WorldWideScience

Sample records for hydrogen proton exchange

  1. On the proton exchange contribution to electron-hydrogen atom elastic scattering

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-05-01

    It is shown that the exchange contribution to the electron-proton potential Born term in elastic electron-hydrogen atom scattering arises as the non relativistic limit from the exchange of a proton between the two participant electrons - calculated from quantum electrodynamics including properly bound states (as solution of Bethe - Salpeter equation). (Author) [pt

  2. Resonance charge exchange between excited states in slow proton-hydrogen collisions

    International Nuclear Information System (INIS)

    Tolstikhina, Inga Yu.; Kato, Daiji

    2010-01-01

    The theory of resonance charge exchange in slow collisions of a proton with a hydrogen atom in the excited state is developed. It extends the Firsov-Demkov theory of resonance charge exchange to the case of degenerate initial and final states. The theory is illustrated by semiclassical and quantum calculations of charge exchange cross sections between states with n=2 in parabolic and spherical coordinates. The results are compared with existing close-coupling calculations.

  3. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  4. Modified hydrogenated PBLH copolymer synthesis with styrene for proton exchange membranes fuel cell application

    International Nuclear Information System (INIS)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Rodrigues, Maraiza F.; Groetzner, Mariana B.; Cesar-Oliveira, Maria Aparecida F.; Cantao, Mauricio P.

    2005-01-01

    Polymers used as electrolyte in fuel cells are expected to have functional groups in their structure which are responsible for proton conductivity. Since the use of hydroxylated liquid polybutadiene (PBLH) has not been mentioned in the literature as an ion exchange membrane for fuel cell application (PEMFC), and its structure can be modified for a later sulfonation, it has been studied. In this work, PBLH was modified through a hydrogenation reaction. Furthermore, hydrogenated polymeric esters were obtained by esterification and transesterification reactions (PBLH- estearate and PBLH- methacrylate). Reacting the PBLH methacrylate with styrene, it was generated a copolymer with appropriated structure for sulfonation, justifying researches for fuel cell. (author)

  5. Amide proton solvent protection in amylin fibrils probed by quenched hydrogen exchange NMR.

    Directory of Open Access Journals (Sweden)

    Andrei T Alexandrescu

    Full Text Available Amylin is an endocrine hormone that accumulates in amyloid plaques in patients with advanced type 2 diabetes. The amyloid plaques have been implicated in the destruction of pancreatic β-cells, which synthesize amylin and insulin. To better characterize the secondary structure of amylin in amyloid fibrils we assigned the NMR spectrum of the unfolded state in 95% DMSO and used a quenched hydrogen-deuterium exchange technique to look at amide proton solvent protection in the fibrils. In this technique, partially exchanged fibrils are dissolved in 95% DMSO and information about amide proton occupancy in the fibrils is determined from DMSO-denatured monomers. Hydrogen exchange lifetimes at pH 7.6 and 37°C vary between ∼5 h for the unstructured N-terminus to 600 h for amide protons in the two β-strands that form inter-molecular hydrogen bonds between amylin monomers along the length of the fibril. Based on the protection data we conclude that residues A8-H18 and I26-Y37 comprise the two β-strands in amylin fibrils. There is variation in protection within the β-strands, particularly for strand β1 where only residues F15-H18 are strongly protected. Differences in protection appear to be due to restrictions on backbone dynamics imposed by the packing of two-layers of C2-symmetry-related β-hairpins in the protofilament structure, with strand β1 positioned on the surface and β2 in the interior.

  6. Hydrogen/deuterium exchange of multiply-protonated cytochrome c ions

    International Nuclear Information System (INIS)

    Wood, T.D.; Guan, Ziqiang; O'Connor, P.B.

    1995-01-01

    Low resolution measurements show gaseous multiply-protonated cytochrome c ions undergo hydrogen/deuterium (H/D) exchange with pseudo first-order kinetics at three distinct exchange levels, suggesting the co-existence of gaseous protein conformations. Although exchange levels first increase with increasing charge values, they decrease at the highest charge values, consistent with solution-phase behavior of cytochrome c, where the native structure unfolds with decreasing pH until folding into a compact A-state at lowest pH. High resolution measurements indicate the presence of at least six H/D exchange levels. Infrared (IR) laser heating and fast collisions via quadrupolar excitation (QE) increase H/D exchange levels (unfolding) while charge-stripping ions to lower charge values can increase or decrease H/D exchange levels (unfolding or folding). Wolynes has suggested studying proteins in vacuo could play an important role in delineating the contributions various forces play in the protein folding process, provided appropriate comparisons can be made between gas-phase and solution-phase structures

  7. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  8. Study of Hydrogen Consumption by Control System in Proton Exchange Membrane Fuel Cell

    International Nuclear Information System (INIS)

    Ros Emilia Rosli; Edy Herianto Majlan; Siti Afiqah Abd Hamid; Wan Ramli Wan Daud; Ramizi Mohamed; Dedi Rohendi

    2016-01-01

    Efficient operation results from a proper control strategy. In the operation and performance of a Proton Exchange Membrane Fuel Cell (PEMFC), the hydrogen gas flow rate is one of the most essential control parameter in addition to operating pressure, water management, temperature and humidity. This is because of the high cost and amount of energy are required to produce the purity hydrogen gas. In this paper, a Proportional Integral Derivative (PID) feedback control system is used to control the hydrogen flow rate. A strategy is adapted to balance the hydrogen use based on the loading requirements, especially during start-ups and sudden power demands. This system is implemented using National Instrument (NI) devices powered by the LabVIEW program. This is due to its simplicity and customization flexibility for measuring, processing and recording data. Designed structure allows the real-time implementation of a robust control law that is able to address the related nonlinearities and uncertainties without incurring a heavy computational load for the controller algorithm. While it facilitating a fast sampling rate according to the needs of the power system. Test results from the controller show that the new fuel control system provides good performance by reducing the amount of wasted hydrogen gas compared with that of the previous open loop system by 30 % to over 80 % saved by the varied load. This improvement is beneficial for any PEMFC that experiences fluctuating power demand, especially for vehicle applications. (author)

  9. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  10. Hydrogen content, interfacial exchange and hydrogen diffusion in high-temperature protonic conductors based on strontium and barium cerates

    International Nuclear Information System (INIS)

    Vdovin, G.K.; Kurumchin, Eh.Kh.

    2004-01-01

    The hydrogen content and kinetics of the hydrogen exchange in the barium and strontium doped cerates are studied in the reduction atmosphere through the methods of isotope counterbalancing and isotope exchange. The measurements are carried out at 500-840 Deg C and hydrogen pressure of 2.7-16 gPa. It is established, that the hydrogen interfacial exchange proceeds at high velocities through the dissociative-type mechanisms. The effective activation energy of the hydrogen heteroexchange is determined. The coefficient of the hydrogen diffusion in BaCe 0.95 Nd 0.5 O 3-δ is calculated. The hydrogen content per formula unit constituted (0.48±0.05) in the SrCe 0.95 Y 0.05 O 3-δ and (0.60±0.05) in the BaCe 0.95 Nd 0.5 O 3-δ at 550 and 720 Deg C correspondingly and hydrogen pressure of 6.7 gPa [ru

  11. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  12. Proton NMR investigation of heme pocket mobility in hemoglobin via hydrogen isotope exchange kinetics

    International Nuclear Information System (INIS)

    Han, K.

    1985-01-01

    Dynamic mobility of heme cavity, the active site of Hb, was investigated by analyzing the hydrogen isotope exchange kinetics of the proximal histidyl ring NH of various kinds of Hbs with the aid of the high field Fourier Transform 1 H NMR spectroscopy. The exchange reaction occurs faster in oxy or R-state Hb than in deoxy or T-state Hb and there exists a good correlation between the oxygen affinity of Hb and the heme pocket mobility reflected in the hydrogen exchange rate. The effect of pH on the exchange is dramatically different for the two subunits of Hb A. Studying the exchange characteristics of mutant Hbs and chemically modified Hbs not only showed the existence of three well-defined localized paths for transmission of conformational changes between different heme pockets through a 1 b 2 subunit interface, but also indicated that the heme pocket mobility is regulated by the quaternary state of Hb as well as by the ligation state of Hb. Finally, the effect of the quaternary state on the heme pocket mobility is separated from that of the ligation by following the exchange reactions in Hbs where only their quaternary structure transition can be achieved without changing their ligation states by adjusting experimental conditions such as adding inositol hexaphosphate

  13. Catalysed hydrogen isotope exchange

    International Nuclear Information System (INIS)

    1973-01-01

    A method is described for enhancing the rate of exchange of hydrogen atoms in organic compounds or moieties with deuterium or tritium atoms. It comprises reacting the organic compound or moiety and a compound which is the source of deuterium or tritium in the presence of a catalyst consisting of a non-metallic, metallic or organometallic halide of Lewis acid character and which is reactive towards water, hydrogen halides or similar protonic acids. The catalyst is a halide or organometallic halide of: (i) zinc or another element of Group IIb; (ii) boron, aluminium or another element of Group III; (iii) tin, lead, antimony or another element of Groups IV to VI; or (iv) a transition metal, lanthanide or stable actinide; or a halohalide. (author)

  14. Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage

    Science.gov (United States)

    Guarnieri, Massimo; Alotto, Piergiorgio; Moro, Federico

    2015-11-01

    Thanks to the independent sizing of power and energy, hydrogen-based energy storage is one of the very few technologies capable of providing long operational times in addition to the other advantages offered by electrochemical energy storage, for example scalability, site versatility, and mobile service. The typical design consists of an electrolyzer in charge mode and a separate fuel cell in discharge mode. Instead, a unitized regenerative fuel cell (URFC) is a single device performing both energy conversions, achieving a higher compactness and power-to-weight ratio. This paper presents a performance model of a URFC based on a proton exchange membrane (PEM) electrolyte and working on hydrogen and oxygen, which can provide high energy and power densities (>0.7 W cm-2). It provides voltage, power, and efficiency at varying load conditions as functions of the controlling physical quantities: temperature, pressure, concentration, and humidification. The model constitutes a tool for designing the interface and control sub-system as well as for exploring optimized cell/stack designs and operational conditions. To date, only a few of such analyses have been carried out and more research is needed in order to explore the true potential of URFCs.

  15. Hydrogen-exchange kinetics of the indole NH proton of the buried tryptophan in the constant fragment of the immunoglobulin light chain

    International Nuclear Information System (INIS)

    Kawata, Y.; Goto, Y.; Hamaguchi, K.; Hayashi, F.; Kobayashi, Y.; Kyogoku, Y.

    1988-01-01

    The constant fragment of the immunoglobulin light chain (type λ) has two trytophyl residues at positions 150 and 187. Trp-150 is buried in the interior, and Trp-187 lies on the surface of the molecule. The hydrogen-deuterium exchange kinetics of the indole NH proton Trp-150 were studied at various pH values at 25 0 C by 1 H nuclear magnetic resonance. Exchange rates were approximately first order in hydroxyl ion dependence above pH 8, were relatively independent of pH between pH 7 and 8, and decreased below pH 7. On the assumption that the exchange above pH 8 proceeds through local fluctuations of the protein molecule, the exchange rates between pH 7 and 8 through global unfolding were estimated. The exchange rate constant within this pH range at 25 0 C thus estimated was consistent with that of the global unfolding of the constant fragment under the same conditions as those reported previously. The activation energy for the exchange process at pH 7.8 was the same as that for the unfolding process by 2 M guanidine hydrochloride. The exchange rates of backbone NH protons were almost the same as that of the indole NH proton of Trp-150 at pH 7.l. These observations also indicated that the exchange between pH 7 and 8 occurs through global unfolding of the protein molecule and is rate-limited by the unfolding. At around pH 9, on the other hand, the activation energy for the exchange process of the indole NH proton of Trp-150 was smaller than that for the unfolding process, and the exchange rates differed according to the different signals of backbone NH protons. These findings together with the pH dependence of the rate constant indicated that exchange due to local fluctuations is predominant above pH 8

  16. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    Chutichai, Bhawasut; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2013-01-01

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  17. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  18. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  19. Modeling hydrogen starvation conditions in proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohs, Jan Hendrik; Sauter, Ulrich; Maass, Sebastian [Robert Bosch GmbH, Robert-Bosch-Platz 1, 70839 Gerlingen-Schillerhoehe (Germany); Stolten, Detlef [Forschungszentrum Juelich GmbH, IEF-3: Fuel Cells, 52425 Juelich (Germany)

    2011-01-01

    In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler-Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients. (author)

  20. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the senso....... Finally, it will be shown how previously developed dew point diagrams for the anode side in a fuel cell can be corrected for a humidified hydrogen inlet stream....

  1. Effects of stereochemistry on the rates of hydrogen--deuterium exchange of protons α to the nitrosamino group

    International Nuclear Information System (INIS)

    Fraser, R.R.; Ng, L.K.

    1976-01-01

    Measurement of the rates of exchange of four benzylic protons of rigid dibenzazepine were made in tert-butyl alcohol-O-d containing potassium tert-butoxide at several concentrations. Each pseudoaxial proton exchanged 100-fold faster than its geminal partner (pseudoequatorial), likely as a result of a stereoelectronic effect. Each syn proton exchanged 1000-fold faster than the anti proton in the same biaryl environment. The lack of any significant effect of added crown either on the rate of exchange of either a syn or an antiproton indicates lack of involvement of the counterion. A suggested explanation for the unusual preference for syn exchange in this work is based on the symmetry properties of the anionic intermediate. This intermediate, like butadiene dianion, has an attractive interaction between the terminal atoms of the four-atom π system in the highest occupied molecular orbital (HOMO). This explanation is similar to that of Epiotis and co-workers, which accounts for the well-established preferential stability of cis over trans dihalo and dialkoxy ethylenes

  2. Lithium polymer batteries and proton exchange membrane fuel cells as energy sources in hydrogen electric vehicles

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.

  3. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: •Stochastic model is proposed for coordinated scheduling of renewable energy sources. •The effect of combined heat and power is considered. •Hydrogen storage is considered for fuel cells. •Maximizing profits of micro grid is considered as objective function. •Considering the uncertainties of problem lead to profit increasing. -- Abstract: Nowadays, renewable energy sources and combined heat and power units are extremely used in micro grids, so it is necessary to schedule these units to improve the performance of the system. In this regard, a stochastic model is proposed in this paper to schedule proton exchange membrane fuel cell-combined heat and power, wind turbines, and photovoltaic units coordinately in a micro grid while considering hydrogen storage. Hydrogen storage strategy is considered for the operation of proton exchange membrane fuel cell-combined heat and power units. To consider stochastic generation of renewable energy source units in this paper, a scenario-based method is used. In this method, the uncertainties of electrical market price, the wind speed, and solar irradiance are considered. This stochastic scheduling problem is a mixed integer- nonlinear programming which considers the proposed objective function and variables of coordinated scheduling of PEMFC-CHP, wind turbines and photovoltaic units. It also considers hydrogen storage strategy and converts it to a mixed integer nonlinear problem. In this study a modified firefly algorithm is used to solve the problem. This method is examined on modified 33-bus distributed network as a MG for its performance.

  4. Hydrogen production using the waste heat of Benchmark pressurized Molten carbonate fuel cell system via combination of organic Rankine cycle and proton exchange membrane (PEM) electrolysis

    International Nuclear Information System (INIS)

    Nami, Hossein; Akrami, Ehsan; Ranjbar, Faramarz

    2017-01-01

    Highlights: • Waste heat of the Benchmark system recovered using an ORC. • An integrated system is proposed to produce power and hydrogen. • The effects of some decision parameters on the produced hydrogen have investigated. - Abstract: Energy and exergy analyses are carried out for hydrogen production via combination of Benchmark system and organic Rankine cycle (ORC) coupled with a proton exchange membrane electrolyzer. A parametric study is reported and effects of such organic Rankine cycle significant variables as evaporator temperature, pinch point temperature difference in the evaporator and degree of superheat at the ORC turbine inlet on the rate of produced hydrogen, sustainability index, overall exergy efficiency and organic Rankine cycle net produced power are investigated. It is observed that the rate of produced hydrogen and overall exergy efficiency of the proposed combined system take the maximum value to change in the evaporator temperature. Also, it is revealed that increasing the pinch point temperature difference in the evaporator decreases the rate of produced hydrogen and the overall exergy efficiency of the system. Furthermore, the effects on the rate of produced hydrogen and the overall exergy efficiency of the degree of superheat at the ORC turbine inlet are the same as the effect of pinch point temperature difference.

  5. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  6. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  7. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  8. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  9. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode

    Science.gov (United States)

    Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe

    2014-01-01

    The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.

  10. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    Science.gov (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  12. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  13. CAPSTONE SENIOR DESIGN - SUPRAMOLECULAR PROTON EXCHANGE MEMBRANES FOR FUEL CELLS

    Science.gov (United States)

    In order to assume a leading role in the burgeoning hydrogen economy, new infrastructure will be required for fuel cell manufacturing and R&D capabilities. The objective of this proposal is the development of a new generation of advanced proton exchange membrane (PEM) technol...

  14. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    Science.gov (United States)

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  15. NMR study of conformational exchange and double-well proton potential in intramolecular hydrogen bonds in monoanions of succinic acid and derivatives.

    Science.gov (United States)

    Guo, Jing; Tolstoy, Peter M; Koeppe, B; Denisov, Gleb S; Limbach, Hans-Heinrich

    2011-09-08

    We present a (1)H, (2)H, and (13)C NMR study of the monoanions of succinic (1), meso- and rac-dimethylsuccinic (2, 3), and methylsuccinic (4) acids (with tetraalkylammonium as the counterion) dissolved in CDF(3)/CDF(2)Cl at 300-120 K. In all four monoanions, the carboxylic groups are linked by a short intramolecular OHO hydrogen bond revealed by the bridging-proton chemical shift of about 20 ppm. We show that the flexibility of the carbon skeleton allows for two gauche isomers in monoanions 1, 2, and 4, interconverting through experimental energy barriers of 10-15 kcal/mol (the process itself and the energy barrier are also reproduced in MP2/6-311++G** calculations). In 3, one of the gauche forms is absent because of the steric repulsion of the methyl groups. In all four monoanions, the bridging proton is located in a double-well potential and subject, at least to some extent, to proton tautomerism, for which we estimate the two proton positions to be separated by ca. 0.2 Å. In 1 and 3, the proton potential is symmetric. In 2, slowing the conformational interconversion introduces an asymmetry to the proton potential, an effect that might be strong enough even to synchronize the proton tautomerism with the interconversion of the two gauche forms. In 4, the asymmetry of the proton potential is due to the asymmetric substitution. The intramolecular H-bond is likely to remain intact during the interconversion of the gauche forms in 1, 3, and 4, whereas the situation in 2 is less clear.

  16. Performance of Pd on activated carbon as hydrogen electrode with respect to hydrogen yield in a single cell proton exchange membrane (PEM) water electrolyser

    Energy Technology Data Exchange (ETDEWEB)

    Naga Mahesh, K.; Sarada Prasad, J.; Venkateswer Rao, M.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085 (A.P.) (India); Yerramilli, Anjaneyulu [TLGVRC, JSU Box 18739, Jackson State University, Jackson, MS 32917 - 0939 (United States); Raghunathan Rao, P. [Fuel cell section, Heavy Water Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

    2009-08-15

    Palladium (Pd) on activated carbon is used as electrocatalyst coated on Nafion 115 membrane as Hydrogen electrode and RuO{sub 2} is coated on other side of membrane used as oxygen electrode. 5 wt% and 10 wt% Pd on activated carbon is prepared as membrane electrode assembly (MEA) and investigated the performance of the same using inhouse prepared 10 cm{sup 2} single cell. The performance of the single cell assembly and the hydrogen yield are reported during electrolysis operation at temperatures 27 C, 45 C and 65 C at 0.1, 0.2, 0.3, 0.4, 0.5 A/cm{sup 2} current densities with respect to voltages. (author)

  17. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  18. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  19. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  20. Hydrogen--deuterium exchanges in nucleosides and nucleotides. A mechanism for exchange of the exocyclic amino hydrogens of adenosine

    International Nuclear Information System (INIS)

    Cross, D.G.; Brown, A.; Fisher, H.F.

    1975-01-01

    The pH dependence of the apparent first-order rate constant for the exchange of the exocyclic amino hydrogens of adenosine with deuterium from the solvent was measured by stopped-flow ultraviolet spectroscopy. This dependence shows acid catalysis, base catalysis, and spontaneous exchange at neutral pH values. A study of the effect of several buffers on the rates of exchange reveals both general acid and general base catalytic behavior for the exchange process. We propose a general mechanism for the exchange which requires N-1 protonated adenosine as an intermediate for the acid-catalyzed exchange and amidine anion for the base-catalyzed exchange. In both cases the rate-limiting step is the base-catalyzed abstraction of a proton from the exocyclic amino moiety. Evaluation of the rate constants predicts the equilibrium for the exocyclic amino/imino tautomers to be 6.3 x 10 3 :1. (U.S.)

  1. Proton channels and exchangers in cancer.

    Science.gov (United States)

    Spugnini, Enrico Pierluigi; Sonveaux, Pierre; Stock, Christian; Perez-Sayans, Mario; De Milito, Angelo; Avnet, Sofia; Garcìa, Abel Garcìa; Harguindey, Salvador; Fais, Stefano

    2015-10-01

    Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers, cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate, thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Proton exchange in systems: Glucose-water and uric acid-water

    International Nuclear Information System (INIS)

    Maarof, S.

    2007-01-01

    It is clear that formation of glucose-water and uric acid-water solutions is related in principle to interaction accepter - donor between hydrogen atom in water and oxygen atom in glucose or uric acid. The proton exchange in hydrogen bond system is an integral process and it goes by tunnel mechanism (transfer of proton within the hydrogen bridge in these structures). Proton exchange process goes very quickly at low concentrations for glucose and uric acid solutions, because these compounds are able to form more than one hydrogen bond, which helps the proton transfer within obtained structure. However, at its high concentrations, the process becomes very slow due to higher viscosity of its solutions, which result in break down of the structures, and more hydrogen bonds. (author)

  3. How amide hydrogens exchange in native proteins.

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2015-08-18

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.

  4. How amide hydrogens exchange in native proteins

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2015-01-01

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N–H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N–H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion. PMID:26195754

  5. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  6. Proton tunnelling in intermolecular hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Horsewill, A J [Nottingham Univ. (United Kingdom); Johnson, M R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Trommsdorff, H P [Grenoble-1 Univ., 38 (France)

    1997-04-01

    The wavefunctions of particles extend beyond the classically accessible regions of potential energy-surfaces (PES). A manifestation of this partial delocalization is the quantum-mechanical tunneling effect which enables a particle to escape from a metastable potential-well. Tunnelling is most important for the lightest atoms, so that the determination of its contribution to proton transfer, one of the most fundamental chemical reactions, is an important issue. QENS and NMR techniques have been employed to study the motion of protons in the hydrogen bond of benzoic-acid crystals, a system which has emerged as a particularly suitable model since proton transfer occurs in a near symmetric double-well potential. The influence of quantum tunnelling was revealed and investigated in these experiments. This work provides an experimental benchmark for theoretical descriptions of translational proton-tunnelling. (author). 7 refs.

  7. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  8. Proton-Induced Plasticity in Hydrogen Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Stich, I. [JRCAT, Angstrom Technology Partnership, 1-1-4 Higashi, Tsukuba, Ibaraki 305 (Japan); Marx, D.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Terakura, K. [NAIR, Angstrom Technology Partnership, 1-1-4 Higashi, Tsukuba, Ibaraki 305 (Japan); Terakura, K. [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332 (Japan)

    1997-05-01

    The effect of protonation of pure hydrogen clusters is investigated at low temperature using a combination of path-integral simulations and first-principles electronic structure calculations. The added proton gets trapped as a very localized H{sub 3}{sup +} impurity in the cluster core, and is surrounded by stable shells of solvating H{sub 2} molecules. These clusters are frozen with respect to the translational degrees of freedom, while the H{sub 2} ligands undergo large-amplitude rotations. The classical approximation for the nuclei fails to account for this effect which is akin to plastic behavior in crystals. {copyright} {ital 1997} {ital The American Physical Society}

  9. Proton-Induced Plasticity in Hydrogen Clusters

    International Nuclear Information System (INIS)

    Stich, I.; Marx, D.; Parrinello, M.; Terakura, K.; Terakura, K.

    1997-01-01

    The effect of protonation of pure hydrogen clusters is investigated at low temperature using a combination of path-integral simulations and first-principles electronic structure calculations. The added proton gets trapped as a very localized H 3 + impurity in the cluster core, and is surrounded by stable shells of solvating H 2 molecules. These clusters are frozen with respect to the translational degrees of freedom, while the H 2 ligands undergo large-amplitude rotations. The classical approximation for the nuclei fails to account for this effect which is akin to plastic behavior in crystals. copyright 1997 The American Physical Society

  10. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    International Nuclear Information System (INIS)

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-01-01

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40 0 C for a tightly bound 15 N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads

  11. Detection of the sulfhydryl groups in proteins with slow hydrogen exchange rates and determination of their proton/deuteron fractionation factors using the deuterium-induced effects on the 13C(beta) NMR signals.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, JunGoo; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-05-05

    A method for identifying cysteine (Cys) residues with sulfhydryl (SH) groups exhibiting slow hydrogen exchange rates has been developed for proteins in aqueous media. The method utilizes the isotope shifts of the C(beta) chemical shifts induced by the deuteration of the SH groups. The 18.2 kDa E. coli peptidyl prolyl cis-trans isomerase b (EPPIb), which was selectively labeled with [3-(13)C;3,3-(2)H(2)]Cys, showed much narrower line widths for the (13)C(beta) NMR signals, as compared to those of the proteins labeled with either [3-(13)C]Cys or (3R)-[3-(13)C;3-(2)H]Cys. The (13)C(beta) signals of the two Cys residues of EPPIb, i.e. Cys-31 and Cys-121, labeled with [3-(13)C;3,3-(2)H(2)]Cys, split into four signals in H(2)O/D(2)O (1:1) at 40 degrees C and pH 7.5, indicating that the exchange rates of the side-chain SH's and the backbone amides are too slow to average the chemical shift differences of the (13)C(beta) signals, due to the two- and three-bond isotope shifts. By virtue of the well-separated signals, the proton/deuteron fractional factors for both the SH and amide groups of the two Cys residues in EPPIb could be directly determined, as approximately 0.4-0.5 for [SD]/[SH] and 0.9-1.0 for [ND]/[NH], by the relative intensities of the NMR signals for the isotopomers. The proton NOE's of the two slowly exchanging SH's were clearly identified in the NOESY spectra and were useful for the determining the local structure of EPPIb around the Cys residues.

  12. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  13. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... to identify potentially active and selective materials for both catalysts. Co-porphyrin is recommended for the first step, formation of hydrogen peroxide, and three different metal oxides – SrTiO3(100), CaTiO3(100) and WO3(100) – are suggested for the subsequent reduction step....

  14. Construction and evaluation of a proton exchange fuel cell

    International Nuclear Information System (INIS)

    Gutierrez, Omar; Monsalve, Carlos; Trujillo, Gonzalo; Hoyos, Bibian; Sanchez, Carlos; Gonzalez, Javier

    2005-01-01

    One design of a hydrogen proton exchange membrane fuel cell (PEMFC) is proposed. Porous carbon supported platinum electrodes were manufactured by impregnation, reduction and hot-press methods; noble metal loading of 0.4 mg/cm 2 was achieved. The conditions to obtain the porous support were: composition of 15 % Teflon and 85 % carbon, pressure of 100 Kgf/cm 2 , temperature of 300 Celsius degrade and 20 minutes of hot-pressing. The pattern of gas flow distribution was made possible by machined interdigitated channels into conductor graphite plates. Several tests were run varying the load resistance to obtain the polarization curves. Comparison with a commercial PEMFC is also made

  15. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  16. Isotope exchange reactions in hydrogen mixtures

    International Nuclear Information System (INIS)

    Czaplinski, W.; Gula, A.; Kravtsov, A.; Mikhailov, A.; Popov, N.

    1990-12-01

    The rates of isotopic exchange for the excited states of muonic hydrogen are calculated as functions of collision energy. Ground state population q 1s for different collision energies, target densities and isotope concentrations is obtained. It is shown that for principal quantum numbers n > 5 the isotopic exchange still considerably influences the value of q 1s . (author)

  17. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  18. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Science.gov (United States)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  19. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  20. CFD simulation of fuel cell proton exchange membrane multichannel

    International Nuclear Information System (INIS)

    Argota, Raúl; García, Lázaro; Torre, Raciel de la; González, Daniel

    2015-01-01

    Hydrogen has several applications that make the strongest candidate for implementation as an energy carrier in the future sustainable scenario. Current hydrogen production is based on fossil fuels that have a high contribution to air pollution. The imminent depletion of fossil fuels and high emissions of greenhouse gases that cause consumption has brought the world to consider energy scenarios that are more environmentally friendly and yet profitable. The use of hydrogen as an energy carrier generally occurs with good application prospects. Fuel cells have attracted great interest for its application mainly in the transport sector. The fuel cell PEM proton exchange membrane which convert chemical energy stored in hydrogen into electrical energy directly and efficiently, with water as a byproduct, have the ability to reduce emissions and dependence on fossil fuels. A model for multiple cell PEM five channels using the ANSYS software CFD occurs. Performance analysis and optimization of the thermodynamic and geometric parameters of the fuel cell is performed. It was analyzed the overall electrical performance and assessed performance by local current density, flow and temperatures. (full text)

  1. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  2. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    Science.gov (United States)

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  3. Proton exchange between oxymethyl radical and acids and bases: semiempirical quantum-chemical study

    Directory of Open Access Journals (Sweden)

    Irina Pustolaikina

    2016-12-01

    Full Text Available The reactions with proton participation are widely represented in the analytical, technological and biological chemistry. Quantum-chemical study of the exchange processes in hydrogen bonding complexes will allow us to achieve progress in the understanding of the elementary act mechanism of proton transfer in hydrogen bonding chain as well as the essence of the acid-base interactions. Oxymethyl radical •CH2ОН is small in size and comfortable as a model particle that well transmits protolytic properties of paramagnetic acids having more complex structure. Quantum-chemical modeling of proton exchange reaction oxymethyl radical ∙CH2OH and its diamagnetic analog CH3OH with amines, carboxylic acids and water was carried out using UAM1 method with the help of Gaussian-2009 program. QST2 method was used for the search of transition state, IRC procedure was applied for the calculation of descents along the reaction coordinate. The difference in the structure of transition states of ∙CH2OH/ CH3OH with bases and acids has been shown. It has been confirmed that in the case of bases, consecutive proton exchange mechanism was fixed, and in the case of complexes with carboxylic acids parallel proton exchange mechanism was fixed. The similarity in the reaction behavior of paramagnetic and diamagnetic systems in the proton exchange has been found. It was suggested that the mechanism of proton exchange reaction is determined by the structure of the hydrogen bonding cyclic complex, which is, in turn, depends from the nature of the acid-base interactions partners.

  4. Multiphase Simulations and Design of Validation Experiments for Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Berning, Torsten

    2013-01-01

    Proton exchange membrane fuel cells directly convert into electricity the chemical energy of hydrogen and oxygen from air. The by-products are just water and waste heat. Depending on the operating conditions the water may be in the liquid or gas phase, and liquid water can hence plug the porous m...

  5. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  6. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  7. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca2+ exchangers

    OpenAIRE

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a ...

  8. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  9. Separation of hydrogen isotope by hydrogen-water exchange

    International Nuclear Information System (INIS)

    Isomura, Shohei; Kaetsu, Hayato; Nakane, Ryohei

    1979-01-01

    The deuterium exchange reaction between gaseous hydrogen and liquid water is studied by use of three kinds of trickle bed exchange columns packed with hydrophobic catalysts supporting platinum. All columns have the effective lengths of 30 cm. They are 17 mm, 30 mm, and 95 mm in diameters, respectively. The separation experiments are carried out by the once-through methods. The separation efficiencies of the columns are evaluated by the parameters such as the height equivalent to a theoretical plate (H. E. T. P.) and the mass transfer co-efficient. It is found that the operating condition of the exchange column is optimum when the superficial hydrogen flow velocity is 0.3 m/sec. (author)

  10. Internal humidifying of PEM [Proton Exchange Membrane] fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Staschewski, D [Karlsruhe Research Center (FZK), Karlsruhe (Germany). Inst. for Neutron Physics and Reactor Technics

    1996-12-01

    Hydrogen fuel cells (FC) for vehicular traction should stand out for a car-specific lightweight design. As regards PEMFC systems containing proton exchange membranes, this quality can be considerably improved by introducing porous bipolar plates which are conditioned by a water loop and deliver hot humidifying water to the adjacent membrane-electrode assembly (MEA). According to the principle of internal humidification here indicated special fuel cells based on sintered fiber and powder graphite were manufactured at FZK on a semi-technical scale. Self-made Pt/C electrodes hotpressed onto Nafion resulted in currents up to 200 A with pure oxygen as oxidant, providing the precondition for detailed studies of turnover and drainage rates within a monocell test arrangement. (author)

  11. Kinetics of hydrogen isotope exchange reactions

    International Nuclear Information System (INIS)

    Gold, V.; McAdam, M.E.

    1975-01-01

    Under the influence of tritium β-radiation, 1,4-dioxan undergoes hydrogen exchange with the solvent water. The inhibition of the reaction by known electron scavengers (Ag + , Cu 2+ , Ni 2+ , Co 2+ , Zn 2+ , H 3 + O) and also by species with high reactivity towards hydroxyl radicals but negligible reactivity towards solvated electrons (N 3 - , Br - , SCN - ) has been examined in detail. γ-irradiation similarly induces hydrogen exchange. The action of scavengers is interpreted as requiring the involvement of two separately scavengeable primary radiolysis products in the sequence of reactions leading to exchange. The presence of electron scavengers, even at high concentration, does not totally inhibit the exchange, and a secondary exchange route, involving a low vacancy state of inhibitor cations, is considered responsible for the 'unscavengeable' portion of the reaction, by providing an alternative exchange route. Analogies are drawn between the exchange reaction and other radiation-induced reactions that are thought to involve spur processes. Some implication of radiation-chemical studies in water-alcohol mixtures are indicated. (author)

  12. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  13. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  14. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    Science.gov (United States)

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  15. Annealed proton exchanged optical waveguides in lithium niobate differences between the X- and Z-cuts

    CERN Document Server

    Nekvindova, P; Cervena, J; Budnar, M; Razpet, A; Zorko, B; Pelicon, P; 10.1016/S0925-3467(01)00186-0

    2002-01-01

    Summarizes results and assessments of our systematic fabrication and characterization of proton exchanged (PE) and annealed proton exchanged (APE) waveguides in lithium niobate. This study focused on different behavior of crystallographically diverse X(1120) and Z (0001) substrate cuts during waveguide fabrication, and differences in characteristics of the resulting waveguides. Non-toxic adipic acid was used as a proton source, and the waveguides properties were defined by mode spectroscopy (waveguide characteristics) and neutron depth profiling (NDP, lithium concentration and distribution), infrared vibration spectra and elastic recoil detection analysis (ERDA, concentration and depth distribution of hydrogen). It was discovered that the X-cut structure is more permeable for moving particles (lithium and hydrogen ions), which leads to a higher effectiveness of the PE process within the X-cut. The explanation of this phenomenon is based on fitting X-cut orientation towards cleavage planes of lithium niobate c...

  16. Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter

    2005-01-01

    of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (Jørgensen, T. J. D., Gårdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc...... randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information...

  17. Two-photon exchange corrections in elastic lepton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The measured value of the proton charge radius from the Lamb shift of energy levels in muonic hydrogen is in strong contradiction, by 7-8 standard deviations, with the value obtained from electronic hydrogen spectroscopy and the value extracted from unpolarized electron-proton scattering data. The dominant unaccounted higher order contribution in scattering experiments corresponds to the two photon exchange (TPE) diagram. The elastic contribution to the TPE correction was studied with the fixed momentum transfer dispersion relations and compared to the hadronic model with off-shell photon-nucleon vertices. A dispersion relation formalism with one subtraction was proposed. Theoretical predictions of the TPE elastic contribution to the unpolarized elastic electron-proton scattering and polarization transfer observables in the low momentum transfer region were made. The TPE formalism was generalized to the case of massive leptons and the elastic contribution was evaluated for the kinematics of upcoming muon-proton scattering experiment (MUSE).

  18. High temperature proton exchange membranes prepared from epoxycyclohexylethyltrimethoxysilane and amino trimethylene phosphonic acid as anhydrous proton conductors

    International Nuclear Information System (INIS)

    Chen, Cheng; Shen, Chunhui; Kong, Gengjin; Gao, Shanjun

    2013-01-01

    High temperature anhydrous proton exchange membranes based on phosphonic acid were prepared from epoxycyclohexylethyltrimethoxysilane (EHTMS) and amino trimethylene phosphonic acid (ATMP) by sol–gel process. The structures and properties of membranes with different phosphonic acid content were extensively characterized by FTIR, TG-DSC and XRD. Their proton conductivity under dry condition was also investigated under different temperature. The results show that the proton conductivity of the prepared membranes strongly depends on temperature, and the proton conductivity ranges from 8.81 × 10 −5 S cm −1 at 20 °C to 4.65 × 10 −2 S cm −1 at 140 °C under anhydrous condition. It indicates that the increasing temperature is favorable for congregating of the grafted–PO 3 H 2 and increasing of the proton mobility. In addition, from the results of AFM images, it was confirmed that the continuous distribution of phosphonic acid groups is favorable for the formation of the proton transport channel, which can significantly enhance the proton conductivity of the membranes. Highlights: ► Hybrid membranes of Epoxycyclohexylethyltrimethoxysilane and Amino trimethylene phosphonic acid. ► The proton conductivity is 4.65 × 10 −2 S cm −1 at 140 °C under anhydrous condition. ► Continuous uniform distributions of phosphonic acid groups can be observed by AFM. ► There could be hydrogen bond network within high temperature membranes

  19. Imaging of endogenous exchangeable proton signals in the human brain using frequency labeled exchange transfer imaging.

    Science.gov (United States)

    Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M

    2013-04-01

    To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.

  20. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1984-01-01

    The objects of this invention are achieved by a dual temperature isotopic exchange process employing hydrogen-water exchange with water passing in a closed recirculation loop between a catalyst-containing cold tower and the upper portion of a catalyst-containing hot tower, with feed water being introduced to the lower portion of the hot tower and being maintained out of contact with the water recirculating in the closed loop. Undue retarding of catalyst activity during deuterium concentration can thus be avoided. The cold tower and the upper portion of the hot tower can be operated with relatively expensive catalyst material of higher catalyst activity, while the lower portion of the hot tower can be operated with a relatively less expensive, more rugged catalyst material of lesser catalyst activity. The feed water stream, being restricted solely to the lower portion of the hot tower, requires minimal pretreatment for the removal of potential catalyst contaminants. The catalyst materials are desirably coated with a hydrophobic treating material so as to be substantially inaccessible to liquid water, thereby retarding catalyst fouling while being accessible to the gas for enhancing isotopic exchange between hydrogen gas and water vapor. A portion of the water of the closed loop can be passed to a humidification zone to heat and humidify the circulating hydrogen gas and then returned to the closed loop

  1. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  2. Tritium-proton exchange on fresh and oxidized lecithin

    International Nuclear Information System (INIS)

    Schreiber, J.

    1978-01-01

    A method for exchange labelling of acid protons in lecithin and for their quantitative determination is described. The suitability of the method is discussed using both lecithin monohydrate and autoxidation products as examples. (author)

  3. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There

  4. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  5. Amide proton temperature coefficients as hydrogen bond indicators in proteins

    International Nuclear Information System (INIS)

    Cierpicki, Tomasz; Otlewski, Jacek

    2001-01-01

    Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures

  6. Intermolecular hydrogen bonds: From temperature-driven proton ...

    Indian Academy of Sciences (India)

    Abstract. We have combined neutron scattering and a range of numerical simulations to study hydrogen bonds in condensed matter. Two examples from a recent thesis will be presented. The first concerns proton transfer with increasing temperature in short inter- molecular hydrogen bonds [1,2]. These bonds have unique ...

  7. Probing water structure and transport in proton exchange membranes

    NARCIS (Netherlands)

    Ling, X.

    2018-01-01

    Proton exchange membrane fuel cells (PEMFCs) have attracted tremendous attention as alternative energy sources because of their high energy density and practically zero greenhouse gas emission - water is their only direct by-product. Critical to the function of PEMFCs is fast proton and water

  8. Imade-imide cross-linked PEEK proton exchange membrane.

    CSIR Research Space (South Africa)

    Luo, H

    2009-08-01

    Full Text Available The proton exchange membrane is a key component of polymer electrolyte membrane fuel cell (PEMFC). It plays an important role, conducts protons and separates the fuel from oxidant in PEMFC. DuPont’s Nafion is a perfluorinated sulfonic acid polymer...

  9. Laser spectroscopy of muonic hydrogen and the puzzling proton

    International Nuclear Information System (INIS)

    Pohl, Randolf

    2016-01-01

    Laser spectroscopy of muonic hydrogen atoms, μp, has revealed a proton root-mean-square (rms) charge radius r_E that is an order of magnitude more accurate than the CODATA world average from elastic electron–proton scattering and precision spectroscopy of regular (electronic) hydrogen. Interestingly, though, the value of r_E from μp is 4%, or 7 combined standard deviations smaller than the CODATA value of r_E. This discrepancy has been coined “proton radius puzzle”. We summarize the experiment and give a brief overview of the theory in muonic hydrogen. Finally we discuss some possible scenarios for the resolution of the “proton radius puzzle”. (author)

  10. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  11. Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Gårdsvoll, H.; Ploug, M.

    2005-01-01

    Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable...... if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional...... are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity...

  12. Two-photon exchange correction to the hyperfine splitting in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-12-15

    We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL. (orig.)

  13. Proton and hydrogen transport through two-dimensional monolayers

    International Nuclear Information System (INIS)

    Seel, Max; Pandey, Ravindra

    2016-01-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS 2 ) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS 2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS 2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene. (paper)

  14. Proton and hydrogen transport through two-dimensional monolayers

    Science.gov (United States)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  15. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1983-01-01

    Deuterium is concentrated in a hydrogen-water isotopic exchange process enhanced by the use of catalyst materials in cold and hot tower contacting zones. Water is employed in a closed liquid recirculation loop that includes the cold tower, in which deuterium is concentrated in the water, and the upper portion of the hot tower in which said deuterium is concentrated in the hydrogen stream. Feed water is fed to the lower portion of said hot tower for contact with the circulating hydrogen stream. The feed water does not contact the water in the closed loop. Catalyst employed in the cold tower and the upper portion of the hot tower, preferably higher quality material, is isolated from impurities in the feed water that contacts only the catalyst, preferably of lower quality, in the lower portion of the hot zone. The closed loop water passes from the cold zone to the dehumidification zone, and a portion of said water leaving the upper portion of the hot tower can be passed to the humidification zone and thereafter recycled to said closed loop. Deuterium concentration is enhanced in said catalytic hydrogen-water system while undue retarding of catalyst activity is avoided

  16. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  17. Water-Protein Hydrogen Exchange in the Micro-Crystalline Protein Crh as Observed by Solid State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Boeckmann, Anja; Juy, Michel; Bettler, Emmanuel; Emsley, Lyndon; Galinier, Anne; Penin, Francois; Lesage, Anne

    2005-01-01

    We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T 2 ' -selective 1 H- 13 C- 13 C correlation spectra for site-specific assignments of carbons nearby labile protein protons. We compare the proton T 2 ' selective scheme to frequency selective water observation in deuterated proteins, and discuss the impacts of deuteration on 13 C linewidths in Crh. We observe that in micro-crystalline proteins, solvent accessible hydroxyl and amino protons show comparable exchange rates with water protons as for proteins in solution, and that structural constraints, such as hydrogen bonding or solvent accessibility, more significantly reduce exchange rates

  18. Study of proton polarization in charge exchange process on optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1984-01-01

    Using high-power adjustable dye lasers for electron spin orientation in a charge-exchange target enables to significantly increase the proton polarization efficiency. A device is described that permits to avoid growth of the polarized proton beam emittance in a charge-exchange process in a strong magnetic field. The devise main feature is the use of an intensive source of neutral hydrogen atoms and the presence of a helium additional charge-exchange target which actualy is a proton ''source''. The helium charge-exchange cell is placed in the same magnetic field of a solenoid where a cell with oriented sodium is placed, a polarized electron being captured by a proton in the latter cell. In this case the beam at the solenoid inlet and outlet is in a neutral state; emittance growth related to the effect of end magnetic fields is not observed. The device after all prouduces polarized protons, their polarization degree is measured and the effect of various factors on polarization degree is studied. The description of the laser source and laser system is given. Measurement results have shown the beam intensity of neutral 7 keV atoms which passed through a polarizer to be 2 mA. The proton current doesn't depend. On the beeld fin the region of chrge exchange for the 8 kGs magnetic field. The degree of sodium polarization was 80% and polarized proton current approximately 70 μA at a temperature of the polarized sodium cell corresponding to the density of sodium vapar approximately 3x10 13 at/cm 2

  19. Process for exchanging tritium between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1981-01-01

    An improved method of exchanging and concentrating the radioactive isotope of hydrogen from water or hydrogen gas is described. This heavy water enrichment system involves a low pressure, dual temperature process. (U.K.)

  20. Observation of internucleotide NH...N hydrogen bonds in the absence of directly detectable protons

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Kettani, Abdelali; Skripkin, Eugene; Patel, Dinshaw J.

    1999-01-01

    Several structural motifs found in nucleic acids involve N-H ... N hydrogen bonds in which the donor hydrogens are broadened to extinction due to chemical or conformational exchange. In such situations, it is impossible to use the well-established HNN-COSY or soft HNN-COSY experiments, which report the presence of the hydrogen bond directly on the donor proton(s). We present a pulse sequence, H(CN)N(H), for alleviating this problem in hydrogen bonds of the type N d H ... N a -CH, in which the donor N d nitrogen is correlated with the corresponding non-exchangeable C-H proton associated with the acceptor N a nitrogen. In this way, missing N d H ... N a correlations in an HNN-COSY spectrum may be recovered from CH-N d correlations in the H(CN)N(H) spectrum. By correlating a different set of nuclei relative to the HNN-COSY class of experiments, the H(CN)N(H) experiment also serves to remove ambiguities associated with degeneracies in HNN-COSY spectra. The technique is demonstrated on d(GGAGGAG) 4 ,a quadruplex containing a novel A . (G . G . G . G) . A hexad and on d(GGGCAGGT) 4 , containing a G . C . G . C tetrad, in which missing NH 2 ... N7 correlations are retrieved via H8-(N2,N6) correlations in the H(CN)N(H) spectrum

  1. The mass balance of a Proton Exchange Membrane Fuel Cell (PEMFC)

    International Nuclear Information System (INIS)

    Miloud, S.; Kamaruzzaman Sopian; Wan Ramli Wan Daud

    2006-01-01

    A Proton Exchange Membrane Fuel Cell (PEMFC), operating at low temperature uses a simple chemical process to combine hydrogen and oxygen into water, producing electric current and heat during the electrochemical reaction. This work concern on the theoretical consideration of the mass balance has been evaluated to predict the mass flow rate of the both gases (hydrogen/oxygen), the water mass balance, and the heat transfer in order to design a single cell PEMFC stack with a better flow field distributor on the performance of Polymer Electrolyte membrane fuel cells

  2. Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-08-15

    We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)

  3. The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath

    Science.gov (United States)

    Chalov, S. V.

    2018-06-01

    The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.

  4. High temperature proton exchange membranes prepared from epoxycyclohexylethyltrimethoxysilane and amino trimethylene phosphonic acid as anhydrous proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng [Department of Polymer Materials and Engineering, School of Material Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070 (China); Shen, Chunhui, E-mail: shenchunhui@whut.edu.cn [Department of Polymer Materials and Engineering, School of Material Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070 (China); Kong, Gengjin; Gao, Shanjun [Department of Polymer Materials and Engineering, School of Material Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070 (China)

    2013-06-15

    High temperature anhydrous proton exchange membranes based on phosphonic acid were prepared from epoxycyclohexylethyltrimethoxysilane (EHTMS) and amino trimethylene phosphonic acid (ATMP) by sol–gel process. The structures and properties of membranes with different phosphonic acid content were extensively characterized by FTIR, TG-DSC and XRD. Their proton conductivity under dry condition was also investigated under different temperature. The results show that the proton conductivity of the prepared membranes strongly depends on temperature, and the proton conductivity ranges from 8.81 × 10{sup −5} S cm{sup −1} at 20 °C to 4.65 × 10{sup −2} S cm{sup −1} at 140 °C under anhydrous condition. It indicates that the increasing temperature is favorable for congregating of the grafted–PO{sub 3}H{sub 2} and increasing of the proton mobility. In addition, from the results of AFM images, it was confirmed that the continuous distribution of phosphonic acid groups is favorable for the formation of the proton transport channel, which can significantly enhance the proton conductivity of the membranes. Highlights: ► Hybrid membranes of Epoxycyclohexylethyltrimethoxysilane and Amino trimethylene phosphonic acid. ► The proton conductivity is 4.65 × 10{sup −2} S cm{sup −1} at 140 °C under anhydrous condition. ► Continuous uniform distributions of phosphonic acid groups can be observed by AFM. ► There could be hydrogen bond network within high temperature membranes.

  5. Partially fluorinated electrospun proton exchange membranes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a novel porous membrane layer, to a novel method for producing a membrane, and the membranes produced by the novel method. The present invention further relates to a fuel cell comprising the porous layer, as well as any use of the porous layer in a fuel cell or in...... copolymer, and wherein at least one side chain of the graft copolymer comprises a polymerization product of a polymerizable proton donor group or a precursor thereof....

  6. Water-hydrogen isotope exchange process analysis

    International Nuclear Information System (INIS)

    Fedorchenko, O.; Alekseev, I.; Uborsky, V.

    2008-01-01

    The use of a numerical method is needed to find a solution to the equation system describing a general case of heterogeneous isotope exchange between gaseous hydrogen and liquid water in a column. A computer model of the column merely outputting the isotope compositions in the flows leaving the column, like the experimental column itself, is a 'black box' to a certain extent: the solution is not transparent and occasionally not fully comprehended. The approximate analytical solution was derived from the ZXY-diagram (McCabe-Thiele diagram), which illustrates the solution of the renewed computer model called 'EVIO-4.2' Several 'unusual' results and dependences have been analyzed and explained. (authors)

  7. Performance Analysis of Air Breathing Proton Exchange Membrane Fuel Cell Stack (PEMFCS) At Different Operating Condition

    Science.gov (United States)

    Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.

    2017-08-01

    The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.

  8. Deuterium exchange between liquid water and gaseous hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The overall separation factors for the deuterium exchange between liquid water and gaseous hydrogen have been calculated over a wide range of temperature, pressure and deuterium concentrations. These data would be useful in the design and other considerations for heavy water production, based on hydrogen-water exchange. (author)

  9. Two-dimensional analytical model of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Liu, Jia Xing; Guo, Hang; Ye, Fang; Ma, Chong Fang

    2017-01-01

    In this study, a two-dimensional full cell analytical model of a proton exchange membrane fuel cell is developed. The analytical model describes electrochemical reactions on the anode and cathode catalyst layer, reactants diffusion in the gas diffusion layer, and gases flow in the gas channel, etc. The analytical solution is derived according to the basic physical equations. The performance predicted by the model is in good agreement with the experimental data. The results show that the polarization mainly occurs in the cathode side of the proton exchange membrane fuel cell. The anodic overpotential cannot be neglected. The hydrogen and oxygen concentrations decrease along the channel flow direction. The hydrogen and oxygen concentrations in the catalyst layer decrease with the current density. As predicted by the model, concentration polarization mainly occurs in the cathode side. - Highlights: • A 2D full cell analytical model of a proton exchange membrane fuel cell is developed. • The analytical solution is deduced according to the basic equations. • The anode overpotential is not so small that it cannot be neglected. • Species concentration distributions in the fuel cell is obtained and analyzed.

  10. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    In this study a general PEMFC (Proton Exchange Membrane Fuel Cell) model has been developed to take into account the effect of pressure losses, water crossovers, humidity aspects and voltage over potentials in the cells. The model is zero dimensional and it is assumed to be steady state. The effect...

  11. Metal and hydrogen catalysis in isotopic hydrogen exchange in some biologically important heterocyclic compounds

    International Nuclear Information System (INIS)

    Buncel, E.; Joly, H.A.; Jones, J.R.; Onyido, I.

    1989-01-01

    This study reports on the catalytic roles of metal and hydrogen ions in tritium exchange in some heterocyclic substrates which occur as residues in many biologically important molecules. We have found that detritiation of 1-methyl[2- 3 H]imidazole is inhibited by a number of metal ions. As well, inhibition of exchange rates was noted with Ag(I) and Cu(II) for [2- 3 H]thiazole and 1-methyl[8- 3 H]inosine, with Ag(I) for [2- 3 H]benzothiazole, and with Cu(II) for 1-methyl[8- 3 H]guanosine. A complete mechanistic description, which includes the various metal ion-coordinated species generated under the experimental conditions, is presented. The results demonstrate the reactivity order: protonated >> metal-coordinated >> neutral substrates. The differential catalytic effects of metal and hydrogen ions in these processes are discussed in terms of the extent of charge developed on the ligating heteroatom in the reaction intermediate. (author). 13 refs.; 1 fig

  12. Two-state approximation applied to hydrogen formation by proton impact on positronium

    Directory of Open Access Journals (Sweden)

    E Ghanbari Adivi

    2009-09-01

    Full Text Available Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-state approximation method is applied to charge exchange process in proton-positronium collision system. The nonorthogonality of initial and final states and its effects on the angular distribution of the differential cross sections is taken into account by using this method. The state-to-state differential cross sections are reported for transition from ground state of positronium into the ground and a few lowest excited states of the formed hydrogen. Integrated cross sections are presented as well.

  13. Proton exchange mechanism of synthesizing CdS quantum dots in nafion

    International Nuclear Information System (INIS)

    Nandakumar, P.; Vijayan, C.; Murti, Y.V.G.S.; Dhanalakshmi, K.; Sundararajan, G.

    1999-01-01

    Nanocrystals of CdS are synthesized in the proton exchange membrane nafion in different sizes in the range 1.6 to 6 nm. To understand the process leading to the formation of these quantum dots, we have probed the proton exchange by ac conductance measurements in the frequency range 100 Hz to 13 MHz. Nafion shows good electrical conductivity due to proton transport probably via the Grothus mechanism. Incorporation of cadmium ions by replacement of the hydrogen ions in the sulphonic acid group resulted in a large decrease in conductance indicating the reduction of the mobile carrier density. The conductivity plots all show strong frequency dependence with higher conductance towards the higher frequencies where a near-flat frequency response is seen. After the formation of CdS clusters, there is a partial recovery of conductance corresponding to the reinstatement of the protonic carriers on the side groups. The conductivity of the nafion films embedded with the semiconductor quantum dots exhibits a size-dependence with the highest conductivity obtained for the largest clusters. These findings lend clear experimental evidence for the model of synthesis of quantum dots in nafion by the exchange mechanism. (author)

  14. Preparations of an inorganic-framework proton exchange nanochannel membrane

    Science.gov (United States)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  15. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  16. Rethinking the Combination of Proton Exchanger Inhibitors in Cancer Therapy.

    Science.gov (United States)

    Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Supuran, Claudiu T; Fais, Stefano

    2017-12-23

    Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na⁺/H⁺ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.

  17. Mixed protonic-electronic conductors for hydrogen separation membranes

    Science.gov (United States)

    Song, Sun-Ju

    2003-10-01

    The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3-delta at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3-delta was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.

  18. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    Science.gov (United States)

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively

  19. The Rydberg constant and proton size from atomic hydrogen

    Science.gov (United States)

    Beyer, Axel; Maisenbacher, Lothar; Matveev, Arthur; Pohl, Randolf; Khabarova, Ksenia; Grinin, Alexey; Lamour, Tobias; Yost, Dylan C.; Hänsch, Theodor W.; Kolachevsky, Nikolai; Udem, Thomas

    2017-10-01

    At the core of the “proton radius puzzle” is a four-standard deviation discrepancy between the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R∞ = 10973731.568076(96) per meterand rp = 0.8335(95) femtometer. Our rp value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

  20. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions.

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0±1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼10(4)s(-1) at pH 7.4 and 37°C, the activation energy, 50.2kJ/mol and its pH dependence at 1.1°C was fitted to: k (s(-1))=520+6.5×10(7)[H(+)]+3.0×10(9)[OH(-)]. Copyright © 2014. Published by Elsevier Inc.

  1. Trends in the exchange current for hydrogen evolution

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Logadottir, Ashildur

    2005-01-01

    A density functional theory database of hydrogen chemisorption energies on close packed surfaces of a number of transition and noble metals is presented. The bond energies are used to understand the trends in the exchange current for hydrogen evolution. A volcano curve is obtained when measured...... exchange currents are plotted as a function of the calculated hydrogen adsorption energies and a simple kinetic model is developed to understand the origin of the volcano. The volcano curve is also consistent with Pt being the most efficient electrocatalyst for hydrogen evolution. (c) 2005...

  2. Hydrogen electrolysis using a NASICON solid protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Gulens, J.; Longhurst, T.H.; Kuriakose, A.K.; Canaday, J.D.

    1988-09-01

    A protonic conductor based on a bonded NASICON disc has been used for hydrogen electrolysis at 300 K. Currents up to 200 mA can be passed through the disc, and the electrolysis proceeds with 100% current efficiency. The resistance of the ceramic is affected by its extent of hydration. Degradation and failure of the ceramic occurs at the cathode as a result of electrolysis.

  3. Correlation between morphology, water uptake, and proton conductivity in radiation-grafted proton-exchange membranes

    DEFF Research Database (Denmark)

    Balog, Sandor; Gasser, Urs; Mortensen, Kell

    2010-01-01

    An SANS investigation of hydrated proton exchange membranes is presented. Our membranes were synthesized by radiation-induced grafting of ETFE with styrene in the presence of a crosslinker, followed by sulfonation of the styrene. The contrast variation method was used to understand the relationship...

  4. Solvent Exchange Rates of Side-chain Amide Protons in Proteins

    International Nuclear Information System (INIS)

    Rajagopal, Ponni; Jones, Bryan E.; Klevit, Rachel E.

    1998-01-01

    Solvent exchange rates and temperature coefficients for Asn/Gln side-chain amide protons have been measured in Escherichia coli HPr. The protons of the eight side-chain amide groups (two Asn and six Gln) exhibit varying exchange rates which are slower than some of the fast exchanging backbone amide protons. Differences in exchange rates of the E and Z protons of the same side-chain amide group are obtained by measuring exchange rates at pH values > 8. An NOE between a side-chain amide proton and a bound water molecule was also observed

  5. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  6. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  7. On the Experimental Investigation of the Clamping Pressure Effects on the Proton Exchange Membrane Water Electrolyser Cell Performance

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Frensch, Steffen Henrik; Kær, Søren Knudsen

    2017-01-01

    energy sources. The proton exchange membrane water electrolyser(PEMWE) is the most candidate technology to produce hydrogen from renewable energysources. PEMWE cell splits water into hydrogen and oxygen when an electric current is passedthrough it. Electrical current forces the positively charged ions...... to migrate to negatively chargedcathode, where hydrogen is reduced. Meanwhile, oxygen is produced at the anode sideelectrode and escape as a gas with the circulating water. In the recent few years, PEMWE’s R&D has inched towards; operating conditions; such asincreased operating temperature and cathode...

  8. Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Lopez del Amo, Juan-Miguel; Fink, Uwe; Reif, Bernd

    2010-01-01

    We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15 N-T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s -1 . Backbone amide 15 N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D 2 O is employed as a solvent for sample preparation. Due to the intrinsically long 15 N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.

  9. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  10. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Liying Ma

    2017-12-01

    Full Text Available Based on a previously developed polyamide proton conductive macromolecule, the nano-scale structure of the self-assembled proton conductive channels (PCCs is adjusted via enlarging the nano-scale pore size within the macromolecules. Hyperbranched polyamide macromolecules with different size are synthesized from different monomers to tune the nano-scale pore size within the macromolecules, and a series of hybrid membranes are prepared from these two micromoles to optimize the PCC structure in the proton exchange membrane. The optimized membrane exhibits methanol permeability low to 2.2 × 10−7 cm2/s, while the proton conductivity of the hybrid membrane can reach 0.25 S/cm at 80 °C, which was much higher than the value of the Nafion 117 membrane (0.192 S/cm. By considering the mechanical, dimensional, and the thermal properties, the hybrid hyperbranched polyamide proton exchange membrane (PEM exhibits promising application potential in direct methanol fuel cells (DMFC.

  11. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    Science.gov (United States)

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Radiative proton-capture nuclear processes in metallic hydrogen

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo

    2001-01-01

    Protons being the lightest nuclei, metallic hydrogen may exhibit the features of quantum liquids most relevant to enormous enhancement of nuclear reactions; thermonuclear and pycnonuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycnonuclear p-d reactions are prodigiously high at densities ≥20 g/cm 3 , pressures ≥1 Gbar, and temperatures ≥950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates, owing to strong screening by K-shell electrons, if the densities ≥60-80 g/cm 3 , the pressures ≥7-12 Gbar, and the temperatures just above solidification. The possibilities and significance of pycnonuclear p-d fusion experiments are specifically remarked

  13. Proton exchange membranes based on PVDF/SEBS blends

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Huneault, M.A. [Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que. (Canada J4B 6Y4)

    2006-03-09

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9x10{sup -2} to 5.5x10{sup -3}Scm{sup -1}, and improved water management. (author)

  14. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    Science.gov (United States)

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  15. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  16. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  17. Exposure parameters in proton beam writing for hydrogen silsesquioxane

    International Nuclear Information System (INIS)

    Kan, J.A. van; Zhang, F.; Zhang, C.; Bettiol, A.A.; Watt, F.

    2008-01-01

    In proton beam writing (PBW) a focused MeV proton beam is scanned in a predetermined pattern over a resist (e.g. PMMA, SU-8 or HSQ), which is subsequently chemically developed. In e-beam writing as well as p-beam writing the energy loss of the primary beam is dominated by energy transfer to substrate electrons. Unlike the high energy secondary electrons generated during e-beam writing the secondary electrons induced by the primary proton beam have low energy and therefore a limited range, resulting in minimal proximity effects. The low proximity effects exhibited by p-beam writing coupled with the straight trajectory and high penetration of the proton beam enables the production of high aspect ratio, high density 3D micro and nanostructures with well defined smooth side walls to be directly written into resist materials. This property together with the stability and focusing power of the end station ensures even exposures with nm smoothness and allows fabrication of details down to the 20 nm level. In this paper, we present results like contrast and sensitivity for PBW using, hydrogen silsesquioxane (HSQ) and XR-1541, both are non-C based resists. Unlike PMMA and SU-8 resist HSQ shows aging effects, requiring optimized processing parameters in PBW

  18. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  19. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  20. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  1. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  2. Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction

    Energy Technology Data Exchange (ETDEWEB)

    Luduena, Guillermo Andres

    2011-07-01

    This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding

  3. Charge transfer in proton-hydrogen collisions under Debye plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Arka [Department of Mathematics, Burdwan University, Golapbag, Burdwan 713 104, West Bengal (India); Kamali, M. Z. M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ghoshal, Arijit, E-mail: arijit98@yahoo.com [Department of Mathematics, Burdwan University, Golapbag, Burdwan 713 104, West Bengal (India); Department of Mathematics, Kazi Nazrul University, B.C.W. Campus, Asansol 713 304, West Bengal (India); Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ratnavelu, K. [Department of Mathematics, Kazi Nazrul University, B.C.W. Campus, Asansol 713 304, West Bengal (India)

    2015-02-15

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20–1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  4. Which hydrogen atom of toluene protonates PAH molecules in (+)-mode APPI MS analysis?

    Science.gov (United States)

    Ahmed, Arif; Ghosh, Manik Kumer; Choi, Myung Chul; Choi, Cheol Ho; Kim, Sunghwan

    2013-03-01

    A previous study (Ahmed, A. et al., Anal. Chem. 84, 1146-1151( 2012) reported that toluene used as a solvent was the proton source for polyaromatic hydrocarbon compounds (PAHs) that were subjected to (+)-mode atmospheric-pressure photoionization. In the current study, the exact position of the hydrogen atom in the toluene molecule (either a methyl hydrogen or an aromatic ring hydrogen) involved in the formation of protonated PAH ions was investigated. Experimental analyses of benzene and anisole demonstrated that although the aromatic hydrogen atom of toluene did not contribute to the formation of protonated anthracene, it did contribute to the formation of protonated acridine. Thermochemical data and quantum mechanical calculations showed that the protonation of anthracene by an aromatic ring hydrogen atom of toluene is endothermic, while protonation by a methyl hydrogen atom is exothermic. However, protonation of acridine by either an aromatic ring hydrogen or a methyl hydrogen atom of toluene is exothermic. The different behavior of acridine and anthracene was attributed to differences in gas-phase basicity. It was concluded that both types of hydrogen in toluene can be used for protonation of PAH compounds, but a methyl hydrogen atom is preferred, especially for non-basic compounds.

  5. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  6. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  7. Model-independent determination of the two-photon exchange contribution to hyperfine splitting in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara; Pineda, Antonio [Grup de Física Teòrica, Dept. Física and IFAE-BIST, Universitat Autònoma de Barcelona,E-08193 Bellaterra (Barcelona) (Spain)

    2017-04-11

    We obtain a model-independent prediction for the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen. We use the relation of the Wilson coefficients of the spin-dependent dimension-six four-fermion operator of NRQED applied to the electron-proton and to the muon-proton sectors. Their difference can be reliably computed using chiral perturbation theory, whereas the Wilson coefficient of the electron-proton sector can be determined from the hyperfine splitting in hydrogen. This allows us to give a precise model-independent determination of the Wilson coefficient for the muon-proton sector, and consequently of the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen, which reads δĒ{sub pμ,HF}{sup TPE}(nS)=−(1/(n{sup 3}))1.161(20) meV. Together with the associated QED analysis, we obtain a prediction for the hyperfine splitting in muonic hydrogen that reads E{sub pμ,HF}{sup th}(1S)=182.623(27) meV and E{sub pμ,HF}{sup th}(2S)=22.8123(33) meV. The error is dominated by the two-photon exchange contribution.

  8. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  9. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...... been investigated. The fuel cell stack used in this model is developed using a Ballard PEMFC [1], so that the equations used in the stack modeling are derived from the experimental data. The stack can produce 3 to 15 kilowatt electricity depending on the number of cells used in the stack. Some...

  10. Cross-lined PEEK proton exchange membranes for fuel cell - Conference Poster

    CSIR Research Space (South Africa)

    Luo, H

    2009-07-01

    Full Text Available The low-cost cross-linked Polyetheretherketone (PEEK) proton exchange membranes were prepared via the simple route. The membranes exhibited similar electrochemical properties as compared with commercial Nafion. The membranes were highly proton...

  11. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    Science.gov (United States)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during

  12. Controlling fuel crossover and hydration in ultrathin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts

    DEFF Research Database (Denmark)

    Wang, Rujie; Zhang, Wenjing (Angela); He, Gaohong

    2014-01-01

    and provided in situ hydration inside Nafion membranes to maintain their proton conductivity level. Furthermore, LDH nanosheets reinforced the Nafion membranes, with 181% improvement in tensile modulus and 166% improvement in yield strength. In a hydrogen fuel cell running with dry fuel, the membrane......An ultra-thin proton exchange membrane with Pt-nanosheet catalysts was designed for a self-humidifying fuel cell running on H2 and O2. In this design, an ultra-thin Nafion membrane was used to reduce ohmic resistance. Pt nanocatalysts were uniformly anchored on exfoliated, layered double hydroxide...

  13. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał; Kijak, Michał; Piwonski, Hubert Marek; Herbich, Jerzy; Waluk, Jacek

    2017-01-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  14. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  15. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  16. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  17. Exchange of deuterium with hydrogen of zeolite catalyst surface

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Dmitriev, R.V.; Penchev, V.; Kanazirev, V.; Minchev, Kh.; Kasimov, Ch.K.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Obshta i Organichna Khimiya; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1981-01-01

    Isotope heteromolecular exchange of hydrogen on the reduced nickel-containing zeolites takes places at the temperatures above 100 deg and it is controlled by activated hydrogen transfer from metal particles on the substrate surface. High-temperature redox treatment of nickel-containing zeolites results in the formation of large nickel crystallites on zeolite external faces. The rest part of nickel remains in zeolite pores and conditions a high promoting effect in the exchange reaction. Catalytic activity of reduced zeolites NiCaNaY in toluene disproportionation increases considerably only in the cases when nickel is introduced into zeolite by means of ion exchange. Close spatial location of nickel particles and OH groups promotes the procedure of both isotope exchange and disproportionation of toluene [ru

  18. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  19. Combined electrolysis catalytic exchange (CECE) process for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Butler, J.P.

    1978-01-01

    Hydrogen isotopes can be separated efficiently by a process which combines an electrolysis cell with a trickle bed column packed with a hydrophobic platinum catalyst. The column effects isotopic exchange between countercurrent streams of electrolytic hydrogen and liquid water while the electrolysis cell contributes to isotope separation by virtue of the kinetic isotope effect inherent in the hydrogen evolution reaction. The main features of the CECE process for heavy water production are presented as well as a discussion of the inherent positive synergistic effects, and other advantages and disadvantages of the process. Several potential applications of the process in the nuclear power industry are discussed. 3 figures, 2 tables

  20. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  1. An S-N2-model for proton transfer in hydrogen-bonded systems

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism of proton transfer in donor-acceptor complexes with long hydrogen bonds is suggested. The transition is regarded as totally adiabatic. Two closest water molecules that move synchronously by hindered translation to and from the reaction complex are crucial. The water molecules induce...... a shift of the proton from the donor to the acceptor with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. Expressions for the activation barrier and kinetic hydrogen isotope effect are derived. The general scheme is illustrated with the use...... of model molecular potentials, and with reference to the excess proton conductivity in aqueous solution....

  2. Spin-locking vs. chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2010-01-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270

  3. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.

  4. Kinetics of solid-phase in ion exchange on tin hydrogen phosphate

    International Nuclear Information System (INIS)

    Kislitsyn, M.N.; Ketsko, V.A.; Yaroslavtsev, A.B.

    2004-01-01

    Solid state reactions in mixture of tin hydrogen phosphate and alkali metal (M=Na, K, Cs) chlorides have been studied both in the mode of polythermal heating and at a fixed temperature, using data of X-ray phase and thermogravimetric analyses. In the range 400-750 Deg C solid state ion exchange reactions occur in the systems studied and yield mono-- and dialkali phosphates MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 . Counter diffusion coefficients for alkali metal cations and protons in the matrices of compositions MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 have been determined [ru

  5. On the importance of exchangeable NH protons in creatine for the magnetic coupling of creatine methyl protons in skeletal muscle

    NARCIS (Netherlands)

    Kruiskamp, M.J.; Nicolaij, K.

    2001-01-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the

  6. Hydrogen-deuterium exchange in imidazole as a tool for studying histidine phosphorylation.

    Science.gov (United States)

    Cebo, Małgorzata; Kielmas, Martyna; Adamczyk, Justyna; Cebrat, Marek; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2014-12-01

    Isotope exchange at the histidine C2 atom of imidazole in D2O solution is well known to occur at a significantly slower rate than the exchange of amide protons. Analysis of the kinetics of this isotope-exchange reaction is proposed herein as a method of detecting histidine phosphorylation. This modification of His-containing peptides is challenging to pinpoint because of its instability under acidic conditions as well as during CID-MS analysis. In this work, we investigated the effect of phosphorylation of the histidine side chain in peptides on deuterium-hydrogen exchange (DHX) in the imidazole. The results demonstrate that phosphorylation dramatically slows the rate of the DHX reaction. This phenomenon can be applied to detect phosphorylation of peptides at the histidine residue (e.g., in enzymatic digests). We also found that the influence of the peptide sequence on the exchange kinetics is relatively small. A CID fragmentation experiment revealed that there was no detectable hydrogen scrambling in peptides deuterated at C2 of the imidazole ring. Therefore, MS/MS can be used to directly identify the locations of deuterium ions incorporated into peptides containing multiple histidine moieties.

  7. Exchange reaction between tritiated hydrogen and water vapor

    International Nuclear Information System (INIS)

    Yamada, Koichi; Takano, Kenichi; Watanabe, Tamaki.

    1979-01-01

    Exchange reaction of tritiated hydrogen to water vapor under the condition of tritium gas concentration between 1 μCi/l and 1 mCi/l was studied. Tritium gas with hydrogen gas of 5 Torr and water of 20 mg were enclosed in a Pyrex glass ampule with volume of about 100 ml. The mixed gas with water vapor was heated with electric furnace. The heating time was between 2 and 100 hr, and the temperature was 776, 725, 675, 621, and 570.5 0 K. After heating, tritiated water was trapped with liquid nitrogen, and counted with a liquid scintillation counter. The radioactive concentration of initial tritiated hydrogen was measured with a calibrated ionization chamber. The main results obtained are as follows; 1) the concentration of produced tritiated water is well proportioned to that of initial tritiated hydrogen, 2) the activation energy of exchange reaction from tritiated hydrogen to tritiated water is 26.2 kcal/mol and that of inverse reaction is 27.4 kcal/mol, 3) the reaction rate at room temperature which calculated with activation energy is 1.04 x 10 -13 day -1 , and then exchange reaction at room temperature is negligible. (author)

  8. Shock-wave proton acceleration from a hydrogen gas jet

    Science.gov (United States)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  9. Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins

    International Nuclear Information System (INIS)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean

    2013-01-01

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, 1 H– 15 N HSQC, is used to measure the 15 N transverse relaxation rate (R 2 ), the measured R 2 rate is convoluted with the HX rate (k HX ) and has higher apparent R 2 values. Since the 15 N R 2 measurement is important for analyzing protein backbone dynamics, the HX effect on the R 2 measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing 15 N R 2 CPMG experiments on α-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R 2 CPMG can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D 2 O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R 2 CPMG values be obtained by methods described herein.

  10. Development of a proton exchange membrane fuel cell cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jenn Jiang; Zou, Meng Lin [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-05-01

    A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power. (author)

  11. Novel membranes for proton exchange membrane fuel cell operation above 120°C. Final report for period October 1, 1998 to December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Supramaniam [Princeton Univ., NJ (United States); Lee, Seung-Jae [Princeton Univ., NJ (United States); Costamagna, Paola [Princeton Univ., NJ (United States); Yang, Christopher [Princeton Univ., NJ (United States); Adjemian, Kevork [Princeton Univ., NJ (United States); Bocarsly, Andrew [Princeton Univ., NJ (United States); Ogden, Joan M. [Princeton Univ., NJ (United States); Benziger, Jay [Princeton Univ., NJ (United States)

    2000-05-01

    In this project we investigated the experimental performance of three new classes of membranes, composites of perfluorosulfonic acid polymers with heteropolyacides, hydrated oxides and fast proton conducting glasses, which are promising candidates as electrolytes for proton exchange membrane fuel cells (PEMFCs), capable of operation at temperatures above 120°C. The motivations for PEMFC's operation at this temperature are to: 1) minimize the CO poisoning problem (adsorption of CO onto the platinum catalyst is greatly reduced at these temperatures), 2) find better solutions for the water and thermal management problems in proton exchange membrane fuel cells, 3) find potentially lower cost materials for proton exchange membranes. We prepared and characterized a variety of novel membrane materials. The most promising of these have been evaluated for performance in a single, small area (5cm2) fuel cell run on hydrogen and oxygen. Our results establish the technical feasibility of PEMFC operation above 120°C.

  12. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins.

    Science.gov (United States)

    Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2017-05-01

    We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.

  13. Molecular simulations of hydrated proton exchange membranes. The structure

    Energy Technology Data Exchange (ETDEWEB)

    Marcharnd, Gabriel [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie; Bordeaux Univ., Talence (France). Dept. of Chemistry; Bopp, Philippe A. [Bordeaux Univ., Talence (France). Dept. of Chemistry; Spohr, Eckhard [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie

    2013-01-15

    The structure of two hydrated proton exchange membranes for fuel cells (PEMFC), Nafion {sup registered} (Dupont) and Hyflon {sup registered} (Solvay), is studied by all-atom molecular dynamics (MD) computer simulations. Since the characteristic times of these systems are long compared to the times for which they can be simulated, several different, but equivalent, initial configurations with a large degree of randomness are generated for different water contents and then equilibrated and simulated in parallel. A more constrained structure, analog to the newest model proposed in the literature based on scattering experiments, is investigated in the same way. One might speculate that a limited degree of entanglement of the polymer chains is a key feature of the structures showing the best agreement with experiment. Nevertheless, the overall conclusion remains that the scattering experiments cannot distinguish between the several, in our view equally plausible, structural models. We thus find that the characteristic features of experimental scattering curves are, after equilibration, fairly well reproduced by all systems prepared with our method. We thus study in more detail some structural details. We attempt to characterize the spatial and size distribution of the water rich domains, which is where the proton diffusion mostly takes place, using several clustering algorithms. (orig.)

  14. A simple electric circuit model for proton exchange membrane fuel cells

    Science.gov (United States)

    Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.

    A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.

  15. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  16. Multi-dimensional modeling of CO poisoning effects on proton exchange membrane fuel cells (PEMFCs)

    International Nuclear Information System (INIS)

    Ju, Hyun Chul; Lee, Kwan Soo; Um, Suk Kee

    2008-01-01

    Carbon monoxide (CO), which is preferentially absorbed on the platinum catalyst layer of a proton exchange membrane fuel cell (PEMFC), is extremely detrimental to cell performance. Essentially, the carbon monoxide absorption diminishes the cell's performance by blocking and reducing the number of catalyst sites available for the hydrogen oxidation reaction. In order to obtain a full understanding of CO poisoning characteristics and remediate CO-poisoned PEMFCs, a CO poisoning numerical model is developed and incorporated into a fully three-dimensional electrochemical and transport coupled PEMFC model. By performing CFD numerical simulations, this paper clearly demonstrates the CO poisoning mechanisms and characteristics of PEMFCs. The predictive capability for CO poisoning effects enables us to find major contributors to CO tolerance in a PEMFC and thus successfully integrate CO-resistant fuel cell systems

  17. Investigations of the temperature distribution in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Jung, Chi-Young; Shim, Hyo-Sub; Koo, Sang-Man; Lee, Sang-Hwan; Yi, Sung-Chul

    2012-01-01

    A two-dimensional, non-isothermal model of a proton exchange membrane fuel cell was implemented to elucidate heat balance through the membrane electrode assembly (MEA). To take local utilization of platinum catalyst into account, the model was presented by considering the formation of agglomerated catalyst structure in the electrodes. To estimate energy balance through the MEA, various modes of heat generation and depletion by reversible/irreversible heat release, ohmic heating and phase change of water were included in the present model. In addition, dual-pathway kinetics, that is a combination of Heyrovsky–Volmer and Tafel–Volmer kinetics, were employed to precisely describe the hydrogen oxidation reaction. The proposed model was validated with experimental cell polarization, resulting in excellent fit. The temperature distribution inside the MEA was analyzed by the model. Consequently, a thorough investigation was made of the relation between membrane thickness and the temperature distribution inside the MEA.

  18. Hydrogen, deuterium, and tritium isotope exchange experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.D.; Andrew, P.; Bracco, G.; Conroy, S.; Corti, S.; Ehrenberg, J.; Goodall, D.H.J.; Jarvis, O.N.; Lomas, P.; Loughlin, M.; Peacock, A.T.; Saibene, G.; Sadler, G.; Sartori, R.; Stamp, M.F.; Thomas, P.R.; Belle, P. van (JET Joint Untertaking, Abingdon, Oxfordshire (United Kingdom))

    1992-12-01

    Isotope exchange experiments have been performed in JET using hydrogen, deuterium, and, in the recent preliminary tritium experiment (PTE), tritium. The rate of change-over from one isotope to another involves two quite different time constants. We have modelled this behaviour using a multireservoir model which splits the accessible hydrogenic particles into two groups, each having a different rate of exchange of particles with the plasma. By applying this model to the sequence of discharges during and after the PTE, we can determine the parameters in the model. The resulting fit also gives a good representation of hydrogen/deuterium change-over experiments, indicating that the tritium behaves in the same manner as other hydrogen isotopes, at least as far as recycling is concerned. Discrepancies between the model and the actual measurements of tritium recovery after the PTE lead us to conclude that isotope exchange processes resulting from collisions of molecules with the vessel walls play a significant role in spreading tritrium around the machine. (orig.).

  19. Moessbauer study of proton-exchanged LiNbO3:Fe

    International Nuclear Information System (INIS)

    Engelmann, H.; Andler, G.; Dezsi, I.

    1990-01-01

    Topotactic proton exchange (Li against H) can be achieved by treating LiBnO 3 with appropriate acids. In order to investigate the effect of proton exchange on Fe-impurities we studied LiNbO 3 :Fe powder material treated in sulphuric acid and LiNbO 3 :Fe single crystals treated in benzoic acid by Moessbauer spectroscopy. During the topotactic ion exchange only the Li-ions are exchanged for protons, whereas the Fe-impurities are retained in the material. (orig.)

  20. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  1. Critical overview on water - hydrogen isotopic exchange; a case study

    International Nuclear Information System (INIS)

    Peculea, Marius

    2002-01-01

    Water - hydrogen isotopic exchange process is attractive due to its high separation factor; it is neither corrosive or pollutant and, when used as a technological process of heavy water production, it requires water as raw material. Its efficiency depends strongly on the catalyst performance and geometry of the isotopic water - hydrogen exchange zone in which the isotopic transfer proceeds in two steps: liquid vapor distillation in the presence of an inert gas and a catalytic reaction in vapor - gas gaseous phase. An overview of the water hydrogen isotopic exchange is presented and technological details of the Trail - Canada facility as well as characteristics of the two pilots operated in Romania with Ni, Cr and hydrophobic catalysts are described. The mathematical approach of the successive water-water vapor-hydrogen isotopic exchange process given is based on a mathematical model worked out earlier by Palibroda. Discrepancies between computation and experimental results, lower than 11% for extreme cases and around 6% for the average range are explained as due to the ratio of the exchange potentials. Assumption is made in the theoretical approach that this ratio is positive and constant all long the column while the measurements showed that it varies within 0.7 and 1.1 at the upper end and within - 2.5 and - 4.4 at the lower end, what indicates a strong end effect. In conclusion it is stressed that a competing technological solution is emerging based on a monothermal electrolytic process or a bithermal - bibaric process both for heavy water and tritium separation process

  2. Hydrogen-bond dynamics and proton transfer in nanoconfinement

    NARCIS (Netherlands)

    van der Loop, T.H.

    2015-01-01

    Proton transfer is of fundamental importance to both biology and chemistry. Much is known about proton transfer in large water volumes but often proton transfer reactions take place in very small nanometer sized volumes for example between lipid layers and in proton channels in mitochondria and

  3. Hydroxy protons as structural probes to reveal hydrogen bonding properties of polyols in aqueous solution by NMR spectroscopy

    Science.gov (United States)

    Oruc, Gizem; Varnali, Tereza; Bekiroglu, Somer

    2018-05-01

    The solution properties of ethylene glycol (ethane-1,2-diol), glycerol (propane-1,2,3-triol), erythritol ((2R,3S)-butane-1,2,3,4-tetraol), D-xylitol ((2R,3r,4S)-pentane-1,2,3,4,5-pentaol), D-mannitol ((2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexaol), and D-sorbitol ((2S,3R,4R,5R)-hexane-1,2,3,4,5,6-hexaol), constituting a subgroup of polyalcohols/polyols of maximum six carbon atoms have been investigated using 1H NMR chemical shifts, coupling constants, temperature coefficients, and chemical exchange rates of hydroxy protons in aqueous medium. Relative within a molecule, minimum two-fold difference in rate of exchange values and higher temperature dependence of chemical shifts of the hydroxy protons on terminal carbon atoms confirm that sustainable hydrogen bonding interactions is accentuated for the hydroxyl groups on secondary carbons. Compared to the primary carbons i.e. terminal ones, the hydroxy protons on second and third carbon atoms exhibit much lower rate of exchange and smaller temperature coefficients, indicating that they are further involved in transient hydrogen bonding interactions. Scalar 3JOH,CH-couplings ranging between 3.9 and 7.2 Hz imply that the hydroxyl groups are practically in free rotation regime. Examination of the chemical shift differences with respect to the shift of glycol hydroxy proton reveals that the disparity between terminal and inner hydroxyl groups disclosed by the exchange rates and temperature coefficients is sustained with the exception of 0.003 and 0.053 ppm for O(3)H of mannitol and O(5)H of sorbitol respectively. The experimental findings have been augmented by quantum chemical calculations targeting theoretical NMR chemical shifts, as well as the conformational analysis of the structures.

  4. O--H charge exchange in cold, dense, hydrogen plasmas

    International Nuclear Information System (INIS)

    Cohen, S.A.; Dylla, H.F.

    1977-05-01

    It is pointed out that the accidentally resonant charge exchange reaction, O + + H 0 reverse arrows O 0 + H + , is an important mechanism for causing the loss of singly charged oxygen ions from oxygen contaminated hydrogen plasmas. Results of a Monte Carlo simulation are presented which show that the fraction of oxygen lost because of charge exchange exceeds 1 / 3 when the parameters n/sub e/ approx. 10 13 cm -3 , n/sub H//sup o/ approx. 10 11 cm -3 and T/sub e/ approx. 3 eV are attained

  5. Hydrogen-tritium exchange survey of allosteric effects in hemoglobin

    International Nuclear Information System (INIS)

    Englander, J.J.; Englander, S.W.

    1987-01-01

    The oxy and deoxy forms of hemoglobin display major differences in H-exchange behavior. Hydrogen-tritium exchange experiments on hemoglobin were performed in the low-resolution mode to observe the dependence of these differences on pH (Bohr effect), organic phosphates, and salt. Unlike a prior report, increasing pH was found to decrease the oxy-deoxy difference monotonically, in general accordance with the alkaline Bohr effect. A prior report that the H-exchange difference between oxy- and deoxyhemoglobin vanishes at pH 9, and thus appears to reflect the Bohr effect alone, was found to be due to the borate buffer used, which at high pH tends to abolish the oxy-deoxy difference in a limited region of the H-exchange curve. Effects on hemoglobin H exchange due to organic phosphates parallel the differential binding of these agents (inositol hexaphosphate more than diphosphoglycerate, deoxy more than oxy, at low pH more than at high pH). Added salt slows H exchange of deoxyhemoglobin and has no effect on the oxy form. These results display the sensitivity of simple H-exchange measurements for finding and characterizing effects on structure and dynamics that may occur anywhere in the protein and help to define conditions for higher resolution approaches that can localize the changes observed

  6. Electrochemical mass-flow control of hydrogen using a fullerene-based proton conductor

    International Nuclear Information System (INIS)

    Maruyama, Ryuichiro

    2002-01-01

    A membrane electrode assembly (MEA) was fabricated using proton conductive hydrogensulfated fullerenol (C 60 (OSO 3 H) n (OH) n ). Rate-controlled mass flow of hydrogen was performed by applying voltage to both electrodes of the MEA without humidification. The amount of the electrochemically transported hydrogen through the MEA increased as the applied current increased, obeying Faraday's law. Residual gas analysis of the transported hydrogen showed that the transported hydrogen contains trace amounts of water less than 1%

  7. Study on influencing factors for hydrogen isotopic exchange

    International Nuclear Information System (INIS)

    Gu Mei; Liu Jun; Luo Yangming

    2013-01-01

    Background: Hydrogen-water catalytic exchange reaction offers an approach to hydrogen isotope separation, which can be applied in heavy water detritiation. Purpose: To optimize the operating condition for hydrogen-water catalytic exchange reaction, we analysed the influence of different factors on the transfer coefficient. Methods: In detail, the isotope exchange experiments of H-D system were carried out in a self-designed catalytic bed loaded with hydrophobic catalyst and hydrophilic packing with certain volume ratio. The experiments showed the changes of both the transfer coefficient and the pressure drop of column with the changing of the operational temperatures (29℃, 45℃, 60℃ and 75℃), the ratios of gas to liquid (0.58, 1.17, 2.65, 3.54) and the deuterium concentrations (5.05×10 -3 , 1.0144×10 -2 , 2.01×10 -2 ). Results: Results showed that 45℃ is the optimal temperature for operating. The transfer coefficient increases with the increasing of the ratio of gas to liquid in the ranges of 0.58 to 1.17 and 2.65 to 3.56, while decreases with the deuterium concentration increases from 5.05×10 -3 to 2.01×10 -2 . The pressure drop of column increases with increasing of gas flow rate. Conclusions: The experiment proves that the ratio of gas to liquid, the reaction temperature and the deuterium concentration are all important factors, which influence the transfer coefficient of deuterium obviously. The optimal operating condition for hydrogen-water catalytic exchange reaction are as follows: the temperature is 45℃, the ratio of gas to liquid is 3.56, and the deuterium concentration is 2.01×10 -2 . (authors)

  8. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection.

    Science.gov (United States)

    Mentzer, Robert M; Lasley, Robert D; Jessel, Andreas; Karmazyn, Morris

    2003-02-01

    Although the mechanisms underlying ischemia/reperfusion injury remain elusive, evidence supports the etiologic role of intracellular calcium overload and oxidative stress induced by reactive oxygen species. Activation of the sodium hydrogen exchanger (NHE) is associated with intracellular calcium accumulation. Inhibition of the NHE-1 isoform may attenuate the consequences of this injury. Although there is strong preclinical and early clinical evidence that NHE inhibitors may be cardioprotective, definitive proof of this concept in humans awaits the results of ongoing clinical trials.

  9. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    Science.gov (United States)

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  10. Hydrogen isotope exchange reaction rates in tritium, hydrogen and deuterium mixed gases

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko

    1992-01-01

    Hydrogen isotope exchange reaction rates in H 2 +T 2 , D 2 +T 2 and H 2 +D 2 +T 2 mixed gases, as induced by tritium decay and beta radiation, were experimentally measured by laser Raman spectrometry. Initially a glass cell was filled with T 2 gas to a pressure of 30-40 kPa, and an equivalent partial pressure of H 2 and/or D 2 was added. The first-order hydrogen isotope exchange reaction rates were 5.54x10 -2 h -1 for H 2 +T 2 mixed gas and 4.76x10 -2 h -1 for D 2 +T 2 . The actual HT producing rate was nearly equivalent to the rate of DT, but the reverse reaction rate of HT was faster than that of DT. The exchange reaction rates between H, D and T showed the isotope effect, HD>HT>DT. The hydrogen isotope exchange reaction rates observed were about twenty times larger than ion formation rates by beta radiation. This result suggests that a free radical chain reaction in hydrogen isotopes is occurring. (orig.)

  11. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    International Nuclear Information System (INIS)

    Morishita, T.; Isomura, S.; Izawa, H.; Nakane, R.

    1980-01-01

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  12. Hydrogen isotopic exchange reaction in a trickle-bed

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk

    2005-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water

  13. Hydrogen isotopic exchange reaction in a trickle-bed

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water.

  14. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  15. Microalgae dewatering based on forward osmosis employing proton exchange membrane.

    Science.gov (United States)

    Son, Jieun; Sung, Mina; Ryu, Hoyoung; Oh, You-Kwan; Han, Jong-In

    2017-11-01

    In this study, electrically-facilitated forward osmosis (FO) employing proton exchange membrane (PEM) was established for the purpose of microalgae dewatering. An increase in water flux was observed when an external voltage was applied to the FO equipped with the PEM; as expected, the trend became more dramatic with both concentration of draw solution and applied voltage raised. With this FO used for microalgae dewatering, 247% of increase in flux and 86% in final biomass concentration were observed. In addition to the effect on flux improvement, the electrically-facilitated FO exhibited the ability to remove chlorophyll from the dewatered biomass, down to 0.021±0015mg/g cell. All these suggest that the newly suggested electrically-facilitated FO, one particularly employed PEM, can indeed offer a workable way of dewatering of microalgae; it appeared to be so because it can also remove the ever-problematic chlorophyll from extracted lipids in a simultaneous fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  17. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    Science.gov (United States)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  18. Angular distribution of protons emitted from the hydrogen plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, R.; Maric, Z.; Vukovic, J.; Grabez, B. E-mail: grabez@phy.bg.ac.yu; Djordjevic, D.; Joksimovic, D.; Udovicic, V.; Dragic, A.; Stanojevic, J.; Banjanac, R.; Jokovic, D

    2003-06-01

    Angular distribution of emitted protons was measured. The protons were detected with NTD LR-115 placed at the specially constructed semi-spherical holder, which contains 17 different pinhole cameras. The mechanism of proton acceleration and emission are studied theoretically and experimental results are compared with theoretical predictions.

  19. Angular distribution of protons emitted from the hydrogen plasma focus

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Maric, Z.; Vukovic, J.; Grabez, B.; Djordjevic, D.; Joksimovic, D.; Udovicic, V.; Dragic, A.; Stanojevic, J.; Banjanac, R.; Jokovic, D.

    2003-01-01

    Angular distribution of emitted protons was measured. The protons were detected with NTD LR-115 placed at the specially constructed semi-spherical holder, which contains 17 different pinhole cameras. The mechanism of proton acceleration and emission are studied theoretically and experimental results are compared with theoretical predictions

  20. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.

    Science.gov (United States)

    Park, Sungnam; Odelius, Michael; Gaffney, Kelly J

    2009-06-04

    The structural and dynamical properties of aqueous ionic solutions influence a wide range of natural and biological processes. In these solutions, water has the opportunity to form hydrogen bonds with other water molecules and anions. Knowing the time scale with which these configurations interconvert represents a key factor to understanding the influence of molecular scale heterogeneity on chemical events in aqueous ionic solutions. We have used ultrafast IR spectroscopy and Car-Parrinello molecular dynamics (CPMD) simulations to investigate the hydrogen bond (H-bond) structural dynamics in aqueous 6 M sodium perchlorate (NaClO4) solution. We have measured the H-bond exchange dynamics between spectrally distinct water-water and water-anion H-bond configurations with 2DIR spectroscopy and the orientational relaxation dynamics of water molecules in different H-bond configurations with polarization-selective IR pump-probe experiments. The experimental H-bond exchange time correlates strongly with the experimental orientational relaxation time of water molecules. This agrees with prior observations in water and aqueous halide solutions, and has been interpreted within the context of an orientational jump model for the H-bond exchange. The CPMD simulations performed on aqueous 6 M NaClO4 solution clearly demonstrate that water molecules organize into two radially and angularly distinct structural subshells within the first solvation shell of the perchlorate anion, with one subshell possessing the majority of the water molecules that donate H-bonds to perchlorate anions and the other subshell possessing predominantly water molecules that donate two H-bonds to other water molecules. Due to the high ionic concentration used in the simulations, essentially all water molecules reside in the first ionic solvation shells. The CPMD simulations also demonstrate that the molecular exchange between these two structurally distinct subshells proceeds more slowly than the H

  1. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...... and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group...... signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC....

  2. New NMR method for measuring the difference between corresponding proton and deuterium chemical shifts: isotope effects on exchange equilibria

    International Nuclear Information System (INIS)

    Saunders, M.; Saunders, S.; Johnson, C.A.

    1984-01-01

    A convenient and accurate method is described for measuring the difference between a proton frequency and the corresponding deuterium frequency in its deuterated analogue relative to a reference system by using the deuterium lock in a Fourier-transform NMR spectrometer. This measurement is a sensitive way of measuring equilibrium isotope effects for hydrogen-deuterium exchange. A value of 1.60 per H-D pair is obtained for the equilibrium 2H 3 O + + 3D 2 O in equilibrium 2D 3 O + + 3H 2 O at 30 0 C in aqueous perchloric acid (HClO 4 ). 7 references, 2 tables

  3. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  4. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

    International Nuclear Information System (INIS)

    Pratt, Joseph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2013-01-01

    Highlights: ► We examine proton exchange membrane fuel cells on-board commercial airplanes. ► We model the added fuel cell system’s effect on overall airplane performance. ► It is feasible to implement an on-board fuel cell system with current technology. ► Systems that maximize waste heat recovery are the best performing. ► Current PEM and H 2 storage technology results in an airplane performance penalty. -- Abstract: Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall

  5. Proton Exchange Membrane Fuel Cell/Supercapasitor Hybrid Power Management System for a Golf Cart

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    This paper presented the transformation of a golf cart system powered lead acid battery into an environmental friendly hybrid vehicle. The design developed by using an advantage contributes by the uprising alternative power source candidate which is Proton Exchange Membrane Fuel Cell (PEMFC) and the maintenance free energy storage device, a supercapacitor (SC). The fuel cell (FC) stack was an in house manufactured with 450 W (36 V, 12.5 A) power, while the SC was from Maxwell Technologies (48 V, 165 F). This two power sources were controlled by the mechanical relay, meanwhile the reactant (hydrogen) are control by mass flow controller (MFC) both signaled by a National Instrument (NI) devices. The power management controller are programmed in the LabVIEW environment and then downloaded to the NI devices. The experimental result of the power trend was compared before and after the transformation with the same route to validate the effectiveness of the proposed power management strategy. The power management successfully controls the power sharing between power sources and satisfies the load transient. While the reactant control managed to vary the hydrogen mass flow rate feed according to the load demand in vehicular applications. (author)

  6. Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A multiphase fuel cell model based on computational fluid dynamics is used to investigate the possibility of operating a proton exchange membrane fuel cell at low stoichiometric flow ratios (ξ gases. A case study...

  7. Cobalt oxide-based catalysts deposited by cold plasma for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierski, P.; Jozwiak, L.; Sielski, J.; Tyczkowski, J., E-mail: jacek.tyczkowski@p.lodz.pl

    2015-11-02

    In proton exchange membrane fuel cells (PEMFC), both the anodic hydrogen oxidation reaction and the cathodic oxygen reduction reaction (ORR) require appropriate catalysts. So far, platinum-based catalysts are still the best option for this purpose. However, because these catalysts are too expensive for making commercially viable fuel cells, extensive research over the past decade has focused on developing noble metal-free alternative catalysts. In this paper, an approach based on cobalt oxide films fabricated by plasma-enhanced metal-organic chemical vapor deposition is presented. Such a material can be used to prepare catalysts for ORR in PEMFC. The films containing CoO{sub X} were deposited on a carbon paper thereby forming the electrode. Morphology and atomic composition of the films were investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The possibility of their application as the electro-catalyst for ORR in PEMFC was investigated and the electro-catalytic activities were evaluated by the electrochemical measurements and single cell tests. It was found that the fuel cell with Pt as the anode catalyst and CoO{sub X} deposit as the cathode catalyst was characterized by the open circuit voltage of 635 mV, Tafel slope of approx. 130 mV/dec and the maximum power density of 5.3 W/m{sup 2}. - Highlights: • Cobalt oxide catalyst for proton exchange membrane fuel cells was plasma deposited. • The catalyst exhibits activity for the oxygen reduction reaction. • Morphology and atomic composition of the catalyst were determined.

  8. Estimation of contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianhong; Liu, Ying; Song, Haimin; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Zhou, Yuanyuan; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2006-11-22

    The contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) is an important factor contributing to the power loss in proton exchange membrane (PEM) fuel cells. At present there is still not a well-developed method to estimate such contact resistance. This paper proposes two effective methods for estimating the contact resistance between the BPP and the GDL based on an experimental contact resistance-pressure constitutive relation. The constitutive relation was obtained by experimentally measuring the contact resistance between the GDL and a flat plate of the same material and processing conditions as the BPP under stated contact pressure. In the first method, which was a simplified prediction, the contact area and contact pressure between the BPP and the GDL were analyzed with a simple geometrical relation and the contact resistance was obtained by the contact resistance-pressure constitutive relation. In the second method, the contact area and contact pressure between the BPP and GDL were analyzed using FEM and the contact resistance was computed for each contact element according to the constitutive relation. The total contact resistance was then calculated by considering all contact elements in parallel. The influence of load distribution on contact resistance was also investigated. Good agreement was demonstrated between experimental results and predictions by both methods. The simplified prediction method provides an efficient approach to estimating the contact resistance in PEM fuel cells. The proposed methods for estimating the contact resistance can be useful in modeling and optimizing the assembly process to improve the performance of PEM fuel cells. (author)

  9. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    International Nuclear Information System (INIS)

    Outka, D.A.; Foltz, G.W.

    1991-01-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor

  10. Hydrogen molecule defect in proton-conductive SrTiO3 Perovskite

    Science.gov (United States)

    Onishi, Taku

    2017-11-01

    In proton-conductive SrTiO3 perovskite, no hydrogen molecule defect ideally exists. However, the unforeseen chemical reaction is often observed after the use of fuel cell. From the viewpoint of battery safety, we have investigated the effect of hydrogen molecule defect by molecular orbital analysis. When counter cation vacancy exists, the activation energy for hydrogen molecule migration was 1.39 - 1.50 eV, which is much smaller than the dissociation energy of hydrogen molecule. It implies that hydrogen molecule may migrate without its dissociation.

  11. Aprotic solvent systems provide mechanistic windows for biomolecular reactions: nucleic acid proton exchange

    International Nuclear Information System (INIS)

    McConnell, B.; Tan, A.

    1986-01-01

    Detection of general acid-base catalysis of proton transfer reactions in aqueous cytidine (or adenosine) is completely obscured by the highly reactive endocyclic protonated species of the nucleobase, whose amino proton lifetime is much shorter than that of the neutral form. In aqueous solution, protonation of the nucleobase always accompanies protonation of the buffer catalyzing exchange. However, in DMSO/water mixtures this is not the case; aqueous protonated acetate or chloroacetate can be added to cytidine in DMSO solutions without further dissociation of the buffer or significant protonation of cytidine N-3. Under these conditions general acid catalysis is observed, which involves an H-bonded complex between cytidine (N-3) and the buffer acid. Increased amino proton exchange in response to H-bond donation to C(N-3) is further suggested by increased 1 H NMR saturation-recovery rates with the formation of G-C base-pairs in DMSO and by the inverse dependence of amino proton exchange on nucleoside concentration

  12. Fast hydrogen exchange affects {sup 15}N relaxation measurements in intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean, E-mail: jean.baum@rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology (United States)

    2013-03-15

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, {sup 1}H-{sup 15}N HSQC, is used to measure the {sup 15}N transverse relaxation rate (R{sub 2}), the measured R{sub 2} rate is convoluted with the HX rate (k{sub HX}) and has higher apparent R{sub 2} values. Since the {sup 15}N R{sub 2} measurement is important for analyzing protein backbone dynamics, the HX effect on the R{sub 2} measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing {sup 15}N R{sub 2}{sup CPMG} experiments on {alpha}-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R{sub 2}{sup CPMG} can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D{sub 2}O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R{sub 2}{sup CPMG} values be obtained by methods described herein.

  13. Efficient production and diagnostics of MeV proton beams from a cryogenic hydrogen ribbon

    International Nuclear Information System (INIS)

    Velyhan, A.; Giuffrida, L.; Scuderi, V.; Lastovicka, T.; Margarone, D.; Perin, J.P.; Chatain, D.; Garcia, S.; Bonnay, P.; Dostal, J.; Ullschmied, J.; Dudzak, R.; Krousky, E.; Cykhardt, J.; Prokupek, J.; Pfeifer, M.; Rosinski, M.; Krasa, J.; Brabcova, K.; Napoli, M. De

    2017-01-01

    A solid hydrogen thin ribbon, produced by the cryogenic system ELISE (Experiments on Laser Interaction with Solid hydrogEn) target delivery system, was experimentally used at the PALS kJ-laser facility to generate intense proton beams with energies in the MeV range. This sophisticated target system operating at cryogenic temperature (∼ 10 K) continuously producing a 62 μm thick target was combined with a 600 J sub-nanosecond laser pulse to generate a collimated proton stream. The accelerated proton beams were fully characterized by a number of diagnostics. High conversion efficiency of laser to energetic protons is of great interest for future potential applications in non-conventional proton therapy and fast ignition for inertial confinement fusion.

  14. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A.

    Science.gov (United States)

    Mayo, S L; Baldwin, R L

    1993-11-05

    Amide (NH) proton exchange rates were measured in 0.0 to 0.7 M guanidinium chloride (GdmCl) for 23 slowly exchanging peptide NH protons of ribonuclease A (RNase A) at pH* 5.5 (uncorrected pH measured in D2O), 34 degrees C. The purpose was to find out whether GdmCl induces exchange through binding to exchange intermediates that are partly or wholly unfolded. It was predicted that, when the logarithm of the exchange rate is plotted as a function of the molarity of GdmCl, the slope should be a measure of the amount of buried surface area exposed to GdmCl in the exchange intermediate. The results indicate that these concentrations of GdmCl do induce exchange by means of a partial unfolding mechanism for all 23 protons; this implies that exchange reactions can be used to study the unfolding and stability of local regions. Of the 23 protons, nine also show a second mechanism of exchange at lower concentrations of GdmCl, a mechanism that is nearly independent of GdmCl concentration and is termed "limited structural fluctuation."

  15. Contribution to the study of catalytic hydrogen-deuterium exchange between hydrogen and hydrocarbons

    International Nuclear Information System (INIS)

    Ravoire, J.

    1958-01-01

    The hydrogen-deuterium exchange between molecular hydrogen and hydrocarbons over a platinum and charcoal catalyst was studied in a static system. The change in isotopic composition of molecular hydrogen was followed by a thermal conductivity method. Cyclo-pentane and cyclohexane were chosen because of their stability. A reversible inactivation of the catalyst was observed with both hydrocarbons. The reasons for this inactivation are unknown but it was shown that reactivation led to satisfactory reproducibility. A kinetic study was done with cyclohexane in the range 30 to 160 deg. C, and 40 to 360 mm for the pressure of hydrogen, and 10 to 70 mm for the pressure of cyclohexane. The order of the reaction with respect to cyclohexane pressure is always close to zero; the order with respect to that of hydrogen is 0.5 above 100 deg. C. It decreases with increasing temperature and becomes negative (-0.5 at 30 deg. C), characterizing an inhibition by hydrogen. At the same time, the apparent activation energy goes from 6 to 13 kcal/mole. (author) [fr

  16. Effect of Nafion ionometer content on proton conductivity in the catalyst layer of proton exchange fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ozalevlia, Cihan Cemil; Jian Xie; Xu, Fan [METU MS Mechanical Engineering (United States)], email: cihan.ozalevli@metu.edu.tr, email: jianxie@iupui.edu, email: fanxu@iupui.edu

    2011-07-01

    In the energy conversion sector, proton exchange fuel cells (PEFC's) are among the most promising technologies for the future. The Nafion ionometer is the most important part of the membrane electrode assembly (MEA) which is the core technology of the system. The Nafion ionometer is both a proton conductor and a binder for the catalyst layer in the technology. The aim of this study is to assess the effect of the Nafion content in the cathode catalyst layer on the proton conductivity of the MEA. Two MEAs with different Nafion content were prepared following the LANL process and the proton conductivity of the catalyst layer was measured. Results showed a much higher performance of the 28wt. % Nafion MEA than the 10wt. %. This study demonstrated that when the Nafion ionometer content decreases, the performance of the fuel cell decreases; further investigations should be undertaken with Nafion ionometer amounts of 15wt. % to 20wt. %.

  17. Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, 10617 Taipei (China)

    2009-03-15

    This paper applies fixed-order multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system, and implements the designed controllers on a microchip for system miniaturization. In previous studies, robust control was applied to guarantee system stability and to reduce hydrogen consumption for a PEMFC system. It was noted that for standard robust control design, the order of resulting H{sub {infinity}} controllers is dictated by the plants and weighting functions. However, for hardware implementation, controllers with lower orders are preferable in terms of computing efforts and cost. Therefore, in this paper the PEMFC is modeled as multivariable transfer matrices, then three fixed-order robust control algorithms are applied to design controllers with specified orders for a PEMFC. Finally, the designed controllers are implemented on a microchip to regulate the air and hydrogen flow rates. From the experimental results, fixed-order robust control is deemed effective in supplying steady power and reducing fuel consumption. (author)

  18. A nuclear magnetic relaxation study of hydrogen exchange and water dynamics in aqueous systems

    International Nuclear Information System (INIS)

    Lankhorst, D.

    1983-01-01

    In this thesis exchange of water protons in solutions of some weak electrolytes and polyelectrolytes is studied. Also the dynamical behaviour of water molecules in pure water is investigated. For these purposes nuclear magnetic resonance relaxation measurements, in solutions of oxygen-17 enriched water, are interpreted. The exchange rate of the water protons is derived from the contribution of 1 H- 17 O scalar coupling to the proton transverse relaxation rate. This rate is measured by the Carr-Purcell technique. (Auth.)

  19. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  20. Minimizing Back Exchange in the Hydrogen Exchange-Mass Spectrometry Experiment

    Science.gov (United States)

    Walters, Benjamin T.; Ricciuti, Alec; Mayne, Leland; Englander, S. Walter

    2012-12-01

    The addition of mass spectrometry (MS) analysis to the hydrogen exchange (HX) proteolytic fragmentation experiment extends powerful HX methodology to the study of large biologically important proteins. A persistent problem is the degradation of HX information due to back exchange of deuterium label during the fragmentation-separation process needed to prepare samples for MS measurement. This paper reports a systematic analysis of the factors that influence back exchange (solution pH, ionic strength, desolvation temperature, LC column interaction, flow rates, system volume). The many peptides exhibit a range of back exchange due to intrinsic amino acid HX rate differences. Accordingly, large back exchange leads to large variability in D-recovery from one residue to another as well as one peptide to another that cannot be corrected for by reference to any single peptide-level measurement. The usual effort to limit back exchange by limiting LC time provides little gain. Shortening the LC elution gradient by 3-fold only reduced back exchange by ~2 %, while sacrificing S/N and peptide count. An unexpected dependence of back exchange on ionic strength as well as pH suggests a strategy in which solution conditions are changed during sample preparation. Higher salt should be used in the first stage of sample preparation (proteolysis and trapping) and lower salt (<20 mM) and pH in the second stage before electrospray injection. Adjustment of these and other factors together with recent advances in peptide fragment detection yields hundreds of peptide fragments with D-label recovery of 90 % ± 5 %.

  1. Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment.

    Science.gov (United States)

    Walters, Benjamin T; Ricciuti, Alec; Mayne, Leland; Englander, S Walter

    2012-12-01

    The addition of mass spectrometry (MS) analysis to the hydrogen exchange (HX) proteolytic fragmentation experiment extends powerful HX methodology to the study of large biologically important proteins. A persistent problem is the degradation of HX information due to back exchange of deuterium label during the fragmentation-separation process needed to prepare samples for MS measurement. This paper reports a systematic analysis of the factors that influence back exchange (solution pH, ionic strength, desolvation temperature, LC column interaction, flow rates, system volume). The many peptides exhibit a range of back exchange due to intrinsic amino acid HX rate differences. Accordingly, large back exchange leads to large variability in D-recovery from one residue to another as well as one peptide to another that cannot be corrected for by reference to any single peptide-level measurement. The usual effort to limit back exchange by limiting LC time provides little gain. Shortening the LC elution gradient by 3-fold only reduced back exchange by ~2%, while sacrificing S/N and peptide count. An unexpected dependence of back exchange on ionic strength as well as pH suggests a strategy in which solution conditions are changed during sample preparation. Higher salt should be used in the first stage of sample preparation (proteolysis and trapping) and lower salt (<20 mM) and pH in the second stage before electrospray injection. Adjustment of these and other factors together with recent advances in peptide fragment detection yields hundreds of peptide fragments with D-label recovery of 90% ± 5%.

  2. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  3. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    OpenAIRE

    Sezgin, Sinan; Sinirlioglu, Deniz; Muftuoglu, Ali Ekrem; Bozkurt, Ayhan

    2014-01-01

    Proton exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride) (PVDF) and proton conductivity of poly(1-vinyl-1,2,4-triazole) (PVTri) were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA) at differe...

  4. Electro-activity of cobalt and nickel complexes for the reduction of protons into di-hydrogen. Application to PEM water electrolysis

    International Nuclear Information System (INIS)

    Pantani, O.; Anxolabehere, E.; Aukauloo, A.; Millet, P.

    2006-01-01

    Proton exchange membrane (PEM) water electrolysis is a safe and efficient way to perform water splitting into di-hydrogen and di-oxygen. In a PEM water electrolyser, platinum is commonly used as electro-catalyst on the cathodic side of the cells, mostly because of its efficiency for hydrogen evolution. But for cost considerations, there is a need to find alternative low-cost electrocatalysts. Molecular chemistry offers the possibility of synthesizing new compounds for this purpose, such as transition metal complexes. Results obtained with nickel- and cobalt-oximes compounds are presented in this paper. They have been chemically (1H NMR, EPR) and electrochemically (voltametry, spectro-electrochemistry) characterized. Their ability to electrochemically reduce protons into di-hydrogen when they are either dissolved in solution or immobilized at the surface of a solid electrode is discussed. (authors)

  5. Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Pantani, O.; Anxolabehere-Mallart, E.; Aukauloo, A. [Equipe de Chimie Inorganique, Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR 8182, Universite Paris Sud, bat 420, 91405 Orsay Cedex (France); Millet, P. [Equipe de Physico-Chimie de l' Etat Solide, Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR 8182, Universite Paris Sud, bat 420, 91405 Orsay Cedex (France)

    2007-01-15

    Water electrolysis is a key technological process for the production of hydrogen and the storage of intermittent and renewable energy sources. For domestic applications, the proton exchange membrane (PEM) process provides a safe and efficient way to split water into molecular hydrogen and oxygen but this technology, which requires platinum family electro-catalysts, remains too expensive. Molecular chemistry offers new opportunities for synthesizing alternative low-cost compounds, sufficiently stable in strong acidic media. In this paper, results obtained with different nickel and cobalt glyoximes are presented. They have been chemically (using UV-visible spectroscopy) and electrochemically (using cyclic voltammetry and spectro-electrochemistry) characterized. Their ability to electroreduce protons into molecular hydrogen from aqueous acidic solutions is discussed, the compounds being either dissolved in solution or immobilized at the surface of a solid electrode using recast Nafion{sup (R)} films in view of PEM applications. (author)

  6. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  7. Ultrafast hydrogen exchange reveals specific structural events during the initial stages of folding of cytochrome c.

    Science.gov (United States)

    Fazelinia, Hossein; Xu, Ming; Cheng, Hong; Roder, Heinrich

    2014-01-15

    Many proteins undergo a sharp decrease in chain dimensions during early stages of folding, prior to the rate-limiting step in folding. However, it remains unclear whether compact states are the result of specific folding events or a general hydrophobic collapse of the poly peptide chain driven by the change in solvent conditions. To address this fundamental question, we extended the temporal resolution of NMR-detected H/D exchange labeling experiments into the microsecond regime by adopting a microfluidics approach. By observing the competition between H/D exchange and folding as a function of labeling pH, coupled with direct measurement of exchange rates in the unfolded state, we were able to monitor hydrogen-bond formation for over 50 individual backbone NH groups within the initial 140 microseconds of folding of horse cytochrome c. Clusters of solvent-shielded amide protons were observed in two α-helical segments in the C-terminal half of the protein, while the N-terminal helix remained largely unstructured, suggesting that proximity in the primary structure is a major factor in promoting helix formation and association at early stages of folding, while the entropically more costly long-range contacts between the N- and C-terminal helices are established only during later stages. Our findings clearly indicate that the initial chain condensation in cytochrome c is driven by specific interactions among a subset of α-helical segments rather than a general hydrophobic collapse.

  8. An NMR-based quenched hydrogen exchange investigation of model amyloid fibrils formed by cold shock protein A.

    Science.gov (United States)

    Alexandrescu, A T

    2001-01-01

    Acid-denatured cold shock protein A (CspA) self-assembles into polymers with properties typical of amyloid fibrils. In the present work, a quenched hydrogen exchange experiment was used to probe the interactions of CspA fibrils with solvent. Exchange was initiated by incubating suspensions of fibrils in D2O, and quenched by flash freezing. Following lyophilization, exchange-quenched samples were dissolved in 90% DMSO/10% D2O, giving DMSO-denatured monomers. Intrinsic exchange rates for denatured CspA in 90% DMSO/10% D2O (pH* 4.5) were sufficiently slow (approximately 1 x 10(-3) min-1) to enable quantification of NMR signal intensity decays due to H/D exchange in the fibrils. Hydrogen exchange rate constants for CspA fibrils were found to vary less than 3-fold from a mean value of 5 x 10(-5) min-1. The uniformity of rate constants suggests that exchange is in the EX1 limit, and that the mechanism of exchange involves a cooperative dissociation of CspA monomers from fibrils, concomitant with unfolding. Previous studies indicated that the highest protection factors in native CspA are approximately 10(3), and that protection factors for the acid-denatured monomer precursors of CspA fibrils are close to unity. Because exchange in is in the EX1 regime, it is only possible to place a lower limit of at least 10(5) on protection factors in CspA fibrils. The observation that all amide protons are protected from exchange indicates that the entire CspA polypeptide chain is structured in the fibrils.

  9. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis

    Science.gov (United States)

    Park, In-Hee; Venable, John D.; Steckler, Caitlin; Cellitti, Susan E.; Lesley, Scott A.; Spraggon, Glen; Brock, Ansgar

    2015-01-01

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure and dynamics. More recently, Hydrogen Exchange Mass Spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from Molecular Dynamics (MD) simulation snapshots is used to determine partitioning over bonded and non-bonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for Fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  10. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  11. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  12. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  13. Target continuum distorted-wave theory for collisions of fast protons with atomic hydrogen

    International Nuclear Information System (INIS)

    Crothers, D.S.F.; Dunseath, K.M.

    1990-01-01

    By considering the target continuum distorted-wave (TCDW) theory as the high-energy limit of the half-way house variational continuum distorted-wave theory, it is shown not only that there is no intermediate elastic divergence but also that the second-order amplitude based on a purely elastic intermediate state is of order υ -6 and is thus negligible. The residual inelastic TCDW theory is developed to second-order at high velocities. It is used to describe charge exchange during collisions of fast protons with atomic hydrogen. Using an on-shell peaking approximation and considering 1s-1s capture it is shown that the residual purely second-order transition amplitude comprises two terms, one real term of order υ -6 and one purely imaginary term of order υ -7 ln υ. At 5 MeV laboratory energy, it is shown that these are negligible. It is also shown that the υ -5 first-order term gives a differential cross section in very good agreement with an experiment at all angles including forward, interference minimum, Thomas maximum and large angles, particularly having folded our theory over experimental resolution. (author)

  14. Development and testing of the proton exchange membrane fuel cell (PEMFC) for stationary generation; Desenvolvimento e ensaios de uma celula a combustivel de polimero solido (PEMFC) para geracao estacionaria

    Energy Technology Data Exchange (ETDEWEB)

    Ellern, Mara; Boccuzzi, Cyro Vicente [ELETROPAULO, Sao Caetano, SP (Brazil)], e-mail: mara.ellern@aes.com; Ett, Gerhard; Saiki, Gerson Yukio; Janolio, Gilberto [ELECTROCELL, Sao Paulo, SP (Brazil); Jardini, Jose Antonio [Universidade de Sao Paulo (USP), SP (Brazil)

    2004-07-01

    PEM (Proton Exchange Membrane) fuel cell uses a simple chemical reaction to combine hydrogen and oxygen into water, producing electric current in the process. It works something like reversed electrolysis: at the anode, hydrogen molecules give up electrons, forming hydrogen ions (this process is made possible by the platinum catalyst). The proton exchange membrane allows protons to flow through, but not electrons. As a result, the hydrogen ions flow directly through the proton exchange membrane to the cathode, while the electrons flow through an external circuit. As they travel to the cathode through the external circuit, the electrons produce electrical current. At the cathode, the electrons and hydrogen ions combine with oxygen to form water. In a fuel cell, hydrogen's natural tendency to oxidize and form water produces electricity and useful work. No pollution is produced and the only byproducts are water and heat. The huge advance on materials development combined with the growth demand of lower impact on environment is placing the fuel cells on the top of the most promising technologies world-wide. They are becoming in medium term feasible alternatives for energy generators up to energy plants of few MW. (author)

  15. The broad component of hydrogen emission lines in nuclei of Seyfert galaxies: Comments on a charge exchange model

    International Nuclear Information System (INIS)

    Katz, A.

    1975-01-01

    A model to account for the broad hydrogen line emission from the nuclei of Seyfert galaxies based on charge exchange and collisional processes, as proposed by Ptak and Stoner, is investigated. The model consists of a source of fast (E approx. 10 5 eV) protons streaming through a medium of quiescent gas. One of the major problems that results from such a model concerns the strong narrow hydrogen line core that would be produced, in direct conflict with the observations. The lines cannot arise from gas arranged throughout a spherical volume surrounding the source of the fast particles because the fast protons would produce far more ionizations than the possible number of recombinations. A very dense shell source of less than 1 AU in thickness and at least several tens of parsecs in radius must be invoked to reproduce the asymmetric broad profiles observed. There must be absorption throughout the center of the shell to account for the line profiles. The gas cannot be arranged in dense clumps throughout a large volume because momentum exchange of the gas with the primary particles would quickly accelerate any clumps. The energy balance and energy requirements of such a model are investigated, and it is found that an energy equal to or greater than the total luminosity of most Seyfert galaxies is required to produce the hydrogen line alone. The gas must be mostly neutral and den []e (N approx. 10 7 ) if a reasonable temperature is to be maintained

  16. Classical and quantum ordering of protons in cold solid hydrogen under megabar pressures.

    Science.gov (United States)

    Li, Xin-Zheng; Walker, Brent; Probert, Matthew I J; Pickard, Chris J; Needs, Richard J; Michaelides, Angelos

    2013-02-27

    A combination of state-of-the-art theoretical methods has been used to obtain an atomic-level picture of classical and quantum ordering of protons in cold high-pressure solid hydrogen. We focus mostly on phases II and III of hydrogen, exploring the effects of quantum nuclear motion on certain features of these phases (through a number of ab initio path integral molecular dynamics (PIMD) simulations at particular points on the phase diagram). We also examine the importance of van der Waals forces in this system by performing calculations using the optB88-vdW density functional, which accounts for non-local correlations. Our calculations reveal that the transition between phases I and II is strongly quantum in nature, resulting from a competition between anisotropic inter-molecular interactions that restrict molecular rotation and thermal plus quantum fluctuations of the nuclear positions that facilitate it. The transition from phase II to III is more classical because quantum nuclear motion plays only a secondary role and the transition is determined primarily by the underlying potential energy surface. A structure of P2(1)/c symmetry with 24 atoms in the primitive unit cell is found to be stable when anharmonic quantum nuclear vibrational motion is included at finite temperatures using the PIMD method. This structure gives a good account of the infra-red and Raman vibron frequencies of phase II. We find additional support for a C2/c structure as a strong candidate for phase III, since it remains transparent up to 300 GPa, even when quantum nuclear effects are included. Finally, we find that accounting for van der Waals forces improves the agreement between experiment and theory for the parts of the phase diagram considered, when compared to previous work which employed the widely-used Perdew-Burke-Ernzerhof exchange-correlation functional.

  17. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using 13C NMR hydrogen/deuterium isotope shifts

    International Nuclear Information System (INIS)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    1987-01-01

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13 C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D 2 O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H 2 O solutions; in 1:1 H 2 O/D 2 O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13 C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results

  18. First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target

    Science.gov (United States)

    Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich

    2018-04-01

    We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.

  19. Protonic conduction of hydrogen impurities in K2OsCl6

    International Nuclear Information System (INIS)

    Willemsen, H.W.; Armstrong, R.L.; Meincke, P.P.M.

    1979-01-01

    Dielectric measurements as a function of temperature and frequency in single crystal K 2 OsCl 6 with defects containing protons are reported. The results are consistent with a model which assumes the defect state to be a simple interstitial proton which is hydrogen bonded to the nearest neighbor chlorine ions. Temperatures greater than 180 K shows that proton diffusion is thermally activated with a mobility of 10 -2 cm 2 /V-sec whereas below this temperature it is determined by quantum tunneling between localized states

  20. Study of the bistable hydrogen donors properties in silicon implanted by the protons

    International Nuclear Information System (INIS)

    Abdullin, Kh.A.; Gorelkinskij, Yu.V.; Serikkanov, A.S.

    2003-01-01

    The proton implantation in silicon with doses 10 16 -10 17 cm -2 leads to formation of the hydrogen supersaturated solid solution in the Si. At the room temperature the hydrogen mobility on radiation defects limited by the H atom capture is inappreciably low. Thermal annealing at 400-500 Deg. C results in the decay and rebuilding of hydrogen-containing radiation defects and precipitants, that leads to reduction of the free energy of the system. Precipitation occurring in the form of nano-cluster defects formation, containing the hydrogen atoms. Thermal annealing of the silicon implanted by hydrogen at ∼450 Deg. C during 20 min. causing the hydrogen precipitation process and defects agglomeration leads to donor centers formation registering by the Hall effect

  1. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    Science.gov (United States)

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  2. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.

    Science.gov (United States)

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Shulenina, Olga; Laun, Konstantin; Kertess, Leonie; Wittkamp, Florian; Apfel, Ulf-Peter; Happe, Thomas; Winkler, Martin; Haumann, Michael; Stripp, Sven T

    2018-01-31

    The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN - ) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN - vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN - infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.

  3. Modelling of proton and metal exchange in the alginate biopolymer.

    Science.gov (United States)

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Sammartano, Silvio

    2005-10-01

    Acid-base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1titration calorimetric data were expressed as a function of the dissociation degree (alpha) using different models (Henderson-Hasselbalch modified, Högfeldt three parameters and linear equations). The dependence on ionic strength of the protonation constants was taken into account by a modified specific interaction theory model. Differences among different media were explained in terms of the interaction between polyanion and metal cations of the supporting electrolytes. Quantitative information on the proton-binding capacity, together with the stabilities of different species formed, is reported. Protonation thermodynamic parameters, at alpha=0.5, are log K H=3.686+/-0.005, DeltaG 0=-21.04+/-0.03 kJ mol(-1), DeltaH 0=4.8+/-0.2 kJ mol(-1) and TDeltaS 0=35.7+/-0.3 kJ mol(-1), at infinite dilution. Protonation enthalpies indicate that the main contribution to proton binding arises from the entropy term. A strict correlation between DeltaG and TDeltaS was found, TDeltaS=-9.5-1.73 DeltaG. Results are reported in light of building up a chemical complexation model of general validity to explain the binding ability of naturally occurring polycarboxylate polymers and biopolymers. Speciation profiles of alginate in the presence of sodium and magnesium ions, naturally occurring cations in natural waters, are also reported.

  4. Efficiency of Al2O3 supported palladium sorbents in the process of hydrogen isotope exchange

    International Nuclear Information System (INIS)

    Andreev, B.M.; Perevezentsev, A.N.; Yasenkov, V.I.

    1981-01-01

    It is found that in the hydrogen-palladium system while applying the metal to aluminium oxide a considerable increase of the heterogeneous hydrogen isotopic exchange rate is observed due to the increase of its specific surface at 167-298 K temperatures and 350-500 Torr hydrogen pressures. It is shown that in the process of thermal treatment of the supported palladium sorbent resulting in reconstruction of the carrier porous structure, as well as in increasing the metal crystal size, the change of the stage, limiting the isotopic exchange process, occurs. The values of the rate and energy of activation of the hydrogen isotopic exchange are presented [ru

  5. Comparison of platinum/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Liu, Xuan

    Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 °C and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm -2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 °C) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant

  6. Thermal generation and mobility of charge carriers in collective proton transport in hydrogen-bonded chains

    International Nuclear Information System (INIS)

    Peyrard, M.; Boesch, R.; Kourakis, I.

    1991-01-01

    The transport of protons in hydrogen-bonded systems is a long standing problem which has not yet obtained a satisfactorily theoretical description. Although this problem was examined first for ice, it is relevant in many systems and in particular in biology for the transport along proteins or for proton conductance across membranes, an essential process in cell life. The broad relevance makes the study of proton conduction very appealing. Since the original work of Bernal and Fowler on ice, the idea that the transport occurs through chains of hydrogen bonds has been well accepted. Such ''proton wires'' were invoked by Nagle and Morowitz for proton transport across membranes proteins and more recently across lipid bilayers. In this report, we assume the existence of such an hydrogen-bonded chain and discuss its consequences on the dynamics of the charge carriers. We show that this assumption leads naturally to the idea of soliton transport and we put a special emphasis on the role of the coupling between the protons and heavy ions motions. The model is presented. We show how the coupling affects strongly the dynamics of the charge carriers and we discuss the role it plays in the thermal generation of carriers. The work presented has been performed in 1986 and 87 with St. Pnevmatikos and N. Flyzanis and was then completed in collaboration with D. Hochstrasser and H. Buettner. Therefore the results presented in this part are not new but we think that they are appropriate in the context of this multidisciplinary workshop because they provide a rather complete example of the soliton picture for proton conduction. This paper discusses the thermal generation of the charge carriers when the coupling between the protons and heavy ions dynamics is taken into account. The results presented in this part are very recent and will deserve further analysis but they already show that the coupling can assist for the formation of the charge carriers

  7. Micron-size hydrogen cluster target for laser-driven proton acceleration

    Science.gov (United States)

    Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.

    2018-04-01

    As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.

  8. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  9. Neutron protein crystallography hydrogen protons and hydration in bio-macromolecules

    CERN Document Server

    Niimura, Nobuo

    2011-01-01

    This text is dedicated to the emerging field of neutron protein crystallography (NPC). It covers all of the practical aspects of NPC and demonstrates how NPC can explore protein features such as hydrogen bonds, protonation and deprotonation of amino acid residues, and hydration structures.

  10. Proton and antiproton interactions in hydrogen, argon and xenon at 200 GeV

    International Nuclear Information System (INIS)

    Malecki, P.

    1984-01-01

    The detailed analysis of the production of particles emitted into forward hemisphere in 200 GeV proton and antiproton interactions with hydrogen, argon and xenon targets is presented. Two-particle rapidity correlations and long-range multiplicity correlations are also discussed. (author)

  11. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  12. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wang, J.G. [Department of Physics and Astronomy, University of Georgia, Athens (United States)

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C{sub x}H{sub y} charge exchange reactions from thermal energies up to several hundreds keV for all C{sub x}H{sub y} molecules with x=1, 2, 3 and 1 {<=} y {<=} 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  13. Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs

    International Nuclear Information System (INIS)

    Jiao, Kui; Zhou, Yibo; Du, Qing; Yin, Yan; Yu, Shuhai; Li, Xianguo

    2013-01-01

    Highlights: ► Simulations of CO poisoning in HT-PEMFC with different flow channels are conducted. ► Parallel and serpentine designs result in least and most CO effects, respectively. ► General CO distributions in CLs are similar with different flow channel designs. - Abstract: The performance of high temperature proton exchange membrane fuel cell (HT-PEMFC) is significantly affected by the carbon monoxide (CO) in hydrogen fuel, and the flow channel design may influence the CO poisoning characteristics by changing the reactant flow. In this study, three-dimensional non-isothermal simulations are carried out to investigate the comprehensive flow channel design and CO poisoning effects on the performance of HT-PEMFCs. The numerical results show that when pure hydrogen is supplied, the interdigitated design produces the highest power output, the power output with serpentine design is higher than the two parallel designs, and the parallel-Z and parallel-U designs have similar power outputs. The performance degradation caused by CO poisoning is the least significant with parallel flow channel design, but the most significant with serpentine and interdigitated designs because the cross flow through the electrode is stronger. At low cell voltages (high current densities), the highest power outputs are with interdigitated and parallel flow channel designs at low and high CO fractions in the supplied hydrogen, respectively. The general distributions of absorbed hydrogen and CO coverage fractions in anode catalyst layer (CL) are similar for the different flow channel designs. The hydrogen coverage fraction is higher under the channel than under the land, and is also higher on the gas diffusion layer (GDL) side than on the membrane side; and the CO coverage distribution is opposite to the hydrogen coverage distribution

  14. Formation of ground and excited hydrogen atoms in proton ...

    Indian Academy of Sciences (India)

    2016-10-17

    Oct 17, 2016 ... DOI 10.1007/s12043-016-1282-y. Formation of ground and excited hydrogen atoms in proton–potassium inelastic scattering. S A ELKILANY1,2. 1Department of Mathematics, Faculty of Science, University of Dammam, Dammam, Kingdom of Saudi Arabia. 2Department of Mathematics, Faculty of Science, ...

  15. Hydrogen Release From 800-MeV Proton-Irradiated Tungsten

    International Nuclear Information System (INIS)

    Oliver, Brian M.; Venhaus, Thomas J.; Causey, Rion A.; Garner, Francis A.; Maloy, Stuart A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources such as those proposed for the Accelerator Production of Tritium (APT) project, or in proposed fusion reactors, will contain large quantities of generated helium and hydrogen gas. In the APT, spallation neutrons would be generated by the interaction of high energy (∼1 GeV) protons with solid tungsten rods or cylinders. In fusion reactors, tungsten used in a tokamak diverter will contain hydrogen, as well as deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and afterheat-induced rises in temperature is of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten was measured using a dedicated mass spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼323 K to ∼1473 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). Input parameters for the modeling, consisting of diffusivity, recombination rate coefficient, and trapping, are discussed. The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show reasonable agreement at high proton dose using a trap value of 1.4 eV and a trap density of 3%. There is also a small release fraction occurring at ∼600 K which predominates at lower proton doses, and which is relatively independent of dose. This lower-temperature release is predicted by TMAP if no traps are assumed, suggesting that this release may represent an adsorbed surface component

  16. Hydrogen exchange kinetics changes upon formation of the soybean trypsin inhibitor: trypsin complex

    International Nuclear Information System (INIS)

    Woodward, C.K.; Ellis, L.M.

    1975-01-01

    The hydrogen exchange kinetics of the complex of trypsin--soybean trypsin inhibitor (Kunitz) have been compared to the calculated sum of the exchange kinetics for the inhibitor and trypsin measured separately. The exchange rates observed for the complex are substantially less than the sum of the exchange rates in the two individual proteins. These results cannot be accounted for by changes in intermolecular or intramolecular hydrogen bonding. The decrease in exchange rates in the complex are ascribed to changes in solvent accessibility in the component proteins. (U.S.)

  17. Increased CEST specificity for amide and fast-exchanging amine protons using exchange-dependent relaxation rate.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2018-02-01

    Chemical exchange saturation transfer (CEST) imaging of amides at 3.5 ppm and fast-exchanging amines at 3 ppm provides a unique means to enhance the sensitivity of detection of, for example, proteins/peptides and neurotransmitters, respectively, and hence can provide important information on molecular composition. However, despite the high sensitivity relative to conventional magnetic resonance spectroscopy (MRS), in practice, CEST often has relatively poor specificity. For example, CEST signals are typically influenced by several confounding effects, including direct water saturation (DS), semi-solid non-specific magnetization transfer (MT), the influence of water relaxation times (T 1w ) and nearby overlapping CEST signals. Although several editing techniques have been developed to increase the specificity by removing DS, semi-solid MT and T 1w influences, it is still challenging to remove overlapping CEST signals from different exchanging sites. For instance, the amide proton transfer (APT) signal could be contaminated by CEST effects from fast-exchanging amines at 3 ppm and intermediate-exchanging amines at 2 ppm. The current work applies an exchange-dependent relaxation rate (R ex ) to address this problem. Simulations demonstrate that: (1) slowly exchanging amides and fast-exchanging amines have distinct dependences on irradiation powers; and (2) R ex serves as a resonance frequency high-pass filter to selectively reduce CEST signals with resonance frequencies closer to water. These characteristics of R ex provide a means to isolate the APT signal from amines. In addition, previous studies have shown that CEST signals from fast-exchanging amines have no distinct features around their resonance frequencies. However, R ex gives Lorentzian lineshapes centered at their resonance frequencies for fast-exchanging amines and thus can significantly increase the specificity of CEST imaging for amides and fast-exchanging amines. Copyright © 2017 John Wiley & Sons

  18. Difluoroborane, a hydrogen-deuterium exchange catalyst. Application to pentaborane (9) and methylpentaborane (9)

    International Nuclear Information System (INIS)

    Kline, G.A.; Porter, R.F.

    1981-01-01

    The hydrogen exchange reaction of pentaborane with difluoroborane suggests the existence of a multicentered intermediate similar to that proposed by DeStefano and Porter for the difluoroborane-borazine exchange reaction. A similar intermediate may apply to the borane-pentaborane exchange reaction

  19. Advances in fuel cells of proton exchange membrane (PEMSFCs)

    International Nuclear Information System (INIS)

    Delgado Avila, Graciela

    2008-01-01

    Growing demand of energy sources exempt from pollutant substances and that are efficient for domestic, industrial applications and in vehicles, this has propitiated that at present the engineers are designing fuel cells out of the spatial agencies. These fuel cells have advantages such as: high energetic density of the H2, are not pollutant, are electrolytic permanent rechargeable cells with hydrogen; they have anodic reaction with oxygen of the air, and the existence of multiple hydrogen sources. The cells are constructed along the general lines of multiple cells connected in series by two-pole plates. A great effort is realized in the partial or total substitution of the Nafion, the catalyst (Pt) is scanty and is poisoned with CO. The cell has a high cost, but it is one of the most promising technologies to reduce the pollution and the gas emission. In addition, it favors the greenhouse effect [es

  20. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  1. Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.

    2018-03-01

    Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.

  2. Hydrogen bond nature of ferroelectric material studied by X-ray and neutron diffraction. Electric dipole moment and proton tunneling

    International Nuclear Information System (INIS)

    Noda, Yukio; Kiyanagi, Ryoji; Mochida, Tomoyuki; Sugawara, Tadashi

    2006-01-01

    Hydrogen bond nature of MeHPLN and BrHPLN is studied using x-ray and neutron diffraction technique. We found that electric dipole moment of hydrogen atom plays an important role for the phase transition, and proton tunneling model is confirmed on this isolated hydrogen bond system. (author)

  3. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  4. Review of low pressure plasma processing of proton exchange membrane fuel cell electrocatalysts

    OpenAIRE

    Brault , Pascal

    2016-01-01

    Review article; International audience; The present review is describing recent advances in plasma deposition and treatment of low temperature proton exchange membrane fuel cells electrocatalysts. Interest of plasma processing for growth of platinum based, non-precious and metal free electrocatalysts is highlighted. Electrocatalysts properties are tentatively correlated to plasma parameters.

  5. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.e. me...

  6. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to model the PEMFC dynamic systems and residuals are generated based ...

  7. Carbon nanofiber growth on carbon paper for proton exchange membrane fuel cells

    NARCIS (Netherlands)

    Celebi, S.; Nijhuis, T.A.; Schaaf, van der J.; Bruijn, de F.A.; Schouten, J.C.

    2011-01-01

    Homogeneous deposition precipitation (HDP) of nickel has been investigated for the growth of carbon nanofibers (CNFs) on carbon paper for use in proton exchange membrane fuel cells as a gas diffusion layer. Selective CNF growth on only one side of carbon paper is required to transfer the generated

  8. Self-Healing Proton-Exchange Membranes Composed of Nafion-Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells.

    Science.gov (United States)

    Li, Yixuan; Liang, Liang; Liu, Changpeng; Li, Yang; Xing, Wei; Sun, Junqi

    2018-04-30

    Proton-exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4-carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion-PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion-PVA membrane shows a proton conductivity of 0.11 S cm -1 at 80 °C, which is 1.2-fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion-PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion-PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen-bonding interactions between Nafion and CBA-modified PVA and the high chain mobility of Nafion and CBA-modified PVA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 3D microscopy of hydrogen and magnetic force on proton implanted microstructures in graphite

    International Nuclear Information System (INIS)

    Reichart, P.; Cluitmans, J.F.J.; Pakes, C.; Orbons, S.; Jamieson, D.N.

    2005-01-01

    We investigated the depth dependence of magnetic signals in proton irradiated graphite using a tilted microspot implantation followed by combined AFM/MFM analysis. This study is motivated by the not yet independently reproduced discovery of ferromagnetism in carbon materials created by proton irradiation. We present results of 3D hydrogen analysis of pristine and irradiated highly oriented pyrolytic graphite (HOPG). These results, previously presented in collaboration with universities in Leipzig and Munich, are summarized here and reveal a hydrogen level in pristine HOPG less than 0.3 at-ppm and that 2.25 MeV implanted hydrogen is located within a peak confined to the end of range with no evidence of diffusion broadening. For implanted microspots, up to 40 at-% of the implanted hydrogen is not detected, providing support for lateral hydrogen diffusion. Up to 10 16 H-atoms/cm 2 are detected in the near-surface region on all samples, which has not yet been considered in possible mechanisms for creation of ferromagnetism. As theoretical models propose that hydrogen could play a major role in carbon ferromagnetism, this result raises the hypothesis for an effect restricted to the surface. Our preliminary data on magnetic force microscopy of tilted implants show a strong magnetic phase shift localized on the beam entrance point only. (author). 14 refs., 5 figs

  10. A new ion exchange behavior of protonated titanate nanotubes after deprotonation and the study on their morphology and optical properties

    International Nuclear Information System (INIS)

    Zhang Huibin; Cao Lixin; Liu Wei; Su Ge

    2012-01-01

    Graphical abstract: The morphological transformation of protonated titanate nanotubes under alkali solution before ion exchange (a) and after ion exchange (b). Highlights: ► A novel ion exchange behavior of protonated titanate nanotubes after deprotonation. ► The exchangeability of protonated titanate nanotubes are not as inert as past reported. ► The tube walls of H 2 Ti 3 O 7 nanotubes is observed to get loosened after ion exchange. ► The paper proves a new and easy way to modify protonated titanate nanotubes. - Abstract: After the deprotonation of protonated titanate nanotubes (H 2 Ti 3 O 7 ), we observed a novel ion exchange behavior on them. In the past literatures, protonated titanate nanotubes prepared via hydrothermal method have been reported with a poor exchangeability which may due to the chemical bonding of interlayer protons to nearby oxygen atoms. However, in this experiment under alkali environment (pH > 10), protonated titanate nanotubes exhibited a vast ion exchange capacity toward [Co(NH 3 ) 6 ] 2+ . This interesting phenomenon is contrary to the past reports which found protonated titanate nanotubes hardly could be ionexchanged by objective cations. This paper proves the deprotonation process on H 2 Ti 3 O 7 nanotubes sufficiently facilitates the diffusion of metal complex cations into protonated titanate nanotubes and significantly changes their ion exchange capacity. As a consequence of cabalt intercalting via ion exchange, the tube wall of H 2 Ti 3 O 7 nanotubes is observed to get loosened. Additionally, the exciton concentrations corresponding to the nanotube surface states are discussed in the paper.

  11. Commercialization of proton exchange membrane fuel cells for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Wismer, L.

    1996-04-01

    Environmental concerns with air quality and global warming have triggered strict federal ambient ozone air quality standards. Areas on non-attainment of these standards exist across the United States. Because it contains several of the most difficult attainment areas, the State of California has adopted low emission standards including a zero emission vehicle mandate that has given rise to development of hybrid electric vehicles, both battery-powered and fuel-cell powered. Fuel cell powered vehicles, using on-board hydrogen as a fuel, share the non-polluting advantage of the battery electric vehicle while offering at least three times the range today`s battery technology.

  12. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell.

    Science.gov (United States)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N; Saitoh, Koh; Tanaka, Nobuo

    2013-02-15

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  13. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  14. CO-Tolerant Pt–BeO as a Novel Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Kyungjung Kwon

    2016-05-01

    Full Text Available Commercialization of proton exchange membrane fuel cells (PEMFCs requires less expensive catalysts and higher operating voltage. Substantial anodic overvoltage with the usage of reformed hydrogen fuel can be minimized by using CO-tolerant anode catalysts. Carbon-supported Pt–BeO is manufactured so that Pt particles with an average diameter of 4 nm are distributed on a carbon support. XPS analysis shows that a peak value of the binding energy of Be matches that of BeO, and oxygen is bound with Be or carbon. The hydrogen oxidation current of the Pt–BeO catalyst is slightly higher than that of a Pt catalyst. CO stripping voltammetry shows that CO oxidation current peaks at ~0.85 V at Pt, whereas CO is oxidized around 0.75 V at Pt–BeO, which confirms that the desorption of CO is easier in the presence of BeO. Although the state-of-the-art PtRu anode catalyst is dominant as a CO-tolerant hydrogen oxidation catalyst, this study of Be-based CO-tolerant material can widen the choice of PEMFC anode catalyst.

  15. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Oncel, S.; Vardar-Sukan, F. [Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2011-01-01

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm{sup -2} for about 50 h with 10 {omega} load and 0.23 mA cm{sup -2} for about 80 h with 100 {omega} load. (author)

  16. An application of indirect model reference adaptive control to a low-power proton exchange membrane fuel cell

    Science.gov (United States)

    Yang, Yee-Pien; Liu, Zhao-Wei; Wang, Fu-Cheng

    2008-05-01

    Nonlinearity and the time-varying dynamics of fuel cell systems make it complex to design a controller for improving output performance. This paper introduces an application of a model reference adaptive control to a low-power proton exchange membrane (PEM) fuel cell system, which consists of three main components: a fuel cell stack, an air pump to supply air, and a solenoid valve to adjust hydrogen flow. From the system perspective, the dynamic model of the PEM fuel cell stack can be expressed as a multivariable configuration of two inputs, hydrogen and air-flow rates, and two outputs, cell voltage and current. The corresponding transfer functions can be identified off-line to describe the linearized dynamics with a finite order at a certain operating point, and are written in a discrete-time auto-regressive moving-average model for on-line estimation of parameters. This provides a strategy of regulating the voltage and current of the fuel cell by adaptively adjusting the flow rates of air and hydrogen. Experiments show that the proposed adaptive controller is robust to the variation of fuel cell system dynamics and power request. Additionally, it helps decrease fuel consumption and relieves the DC/DC converter in regulating the fluctuating cell voltage.

  17. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  18. Probabilistic multiobjective operation management of MicroGrids with hydrogen storage and polymer exchange fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, T.; Golestaneh, F. [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2012-10-15

    This paper models and solves the operation management problem of MicroGrids (MGs) including cost and emissions minimization under uncertain environment. The proposed model emphasizes on fuel cells (FCs) as a prime mover of combined heat and power (CHP) systems. An electro-chemical model of the proton exchange membrane fuel cell (PEMFC) is used and linked to the daily operating cost and emissions of the MGs. A reformer is considered to produce hydrogen for PEMFCs. Moreover, in high thermal load intervals, in order to make the MG more efficient, a part of produced hydrogen is stored in a hydrogen tank. The stored hydrogen can be reused by PEMFCs to generate electricity or be sold to other hydrogen consumers. A probabilistic optimization algorithm is devised which consists of 2m + 1 point estimate method to handle the uncertainty in input random variables (IRVs) and a multi-objective Self-adaptive Bee Swarm Optimization (SBSO) algorithm to minimize the cost and emissions simultaneously. Several techniques are proposed in the SBSO algorithm to make it a powerful black-box optimization tool. The efficiency of the proposed approach is verified on a typical grid-connected MG with several distributed energy sources. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Method for enriching and separating heavy hydrogen isotopes from substance streams containing such isotopes by means of isotope exchange

    International Nuclear Information System (INIS)

    Knochel, A.; Eggers, I.; Klatte, B.; Wilken, R. D.

    1985-01-01

    A process for enriching and separating heavy hydrogen isotopes having a heavy hydrogen cation (deuterium and/or tritium) from substance streams containing them, wherein the respectively present hydrogen isotopes are exchanged in chemical equilibria. A protic, acid solution containing deuterium and/or tritium is brought into contact with a value material from the group of open-chained polyethers or aminopolyethers, macro-monocyclic or macro-polycyclic polyethers, macro-monocyclic or macro-polycyclic amino polyethers, and mixtures of these values, in their free or proton salt form to form a reaction product of the heavy hydrogen cation with the value or value salt and bring about enrichment of deuterium and/or tritium in the reaction product. The reaction product containing the value or value salt is separated from the solution. The separated reaction product is treated to release the hydrogen isotope(s) to be enriched in the form of deuterium oxide (HDO) and/or tritium oxide (HTO) by regenerating the value or its salt, respectively. The regenerated value is returned for reuse

  20. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  1. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    International Nuclear Information System (INIS)

    Yang, Puqing; Zhang, Houcheng

    2015-01-01

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  2. Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation

    International Nuclear Information System (INIS)

    Xing, Lei; Du, Shangfeng; Chen, Rui; Mamlouk, Mohamed; Scott, Keith

    2016-01-01

    A two-dimensional along-the-channel CFD (computational fluid dynamic) model, coupled with a two-phase flow model of liquid water and gas transport for a PEM (proton exchange membrane) fuel cell is described. The model considers non-isothermal operation and thus the non-uniform temperature distribution in the cell structure. Water phase-transfer between the vapour, liquid water and dissolved phase is modelled with the combinational transport mechanism through the membrane. Liquid water saturation is simulated inside the electrodes and channels at both the anode and cathode sides. Three types of models are compared for the HOR (hydrogen oxidation reaction) and ORR (oxygen reduction reaction) in catalyst layers, including Butler–Volmer (B–V), liquid water saturation corrected B–V and agglomerate mechanisms. Temperature changes in MEA (membrane electrode assembly) and channels due to electrochemical reaction, ohmic resistance and water phase-transfer are analysed as a function of current density. Nonlinear relations of liquid water saturations with respect to current densities at both the anode and cathode are regressed. At low and high current densities, liquid water saturation at the anode linearly increases as a consequence of the linear increase of liquid water saturation at the cathode. In contrast, exponential relation is found to be more accurate at medium current densities. - Highlights: • A fully coupled 2D, along-the-channel, two-phase flow, non-isothermal, CFD model is developed. • Temperature rise due to electrochemical reactions, ohmic resistance and water phase-transfer is analysed. • Mathematical expressions of liquid water saturation against current density at anode and cathode are regressed. • Relationship between the liquid water saturation at anode and cathode is built.

  3. Mechanisms of hydrogen exchange in proteins from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme

    International Nuclear Information System (INIS)

    Wedin, R.E.; Delepierre, M.; Dobson, C.M.; Poulsen, F.M.

    1982-01-01

    The individual rates of solvent exchange of the six tryptophan indole NH hydrogens of lysozyme in 2 H 2 O have been measured over a wide range of temperatures by using 1 H NMR. Two distinct mechanisms for exchange have been identified, one characterized by a high activation energy and the other by a much lower activation energy. The high-energy process has been shown to be associated directly with the cooperative thermal unfolding of the protein and is the dominant mechanism for exchange of the most slowly exchanging hydrogen even 15 0 C below the denaturation temperature. Rate constants and activation energies for the folding and unfolding reactions were obtained from the experimental exchange rates. At low temperatures, a lower activation energy mechanism is dominant for all hydrogens, and this can be associated with local fluctuations in the protein structure which allow access of solvent. The relative exchange rates and activation energies can only qualitatively be related to the different environments of the residues in the crystal structure. There is provisional evidence that a mechanism intermediate between these two extremes may be significant for some hydrogens under restricted conditions

  4. The energy dependence of neutron-proton charge exchange

    International Nuclear Information System (INIS)

    Bouquet, A.; Diu, R.

    1978-01-01

    The new Fermilab data on up charge exchange are analysed phenomenologically, to determine the energy dependence of the amplitudes in the corresponding domain (60 2 trajectories. If one imposes the presence of standard rho-A 2 terms (three-component analysis), one has to introduce a pomeronlike contribution, with a trajectory α approximately equal to 1.0+0.25t. In both cases, the resulting parametrization gives a good description of the data from Psub(lab)=1GeV/c up to 300GeV/c

  5. Isotopically decoupled vibrational spectra and proton exchange rates for crystalline NH3 and ammonia hydrate

    Science.gov (United States)

    Thornton, Cynthia; Khatkale, M. S.; Devlin, J. Paul

    1981-12-01

    Codeposits of NH3 with ND3 or D2O have been prepared at liquid nitrogen temperatures in the absence of proton exchange. Vibrational data for the anhydrous cubic crystalline ammonia, containing isolated NH3 or ND3, confirm that, relative to water ice, intermolecular coupling in ammonia ice exerts a relatively minor influence on the infrared and Raman spectra. Nevertheless, sizeable decoupling shifts, particularly for ν1, have been observed and attributed to a combination of factors including correlation field and Fermi resonance effects. The Raman polarization data has also affirmed long standing assignments of ν1 and ν3 for ammonia ice. Warming of the ammonia thin films resulted in limited isotopic scrambling at 130 K, apparently possible only through the agency of trace concentrations of water. The vibrational coupling pattern for the resultant NHD2 and NH2D molecules suggest that proton (deuteron) migration away from the exchange centers is impossible at temperatures up to 150 K. By contrast, isotopic scrambling was rapid and complete at 140 K for amorphous ammonia hydrate films (˜35% NH3, ˜65% D2O) which were also prepared without exchange at ˜90 K. The proton (deuteron) exchange rate is much greater for the amorphous ammonia hydrate at 140 K than for pure water ice. Such exchange requires both ion-pair defect formation and proton mobility. Since the NH3 suppresses the H3O+ concentration via formation of NH+4, a suppression the likes of which has been shown to stop proton exchange in water ice, the evidence strongly suggests that NH4+ in ammonia, like H3O+ in water, is an effective proton transfer agent, probably acting through a tunneling mechanism (i.e., H3N+-HṡṡṡNH3→H3NṡṡṡH-N+H3 etc.) to render the proton mobile in the ammonia hydrate. This mobility combined with the greater NH4+ concentration, relative to the H3O+ concentration in H2O ice Ic, results in isotopic scrambling at the reduced temperature.

  6. Momentum Transfer and Viscosity from Proton-Hydrogen Collisions Relevant to Shocks and Other Astrophysical Environments

    International Nuclear Information System (INIS)

    Schultz, David Robert; Krstic, Predrag S.; Lee, Teck G.; Raymond, J.C.

    2008-01-01

    The momentum transfer and viscosity cross sections for proton-hydrogen collisions are computed in the velocity range of ∼200-20,000 km s -1 relevant to a wide range of astrophysical environments such as SNR shocks, the solar wind, winds within young stellar objects or accretion disks, and the interstellar protons interacting with the heliosphere. A variety of theoretical approaches are used to arrive at a best estimate of these cross sections in this velocity range that smoothly connect with very accurate results previously computed for lower velocities. Contributions to the momentum transfer and viscosity cross sections from both elastic scattering and charge transfer are included

  7. Modelling porous active layer electrodes of proton exchange membrane fuel cells; Modelisation des couches actives d'electrodes volumiques de piles a combustible a membrane echangeuse de protons

    Energy Technology Data Exchange (ETDEWEB)

    Bultel, Yann

    1997-07-01

    This work focusses on the modeling of mass, charge and heat transfer in the active layers of the volume electrodes of proton exchange membrane fuel cells (PEMFC). A first part describes the structure of fuel cells and the physico-chemical processes taking place at the electrodes. An analysis of the classical models encountered in the literature shows that they all assume that the electro-catalysts is uniformly distributed in a plane or in volume. In a second part, the modeling of mass and charge transport phenomena has been carried out with a numerical calculation software which uses the finite-elements method and which allows to take into consideration the discrete distribution of the catalyst in nano-particulates. The simulations show the limitations of the catalyst use because of the diffusion and ionic ohmic drop both at the electrolyte and particulates scale. In order to improve the modeling of PEMFC fuel cells, the classical models have been modified to consider these local contributions. They require only simple numerical methods, like the finite-differences one. When applied to the oxygen reduction at the cathode or to the hydrogen oxidation at the anode, these models allow to determine the kinetics parameters (exchange current densities and slopes of the Tafel lines) after correction of the active layer diffusion. A modeling of the heat transfers at the active layers scale is proposed. The model takes into account the convective heat transfers between the solid phases and the gas, the electro-osmosis water transfer, and the generation of heat by joule effect and by the electrochemical reactions. Finally, the last chapter presents a study of the reaction mechanisms in the case of porous electrodes using the impedances method. Numerical and analytical models have been developed to calculate the electrode impedances and are applied to the study of oxygen reduction and hydrogen oxidation. (J.S.)

  8. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies.

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-11-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, the sensitivity is not optimal and, more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the properties of CEST signals are compared with those of a CE-sensitive spin-lock (CESL) technique irradiating at the labile proton frequency. First, using a higher power and shorter irradiation in CE-MRI, we obtain: (i) an increased selectivity to faster CE rates via a higher sensitivity to faster CEs and a lower sensitivity to slower CEs and magnetization transfer processes; and (ii) a decreased in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Second, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with an asymmetric population approximation, which can be used for quantitative CE-MRI and validated by simulations of Bloch-McConnell equations and phantom experiments. Finally, the in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 = 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of intermediate exchange protons. Copyright © 2014 John Wiley & Sons, Ltd.

  9. The boundary-corrected second Born (B2B) approximation: proton-hydrogen electron capture

    International Nuclear Information System (INIS)

    Dewangan, D.P.; Bransden, B.H.

    1988-01-01

    The probability amplitude for proton-hydrogen ground-state electron capture at 125 keV in the boundary-corrected second Born approximation has been evaluated numerically by retaining all significant bound and continuum hydrogenic intermediate states for which the orbital angular momentum l ≤ 3. The differential cross section is found to be in good agreement with the experimental data for scattering angles less than about 1 mrad in the centre of mass system. The value of the boundary-corrected second Born total cross section is similar to that obtained in the boundary-corrected first Born approximation. (author)

  10. The hadronic corrections to muonic hydrogen Lamb shift from ChPT and the proton radius

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara [Grup de Física Teòrica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2016-01-22

    We obtain a model independent expression for the muonic hydrogen Lamb shift. The leading hadronic effects are controlled by the chiral theory, which allows for their model independent determination. We give their complete expression including the pion and Delta particles. Out of this analysis and the experimental measurement of the muonic hydrogen Lamb shift we determine the electromagnetic proton radius: r{sub p} = 0.8412(15) fm. This number is at 6.8σ variance with respect to the CODATA value. The parametric control of the uncertainties allows us to obtain a model independent determination of the error, which is dominated by hadronic effects.

  11. Methylamine-hydrogen exchange Part III. Physicochemical properties of amide-amine solutions

    International Nuclear Information System (INIS)

    Srinivasa, K.; Dave, S.M.

    1983-01-01

    Different physicochemical properties of potassium methylamide/methylamine solutions have been compiled and reviewed. These properties will be quite useful in design calculations for plants based on amine-hydrogen exchange for the production of heavy water. (author)

  12. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  13. Double cross-linked polyetheretherketone proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-04-01

    Full Text Available and separating the fuel from oxidant. A polyperfluorosulfonic acid ionomer Nafion? (developed by Dupont) is the mostly used proton exchange membrane in PEMFCs, because of its high proton conductivity and excellent chemical stability [3, 4]. However, the high...-Methyl-2-pyrrolidinone. After the solution was homogenized by stirring, the polymer solution was cast on a glass Petri dish. The solvent was then removed in a vacuum oven at 130 ?C. The membrane was peeled off from the Petri dish. Thereafter...

  14. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    Directory of Open Access Journals (Sweden)

    Sinan Sezgin

    2014-01-01

    Full Text Available Proton exchange membrane fuel cells (PEMFCs are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride (PVDF and proton conductivity of poly(1-vinyl-1,2,4-triazole (PVTri were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA at different stoichiometric ratios with respect to triazole units and the anhydrous polymer electrolyte membranes were prepared. All samples were characterized by FTIR and 1H-NMR spectroscopies. Their thermal properties were examined by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. TGA demonstrated that the PVDF-g-PVTri and PVDF-g-PVTri-(TAx membranes were thermally stable up to 390°C and 330°C, respectively. NMR and energy dispersive X-ray spectroscopy (EDS results demonstrated that PVDF-g-PVTri was successfully synthesized with a degree of grafting of 21%. PVDF-g-PVTri-(TA3 showed a maximum proton conductivity of 6×10-3 Scm−1 at 150°C and anhydrous conditions. CV study illustrated that electrochemical stability domain for PVDF-g-PVTri-(TA3 extended over 4.0 V.

  15. Rapid and accurate processing method for amide proton exchange rate measurement in proteins

    International Nuclear Information System (INIS)

    Koskela, Harri; Heikkinen, Outi; Kilpelaeinen, Ilkka; Heikkinen, Sami

    2007-01-01

    Exchange between protein backbone amide hydrogen and water gives relevant information about solvent accessibility and protein secondary structure stability. NMR spectroscopy provides a convenient tool to study these dynamic processes with saturation transfer experiments. Processing of this type of NMR spectra has traditionally required peak integration followed by exponential fitting, which can be tedious with large data sets. We propose here a computer-aided method that applies inverse Laplace transform in the exchange rate measurement. With this approach, the determination of exchange rates can be automated, and reliable results can be acquired rapidly without a need for manual processing

  16. Development of new electrocatalysts for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Franco, Egberto Gomes

    2005-01-01

    In this work the colloidal method was chosen to perform the catalysts. This method produces nano catalysts well dispersed in the carbon support. The catalyst systems were performed with platinum, ruthenium, molybdenum, nickel, dysprosium, terbium, samarium and uranium. The method chosen to synthesize catalysts produced binary' and ternary systems with a good distribution of the nano crystals. The quaternary systems performed in this work shows a crystallite size 2 to 3 times greater than the binary and ternary ones. This could indicate that some modifications in the method should be done to improve the electrocatalytic activity of the quaternary systems. The characterization of the catalysts were performed by the following techniques; X-ray fluorescence analysis, X-ray diffraction, X-ray photoelectron spectroscopy, infrared spectroscopy, high resolution transmission electron microscopy, scanning electron microscopy, cyclic voltammetry and polarization curves. The PtRuMo system was identified as the most electro active system by cyclic voltammetry in order to oxidize methanol and ethanol. The PtRuDy system shows a good electrochemical activity to ethanol oxidation, but after the use of ethanol the catalyst lost 42 % of the activity when operating with hydrogen and oxygen. The binary system Pt U presents some promising results, this system start the oxidation of CO in 5 mV vs RHE. Besides this fact, when operating with ethanol the Pt U system shows no degradation of the catalytic activity. (author)

  17. FT-IR spectroelectrochemical study of the reduction of 1,4-dinitrobenzene on Au electrode: Hydrogen bonding and protonation in proton donor mixed media

    International Nuclear Information System (INIS)

    Tian Dexiang; Jin Baokang

    2011-01-01

    Highlights: → 1,4-Dinitrobenzene electrochemical reduction on the Au electrode is explored. → Radical anion (PNB· - ) is found both in aprotic media and in proton donors mixed media. → The H-bonding forming between PNB· - , PNB 2- and proton donors in low donors concentration. → The protonation of PNB 2- occurs in high concentration proton donor mixed media. - Abstract: The electrochemical behavior of 1,4-dinitrobenzene (1,4-PNB) on the Au electrode was investigated by cyclic voltammetry (CV), in situ FT-IR spectroelectrochemistry, cyclic voltabsorptometry (CVA) and derivative cyclic voltabsorptometry (DCVA) techniques. In aprotic media, 1,4-dinitrobenzene is reversibly reduced in two-step one-electron transfer. A series of IR absorption bands at 1056, 1210, 1341, 1356, 1464 and 1549 cm -1 , tracing to PNB; PNB· - and PNB 2- are observed. In the presence of proton donors mixed media, with increasing concentrations of proton donors, hydrogen-bonding and protonation process are found successively. The values of combining proton donors with per PNB 2- to form hydrogen-bonding are estimated by using electrochemical parameters. The result of forming aromatic nitroso compound is supported by tracing the change of IR absorption bands at 1149 and 1587 cm -1 at high concentration of proton donors. Based on CVA and DCVA techniques, it is clearly distinguished that the mechanisms of electrochemical reduction of PNB are elaborated in different systems.

  18. A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

    International Nuclear Information System (INIS)

    Shin, Jae Sun; Cho, Sung Jin; Choi, Suk Hoon; Qasim, Faraz; Lee, Euy Soo; Park, Sang Jin; Lee, Heung N.; Park, Jae Ho; Lee, Won Jae

    2014-01-01

    SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions

  19. Anisotropic amplification of proton transport in proton exchange membrane fuel cells

    Science.gov (United States)

    Thimmappa, Ravikumar; Fawaz, Mohammed; Devendrachari, Mruthyunjayachari Chattanahalli; Gautam, Manu; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2017-07-01

    Though graphene oxide (GO) membrane shuttles protons under humid conditions, it suffer severe disintegration and anhydrous conditions lead to abysmal ionic conductivity. The trade-off between mechanical integrity and ionic conductivity challenge the amplification of GO's ionic transport under anhydrous conditions. We show anisotropic amplification of GO's ionic transport with a selective amplification of in plane contribution under anhydrous conditions by doping it with a plant extract, phytic acid (PA). The hygroscopic nature of PA stabilized interlayer water molecules and peculiar geometry of sbnd OH functionalities around saturated hydrocarbon ring anisotropically enhanced ionic transport amplifying the fuel cell performance metrics.

  20. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  1. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  2. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments.

    Science.gov (United States)

    Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M

    2004-05-01

    The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.

  3. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  4. Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2014-01-01

    High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have received substantial attention due to their high CO (carbon monoxide) tolerance and simplified water management. The hydrogen and CO fractions affect the HT-PEMFC performance and different fuel sources for hydrogen production result in different product gas compositions. Therefore, the aim of this study is to investigate the theoretical performance of HT-PEMFCs fueled by the reformate gas derived from various fuel options (i.e., methane, methanol, ethanol, and glycerol). Effects of fuel types and CO poisoning on the HT-PEMFC performance are analyzed. Furthermore, the necessity of a water-gas shift (WGS) reactor as a CO removal unit for pretreating the reformate gas is investigated for each fuel type. The methane steam reforming shows the highest possibility of CO formation, whereas the methanol steam reforming produces the lowest quantity of CO in the reformate gas. The methane fuel processing gives the maximum fraction of hydrogen (≈0.79) when the WGS reactor is included. The most suitable fuel is the one with the lowest CO poisoning effect and the maximum fuel cell performance. It is found that the HT-PEMFC system fueled by methanol without the WGS reactor and methane with WGS reactor shows the highest system efficiency (≈50%). - Highlights: • Performance of HT-PEMFC run on different fuel options is theoretically investigated. • Glycerol, methanol, ethanol and methane are hydrogen sources for the HT-PEMFC system. • Effect of CO poisoning on the HT-PEMFC performance is taken into account. • The suitable fuel for HT-PEMFC system is identified regarding the system efficiency

  5. Total cross sections for pion charge exchange on the proton

    International Nuclear Information System (INIS)

    Breitschopf, J.

    2006-01-01

    This work describes the measurement of total SCX cross sections employing a new 4π scintillation counter to perform transmission measurements in the incident pion energy range from about 38 to 250 MeV. A small 4π detector box consisting of thin plastic scintillators has been constructed. The transmission technique, which was used, relates the number of transmitted charged pions to that of incident beam pions and this way effectively counts events with neutral products. The incoming negative pions were counted by three beam defining counters before they hit a target of very well known size and chemical composition. The target was placed in the box detector which was not sensitive to the neutral particles resulting from the SCX. The total cross section for emerging neutral particles was derived from the comparison of the numbers of the incoming and transmitted charged particles. The total SCX cross section on hydrogen was derived from the transmissions of a CH 2 target, a carbon target and an empty target. For a detailed offline analysis all TDC, QDC and FADC information was recorded in an event by event mode for each triggered beam event. Various corrections had to be applied to the data, such as random correction, the detection of neutrals in the detector, Dalitz decay, pion decay and the radiative pion capture. This measurement covers, as the only experiment, the whole Δ-resonance and the sp-interference region in one single experimental setup and improves the available data base for the SCX reaction. It is shown that the description of the SCX cross sections is improved if the s-wave amplitudes, that have been fixed essentially by elastic pion-nucleon scattering data, is reduced by (4±1.5)%. The exact value depends on the SCX literature data included and on the parameters of the Δ 0 Breit-Wigner resonance describing the p 33 -waves. This shows that p-wave as well as s-wave effects should be considered in studies of isospin symmetry breaking. Interestingly

  6. Total cross sections for pion charge exchange on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, J.

    2006-04-28

    This work describes the measurement of total SCX cross sections employing a new 4{pi} scintillation counter to perform transmission measurements in the incident pion energy range from about 38 to 250 MeV. A small 4{pi} detector box consisting of thin plastic scintillators has been constructed. The transmission technique, which was used, relates the number of transmitted charged pions to that of incident beam pions and this way effectively counts events with neutral products. The incoming negative pions were counted by three beam defining counters before they hit a target of very well known size and chemical composition. The target was placed in the box detector which was not sensitive to the neutral particles resulting from the SCX. The total cross section for emerging neutral particles was derived from the comparison of the numbers of the incoming and transmitted charged particles. The total SCX cross section on hydrogen was derived from the transmissions of a CH{sub 2} target, a carbon target and an empty target. For a detailed offline analysis all TDC, QDC and FADC information was recorded in an event by event mode for each triggered beam event. Various corrections had to be applied to the data, such as random correction, the detection of neutrals in the detector, Dalitz decay, pion decay and the radiative pion capture. This measurement covers, as the only experiment, the whole {delta}-resonance and the sp-interference region in one single experimental setup and improves the available data base for the SCX reaction. It is shown that the description of the SCX cross sections is improved if the s-wave amplitudes, that have been fixed essentially by elastic pion-nucleon scattering data, is reduced by (4{+-}1.5)%. The exact value depends on the SCX literature data included and on the parameters of the {delta}{sup 0} Breit-Wigner resonance describing the p{sub 33}-waves. This shows that p-wave as well as s-wave effects should be considered in studies of isospin

  7. Na+-H+ exchanger and proton channel in heart failure associated with Becker and Duchenne muscular dystrophies.

    Science.gov (United States)

    Bkaily, Ghassan; Jacques, Danielle

    2017-10-01

    Cardiomyopathy is found in patients with Duchenne (DMD) and Becker (BMD) muscular dystrophies, which are linked muscle diseases caused by mutations in the dystrophin gene. Dystrophin defects are not limited to DMD but are also present in mild BMD. The hereditary cardiomyopathic hamster of the UM-X7.1 strain is a particular experimental model of heart failure (HF) leading to early death in muscular dystrophy (dystrophin deficiency and sarcoglycan mutation) and heart disease (δ-sarcoglycan deficiency and dystrophin mutation) in human DMD. Using this model, our previous work showed a defect in intracellular sodium homeostasis before the appearance of any apparent biochemical and histological defects. This was attributed to the continual presence of the fetal slow sodium channel, which was also found to be active in human DMD. Due to muscular intracellular acidosis, the intracellular sodium overload in DMD and BMD was also due to sodium influx through the sodium-hydrogen exchanger NHE-1. Lifetime treatment with an NHE-1 inhibitor prevented intracellular Na + overload and early death due to HF. Our previous work also showed that another proton transporter, the voltage-gated proton channel (Hv1), exists in many cell types including heart cells and skeletal muscle fibers. The Hv1 could be indirectly implicated in the beneficial effect of blocking NHE-1.

  8. Preparation, characterization and evaluation of proton-conducting hybrid membranes based on sulfonated hydrogenated styrene-butadiene and polysiloxanes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Barreto, M.; Aguilar, J.C.; Rodriguez de San Miguel, E.; de Gyves, J. [Departamento de Quimica Analitica, Facultad de Quimica, UNAM, Ciudad Universitaria, 04360 Mexico, D.F. (Mexico); Acosta, J.L.; del Rio, C.; Ojeda, M.C. [Instituto de Ciencia y Tecnologia de Polimeros (CSIC), c/Juan de la Cierva 3, 28006 Madrid (Spain); Munoz, M. [Departament de Quimica Analitica, Facultat de Ciencies, U.A.B., Bellaterra 08193 Barcelona (Spain)

    2010-12-15

    This paper describes the preparation of proton-conducting hybrid membranes (HMs) obtained by a solvent casting procedure using a solution containing sulfonated hydrogenated styrene-butadiene (HSBS-S) and an inorganic-organic mixture (polysiloxanes) previously prepared by a sol-gel route. HSBS-S copolymers with different sulfonation degrees were obtained and characterized by means of elemental analysis (EA), chemical titration and electrochemical impedance spectroscopy (EIS). HSBS-S with the best properties in terms of proton conductivity and solubility for the casting procedure was selected to prepare the HMs. The solvent casting procedure permitted the two phases to be homogeneously distributed while maintaining a relatively high proton conductivity in the membrane. HMs with different blend ratios were characterized using structural (Fourier transform infrared-attenuated total reflectance (FTIR-ATR), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC)), electrical (EIS), physicochemical (water uptake, ion-exchange capacity) and thermal (TGA-MS) methods. Finally, the optimized HSBS-S membrane and HMs were tested in hydrogen single fuel cells to obtain the polarization and power curves at different cell temperatures and gas pressures. Results indicate that HMs show a considerable improvement in performance compared to the optimized HSBS-S membrane denoting the benefit of incorporating the inorganic-organic network in the hydrogenated styrene-butadiene matrix. A Nafion membrane was used as reference material throughout this work. (author)

  9. NMR studies of the influence of dodecyl sulfate on the amide hydrogen exchange kinetics of a micelle-solubilized hydrophobic tripeptide

    International Nuclear Information System (INIS)

    O'Neil, J.D.J.; Sykes, B.D.

    1989-01-01

    Backbone amide hydrogen exchange measurements are an important source of information about the internal dynamics of proteins. Before such measurements can be interpreted unambiguously, contributions to hydrogen exchange rates from the chemical and physical environment of the amides must be taken into account. Membrane proteins are often solubilized in detergents, yet there have not been any systematic investigations of the possible effects detergents may have on the amide hydrogen exchange rates of proteins. To address this question, the authors have measured individual backbone and carboxyl-terminal amide exchange rates for the amphipathic tripeptide Leu-Val-Ile-amide dissolved in water and dodecyl sulfate micelles. Proton NMR spectroscopy was used to measure exchange using the direct exchange-out into D 2 O technique at 5 degree C and using an indirect steady-state saturation-transfer technique at 25 degree C. The broadening effect of micelle-incorporated spin-labeled fatty acid (12-doxylsterate) on the 1 H NMR spectra of both the detergent and the peptide resonances was used to demonstrate that the tripeptide is intimately associated with the micelle. These experiments help to explain the elevated pH min observed for backbone amides in the sodium dodecyl sulfate solubilized M13 coat protein

  10. Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes

    Science.gov (United States)

    Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz

    2018-03-01

    The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.

  11. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  12. Investigation of water distribution in proton exchange membrane fuel cells via Terahertz imaging

    International Nuclear Information System (INIS)

    Thamboon, P.; Buaphad, P.; Thongbai, C.; Saisud, J.; Kusoljariyakul, K.; Rhodes, M.W.; Vilaithong, T.

    2011-01-01

    Coherent transition radiation in a THz regime generated from a femtosecond electron bunch is explored for its potential use in imaging applications. Due to water sensitivity, the THz imaging experiment is performed on a proton exchange membrane fuel cell (PEMFC) to assess the ability to quantify water in the flow field of the cell. In this investigation, the PEMFC design and the experimental setup for the THz imaging is described. The results of the THz images in the flow field are also discussed.

  13. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system co...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  14. Proton exchange membrane fuel cell operation and degradation in short-circuit.

    OpenAIRE

    Silva , R.E.; Harel , F.; Jemei , S.; Gouriveau , Rafael; Hissel , Daniel; Boulon , L.; Agbossou , K.

    2013-01-01

    International audience; Hybridization of proton exchange membrane fuel cells (PEMFC) and ultra capacitors (UC) are considered as an alternative way to implement high autonomy, high dynamic, and reversible energy sources. PEMFC allow high efficiency and high autonomy, however their dynamic response is limited and this source does not allow recovering energy. UC appears to be a complementary source to fuel cell systems (FCS) due to their high power density, fast dynamics, and reversibility. A d...

  15. LINEAR AND NONLINEAR VISCOELASTIC CHARACTERIZATION OF PROTON EXCHANGE MEMBRANES AND STRESS MODELING FOR FUEL CELL APPLICATIONS

    OpenAIRE

    Patankar, Kshitish A

    2009-01-01

    In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111...

  16. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    DEFF Research Database (Denmark)

    Chiriaev, Serguei; Dam Madsen, Nis; Rubahn, Horst-Günter

    2017-01-01

    electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM). A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its....... In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles. Keywords: proton exchange membrane fuel cells (PEMFCs); Helium Ion Microscopy (HIM...

  17. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    International Nuclear Information System (INIS)

    Mabrouk, W.; Ogier, L.; Matoussi, F.; Sollogoub, C.; Vidal, S.; Dachraoui, M.; Fauvarque, J.F.

    2011-01-01

    Highlights: → New, simple and cheap way to synthesize a membrane. → The membranes combine good proton conductivities with good mechanical properties. → The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g -1 (1.3 H + per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm -1 at room temperature in aqueous H 2 SO 4 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  18. Proton and hydrogen formation by cyclohexyl benzene during overcharge of Li-ion batteries

    Science.gov (United States)

    Lee, Hochun; Kim, Soojin; Jeon, Jongho; Cho, Jeong-Ju

    This study provides experimental evidence for proton and hydrogen formation caused by the anodic electropolymerization of cyclohexyl benzene (CHB), which is a popular electrolyte additive for overcharge protection of lithium-ion batteries (LIBs). It is found that considerable H 2 evolution is observed in overcharged LiCoO 2/graphite cells, especially when CHB is included as an electrolyte additive. In order to confirm the proton generation during the CHB oxidation, Pt/Pt-rotating ring disc electrode (RRDE) measurements are performed in 1 M Li(C 2F 5SO 2) 2N ethylene carbonate/ethyl methyl carbonate (1/2, v/v) solutions with and without CHB. The cathodic ring current is intimately correlated to the anodic disc current, and the cathodic reaction at the ring is determined to be the reduction of the proton. The proton generation efficiency during the CHB oxidation is as high as 90%. Proton liberation is also observed during the anodic decomposition of the electrolyte solvents, although it occurs in a much less stoichiometric way compared with that during the CHB oxidation.

  19. Proton dynamics in the hydrogen bonds of 4-amino-3,5-dihalogenobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, Tetsuo, E-mail: asaji@chs.nihon-u.ac.jp [Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan); Ueda, Kouhei; Oguni, Masaharu [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-08-18

    Highlights: • 4-Amino-3,5-dichlorobenzoic acid has a symmetric dimer structure. • The compound undergoes a phase transition at 138 K. • The symmetry breaking of the dimer was revealed by {sup 35}Cl NQR. • The proton dynamics was analyzed by coherent and incoherent tunneling models. - Abstract: On the polycrystalline sample of 4-amino-3,5-dihalogenobenzoic acid, 4-NH{sub 2}-3,5-X{sub 2}C{sub 6}H{sub 2}COOH, which has a symmetric dimer structure in the crystal, the proton tunneling in the hydrogen bonds has been investigated by NQR and NMR spin–lattice relaxation times T{sub 1} measurements. Two {sup 35}Cl NQR lines of the X = Cl derivative show the existence of two crystallographically inequivalent chlorine atoms in the high-temperature phase, in consistency with the reported crystal structure. Below 138 K, each splits into a doublet indicating the symmetry breaking of the benzoic acid dimer. The proton dynamics was analyzed by a coherent and incoherent tunneling models, for the high- and low-temperature phases, respectively. The temperature dependence of the correlation time of proton translation was estimated. As for the X = I derivative, the proton dynamics was discussed similarly by {sup 1}H NMR T{sub 1} data by assuming occurrence of a phase transition at low-temperature.

  20. Invariant mass spectroscopy of {sup 19,17}C and {sup 14}B using proton inelastic and charge-exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Satou, Y., E-mail: satou@phya.snu.ac.k [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Tokyo (Japan); Fukuda, N. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Sugimoto, T.; Kondo, Y.; Matsui, N.; Hashimoto, Y.; Nakabayashi, T.; Okumura, Y.; Shinohara, M. [Department of Physics, Tokyo Institute of Technology, Tokyo (Japan); Motobayashi, T.; Yanagisawa, Y.; Aoi, N.; Takeuchi, S.; Gomi, T.; Togano, Y. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Kawai, S. [Department of Physics, Rikkyo University, Tokyo (Japan); Sakurai, H. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Ong, H.J.; Onishi, T.K. [Department of Physics, University of Tokyo, Tokyo (Japan)

    2010-03-01

    The neutron-rich carbon isotopes {sup 19,17}C and the boron isotope {sup 14}B have been investigated, respectively, by the proton inelastic and charge-exchange reactions on a liquid hydrogen target at around 70 MeV/nucleon. The invariant mass method in inverse kinematics was employed to map the energy spectrum above the neutron decay threshold of the residual nuclei. New states on carbon isotopes are reported. An experimental capability of extracting beta-decay strengths via forward angle (p,n) cross sections on unstable nuclei is shown.

  1. On line determination of deuterium in hydrogen water exchange reaction by mass spectrometry. IRP-10

    International Nuclear Information System (INIS)

    Sharma, J.D.; Alphonse, K.P.; Mishra, Sushama; Prabhu, S.A.; Mohan, Sadhana; Tangri, V.K.

    2007-01-01

    The Deuterium (D)/Hydrogen (H) analysis at low Concentration is generally carried out by Mass Spectrometry. Mass Spectrometer is specially designed for the measurement of Mass 2 and 3 ratio. The Deuterium analysis of water and hydrogen in concentration range of a few ppm to about 1% plays an important role in the Heavy Water Production Plants. For the enrichment of the Deuterium concentration in H 2 O by H 2 - H 2 O exchange a catalyst is essential as reaction is relatively slow. Heavy Water Division has developed in house Platinum based catalyst for the isotopic exchange of Hydrogen and Water

  2. Rapid deuterium exchange-in time for probing conformational change

    International Nuclear Information System (INIS)

    Dharmasiri, K.; Smith, D.L.

    1995-01-01

    Isotopic exchange of protein backbone amide hydrogens has been used extensively as a sensitive probe of protein structure. One of the salient features of hydrogen exchange is the vast range of exchange rates in one protein. Isotopic exchange methods have been used to study the structural features including protein folding and unfolding (1), functionally different forms of proteins (2), protein-protein complexation (3), and protein stability parameter. Many backbone amide protons that are surface accessible and are not involved in hydrogen bonding undergo rapid deuterium exchange. In order to study, fast exchanging amide protons, fast exchange-in times are necessary

  3. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  4. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer.

    Science.gov (United States)

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-03-15

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.

  5. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.

  6. Measurement of atomic-hydrogen spin-exchange parameters at 0.5 K using a cryogenic hydrogen maser

    International Nuclear Information System (INIS)

    Hayden, M.E.; Huerlimann, M.D.; Hardy, W.N.

    1996-01-01

    Using a cryogenic hydrogen maser, suitably modified to have electronic control of both the resonance frequency and the quality factor of the external cavity, we have measured a number of spin-exchange parameters for an atomic-hydrogen (H) gas at a temperature of 0.5 K. These results are relevant to the ultimate achievable frequency stability for cryogenic H masers and, when coupled with accurate calculations of the spin-exchange parameters, serve as a sensitive test of the H-H interatomic potentials. We find evidence for a frequency shift not predicted by semiclassical theories of spin exchange. In the context of a fully quantum mechanical hydrogen-atom spin-exchange theory [B. J. Verhaar et al., Phys. Rev. A 35, 3825 (1987) and J. M. V. A. Koelman et al., Phys. Rev. A 38, 3535 (1988)], this frequency shift is attributed to the influence of hyperfine interactions during spin-exchange collisions. Our findings are generally in agreement with these predictions; however, the sign of the hyperfine-induced frequency shift appears to differ from theory. copyright 1996 The American Physical Society

  7. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  8. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    Science.gov (United States)

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  9. Synthesis, characterization and optimization of platinum-alloy nanoparticle catalysts in proton exchange membrane fuel cells

    Science.gov (United States)

    Srivastava, Ratndeep

    Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane

  10. Geneva University - Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle

    CERN Multimedia

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 12 May 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle Dr Aldo Antogninia , CREMA Collaboration, Max Planck Institute, Germany At the Paul Scherrer Institut, Switzerland, we have measured several 2S-2P transition frequencies in muonic hydrogen (µp) and deuterium (µd) by means of laser spectroscopy. This results in an order of magnitude improvement on the rms charge radius values of the proton and the deuteron. Additionally the Zemach radii and the deuteron polarizability are also inferred. The new proton radius value is deduced with a relative accuracy of 0.1% but strongly disagrees from CODATA. The origin of this discrepancy is not yet known. It may come from theo...

  11. Gadolinium-hydrogen ion exchange of zirconium phosphate

    Science.gov (United States)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  12. Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs

    Science.gov (United States)

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2018-03-01

    A theoretical study is reported of a system of two identical symmetric hydrogen bonds, weakly coupled such that the two mobile protons can move either separately (stepwise) or together (concerted). It is modeled by two equivalent quartic potentials interacting through dipolar and quadrupolar coupling terms. The tunneling Hamiltonian has two imaginary modes (reaction coordinates) and a potential with a single maximum that may turn into a saddle-point of second order and two sets of (inequivalent) minima. Diagonalization is achieved via a modified Jacobi-Davidson algorithm. From this Hamiltonian the mechanism of proton transfer is derived. To find out whether the two protons move stepwise or concerted, a new tool is introduced, based on the distribution of the probability flux in the dividing plane of the transfer mode. While stepwise transfer dominates for very weak coupling, it is found that concerted transfer (co-tunneling) always occurs, even when the coupling vanishes since the symmetry of the Hamiltonian imposes permanent entanglement on the motions of the two protons. We quantify this entanglement and show that, for a wide range of parameters of interest, the lowest pair of states of the Hamiltonian represents a perfect example of highly entangled quantum states in continuous variables. The method is applied to the molecule porphycene for which the observed tunneling splitting is calculated in satisfactory agreement with experiment, and the mechanism of double-proton tunneling is found to be predominantly concerted. We show that, under normal conditions, when they are in the ground state, the two porphycene protons are highly entangled, which may have interesting applications. The treatment also identifies the conditions under which such a system can be handled by conventional one-instanton techniques.

  13. Exchange and polarization effects in the elementary excitation spectrum of a hydrogen atom immersed in a hot plasma

    International Nuclear Information System (INIS)

    Dharma-wardana, M.W.C.; Grimaldi, F.; Lecourt, A.; Pellissier, J.

    1980-01-01

    The one-particle hydrogenic Green's function has been calculated for a partially ionized plasma consisting of hydrogen atoms, electrons, and protons at high temperatures. The theoretical method extends a previous publication and involves an evaluation of the mass operator in the Dyson equation to include proper self-energy parts to ''all orders'' in the screened interaction. This mass operator characterizes the effective micropotential felt by the atom in the plasma and determines all of the one-particle properties and some two-particle properties associated with the atomic subsystem. The first-order mass operator is nonzero only for exchange scattering, which leads to a frequency-independent exchange shift. This temperature- and density-dependent theory of the exchange shift replaces the usual semiphenomenological schemes based on the Slater-Kohn-Sham type of theory. The exchange-shifted Green's functions are used in evaluating the higher-order contributions. Computer calculations and the resolution of the poles of the Green's function lead to level shifts, widths, and spectral functions. These are calculated within both the second-order and the all-order theory. The second-order theory, which may be valid at sufficiently high densities and in turbulent plasmas, overemphasises the atom-plasmon coupling and shows new structures. The inclusion of contributions beyond second order removes these structures and produces a more ''conventional'' spectral-intensity function. The effects of center-of-mass motion on the level shifts and level profiles are investigated and the onset of plasma instabilities touched upon. These calculations make contact with the work on ''plasma-polarization shifts'' and provide an approach to q,ω-dependent plasma microfields

  14. The Lamb shift in muonic hydrogen and the proton radius from effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara; Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica and IFAE, Bellaterra (Barcelona) (Spain)

    2015-12-15

    We comprehensively analyse the theoretical prediction for the Lamb shift in muonic hydrogen, and the associated determination of the proton radius. We use effective field theories. This allows us to relate the proton radius with well-defined objects in quantum field theory, eliminating unnecessary model dependence. The use of effective field theories also helps us to organize the computation so that we can clearly state the parametric accuracy of the result. In this paper we review all (and check several of) the contributions to the energy shift of order α{sup 5}, as well as those that scale like α{sup 6} x logarithms in the context of non-relativistic effective field theories of QED. (orig.)

  15. Proton conductivity in quasi-one dimensional hydrogen-bonded systems: A nonlinear approach

    International Nuclear Information System (INIS)

    Tsironis, G.; Phevmatikos, S.

    1988-01-01

    Defect formation and transport in a hydrogen-bonded system is studied via a two-sublattice soliton-bearing one-dimensional model. Ionic and orientational defects are associated with distinct nonlinear topological excitations in the present model. The dynamics of these excitations is studied both analytically and with the use of numerical simulations. It is shown that the two types of defects are soliton solutions of a double Sine--Gordon equation which describes the motion of the protons in the long-wavelength limit. With each defect there is an associated deformation in the ionic lattice that, for small speeds, follows the defect dynamically albeit resisting its motion. Free propagation as well as collision properties of the proton solitons are presented. 33 refs., 10 figs

  16. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  17. A measurement of the proton structure functions from neutrino-hydrogen and antineutrino-hydrogen charged-current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Corrigan, G.; Myatt, G.; Radojicic, D.; Shotton, P.N.; Towers, S.J.; Bullock, F.W.; Burke, S.

    1989-01-01

    Within the framework of the quark-parton model, the quark and anti-quark structure functions of the proton have been measured by fitting them to the distributions of the events in the Bjorken y variable. The data used form the largest sample of neutrino and antineutrino interactions on a pure hydrogen target available, and come from exposures of BEBC to the CERN wide band neutrino and antineutrino beams. It is found that the ratio d ν /u ν of valence quark distributions falls with increasing Bjorken x. In the context of the quark-parton model the results constrain the isospin composition of the accompanying diquark system. Models involving scattering from diquarks are in disagreement with the data. (orig.)

  18. Molecular hydrogen messengers can lead to structural infidelity: A cautionary tale of protonated glycine

    Energy Technology Data Exchange (ETDEWEB)

    Masson, Antoine, E-mail: amasson@lbl.gov; Rizzo, Thomas R., E-mail: erw@berkeley.edu, E-mail: thomas.rizzo@epfl.ch [Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne (Switzerland); Williams, Evan R., E-mail: erw@berkeley.edu, E-mail: thomas.rizzo@epfl.ch [Department of Chemistry, University of California, Berkeley, California 94720-1460 (United States)

    2015-09-14

    The effects of tagging protonated glycine with either He or between 1 and 14 H{sub 2} molecules on the infrared photodissociation spectra and the ion structure were investigated. Differences in the IR spectra with either a single He atom or H{sub 2} molecule attached indicate that even a single H{sub 2} molecule can affect the frequencies of some vibrational bands of this simple ion. The protonation site is the preferred location of the tag with He and with up to two H{sub 2} molecules, but evidence for H{sub 2} attachment to the hydrogen atom of the uncharged carboxylic acid is observed for ions tagged with three or more H{sub 2} molecules. This results in a 55 cm{sup −1} red shift in the carboxylic acid OH stretch, and evidence for some structural isomers where the hydrogen bond between the protonated nitrogen and the carbonyl oxygen is partially broken; as a result H{sub 2} molecules attached to this site are observed. These results are supported by theory, which indicates that H{sub 2} molecules can effectively break this weak hydrogen bond with three or more H{sub 2} molecules. These results indicate that large spectral shifts as a result of H{sub 2} molecules attaching to sites remote from the charge can occur and affect stretching frequencies as a result of charge transfer, and that tagging with multiple H{sub 2} molecules can change the structure of the ion itself.

  19. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  20. Determination of the negatively charged pion-proton scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2003-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to the hadronic scattering length extracted from a hydrogenic atom with an extended charge and in the limit of a short ranged hadronic interaction to terms of order ((alpha)**2)(log(alpha)) in the limit of a non-relativistic approach. A hadronic negatively charged pion-proton scattering length of 0.0870(5), in units of inverse charged pion-mass, is deduced, leading to a pion-nucleon coupling constant from the GMO relation equals to 14.00(19).

  1. Variational approach to excitation of atomic hydrogen atoms by impacts of protons at intermediate velocities

    International Nuclear Information System (INIS)

    Lasri, B.; Bouamoud, M.; Gayet, R.

    2006-01-01

    A variational approach to the excitation of atoms by ion impacts at intermediate velocities is re-examined. Contributions from intermediate states of the target continuum, that were ignored in previous applications of this approach, are taken into account. With this improved variational approach, excitation cross sections of hydrogen atoms by intermediate energy protons are calculated and compared to recent experimental data and to previous theoretical cross sections. The influence of the intermediate target continuum is found to be very weak. In addition, the present approach is shown to apply as long as the capture process is negligible

  2. Hydrogen determination using secondary processes of recoil proton interaction with sample material

    International Nuclear Information System (INIS)

    Muminov, V.A.; Khajdarov, R.A.; Navalikhin, L.V.; Pardaev, Eh.

    1980-01-01

    Possibilities of hydrogen content determination in different materials according to secondary processes of interaction of recoil protons(irradiation in the field of fast neutrons) with sample material resulting in the appearance of characteristic X-ray irradiation are studied. Excitated irradiation is recorded with a detector placed in the protective screen and located at a certain distance from the object analyzed and neutron source. The method is tested taking as an example analysis of bromine-containing samples (30% Br, 0.5% H) and tungsten dioxide. The determination limit of hydrogen content constitutes 0.05% at confidence coefficient of 0.9. Neutron flux constituted 10 3 neutrons/cm 2 xs, the time of measurement being 15-20 minutes, the distance from the sample to the detector being 12-15 cm [ru

  3. Molecular dynamics simulation of radiation grafted FEP films as proton exchange membranes: Effects of the side chain length

    DEFF Research Database (Denmark)

    Li, Xue; Zhao, Yang; Li, Weiwei

    2017-01-01

    In order to study the microstructure of the prepared potential proton exchange membrane (PEM), molecular dynamics (MD) simulations were used to lucubrate the transport behavior of water molecules and hydronium ions inside the hydrated sulfonated styrene grafted fluorinated ethylene propylene (FEP...... whereas larger water clusters formed. The results of the mean square displacements (MSDs) show that the proton conductivities of the membranes with the proposed side chain lengths were about three fifths of the experimental data, of which the membrane with side chain length of 7 sulfonic styrene units...... was supposed to exhibit the highest proton conductivity, that is 115.69 mS cm-1. All of the supposed membrane models presented good proton conductivity that could definitely meet the application requirements of the proton exchange membranes. The MD simulations can provide an insight to the chain structure...

  4. Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se{sub 2} based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Seol, M.S.; Kwak, D.W.; Oh, J.S. [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, J.H. [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2012-08-01

    Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se{sub 2} (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 {mu}m were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects. - Highlights: Black-Right-Pointing-Pointer Proton implanted Cu(In,Ga)Se{sub 2} thin film and solar cell are prepared. Black-Right-Pointing-Pointer Deep level defects of Cu(In,Ga)Se{sub 2} thin film and solar cell are investigated. Black-Right-Pointing-Pointer Hydrogenation using proton implantation and H{sub 2} annealing reduces deep level defects. Black-Right-Pointing-Pointer Hydrogenation could enhance electrical properties and efficiency of solar cells.

  5. A review on the effect of proton exchange membranes in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Mostafa Rahimnejad

    2014-03-01

    Full Text Available Microorganisms in microbial fuel cells (MFC liberate electrons while the electron donors are consumed. In the anaerobic anode compartment, substrates such as carbohydrates are utilized and as a result bioelectricity is produced in the MFC. MFCs may be utilized as electricity generators in small devices such as biosensors. MFCs still face practical barriers such as low generated power and current density. Recently, a great deal of attention has been given to MFCs due to their ability to operate at mild conditions and using different biodegradable substrates as fuel. The MFC consists of anode and cathode compartments. Active microorganisms are actively catabolized to carbon sources, therefore generating bioelectricity. The produced electron is transmitted to the anode surface but the generated protons must pass through the proton exchange membrane (PEM in order to reach the cathode compartment. PEM as a key factor affecting electricity generation in MFCs has been investigated here and its importance fully discussed.

  6. A perturbative treatment of double gluon exchange in γ*-proton DIS

    International Nuclear Information System (INIS)

    Kharraziha, H.

    2000-04-01

    A new model for the exchange of two gluons between the virtual photon and the proton, in non-diffractive deeply inelastic electron-proton scattering, is developed and studied. This model relies on a perturbative calculation, previously applied to diffraction, and a general result from Regge theory. As a first application of the model, we study corrections to the momentum transfer to the quark-anti-quark pair, at the photon-vertex. We find a significant enhancement of the cross-section at ∝Q 2 momentum transfers, and large negative corrections for small momentum transfers. The implication of this result for jet-distributions measured at HERA, is discussed. (orig.)

  7. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  8. Hydrogen release from 800 MeV proton-irradiated tungsten

    Science.gov (United States)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  9. Hydrogen release from 800 MeV proton-irradiated tungsten

    International Nuclear Information System (INIS)

    Oliver, B.M.; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼300 to ∼1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ∼7%. There is a small additional release fraction occurring at ∼550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model

  10. Hydrogen release from 800 MeV proton-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, B.M. E-mail: brian.oliver@pnl.gov; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from {approx}300 to {approx}1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of {approx}7%. There is a small additional release fraction occurring at {approx}550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  11. New method for the hydrogen isotope exchange reaction in a hydrophobic catalyst bed

    International Nuclear Information System (INIS)

    Asakura, Y.; Kikuchi, M.; Yusa, H.

    1982-01-01

    To improve the isotope exchange reaction efficiency between water and hydrogen, a new reactor in which water mists and hydrogen gas react cocurrently was studied. To apply this to the enrichment of tritium in heavy water, a dual temperature isotope exchange reactor which is composed of cocurrent low temperature reactors and the usual countercurrent high temperature reactor was proposed and analyzed using a McCabe-Thiele diagram. By utilizing cocurrent reactors, in combination, the necessary catalyst volume can be reduced to one-tenth as compared with the usual countercurrent low temperature reactor. 17 refs

  12. A new type separation column for the water-hydrogen isotope catalytic exchange process

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Trenin, V.D.

    2001-01-01

    The catalytic water/hydrogen isotope exchange process is by right considered the most attractive for the solution a number of urgent problems of hydrogen isotope separation. A new type exchange reaction column is described and studied in details by computer simulation and with the help of McCabe-Thiele diagrams. It is shown that the new column in comparison with a traditional one needs less catalyst quantity and a smaller diameter for the solving of the same separation tasks. Generalized calculation data are presented in graphical form

  13. A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease*

    Science.gov (United States)

    Englander, S. Walter

    2012-01-01

    A new method for measuring the hydrogen exchange of macromolecules in solution is described. The method uses tritium to trace the movement of hydrogen, and utilizes Sephadex columns to effect, in about 2 minutes, a separation between tritiated macromolecule and tritiated solvent great enough to allow the measurement of bound tritium. High sensitivity and freedom from artifact is demonstrated and the possible value of the technique for investigation of other kinds of colloid-small molecule interaction is indicated. Competition experiments involving tritium, hydrogen, and deuterium indicate the absence of any equilibrium isotope effect in the ribonuclease-hydrogen isotope system, though a secondary kinetic isotope effect is apparent when ribonuclease is largely deuterated. Ribonuclease shows four clearly distinguishable kinetic classes of exchangeable hydrogens. Evidence is marshaled to suggest the independently measurable classes II, III, and IV (in order of decreasing rate of exchange) to represent “random-chain” peptides, peptides involved in α-helix, and otherwise shielded side-chain and peptide hydrogens, respectively. PMID:14075117

  14. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  15. Proton Exchange Membrane Fuel Cell Modelling Using Moving Least Squares Technique

    Directory of Open Access Journals (Sweden)

    Radu Tirnovan

    2009-07-01

    Full Text Available Proton exchange membrane fuel cell, with low polluting emissions, is a great alternative to replace the traditional electrical power sources for automotive applications or for small stationary consumers. This paper presents a numerical method, for the fuel cell modelling, based on moving least squares (MLS. Experimental data have been used for developing an approximated model of the PEMFC function of the current density, air inlet pressure and operating temperature of the fuel cell. The method can be applied for modelling others fuel cell sub-systems, such as the compressor. The method can be used for off-line or on-line identification of the PEMFC stack.

  16. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  17. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: Use of the INEPT [insensitive nucleus enhancement by polarization transfer] experiment to follow individual amides in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    Henry, G.D.; Sykes, B.D.

    1990-01-01

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1 H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10 5 -fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use 15 N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the 15 N nucleus from a coupled proton; when 15 N-labeled protonated protein is dissolved in 2 H 2 O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H + and OH - ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k ex ). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations

  18. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    Science.gov (United States)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  19. Presolvated Electron Reaction with Methylacetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-atom Abstraction

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D.

    2015-01-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methylacetoacetate (MAA, CH3-CO-CH2-CO-OCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-CO-OCH3) in the temperature range (77 to ca. 170 K) have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-CO-OCH3. The ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylen protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-CO-OCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-CO-OCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. PMID:25255751

  20. Poly(dA-dT).poly(dA-dT) two-pathway proton exchange mechanism. Effect of general and specific base catalysis on deuteration rates

    International Nuclear Information System (INIS)

    Hartmann, B.; Leng, M.; Ramstein, J.

    1986-01-01

    The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results

  1. Equipment and software for the experiment on polarized proton scattering on hydrogen and nuclei

    International Nuclear Information System (INIS)

    Buklej, A.E.; Govorun, N.N.; Zhurkin, V.V.

    1980-01-01

    Installation for the conduction of polarization measurements upon the beam of polarized protons with the 2.1 GeV/c momentum using ITEP synchrotron is described. The installation is designed for polarization measurement in elastic pp-scattering and asymmetry in summary (elastic and inelastic without meson production) scattering of polarized protons upon nuclei in the angle range up to 180 mrad, as well as polarization in elastic pn-scattering. The installation consists of 18 two-coordinate magnetostriction wire spark chambers (s.c.), emitting counters, the system of veto-counters surrounding the target, liquid hydrogen or (deuterium) target and magnet to conduct pulse analysis of scattered particles in the background measurements. Primary processing of the material is conducted on the basis of modernized programs using the M-220 and BESM-6 computers. With a help of the experimental installation described asymmetry measurement on hydrogen, Li, C, Al, Ca have been conducted. The prospect of use of the method described to separate elastic reactions in the range of very small momentum transmitted, where the background of inelastic interactions can be decreased to the negligibly low level, for precise measurement of elastic reactions cross sections and the study of polarization phenomena in the range of coulomb interference is underlined [ru

  2. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    International Nuclear Information System (INIS)

    Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-01-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

  3. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris

    2017-05-18

    Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.

  4. Development of proton exchange membranes fuel cells with sulfonated HTPB-phenol; Desenvolvimento de membranas polimericas trocadoras de protons utilizando PBLH-fenol

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: ferraz@quimica.ufpr.br; Cantao, Mauricio P. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Centro Politecnico

    2007-07-01

    Proton exchange membrane fuel cells (PEMFC) have been paid attention as promising candidates for vehicle and portable applications. PEMFC employ proton exchange polymer membrane which serves as an electrolyte between anode and cathode. Nafion{sup R} (DuPont), perfluorosulfonic acid/PTFE copolymer membranes are typically used as the polymer electrolyte in PEMFC due to their good chemical and mechanical properties as well as high proton conductivity. However, high cost of these materials is one of main obstacles for commercialization of PEMFC. Extensive efforts have been devoted to develop alternative polymer electrolyte membranes. Our group have investigated the development of proton exchange membranes fuel cells using sulfonated HTPB-Phenyl ether (HTPB-Phenol), making possible the formation of membranes with sulfonated groups amount of 2,4, 2,5 and 2,8 mmol/g of dry polymer from HTPB-Phenol 80, 98 and 117 respectively. These results mean a bigger values than those of the Nafion{sup R} membranes, that possess an ion exchange capacity of 0,67 up to 1,25 mmol/g of sulfonated groups. (author)

  5. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  6. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    International Nuclear Information System (INIS)

    Saievar-Iranizad, E.; Malekifar, A.

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO 2 ). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cell, a mathematical model had been considered in this article. This model simulates and illustrates the interaction, diffusion and oxygen ions exchange into fuel cell. The electrical power of fuel cell due to the ion exchange can be obtained using a simulation method. The ion exchange simulation, diffusion of molecules, their interactions and system development through the mathematical model has been discussed in this paper

  7. Electrochemical characterization of proton exchange membrane fuel cells; Caracterizacao eletroquimica de celulas a combustivel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: furtado@cepel.br; Codeceira Neto, Alcides [Companhia HidroEletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    This paper describes the electrochemical behavior of a proton exchange membrane fuel cell in function of temperature and time of operation. Different polarization phenomena are considered in the 30 to 70 deg C temperature range, as well as the degradation of electrochemical behavior of the fuel cell analyzed up to 1260 hours of operation. The results show that there is a tendency for the experimental values approaching the theoretical as it increases the temperature of the membrane electrolyte. The electrochemical behavior of the PEMFC studied proved to be less stable at 70 deg C. On the other hand, at 30 deg C the fuel cell performance proved to be considerably lower than at other temperatures. Also, it was found that in certain current ranges occurs greater overlay in potential-current curves, and in some cases reversing between these curves depending on the electric current required for the data obtained at 60 and 70 deg C, indicating, perhaps, that at 70 deg C the characteristics of the electrolyte are slightly inferior to those at 70 deg C, corresponding to an electrolyte degradation. Additionally, for the system studied, we found that the rate of variation of the potential difference in function of the temperature is quite high at the beginning of the operation process and tends to stabilize in a level of around 2,3-2,5 {mu}V per minute for times greater than 330 hours of operation. (author)

  8. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p plot for quantitative analysis of DIACEST MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Analysis of the control structures for an integrated ethanol processor for proton exchange membrane fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Biset, S; Nieto Deglioumini, L; Basualdo, M [GIAIP-CIFASIS (UTN-FRRo-CONICET-UPCAM-UNR), BV. 27 de Febrero 210 Bis, S2000EZP Rosario (Argentina); Garcia, V M; Serra, M [Institut de Robotica i Informatica Industrial, C. Llorens i Artigas 4-6, 08028 Barcelona (Spain)

    2009-07-01

    The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process. (author)

  10. Power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell system with discrete ejector control

    Science.gov (United States)

    Nikiforow, K.; Pennanen, J.; Ihonen, J.; Uski, S.; Koski, P.

    2018-03-01

    The power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell (PEMFC) system are studied theoretically and experimentally for grid support service applications. The fuel supply is implemented with a fixed-geometry ejector and a discrete control solution without any anode-side pressure fluctuation suppression methods. We show that the stack power can be ramped up from 2.0 kW to 4.0 kW with adequate fuel supply and low anode pressure fluctuations within only 0.1 s. The air supply is implemented with a centrifugal blower. Air supply ramp rates are studied with a power increase executed within 1 and 0.2 s after the request, the time dictated by grid support service requirements in Finland and the UK. We show that a power ramp-up from 2.0 kW to 3.7 kW is achieved within 1 s with an initial air stoichiometry of 2.5 and within 0.2 s with an initial air stoichiometry of 7.0. We also show that the timing of the power ramp-up affects the achieved ancillary power capacity. This work demonstrates that hydrogen fueled and ejector-based PEMFC systems can provide a significant amount of power in less than 1 s and provide valuable ancillary power capacity for grid support services.

  11. Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements – A parametric study

    International Nuclear Information System (INIS)

    Alaefour, Ibrahim; Karimi, G.; Jiao, Kui; Li, X.

    2012-01-01

    Highlights: ► Spatial local current distributions in a single PEMFC are measured. ► Effects of key operating conditions on the local current density are investigated. ► Increasing air and hydrogen stoichiometries improves local current density distributions. ► Operating pressure and temperature have negligible impact on local current distribution. - Abstract: Understanding of current distributions in proton exchange membrane fuel cells (PEMFCs) is crucial for designing cell components such as the flow field plates and the membrane electrode assembly (MEA). In this study, the spatial current density distributions in a single PEMFC with three serpentine flow channels are measured using a segmented bipolar plate and printed circuit board technique. The effects of key operating conditions such as stoichiometry ratios, inlet humidity levels, cell pressure and temperature on the local current density distributions for co-, counter-, and cross-flow arrangements are examined. It is observed that the local current density distribution over the MEA is directly affected by the cell operating conditions along with the configuration of the flow arrangement. It is also found that among the different flow configurations tested under the various operating conditions, the counter flow arrangement provides the optimum average current density and the lowest variations in the local current densities along the flow channels.

  12. Fabrication of gas diffusion layer based on x-y robotic spraying technique for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Sitanggang, Ramli; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Kadhum, Abdul Amir H.; Iyuke, S.E.

    2009-01-01

    The x-y robotic spraying technique developed in the Universiti Kebangsaan Malaysia is capable of fabricating various sizes of thickness and porosity of gas diffusion layer (GDL) used in the proton exchange membrane fuel cell (PEMFC). These parameters are obtained by varying the characteristic spray numbers of the robotic spraying machine. This investigation results were adequately represented with mathematical equations for hydrogen gas distribution in GDL. Volumetric modulus (M) parameter is used to determine the value of current density produced on the electrode of a single cell PEMFC. Thus the M parameter can be employed as indicator for a successful GDL fabrication. GDL type 4 has three variables of layer design that can be optimized to function as gas distributor, gas storage, flooding preventer on GDL surface, to evacuate water from the electrode and to control the electrical conductivity. The gas distribution in GDL was mathematically represented with average error of 15.5%. The M value of GDL type 4 according to the model was 0.22 cm 3 /s and yielded a current density of 750 A/m 2 .

  13. Development of the novel control algorithm for the small proton exchange membrane fuel cell stack without external humidification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Sang-Hyun; Kim, Wook; Lee, Jong-Hak; Cho, Kwan-Seok; Choi, Woojin [Department of Electrical Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea); Park, Kyung-Won [Department of Chemical/Environmental Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea)

    2010-09-15

    Small PEM (proton exchange membrane) fuel cell systems do not require humidification and have great commercialization possibilities. However, methods for controlling small PEM fuel cell stacks have not been clearly established. In this paper, a control method for small PEM fuel cell systems using a dual closed loop with a static feed-forward structure is defined and realized using a microcontroller. The fundamental elements that need to be controlled in fuel cell systems include the supply of air and hydrogen, water management inside the stack, and heat management of the stack. For small PEM fuel cell stacks operated without a separate humidifier, fans are essential for air supply, heat management, and water management of the stack. A purge valve discharges surplus water from the stack. The proposed method controls the fan using a dual closed loop with a static feed-forward structure, thereby improving system efficiency and operation stability. The validity of the proposed method is confirmed by experiments using a 150-W PEM fuel cell stack. We expect the proposed algorithm to be widely used for controlling small PEM fuel cell stacks. (author)

  14. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  15. New Measurement of the 1 S -3 S Transition Frequency of Hydrogen: Contribution to the Proton Charge Radius Puzzle

    Science.gov (United States)

    Fleurbaey, Hélène; Galtier, Sandrine; Thomas, Simon; Bonnaud, Marie; Julien, Lucile; Biraben, François; Nez, François; Abgrall, Michel; Guéna, Jocelyne

    2018-05-01

    We present a new measurement of the 1 S -3 S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of 9 ×10-13. The proton charge radius deduced from this measurement, rp=0.877 (13 ) fm , is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of rp from muonic hydrogen spectroscopy.

  16. Exchange reaction of acetylene-d2 with hydrogen chloride

    International Nuclear Information System (INIS)

    Bopp, A.F.; Kern, R.D.

    1975-01-01

    A mixture containing 3 percent each of the reactants C 2 D 2 and HCl in an Ne--Ar diluent was studied over the temperature range 1650 to 2600 0 K utilizing a shock tube coupled to a time-of-flight mass spectrometer. Plots of the mole fractions f of the exchange products, DCl and C 2 HD, revealed two distinct regions of growth: (a) an initial low conversion region characterized by an induction period t/sub i/; and (b) a region of accelerated exchange during which exchange products were formed with a quadratic dependence of the reaction time. These two regions labeled a and b were combined using two empirical equations, 1 - f/sub a//f/sub eq,a/ = exp [-k/sub a/[M]t], where t less than or equal to t/sub i/, and 1 - f/sub b//f/sub eq,b/ = exp [-k/sub b/[M](t - t/sub i/) 2 ], in order to represent the entire reaction profile at any given temperature within the interval investigated. The Arrhenius parameters for k/sub a/ and k/sub b/ were determined to be 10 11 . 15+-0 . 30 exp (-19990 +- 2850/RT) and 10 16 . 40+-0 . 41 exp (-31480 +- 4200/RT), respectively, for DCl and 10 11 . 69+-0 . 29 exp (-19150 +- 2740/RT) and 10 15 . 24+-0 . 34 exp (-17620 +- 3480/RT) for C 2 HD. The units for k/sub a/ are cm 3 mol -1 sec -1 and cm 3 mol -1 sec -2 for k/sub b/. Activation energies are reported in cal mol -1 . Comparison with the profiles obtained for acetylene pyrolysis strongly suggests that the mechanism for the exchange is atomic. Furthermore, the exchange experiments indicate that the initial step in the pyrolysis of acetylene is the disproportionation reaction, 2C 2 H 2 → C 2 H + C 2 H 3

  17. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells

    Science.gov (United States)

    Liu, Chien-Pan; Dai, Chi-An; Chao, Chi-Yang; Chang, Shoou-Jinn

    2014-03-01

    In this study, we report the synthesis and the characterization of poly (vinyl alcohol) based proton conducting membranes. In particular, we describe a novel physically and chemically PVA/HFA (poly (vinyl alcohol)/hexafluoroglutaric acid) blending membranes with BASANa (Benzenesulfonic acid sodium salt) and GA (Glutaraldehyde) as binary reaction agents. The key PEM parameters such as ion exchange capacity (IEC), water uptake, proton conductivity, and methanol permeability were controlled by adjusting the chemical composition of the membranes. The IEC value of the membrane is found to be an important parameter in affecting water uptake, conductivity as well as the permeability of the resulting membrane. Plots of the water uptake, conductivity, and methanol permeability vs. IEC of the membranes show a distinct change in the slope of their curves at roughly the same IEC value which suggests a transition of structural changes in the network. The proton conductivities and the methanol permeability of all the membranes are in the range of 10-3-10-2 S cm-1 and 10-8-10-7 cm2 s-1, respectively, depending on its binary crosslinking density, and it shows great selectivity compared with those of Nafion®-117. The membranes display good mechanical properties which suggest a good lifetime usage of the membranes applied in DMFCs.

  18. Fluorinated poly(ether sulfone) ionomers with disulfonated naphthyl pendants for proton exchange membrane applications

    Science.gov (United States)

    Hu, Zhaoxia; Lu, Yao; Zhang, Xulve; Yan, Xiaobo; Li, Na; Chen, Shouwen

    2018-06-01

    Proton exchange membranes based on fluorinated poly(ether sulfone)s with disulfonated naphthyl pendants (sSPFES) have been successfully prepared by post functionalization through polymeric SNAr reaction. Copolymer structure was confirmed by H-nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy, the physico-chemical properties of the sSPFES membranes were evaluated by thermogravimetric analysis, gel permeation chromatography, electro-chemical impedance spectroscopy, atomic force microscopy, Fenton, water-swelling and fuel cell test. The pendant grafting degree was controlled by varying the feeding amount of the disulfonaphthols, resulting in the ion exchange capacity about 1.28-1.73 mmol/g. The obtained sSPFES membranes were thermal stable, mechanical ductile, and exhibited dimensional change less than 17%, water uptake below 70%, and proton conductivity as high as 0.17-0.28 S/cm at 90°C in water. In a single H2/O2 fuel cell test at 80°C, the sSPFES-B-3.2 membrane (1.61 mmol/g) showed the maximum power output of 593-658 mW/cm2 at 60%-80% relative humidity, indicating their rather promising potential for fuel cell applications.

  19. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  20. Radiation-related retrograde hydrogen isotope and K-Ar exchange in clay minerals

    International Nuclear Information System (INIS)

    Halter, C.; Pagel, M.; Sheppard, S.M.F.; Weber, F.; Clauer, N.

    1987-01-01

    Hydrogen and oxygen isotope studies have been widely applied to characterize the origin of fluids during ore-foaming processes. The primary isotope record, however, may be disturbed by retrograde exchange reactions, thus complicating the interpretation of the data. The susceptibility of minerals to retrograde isotope and chemical exchange is variable, reflecting differences in the mechanism and rate of isotope exchange. Results are presented on deuterium depletion, K/Ar ages and H 2 O + content of illites associated with uranium mineralization from the Athabasca basin (Canada). (author)

  1. Kinetics of tritium isotope exchange between liquid pyrrole and gaseous hydrogen

    International Nuclear Information System (INIS)

    Stolarz, A.

    1994-01-01

    The kinetics of tritium isotope exchange between liquid pyrrole and gaseous hydrogen has been studied over the temperature range of 290-303 K. The reaction was carried out in the presence of platinum black but in spite of that, it appeared to be relatively slow. The kinetics of the exchange reaction studied could be described by the simple McKay equation. The results obtained suggest that diffusion is the rate-determining step. A mechanism of exchange is proposed. (author) 10 refs.; 2 figs.; 1 tab

  2. Development of a membrane electrode assembly production process for proton exchange membrane fuel cell (PEMFC) by sieve printing

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2010-01-01

    Energy is a resource that presents historical trend of growth in demand. Projections indicate that future energy needs will require a massive use of hydrogen as fuel. The use of systems based on the use of proton exchange membrane fuel cell (PEMFC) has features that allow its application for stationary applications, automotive and portable power generation. The use of hydrogen as fuel for PEMFC has the advantage low pollutants' emission, when compared to fossil fuels. For the reactions in a PEMFC is necessary to build membrane electrode assembly (MEA). And the production of MEAs and its materials are relevant to the final cost of kW of power generated by systems of fuel cell. This represent currently a technological and financial barriers to large-scale application of this technology. In this work a process of MEAs fabrication were developed that showed high reproducibility, rapidity and low cost by sieve printing. The process of sieve printing and the ink composition as a precursor to the catalyst layer were developed, which allow the preparation of electrodes for MEAs fabrication with the implementation of the exact catalyst loading, 0.6 milligrams of platinum per square centimeters (mgPt.cm -2 ) suitable for cathodes and 0.4 mgPt.cm -2 for anode in only one application step per electrode. The ink was developed, produced, characterized and used with similar characteristics to ink of sieve printing build for other applications. The MEAs produced had a performance of up to 712 mA.cm -2 by 600 mV to 25 cm 2 MEA area. The MEA cost production for MEAs of 247.86 cm 2 , that can generate 1 kilowatt of energy was estimated to US$ 7,744.14 including cost of equipment, materials and labor. (author)

  3. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  4. Dissolution of ion exchange resin by hydrogen peroxide

    International Nuclear Information System (INIS)

    Lee, S.C.

    1981-08-01

    The resin dissolution process was conducted successfully in full-scale equipment at the SRL Semiworks. A solution containing 0.001M Fe 2+ , or Fe 3+ , and 3 vol % H 2 O 2 in 0.1M HNO 3 is sufficient to dissolve up to 40 vol % resin slurry (Dowex 50W-X8). Foaming and pressurization can be eliminated by maintaining the dissolution temperature below 99 0 C. The recommended dissolution temperature range is 85 to 90 0 C. Premixing hydrogen peroxide with all reactants will not create a safety hazard, but operating with a continual feed of hydrogen peroxide is recommended to control the dissolution rate. An air sparging rate of 1.0 to 1.5 scfm will provide sufficient mixing. Spent resin from chemical separation contains DTPA (diethylenetriaminepentaacetic acid) residue, and the resin must be washed with 0.1M NH 4 OH to remove excess DTPA before dissolution. Gamma irradiation of resin up to 4 kW-hr/L did not change the dissolution rate significantly

  5. Contribution to the study of proteins and peptides structure by hydrogen isotopic exchange

    International Nuclear Information System (INIS)

    Nabedryk-Viala, Eliane.

    1978-01-01

    Development of hydrogen exchange measurement methods to study the structure and the molecular interaction of globular protein molecules in aqueous solution (ribonuclease A, cytochrome c, coupling factors of chloroplasts), in peptide hormones in trifluoroethanol solution (angiotensin II, corticotropin) and in proteins of membranes (rhodopsin) [fr

  6. Analysis and test of a breadboard cryogenic hydrogen/Freon heat exchanger

    Science.gov (United States)

    Desjardins, L. F.; Hooper, J.

    1973-01-01

    System studies required to verify a tube-in-tube cryogenic heat exchanger as optimum for the space shuttle mission are described. Design of the optimum configuration, which could be fabricated from commercially available hardware, is discussed. Finally, testing of the proposed configuration with supercritical hydrogen and Freon 21 is discussed and results are compared with thermal and dynamic analysis.

  7. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    Science.gov (United States)

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  8. Exchange of hydrogen isotopes in oxide ceramics at room temperature

    International Nuclear Information System (INIS)

    Suzuki, H.; Morita, K.; Soda, K.

    2001-01-01

    The decay curves of D and up-take curves of H on the exchange of D implanted into Li 2 TiO 3 for H in H 2 O vapor caused by exposure to normal-air at room temperature have been measured as a function of exposure time at different implantation concentrations by means of the elastic recoil detection technique. The re-emission curves of D retained and H up-taken in a specimen by isochronal annealing for 10 min have been also measured. It is found that the thermal re-emission of D and H takes place uniformly over the whole specimen due to local molecular recombination in the bulk and that the re-emission rates of H and D in the near-surface layers are slower than those in the deeper layers. It is also found that the decay of D caused by the D-H exchange takes place rapidly in the beginning and the retained amount of D attains at a constant level and the retained fraction of D are higher as the initial implantation concentrations of D are lower. The decay curves of D and the up-take curves of H have been analysed using the mass balance equations, in which the elementary processes are taken into account according to the exchange model of one way diffusion from the surface into the bulk. It is shown that the solution of the mass balance equations reproduces well the experimental data. The rate constants of the elementary processes determined are discussed. (orig.)

  9. Thermo-economic analysis of proton exchange membrane fuel cell fuelled with methanol and methane

    International Nuclear Information System (INIS)

    Suleiman, B.; Abdulkareem, A.S.; Musa, U.; Mohammed, I.A.; Olutoye, M.A.; Abdullahi, Y.I.

    2016-01-01

    Highlights: • Modified proton exchange membrane fuel cell was reported. • Thermolib software was used for the simulation of PEM fuel cell configurations. • Optimal operating parameters at 50 kW output of each process were determined. • Thermo-economic analysis is the most efficient way of process selection. • Methane system configuration has been identified as the best preferred PEM fuel cell. - Abstract: Exergy and economic analysis is often used to find and identify the most efficient process configuration for proton exchange membrane fuel cell from the thermo-economic point of view. This work gives an explicit account of the synergetic effect of exergetic and economic analysis of proton exchange membrane fuel cell (PEMFC) using methanol and methane as fuel sources. This was carried out through computer simulation using Thermolib simulation toolbox. Data generated from the simulated model were subsequently used for the thermodynamic and economic analysis. Analysis of energy requirement for the two selected processes revealed that the methane fuelled system requires the lower amount of energy (4.578 kJ/s) in comparison to the methanol fuelled configuration which requires 180.719 J/s. Energy analysis of both configurations showed that the principle of energy conservation was satisfied while the result of the exergy analysis showed high exergetic efficiency around major equipment (heat exchangers, compressors and pumps) of methane fuelled configuration. Higher irreversibility rate were observed around the burner, stack, and steam reformer. These trends of exergetic efficiency and irreversibility rate were observed around equipment in the methanol fuelled system but with lower performance when compared with the methane fuelled process configuration. On the basis of overall exergetic efficiency and lost work, the methanol system was more efficient with lower irreversibility rate of 547.27 kJ/s and exergetic efficiency of 34.44% in comparison with the methane

  10. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Han Yande; Ruan Hao; Dou Qincheng; Hu Shilin

    2001-01-01

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  11. Performance characterization of hydrogen isotope exchange and recombination catalysts for tritium processing

    International Nuclear Information System (INIS)

    Suppiah, S.; Ryland, D.; Marcinkowska, K.; Boniface, H.; Everatt, A.

    2010-01-01

    AECL's hydrogen isotope exchange catalyst and recombination catalysts have been successfully applied to a wide range of industrial tritium-removal applications. The catalysts are used for Liquid Phase Catalytic Exchange (LPCE) and for gas-phase and trickle-bed recombination of hydrogen isotopes and have led to process simplification, improved safety and operational advantages. Catalyst performance design equations derived from laboratory testing of these catalysts have been validated against performance under industrial conditions. In a Combined Electrolysis and Catalytic Exchange (CECE) demonstration plant analyses of LPCE and recombiner efficiency were carried out as a function of catalyst activity over a wide range of operation. A steady-state process simulation used to model and design the hydrogen-water isotopic exchange processes, such as the CECE detritiation plant, was validated using the results of this demonstration. Catalyst development for isotope-exchange and recombination applications has continued over the last decade. As a result, significant improvements in catalyst performance have been achieved for these applications. This paper outlines the uniqueness of AECL's specialized catalysts and process designs for these applications with examples from laboratory and industrial case studies.

  12. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  13. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  14. Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system

    International Nuclear Information System (INIS)

    Asakura, Yamato; Uchida, Shunsuke

    1984-01-01

    A proposed dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is evaluated experimentally. The proposed system is composed of low temperature co-current reactors for reaction between water mists and hydrogen gas and high temperature co-current reactors for reaction between water vapor and hydrogen gas. Thus, operation is possible under atmospheric pressure with high reaction efficiency. Using the pilot test system which is composed of ten low temperature (30 0 C) reaction units and ten high temperature (200 0 C) reaction units, an experimental separation of deuterium from light water is carried out. The enrichment factor under steady state conditions, its dependency on operating time, and the reaction period necessary to obtain the steady state enrichment factor are determined experimentally and compared with calculations. It is shown that separation ability in a multistage reaction system can be estimated by numerical calculation using actual reaction efficiency in a unit reactor. (author)

  15. Dynamics of urokinase receptor interaction with Peptide antagonists studied by amide hydrogen exchange and mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Gårdsvoll, Henrik; Danø, Keld

    2004-01-01

    Using amide hydrogen exchange combined with electrospray ionization mass spectrometry, we have in this study determined the number of amide hydrogens on several peptides that become solvent-inaccessible as a result of their high-affinity interaction with the urokinase-type plasminogen activator...... receptor (uPAR). These experiments reveal that at least six out of eight amide hydrogens in a synthetic nine-mer peptide antagonist (AE105) become sequestered upon engagement in uPAR binding. Various uPAR mutants with decreased affinity for this peptide antagonist gave similar results, thereby indicating...... that deletion of the favorable interactions involving the side chains of these residues in uPAR does not affect the number of hydrogen bonds established by the main chain of the peptide ligand. The isolated growth factor-like domain (GFD) of the cognate serine protease ligand for uPAR showed 11 protected amide...

  16. Recovery of 201Tl by ion exchange chromatography from proton bombarded thallium cyclotron targets

    International Nuclear Information System (INIS)

    Walt, T.N. van der; Naidoo, C.

    2000-01-01

    A method based on ion exchange chromatography is presented for the recovery of 201 Tl and its precursor 201 Pb from proton bombarded natural thallium cyclotron targets. After bombardment the target is dissolved in diluted nitric acid. Water, hydrazine and ammonium acetate are added to the solution and the lead radioisotopes separated from the thallium by cation exchange chromatography on a Bio-Rex 70 column. The sorbed lead radioisotopes are eluted with dilute nitric acid and the separation repeated on a second Bio-Rex 70 column. After elution of the remaining thallium the column is left for 32 hours and the 201 Tl formed by decay of 201 Pb is eluted with an ammonium acetate solution. The 201 Tl eluate is acidified with a HNO 3 -HBr-Br 2 mixture and the resulting solution is passed through an AG MP-1 anion exchanger column to remove any remaining lead isotopes. The 201 Tl is eluted with a hydrazine solution, the eluate evaporated to dryness and the 201 Tl finally dissolved in an appropriate solution to produce a 201 TlCl solution suitable for medical use. A high quality 201 Tl product is obtained containing ≤ 0.1 μg of Tl/mCi (37 MBq) 201 Tl. The radionuclidic impurities are less than the maximum values specified by the US Pharmacopoeia and the British Pharmacopoeia. (orig.)

  17. Total, partial and differential ionization cross sections in proton-hydrogen collisions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shiyang [Graduate University for Advanced Studies, School of Mathematical and Physical Science, Toki, Gifu (Japan); Pichl, Lukas [University of Aizu, Foundation of Computer Science Laboratory, Aizuwakamatsu, Fukushima (Japan); Kimura, Mineo [Yamaguchi Univ., Graduate School of Science and Engineering, Ube, Yamaguchi (Japan); Kato, Takako [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-01-01

    Single-differential, partial and total ionization cross sections for the proton-hydrogen collision system at low energy range (0.1-10 keV/amu) are determined by using the electron translation factor corrected molecular-orbital close-coupling method. Full convergence of ionization cross sections as a function of H{sub 2}{sup +} molecular basis size is achieved by including up to 10 bound states, and 11 continuum partial waves. The present cross sections are in an excellent agreement with the recent experiments of Shah et al., but decrease more rapidly than the cross sections measured by Pieksma et al. with decreasing energy. The calculated cross section data are included in this report. (author)

  18. Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies

    DEFF Research Database (Denmark)

    Aili, David

    on the development and characterization of polymer based proton conducting membranes for operation at temperatures above 100 °C. The most frequently recurring experimental methods and techniques are described in Chapter 2. For PEM steam and liquid water electrolysis at temperatures up to 130 °C (Chapter 3 and 4...... and water electrolyzers. This thesis gives an overview of the principles and the current state-of-the-art technology of the hydrogen based electrochemical energy conversion technologies, with special emphasis on the PEM based water electrolyzers and fuel cells (Chapter 1). The fundamental thermodynamics...... of the recast Nafion® membranes at elevated temperature could be slightly improved by annealing the membrane in order to increase its degree of crystallinity. Short side chain (SSC) PFSA membranes such as Aquivion™ (Solvey Solexis), on the other hand, are generally characterized by a considerably higher degree...

  19. Electrochemical properties of proton exchange membranes: the role of composition and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Beattie, P.D.; Basura, V.I.; Schmeisser, J.; Chuy, C.; Orfino, F.; Ding, J. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    2001-06-01

    To measure electrochemical and proton conduction properties of a large variety of different polyelectrolyte membranes that possess a wide array of equivalent weights and water contents, a number of analytical techniques were employed and the results presented in this paper. At the electrocatalyst/polymer electrolyte interface, kinetic and mass transport parameters play an important role in fuel cell operation, the authors used microelectrodes to study the effects of temperature and pressure on the electrochemical reduction of oxygen at platinum/solid polymer electrolyte interfaces in solid polymer electrolytes under controlled humidity. Under conditions of controlled humidity and temperature, proton conductivity was measured transverse and normal to the membrane surface using an alternate current (a.c.) impedance spectroscopy. A wide array of membranes were investigated, including those based on sulfonated polystyrene-block-hydrogenated butadiene, polystyrenesulfonic acid grafted onto ethylenetetrafluoroethylene, sulfonated trifluorostyrene-copolymers, and a novel series of membranes where the internal biphasic morphology is controlled to yield materials with low water and high conductivity and prepared in house. Transmission electron microscopy and small angle X-ray scattering was used for the analysis of the microstructure of selected membranes. Modelling the scattered intensities was used to quantify aspects of the microstructure.

  20. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  1. 2S-4S spectroscopy in hydrogen atom: The new value for the Rydberg constant and the proton charge radius

    Science.gov (United States)

    Kolachevsky, N.; Beyer, A.; Maisenbacher, L.; Matveev, A.; Pohl, R.; Khabarova, K.; Grinin, A.; Lamour, T.; Yost, D. C.; Haensch, T. W.; Udem, Th.

    2018-02-01

    The core of the "proton radius puzzle" is the discrepancy of four standard deviations between the proton root mean square charge radii (rp) determined from regular hydrogen (H), and the muonic hydrogen atom (μp). We have measured the 2S-4P transition frequency in H, utilizing a cryogenic beam of H and directly demonstrate that quantum interference of neighboring atomic resonances can lead to line shifts much larger than the proton radius discrepancy. Using an asymmetric fit function we obtain rp = 0.8335(95) fm and the Rydberg constant R∞ = 10 973 731.568 076 (96) m-1. The new value for rp is 3.3 combined standard deviations smaller than the latest CODATA value, but in good agreement with the value from μp.

  2. High-repetition-rate laser-proton acceleration from a condensed hydrogen jet

    Energy Technology Data Exchange (ETDEWEB)

    Obst, Lieselotte; Zeil, Karl; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Rehwald, Martin; Sommer, Philipp; Brack, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Goede, Sebastian; Gauthier, Maxence; Roedel, Christian; MacDonald, Michael; Schumaker, William; Glenzer, Siegfried [SLAC National Accelerator Laboratory, Stanford (United States)

    2016-07-01

    Applications of laser-accelerated protons demand a stable source of energetic particles at high repetition rates. We present the results of our experimental campaign in cooperation with MEC/SLAC at the 10Hz Ti:Sa laser Draco of Helmholtz-Zentrum Dresden-Rossendorf (HZDR), employing a pure condensed hydrogen jet as a renewable target. Draco delivers pulses of 30 fs and 5 J at 800 nm, focused to a 3 μm spot by an F/2.5 off-axis parabolic mirror. The jet's nominal electron density is approximately 30 times the critical density and its thickness is 2 μm, 5 μm or 10 μm, depending on the applied aperture on the source. Ion diagnostics reveal mono-species proton acceleration in a solid angle of at least +/-45 with respect to the incoming laser beam, with maximum energies of around 5 MeV. The expanding jet could be monitored on-shot with a temporally synchronized probe beam perpendicular to the pump laser axis. Recorded probe images resemble those of z-pinch experiments with metal wires and indicate an m=0 instability in the plasma.

  3. Effects of Alternating Hydrogenated and Protonated Segments in polymers on their Wettability.

    Science.gov (United States)

    Smith, Dennis; Traiphol, Rakchart; Cheng, Gang; Perahia, Dvora

    2003-03-01

    Polymers consisting of alternating hydrogenated and fluorinated segments exhibit unique interfacial characteristics governed by the components that dominate the interface. Presence of fluorine reduces the interfacial energy and is expected to decrease the adhesion to the polymer surface. Thin liquid crystalline (LC) layers of 4,4?-octyl-cyanobiphenyl, cast on top of a polymeric layer consisting of alternating methylstylbine protonated segments bridged by a fluorinated group was used as a mechanistic tool to study of interfacial effects on three parameters: wetting, interfacial alignment and surface induces structures. The liquid crystal cast on a low interfacial energy fluorinated polymeric film exhibits bulk homeotropic alignment as expected. However it fully wetted the polymer surface despite the incompatibility of the protonated LC and mainly fluorinated polymer interface. Further more, it was found to stabilize the interfacial Semitic layers to a higher temperature and induce different surface ordering that was not observed at the same temperature neither in the bulk nor at the interfaces with silicon or glass surface. These results indicate that the interfacial interactions of polymers with liquid crystals are a complex function of both surface energies and the interfacial structure of the polymer.

  4. SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Villar, Maria T; Miller, Danny E; Fenton, Aron W; Artigues, Antonio

    2010-01-01

    Deuterium/hydrogen exchange in combination with mass spectrometry (DH MS) is a sensitive technique for detection of changes in protein conformation and dynamics. Since temperature, pH and timing control are the key elements for reliable and efficient measurement of hydrogen/deuterium content in proteins and peptides, we have developed a small, semiautomatic interface for deuterium exchange that interfaces the HPLC pumps with a mass spectrometer. This interface is relatively inexpensive to build, and provides efficient temperature and timing control in all stages of enzyme digestion, HPLC separation and mass analysis of the resulting peptides. We have tested this system with a series of standard tryptic peptides reconstituted in a solvent containing increasing concentration of deuterium. Our results demonstrate the use of this interface results in minimal loss of deuterium due to back exchange during HPLC desalting and separation. For peptides reconstituted in a buffer containing 100% deuterium, and assuming that all amide linkages have exchanged hydrogen with deuterium, the maximum loss of deuterium content is only 17% of the label, indicating the loss of only one deuterium molecule per peptide.

  5. Heterogeneously catalyzed deuterium separation processes: Hydrogen-water exchange studies at elevated temperatures and pressures

    International Nuclear Information System (INIS)

    Halliday, J.D.; Rolston, J.H.; Au, J.C.; Den Hartog, J.; Tremblay, R.R.

    1985-01-01

    New processes for the separation of hydrogen isotopes are required to produce heavy water for CANDU nuclear reactors and to extract tritium formed in the moderator during reactor operation. Wetproofed platinum catalysts capable of promoting rapid exchange of isotopes between countercurrent flows of hydrogen and liquid water in packed columns have been developed at CRNL over the past 15 years. These catalysts provide a catalystic surface for the gas phase exchange reaction H/sub 2/O/sub (v)/ + HD/sub (g)/ ↔ HDO/sub (v)/ + H/sub 2(g)/ as well as a large liquid surface for the liquid phase isotope transfer reaction HDO/sub (v)/ + H/sub 2/O/sub (iota)/↔HDO/sub (iota)/+H/sub 2/O/sub (v)/. Any economic stand-alone heavy water separation process, based on bithermal hydrogen-water exchange over wetproofed platinum catalysts, requires rapid overall exchange of isotopes between two phases at two temperatures. Catalysts developed for cold tower operation at 25-60 0 C are now being tested in a laboratory scale stainless steel trickle bed reactor for performance and stability at simulated hot tower conditions, 150 0 C and 2.0 MPa pressure. Catalytically active layers containing platinum supported on carbon or crystalline silica and wetproofed with Teflon have been prepared on ceramic spheres and stainless steel screening and tested in both random and ordered bed columns

  6. Studies on indigenous ion exchange resins: alkali metal ions-hydrogen ion exchange equilibria

    International Nuclear Information System (INIS)

    Shankar, S.; Kumar, Surender; Venkataramani, B.

    2001-01-01

    With a view to select a suitable ion exchange resin for the removal of radionuclides (such as cesium, strontium etc.) from low level radioactive effluents, alkali metal ion -H' exchanges on nine indigenous gel- and macroporous-type and nuclear grade resins have been studied at a total ionic strength of 0.1 mol dm .3 (in the case ofCs' -H' exchange it was 0.05 mol dm .3 ). The expected theoretical capacities were not attained by all the resins for the alkali metal ions. The water content (moles/equiv.) of the fully swollen resins for different alkali metal ionic forms do not follow the usual sequence of greater the tendency of the cation to hydrate the higher the water uptake, but a reverse trend. The ion exchange isotherms (plots of equivalent fractions of the ion in resin phase, N M1 to that in solution, N M ) were not satisfactory and sorption of cations, for most of the resins, was possible only when the acidity of the solution was lowered. The variations of the selectivity coefficient, K, with N M show that the resins are highly cross linked and the selectivity sequence: Cs + >K + >Na + >Li + , obtained for all the resins indicate that hydrated ions were involved in the exchange process. However, the increase in the selectivity was not accompanied by the release of water, but unusual uptake of water, during the exchange process. The characteristics of macroporous resins were not significantly different from those of the gel-type resins. The results are discussed in terms of heterogeneity in the polymer net work, improper sulphonation process resulting in the formation of functional groups at inaccessible sites with weak acidic character and the overall lack of control in the preparation of different resins. (author)

  7. Neutral escape at Mars induced by the precipitation of high-energy protons and hydrogen atoms of the solar wind origin

    Science.gov (United States)

    Shematovich, Valery I.

    2017-04-01

    One of the first surprises of the NASA MAVEN mission was the observation by the SWIA instrument of a tenuous population of protons with solar wind energies travelling anti-sunward near periapsis, at altitudes of 150-250 km (Halekas et al., 2015). While the penetration of solar wind protons to low altitude is not completely unexpected given previous Mars Express results, this population maintains exactly the same velocity as the solar wind observed. From previous studies it was known that some fraction of the solar wind can interact with the extended corona of Mars. By charge exchange with the neutral particles in this corona, some fraction of the incoming solar wind protons can gain an electron and become an energetic neutral hydrogen atom. Once neutral, these particles penetrate through the Martian induced magnetosphere with ease, with free access to the collisional atmosphere/ionosphere. The origin, kinetics and transport of the suprathermal O atoms in the transition region (from thermosphere to exosphere) of the Martian upper atmosphere due to the precipitation of the high-energy protons and hydrogen atoms are discussed. Kinetic energy distribution functions of suprathermal and superthermal (ENA) oxygen atoms formed in the Martian upper atmosphere were calculated using the kinetic Monte Carlo model (Shematovich et al., 2011, Shematovich, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere. These functions allowed us: (a) to estimate the non-thermal escape rates of neutral oxygen from the Martian upper atmosphere, and (b) to compare with available MAVEN measurements of oxygen corona. Induced by precipitation the escape of hot oxygen atoms may become dominant under conditions of extreme solar events - solar flares and coronal mass ejections, - as it was shown by recent observations of the NASA MAVEN spacecraft (Jakosky et al., 2015). This work is supported by the RFBR project and by the Basic Research Program of the Praesidium of

  8. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies

    Science.gov (United States)

    Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang

    2017-10-01

    Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.

  9. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field

    International Nuclear Information System (INIS)

    Wang Xiaodong; Yan Weimon; Duan Yuanyuan; Weng Fangbor; Jung Guobin; Lee Chiyuan

    2010-01-01

    This work numerically investigates the effect of the channel size on the cell performance of proton exchange membrane (PEM) fuel cells with serpentine flow fields using a three-dimensional, two-phase model. The local current densities in the PEM, oxygen mass flow rates and liquid water concentrations at the interface of the cathode gas diffusion layer and catalyst layer were analyzed to understand the channel size effect. The predictions show that smaller channel sizes enhance liquid water removal and increase oxygen transport to the porous layers, which improve cell performance. Additionally, smaller channel sizes also provide more uniform current density distributions in the cell. However, as the channel size decreases, the total pressure drops across the cell increases, which leads to more pump work. With taking into account the pressure losses, the optimal cell performance occurs for a cell with a flow channel cross-sectional area of 0.535 x 0.535 mm 2 .

  10. Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

    International Nuclear Information System (INIS)

    Choi, Min Ho; Beam, Won Jin; Park, Chan Jin

    2010-01-01

    This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at 75 .deg. C than 25 .deg. C. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution

  11. A review on the performance and modelling of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucetta, A., E-mail: abirboucetta@yahoo.fr; Ghodbane, H., E-mail: h.ghodbane@mselab.org; Bahri, M., E-mail: m.bahri@mselab.org [Department of Electrical Engineering, MSE Laboratory, Mohamed khider Biskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)

    2016-07-25

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  12. Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers

    Directory of Open Access Journals (Sweden)

    Ana Belen Jorge

    2018-06-01

    Full Text Available Carbon nitride materials with graphitic to polymeric structures (gCNH were investigated as catalyst supports for the proton exchange membrane (PEM water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content. This resulted in a significant enhancement of the performance of the gCNH-IrO2 (or N-doped C-IrO2 electrocatalyst that was likely attributed to higher electrical conductivity of the N-doped carbon support.

  13. Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher A.R. Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2005-08-01

    Using semi-empirical equations for modeling a proton exchange membrane fuel cell is proposed for providing a tool for the design and analysis of fuel cell total systems. The focus of this study is to derive an empirical model including process variations to estimate the performance of fuel cell without extensive calculations. The model take into account not only the current density but also the process variations, such as the gas pressure, temperature, humidity, and utilization to cover operating processes, which are important factors in determining the real performance of fuel cell. The modelling results are compared well with known experimental results. The comparison shows good agreements between the modeling results and the experimental data. The model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. (Author)

  14. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  15. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis

    Science.gov (United States)

    Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil

    2018-06-01

    Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.

  16. Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention.

    Science.gov (United States)

    Lee, Dong Hyun; Oh, Hwa Jin; Bai, Seoung Jae; Song, Young Seok

    2014-06-24

    Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.

  17. In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-06-01

    Full Text Available The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC that are based on micro-electro-mechanical systems (MEMS. The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  18. Pt nanoparticle-reduced graphene oxide nanohybrid for proton exchange membrane fuel cells.

    Science.gov (United States)

    Park, Dae-Hwan; Jeon, Yukwon; Ok, Jinhee; Park, Jooil; Yoon, Seong-Ho; Choy, Jin-Ho; Shul, Yong-Gun

    2012-07-01

    A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.

  19. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., NM (United States); Lalk, T R [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Appleby, A J [Center for Electrochemical Studies and Hydrogen Research, Texas Engineering Experimentation Station, Texas A and M Univ., College Station, TX (United States)

    1998-02-01

    The processes, losses, and electrical characteristics of a Membrane-Electrode Assembly (MEA) of a Proton Exchange Membrane Fuel Cell (PEMFC) are described. In addition, a technique for numerically modeling the electrochemical performance of a MEA, developed specifically to be implemented as part of a numerical model of a complete fuel cell stack, is presented. The technique of calculating electrochemical performance was demonstrated by modeling the MEA of a 350 cm{sup 2}, 125 cell PEMFC and combining it with a dynamic fuel cell stack model developed by the authors. Results from the demonstration that pertain to the MEA sub-model are given and described. These include plots of the temperature, pressure, humidity, and oxygen partial pressure distributions for the middle MEA of the modeled stack as well as the corresponding current produced by that MEA. The demonstration showed that models developed using this technique produce results that are reasonable when compared to established performance expectations and experimental results. (orig.)

  20. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  1. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  2. The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Yang Daijun; Ma Jianxin; Xu Lin; Wu Minzhong; Wang Haijiang

    2006-01-01

    The effects of NO x on the performance of proton exchange membrane (PEM) fuel cell were investigated through the introduction of a mixture containing NO and NO 2 , in a ratio of 9:1, into the cathode stream of a single PEM fuel cell. The NO x concentrations used in the experiments were 1480 ppm, 140 ppm and 10 ppm, which cover a range of three orders. The experimental results obtained from the tests of durability, polarization, reversibility and electrochemical impedance spectroscopy (EIS) showed a detrimental effect of NO x on the cell performance. The electrochemical measurements results suggested that the impacts of NO x are mainly resulted from the superposition of the oxygen reduction reaction (ORR), NO and HNO 2 oxidation reactions, and the increased cathodic impedance. Complete recovery of the cell performance was reached after operating the cell with clean air and then purging with N 2 for hours

  3. Performance prediction of a proton exchange membrane fuel cell using the ANFIS model

    Energy Technology Data Exchange (ETDEWEB)

    Vural, Yasemin; Ingham, Derek B.; Pourkashanian, Mohamed [Centre for Computational Fluid Dynamics, University of Leeds, Houldsworth Building, LS2 9JT Leeds (United Kingdom)

    2009-11-15

    In this study, the performance (current-voltage curve) prediction of a Proton Exchange Membrane Fuel Cell (PEMFC) is performed for different operational conditions using an Adaptive Neuro-Fuzzy Inference System (ANFIS). First, ANFIS is trained with a set of input and output data. The trained model is then tested with an independent set of experimental data. The trained and tested model is then used to predict the performance curve of the PEMFC under various operational conditions. The model shows very good agreement with the experimental data and this indicates that ANFIS is capable of predicting fuel cell performance (in terms of cell voltage) with a high accuracy in an easy, rapid and cost effective way for the case presented. Finally, the capabilities and the limitations of the model for the application in fuel cells have been discussed. (author)

  4. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    Science.gov (United States)

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Grafting of glycidyl methacrylate/styrene onto polyvinyldine fluoride membranes for proton exchange fuel cell

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; El-Toony, M.M.; Abdel-Hamed, M.O.

    2013-01-01

    Simultaneous gamma irradiation was used effectively for grafting facilitation of glycidyl methacrylate (GMA) and styrene (Sty) onto polyvinylidine fluoride (PVDF). Grafting percent was 122 when monomers ratio are 30% Sty and 70% GMA at 20 KGy gamma irradiation dose. Characterization of the membrane was performed using FT-IR, ion exchange capacity (IEC), water uptake. Mechanical behavior such as tensile strength was studied while morphological structure of the membrane was carried out by scan electron microscope (SEM). The membrane with degree of grafting 122% showed higher IEC (1.2 m mol/cm) than those of Nafion membrane with corresponding proton conductivity of 5.7 × 10 −2 S/cm similar to it. Operating the fuel cell unit showed higher voltage of the prepared membranes than that of Nafion 211. The prepared membranes stability for 300 h work approved their applicability from the cost benefit point of view

  6. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  7. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  8. Analysis and optimization of a proton exchange membrane fuel cell using modeling techniques

    International Nuclear Information System (INIS)

    Torre Valdés, Ing. Raciel de la; García Parra, MSc. Lázaro Roger; González Rodríguez, MSc. Daniel

    2015-01-01

    This paper proposes a three-dimensional, non-isothermal and steady-state model of Proton Exchange Membrane Fuel Cell using Computational Fluid Dynamic techniques, specifically ANSYS FLUENT 14.5. It's considered multicomponent diffusion and two-phasic flow. The model was compared with experimental published data and with another model. The operation parameters: reactants pressure and temperature, gases flow direction, gas diffusion layer and catalyst layer porosity, reactants humidification and oxygen concentration are analyzed. The model allows the fuel cell design optimization taking in consideration the channels dimensions, the channels length and the membrane thickness. Furthermore, fuel cell performance is analyzed working with SPEEK membrane, an alternative electrolyte to Nafion. In order to carry on membrane material study, it's necessary to modify the expression that describes the electrolyte ionic conductivity. It's found that the device performance has got a great sensibility to pressure, temperature, reactant humidification and oxygen concentration variations. (author)

  9. Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    San Martin, J.I.; Zamora, I.; San Martin, J.J.; Aperribay, V.; Torres, E.; Eguia, P.

    2010-01-01

    Fuel cells are clean generators that provide both electrical and thermal energy with a high global efficiency level. The characteristics of these devices depend on numerous parameters such as: temperature, fuel and oxidizer pressures, fuel and oxidizer flows, etc. Therefore, their influence should be evaluated to appropriately characterize behaviour of the fuel cell, in order to enable its integration in the electric system. This paper presents a theoretical and experimental analysis of the performance of two commercial Proton Exchange Membrane (PEM) fuel cells of 40 and 1200 W, and introduces the application of the principle of geometrical similarity. Using the principle of geometrical similarity it is possible to extrapolate the results obtained from the evaluation of one fuel cell to other fuel cells with different ratings. An illustrating example is included.

  10. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas

    2017-01-01

    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...... based on the relaxation time in order to have the same average current density of (0.55 Acm-2 ) for all the cells. Cell 5, with a relaxation time of 2 min performs best and shows lower degradation rate of 36 μVh-1 compared to other load cycling cells with smaller relaxation times. The cell operated...

  11. Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models

    International Nuclear Information System (INIS)

    Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.

    1999-01-01

    We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society

  12. Ionic liquids in proton exchange membrane fuel cells: Efficient systems for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Basso, Juliana; da Trindade, Leticia G.; Martini, Emilse M.A.; de Souza, Michele O.; de Souza, Roberto F. [Institute of Chemistry, UFRGS, Av. Bento Goncalves 9500, Porto Alegre 91501-970, P.O. Box 15003 (Brazil)

    2010-10-01

    Proton exchange membrane fuel cells (PEMFCs) are used in portable devices to generate electrical energy; however, the efficiency of the PEMFC is currently only 40%. This study demonstrates that the efficiency of a PEMFC can be increased to 61% when 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) ionic liquid (IL) is used together with the membrane electrode assembly (MEA). The results for ionic liquids (ILs) 1-butyl-3-methylimidazolium chloride (BMI.Cl) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) in aqueous solutions are better than those obtained with pure water. The current and the power densities with IL are at least 50 times higher than those obtained for the PEMFC wetted with pure water. This increase in PEMFC performance can greatly facilitate the use of renewable energy sources. (author)

  13. Advantages of Chemical Exchange-Sensitive Spin-Lock (CESL) Over Saturation Transfer (CEST) for Hydroxyl- and Amine-Water Proton Exchange Studies

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-01-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange (IMEX) processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, its sensitivity is not optimal, and more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the property of CEST signals is compared to a CE-sensitive spin-locking (CESL) technique irradiating at the labile proton frequency. Firstly, using a higher power and shorter irradiation in CE-MRI yields i) increasing selectivity to faster chemical exchange rates by higher sensitivity to faster exchanges and less sensitivity to slower CE and magnetization transfer processes, and ii) decreasing in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher-power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Secondly, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with asymmetric population approximation (CEAPA), which can be used for quantitative CE-MRI, and validated by simulations of Bloch-McConnell equations and phantom experiments. Lastly, in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 of 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of IMEX protons. PMID:25199631

  14. A trap activation model for hydrogen retention and isotope exchange in some refractory materials

    International Nuclear Information System (INIS)

    Brice, D.K.; Doyle, B.L.

    1982-01-01

    Our recently-developed Local Mixing Model (LMM) has been successful in describing and predicting the properties of hydrogen retention and isotope exchange for a variety of refractory materials. For some materials, however, the detailed predictions of the LMM are not observed. A Trap Activation Model (TAM) is proposed here to account for the observed departures from the LMM. Comparison of experimental room temperature saturation depth profiles for H + →Si with the predictions of TAM suggests that the hydrogen traps are multiple-vacancy complexes in this system. The observed profiles result from a beam-induced competition between trap creation/annihilation and H-trapping/detrapping. (orig.)

  15. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Y. [Nuclear Research Center–Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Shang, S. L.; Wang, Y.; Liu, Z. K. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shchur, Ya. [Institute for Condensed Matter Physics, 1 Svientsitskii str., L’viv 79011 (Ukraine)

    2016-02-07

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH{sub 2}PO{sub 4}, X = K, Cs, Rb, Tl), the DKDP (XD{sub 2}PO{sub 4}, X = K, Cs, Rb) type, and the X{sub 3}H(SO{sub 4}){sub 2} superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M{sub 3}H(SO{sub 4}){sub 2} compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R{sub OO}, being a measure of the HB strength.

  16. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    International Nuclear Information System (INIS)

    Finkelstein, Y.; Moreh, R.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Shchur, Ya.

    2016-01-01

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH 2 PO 4 , X = K, Cs, Rb, Tl), the DKDP (XD 2 PO 4 , X = K, Cs, Rb) type, and the X 3 H(SO 4 ) 2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M 3 H(SO 4 ) 2 compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R OO , being a measure of the HB strength

  17. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  18. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Ghaffarian, Seyed Reza [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Hasani Sadrabadi, Mohammad Hossein [Faculty of Social and Economics Science, Alzahra University, Tehran (Iran); Heidari, Mahdi [Graduate School of Management and Economics, Sharif University of Technology, Tehran (Iran); Moaddel, Homayoun [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2010-01-15

    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g{sup -1}, and 0.145 S cm{sup -1}, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the exfoliated structure of OMMT in the macromolecular matrices. The S-PES nanocomposite membrane with 3.0 wt% of OMMT content showed the maximum selectivity parameter of about 520,000 S s cm{sup -3} which is related to the high conductivity of 0.051 S cm{sup -1} and low methanol permeability of 9.8 x 10{sup -8} cm{sup 2} s{sup -1}. Furthermore, single cell DMFC fuel cell performance test with 4 molar methanol concentration showed a high power density (131 mW cm{sup -2}) of the nanocomposite membrane at the optimum composition (40% of sulfonation and 3.0 wt% of OMMT loading) compared to the Nafion {sup registered} 117 membrane (114 mW cm{sup -2}). Manufactured nanocomposite membranes thanks to their high selectivity, ease of preparation and low cost could be suggested as the ideal candidate for the direct methanol fuel cell applications. (author)

  19. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    International Nuclear Information System (INIS)

    Gong, Wenyin; Cai, Zhihua

    2013-01-01

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  20. Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings

    International Nuclear Information System (INIS)

    Oyarce, Alejandro; Gonzalez, Carlos; Lima, Raquel Bohn; Lindström, Rakel Wreland; Lagergren, Carina; Lindbergh, Göran

    2014-01-01

    Highlights: •The performance of a direct sorbitol fuel cell was evaluated at different temperatures. •The performance was compared to the performance of a direct glucose fuel cell. •The mass specific peak power density of the direct sorbitol fuel cell was 3.6 mW mg −1 totalcatalystloading at 80 °C. •Both sorbitol and glucose fuel cell suffer from deactivation. -- Abstract: Recent progress in biomass hydrolysis has made it interesting to study the use of sorbitol for electricity generation. In this study, sorbitol and glucose are used as fuels in proton exchange membrane fuel cells having 0.9 mg cm −2 PtRu/C at the anode and 0.3 mg cm −2 Pt/C at the cathode. The sorbitol oxidation was found to have slower kinetics than glucose oxidation. However, at low temperatures the direct sorbitol fuel cell shows higher performance than the direct glucose fuel cell, attributed to a lower degree of catalyst poisoning. The performance of both fuel cells is considerably improved at higher temperatures. High temperatures lower the poisoning, allowing the direct glucose fuel cell to reach a higher performance than the direct sorbitol fuel cell. The mass specific peak power densities of the direct sorbitol and direct glucose fuel cells at 65 °C was 3.2 mW mg −1 catalyst and 3.5 mW mg −1 catalyst , respectively. Both of these values are one order of magnitude larger than mass specific peak power densities of earlier reported direct glucose fuel cells using proton exchange membranes. Furthermore, both the fuel cells showed a considerably decrease in performance with time, which is partially attributed to sorbitol and glucose crossover poisoning the Pt/C cathode

  1. Two-Photon Exchange Effects in Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Myriam James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    Two methods, Rosenbluth separation and polarization transfer, can be used to extract the proton form factor ratio μp GEp/GMp, but they do not yield the same results. It is thought that the disagreement is due to two photon exchange corrections to the differential cross sections. High precision proton Rosenbluth extractions were carried out at 102 kinematics points spanning 16 values of momentum transfer Q2, from 0.40 to 5.76 GeV2. Reduced cross sections were found to 1.1% or better for Q2 less than 3 GeV2 increasing to 4% at 5.76 GeV2 The form factor ratios were determined to 1:5-3% for Q2 < 1.5 GeV2, increasing to 9% by 3 GeV2 and rapidly above. Our data agrees with prior Rosenbluth, improving upon it the 1.0 - 2.0 GeV2 range to conclusively show a separation from polarization transfer where it had not been certain before. In addition, reduced cross sections at each Q2 were tested for nonlinearity in the angular variable. Such a departure from linearity would be a signature of two photon exchange effects, and prior data had not been sufficiently precise to show nonzero curvature. Our data begins to hint at negative curvature but does not yet show a significant departure from zero.

  2. Exergoeconomic analysis of vehicular PEM (proton exchange membrane) fuel cell systems with and without expander

    International Nuclear Information System (INIS)

    Sayadi, Saeed; Tsatsaronis, George; Duelk, Christian

    2014-01-01

    In this paper we perform an exergoeconomic analysis to a PEM (proton exchange membrane) vehicular fuel cell system used in the latest generation of environmentally friendly cars. Two alternative configurations of a fuel cell system are considered (with and without an expander), and two alternative design concepts for each configuration: BoL (Begin of Life) and EoL (End of Life). The system including an expander generates additional power from the exhaust gases leaving the fuel cell stack, which might increase the system efficiency. However the total investment costs for this case are higher than for the other system configuration without an expander, due to the investment costs associated with the expander and its accessories. The fuel cell stack area in the EoL-sized systems is larger than in the BoL-sized systems. A larger stack area on one hand raises the investment costs, but on the other hand decreases the fuel consumption due to a higher cell efficiency. In this paper, exergoeconomic analyses have been implemented to consider a trade-off between positive and negative effects of using an expander in the system and to select the proper design concept. The results from the exergoeconomic analysis show that (a) an EoL-sized system with an expander is the most cost effective system, (b) the compression and humidification of air are very expensive processes, (c) the stack is by far the most important component from the economic viewpoint, and (d) the thermodynamic efficiency of almost all components must be improved to increase the cost effectiveness of the overall system. - Highlights: • Two vehicular PEM (proton exchange membrane) fuel cell system configurations are studied in this paper. • Exergoeconomics has been performed to compare these two system configurations. • The compression and humidification of air are very expensive processes. • The stack is by far the most important component from the economic viewpoint. • The thermodynamic efficiencies

  3. Analysis of proton exchange membrane fuel cell performance with alternate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

    1995-02-01

    Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

  4. Design of flow-field patterns for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Rosli, M.I.; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    Fuel cells are electrochemical devices that produce electricity at high efficiency without combustion. Fuel cells are emerging as viable candidates as power sources in many applications, including road vehicles, small-scale power stations, and possibly even portable electronics. This paper addresses the design of flow-field patterns for proton exchange membrane fuel cell (PEMFC). The PEMFC is a low-temperature fuel cell, in which a proton conductive polymer membrane is used as the electrolyte. In PEMFC, flow-field pattern is one important thing that effects the performance of PEMFC. This paper present three types of flow-field pattern that will be consider to be testing using CFD analysis and by experimental. The design look detail on to their shape and dimension to get the best pattern in term of more active electrode area compare to electrode area that will be used. Another advantage and disadvantage for these three type of flow-field patterns from literature also compared in this paper

  5. A Review on Cold Start of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zhongmin Wan

    2014-05-01

    Full Text Available Successful and rapid startup of proton exchange membrane fuel cells (PEMFCs at subfreezing temperatures (also called cold start is of great importance for their commercialization in automotive and portable devices. In order to maintain good proton conductivity, the water content in the membrane must be kept at a certain level to ensure that the membrane remains fully hydrated. However, the water in the pores of the catalyst layer (CL, gas diffusion layer (GDL and the membrane may freeze once the cell temperature decreases below the freezing point (Tf. Thus, methods which could enable the fuel cell startup without or with slight performance degradation at subfreezing temperature need to be studied. This paper presents an extensive review on cold start of PEMFCs, including the state and phase changes of water in PEMFCs, impacts of water freezing on PEMFCs, numerical and experimental studies on PEMFCs, and cold start strategies. The impacts on each component of the fuel cell are discussed in detail. Related numerical and experimental work is also discussed. It should be mentioned that the cold start strategies, especially the enumerated patents, are of great reference value on the practical cold start process.

  6. Neutron radiography characterization of an operating proton exchange membrane fuel cell with localized current distribution measurements

    International Nuclear Information System (INIS)

    Gagliardo, J.J.; Owejan, J.P.; Trabold, T.A.; Tighe, T.W.

    2009-01-01

    Neutron radiography has proven to be a powerful tool to study and understand the effects of liquid water in an operating fuel cell. In the present work, this experimental method is coupled with locally resolved current and ohmic resistance measurements, giving additional insight into water management and fuel cell performance under a variety of conditions. The effects of varying the inlet humidification level and the current density of the 50 cm 2 cell are studied by simultaneously monitoring electrochemical performance with a 10x10 matrix of current sensors, and liquid water volumes are measured using the National Institute of Standards and Technology (NIST) neutron imaging facility. A counter flow, straight channel proton exchange membrane (PEM) fuel cell is used to demonstrate localized performance loss corresponds to water-filled channels that impede gas transport to the catalyst layer, thereby creating an area that has low current density. Furthermore, certain operating conditions causing excess water accumulation in the channels can result in localized proton resistance increase, a result that can only be accurately observed with combined radiography and distributed electrochemical measurements.

  7. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    Science.gov (United States)

    Cornelius, Christopher J [Albuquerque, NM

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  8. Does oxidative stress affect the activity of the sodium-proton exchanger?

    Science.gov (United States)

    Bober, Joanna; Kedzierska, Karolina; Kwiatkowska, Ewa; Stachowska, Ewa; Gołembiewska, Edyta; Mazur, Olech; Staniewicz, Zdzisław; Ciechanowski, Kazimierz; Chlubek, Dariusz

    2010-01-01

    Accumulation of reactive oxygen species (ROS) takes place in patients with chronic renal failure (CRF). Oxidative stress causes disorders in the activity of the sodium-proton exchanger (NHE). Studies on NHE in CRF produced results that are discrepant and difficult to interpret. The aim of this study was to demonstrate that oxidative stress had an effect on the activity of NHE. We enrolled 87 subjects divided into 4 groups: patients with CRF treated conservatively; patients with CRF hemodialyzed without glucose--HD-g(-); patients with CRF hemodialyzed with glucose--HD-g(+); controls (C). The activity of NHE, the rate of proton efflux V(max), Michaelis constant (Km), and the concentration of thiobarbituric acid-reactive substances (TBARS, an indicator of oxidative stress) in plasma, as well as the concentration of reduced glutathione in blood were determined. The concentration of TBARS was significantly higher in hemodialyzed patients before and after dialysis and in patients with CRF on conservative treatment in comparison with group C. TBARS in plasma correlated negatively with VpH(i)6.4 in group C and with V(max) and VpH(i)6.4 after HD in group HD-g(-). We found that the concentration of creatinine correlated with TBARS (p < 0.0001; r = +0.51) in the conservatively treated group. We observed a marked oxidative stress and decreased NHE activity when dialysis was done without glucose, whereas patients dialyzed with glucose demonstrated a relatively low intensity of oxidative stress.

  9. Performance equations of proton exchange membrane fuel cells with feeds of varying degrees of humidification

    International Nuclear Information System (INIS)

    Hsuen, Hsiao-Kuo; Yin, Ken-Ming

    2012-01-01

    Performance equations that describe the dependence of cell potential on current density for proton exchange membrane fuel cells (PEMFCs) with feeds of varying degrees of humidification have been formulated in algebraic form. The equations are developed by the reduction of a one-dimensional multi-domain model that takes into account, in details, the transport limitations of gas species, proton migration and electron conduction, electrochemical kinetics, as well as liquid water flow within the cathode, anode, and membrane. The model equations for the anode and membrane were integrated with those of the cathode developed in the previous studies to form a complete set of equations for one-dimensional single cell model. Because the transport equations for the anode diffuser can be solved analytically, calculations of integrals are only needed in the membrane and the two-phase region of cathode diffuser. The proposed approach greatly reduces the complexity of the model equations, and only iterations of a single algebraic equation are required to obtain final solutions. Since the performance equations are originated from a mechanistic one-dimensional model, all the parameters appearing in the equations are endowed with a precise physical significance.

  10. Kinetics of isotopic exchange of [1-3H]saccharides with hydrogen using palladium catalysts

    International Nuclear Information System (INIS)

    Akulov, G.P.; Kayumov, V.G.; Snetkova, E.V.; Kaminskij, Yu.L.

    1988-01-01

    The kinetics was studied of the isotopic exchange of [1- 3 H]saccharides with hydrogen on palladium catalysts. The effect was studied of different factors on the rate of isotopic exchange, e.g., of the composition and structure of saccharides, their concentration in the solution (C), the type of catalyst and of the buffer solution. It was found that by reduced rate of isotopic exchange with hydrogen, all studied saccharides may be arranged into a series independent of the type of catalyst in accordance with the sequence of declining coefficient of relative mobility of l-H atoms during the reaction. Linear dependence was found to exist between the rate constant of the isotopic exchange reaction (r) and the coefficient of relative lability. It was also found that in the range of low concentrations the observed rate constants of isotopic exchange were not dependent on concentration and in the range of higher concentrations, r decreased with increasing C. This character of dependence is justified by the side effect of the processes of sorption on the catalyst. (author). 3 figs., 1 tab., 4 refs

  11. Investigations of charge-changing processes for light proton-rich nuclei on carbon and solid-hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Sawahata, K. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Saito, Y.; Abe, Y.; Ichikawa, Y.; Inaba, N.; Ishibashi, Y. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Matsunaga, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Moriguchi, T.; Nagae, D.; Okada, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Sato, S. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Suzuki, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T.; Takeuchi, Y.; Yamaguchi, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Zenihiro, J. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    We investigated charge-changing processes (total charge-changing cross sections and partial charge-changing cross sections) for light proton-rich nuclei ({sup 34–36}Ar, {sup 33}Cl, {sup 25–28}Si) at around 300A MeV on carbon and solid-hydrogen targets. We estimated the nuclear proton point radii of {sup 33}Cl and {sup 25,26,27}Si from the observed total charge-changing cross sections by using Glauber-model calculations with a phenomenological correction factor. Furthermore, we estimated the proton skin thickness for {sup 33}Cl coupled with its previously observed matter radius. From investigations of the partial charge-changing cross sections, clear zigzag pattern was observed for all isotopes. The present studies suggest that the pattern may be common in the proton-rich side, and depends on the odd–even nature of the fragment charge.

  12. Analysis of a Hydrogen Isotope separation process based on a continuous hydrogen-water exchange on column Transitions of Hydrogen

    International Nuclear Information System (INIS)

    Hodor, I.

    1988-01-01

    The analysed system consists of two plane-parallel walls, a water film flows down a wall, a catalyst layer is disposed on the other, a water vapour-hydrogen mixture moves up between the walls. A mathematical treatment is presented which permits to calculate the overall transfer coefficients and other parameters of practical interest from the local differential equations. (author)

  13. On the Effect of Clamping Pressure and Method on the Current Mapping of Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Zhou, Fan; Kær, Søren Knudsen

    The degradation of the electrochemical reaction of the proton exchange membrane water electrolysis (PEMWE) can be characterized using in-situ current mapping measurements (CMM). CMM is significantly affected by the amount of clamping pressure and method. In this work the current is mapped...

  14. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    NARCIS (Netherlands)

    Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first

  15. Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2011-01-01

    A numerical model of a proton exchange membrane fuel cell (PEMFC) cathode with a tapered channel design has been developed in order to examine the dynamic behavior of liquid water transport. Three-dimensional, transient simulations employing the level-set method (available in COMSOL 3.5a, a

  16. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  17. Compact modeling of a telecom back-up unit powered by air-cooled proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Gao, Xin; Kær, Søren Knudsen

    2018-01-01

    Applications of proton exchange membrane fuel cells (PEMFC’s) are expanding in portable, automotive and stationary markets. One promising application is the back-up power for telecommunication applications in remote areas where usually air-cooled PMEFC’s are used. An air-cooled PEMFC system is much...

  18. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    International Nuclear Information System (INIS)

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  19. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  20. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Salbo, Rune; Ploug, Michael

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically...... of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify...... some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions....

  1. Comparison of Methods for Computing the Exchange Energy of quantum helium and hydrogen

    International Nuclear Information System (INIS)

    Cayao, J. L. C. D.

    2009-01-01

    I investigate approach methods to find the exchange energy for quantum helium and hydrogen. I focus on Heitler-London, Hund-Mullikan, Molecular Orbital and variational approach methods. I use Fock-Darwin states centered at the potential minima as the single electron wavefunctions. Using these we build Slater determinants as the basis for the two electron problem. I do a comparison of methods for two electron double dot (quantum hydrogen) and for two electron single dot (quantum helium) in zero and finite magnetic field. I show that the variational, Hund-Mullikan and Heitler-London methods are in agreement with the exact solutions. Also I show that the exchange energy calculation by Heitler-London (HL) method is an excellent approximation for large inter dot distances and for single dot in magnetic field is an excellent approximation the Variational method. (author)

  2. Ortho-para-H2 conversion by hydrogen exchange: comparison of theory and experiment.

    Science.gov (United States)

    Lique, François; Honvault, Pascal; Faure, Alexandre

    2012-10-21

    We report fully-quantum time-independent calculations of cross sections and rate coefficients for the collisional (de)excitation of H(2) by H. Our calculations are based on the H(3) global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. The reactive hydrogen exchange channels are taken into account. We show that the ortho-para and para-ortho conversion of H(2) are significant processes at temperatures above ~300 K and for the last process we provide the first comparison with available experimental rate coefficients between 300 and 444 K. The good agreement between theory and experiment is a new illustration of our detailed understanding of the simplest chemical reaction. The importance of the ortho-para-H(2) conversion by hydrogen exchange in astrophysics is discussed.

  3. Gram-Scale Synthesis of Highly Active and Durable Octahedral PtNi Nanoparticle Catalysts for Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo

    2018-01-01

    for the commercialization of PEMFCs. In this study, we focus on gram-scale synthesis of octahedral PtNi nanoparticles with Pt overlayers (PtNi@Pt) supported on the carbon, resulting in enhanced catalytic activity and durability. Such PtNi@Pt catalysts show high mass activity (1.24 A mgPt−1) at 0.9 V (vs RHE) for the ORR......Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic...... condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable...

  4. A COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF AIR FLOW THROUGH A TELECOM BACK-UP UNIT POWERED BY AN AIR-COOLED PROTON EXCHANGE MEMBRANE FUEL CELL

    DEFF Research Database (Denmark)

    Gao, Xin; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and heat....... This product heat has to be effectively removed from the fuel cell, and while automotive fuel cells are usually liquid-cooled using a secondary coolant loop similar to the internal combustion engines, stationary fuel cell systems as they are used for telecom back-up applications often rely on excessive air fed...... to the fuel cell cathode to remove the heat. Thereby, the fuel cell system is much simpler and cheaper while the fuel cell performance is substantially lower compared to automotive fuel cells. This work presents a computational fluid dynamics analysis on the heat management of an air-cooled fuel cell powered...

  5. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Ratnayake, A.; Robinson, J. [Tyne Engineering Inc., Burlington, ON (Canada)

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest γ-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one β-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for γ-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that γ- and β-radiation exposures have different effects.

  6. Preparation of the proton exchange membranes for fuel cell under pre-irradiation induced grafting method

    International Nuclear Information System (INIS)

    Li Jingye; Muto, F.; Matsuura, A.; Kakiji, T.; Miura, T.; Oshima, A.; Washio, M.; Katsumura, Y.

    2006-01-01

    Proton exchange membranes (PEMs) were prepared via pre-irradiation induced grafting of styrene or styrene/divinylbenzene (S/DVB) into the crosslinked polytetrafluoroethylene (RX-PTFE) films with thickness around 10 m and then sulfonated by chlorosulfonic acid. The membrane electrode assembles (MEAs) based on these PEMs with ion exchange capacity (IEC) values around 2meq/g were prepared by hot-press with Nafion dispersion coated on the surfaces of the membranes and electrodes. And the MEA based on the Nafion 112 membrane was also prepared under same procedure as a comparison. The performances of the MEAs in single fuel cell were tested under different working temperatures and humidification conditions. The performance of the synthesized PEMs showed better results than that of Nafion 112 membrane under low humidification at 80 degree C. The electrochemical impedance spectra (EIS) were taken with the direct current density of 0.5A/cm 2 and the resulted curves in Nyqvist representation obeyed the half circle pattern. (authors)

  7. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through experimental

  8. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  9. Halogen–Metal Exchange on Bromoheterocyclics with Substituents Containing an Acidic Proton via Formation of a Magnesium Intermediate

    Directory of Open Access Journals (Sweden)

    Qingqiang Tian

    2017-11-01

    Full Text Available A selective and practical bromine–metal exchange on bromoheterocyclics bearing substituents with an acidic proton under non-cryogenic conditions was developed by a simple modification of an existing protocol. Our protocol of using a combination of i-PrMgCl and n-BuLi has not only solved the problem of intermolecular quenching that often occurred when using alkyl lithium alone as the reagent for halogen–lithium exchange, but also offered a highly selective method for performing bromo–metal exchange on dibrominated arene compounds through chelation effect.

  10. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H. [KAERI, Taejon (Korea, Republic of)

    2005-11-15

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  11. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    International Nuclear Information System (INIS)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H.

    2005-01-01

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities

  12. Shape of the Hα emission line in non resonant charge exchange in hydrogen plasmas

    International Nuclear Information System (INIS)

    Susino Bueno, A.; Zurro Hernandez, B.

    1977-01-01

    The Hα line shape emitted from a maxwellian hydrogen plasma and produced by non resonant change exchange has been calculated. Its explicit shape depends on the ion temperature, on background neutral energy and on the relative shape of the collision cross section. A comparison between theoretical and experimental shapes of the Hα line is carried out to check the model and to deduce the ion plasma temperature. (author) [es

  13. Charge exchange of excited mesic atoms of hydrogen isotopes in triple collisions with molecules

    International Nuclear Information System (INIS)

    Men'shikov, L.I.; Ponomarev, L.I.

    1985-01-01

    At high densities of deuterium-tritium mixture the probability for the occurrence of the isotope-exchange reaction (dμ)/sub n/+t → d+(tμ)/sub n/ from the excited states of n mesic atoms of deuterium is high in the triple collisions of mesic atoms with the molecules of hydrogen isotopes. This reaction should be taken into account in describing the kinetics of muon catalysis

  14. Theoretical study on platinum-catalyzed isotope exchange reaction mechanism of hydrogen and liquid water

    International Nuclear Information System (INIS)

    Hu Sheng; Wang Heyi; Luo Shunzhong

    2009-04-01

    Based on electron and vibration approximate means and the density function theory B3LYP, the ΔG degree and equilibrium pressures of adsorption and dissociation reactions of H 2 and water vapor on Pt surface have been calculated. The adsorption, dissociation and coadsorption actions of H 2 and water were analyzed. According to the ΔG degree, hydrogen molecule combines with metal atoms in single atom, and water vapor molecule has no tendency to dissociate on Pt surface. The dissociation of hydrogen molecule would hold back the direct adsorption of water vapor molecules on Pt surface. The structures of Pt-H (OH 2 ) n + (n=1, 2, 3) hydroniums were optimized. According to the mulliken overlap populations, Pt-H (OH 2 ) + is not stable or produced. Hydrogen isotope exchange occurs between hydration layer and D atoms which adsorb on Pt surface via intermediates (H 2 O) n D + (ads) (n≥2). (authors)

  15. Hydrogen deuterium exchange mass spectrometry in biopharmaceutical discovery and development – A review

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Bin, E-mail: dengbin@yorku.ca [Chemistry Department, York University, 4700 Keele Street, Toronto, ON, M3J 1P3 (Canada); The Centre for Research in Mass Spectrometry, York University, Toronto, ON, M3J1P3 (Canada); Lento, Cristina, E-mail: clento@yorku.ca [Chemistry Department, York University, 4700 Keele Street, Toronto, ON, M3J 1P3 (Canada); The Centre for Research in Mass Spectrometry, York University, Toronto, ON, M3J1P3 (Canada); Wilson, Derek J., E-mail: dkwilson@yorku.ca [Chemistry Department, York University, 4700 Keele Street, Toronto, ON, M3J 1P3 (Canada); The Centre for Research in Mass Spectrometry, York University, Toronto, ON, M3J1P3 (Canada)

    2016-10-12

    Protein therapeutics have emerged as a major class of biopharmaceuticals over the past several decades, a trend that has motivated the advancement of bioanalytical technologies for protein therapeutic characterization. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful and sensitive technique that can probe the higher order structure of proteins and has been used in the assessment and development of monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs) and biosimilar antibodies. It has also been used to quantify protein-ligand, protein-receptor and other protein-protein interactions involved in signaling pathways. In manufacturing and development, HDX-MS can validate storage formulations and manufacturing processes for various biotherapeutics. Currently, HDX-MS is being refined to provide additional coverage, sensitivity and structural specificity and implemented on the millisecond timescale to reveal residual structure and dynamics in disordered domains and intrinsically disordered proteins. - Highlights: • The pharmaceuticals industry is increasingly shifting to protein therapeutics. • Hydrogen deuterium exchange mass spectrometry is uniquely well suited to support biopharmaceutical development. • Applications for hydrogen deuterium exchange span drug discovery, development and manufacturing. • Future developments will allow improved sensitivity, structural resolution and a broader range of dynamics to be monitored.

  16. Hydrogen deuterium exchange mass spectrometry in biopharmaceutical discovery and development – A review

    International Nuclear Information System (INIS)

    Deng, Bin; Lento, Cristina; Wilson, Derek J.

    2016-01-01

    Protein therapeutics have emerged as a major class of biopharmaceuticals over the past several decades, a trend that has motivated the advancement of bioanalytical technologies for protein therapeutic characterization. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful and sensitive technique that can probe the higher order structure of proteins and has been used in the assessment and development of monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs) and biosimilar antibodies. It has also been used to quantify protein-ligand, protein-receptor and other protein-protein interactions involved in signaling pathways. In manufacturing and development, HDX-MS can validate storage formulations and manufacturing processes for various biotherapeutics. Currently, HDX-MS is being refined to provide additional coverage, sensitivity and structural specificity and implemented on the millisecond timescale to reveal residual structure and dynamics in disordered domains and intrinsically disordered proteins. - Highlights: • The pharmaceuticals industry is increasingly shifting to protein therapeutics. • Hydrogen deuterium exchange mass spectrometry is uniquely well suited to support biopharmaceutical development. • Applications for hydrogen deuterium exchange span drug discovery, development and manufacturing. • Future developments will allow improved sensitivity, structural resolution and a broader range of dynamics to be monitored.

  17. Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2015-01-01

    The aim of this study was to investigate the performance and efficiency of an integrated autothermal reforming and HT-PEMFC (high-temperature proton exchange membrane fuel cell) system fueled by methane. Effect of the inclusion of a CO (carbon monoxide) removal process on the integrated HT-PEMFC system was considered. An increase in the S/C (steam-to-carbon) ratio and the reformer temperature can enhance the hydrogen fraction while the CO formation reduces with increasing S/C ratio. The fuel processor efficiency of the methane autothermal reformer with a WGS (water gas shift reactor) reactor, as the CO removal process, is higher than that without a WGS reactor. A higher fuel processor efficiency can be obtained when the feed of the autothermal reformer is preheated to the reformer temperature. Regarding the cell performance, the reformate gas from the methane reformer operated at T in  = T R and with a high S/C ratio is suitable for the HT-PEMFC system without a WGS reactor. When considering the HT-PEMFC system with a WGS reactor, the CO poisoning has less significant impact on the cell performance and the system can be operated over a broader range to minimize the required total active area. A WGS reactor is necessary for the methane autothermal reforming and HT-PEMFC integrated system with regard to the system efficiency. - Highlights: • An integrated autothermal reforming and HT-PEMFC system was studied. • The HT-PEMFC system with and without a CO removal process was considered. • Parametric analysis was performed to obtain a high system efficiency. • The HT-PEMFC system with the WGS reactor can be run over a broader range. • The efficiencies of the HT-PEMFC systems without and with a WGS reactor were reported

  18. Synthesis and characterisation of sulphonated poly(arylene sulphone) terpolymers with triphenylphosphine oxide moieties for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Titvinidze, G.; Kaltbeitzel, A.; Manhart, A.; Meyer, W.H. [Max Planck Institute for Polymer Research, Mainz (Germany)

    2010-06-15

    For application in fuel cells, a series of sulphonated poly(phenylene sulphone) terpolymers with triphenylphosphine oxide moieties as constitutional units in the polymer backbone have been prepared. The synthesis of the terpolymers represents a two-step process including: (i) an aromatic nucleophilic substitution polycondensation of three difluoro monomers with varying ratios, i.e. 3,3'-disulphonate-4,4'-difluorodiphenylsulphone, 4,4'-difluorodiphenylsulphone and bis(4-fluorophenyl)phenyl phosphine oxide (BFPPO), with 4,4'-thiobisbenzenethiol yielding sulphonated poly(phenylene sulphide) terpolymers (sPPSPO) and (ii) their following oxidation with hydrogen peroxide in acidic solution to yield sulphonated poly(phenylene sulphone) terpolymers (sPPSO2PO). The structures and molecular compositions were confirmed by {sup 1}H and {sup 13}C NMR spectroscopy. The ion exchange capacity (IEC) was adjusted at will choosing the appropriate ratio of sulphonated and unsulphonated monomers. Terpolymers with 1.72 {<=} IEC {<=} 2.32 have been obtained. Sulphonated poly(arylene) ionomers containing only sulphone (-SO{sub 2}-) linkages and phosphine oxide (-PO-) units rather than ether or sulphide in the backbone reveal a high thermal and oxidative stability. Membranes were cast either from dimethylformamide (DMF) or from dimethyl sulphoxide (DMSO) solutions. For all terpolymers some general characteristic trends were observed, such as an increase of the proton conductivity with increasing IEC, water uptake and temperature. The series of sPPSO2PO membranes offered high conductivities at high humidification, however, their performance strongly depends on the relative humidity. The mechanical properties of sulphonated poly(phenylene sulphone)s have been considerably improved by means of terpolymerisation with phenylene oxide moieties. Even under high humidification the terpolymers form clear, flexible membranes the stress at break of some membranes exceeds that of

  19. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells

    Science.gov (United States)

    Wee, Jung-Ho

    Two types of fuel cell systems using NaBH 4 aqueous solution as a fuel are possible: the hydrogen/air proton exchange membrane fuel cell (PEMFC) which uses onsite H 2 generated via the NaBH 4 hydrolysis reaction (B-PEMFC) at the anode and the direct borohydride fuel cell (DBFC) system which directly uses NaBH 4 aqueous solution at the anode and air at the cathode. Recently, research on these two types of fuel cells has begun to attract interest due to the various benefits of this liquid fuel for fuel cell systems for portable applications. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two fuel cells. Considering their current technologies and the high price of NaBH 4, this paper evaluated and analyzed the factors influencing the relative favorability of each type of fuel cell. Their relative competitiveness was strongly dependent on the extent of the NaBH 4 crossover. When considering the crossover in DBFC systems, the total costs of the B-PEMFC system were the most competitive among the fuel cell systems. On the other hand, if the crossover problem were to be completely overcome, the total cost of the DBFC system generating six electrons (6e-DBFC) would be very similar to that of the B-PEMFC system. The DBFC system generating eight electrons (8e-DBFC) became even more competitive if the problem of crossover can be overcome. However, in this case, the volume of NaBH 4 aqueous solution consumed by the DBFC was larger than that consumed by the B-PEMFC.

  20. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Khalakhan, Ivan; Václavů, Michal [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Kovács, Gábor; Kozlov, Sergey M. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona (Spain); Kúš, Peter; Skála, Tomáš; Tsud, Natalia; Lavková, Jaroslava [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Potin, Valerie [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex (France); and others

    2016-03-01

    Graphical abstract: - Highlights: • Nanostructured Pt-Co thin catalyst films were grown on carbon by magnetron sputtering. • The surface composition of the nanostructured Pt-Co films was investigated by surface analysis techniques. • We carried out modeling of Pt-Co nanoalloys by computational methods. • Both experiment and modeling based on density functional theory showed that the surface of Pt-Co nanoparticles is almost exclusively composed of Pt atoms. - Abstract: Recently we have tested a magnetron sputtered Pt-Co catalyst in a hydrogen-fed proton exchange membrane fuel cell and showed its high catalytic activity for the oxygen reduction reaction. Here we present further investigation of the magnetron sputtered Pt-Co thin film catalyst by both experimental and theoretical methods. Scanning electron microscopy and transmission electron microscopy experiments confirmed the nanostructured character of the catalyst. The surface composition of as-deposited and annealed at 773 K Pt-Co films was investigated by surface analysis techniques, such as synchrotron radiation photoelectron spectroscopy and X-ray photoelectron spectroscopy. Modeling based on density functional theory showed that the surface of 6 nm large 1:1 Pt-Co nanoparticles is almost exclusively composed of Pt atoms (>90%) at typical operation conditions and the Co content does not exceed 20% at 773 K, in agreement with the experimental characterization of such films annealed in vacuum. According to experiment, the density of valence states of surface atoms in Pt-Co nanostructures is shifted by 0.3 eV to higher energies, which can be associated with their higher activity in the oxygen reduction reaction. The changes in electronic structure caused by alloying are also reflected in the measured Pt 4f, Co 3p and Co 2p photoelectron peak binding energies.

  1. Quantum mechanical study of the proton exchange in the ortho-para H2 conversion reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Jorfi, M; González-Lezana, T; Faure, A; Pagani, L

    2011-11-14

    Ortho-para H(2) conversion reactions mediated by the exchange of a H(+) proton have been investigated at very low energy for the first time by means of a time independent quantum mechanical (TIQM) approach. State-to-state probabilities and cross sections for H(+) + H(2) (v = 0, j = 0,1) processes have been calculated for a collision energy, E(c), ranging between 10(-6) eV and 0.1 eV. Differential cross sections (DCSs) for H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) for very low energies only start to develop a proper global minimum around the sideways scattering direction (θ≈ 90°) at E(c) = 10(-3) eV. Rate coefficients, a crucial information required for astrophysical models, are provided between 10 K and 100 K. The relaxation ortho-para process j = 1 → j' = 0 is found to be more efficient than the j = 0 → j' = 1 conversion at low temperatures, in line with the extremely small ratio between the ortho and para species of molecular hydrogen predicted at the temperature of interstellar cold molecular clouds. The results obtained by means of a statistical quantum mechanical (SQM) model, which has previously proved to provide an adequate description of the dynamics of the title reactions at a higher collision energy regime, have been compared with the TIQM results. A reasonable good agreement has been found with the only exception of the DCSs for the H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) process at very low energy. SQM cross sections are also slightly below the quantum results. Estimates for the rate coefficients, in good accord with the TIQM values, are a clear improvement with respect to pioneering statistical studies on the reaction.

  2. Quantum-mechanical interference in charge exchange between hydrogen and graphene-like surfaces

    International Nuclear Information System (INIS)

    Romero, M; Iglesias-García, A; Goldberg, E C

    2012-01-01

    The neutral to negative charge fluctuation of a hydrogen atom in front of a graphene surface is calculated by using the Anderson model within an infinite intra atomic Coulomb repulsion approximation. We perform an ab initio calculation of the Anderson hybridization function that allows investigation of the effect of quantum-mechanical interference related to the Berry phase inherent to the graphene band structure. We find that consideration of the interaction of hydrogen on top of many C atoms leads to a marked asymmetry of the imaginary part of the hybridization function with respect to the Fermi level. Consequently, Fano factors larger than one and strongly dependent on the energy around the Fermi level are predicted. Moreover, the suppression of the hybridization for energies above the Fermi level can explain the unexpected large negative ion formation measured in the scattering of protons by graphite-like surfaces. (paper)

  3. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.

    1987-01-01

    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  4. Hydrogenated graphenes by birch reduction: influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Eng, A.Y.S.; Sofer, Z.; Huber, Š.; Bouša, D.; Maryško, Miroslav; Pumera, M.

    2015-01-01

    Roč. 21, č. 7 (2015), 16828-16838 ISSN 0947-6539 Institutional support: RVO:68378271 Keywords : hydrogenated graphenes * birch reduction * magnetism * electrochemistry * hydrogenation efficiency Subject RIV: CA - Inorganic Chemistry Impact factor: 5.771, year: 2015

  5. Zinc oxide and chromia as catalysts for the isomerization of butene, the hydrogenation of ethylene, and the isotopic exchange and allotropic conversion of hydrogen

    International Nuclear Information System (INIS)

    Conner, W.C. Jr.

    1973-01-01

    Hydrogenation of olefins has been studied over metals and metal oxides. Over metals the following observations generalize the characteristics of hydrogenation and isomerization. Metal hydrogenation catalysts are effective for H 2 -D 2 exchange (and para hydrogen conversion) under the same conditions as they effect olefin hydrogenation. This suggests that hydrogen ''activation'' involves formation of hydrogen atoms as a surface intermediate. Addition of deuterium to light ethylene leads to ethane products of the form C 2 H/sub 6-x/D/sub x/ (where 0 less than or equal to x less than or equal to 6). This is a result of the reversal of the alkyl (C 2 H 5 *) formation on the surface. Moreover, efficient isomerization of olefins require hydrogen as a co-catalyst. Both these observations suggest that alkyl formation and its reversal play a major role in hydrogenation and related reactions over metals. In this work it is found that zinc oxide catalyzes the deuteration of ethylene to dideuterioethane selectivity. Furthermore, the hydrogenation of ethylene using mixtures of hydrogen and deuterium indicate that hydrogenation occurs in such a manner as to reflect the molecular identity of the gas phase in the product ethane

  6. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    Science.gov (United States)

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  7. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, D.; Paz, D.

    1991-01-01

    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs

  8. General Tritium labelling of gentamicin C by catalytic hydrogen exchange reaction with tritiated water

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz, D.

    1991-01-01

    Gentamicin C was labelled with tritium by means of a PtO 2 catalized hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H 2 O- 3 H, and 50 mg of prereduced PtO 2 ) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 o C, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accoumplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v). Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95 % . Main exchange degradation products show biological activity. (Author). 12 refs

  9. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    Science.gov (United States)

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  10. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  11. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, Takao; Kataoka, Kunishige [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Sakurai, Takeshi, E-mail: tsakurai@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  12. Classical and quantum ordering of protons in cold solid hydrogen under megabar pressures

    International Nuclear Information System (INIS)

    Li Xinzheng; Walker, Brent; Michaelides, Angelos; Probert, Matthew I J; Pickard, Chris J; Needs, Richard J

    2013-01-01

    A combination of state-of-the-art theoretical methods has been used to obtain an atomic-level picture of classical and quantum ordering of protons in cold high-pressure solid hydrogen. We focus mostly on phases II and III of hydrogen, exploring the effects of quantum nuclear motion on certain features of these phases (through a number of ab initio path integral molecular dynamics (PIMD) simulations at particular points on the phase diagram). We also examine the importance of van der Waals forces in this system by performing calculations using the optB88-vdW density functional, which accounts for non-local correlations. Our calculations reveal that the transition between phases I and II is strongly quantum in nature, resulting from a competition between anisotropic inter-molecular interactions that restrict molecular rotation and thermal plus quantum fluctuations of the nuclear positions that facilitate it. The transition from phase II to III is more classical because quantum nuclear motion plays only a secondary role and the transition is determined primarily by the underlying potential energy surface. A structure of P2 1 /c symmetry with 24 atoms in the primitive unit cell is found to be stable when anharmonic quantum nuclear vibrational motion is included at finite temperatures using the PIMD method. This structure gives a good account of the infra-red and Raman vibron frequencies of phase II. We find additional support for a C2/c structure as a strong candidate for phase III, since it remains transparent up to 300 GPa, even when quantum nuclear effects are included. Finally, we find that accounting for van der Waals forces improves the agreement between experiment and theory for the parts of the phase diagram considered, when compared to previous work which employed the widely-used Perdew–Burke–Ernzerhof exchange–correlation functional. (paper)

  13. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    Science.gov (United States)

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ 3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  15. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Hyung Kyu Kim

    2015-12-01

    Full Text Available This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES proton exchange membranes (PEMs for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa and low water swelling (λ < 15 even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  16. Development of Less Water-Dependent Radiation Grafted Proton Exchange Membranes for Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, M M; Ahmad, A; Saidi, H; Dahlan, K Z.M. [Institute of Hydrogen Economy, Energy Research Alliance (ERA), International Campus, Univeristi Teknologi Malaysia, Jalan Semarak, Kuala Lumpur (Malaysia); Radiation Processing Division, Malaysian Nuclear Agency, Bangi, Kajang (Malaysia)

    2012-09-15

    The aim of these studies was the development of proton exchange membranes for polymer electrolyte membrane (PEM) fuel cell operated above 100{sup o}C, in order to obtain less water dependent, high quality and cheap electrolyte membrane. Sulfonic acid membranes were prepared by radiation induced grafting (RIG) of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films in a single step reaction for the first time using synergetic effect of acid addition to grafting mixture under various grafting conditions. The fuel cell related properties of the membranes were evaluated and the in situ performance was tested in a single H{sub 2}/O{sub 2} fuel cell under dynamic conditions and compared with a similar sulfonated polystyrene PVDF membrane obtained by two-step conventional RIG method i.e. grafting of styrene and subsequent sulfonation. The newly obtained membrane (degree of grafting, G% = 53) showed an improved performance and higher stability together with a cost reduction mainly as a result of elimination of sulfonation reaction. Acid-base composite membranes were also studied. EB pre-irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) films were grafted with N-vinyl pyridine (NVP). The effects of monomer concentration, dose, reaction time, film thickness, temperature and film storage time on G% were investigated. The membranes were subsequently doped with phosphoric acid under controlled condition. The proton conductivity of these membranes was investigated under low water conditions in correlation with the variation in G% and temperature (30-130{sup o}C). The performance of 34 and 49% grafted and doped membranes was tested in a single fuel cell at 130{sup o}C under dynamic conditions with 146 and 127 mW/cm{sup 2} power densities. The polarization, power density characteristics and the initial stability of the membrane showed a promising electrolyte candidate for fuel cell operation above 100 deg. C. (author)

  17. Tools for designing the cooling system of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Soupremanien, Ulrich; Le Person, Stéphane; Favre-Marinet, Michel; Bultel, Yann

    2012-01-01

    Proton exchange membrane fuel cell (PEMFC) requires a careful management of the heat distribution inside the stack. The proton exchange membrane is the most sensitive element of this thermal management and it must operate under specific conditions in order to increase the lifetime and also the output power of the fuel cell. These last decades, the enhancement of the output power of the PEMFC has led the manufacturers to greatly improve the heat transfer effectiveness for cooling such systems. In addition, homogenizing the bipolar plate temperature increases the lifetime of the system by limiting the occurrence of strong thermal gradients. In this context, using a fluid in boiling conditions to cool down the PEMFC seems to be very suitable for this purpose. In order to compare the thermal performances between a coolant used in single-phase flow or in boiling flow conditions, we have built an experimental set-up allowing the investigation of cooling flows for these two conditions. Moreover, the geometry of the cooling channels is one of the key parameters which allows the improvement of the thermal performances. Indeed, the size or the aspect ratio of these channels could be designed in order to decrease the thermal system response. The sizing of the fuel cell cooling system is of paramount importance in boiling flow conditions because it can modify, not only the pressure losses along the channel and the heat transfer coefficient like in a single-phase flow but also, the onset of nucleate boiling (ONB) and the dryout point or critical heat flux (CHF). Thus, in order to understand some heat transfer mechanisms, which are geometry-dependent, a parametric study was completed by considering flows in four different rectangular channels. Finally, this study allows a better insight on the optimization of the geometrical parameters which improve the thermal performances of a PEMFC, from a cooling strategy aspect point of view. - Highlights: ► Parameters for the using of a

  18. Hydrogen Exchange Differences between Chemoreceptor Signaling Complexes Localize to Functionally Important Subdomains

    Science.gov (United States)

    2015-01-01

    The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes. PMID:25420045

  19. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  20. H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes

    Science.gov (United States)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Chen, Haiyan; Li, Qinghua; Ma, Chunqing; Jin, Suyue; Liu, Zhichao

    2014-03-01

    Proton exchange membrane (PEM), transferring protons from anode to cathode, is a key component in a PEM fuel cell. In the current work, a new class of PEMs are synthesized benefiting from the imbibition behavior of three-dimensional (3D) polyacrylamide-graft-chitosan (PAAm-graft-chitosan) frameworks to H3PO4 aqueous solution. Interconnected 3D framework of PAAm-graft-chitosan provides tremendous space for holding proton-conducting H3PO4. The highest anhydrous proton conductivity of 0.13 S cm-1 at 165 °C is obtained. A fuel cell using a thick membrane as a PEM showed a peak power density of 405 mW cm-2 with O2 and H2 as the oxidant and fuel, respectively. Results indicate that the interconnected 3D framework provides superhighway for proton conduction. The valued merits on anhydrous proton conductivity, huge H3PO4 loading, and easy synthesis promise the new membranes to be good alternatives as high-temperature PEMs.