic activity of nickel-rich materials. [Spanish] El electrodeposito simultaneo del Ni, con metales como el Zn para formar aleaciones, permite obtener superficies con elevada actividad electrocatalitica o con caracteristicas particulares de resistencia al desgaste y abrasion. En este trabajo se presentan los resultados del estudio de la caracterizacion electroquimica de los electrodepositos a base de niquel de diferente naturaleza y composicion utilizandolos como catodos midiendo la actividad electrocatalitica con respecto a la reaccion de desprendimiento de hidrogeno (RDH) en medio alcalino. Se realizaron curvas I vs V obtenidas potenciostaticamente bajo atmosfera de nitrogeno en una solucion alcalina de NaOH. La morfologia de los depositos se evaluo mediante SEM (microscopio electronico de barrido). Los resultados permiten evaluar su potencial aplicacion como materiales de electrodo para la generacion electrolitica de hidrogeno en medio alcalino, dada la buena actividad electrocatalitica de los materiales ricos en niquel.

  13. A study of the process control and hydrolytic characteristics in a thermophilic hydrogen fermentor fed with starch-rich kitchen waste by using molecular-biological methods and amylase assay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Hsuan; Li, Shiue-Lin; Chen, I.-Chieh; Tseng, I.-Cheng; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701 (China)

    2010-12-15

    Starch-rich kitchen waste was chosen as the feedstock in this study, and a 3-L intermittent-continuous stirred tank reactor (I-CSTR) was established. Within 240 days, the maximum average hydrogen production rate of 2.2 L-H{sup 2} L{sup -1} day{sup -1} and the highest average hydrogen yield of 2.1 mmol-H{sub 2} g-COD{sup -1} were both observed in run 3-2, which was operated at an eight-day hydraulic retention time (HRT) and 39 g-COD L{sup -1} day{sup -1} of organic loading rate. According to the analyses of amylase and reducing sugar, the maximum average amylase activity was about 11 U mL{sup -1} in run 1, but the maximum solid carbohydrate hydrolysis rate was about 45% in run 3. Some Michaealis-Menton kinetic parameters, such as K{sub M} (17 g L{sup -1}) and the maximum activity (1.5 U mL{sup -1}) of the amylase were obtained. The best amylase reacting temperature was 55 C, and the best reacting pH was 4.4 tested with acetate buffer. Twenty-seven operational taxonomic units (OTUs) were selected from this reactor by using a cloning method. According to the data of terminal restricted fragment length polymorphism (T-RFLP) and amylase assay, the OTUs that were related to Thermoanaerobacterium thermosaccharolyticum and Clostridium sp. were in direct proportion to the amylase activity. (author)

  14. Modeling and simulation of an isothermal reactor for methanol steam reforming

    Directory of Open Access Journals (Sweden)

    Raphael Menechini Neto

    2014-04-01

    Full Text Available Due to growing electricity demand, cheap renewable energy sources are needed. Fuel cells are an interesting alternative for generating electricity since they use hydrogen as their main fuel and release only water and heat to the environment. Although fuel cells show great flexibility in size and operating temperature (some models even operate at low temperatures, the technology has the drawback for hydrogen transportation and storage. However, hydrogen may be produced from methanol steam reforming obtained from renewable sources such as biomass. The use of methanol as raw material in hydrogen production process by steam reforming is highly interesting owing to the fact that alcohol has the best hydrogen carbon-1 ratio (4:1 and may be processed at low temperatures and atmospheric pressures. They are features which are desirable for its use in autonomous fuel cells. Current research develops a mathematical model of an isothermal methanol steam reforming reactor and validates it against experimental data from the literature. The mathematical model was solved numerically by MATLAB® and the comparison of its predictions for different experimental conditions indicated that the developed model and the methodology for its numerical solution were adequate. Further, a preliminary analysis was undertaken on methanol steam reforming reactor project for autonomous fuel cell.

  15. Down-regulation of NF-κB expression by n-3 fatty acid-rich linseed oil is modulated by PPARγ activation, eicosanoid cascade and secretion of cytokines by macrophages in rats fed partially hydrogenated vegetable fat.

    Science.gov (United States)

    Rao, Y Poorna Chandra; Lokesh, B R

    2017-04-01

    The industrially produced partially hydrogenated vegetable fat (PHVF) contains trans fatty acid mostly comprising of elaidic acid (18:1 ∆9t). PHVF is used as a cooking medium in Southeast Asian countries. The purpose of this study is to evaluate the effects of dietary PHVF on inflammatory mediators and possible ameliorative effects of n-3 fatty acid (α-linolenic acid, ALA)-rich linseed oil (LSO) on the inflammatory mediators. Male Wistar weaning rats were fed AIN-93-purified diet supplemented with one of the following lipids for 60 days, groundnut oil (GNO, 10 wt%), PHVF (10 wt%), LSO (10 wt%), PHVF blended with LSO at 2.5, 5.0 and 7.5 wt% levels. The final fat level in the diet was maintained at 10 wt%. The macrophages from rats fed PHVF showed higher levels of total cholesterol and free cholesterol as compared to those from rats fed GNO and LSO. Macrophages from rats fed PHVF down-regulated the expression of PPARγ and up-regulated the expressions of cytosolic phospholipase A2, cyclooxygenase-2, 5-lipoxygenase and nuclear factor-kappa B p65. The macrophages from rats fed PHVF secreted higher levels of pro-inflammatory eicosanoids and cytokines. The rats fed PHVF blended with LSO at incremental amounts showed a significant reduction in the expressions of pro-inflammatory markers in dose-dependent manner. Detrimental effects of dietary PHVF in enhancing pro-inflammatory agents in rats could be significantly reduced by providing ALA (n-3 PUFA)-rich LSO.

  16. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  17. The study of reactions influencing the biomass steam gasification process

    Energy Technology Data Exchange (ETDEWEB)

    C. Franco; F. Pinto; I. Gulyurtlu; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2003-05-01

    Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700 900{sup o}C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830{sup o}C and a steam/biomass ratio of 0.6 0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained. 19 refs., 8 figs. 2 tabs.

  18. Effective use of heat-recovery steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (Abco Industries, Abilene, TX (United States))

    1993-01-01

    Heat-recovery steam generators (HRSGs), often called waste-heat boilers, recover energy from gas streams in a wide range of chemical-process plants. They play the same role in cogeneration and combined-cycle plants that generate steam and electric power, and in facilities that incinerate solid, liquid or gaseous waste. The HRSG is basically a heat exchanger that serves as a boiler. The steam-generation rate and the amount of space available help determine the particular type used in a given situation. So do the quantity, temperature, pressure, chemical composition and purity of the gas. HRSGs are in general custom-designed for each situation, and the purchasing company's engineers must take special care in preparing a well-written specification. Guidelines for doing so appear later. How to use HRSGs effectively in chemical-process plants can be aptly illustrated by two major examples, both covered below: steam reforming of natural gas to produce hydrogen, as in an ammonia or methanol plant; and manufacture of sulfuric acid by the contact process. Also included below is a look at HRSGs in incineration plants, followed by guidelines for proper specifying of these heat-exchange devices.

  19. H₂-rich syngas production by fluidized bed gasification of biomass and plastic fuel.

    Science.gov (United States)

    Ruoppolo, G; Ammendola, P; Chirone, R; Miccio, F

    2012-04-01

    This paper reports the results of gasification tests using a catalytic fluidized bed gasifier to obtain a H(2)-rich stream by feeding different pellets made of wood, biomass/plastic and olive husks to the gasifier. The effects of both the steam supply and an in-bed catalyst on gasifier performance have been investigated. In general, pelletization was an effective pre-treatment for improving the homogeneity of the fuel and the reliability of the feeding devices. The use of biomass/plastic pellets in a catalyst bed yielded good results in terms of the hydrogen concentration (up to 32%vol.), even if an increase in tar production and in the fine/carbon elutriation rate was observed in comparison with wood pellets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Samuel Bayham

    2017-08-01

    Full Text Available Chemical looping combustion is considered an indirect method of oxidizing a carbonaceous fuel, utilizing a metal oxide oxygen carrier to provide oxygen to the fuel. The advantage is the significantly reduced energy penalty for separating out the CO2 for reuse or sequestration in a carbon-constrained world. One of the major issues with chemical looping combustion is the cost of the oxygen carrier. Hematite ore is a proposed oxygen carrier due to its high strength and resistance to mechanical attrition, but its reactivity is rather poor compared to tailored oxygen carriers. This problem is further exacerbated by methane cracking, the subsequent deposition of carbon and the inability to transfer oxygen at a sufficient rate from the core of the particle to the surface for fuel conversion to CO2. Oxygen needs to be readily available at the surface to prevent methane cracking. The purpose of this work was to demonstrate the use of steam to overcome this issue and improve the conversion of the natural gas to CO2, as well as to provide data for computational fluid dynamics (CFD validation. The steam will gasify the deposited carbon to promote the methane conversion. This work studies the performance of hematite ore with methane and steam mixtures in a 5 cm fluidized bed up to approximately 140 kPa. Results show an increased conversion of methane in the presence of steam (from 20–45% without steam to 60–95% up to a certain point, where performance decreases. Adding steam allows the methane conversion to carbon dioxide to be similar to the overall methane conversion; it also helped to prevent carbon accumulation from occurring on the particle. In general, the addition of steam to the feed gas increased the methane conversion. Furthermore, the addition of steam caused the steam methane reforming reaction to form more hydrogen and carbon monoxide at higher steam and methane concentrations, which was not completely converted at higher concentrations and

  1. Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping.

    Science.gov (United States)

    Zin, R Md; Ross, A B; Jones, J M; Dupont, V

    2015-01-01

    Reforming ethanol ('EtOH') into hydrogen rich syngas using the aqueous fraction from pine bio-oil ('AQ') as a combined source of steam and supplementary organic feed was tested in packed bed with Ni-catalysts 'A' (18wt%/α-Al2O3) and 'B' (25wt%/γ-Al2O3). The catalysts were initially pre-reduced by H2, but this was followed by a few cycles of chemical looping steam reforming, where the catalysts were in turn oxidised in air and auto-reduced by the EtOH/AQ mixture. At 600°C, EtOH/AQ reformed similarly to ethanol for molar steam to carbon ratios (S/C) between 2 and 5 on the H2-reduced catalysts. At S/C of 3.3, 90% of the carbon feed converted on catalyst A to CO2 (58%), CO (30%) and CH4 (2.7%), with 17wt% H2 yield based on dry organic feedstock, equivalent to 78% of the equilibrium value. Catalyst A maintained these outputs for four cycles while B underperformed due to partial reduction. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Development and validation of a CFD-based steam reformer model

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Dahlqvist, Mathis; Saksager, Anders

    2006-01-01

    Steam reforming of liquid biofuels (ethanol, bio-diesel etc.) represents a sustainable source of hydrogen for micro Combined Heat and Power (CHP) production as well as Auxiliary Power Units (APUs). In relation to the design of the steam reforming reactor several parameter are important including...... for expensive prototypes. This paper presents an advanced Computational Fluid Dynamics based model of a steam reformer. The model was implemented in the commercial CFD code Fluent through the User Defined Functions interface. The model accounts for the flue gas flow as well as the reformate flow including...... a detailed mechanism for the reforming reactions. Heat exchange between the flue gas and reformate streams through the reformer reactor walls was also included as a conjugate heat transfer process.  From a review of published models for the catalytic steam reforming of ethanol and preliminary predictions...

  3. Steam reforming of crude glycerol with in situ CO(2) sorption.

    Science.gov (United States)

    Dou, Binlin; Rickett, Gavin L; Dupont, Valerie; Williams, Paul T; Chen, Haisheng; Ding, Yulong; Ghadiri, Mojtaba

    2010-04-01

    Steam reforming of the crude glycerol by-product of a biodiesel production plant has been evaluated experimentally at atmospheric pressure, with and without in situ CO(2) sorption, in a continuous flow fixed-bed reactor between 400 degrees C and 700 degrees C. The process outputs were compared to those using pure glycerol. Thermodynamic equilibrium calculations were used to assess the effect on the steam reforming process of the main crude impurities (methanol and four fatty acid methyl esters). The crude glycerol and steam conversions and the H(2) purity reached 100%, 11% and 68%, respectively at 600 degrees C. No CH(4) was found at and above 600 degrees C. Steam reforming of crude glycerol with in situ CO(2) removal is shown to be an effective means of achieving hydrogen purity above 88% in pre-CO(2) breakthrough conditions. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Ethanol steam reforming over Ni/M{sub x}O{sub y}-Al{sub 2}O{sub 3} (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanchez, M.C.; Navarro, R.M.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica, CSIC, C/ Marie Curie 2 Cantoblanco 28049 Madrid (Spain)

    2007-07-15

    Hydrogen production from ethanol reforming over alumina-supported nickel catalysts modified with Ce, Mg, Zr and La was studied. Characterization of catalysts by XRD, TPR, XRD and TPD of NH{sub 3} revealed changes in the acidity, nickel dispersion and nickel-support interaction with the type of the modifier added to Al{sub 2}O{sub 3}. The acidity of catalysts containing Mg, Ce, La and Zr additives decreased with respect to that supported on bare Al{sub 2}O{sub 3}. The trend of metal dispersion as derived from XRD and H{sub 2} chemisorption results followed the order: La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}>MgO-Al{sub 2}O{sub 3}>CeO{sub 2}-Al{sub 2}O{sub 3}>Al{sub 2}O{sub 3}>ZrO{sub 2}-Al{sub 2}O{sub 3}. TPR and XPS analyses indicate the development of strong interactions between nickel species and ZrO{sub 2}, La{sub 2}O{sub 3} and CeO{sub 2} oxides added to supports. The activity measurements coupled with the physicochemical characterization data indicated the different catalysts functionality that influences on their reforming activity. Thus, the higher reforming activity for Mg-modified catalyst respect to bare Al{sub 2}O{sub 3} was explained in terms of the lower acidity and better dispersion achieved in the former, while for Ce- and Zr-promoted catalysts the improvement in intrinsic activity was ascribed to the enhancement of water adsorption/dissociation on the Ni-Ce and Ni-Zr interfaces developed on these catalysts. On the other hand, the lower intrinsic activity of La-added catalyst was explained in terms of the dilution effect caused by the presence of lanthanum on Ni surfaces. Characterization of catalysts after reaction showed differences on the amount and type of coke deposited on catalysts surfaces. La and Ce additives were found to prevent the formation of carbon filaments on nickel surfaces, which is responsible of the changes in product selectivities with reaction time observed on Ni/Al{sub 2}O{sub 3}, Ni/ZrO{sub 2}-Al{sub 2}O{sub 3} and Ni/MgO-Al{sub 2}O

  5. Methanol steam reforming over Pd/ZnO and Pd/CeO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Easwar S.; Bej, Shyamal K.; Thompson, Levi T. [University of Michigan, Department of Chemical Engineering, 3026 H.H. Dow Building, 2300 Hayward Avenue, Ann Arbor, MI 48109-2136 (United States)

    2005-08-10

    The goal of work described in this paper was to better understand the methanol steam reforming (MSR) activity and selectivity patterns of ZnO and CeO{sub 2} supported Pd catalysts. This reaction is being used to produce H{sub 2}-rich gas for a number of applications including hydrogen fuel cells. The Pd/ZnO catalysts had lower MSR rates but were more selective for the production of CO{sub 2} than the Pd/CeO{sub 2} catalysts. The CH{sub 3}OH conversion rates were proportional to the H{sub 2} chemisorption uptake suggesting that the rate determining step was catalyzed by Pd. The corresponding turnover frequencies averaged 0.8+/-0.3s{sup -1} and 0.4+/-0.2s{sup -1} at 230{sup o}C for the Pd/ZnO and Pd/CeO{sub 2} catalysts, respectively. The selectivities are explained based on the reaction pathways, and characteristics of the support. The key surface intermediate appeared to be a formate. The ZnO supported catalysts had a higher density of acidic sites and favored pathways where the intermediate was converted to CO{sub 2} while the CeO{sub 2} supported catalysts had a higher density of basic sites and favored the production of CO.

  6. Steam Digest 2001: Office of Industrial Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  7. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James O' Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  8. Durability of Solid Oxide Electrolysis Cell and Interconnects for Steam Electrolysis

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin

    2013-01-01

    Durability of a solid oxide electrolysis cell tested at -1.5A / cm2 for high temperature steam electrolysis was investigated in the present work under stack relevant conditions. Detailed electrochemical and microstructural analyses were carried out. The results show that both the hydrogen...... and interconnects on cell degradation under harsh electrolysis conditions is further discussed....

  9. Pd-Ag membrane reactor for steam reforming reactions: a comparison between different fuels

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2008-01-01

    The simulation of a dense Pd-based membrane reactor for carrying out the methane, the methanol and the ethanol steam reforming (SR) reactions for pure hydrogen production is performed. The same simulation is also performed in a traditional reactor. This modelling work shows that the use of membrane

  10. Chemical utilization of hydrogen from fluctuating energy sources – Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems

    OpenAIRE

    Geburtig, Denise; Preuster, Patrick; Bösmann, Andreas; Müller, Karsten; Wasserscheid, Peter

    2016-01-01

    Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way for storing and distributing hydrogen from electrolysis using excess energies from solar or wind power plants. In this contribution, an alternative, high-value utilization of such hydrogen is proposed namely its use in steady-state chemical hydrogenation processes. We here demonstrate that the hydrogen-rich form of the LOHC system dibenzyltoluene/perhydro-dibenzyltoluene can be directly applied as sole source of hydrog...

  11. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  12. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  13. The quest for intensified steam cracking process

    NARCIS (Netherlands)

    Van Goethem, M.W.M.; Verheijen, P.J.T.

    2005-01-01

    In this paper the results are presented on the quest for an intensified steam cracking process. The main focus is to improve the efficiency of the steam cracking process. The first part of the investigation is to examine which of the current available processes is close to the ideal steam cracking

  14. New downhole steam generator tested

    Energy Technology Data Exchange (ETDEWEB)

    Bleakley, W.B.

    1981-07-01

    Completion of 2 field tests of a new-model down-hole steam generator paves the way for further evaluation and development of a system destined to increase California's heavy oil production. Current air pollution restrictions there prevent installation of conventional steam generators in several areas of interest to oil operators. The current series of tests, conducted by Chemical Oil Recovery Co. (CORCO) of Bakersfield, California, follows an earlier prototype operation conducted by Sandia National Laboratories in conjunction with the US Department of Energy. The CORCO tests were conducted on the surface with the generator's output going into Tenneco Oil Exploration and Production Co.'s overland-Riokern Well No. 80, located in the Kern River field 4 miles north of Bakersfield. The first test was concluded with just under 1000 bbl of steam injected, less than planned due to a higher-than-expected injection pressure. The unit operated at less than 25% capacity because of the air compressor limitation. Compressor output was only 285 psi, not enough to inject the desired volumes into the reservoir. Test data shows that injection amounted to 150 bpd of 90 to 95% quality steam at 225-psi wellhead pressure. After injection, the well was shut in for 3 days to allow soaking, then put on production. Initial production was 40 bopd at 175 F.

  15. The STEAM behind the Scenes

    Science.gov (United States)

    Smith, Carmen Petrick; King, Barbara; González, Diana

    2015-01-01

    There is a growing need for STEAM-based (Science, Technology, Engineering, Arts, and Mathematics) knowledge and skills across a wide range of professions (Brazell 2013). Yet students often fail to see the usefulness of mathematics beyond the classroom (Kloosterman, Raymond, and Emenaker 1996), and they do not regularly make connections between…

  16. Steam Hydrocarbon Cracking and Reforming

    Science.gov (United States)

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  17. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  18. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Sougata Roy Chowdhury

    Full Text Available Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2-induced stress in human lung fibroblast (WI38 cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42% conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1H/(13C/2D-COSY NMR. H2O2 (300 µM insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases. Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.

  19. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells.

    Science.gov (United States)

    Roy Chowdhury, Sougata; Sengupta, Suman; Biswas, Subir; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1)H/(13)C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.

  20. Hydrogen production costs -- A survey

    Energy Technology Data Exchange (ETDEWEB)

    Basye, L.; Swaminathan, S.

    1997-12-04

    Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

  1. Hydrogen-bond network formation of water molecules and its effects on the glass transitions in the ethylene glycol aqueous solutions: failure of the Gordon-Taylor law in the water-rich range and absence of the T(g) = 115 K rearrangement process in bulk pure water.

    Science.gov (United States)

    Nagoe, Atsushi; Oguni, Masaharu

    2010-08-18

    Enthalpy relaxation processes proceeding in ethylene glycol (EG) aqueous solutions [(EG)(x)(H(2)O)(1 - x)] within silica-gel nanopores were studied by adiabatic calorimetry. While the x = 0.25 solution within pores with diameter of 52 nm showed a glass transition at T(g) = 139 K, ageing of the solution at 160 K caused a phase separation to reveal glass transitions at T(g) = 145 and 160 K for EG-rich and water-rich regions, respectively: the water molecules are understood to form a more developed hydrogen-bond network, and consequently force the EG molecules in between the water-rich regions. The T(g) = 160 K is in good agreement with the T(g) value of the internal (not interfacial) water confined within pores with thickness of 1.1 nm. The ageing further remarkably diminished the T(g) = 115 K glass transition. This indicates that, while the molecules responsible for the glass transition are the mobile water ones forming a lower number of hydrogen bonds than four, the fraction of such water molecules is reduced in association with the development of the network and the glass transition is absent in bulk pure water. When the same x = 0.25 solution was confined within 1.1- and 12 nm pores, the water molecules developed a hydrogen-bond network in the pore centre due to the presence of the pore wall and pushed the EG molecules onto the pore surface even at higher temperatures: the water-rich region gave T(g) = 155 K close to 160 K. It is concluded that the hydrogen-bond network inherent to water structure is developed/collapsed remarkably in the range near x = 0; consequently, the composition dependence of T(g) in the bulk system deviates sharply in the range from the Gordon-Taylor empirical law followed for large x > 0.2.

  2. Calculate the moisture content of steam

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1993-08-01

    Water droplets in steam can create serious problems. For example, if the steam is being used to drive turbines, droplets can damage the turbine blades. It is important, therefore, for an engineer to know if steam contains moisture, especially if the steam is generated in low-pressure boilers (under 500 psia). Unlike larger boilers, these units don't have internal separation devices such as cyclones. Calculating the steam's moisture content, or quality, can be complicated procedure. Now, a simple chart can be used to get the data from one temperature reading. The paper explains the procedure.

  3. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    Science.gov (United States)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  4. Steam cooling system for a gas turbine

    Science.gov (United States)

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  5. Hydrogen energy systems studies. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  6. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.

    Science.gov (United States)

    Andrew, Renny; Gokak, D T; Sharma, Pankaj; Gupta, Shalini

    2016-12-01

    Today, the impending stringent environmental norms and concerns about the depletion of fossil fuel reserves have added impetus on development of cutting edge technologies for production of alternative fuels from renewable sources, like biomass. The concept of biomass pyro-gasification offers a platform for production of (a) hydrogen, (b) hydrocarbons and (c) value added chemicals, etc. In this context, there exists potential for hydrogen production from biomass by superheated steam gasification. Apart from H 2 , gaseous products of biomass steam gasification contain CO, CH 4 and other hydrocarbons that can be converted to hydrogen through cracking, steam reforming and water gas shift reactions. In the present work, the characteristics of biomass steam gasification in an indigenously designed rotary tubular coiled-downdraft reactor for high value gaseous fuel production from rice husk was studied through a series of experiments. The robust reactor system enhances biomass conversion to gaseous products by improved mass and heat transfer within the system induced by a coiled flow pattern with increased heat transfer area. Also, the system has improved upon the reliability of operation and offered greater continuity of the process and easier control in comparison with a conventional process by making use of an innovative gas cooler assembly and efficient venturi-mixing system for biomass and steam. Subsequently, the effects of reactor temperature, steam-to-biomass ratio and residence time on overall product gas yield and hydrogen yield were investigated. From the experimental results, it can be deduced that an optimum reactor temperature of 750 °C, steam-to-biomass ratio of 2.0 and a residence time of 3.0 min contributed highest gas yield (1.252 Nm 3  kg -1 moisture-free biomass). Based on the obtained experimental results, a projected potential hydrogen yield of 8.6 wt% of the moisture-free biomass could be achieved, and is also practical for production of

  7. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  8. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  9. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether

    Science.gov (United States)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0-5) and reforming temperature (25-1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO 2, CO, H 2, H 2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH 4 was favorable, production of coke and that of hydrogen were significantly suppressed.

  10. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.

    Science.gov (United States)

    Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

    2014-02-01

    Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    Science.gov (United States)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  12. Steam chemical reactivity of plasma-sprayed beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Pawelko, R.J.; Smolik, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Castro, R.G. [Los Alamos National Lab., NM (United States)

    1998-07-01

    Plasma-spraying with the potential for in-situ repair makes beryllium a primary candidate for plasma facing and structural components in experimental magnetic fusion machines. Deposits with good thermal conductivity and resistance to thermal cycling have been produced with low pressure plasma-spraying (LPPS). A concern during a potential accident with steam ingress is the amount of hydrogen produced by the reactions of steam with hot components. In this study the authors measure the reaction rates of various deposits produced by LPPS with steam from 350 C to above 1,000 C. They correlate these reaction rates with measurements of density, open porosity and BET surface areas. They find the reactivity to be largely dependent upon effective surface area. Promising results were obtained below 600 C from a 94% theoretical dense (TD) deposit with a BET specific surface area of 0.085 m{sup 2}/g. Although reaction rates were higher than those for dense consolidated beryllium they were substantially lower, i.e., about two orders of magnitude, than those obtained from previously tested lower density plasma-sprayed deposits.

  13. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  14. Thermodynamyc modeling of hydrogenation reactions of aromatic hydrocarbons in various environments

    Directory of Open Access Journals (Sweden)

    A. Gyulmaliev

    2013-09-01

    Full Text Available The hydrogenation of aromatic structures in different environments (molecular hydrogen, H2S, NH3 (NH4OH, CO + H2O, methane + water steam with the active hydrogen formation were investigated by methods of chemical thermodynamics for model compounds of benzene and naphthalene.

  15. The use of plasma processing for catalyst and membrane synthesis and direct production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Brault, P.; Thomann, A.L.; Cormier, J.M.; Lefaucheux, Ph. [Orleans Univ., Groupe de Recheches sur l' Energetique des Milieux Ionises, UMR 6606, 45 (France)

    2000-07-01

    Plasma technologies are introduced in the field of hydrogen synthesis related to fuel cells. Two ways are described: plasma synthesis of catalysts and membranes for the production and separation of hydrogen and direct production of hydrogen based on atmospheric plasma assisted methane steam reforming.

  16. Micromechanics of high temperature hydrogen attack

    NARCIS (Netherlands)

    Schlögl, Sabine M.; Giessen, Erik van der

    1999-01-01

    Hydrogen attack is a material degradation process that occurs at elevated temperatures in hydrogen-rich environments, such as found in petro-chemical installations. Weldments in components such as reactor vessels are particularly susceptible to hydrogen attack. This paper discusses a multi-scale

  17. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  18. Steam Turbine Assisted Cogeneration systems

    Directory of Open Access Journals (Sweden)

    Šariský Marián

    2004-09-01

    Full Text Available Searching for the best way of improving using systems of production electrical energy and heat is part of an intensive development in the field of energetic. Using steam turbines in the cogeneration system is very important step at increasing the effection not only of the whole system, but of the gas turbine as well. The advantages and the characteristic features of the system are shown in the article.

  19. Importance of fingering convection for accreting white dwarfs in the framework of full evolutionary calculations: the case of the hydrogen-rich white dwarfs GD 133 and G 29-38

    Science.gov (United States)

    Wachlin, F. C.; Vauclair, G.; Vauclair, S.; Althaus, L. G.

    2017-05-01

    Context. A large fraction of white dwarfs show photospheric chemical composition that is polluted by heavy elements accreted from a debris disk. Such debris disks result from the tidal disruption of rocky planetesimals that have survived to whole stellar evolution from the main sequence to the final white dwarf stage. Determining the accretion rate of this material is an important step toward estimating the mass of the planetesimals and understanding the ultimate fate of the planetary systems. Aims: The accretion of heavy material with a mean molecular weight, μ, higher than the mean molecular weight of the white dwarf outer layers, induces a double-diffusive instability producing the fingering convection and an extra-mixing. As a result, the accreted material is diluted deep into the star. We explore the effect of this extra-mixing on the abundance evolution of Mg, O, Ca, Fe and Si in the cases of the two well-studied polluted DAZ white dwarfs: GD 133 and G 29-38. Methods: We performed numerical simulations of the accretion of material that has a chemical composition similar to the bulk Earth composition. We assumed a continuous and uniform accretion and considered a range of accretion rates from 104 g/s to 1010 g/s. Two cases are simulated, one using the standard mixing length theory (MLT) and one including the double-diffusive instability (fingering convection). Results: The double-diffusive instability develops on a very short timescale. The surface abundance rapidly reaches a stationary value while the depth of the zone mixed by the fingering convection increases. In the case of GD 133, the accretion rate needed to reproduce the observed abundances exceeds by more than two orders of magnitude the rate estimated by neglecting the fingering convection. In the case of G 29-38 the needed accretion rate is increased by approximately 1.7 dex. Conclusions: Our numerical simulations of the accretion of heavy elements on the hydrogen-rich white dwarf GD 133 and G 29

  20. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Padilla, R.; Serrano-Lotina, A.; Rodriguez, L.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Brey, J.J. [Hynergreen Technologies, Av. Buhaira 2, 41018 Sevilla (Spain)

    2009-07-01

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H{sub 2} per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming. (author)

  1. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  2. Insulate Steam Distribution and Condensate Return Lines - Steam Tip Sheet #2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-31

    This revised AMO tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  3. Steam Technical Brief: How to Calculate the True Cost of Steam

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-25

    This BestPractice Steam Technical Brief helps you calculate the true cost of steam. Knowing the correct cost is important for many reasons and all of them have to do with improving the company's bottom line.

  4. Analysis of an alumina refinery steam system

    OpenAIRE

    Power, Craig Leslie

    2017-01-01

    The Rio Tinto Alcan - Yarwun (RTA Y) alumina refinery is currently undergoing a major expansion, with the possibility of further expansion in the future. The current expansion sees the addition of a Gas Turbine (GT) and Heat Recovery Steam Generator (HRSG) to the utility system, resulting in significant excess high pressure (HP) steam generating capacity in the utility system. Additionally, an excess of low pressure (LP) flash steam is generated from the HP condensate and is currently vented ...

  5. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  6. Amazing & extraordinary facts the steam age

    CERN Document Server

    Holland, Julian

    2012-01-01

    Respected transport author Julian Holland delves into the intriguing world of steam in his latest book, which is full of absorbing facts and figures on subjects ranging from Cornish beam engines, steam railway locomotives, road vehicles and ships through to traction engines, steam rollers and electricity generating stations and the people who designed and built them. Helped along the way by the inventive minds of James Watt, Richard Trevithick and George Stephenson, steam became the powerhouse that drove the Industrial Revolution in Britain in the late 18th and 19th centuries.

  7. Efficiently generate steam from cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1997-05-01

    As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

  8. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  9. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah

    2008-01-01

    in situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd...... metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... reforming. The reaction is found to be kinetically controlled by a methane dissociation step and a CO formation step, where the latter step is found to be dominant at lower temperatures. The particle size of the metal catalysts particles have been determined by transmission electron microscopy (TEM...

  10. RPV steam generator pressure boundary

    Energy Technology Data Exchange (ETDEWEB)

    Strosnider, J.

    1996-03-01

    As the types of SG tube degradation affecting PWR SGs has changed, and improvements in tube inspection and repair technology have occurred, current SG regulatory requirements and guidance have become increasingly out of date. This regulatory situation has been dealt with on a plant-specific basis, however to resolve this problem in the long term, the NRC has begun development of a performance-based rule. As currently structured, the proposed steam generator rule would require licensees to implement SG programs that monitor the condition of the steam generator tubes against accepted performance criteria to provide reasonable assurance that the steam generator tubes remain capable of performing their intended safety functions. Currently the staff is developing three performance criteria that will ensure the tubes can continue to perform their safety function and therefore satisfy the SG rule requirements. The staff, in developing the criteria, is striving to ensure that the performance criteria have the two key attributes of being (1) measurable (enabling the tube condition to be {open_quotes}measured{close_quotes} against the criteria) and (2) tolerable (ensuring that failures to meet the criteria do not result in unacceptable consequences). A general description of the criteria are: (1) Structural integrity criteria: Ensures that the structural integrity of the SG tubes is maintained for the operating cycle consistent with the margins intended by the ASME Code. (2) Leakage integrity criteria: Ensures that postulated accident leakages and the associated dose releases are limited relative to 10 CFR Part 50 guidelines and 10 CFR Part 50 Appendix A GDC 19. (3) Operational leakage criteria: Ensures that the operating unit will be shut down as a defense-in depth measure when operational SG tube leakage exceeds established leakage limits.

  11. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    Science.gov (United States)

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  12. Steam microturbines in distributed cogeneration

    CERN Document Server

    Kicinski, Jan

    2014-01-01

    This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines a

  13. In Situ Steam Fracture Experiments.

    Science.gov (United States)

    1984-12-31

    an average tensile strength of 1.1 MPa, as measured by TerraTek. An overcore test performed by Fenix and Scisson in 1982, at the 1.05 meter to 1.21...acker 46 The source region had a 42-millidarcy value. Fenix and Scisson geologists (Reference 4) reported a visual fracture between Holes A and B. These...Tunnel, Neva- Test Site," SAND 80-1138, April 1981. 3. O’Brien, M. 8., "Results of Steam Hydraulic Fracture Drilling," Memo from Fenix and Scisson to J

  14. Steam generator tubing NDE performance

    Energy Technology Data Exchange (ETDEWEB)

    Henry, G. [Electric Power Research Institute, Charlotte, NC (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  15. Steam turbine materials and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Ziomek-Moroz, M.

    2007-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

  16. Steam-frothing of milk for coffee

    DEFF Research Database (Denmark)

    Münchow, Morten; Jørgensen, Leif; Amigo Rubio, Jose Manuel

    2015-01-01

    A method for evaluation of the foaming properties of steam-frothed milk, based on image analysis (feature extraction) carried out on a video taken immediately after foam formation, was developed. The method was shown to be able to analyse steam-frothed milk made using a conventional espresso mach...

  17. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  18. 21 CFR 880.6880 - Steam sterilizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use by a health care provider to sterilize medical products by means of pressurized steam. (b...

  19. Nomogram estimates holdup time in steam drums

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1985-06-01

    If the supply of water to a steam drum is interrupted because of feedpump failure or other reason, steam will continue to be generated and the water level in the drum will start to fall rapidly. This paper offers calculations and illustrates with a nomogram how long it will take under these conditions for the drum to be emptied.

  20. The Invention of the Steam Engine

    NARCIS (Netherlands)

    Van der Kooij, B.J.G.

    2015-01-01

    This casestudy is a historic analysis of the developments that resulted in the steam engine. The range of inventions that started with Savery's 'Miner's Friend' (a water pump to solve the dramatic water problem in the British eighteenth century mines) over a century culminated in the steam engine

  1. Hydrogen Behaviors Coupled with Thermal Hydraulics in APR1400 Containment during an SBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There are two hydrogen mitigation strategies. One is burning hydrogen by igniters as it is released in the containment. The other is using PARs (passive auto-catalytic recombiners) to remove the hydrogen. The strategy based on PAR installation requires well-mixing of the released hydrogen with steam in a containment atmosphere. It means that hydrogen distribution in a containment is very important for the hydrogen mitigation by PAR. Hydrogen behaviors in a NPP containment is strongly coupled with thermal hydraulics such as turbulent mixing, stratification by buoyancy, steam condensation, heat transfer et al. The purpose of this study is to investigate hydrogen behaviors in the APR1400 containment during an SBLOCA with a reactor core damage. The GASFLOW code is used to simulate hydrogen behaviors with thermal hydraulics in the APR1400 containment. In this paper, the hydrogen behaviors in the APR1400 containment during an SBLOCA were investigated by numerical simulation using GASFLOW. It was found that hydrogen mixture cloud may move downward relying on thermal hydraulic effect occurring in the containment. It is thought that condensation of steam included in the hydrogen mixture is very important in the hydrogen behaviors.

  2. In situ CO{sub 2} capture in a dual fluidized bed biomass steam gasifier - bed material and fuel variation

    Energy Technology Data Exchange (ETDEWEB)

    Soukup, G.; Pfeifer, C.; Kreuzeder, A.; Hofbauer, H. [Institute of Chemical Engineering, Vienna University of Technology, Vienna (Austria)

    2009-03-15

    The AER (absorption enhanced reforming) process, based on the dual fluidized bed steam gasification process, uses a bed material which, apart from its function as heat carrier, acts as a CO{sub 2} transporting agent and selectively transfers CO{sub 2} from the gasification reactor to the combustion reactor. Thus, a hydrogen-rich gas is produced (H{sub 2} 55..70 vol.-%{sub db}, CH{sub 4} 8..13 vol.-%{sub db}, CO 5..11 vol.-%{sub db} as well as CO{sub 2} 7..20 vol.-%{sub db}). Seven different CaO containing bed materials were tested for their principal applicability to the AER process with special focus on their influence on tar production. The amount of tars was generally found to be five times lower than with conventional gasification (at 850 C) despite the low gasification temperatures (600-700 C). Due to these low gasification temperatures, biomass with high alkali contents (e.g., straw), indicating a low ash melting point (< 800 C), can be used under AER conditions. In summary, the AER process is very effective owing to the integration of the heat of the chemical reaction of CO{sub 2} with CaO and the water-gas shift reaction, which are both exothermic, into the gasification and the internal reforming of primary and secondary tars, which cuts off the formation of higher tars. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Postfact phenomena of the wet-steam flow electrization in turbines

    Science.gov (United States)

    Tarelin, A. A.

    2017-11-01

    Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.

  4. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Circumferential cracking of steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  6. Understand the basics of packaged steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1997-07-01

    Oil- and gas-fired packaged steam generators are widely used in chemical plants, refineries and cogeneration systems. They form an important part of the total steam system in any plant and are available in capacities up to 250,000 lb/h at pressures ranging from 150 to 1,500 psig and temperatures from saturated steam to 1,000 F. They are expected to last about 25 years, and, therefore, cost-effectively generate steam. However, when making purchasing decisions, plant engineers, consultants and engineering firms spend little time on important aspects such as long-term performance and operating costs and often recommend standard, off-the-shelf designs that have several limitations. Here are important design and performance aspects of packaged steam generators and recent trends in their design that engineers should be familiar with.

  7. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community.

    Science.gov (United States)

    Liu, Zhidan; Zhang, Chong; Wang, Linjun; He, Jianwei; Li, Baoming; Zhang, Yuanhui; Xing, Xin-Hui

    2015-01-01

    Understanding the role of furan derivatives, furfural (FUR) and 5-hydroxymethyl furfural (HMF), is important for biofuel production from lignocellulosic biomass. In this study, the effects of furan derivatives on hydrogen fermentation from wet steam-exploded cornstalk were investigated. The control experiments with only seed sludge indicated that HMF addition of up to 1g/L stimulated hydrogen production. Similar results were obtained using steam-exploded cornstalk as the feedstock. Hydrogen productivity was increased by up to 40% with the addition of HMF. In addition, over 90% of furan derivatives with an initial concentration below 1g/L were degraded. Pyosequencing showed that the addition of HMF and FUR resulted in different microbial communities. HMF led to a higher proportion of the genera Clostridium and Ruminococcaceae, supporting the increased hydrogen production. This study suggested that hydrogen fermentation could be a detoxifying step for steam-exploded cornstalk, and HMF and FUR exhibited different functions for hydrogen fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Trimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2010-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels (jet fuels, diesel, and coal into fuel cell quality hydrogen-rich reformate with little or no sulfur for extended periods. Sulfur poisons and deactivates the reforming catalyst, therefore, sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization, and evaluation of a series of nanoscale ceria-supported reforming catalysts containing three noble metals in low concentration (1 wt% ≤ total metal loading ≤ 1.33 wt% for the steam-reforming of kerosene (a JP-8 surrogate are reported. Their performance is quantified in terms of H2 yield, tolerance towards sulfur in the fuel, and the on-stream stability and compared with that of monometal and bimetal analogs under identical conditions. Due to the inherent cooperative synergy, a trimetal catalyst was found far superior to its mono- and bimetallic analog containing same amount of the precious metal loading in terms of quality of the reformate (measured by H2 level in steady-state as well as the catalyst longevity on-stream prior to deactivation. At the same time a mechanistic correlation between the distinct role of a given precious metal and the extent of its loading in each of the formulations and quality of the corresponding desulfurized H2-rich reformate was discovered.

  9. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    Science.gov (United States)

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit.

  10. Effect of the initial pressure and temperature on the combustion characteristics of hydrogen-containing mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Shebeko, IU.N.; Korol' chenko, A.IA.; Tsarichenko, S.G.; Navtsenia, V.IU.; Malkin, V.L.

    1989-06-01

    Experiments were carried out to investigate the effect of initial pressure and temperature on the normal combustion velocity of stoichiometric hydrogen-containing mixtures with additions of steam and on the lower concentration limit of flame propagation of oxyhydrogen gas ({sup 2}H{sub 2}-O{sub 2}) in steam. It is shown that the baric index of the normal combustion velocity is positive for hydrogen-air mixtures containing no steam and negative for mixtures with a steam content greater than 5 percent. In oxyhydrogen gas mixtures with saturated and superheated steam, the initial pressure is found to have little effect on the lower concentration limit of flame propagation. 18 refs.

  11. Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2010-01-01

    In this paper the production of ultra-pure hydrogen via autothermal reforming of ethanol in a fluidized bed membrane reactor has been studied. The heat needed for the steam reforming of ethanol is obtained by burning part of the hydrogen recovered via the hydrogen perm-selective membrane thereby

  12. Hydrogen production through sorption enhanced reforming

    Energy Technology Data Exchange (ETDEWEB)

    Reijers, H.T.J.; Roskam-Bakker, D.F.; Dijkstra, J.W.; Smidt, R.P. de; Groot, A. de; Van den Brink, R.W. [Energy research Centre of the Netherlands, ECN, Petten (Netherlands)

    2003-09-01

    Introduction of hydrogen as an energy carrier offers an opportunity to reduce the CO{sub 2} emission from diffuse sources, like vehicles and newly built residential districts. In the long term, it is expected that a hydrogen infrastructure will contribute to CO{sub 2} reduction. In the short term, hydrogen will likely play a role where the application, especially fuel cells, asks for hydrogen. These applications include the transport sector and small-scale combined heat and power. On-site hydrogen production on a gas station or in a residential district requires an average hydrogen production rate between 1000 and 4000 Nm{sup 3}/hour. At the moment, hydrogen is produced industrially in large-scale steam-reformers at rates in the order of 100,000 Nm{sup 3}/hour and at high pressures (20 - 40 bar) and high temperatures (800 - 950 degrees C). To withstand these extreme conditions, expensive materials are required. Besides, a considerable amount of export steam is produced, which cannot be used in the small-scale hydrogen energy systems mentioned before. So there is a need for hydrogen production units operating at milder conditions, while maintaining a high system efficiency. One of the technologies currently investigated at ECN for this purpose is sorption enhanced reforming (SER). Here the methane steam reforming process is conducted in the presence of a CO{sub 2} sorbent. By removing reaction product CO{sub 2}, the equilibrium is shifted to the product side, yielding a relatively pure hydrogen stream. The system is operated periodically in two modes: an sorption cycle during which natural gas and steam are fed to the SER reactor, and a desorption cycle in which the sorbent is regenerated. The CO{sub 2} that is released during regeneration could possibly be used for CO{sub 2} sequestration. The CO{sub 2} sorbent should fulfill the following requirements: high CO{sub 2} uptake, rapid kinetics, chemical stability at high H{sub 2}O concentrations and low costs. A

  13. Japan's New Sunshine Project. 1998 Annual summary of hydrogen energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Summarized herein are the reports on R and D efforts on hydrogen energy, as part of the FY 1998 New Sunshine Project. For production of hydrogen, characteristics related to transport number were investigated for steam electrolysis at high temperature, in which a sintered ceramic powder was used as the electrolyte and the cell was equipped with platinum electrodes. For utilization of hydrogen, energy conversion techniques were investigated using hydrogen occluding alloys for testing methods for alloy microstructures and hydrogenation characteristics, and preparation of and performance testing methods for the cathodes charged with the aid of hydrogen gas. For analysis/assessment for development of hydrogen-related techniques, the investigated items included water electrolysis with solid polymer electrolytes, hydrogen transport techniques using metal hydrides, hydrogen storing techniques using metal hydrides, hydrogen engines, and techniques for preventing hydrogen embrittlement. Analysis/assessment for development of hydrogen turbines was also investigated as one of the 12 R and D themes reported herein. (NEDO)

  14. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  15. Equilibrium model analysis of waste plastics gasification using CO2and steam.

    Science.gov (United States)

    Kannan, P; Lakshmanan, G; Al Shoaibi, A; Srinivasakannan, C

    2017-12-01

    Utilization of carbon dioxide (CO 2 ) in thermochemical treatment of waste plastics may significantly help to improve CO 2 recycling, thus simultaneously curtailing dioxins/furans and CO 2 emissions. Although CO 2 is not such an effective gasifying agent as steam, a few investigations have explored the utilization of CO 2 in conjunction with steam to achieve somewhat higher carbon conversion. This work presents a comparative evaluation study of CO 2 and steam gasification of a typical post-consumer waste plastics mixture using an Aspen Plus equilibrium model. The effect of flow rate of gasifying medium (CO 2 and/or steam) and gasification temperature on product gas composition, carbon conversion, and cold gas efficiency has been analyzed. Simulation results demonstrate that CO 2 can serve as a potential gasifying agent for waste plastics gasification. The resulting product gas was rich in CO whereas CO 2 -steam blends yield a wider H 2 /CO ratio, thus extending the applications of the product gas.

  16. Towards the Development of Bitumen Carbonates: An Integrated Analysis of Grosmont Steam Pilots

    Directory of Open Access Journals (Sweden)

    Ezeuko C.C.

    2015-11-01

    Full Text Available The Grosmont Formation in Alberta, Canada is a highly fractured, karstified and vuggy bitumen-rich carbonate reservoir located west of and below the Athabasca oil sands deposit. The bitumen carbonate platform extends about 500 km in length and up to 150 km in width and contains an estimated 64.5 billion m3 (406.5 billion barrels of oil. The Grosmont Formation is larger than the combined total of all other known carbonate bitumen deposits in the world. Here, we analyze early Grosmont steam pilots to improve the design of future pilots and commercial development of this massive bitumen deposit. In agreement with the conclusions of earlier analysis of these Grosmont pilots, they were reasonably successful considering the heterogeneous nature of the Grosmont Formation. Operational factors such as poor steam quality, non-optimized high injection pressures and completion issues appear to have heavily impacted recovery performances. Clearly, steam-based recovery operations have good potential for Grosmont, especially considering that it is mature commercial technology. Following an integrated analysis of early Grosmont pilots, we posit that Cyclic Steam Stimulation (CSS using horizontal wells exhibits greater potential for the development of Grosmont carbonate, compared with Steam-Assisted Gravity Drainage technology (SAGD.

  17. Simultaneous production of α-cellulose and furfural from bagasse by steam explosion pretreatment

    Directory of Open Access Journals (Sweden)

    Vittaya Punsuvon

    2008-02-01

    Full Text Available Sugar cane bagasse was pretreated by steam explosion for the simultaneous production of furfural and α-cellulose pulp. The components of bagasse were fractionated after steam explosion. The details of the process are as follows. Bagasse was soaked in water for one night and steamed at temperatures varying between 206 and 223 C for 4 minutes. The steam exploded pulp was strained and washed with hot water to yield a liquor rich in hemicellulose-derived mono- and oligosaccharides. The remaining pulp was delignified by alkali for 120 minutes at 170C using, separately, NaOH load of 15, 20 and 25% of weight of the pulp. The delignified pulp was further bleached twice with 4% H2O2 charge of weight of the pulp to produce high α-cellulose pulp. The water liquor was evaporated and further hydrolysed and dehydrated with diluted H2SO4 in a stainless steel reactor to produce furfural. The result shows that the optimal pretreatment of steam explosion for 4 min at 218C leads to the yield of α-cellulose pulp at 193-201 g∙kg-1 of the original bagasse, and that furfural can be produced from xylose present in the liquor with a maximum conversion factor of 0.16.

  18. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

    Science.gov (United States)

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya

    2013-01-16

    A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.

  19. Hydrogen Generator

    Science.gov (United States)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  20. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  1. Electrolytic production and dispensing of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  2. Comparison of steam and autothermal reforming of methanol for fuel cell applications

    Science.gov (United States)

    Yoon, Hyung Chul

    This proposed study investigates two different reforming methods; autothermal and steam reforming of methanol for fuel cell systems. Generally, the efficiency of the overall fuel cell system can be improved by utilizing thermal waste energy from integrated fuel cell system components. This waste energy typically originates from retentate gas from membrane hydrogen separation units and/or flue gas from anode of the fuel cell. Theoretically, steam-reforming fuel cell systems have higher thermal efficiencies than autothermal reforming fuel cell systems due to the resultant high concentration of hydrogen. Therefore, steam reforming is generally recognized as the more suitable fuel processor for fuel cell applications. However, steam reforming can be adversely affected by mass and heat transfer limitations and catalyst degradation. Heat exchange efficiency with steam reformers has been found in experimental units to be less than 50%. As compared to a steam reformer, an autothermal reformer has internal heat generation which allows for lessened radial temperature gradients and higher resultant heat exchange. Impure methanol streams as found in practice have minute quantities of higher order hydrocarbons which can result in significant catalyst degradation. Due to increased temperature, an autothermal method can reform the small quantities of higher order hydrocarbons and thus increase the effective catalyst lifetime. It is presently unknown if these theoretical and practical benefits of autothermal reformation can balance the entropy increase associated with higher temperature reformation. It is the goal of this proposed dissertation topic to investigate both steam reformation and autothermal reformation when considering use of methanol for hydrogen fuel cell systems. This will be done with both theory based models and with actual experiments with the available laboratory facilities. Specifically the integration of the reformer system will be considered, the overall fuel

  3. Customizing pays off in steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1995-01-01

    Packaged steam generators are the workhorses of chemical process plants, power plants and cogeneration systems. They are available as oil- or gas-fired models, and are used to generate either high-pressure superheated steam (400 to 1,200 psig, at 500 to 900 F) or saturated steam at low pressures (100 to 300 psig). In today's emission- and efficiency- conscious environment, steam generators have to be custom designed. Gone are the days when a boiler supplier--or for that matter an end user--could look up a model number from a list of standard sizes and select one for a particular need. Thus, before selecting a system, it is desirable to know the features of oil- and gas-fired steam generators, and the important variables that influence their selection, design and performance. It is imperative that all of these data are supplied to the boiler supplier so that the engineers may come up with the right design. Some of the parameters which are discussed in this paper are: duty, steam temperature, steam purity, emissions, and furnace design. Superheaters, economizers, and overall performance are also discussed.

  4. Thermovolumetric investigations of steam gasification of coals and their chars

    Directory of Open Access Journals (Sweden)

    Porada Stanisław

    2017-01-01

    Full Text Available The process of steam gasification of three coals of various rank and three chars obtained from these coals by the ex-situ method at 900 °C was compared. In the coal gasification process, the pyrolysis stage plays a very important part, which is connected with its direct impact on the kinetics of gasification of the resulting char. What is more, taking into consideration the impact of pyrolysis conditions on char properties, it should be anticipated that the gasification kinetics of coal and char, formed from it by the ex situ method, will be different. In order to examine and compare the process of gasification of coals and chars, an isothermal thermovolumetric method, designed by the authors, was applied. For all the examined samples the measurements were performed at three temperatures, i.e. 850, 900, and 950 °C, and at the pressure of 0.1 MPa. An evaluation of the impact of raw material on the steam gasification of the examined samples was made. The carbon conversion degree and the kinetic parameters of CO and H2 formation reaction were calculated. It was observed that the course of gasification is different for coals and chars obtained from them and it can be concluded that coals are more reactive than chars. Values of kinetic parameters of carbon monoxide and hydrogen formation calculated for coals and corresponding chars are also different. Due to the observed differences the process of gasification of coals and of chars with steam should not be equated.

  5. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  6. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  7. Reversible hydrogen storage in the Ni-rich pseudo-binary Mg{sub 6}Pd{sub 0.25}Ni{sub 0.75} intermetallic compound: Reaction pathway, thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ponthieu, M. [Dpto. Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain); ICMPE/CNRS-UPEC UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Fernandez, J.F., E-mail: josefrancisco.fernandez@uam.es [Dpto. Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Cuevas, F. [ICMPE/CNRS-UPEC UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Ares, J.R.; Leardini, F.; Bodega, J.; Sanchez, C. [Dpto. Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Mg{sub 6.2}Pd{sub 0.25}Ni{sub 0.65} reversibly absorbs 5.6 wt.% H in a two plateau pressure PCI. Black-Right-Pointing-Pointer The ternary phase depletes in Mg and Ni at low hydrogen pressure to form Mg{sub 2}Ni. Black-Right-Pointing-Pointer Reaction pathway of hydrogenation has been determined. Black-Right-Pointing-Pointer Enthalpy of the high pressure plateau is less negative than the one of pure Mg. Black-Right-Pointing-Pointer Low activation energy for desorption has been found for highly hydrided material. - Abstract: To improve the hydrogen storage properties of Mg{sub 6}Pd and to reduce its cost, Pd has been partly substituted by Ni at the solubility limit of the Mg{sub 6}(Pd,Ni) {rho}-phase. The attained composition is Mg{sub 6.2}Pd{sub 0.25}Ni{sub 0.65} as determined by Energy Dispersive X-Ray (EDX) and X-Ray Diffraction (XRD). Hydrogenation of this compound has been investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM-EDX), Pressure-Composition-Isotherms (PCI) and thermal desorption analysis. On absorption, it decomposes in two steps as evidenced by two distinct plateau pressures. At low pressure, a partial segregation of Mg and Ni out of the pseudo-binary Mg{sub 6.2}Pd{sub 0.25}Ni{sub 0.65} {rho}-phase occurs leading to the formation of MgH{sub 2}, Mg{sub 2}Ni and Mg{sub 6}Pd{sub 0.7}Ni{sub 0.3} phases. At high pressure, the Mg{sub 6}Pd{sub 0.7}Ni{sub 0.3} phase disproportionates into MgH{sub 2}, Mg{sub 2}NiH{sub 4}, MgPd and Mg{sub 5}Pd{sub 2} phases. The hydrogenation reaction is reversible providing a hydrogen capacity of 5.6 wt.% H. The reaction enthalpy of the high pressure plateau is less negative than for pure Mg. Furthermore, the activation energy for H-desorption exhibits a dramatic decrease for hydrogen contents above 4 wt.% H, i.e. after the alloy disproportionation.

  8. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal...

  9. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler...

  10. 7 CFR 160.8 - Steam distilled wood turpentine.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  11. Catalytic deactivation on methane steam reforming catalysts. 2. Kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Agnelli, M.E.; Ponzi, E.N.; Yeramian, A.A.

    1987-08-01

    The kinetics of methane steam reforming reaction over an alumina-supported nickel catalyst was investigated at a temperature range of 640-740/sup 0/C in a flow reactor at atmospheric pressure. The experiments were performed varying the inlet concentration of methane, hydrogen, and water. A kinetic scheme of the Houghen-Watson type was satisfactorily proposed assuming the dissociative adsorption of CH/sub 4/ as the rate-limiting step, but this kinetic scheme can be easily replaced by a first-order kinetics (r/sub CH/4/sub / = kapparho/sub CH/4/sub /) for engineering purposes. Catalyst activation with H/sub 2/ and N/sub 2/ mixtures or with the reactant mixture results in the same extent of reaction.

  12. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  13. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  14. An Improved Steam Injection Model with the Consideration of Steam Override

    Directory of Open Access Journals (Sweden)

    He Congge

    2017-01-01

    Full Text Available The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small.

  15. Natural circulation steam generator model for optimal steam generator water level control

    Energy Technology Data Exchange (ETDEWEB)

    Feeley, J.J.

    1979-06-01

    Several authors have cited the control of steam generator water level as an important problem in the operation of pressurized water reactor plants. In this paper problems associated with steam generator water level control are identified, and advantages of modern estimation and control theory in dealing with these problems are discussed. A new state variable steam generator model and preliminary verification results using data from the loss of fluid test (LOFT) plant are also presented.

  16. Nuclear power plant safety improvement based on hydrogen technologies

    Directory of Open Access Journals (Sweden)

    R.Z. Aminov

    2015-09-01

    Full Text Available An effective application for hydrogen technologies at nuclear power plants is proposed, which improves the plant maneuverability during normal operation, and provides for in-house power supply during the plant blackout. The reliability of the NPP's emergency power supply was assessed probabilistically for the plant blackout conditions with the simultaneous use of an auxiliary full-time operating steam turbine and the emergency power supply system channels with diesel generators. The proposed system with an additional steam turbine makes it possible to use the reactor core decay heat for the reactor shutdown for 72 h. During the blackout at a plant with several units, the additional steam turbine power required for the unit cool down is maintained by additional steam generated by the combustion of hydrogen in oxygen. It has been shown that the proposed flowchart with an auxiliary full-time operating small-power steam turbine installed at the NPP, combined with an integrated hydrogen facility, improves the reliability of the NPP in-house power supply during blackout accidents.

  17. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    James E. O& #39; Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  18. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  19. ENERGY STAR Certified Commercial Steam Cookers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Commercial Steam Cookers that are effective as...

  20. Steam Injection For Soil And Aquifer Remediation

    Science.gov (United States)

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  1. US PWR steam generator management: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, and is provided as a supplement to that material.

  2. Experimental Study on a Compact Methanol Steam Reformer with Pd/Ag Membrane

    Science.gov (United States)

    Faizal, Hasan Mohd; Kuwabara, Masato; Kizu, Ryo; Yokomori, Takeshi; Ueda, Toshihisa

    The performance of high purity hydrogen production from methanol for a compact steam reformer with a hydrogen purification membrane was investigated experimentally. A 77 wt.% Pd/23 wt.% Ag membrane with 25µm thickness and CuO/ZnO/ Al2O3 catalyst were used. Heating was performed by a Bunsen type burner using City Gas 13A. The methanol reforming and purification of H2 were investigated at different reference catalyst zone temperatures (589-689K), pressures at the retentate side (0.2-0.5MPa), steam to methanol(S/C) ratios (0.8-1.6) and reactant flow rates (1.7 ×10-4 to 4.4×10-4 mol/s). The results show that at high reference temperature, high pressure and certain points of the reactant flow rate, the maximum hydrogen permeation rate is obtained when the S/C ratio is around 1. The modified Sieverts’ equation which considers the decrease in H2 concentration at the membrane surface, was proposed. The experimental result was lower than the permeation rate estimated by the modified Sieverts’ equation, which is probably caused by the adsorption of non-H2 species during permeation. It is further demonstrated that the modified Sieverts’ equation is able to estimate a more reasonable hydrogen permeation rate in comparison to the estimation by the ordinary Sieverts’ equation. In addition, it is shown that the compact methanol steam reformer with a Pd/Ag membrane is able to produce high purity hydrogen with very low CO concentration, which fulfills the Polymer Electrolyte Fuel Cell (PEFC) requirement (<10ppm).

  3. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    Science.gov (United States)

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  4. Improving efficiency of heat recovery steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-10-01

    Gas Turbine Heat Recovery Steam Generators (HRSGs) are widely used in cogeneration and combined cycle plants. Single pressure HRSGs are preferred in small capacity units, while larger units can justify multiple pressure level steam generation, which improves the efficiency of energy recovery. This paper reviews a few methods of improving the efficiency of single and multiple pressure HRSGs, which may be of interest to consultants and plant engineers, who are planning new cogeneration projects.

  5. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  6. Hydrogen fuel dispensing station for transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.N.; Richmond, A.A. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1995-07-01

    A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on a hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.

  7. Valorisation de la coupe C4 de vapocraquage via l'hydrogénation du butadiène, l'isomérisation des butènes et la métathèse, en MTBE ou en propylène Upgrading the C4 Cut from Steam Cracking via the Hydrogenation of Butadiene, the Isomerization of Butenes and Metathesis Into Mtbe Or Propylene

    Directory of Open Access Journals (Sweden)

    Chaumette S.

    2006-11-01

    Full Text Available Le surplus de butadiène au niveau mondial contraint les pétrochimistes à recycler la coupe C4 au vapocraqueur. De plus en plus, le butadiène est hydrogéné avant de recraquer toute la coupe. Une fois hydrogénée, cette coupe peut être beaucoup mieux valorisée, soit en MTBE avec isomérisation des n-butènes (procédé ISO-4, soit en propylène et MTBE en utilisant le procédé META-4. L'étude technico-économique montre que cette dernière voie offre la meilleure rentabilité (TRI = 21,5 %. Si le vapocraqueur est intégré à une raffinerie, les butènes peuvent également être transformés en alkylats ou en MTBE, pour répondre à une demande en octane ou en oxygénés pour les carburants. Ces diverses voies de valorisation sont plus intéressantes que la production de MTBE à partir des butanes via la déshydrogénation de l'isobutane ou que la production du propylène par déshydrogénation du propane. Une étude de sensibilité aux différents prix des produits envisagés permet d'établir des courbes d'isorentabilités, délimitant des zones de prix favorables à l'un ou l'autre des produits, pris deux à deux. The evolution of the outlets for C4 cuts from steam cracking shows quite contradictory results. On one hand, European and Asian petrochemists are more constrained to recycle this type of effluent, which contains butadiene and isobutene, to the steam cracker. Likewise, the demand for isobutene for MTBE production is such that it has to be produced by the dehydrogenation of isobutane. This situation is effectively caused by the surplus of butadiene, a by-product of ethylene, and for which the demand is not increasing as fast as the demand for ethylene. To improve cracking performances during the recycling of the C4 Cut, butadiene is more and more selectively hydrogenated. Under these conditions, rather than cracking it, the new processes could make it possible to better upgrade it. Indeed, after selective hydrogenation, most

  8. Steam pretreatment for coal liquefaction. Final report, September 26, 1990--March 18, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Graff, R.A.; Balogh-Nair, V.; Ivanenko, O.; Brathwaite, C.

    1995-10-16

    The objective of this study is to demonstrate the use of subcritical steam to pretreat coal for slurry liquefaction, allowing liquefaction to be carried out at lower severity and improving product yield and quality. Samples of Illinois No. 6 coal were pretreated in 750 psia steam at 340{degree}C for 15 minutes. These samples, as well as raw coal, were liquefied at high (400{degree}C, 30 min.) and low (385{degree}C, 15 min.) severity conditions under 1500 psia hydrogen with tetralin as the donor solvent. Improved yields were obtained at both conditions. (Improved yields were not obtained at a liquefaction temperature of 350{degree}C as that put the sample into the region of retrogressive reactions). The deleterious effects of slow heating and exposure of the sample to air were demonstrated. Under low severity conditions, steam pretreatment more that doubled the oil yield, increasing it from 12.5 to 29 wt %. Tests were also conducted with aromatic ethers as model compounds. These were exposed to inert gas and steam at pretreatment conditions and in some cases to liquid water at 315{degree}C. {alpha}-Benzylnaphthyl ether and {alpha}- naphthylmethyl phenyl ether show little difference in conversion and product distribution when the thermolysis atmosphere is changed from inert gas to steam. However when these compounds were reacted in the presence of 5 {angstrom} zeolite, the yields of the thermolysis products improved. Zeolite proved effective in suppressing isomerization of the starting materials. These results suggested that zeolites might be beneficial in steam pretreatment of coal and in coal liquefaction. Pretreatment and liquefaction of mixtures of coal and zeolites increases yields of asphaltenes and preasphaltenes.

  9. Polymeric dispersants for control of steam generator fouling

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, P.V.; Klimas, S.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Lepine, L. [Institut de Recherche d' Hydro-Quebec, Varennes, Quebec (Canada); Turner, C.W

    1999-05-01

    Fouling of steam generators by corrosion products from the feedtrain leads to loss of heat-transfer efficiency, disturbances in thermalhydraulics, and potential corrosion problems resulting from the development of sites for localized accumulation of aggressive chemicals. This report summarizes studies of the use of polymeric dispersants for the control of fouling, which were conducted at the Chalk River Laboratories. High-temperaturesettling studies on magnetite suspensions were performed to screen available generic dispersants, and the dispersants were ranked in terms of their dispersion efficiency; polyacrylic acid (PAA) and the phosphonate, HEDP, were ranked as the most efficient. Polyacrylic acid was considered more suitable than HEDP for nuclear steam generators, and more emphasis was given to the former in these studies. The dispersants had no effect on the particle deposition rates under single-phase forced-convective flow, but did reduce the deposition rates under flow-boiling conditions. The extent to which the deposition rates were reduced increased in proportion to the dispersant concentration. Preliminary corrosion tests indicated that pitting or general corrosion of steam generator tube materials in the presence of PAA was negligible. Corrosion of carbon steel, although higher in a magnetite-packed crevice under heat flux than in bulk water, was lower in the presence of PAA than in its absence. Some impurities (e.g., sulphate, sodium) were observed in commercially available PAA products at small, though significant concentrations, making these products unacceptable for use in nuclear plants. However, the PAA could be purified by ion exchange. Preliminary experiments, to assess the thermal stability of PAA at steam generator operating temperature, showed the polymer to break down in deaerated solutions and under argon cover to give hydrogen and carbon dioxide as the two major products in the gas phase and variable concentrations of acetate and formate

  10. Proceedings of the 1996 U.S. DOE hydrogen program review. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The 29 papers contained in Volume 1 are related to systems analysis and hydrogen production. Papers in the systems analysis section discuss utility markets, comparison of hydrogen with other alternative fuels, hydrogen vehicles, renewable hydrogen production, storage, and detection, and hydrogen storage systems development. Hydrogen production methods include the use of algae, photosynthesis, glucose dehydrogenase, syngas, photoelectrochemical reactions, photovoltaics, water electrolysis, solar photochemical reactions, pyrolysis, catalytic steam reforming, municipal solid wastes, thermocatalytic cracking of natural gas, and plasma reformers. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Hydrogen production from water hyacinth through dark- and photo- fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Huibo; Cheng, Jun; Zhou, Junhu; Song, Wenlu; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2010-09-15

    This article discusses the method of producing hydrogen from water hyacinth. Water hyacinth was pretreated with microwave heating and alkali to enhance the enzymatic hydrolysis and hydrogen production in a two-step process of dark- and photo- fermentation. Water hyacinth with various concentrations of 10-40 g/l was pretreated with four methods: (1) steam heating; (2) steam heating and microwave heating/alkali pretreatment; (3) steam heating and enzymatic hydrolysis; (4) steam heating, microwave heating/alkali pretreatment and enzymatic hydrolysis. Water hyacinth (20 g/l) pretreated with method 4 gave the maximum reducing sugar yield of 30.57 g/100 g TVS, which was 45.6% of the theoretical reducing sugar yield (67.0 g/100 g TVS). The pretreated water hyacinth was used to produce hydrogen by mixed H{sub 2}-producing bacteria in dark fermentation. The maximum hydrogen yield of 76.7 ml H{sub 2}/g TVS was obtained at 20 g/l of water hyacinth. The residual solutions from dark fermentation (mainly acetate and butyrate) were used to further produce hydrogen by immobilized Rhodopseudomonas palustris in photo fermentation. The maximum hydrogen yield of 522.6 ml H{sub 2}/g TVS was obtained at 10 g/l of water hyacinth. Through a combined process of dark- and photo- fermentation, the maximum hydrogen yield from water hyacinth was dramatically enhanced from 76.7 to 596.1 ml H{sub 2}/g TVS, which was 59.6% of the theoretical hydrogen yield. (author)

  12. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  13. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  14. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang

    2010-01-01

    In the present study a small steam-methanol reformer with a colloid nanocatalyst is utilized to produce hydrogen. Radiation from a focused continuous green light laser (514 nm wavelength) is used to provide the energy for steam-methanol reforming. Nanocatalyst particles, fabricated by using pulsed laser ablation technology, result in a highly active catalyst with high surface to volume ratio. A small novel reformer fabricated with a borosilicate capillary is employed to increase the local temperature of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show that hydrogen production by solar steam-methanol colloid nanocatalyst reforming is both feasible and promising. © 2009 Professor T. Nejat Veziroglu.

  15. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.

    Science.gov (United States)

    Kim, Taegyu; Hwang, Jin Soo; Kwon, Sejin

    2007-07-01

    This paper presents the design, fabrication and evaluation of a micro methanol reformer complete with a heat source. The micro system consists of the steam reforming reactor of methanol, the catalytic decomposition reactor of hydrogen peroxide, and a heat exchanger between the two reactors. In the present study, catalytic decomposition of hydrogen peroxide is used as a process to supply heat to the reforming reactor. The decomposition process of hydrogen peroxide produces water vapor and oxygen as a product that can be used efficiently to operate the reformer/PEMFC system. Cu/ZnO was selected as a catalyst for methanol steam reforming and Pt for the decomposition of hydrogen peroxide. Incipient wetness method was used to load catalysts on a porous support. Catalyst loaded supports were inserted in the cavity made on the glass wafer. The performance of the methanol steam reforming system was measured at various test conditions and the optimum operation condition was sought. At the optimum condition, the hydrogen selectivity was 86.4% and the thermal efficiency was 44.8%. The product gas included 74.1% H(2), 24.5% CO(2) and 1.4% CO and the total volume production rate was 23.5 ml min(-1). This amount of hydrogen can produce 1.5 W of power on a typical PEMFC.

  16. Overview of hydrogen production program in HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Shiozawa, Shusaku; Ogawa, Masuro; Hada, Kazuhiko; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Nishihara, Tetsuo [Department of Advanced Nuclear Heat Technology, Japan Atomic Energy Research Institute JAERI, Ibaraki-ken (Japan)

    1998-09-01

    A demonstration program on hydrogen production has been started in January 1997. Using nuclear heat (10MW, 905C, and 4.1MPa) supplied by the High Temperature engineering Test Reactor (HTTR), a hydrogen production system is being designed to be able to produce hydrogen with the production rate of approximately 4000 Nm{sup 3}/hr, which is in a range of commercial level, by steam reforming of natural gas. The safety principle and standard are also being investigated for nuclear heat utilization systems connected to High Temperature Gas-cooled Reactors (HTGRs) including the HTTR. The HTTR hydrogen production system is first connected to a nuclear power reactor, hence an out-of-pile test, a hydrogen permeation test and a corrosion test of a catalyst tube of the steam reformer are carried out prior to the demonstration test of the HTTR hydrogen production system. In order to confirm controllability, safety, and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test is being designed and manufactured on the scale of approximately 1/30 of the HTTR hydrogen production system. It is equipped with an electrical heater as a heat source instead of the HTTR. The out-of-pile test will be started in the year 2000 and will be performed for 4 years. Check and review of the demonstration program in the HTTR will be made in 2000 from the view point of economy and technology, then the HTTR hydrogen production system will be constructed in 2001 and will be demonstratively operated in the period 2005-2010. The hydrogen/tritium permeation test is carried out in 1998 to obtain the data on hydrogen/tritium permeation coefficients for mainly the Hastelloy-XR, which is a nickel-base helium corrosion- and heat-resistance super alloy and is used in high temperature components of the HTTR and the HTTR hydrogen production system, and to verify the reduction method of the hydrogen/tritium permeation through the tube wall to the helium coolant

  17. Synthesis and characterization of bimetallic Cu-Ni/ZrO{sub 2} nanocatalysts: H{sub 2} production by oxidative steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Hernandez, R.; Mondragon Galicia, G.; Mendoza Anaya, D.; Palacios, J. [Instituto Nacional de Investigaciones Nucleares; Carretera Mexico-Toluca S/N La Marquesa, Ocoyoacac, Estado de Mexico C.P. 52750 (Mexico); Angeles-Chavez, C. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas, No. 152, C.P. 07730, Mexico D.F. (Mexico); Arenas-Alatorre, J. [Instituto de Fisica-UNAM, Apartado Postal 20-364, C.P. 01000, Mexico D.F. (Mexico)

    2008-09-15

    Cu/ZrO{sub 2}, Ni/ZrO{sub 2} and bimetallic Cu-Ni/ZrO{sub 2} catalysts were prepared by deposition-precipitation method to produce hydrogen by oxidative steam reforming of methanol (OSRM) reaction in the range of 250-360 C. TPR analysis of the Cu-Ni/ZrO{sub 2} catalyst showed that the presence of Cu facilitates the reduction of the Ni at lower temperatures. In addition, this sample showed two reduction peaks, the former peak was attributed to the reduction of the adjacent Cu and Ni atoms which could be forming a bimetallic Cu-rich phase, and the second was assigned to the remaining Ni atoms forming bimetallic Ni-rich nanoparticles. Transmission Electron Microscopy revealed Cu or Ni nanoparticles on the monometallic samples, while bimetallic nanoparticles were identified on the Cu-Ni/ZrO{sub 2} catalyst. On the other hand, Cu-Ni/ZrO{sub 2} catalyst exhibited better catalytic activity than the monometallic samples. The difference between them was related to the Cu-Ni nanoparticles present on the former catalyst, as well as the bifunctional role of the bimetallic phase and the support that improve the catalytic activity. All the catalysts showed the same selectivity toward H{sub 2} at the maximum reaction temperature and it was {proportional_to}60%. The high selectivity toward CO is associated to the presence of the bimetallic Ni-rich nanoparticles, as evidenced by TEM-EDX analysis, since this behavior is similar to the one showed by the monometallic Ni-catalyst. (author)

  18. Modifikasi Alat Steam untuk Pembengkokan Rotan

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKSelama ini pembengkokan rotan yang dilakukan oleh IKM Mebel Rotan dengan memanaskan di atas api kompor menggunakan alat pembengkok catok. Hasil yang diperoleh memberikan noda kehitaman. Cara lain dengan memasukkan rotan ke dalam alat steam dari besi, namun terdapat kendala persebaran uap yang tidak merata karena kurangnya rongga di antara tumpukan rotan selain terkena noda karat dari tabung steamer. Permasalahan tersebut dapat diatasi dengan modifikasi alat steam yang didesain multi guna, dapat melunakkan rotan dengan uap basah dalam tabung steamer dan uap kering yang disemprotkan pada permukaan rotan. Keunggulan alat ini adalah lebih efektif, tepat guna, multiguna, proses lebih cepat, konstruksi sederhana, mudah dan aman pengoperasiannya. Metode yang dilakukan yaitu survei lapangan dan literatur, perancangan desain, pengadaan bahan, pembuatan alat, uji coba alat, finishing alat, evaluasi dan pelaporan. Uji coba alat dengan variabel penampang rotan 2,4 cm, 2,8 cm, 3,2 cm dan waktu pengukusan 5 menit, 10 menit, dan 15 menit, dengan suhu ketel uap dan tabung steamer 110 o C, tekanan maksimum 2 bar (kg/cm2. Hasil yang diperoleh berupa 1 unit alat steam untuk pebengkok rotan terdiri dari: Pemanas, Ketel uap stainless steel spesifikasi standar JIS G 3116-2000, volume 118 lt, tabung steamer Grade SUS 340, bak perendaman dan meja bending. Hasil uji coba paling baik dengan waktu pengukusan 15 menit, rotan tidak pecah, tidak retak maupun tidak gembos, untuk semua  variabel diameter. Dapat membengkokkan rotan bentuk U, Ω,setengah lingkaran dan spiral. Uji coba uap kering memberikan hasil optimal dengan waktu penyemprotan lebih dari 20 menit. Kata kunci: alat steam, mebel, pembengkok, rotanABSTRACTAll this time rattan furniture SME’s bend the rattan by heating over a fire stove with a bending tool vise. The results obtained provide a blackish stain. Another way is putting the rattan into the iron steamer, but still has problems such as uneven

  19. STEAM Enacted: A Case Study of a Middle School Teacher Implementing STEAM Instructional Practices

    Science.gov (United States)

    Herro, Danielle; Quigley, Cassie

    2016-01-01

    This paper examines the implementation practices of a 6th grade middle school teacher enacting STEAM (science, technology, engineering, art and math) teaching in his classroom after participating in a 45-hour STEAM professional development. Case study is used to detail the process, successes, and challenges. Project-based learning, technology…

  20. STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Busey, H.M.

    1958-06-01

    A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.

  1. Headspace Volatile Compounds of Steamed Liriopis Tuber Tea Affected by Steaming Frequency

    Science.gov (United States)

    Park, Jin-Yong; Park, So-Hae; Lee, Heeseob; Lee, Yang-Bong

    2014-01-01

    Flavor quality of Liriopis tuber tea that was made using a steaming process was studied by measuring changes in headspace volatile compounds. Headspace volatile compounds of the prepared samples were isolated, separated and identified by the combined system of purge & trap, automatic thermal desorber, gas chromatography, and mass selective detector. As steaming frequencies were increased, the area percent of aldehydes decreased from 32.01% to 3.39% at 1 and 9 steaming frequency times, respectively. However, furans and ketones increased from 18.67% to 33.86% and from 9.60% to 17.40% at 1 and 9 times, respectively. The savory flavor of Liriopis tuber tea was due to a decrease in aldehydes contributing a fresh flavor at the 1st steaming process and newly generated furans from nonenzymatic browning with repeated steaming frequencies. These results will provide basic information for quality control of the newly developed Liriopis tuber tea. PMID:25580396

  2. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  3. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  4. Steam sterilisation's energy and water footprint.

    Science.gov (United States)

    McGain, Forbes; Moore, Graham; Black, Jim

    2017-03-01

    Objective The aim of the present study was to quantify hospital steam steriliser resource consumption to provide baseline environmental data and identify possible efficiency gains. We sought to find the amount of steriliser electricity and water used for active cycles and for idling (standby), and the relationship between the electricity and water consumption and the mass and type of items sterilised. Methods We logged a hospital steam steriliser's electricity and water meters every 5min for up to 1 year. We obtained details of all active cycles (standard 134°C and accessory or 'test' cycles), recording item masses and types. Relationships were investigated for both the weight and type of items sterilised with electricity and water consumption. Results Over 304 days there were 2173 active cycles, including 1343 standard 134°C cycles that had an average load mass of 21.2kg, with 32% of cycles steam sterilisation's environmental footprint and identify areas to improve efficiencies. What is known about the topic? There is increasing interest in the environmental effects of healthcare. Life cycle assessment ('cradle to grave') provides a scientific method of analysing environmental effects. Although data of the effects of steam sterilisation are integral to the life cycles of reusable items and procedures using such items, there are few data available. Further, there is scant information regarding the efficiency of the long-term in-hospital use of sterilisers. What does this paper add? We quantified, for the first time, long-term electricity and water use of a hospital steam steriliser. We provide useful input data for future life cycle assessments of all reusable, steam-sterilised equipment. Further, we identified opportunities for improved steriliser efficiencies, including rotating off idle sterilisers and reducing the number of light steriliser loads. Finally, others could use our methods to examine steam sterilisers and many other energy-intensive items of

  5. IAEA activities on steam generator life management

    Energy Technology Data Exchange (ETDEWEB)

    Gueorguiev, B.; Lyssakov, V.; Trampus, P. [International Atomic Energy Agency, Div. of Nuclear Power, Vienna (Austria)

    2002-07-01

    The International Atomic Energy Agency (IAEA) carries out a set of activities in the field of Nuclear Power Plant (NPP) life management. Main activities within this area are implemented through the Technical Working Group on Life Management of NPPs, and mostly concentrated on studies of understanding mechanisms of degradation and their monitoring, optimisation of maintenance management, economic aspects, proven practices of and approaches to plant life management including decommissioning. The paper covers two ongoing activities related to steam generator life management: the International Database on NPP Steam Generators and the Co-ordinated Research Project on Verification of WWER Steam Generator Tube Integrity (WWER is the Russian designed PWR). The lifetime assessment of main components relies on an ability to assess their condition and predict future degradation trends, which to a large extent is dependent on the availability of relevant data. Effective management of ageing and degradation processes requires a large amount of data. Several years ago the IAEA started to work on the International Database on NPP Life Management. This is a multi-module database consisting of modules such as reactor pressure vessels materials, piping, steam generators, and concrete structures. At present the work on pressure vessel materials, on piping as well as on steam generator is completed. The paper will present the concept and structure of the steam generator module of the database. In countries operating WWER NPPs, there are big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment. Responding to the need for a co-ordinated research to compare eddy current testing results with destructive testing using pulled out tubes from WWER steam generators, the IAEA launched this project. The main objectives of the project are to summarise the operating experiences of WWER

  6. Methanol steam reforming in a fuel cell drive system

    Science.gov (United States)

    Wiese, W.; Emonts, B.; Peters, R.

    Within the framework of the Joule III project a compact methanol reformer (CMR) with a specific weight of 2 kg/kW (lower heating value of H 2) was developed. This CMR contains a methanol and water vaporizer, a steam reformer, a heat carrier circuit and a catalytic burner unit. A laboratory fixed-bed reactor consisting of four tubes which could be filled with different amounts of catalyst was used to investigate the catalyst performance and the ageing behaviour. A hydrogen yield of 10 m N3/(h l Cat) can be achieved at 280°C. In this case, the methanol conversion rate is 95% and the dry product gas contains 0.9% CO. A linear decrease of the catalyst activity was observed which can be described by a loss of active catalyst mass of 5.5 mg/h. The catalyst was operated for more than 1000 h without having exhibited activity losses that made a catalyst change necessary. Besides, the stationary behaviour of the reforming reactor, the dynamic behaviour was studied. The time needed for start-up procedures has to be improved for reformers of a next generation. Moreover, the hydrogen production during reformer load changes will be discussed. Simulations of the power train in driving cycles show the different states of a reformer during dynamic operation.

  7. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  8. Steam by-pass reciprocating rod pump

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, B. [Weatherford, Edmonton, AB (Canada)

    2008-07-01

    This article presented the design details of Weatherford's steam by-pass reciprocating rod rod pump which was designed to work under specific well conditions and individual applications, including Imperial Oil's Cold Lake bitumen recovery project located 230 km northeast of Edmonton, Alberta. Imperial Oil uses a cyclic steam stimulation (CSS) process to enhance bitumen recovery from the Clearwater oil sand reservoir. A typical wellbore reach can be up to 700 m and 80 degrees deviation at a target depth of 455 m TVD. These long well bore reaches along with high bottomhole angles and high produced fluid viscosities complicate the design of the artificial lift, which is essentially a modified conventional API pump. The hold-down section is a friction ring design incorporating stainless steel friction rings to provide positive holding force. The steam by-pass coupling is a reduced-diameter tube fitting between the API pump and the friction ring hold-down section. Three stages of the Imperial Cold Lake operation were described, namely the steam injection stage, soak phase stage and production stage. Typically, the steam by-pass pump is suspended in the tubing for the entire cycle. This presentation reviewed the operating steps of the pump, whose average run time in the field is about 15 months, depending on the potential for scaling or sand influx. tab., figs.

  9. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  10. Coupling of high temperature nuclear reactor with chemical plant by means of steam loop with heat pump

    Directory of Open Access Journals (Sweden)

    Kopeć Mariusz

    2017-01-01

    Full Text Available High temperature nuclear reactors (HTR can be used as an excellent, emission-free source of technological heat for various industrial applications. Their outlet helium temperature (700°-900°C allows not only for heat supply to all processes below 600°C (referred to as “steam class”, but also enables development of clean nuclear-assisted hydrogen production or coal liquefaction technologies with required temperatures up to 900°C (referred to as “chemical class”. This paper presents the results of analyses done for various configurations of the steam transport loop coupled with the high-temperature heat pump designed for “chemical class” applications. The advantages and disadvantages as well as the key issues are discussed in comparison with alternative solutions, trying to answer the question whether the system with the steam loop and the hightemperature heat pump is viable and economically justified.

  11. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

    2008-09-30

    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  12. Steam injection in Colombia under challenging environment

    Energy Technology Data Exchange (ETDEWEB)

    Waghray, J.P. [Mansovar Energy Colombia Ltd (Colombia)

    2011-07-01

    Mansarovar Energy Columbia Ltd. is a company extracting heavy oil from its Colombian fields. In order to enhance the production and at the same time to contribute to the economic recovery, they are using the cyclic steam injection method. The aim of this presentation is to show what are the challenges facing heavy oil extraction in Colombia, what is the state of the art, and what needs to be improved. Heavy oil extraction in Colombia presents two sorts of challenges: operational ones related to sanding problems and diluents and gas availability; and commercial ones, related to low return rates. The use of steam injection in conventional wells can, however, increase both productivity and the rate of return while at the same time enhancing the recovery factor by 10 to 15%. For the future, improvement in drilling and completion, production, and steam efficiency will be necessary as well as the implementation of the appropriate enhanced oil recovery processes.

  13. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  14. Market structure scenarios in international steam coal

    Energy Technology Data Exchange (ETDEWEB)

    Trueby, Johannes; Paulus, Moritz

    2011-04-15

    The seaborne steam coal market changed in recent years. Trade volumes grew dynamically, important players emerged and since 2007 prices increased significantly and remained relatively high since then. In this paper we analyse market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios in this market: perfect competition and an oligopoly setup with major exporters competing in quantities. We conclude from our results that international steam coal trade is not perfectly competitive as there is a large spread between marginal costs and prices and a low capacity utilisation in 2008. Further, trade flows are generally more diversified in reality than in the competitive scenario. However, also the Cournot scenarios fail to accurately explain real market outcomes. We conclude that only more sophisticated models of strategic behaviour can predict market equilibria in international steam coal trade. (orig.)

  15. Ultra supercritical turbines--steam oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

    2004-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  16. K (Na)-promoted Ni, Al layered double hydroxide catalysts for the steam reforming of methanol

    Science.gov (United States)

    Qi, Caixia; Amphlett, John C.; Peppley, Brant A.

    Production of hydrogen by methanol steam reforming has been studied over a series of Ni/Al layered double hydroxide catalysts prepared by the co-precipitation method, with the aim to develop a stable catalyst that can be used in a membrane-joint performer at temperatures greater than 300 °C. H 2, CO and CO 2 are generally the major products together with trace amounts of CH 4. The presence of potassium and/or sodium cations was found to improve the activity of methanol conversion. The selectivity for CO 2 rather than CO was better with K ions than Na ions, especially at higher temperatures (e.g. 390-400 °C). Methanol steam reforming over a K-promoted Ni/Al layered double hydroxide catalyst resulted in better activity and similar stability compared to a commercial Cu catalyst.

  17. Steam pyrolysis of shale oil vacuum distillates for petrochemical intermediates production

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.D.; Dickson, P.F.; Yesavage, V.F.

    1978-03-01

    Vacuum distillations of shale oil may be worthwhile since it produces a good steam pyrolysis feedstock. Maximum ethylene yield was 28.8% for the simulated in situ distillate and 22.6% for the Tosco II distillate. Yields are as good or better than those obtainable from conventional feedstocks. Severity of cracking is increased by increasing the residence time and temperature. The effect of steam to hydrocarbon ratio cannot be determined from the data. Trends observed with increasing severity were: (a) ethylene yield rises to a maximum, then slowly decreases; (b) propylene and butadiene yields continually decrease; (c) methane and hydrogen yields increase; (d) weight percent solids increased. Short residence times, in general, give the highest yields of valuable components. 2 tables, 4 figs.

  18. Experimental study of the efficiency of steam injection on wet-steam turbine stator blade cascade

    Science.gov (United States)

    Khomyakov, S. V.; Alexeev, R. A.; Gavrilov, I. Y.; Gribin, V. G.; Tishchenko, A. A.; Tishchenko, V. A.; Popov, V. V.

    2017-11-01

    Currently, in order to decrease the negative effects caused by the presence of a discrete phase in the flow path of steam turbines stages operating in wet-steam area, different technical solutions are apply. These methods reduce the number of coarse droplets and wetness of working medium. The implementation of erosion reduction methods requires modifying surfaces of flow path, which can significantly affect the efficiency of the steam turbine. For example application of intrachanel moisture removing and steam injection needs changes of the stator blades surfaces. This article is a part of researches cycle about the efficiency of steam injection on the stator blade surface as the main method of coarse liquid particles diameters reduction in the last stages of high-power steam turbines. The paper presents the results of the analysis and comparison of experimental research unmodified profile to the profile of the stator blade changed by injection slot. The comparison of the profile losses considered blades is present. The analysis of the experimental results showed the feasibility and efficiency of this method of coarse liquid particles diameters reduction in the last stages of high-power steam turbines.

  19. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  20. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.

    Science.gov (United States)

    Rico, Víctor J; Hueso, José L; Cotrino, José; Gallardo, Victoria; Sarmiento, Belén; Brey, Javier J; González-Elipe, Agustín R

    2009-11-07

    Dielectric Barrier Discharges (DBD) operated at atmospheric pressure and working at reduced temperatures (T steam reforming of methanol (SRM) for hydrogen production and for the preferential oxidation of CO (CO-PROX).

  1. Investigation on steam oxidation behaviour of TP347H FG Part I Exposure at 256 bar

    DEFF Research Database (Denmark)

    Jianmin, J; Montgomery, Melanie; Larsen, OH

    2005-01-01

    The stainless steel TP347H FG is a candidate material for the final stage tubing of superheater and reheater sections of ultra supercritical boilers operated at steam temperatures up to 620C in the mild corrosion environments of coal-firing. A series of field tests has been conducted with the afo......The stainless steel TP347H FG is a candidate material for the final stage tubing of superheater and reheater sections of ultra supercritical boilers operated at steam temperatures up to 620C in the mild corrosion environments of coal-firing. A series of field tests has been conducted...... with the aforementioned steel in coal-fired boilers and this paper focuses on the steam oxidation behaviour for specimens tested at various metal temperatures for exposure times of 7700, 23000 and 30000 hours as investigated by light optical and scanning electron microscopy. The oxide present on the specimens is a duplex......, but the subsequent growth of oxide from further exposure is slower due to the formation of a healing layer consisting of chromium rich oxide near original alloy grain boundaries. At a temperature region above 600C a thin oxide rich in chromium and manganese is formed. In addition precipitation of secondary carbides...

  2. Steam generator tubesheet waterlancing at Bruce B

    Energy Technology Data Exchange (ETDEWEB)

    Persad, R. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Eybergen, D. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    High pressure water cleaning of steam generator secondary side tubesheet surfaces is an important and effective strategy for reducing or eliminating under-deposit chemical attack of the tubing. At the Bruce B station, reaching the interior of the tube bundle with a high-pressure water lance is particularly challenging due to the requirement to setup on-boiler equipment within the containment bellows. This paper presents how these and other design constraints were solved with new equipment. Also discussed is the application of new high-resolution inter-tube video probe capability to the Bruce B steam generator tubesheets. (author)

  3. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  4. Comparative costs and benefits of hydrogen vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  5. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Computational Fluid Dynamics Modeling of Steam Condensation on Nuclear Containment Wall Surfaces Based on Semiempirical Generalized Correlations

    Directory of Open Access Journals (Sweden)

    Pavan K. Sharma

    2012-01-01

    Full Text Available In water-cooled nuclear power reactors, significant quantities of steam and hydrogen could be produced within the primary containment following the postulated design basis accidents (DBA or beyond design basis accidents (BDBA. For accurate calculation of the temperature/pressure rise and hydrogen transport calculation in nuclear reactor containment due to such scenarios, wall condensation heat transfer coefficient (HTC is used. In the present work, the adaptation of a commercial CFD code with the implementation of models for steam condensation on wall surfaces in presence of noncondensable gases is explained. Steam condensation has been modeled using the empirical average HTC, which was originally developed to be used for “lumped-parameter” (volume-averaged modeling of steam condensation in the presence of noncondensable gases. The present paper suggests a generalized HTC based on curve fitting of most of the reported semiempirical condensation models, which are valid for specific wall conditions. The present methodology has been validated against limited reported experimental data from the COPAIN experimental facility. This is the first step towards the CFD-based generalized analysis procedure for condensation modeling applicable for containment wall surfaces that is being evolved further for specific wall surfaces within the multicompartment containment atmosphere.

  7. Effect of sanitizer combined with steam heating on the inactivation of foodborne pathogens in a biofilm on stainless steel.

    Science.gov (United States)

    Ban, Ga-Hee; Kang, Dong-Hyun

    2016-05-01

    The combined effect of chemical sanitizers including sodium hypochlorite, hydrogen peroxide, iodophor, and benzalkonium chloride with steam heating on the inactivation of biofilms formed by Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel was investigated. Six day old biofilms, comprised of a mixture of three strains each of three foodborne pathogens, were produced on stainless steel coupons at 25 °C and treated with each sanitizer alone (for 5, 15, and 30 s), steam alone (for 5, 10, and 20 s), and the combination. There was a synergistic effect of sanitizer and steam on the viability of biofilm cells of the three pathogens as evidenced by plating counts and imaging. The combination treatment achieved an additional 0.01 to 2.78 log reduction compared to the sum of each individual treatment. The most effective combination for reducing levels of biofilm cells was the combination of steam and iodophor; steam for 20 s and merely 20 ppm iodophor for 30 s reduced cell numbers to below the detection limit (biofilm cells in food processing facilities as a potential intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fixation of compressive deformation in wood by pre-steaming

    Science.gov (United States)

    M. Inoue; N. Sekino; T. Morooka; R.M. Rowell; M. Norimoto

    2008-01-01

    Wood block specimens pre-steamed at 120-220 °C for 5-20 min were compressed in the radial direction. The recovery of set decreased with increasing pre-steaming temperature and time. The reduction of set recovery correlated with the amount of weight loss in steaming irrespective of pre-steaming temperature and time. The weight loss for the highest level of...

  9. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The hydrogen refuelling plant in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Giron, Enrique [Repsol YPF, Carretera de Extremadura, A-5 km 18, 28931 Mostoles (Madrid) (Spain)

    2007-07-15

    In 2003, the first hydrogen filling station with hydrogen on-site production was built in Madrid. The companies Air Liquide Spain (AL), Gas Natural and Repsol YPF joined forces and established a consortium, esH{sub 2}, to design and build such a station to supply hydrogen to Madrid's local bus operator (EMT) for the exploitation of a small fleet of electric buses propelled by fuel cells. Natural gas steam reforming was chosen as the most adequate technology for the hydrogen supply, since it is a well-known process in large-scale plants. The challenge was to reach a compact, trustworthy and fully automated system. To allow for an operation free of starts and stops, the production plant was designed with a smaller capacity than the maximum hydrogen required by the four buses. The system was designed such that AL would truck in from an external source the supplementary hydrogen needed. The filling station also allows to truck out hydrogen in case of over production. This paper tries to show the results of two years of operation, the problems encountered and the solutions found. (author)

  11. Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification.

    Science.gov (United States)

    Li, Jianfen; Xiao, Bo; Yan, Rong; Xu, Xiaorong

    2009-11-01

    A supported tri-metallic catalyst (nano-Ni-La-Fe/gamma-Al(2)O(3)) was developed for tar reduction and enhanced hydrogen production in biomass steam gasification, with focuses on preventing coke deposition and sintering effects to lengthen the lifetime of developed catalysts. The catalyst was prepared by deposition-precipitation method and characterized by various analytical approaches. Following that, the activity of catalysts in biomass steam gasification was investigated in a bench-scale combined fixed bed reactor. With presence of the catalyst, the content of hydrogen in gas products was increased to over 10 vol.%, the tar removal efficiency reached 99% at 1073 K, and more importantly the coke deposition on the catalyst surfaces and sintering effects were avoided, leading to a long lifetime of catalysts.

  12. Storage and production of hydrogen for fuel cell applications

    Science.gov (United States)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  13. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  14. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  15. COMMAND AND CONTROL STRATEGIES APPLIED TO HIGHPOWER STEAM GENERATORS

    Directory of Open Access Journals (Sweden)

    DUINEA. A.M.

    2015-06-01

    Full Text Available The paper presents the analysis of the actual operation scheme existing for steam generator drum. Following the trend valid for forced circulation steam generator, it is proposed to replace the classical adjustment loops with new regulation scheme highlighting its advantages in steam generation operation.

  16. 7 CFR 29.3058 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...

  17. 7 CFR 29.2300 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...

  18. 7 CFR 29.3548 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...

  19. 7 CFR 29.2552 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...

  20. 21 CFR 890.5250 - Moist steam cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist steam cabinet. 890.5250 Section 890.5250...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam cabinet. (a) Identification. A moist steam cabinet is a device intended for medical purposes that delivers...

  1. 7 CFR 29.1060 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...

  2. The effectiveness of a novel steaming method in improving small ...

    African Journals Online (AJOL)

    The steaming procedure involved placing 500g of soybeans in the upper pot then tight fitting it on the lower pot that contained 4 litres of boiling water. Refilling of water was done every after 20 minutes of steaming to bring the water level to its original mark. After steaming, soybeans were dried in a cabinet solar drier capable ...

  3. A Report on the Simulation of Steam Turbine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I.K.; Jung, C.K.; Kim, J.A.; Woo, J.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-06-01

    This report describes the result that the simulation of steam turbine control system was realized from startup through synchronization, governor regulation, steam valve tests, limit functions, load rejection to HSS, LSS in relation to the development of steam turbine digital control system. (author). 32 figs.

  4. 7 CFR 305.23 - Steam sterilization treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Steam sterilization treatment schedules. 305.23... Steam sterilization treatment schedules. Treatment schedule Temperature( °F) Pressure Exposure period (minutes) Directions T303-b-1 10 lbs 20 Use 28″ vacuum. Steam sterilization is not practical for treatment...

  5. The Effect of Steaming on the Glucosinolate Content in Broccoli

    NARCIS (Netherlands)

    Verkerk, R.; Knol, J.J.; Dekker, M.

    2010-01-01

    Total and individual glucosinolates were measured after different duration of steaming broccoli (Brassica oleracea L. var. italica). During steaming, the temperature profile, cell lysis and inactivation of myrosinase were assessed as well. Steaming resulted in high retention of total aliphatic and

  6. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  7. Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air-Steam for Partial Oxidation

    Directory of Open Access Journals (Sweden)

    Catalina Rodriguez

    2011-01-01

    Full Text Available Colombian coffee industry produces about 0.6 million tons of husk (CH per year which could serve as feedstock for thermal gasification to produce gaseous and liquid fuels. The current paper deals with: (i CH adiabatic gasification modeling using air-steam blends for partial oxidation and (ii experimental thermogravimetric analysis to determine the CH activation energy (E. The Chemical Equilibrium with Applications Program (CEA, developed by NASA, was used to estimate the effect of equivalence ratio (ER and steam to fuel ratio (S : F on equilibrium temperature and gas composition of ~150 species. Also, an atom balance model was developed for comparison purposes. The results showed that increased ER and (S : F ratios produce mixtures that are rich in H2 and CO2 but poor in CO. The value for the activation energy was estimated to be 221 kJ/kmol.

  8. Environmental Statement. Oswego Steam Station. Unit 5.

    Science.gov (United States)

    1971-12-27

    plants in shallow water margins of the west basin. Condition of the fish caught was good. Lamprey scars were observed on a few fish but other wounds...Adams, Res. Rept. No. 69 34.4-68, Pacific Gas & Electric Co., Department of Engineering Research, 1968 23 Oswego Steam Station Hydraulic Model Study

  9. Engineering Encounters: From STEM to STEAM

    Science.gov (United States)

    Cook, Kristin; Bush, Sarah; Cox, Richard

    2017-01-01

    Teaching STEAM (science, technology, engineering, art, and math) in elementary school could be even more promising than teaching STEM. This is due to its ability to cross multiple subject areas and its appeal to multiple types of learners. Intentional integration of the arts in science and engineering lessons has the potential to more deeply…

  10. James Watt: Father of Steam Power

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. James Watt: Father of Steam Power. K V Gopalakrishnan. General Article Volume 14 Issue 6 June 2009 pp 522-529. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/014/06/0522-0529. Keywords.

  11. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  12. Evaluation of Corrosion Caused by the use of In Natura Biogas in Steam Generator Boilers of Carbon Steel Structural Elements

    OpenAIRE

    Fontenelle, Marcellus; Alves, Helton José; Monteiro, Marcos Roberto; Higa, Silvia Midori; Rovere, Carlos Alberto Della; Pellizzer, Eder Luis; Fontenelle,Isaddora

    2017-01-01

    This work evaluates the corrosion process caused by the presence of hydrogen sulfide in the biogas in natura, in steels commonly used in the construction of steam generator boilers, simulating conditions close to those found on the real application of these materials, exposing the test bodies directly to biogas in natura, flame of combustion and gases resulting from the combustion of this biofuel, in chimney. After 314 hours of exposure under the specified conditions, the corroded surfaces of...

  13. Sensory characteristics of antioxidant extracts from Uruguayan native plants: influence of deodorization by steam distillation.

    Science.gov (United States)

    Miraballes, Marcelo; Gámbaro, Adriana; Ares, Gastón

    2013-12-01

    Polyphenolic-rich antioxidant extracts from native plants have potential applications as ingredients in functional foods; however, their intense characteristic flavour is a major limitation to their application. In this context, the aim of the present work was to evaluate the influence of steam distillation on the sensory and physicochemical characteristics of extracts of five native Uruguayan plants (Acca sellowiana, Achyrocline satureioides, Aloysia gratisima, Baccharis trimera and Mikania guaco). Aqueous extracts from the five native plants were obtained. Steam distillation was used to produce two types of deodorized extracts: extracts from deodorized leaves and extracts deodorized after the extraction. The extracts were characterized in terms of their total polyphenolic content and antioxidant activity (using 2,2-diphenyl-1-picryl-hydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid methods). A trained assessor panel evaluated characteristic odour, characteristic flavour, bitterness and astringency of the extracts. The total polyphenolic content of the extracts ranged from 112.4 to 974.4 mg/100 mL, whereas their antioxidant capacity ranged from 9.6 to 1008.7 mg vitamin C equivalents/100 mL, depending on the type of extract and the method being considered. Steam distillation was effective in reducing the characteristic odour and flavour of the extracts, without causing large changes in their polyphenolic content and antioxidant activity. In general, in terms of sensory characteristics, steam distillation performed on the extracts gave better results than when performed on the leaves; whereas the opposite trend was found for polyphenolic content and antioxidant activity. Results suggested that steam distillation could be a promising low-cost procedure for the production of antioxidant extracts for food products.

  14. Systematic Discrimination of Advanced Hydrogen Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  15. Investigation of steam oxidation behaviour of TP347H FG Part 2: Exposure at 91 bar

    DEFF Research Database (Denmark)

    Jianmin, J; Montgomery, Melanie; Larsen, OH

    2005-01-01

    was investigated using light optical and scanning electron microscopy. The oxide present on the specimens is a duplex oxide with an inner chromium rich oxide and an outer iron rich oxide. The inner oxide consisted of a primary iron chromium nickel oxide in the original alloy grain and a chromium rich oxide......Tube specimens of TP347FG were exposed in a test superheater loop in a biomass plant in Denmark. The specimens were exposed to surface metal temperatures in the range of 455-568C, steam pressure of 91 bar and exposure duration of 3500 and 8700 hours. The oxide thickness and morphology......, "healing layer", at the grain boundaries. This gave the appearance of uneven inner oxide and it was clear that the varying subsurface grain size effected inner oxide thickness, especially after longer exposure times. Longer exposure times from 3500 to 8700 hours resulted in increased pit thickness...

  16. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, A.V. Jr.; Orlando, A. DeF.; Magnoli, D.

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  17. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  18. Lanthanum(III)-catalyzed disproportionation of hydrogen peroxide: a heterogeneous generator of singlet molecular oxygen-1O2 (1Deltag)-in near-neutral aqueous and organic media for peroxidation of electron-rich substrates.

    Science.gov (United States)

    Nardello, Véronique; Barbillat, Jacques; Marko, Jean; Witte, Peter T; Alsters, Paul L; Aubry, Jean-Marie

    2003-01-20

    The decomposition of hydrogen peroxide into singlet molecular oxygen-(1)O(2) ((1)Delta(g))-in the presence of lanthanum(iii) salts was studied by monitoring its characteristic IR luminescence at 1270 nm. The process was found to be heterogeneously catalyzed by La(III), provided that the heterogeneous catalyst is generated in situ. The yield of (1)O(2) generation was assessed as 45+/-5 % both in water and in methanol. The pH-dependence on the rate of (1)O(2) generation corresponds to a bell-shaped curve from pH 4.5 to 13 with a maximum around pH 8. The study of the influence of H(2)O(2) showed that the formation of (1)O(2) begins as soon as one equivalent of H(2)O(2) is introduced. It then increases drastically up to two equivalents and more smoothly above. Unlike all other metal salt catalyst systems known to date for H(2)O(2) disproportionation, this chemical source of (1)O(2) is able to generate (1)O(2) not only in basic media, but also under neutral and slightly acidic conditions. In addition, this La-based catalyst system has a very low tendency to induce unwanted oxygenating side reactions, such as epoxidation of alkenes. These two characteristics of the heterogeneous lanthanum catalyst system allow non-photochemical (i.e., "dark") singlet oxygenation of substrate classes that cannot be peroxidized successfully with conventional molybdate catalysts, such as allylic alcohols and alkenyl amines.

  19. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM.

    Science.gov (United States)

    Zhao, Man-Li; Tang, Liang; Zhu, Xue-Mei; Hu, Jiang-Ning; Li, Hong-Yan; Luo, Li-Ping; Lei, Lin; Deng, Ze-Yuan

    2013-02-13

    In the present study, zero-trans α-linolenic acid (ALA) and medium-chain fatty acids (MCFA)-enriched plastic fats were synthesized through enzymatic interesterification reactions from highly hydrogenated soybean oil (HSO), Cinnamomum camphora seed oil (CCSO), and perilla oil (PO). The reactions were performed by incubating the blending mixtures of HSO, CCSO, and PO at different weight ratios (60:40:100, 70:30:100, 80:20:100) using 10% (total weight of substrate) of Lipozyme TL IM at 65 °C for 8 h. After reaction, the physical properties (fatty acids profile, TAG composition, solid fat content, slip melting point, contents of tocopherol, polymorphic forms, and microstructures) of the interesterified products and their physical blends were determined, respectively. Results showed that the fatty acid compositions of the interesterified products and physical blends had no significant changes, while the content of MCFA in both interesterified products and physical blends increased to 8.58-18.72%. Several new types of TAG species were observed in interesterified products (SSL/SLS, PLO/LLS, and OLLn/LnLO/LOLn). It should be mentioned that no trans fatty acids (TFA) were detected in all products. As the temperature increased, the solid fat content (SFC) of interesterified products was obviously lower than that of physical blends. The SFCs of interesterified products (60:40:100, 70:30:100, and 80:20:100, HSO:CCSO:PO) at 25 °C were 6.5%, 14.6%, and 16.5%, respectively, whereas the counterparts of physical blends were 32.5%, 38.5%, and 43.5%, respectively. Meanwhile, interesterified products showed more β' polymorphs than physical blends, in which β' polymorph is a favorite form for production of margarine and shortening. Such zero-trans ALA and MCFA-enriched fats may have desirable physical and nutritional properties for shortenings and margarines.

  20. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen

    2018-01-01

    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with central engines.