WorldWideScience

Sample records for hydrogen peroxide-induced senescence-like

  1. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    Science.gov (United States)

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  2. Effect of endogenous and synthetic antioxidants on hydrogen peroxide-induced guinea-pig colon contraction.

    Science.gov (United States)

    Wan, B Y C; Mann, S; Assem, E S K; Marson, C M

    2010-03-01

    The effects of the endogenous antioxidant alpha-lipoic acid on guinea pig colon smooth muscle contraction (Gpcc) induced by hydrogen peroxide were examined. Having previously shown that the histone deacetylase (HDAC) benzamide inhibitor MGCD0103 inhibits guinea-pig smooth muscle contraction, as do various sulfur-containing antioxidants, we asked whether hybrid compounds possessing both alpha-lipoic acid-derived antioxidant properties and HDAC inhibitory activity could inhibit Gpcc. Guinea pig colon (Gpc) was incubated at 37 degrees C with Krebs buffer; the four stimulants-hydrogen peroxide, carbachol, histamine, and sodium fluoride-were added independently. The response to each stimulant alone was compared with that in the presence of each of the test compounds: MGCD0103, alpha-lipoic acid, and two of their hybrids, UCL M084 and UCL M109. NaF (10 mM), carbachol (0.05 microM), histamine (0.1 microM), and hydrogen peroxide (1 microM) produced Gpcc of about 50-60% above basal level. With the exception of MGCD0103 against hydrogen peroxide, all four test compounds at 1 microM-MGCD0103, alpha-lipoic acid, UCL M084, and UCL M109-produced a significant inhibition of 35-60% of Gpcc induced by hydrogen peroxide, NaF, and carbachol, although none reduced histamine or ovalbumin-induced Gpcc. Benzalkonium chloride (Bcl), a G-protein inhibitor, reduced the hydrogen peroxide-induced Gpcc by 35%. Contraction by stimulants used to induce Gpcc is known to involve G-proteins. All four test compounds-MGCD0103, alpha-lipoic acid and two of their hybrids, UCL M084 and UCL M109-reduced Gpcc induced by NaF and carbachol, suggesting that G-protein pathway involvement is relevant to the action of the test compounds, as is also indicated by the Bcl-induced inhibition of hydrogen peroxide-induced contractions. Additionally, alpha-lipoic acid and the two hybrids showed >30% inhibition of hydrogen peroxide-induced contractions, consistent with the antioxidant properties of the 1,2-dithiolane

  3. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    Science.gov (United States)

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (Ppapaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  4. Hydrogen sulfide decreases the plasma lipid peroxidation induced by homocysteine and its thiolactone.

    Science.gov (United States)

    Olas, Beata; Kontek, Bogdan

    2015-06-01

    Hydrogen sulfide (H2S) has been investigated widely in recent years. H2S plays a variety of roles in different biological systems, including cardiovascular system. It is the final product of amino acids metabolism, which contains sulfur-cysteine and homocysteine (Hcy). In human plasma, there are several various forms of homocysteine: free Hcy, protein-bound Hcy (S-linked, and N-linked), and homocysteine thiolactone (HTL). Our previous works have shown that both Hcy in the reduced form and its thiolactone may modify fibrinolysis, coagulation process, and biological activity of blood platelets. Moreover, we have observed that HTL, like its precursor-Hcy stimulated the generation of superoxide anion radicals (O 2 (-•) ) in blood platelets. The aim of our study in vitro was to establish the influence of sodium hydrosulfide (NaHS, as a fast-releasing H2S donor; at tested concentrations: 10-1000 µM) on the plasma lipid peroxidation induced by the reduced Hcy (at final concentrations of 0.01-1 mM) and HTL (at final concentrations of 0.1-1 µM). Our results indicate that 10 and 100 µM NaHS decreased the lipid peroxidation in plasma treated with 1 mM Hcy or 1 µM HTL (when NaHS and Hcy/HTL were added to plasma together). The protective effect of 10 and 100 µM NaHS against the lipid peroxidation in plasma preincubated with 1 mM Hcy or 1 µM HTL was also observed. Considering the data presented in this study, we suggest that the lipid peroxidation (induced by different forms of homocysteine) may be reduced by hydrogen sulfide.

  5. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5.

    Directory of Open Access Journals (Sweden)

    Michael Popp

    Full Text Available Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5, a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice.

  7. Role of TGF-beta1-independent changes in protein neosynthesis, p38alphaMAPK, and cdc42 in hydrogen peroxide-induced senescence-like morphogenesis

    DEFF Research Database (Denmark)

    Chrétien, Aline; Dierick, Jean-François; Delaive, Edouard

    2008-01-01

    -beta1 overexpression. Among the multiple TGF-beta1-independent changes in protein neosynthesis, followed or not by posttranslational modifications, identified by proteomic analysis herein, those of ezrin, L-caldesmon, and HSP27 were particularly studied. Rho-GTPase cdc42 was shown to be responsible...... for p38(MAPK) activation, in turn triggering phosphorylation of L-caldesmon and HSP27. Cdc42 was also shown to be mainly responsible for the increase in TGF-beta1 mRNA level observed at 24 h after treatment with H(2)O(2) and onward. This study further clarified the mechanisms of senescence...

  8. Protective effect of Rhus coriaria fruit extracts against hydrogen peroxide-induced oxidative stress in muscle progenitors and zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Fadia Najjar

    2017-12-01

    Full Text Available Background and Purpose Oxidative stress is involved in normal and pathological functioning of skeletal muscle. Protection of myoblasts from oxidative stress may improve muscle contraction and delay aging. Here we studied the effect of R. coriaria sumac fruit extract on human myoblasts and zebrafish embryos in conditions of hydrogen peroxide-induced oxidative stress. Study Design and Methods Crude ethanolic 70% extract (CE and its fractions was obtained from sumac fruits. The composition of sumac ethyl acetate EtOAc fraction was studied by 1H NMR. The viability of human myoblasts treated with CE and the EtOAc fraction was determined by trypan blue exclusion test. Oxidative stress, cell cycle and adhesion were analyzed by flow cytometry and microscopy. Gene expression was analyzed by qPCR. Results The EtOAc fraction (IC50 2.57 µg/mL had the highest antioxidant activity and exhibited the best protective effect against hydrogen peroxide-induced oxidative stress. It also restored cell adhesion. This effect was mediated by superoxide dismutase 2 and catalase. Pre-treatment of zebrafish embryos with low concentrations of the EtOAc fraction protected them from hydrogen peroxide-induced death in vivo. 1H NMR analysis revealed the presence of gallic acid in this fraction. Conclusion Rhus coriaria extracts inhibited or slowed down the progress of skeletal muscle atrophy by decreasing oxidative stress via superoxide dismutase 2 and catalase-dependent mechanisms.

  9. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells.

    Science.gov (United States)

    Wang, J; Zhao, Y M; Zhang, B; Guo, C Y

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration.

  10. Linarin isolated from Buddleja officinalis prevents hydrogen peroxide-induced dysfunction in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Kim, Young Ho; Lee, Young Soon; Choi, Eun Mi

    2011-01-01

    The flowers and leaves buds of Buddleja officinalis MAXIM (Buddlejaceae) are used to treat eye troubles, hernia, gonorrhea and liver troubles in Asia. To elucidate the protective effects of linarin isolated from B. officinalis on the response of osteoblast to oxidative stress, osteoblastic MC3T3-E1 cells were pre-incubated with linarin for 1h before treatment with 0.3mM H(2)O(2) for 48h, and markers of osteoblast function and oxidative damage were examined. Linarin significantly (P<0.05) increased cell survival, alkaline phosphatase (ALP) activity, collagen content, calcium deposition, and osteocalcin secretion and decreased the production of receptor activator of nuclear factor-kB ligand (RANKL), protein carbonyl (PCO), and malondialdehyde (MDA) of osteoblastic MC3T3-E1 cells in the presence of hydrogen peroxide. These results demonstrate that linarin can protect osteoblasts against hydrogen peroxide-induced osteoblastic dysfunction and may exert anti-resorptive actions, at least in part, via the reduction of RANKL and oxidative damage. 2011 Elsevier Inc. All rights reserved.

  11. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells

    Science.gov (United States)

    Wang, J.; Zhao, Y. M.; Zhang, B.; Guo, C. Y.

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration. PMID:26009648

  12. 8-Alkylcoumarins from the Fruits of Cnidium monnieri Protect against Hydrogen Peroxide Induced Oxidative Stress Damage

    Directory of Open Access Journals (Sweden)

    Chi-I Chang

    2014-03-01

    Full Text Available Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1, 7-methoxy-8-(3-methyl- 2,3-epoxy-1-oxobutylchromen-2-one (2, and 3'-O-methylvaginol (3, together with seven known compounds (4–10 were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the three new 8-alkylcoumarins exhibited cytoprotective effect on Neuro-2a neuroblastoma cells injured by hydrogen peroxide.

  13. 8-Alkylcoumarins from the fruits of Cnidium monnieri protect against hydrogen peroxide induced oxidative stress damage.

    Science.gov (United States)

    Chang, Chi-I; Hu, Wan-Chiao; Shen, Che-Piao; Hsu, Ban-Dar; Lin, Wei-Yong; Sung, Ping-Jyun; Wang, Wei-Hsien; Wu, Jin-Bin; Kuo, Yueh-Hsiung

    2014-03-17

    Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1), 7-methoxy-8-(3-methyl- 2,3-epoxy-1-oxobutyl)chromen-2-one (2), and 3'-O-methylvaginol (3), together with seven known compounds (4-10) were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the three new 8-alkylcoumarins exhibited cytoprotective effect on Neuro-2a neuroblastoma cells injured by hydrogen peroxide.

  14. Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition

    Directory of Open Access Journals (Sweden)

    Randi H. Gottfredsen

    2013-01-01

    Full Text Available Superoxide dismutase (EC-SOD controls the level of superoxide in the extracellular space by catalyzing the dismutation of superoxide into hydrogen peroxide and molecular oxygen. In addition, the enzyme reacts with hydrogen peroxide in a peroxidase reaction which is known to disrupt enzymatic activity. Here, we show that the peroxidase reaction supports a site-specific bond cleavage. Analyses by peptide mapping and mass spectrometry shows that oxidation of Pro112 supports the cleavage of the Pro112–His113 peptide bond. Substitution of Ala for Pro112 did not inhibit fragmentation, indicating that the oxidative fragmentation at this position is dictated by spatial organization and not by side-chain specificity. The major part of EC-SOD inhibited by the peroxidase reaction was not fragmented but found to encompass oxidations of histidine residues involved in the coordination of copper (His98 and His163. These oxidations are likely to support the dissociation of copper from the active site and thus loss of enzymatic activity. Homologous modifications have also been described for the intracellular isozyme, Cu/Zn-SOD, reflecting the almost identical structures of the active site within these enzymes. We speculate that the inactivation of EC-SOD by peroxidase activity plays a role in regulating SOD activity in vivo, as even low levels of superoxide will allow for the peroxidase reaction to occur.

  15. Salidroside Attenuates Hydrogen Peroxide-Induced Cell Damage Through a cAMP-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Xuming Deng

    2011-04-01

    Full Text Available Salidroside, a major component of Rhodiola rosea L., has shown various pharmacological functions, including antioxidant effects, but the signal transduction pathway of its antioxidant effects is not very clear. In this study, we found that salidroside could attenuate hydrogen peroxide (H2O2-induced HL-7702 cell damage, inhibit H2O2-induced cytosolic free Ca2+ ([Ca2+]i elevation, scavenge reactive oxygen species (ROS and increase 3’-5’-cyclic adenosine monophosphate (cAMP level in a dose-dependent manner, but it couldn’t influence 3’-5’-cyclic guanosine monophosphate (cGMP levels. Therefore, these results indicated that the antioxidant effects of salidroside were associated with down-regulation of [Ca2+]i, ROS occur via a cAMP-dependent pathway.

  16. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Chong-Un Cheong

    2016-07-01

    Full Text Available Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. The scavenging of reactive oxygen species (ROS mediated by antioxidants may be a potential strategy for retarding the diseases’ progression. Costunolide (CS is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H2O2 and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H2O2 exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP, and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H2O2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK. These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.

  17. The analgesic efficacy of xylazine and dipyrone in hydrogen peroxide-induced oxidative stress in chicks

    Directory of Open Access Journals (Sweden)

    Y.J. Mousa

    2012-01-01

    Full Text Available The effect of oxidative stress–induced by hydrogen peroxide (H2O2 on the analgesic effect of xylazine and dipyrone in 7-14 days old chicks was studied, compared with the control group that given plane tap water. H2O2, 0.5 % in water, induced oxidative stress in chicks by significantly lowering glutathione, rising malondialdehyde in plasma, whole brain during the day 7th, 10th, 14th of chicks old in comparison with the control group. The analgesic median effective doses (ED50 of xylazine and dipyrone in the control group were determined to be 0.79 and 65.3 mg/kg, intramuscularly (i.m., respectively whereas H2O2 treated groups decreased these values to be 0.31 and 37.2 mg/kg, i.m. by 61 and 43%, respectively. Intramuscular injection of xylazine and dipyrone at 0.5, 70 mg/kg respectively causes analgesia from electro-stimulation induced pain in 50, 66.67% respectively in control groups whereas H2O2 treated chicks increases the analgesic efficacy to be 83.33 and 83.33% respectively. Xylazine and dipyrone injection at 1 and 100 mg/kg, i.m. 15 minutes before formaldehyde injection in right planter foot of stressed chicks causes analgesia from pain induced by formaldehyde through significant increases in onset of lifting of formaldehyde injected foot, significantly decreases its lifting numbers, decreases the time elapsed of lifting of formaldehyde injected foot in comparison with the stressed control group that injected with saline in right planter foot. The data of this study indicate that H2O2-induced oxidative stress potentiate the analgesic efficacy of the central and peripheral analgesics of xylazine and dipyrone in chicks.

  18. Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajendra Upadhya

    Full Text Available The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2O(2 at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2O(2. We determined the kinetics of H(2O(2 breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2O(2 breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2O(2 treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2O(2. These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans.

  19. Ocimum sanctum extracts attenuate hydrogen peroxide induced cytotoxic ultrastructural changes in human lens epithelial cells.

    Science.gov (United States)

    Halder, Nabanita; Joshi, Sujata; Nag, Tapas Chandra; Tandon, Radhika; Gupta, Suresh Kumar

    2009-12-01

    Hydrogen peroxide (H2O2) is the major oxidant involved in cataract formation. The present study investigated the effect of an aqueous leaf extract of Tulsi (Ocimum sanctum) against H2O2 induced cytotoxic changes in human lens epithelial cells (HLEC). Donor eyes of the age range 20-40 years were procured within 5-8 h of death. After several washings with gentamicin (50 mL/L) and betadine (10 mL/L), clear transparent lenses (n=6 in each group) were incubated in Dulbecco's modified Eagle's medium (DMEM) alone (normal) or in DMEM containing 100 microm of H2O2 (control) or in DMEM containing both H2O2 (100 microm) and 150 microg/mL of Ocimum sanctum extract (treated) for 30 min at 37 degrees C with 5% CO2 and 95% air. Following incubation, the semi-hardened epithelium of each lens was carefully removed, fixed and processed for electron microscopic studies. Thin sections (60-70 mm) were contrasted with uranyl acetate and lead citrate and viewed under a transmission electron microscope. Normal epithelial cells showed intact, euchromatic nucleus with few small vacuoles (diameter 0.58+/-0.6 microm) in well-demarcated cytoplasm. After treatment with H2O2, they showed pyknotic nuclei with clumping of chromatin and ill-defined edges. The cytoplasm was full of vacuoles (diameter 1.61+/-0.7 microm). The overall cellular morphology was typical of dying cells. Treatment of cells with Ocimum sanctum extract protected the epithelial cells from H2O2 insult and maintained their normal architecture. The mean diameter of the vacuoles was 0.66+/-0.2 microm. The results indicate that extracts of O. sanctum have an important protective role against H2O2 injury in HLEC by maintaining the normal cellular architecture. The protection could be due to its ability to reduce H2O2 through its antioxidant property and thus reinforcing the concept that the extracts can penetrate the HLEC membrane. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. γ-Tocotrienol does not substantially protect DS neurons from hydrogen peroxide-induced oxidative injury

    Directory of Open Access Journals (Sweden)

    Then Sue-Mian

    2012-01-01

    Full Text Available Abstract Background Down syndrome (DS neurons are more susceptible to oxidative stress and previous studies have shown that vitamin E was able to reduce oxidative stress and improve DS neurons' viability. Therefore, this study was done to investigate the protective role of γ-tocotrienol (γT3 in DS neurons from hydrogen peroxide (H2O2 -induced oxidative stress. The pro-apoptosis tendency of γT3 was compared to α-tocopherol (αT in non-stress condition as well. Methods Primary culture of DS and euploid neurons were divided into six groups of treatment: control, H2O2, γT3 pre-treatment with H2O2, γT3 only, αT pre-treatment with H2O2 and αT only. The treatments were assessed by MTS assay and apoptosis assay by single-stranded DNA (ssDNA apoptosis ELISA assay, Hoechst and Neu-N immunofluorescence staining. The cellular uptake of γT3 and αT was determined by HPLC while protein expressions were determined by Western blot. Comparison between groups was made by the Student's t test, one-way ANOVA and Bonferroni adjustment as well as two-way ANOVA for multiple comparisons. Results One day incubation of γT3 was able to reduced apoptosis of DS neurons by 10%, however γT3 was cytotoxic at longer incubation period (14 days and at concentrations ≥ 100 μM. Pre-treatment of αT and γT3 only attenuate apoptosis and increase cell viability in H2O2-treated DS and euploid neurons by 10% in which the effects were minimal to maintain most of the DS cells' morphology. γT3 act as a free radical scavenger by reducing ROS generated by H2O2. In untreated controls, DS neurons showed lower Bcl-2/Bax ratio and p53 expression compared to normal neurons, while cPKC and PKC-δ expressions were higher in DS neurons. On the other hand, pre-treatment of γT3 in H2O2-treated DS neurons have reduced Bcl-2/Bax ratio, which was not shown in euploid neurons. This suggests that pre-treatment of γT3 did not promote DS cell survival. Meanwhile γT3 and αT treatments

  1. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang

    2017-02-17

    Hydrogen peroxide (H2O2) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H2O2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H2O2-induced adventitious rooting. RNA-Seq data revealed that H2O2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H2O2 treatment and that H2O2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H2O2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H2O2 treatments, the expression levels of

  2. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Piwkowska, Agnieszka, E-mail: apiwkowska@cmdik.pan.pl [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Rogacka, Dorota; Angielski, Stefan [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Jankowski, Maciej [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Medical University of Gdansk, Department of Therapy Monitoring and Pharmacogenetics (Poland)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  3. Synergy between sulforaphane and selenium in the up-regulation of thioredoxin reductase and protection against hydrogen peroxide-induced cell death in human hepatocytes.

    Science.gov (United States)

    Li, Dan; Wang, Wei; Shan, Yujuan; Barrera, Lawrence N; Howie, Alexander F; Beckett, Geoffrey J; Wu, Kun; Bao, Yongping

    2012-07-15

    Dietary isothiocyanates and selenium are chemopreventive agents and potent inducers of antioxidant enzymes. It has been previously shown that sulforaphane and selenium have a synergistic effect on the upregulation of thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells. In this paper, further evidence is presented to show that sulforaphane and selenium synergistically induce TrxR-1 expression in immortalised human hepatocytes. Sulforaphane was found to be more toxic toward hepatocytes than HepG2 cells with IC50=25.1 and 56.4 μM, respectively. Sulforaphane can protect against hydrogen peroxide-induced cell death and this protection was enhanced by co-treatment with selenium. Using siRNA to knock down TrxR-1 or Nrf2, sulforaphane (5 μM)-protected cell viability was reduced from 73% to 46% and 34%, respectively, suggesting that TrxR-1 is an important enzyme in protection against hydrogen peroxide-induced cell death. Sulforaphane-induced TrxR-1 expression was positively associated with significant levels of Nrf2 translocation into the nucleus, but co-treatment with selenium showed no significant increase in Nrf2 translocation. Moreover, MAPK (ERK, JNK and p38) and PI3K/Akt signalling pathways were found to play no significant role in sulforaphane-induced Nrf2 translocation into the nucleus. However, blocking ERK and JNK signalling pathways decreased sulforaphane-induced TrxR-1 mRNA by about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription. In summary, a combination of sulforaphane and selenium resulted in a synergistic upregulation of TrxR-1 that contributed to the enhanced protection against free radical-mediated oxidative damage in human hepatocytes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Skrzypek, E.; Dabrowska, G.; Wedzony, M.; Lammeren, van A.A.M.

    2012-01-01

    We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor

  5. Taurine chloramine protects RAW 264.7 macrophages against hydrogen peroxide-induced apoptosis by increasing antioxidants

    OpenAIRE

    Piao, Shuyu; Cha, Young-Nam; Kim, Chaekyun

    2011-01-01

    Taurine chloramine is the major chloramine generated in activated neutrophils via the reaction between the overproduced hypochlorous acid and the stored taurine. Taurine chloramine has anti-inflammatory and cytoprotective effects in inflamed tissues by inhibiting the production of inflammatory mediators. Taurine chloramine increases heme oxygenase activity and also protects against hydrogen peroxide (H2O2)-derived necrosis in macrophages. In this study, we examined further whether taurine chl...

  6. Laminarin protects against hydrogen peroxide-induced oxidative damage in MRC-5 cells possibly via regulating NRF2

    Directory of Open Access Journals (Sweden)

    Xue Liu

    2017-07-01

    Full Text Available Oxidative damage is a major cause of lung diseases, including pulmonary fibrosis. Laminarin is a kind of polysaccharide extracted from brown algae and plays vital roles in various biological processes. However, the functions and mechanisms of laminarin in pulmonary oxidative damage are poorly understood. This study aimed at investigating the protective effect of laminarin against pulmonary oxidative damage and underlying mechanisms. Human lung fibroblasts MRC-5 cells were treated with hydrogen peroxide to induce oxidative damage. Laminarin treatment was performed before or after hydrogen peroxide treatment, and then major indexes of oxidative damage, including superoxide dismutase (SOD, malondialdehyde (MDA, reduced glutathione (GSH and catalase (CAT, were quantified by biochemical assays. The expression of oxidation-related factor, nuclear factor erythroid 2 like 2 (NRF2 was analyzed by qPCR, Western blot and immunofluorescence assay. NRF2 knockdown and overexpression were performed by cell transfection to reveal possible mechanisms. Results showed that laminarin treatment of 0.020 mg/mL for 24 h, especially the pre-treatment, could significantly relieve changes in SOD, MDA, GSH and CAT that were altered by hydrogen peroxide, and promote NRF2 mRNA (P < 0.001. NRF2 protein was also elevated by laminarin, and nuclear translocation was observed. Factors in NRF2 signaling pathways, including KEAP1, NQO1, GCLC and HO1, were all regulated by laminarin. Roles of NRF2 were tested, suggesting that NRF2 regulated the concentration of SOD, MDA, GSH and CAT, suppressed KEAP1, and promoted NQO1, GCLC and HO1. These findings suggested the protective role of laminarin against pulmonary oxidative damage, which might involve the regulation of NRF2 signaling pathways. This study provided information for the clinical application of laminarin to pulmonary diseases like pulmonary fibrosis.

  7. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    Science.gov (United States)

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H2O2) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis. PMID:22949825

  8. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Shahid Iqbal

    2012-08-01

    Full Text Available The neuroprotective and antioxidative effects of germinated brown rice (GBR, brown rice (BR and commercially available γ-aminobutyric acid (GABA against cell death induced by hydrogen peroxide (H2O2 in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP and prevented phosphatidylserine (PS translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  9. Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells.

    Science.gov (United States)

    Huang, Jin; Zhou, Chi; He, Jun; Hu, Zheng; Guan, Wen-Chao; Liu, Sheng-Hong

    2016-06-01

    Hydrogen peroxide (H2O2) and free radicals cause oxidative stress, which induces cellular injuries, metabolic dysfunction, and even cell death in various clinical abnormalities. Fullerene (C60) is critical for scavenging oxygen free radicals originated from cell metabolism, and reduced glutathione (GSH) is another important endogenous antioxidant. In this study, a novel water-soluble reduced glutathione fullerene derivative (C60-GSH) was successfully synthesized, and its beneficial roles in protecting against H2O2-induced oxidative stress and apoptosis in cultured HEK 293T cells were investigated. Fourier Transform infrared spectroscopy and (1)H nuclear magnetic resonance were used to confirm the chemical structure of C60-GSH. Our results demonstrated that C60-GSH prevented the reactive oxygen species (ROS)-mediated cell damage. Additionally, C60-GSH pretreatment significantly attenuated H2O2-induced superoxide dismutase (SOD) consumption and malondialdehyde (MDA) elevation. Furthermore, C60-GSH inhibited intracellular calcium mobilization, and subsequent cell apoptosis via bcl-2/bax-caspase-3 signaling pathway induced by H2O2 stimulation in HEK 293T cells. Importantly, these protective effects of C60-GSH were superior to those of GSH. In conclusion, these results suggested that C60-GSH has potential to protect against H2O2-induced cell apoptosis by scavenging free radicals and maintaining intracellular calcium homeostasis without evident toxicity.

  10. Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1.

    Directory of Open Access Journals (Sweden)

    André Quincozes-Santos

    Full Text Available Resveratrol, a polyphenol presents in grapes and wine, displays antioxidant and anti-inflammatory properties and cytoprotective effect in brain pathologies associated to oxidative stress and neurodegeneration. In previous work, we demonstrated that resveratrol exerts neuroglial modulation, improving glial functions, mainly related to glutamate metabolism. Astrocytes are a major class of glial cells and regulate neurotransmitter systems, synaptic processing, energy metabolism and defense against oxidative stress. This study sought to determine the protective effect of resveratrol against hydrogen peroxide (H2O2-induced cytotoxicity in C6 astrocyte cell line, an astrocytic lineage, on neurochemical parameters and their cellular and biochemical mechanisms. H2O2 exposure increased oxidative-nitrosative stress, iNOS expression, cytokine proinflammatory release (TNFα levels and mitochondrial membrane potential dysfunction and decreased antioxidant defenses, such as SOD, CAT and creatine kinase activity. Resveratrol strongly prevented C6 cells from H2O2-induced toxicity by modulating glial, oxidative and inflammatory responses. Resveratrol per se increased heme oxygenase 1 (HO1 expression and extracellular GSH content. In addition, HO1 signaling pathway is involved in the protective effect of resveratrol against H2O2-induced oxidative damage in astroglial cells. Taken together, these results show that resveratrol represents an important mechanism for protection of glial cells against oxidative stress.

  11. Effects of rhinovirus infection on hydrogen peroxide- induced alterations of barrier function in the cultured human tracheal epithelium.

    Science.gov (United States)

    Ohrui, T; Yamaya, M; Sekizawa, K; Yamada, N; Suzuki, T; Terajima, M; Okinaga, S; Sasaki, H

    1998-07-01

    To investigate whether rhinovirus infection impairs epithelial barrier functions, human rhinovirus 14 (HRV-14) was infected to primary cultures of human tracheal epithelial cells and experiments were performed on Day 2 after HRV-14 infection. Hydrogen peroxide (H2O2; 3 x 10(-)4 M) increased electrical conductance (G) across the epithelial cell sheet measured with Ussing's chamber methods. Exposure of the epithelial cells to HRV-14 had no effect on H2O2-induced increases in G and [3H]mannitol flux through the cultured epithelium in the control condition, but it markedly potentiated H2O2- induced increases in both parameters in IL-1beta (100 U/ml) pretreated condition. However, pretreatment with TNF-alpha (100 U/ml) was without effect. IL-1beta enhanced the intercellular adhesion molecule-1 (ICAM-1) expression assessed by immunohistochemical analysis and susceptibility of epithelial cells to HRV-14 infection. An antibody to ICAM-1 inhibited HRV-14 infection of epithelial cells and abolished H2O2-induced increases in G and [3H]mannitol flux in IL-1beta-pretreated epithelial cells with HRV-14 infection. These results suggest that rhinovirus infection may reduce barrier functions in the airway epithelium in association with upregulation of ICAM-1 expression.

  12. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Siripong Palee

    2016-06-01

    Full Text Available Background/Aims: Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2 treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Methods: Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. Results: H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker and mecamylamine (a nicotinic acetylcholine receptor blocker significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. Conclusion: ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors.

  13. The sigma-1 receptor-zinc finger protein 179 pathway protects against hydrogen peroxide-induced cell injury.

    Science.gov (United States)

    Su, Tzu-Chieh; Lin, Shu-Hui; Lee, Pin-Tse; Yeh, Shiu-Hwa; Hsieh, Tsung-Hsun; Chou, Szu-Yi; Su, Tsung-Ping; Hung, Jan-Jong; Chang, Wen-Chang; Lee, Yi-Chao; Chuang, Jian-Ying

    2016-06-01

    The accumulation of reactive oxygen species (ROS) have implicated the pathogenesis of several human diseases including neurodegenerative disorders, stroke, and traumatic brain injury, hence protecting neurons against ROS is very important. In this study, we focused on sigma-1 receptor (Sig-1R), a chaperone at endoplasmic reticulum, and investigated its protective functions. Using hydrogen peroxide (H2O2)-induced ROS accumulation model, we verified that apoptosis-signaling pathways were elicited by H2O2 treatment. However, the Sig-1R agonists, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS), reduced the activation of apoptotic pathways significantly. By performing protein-protein interaction assays and shRNA knockdown of Sig-1R, we identified the brain Zinc finger protein 179 (Znf179) as a downstream target of Sig-1R regulation. The neuroprotective effect of Znf179 overexpression was similar to that of DHEAS treatment, and likely mediated by affecting the levels of antioxidant enzymes. We also quantified the levels of peroxiredoxin 3 (Prx3) and superoxide dismutase 2 (SOD2) in the hippocampi of wild-type and Znf179 knockout mice, and found both enzymes to be reduced in the knockout versus the wild-type mice. In summary, these results reveal that Znf179 plays a novel role in neuroprotection, and Sig-1R agonists may be therapeutic candidates to prevent ROS-induced damage in neurodegenerative and neurotraumatic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hepatoprotective effect of Cymbopogon citratus aqueous extract against hydrogen peroxide-induced liver injury in male rats.

    Science.gov (United States)

    Rahim, Saleh Muhammad; Taha, Ekhlass Muhi; Al-janabi, Muneef Saeb; Al-douri, Bushra Ismael; Simon, Kumar Das; Mazlan, Abd Gaffar

    2014-01-01

    Cymbopogon citratus (Poaceae) a tropical perennial herb plant that is widely cultivated to be eaten either fresh with food or dried in tea or soft drink has been reported to possess a number of medicinal and aromatic properties. This study aimed at evaluating the protective effects of C. citratus aqueous extract against liver injury induced by hydrogen peroxide (H2O2), in male rats. Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations. C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (pcitratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.

  15. Protective effect of Cymbopogon citratus on hydrogen peroxide-induced oxidative stress in the reproductive system of male rats.

    Science.gov (United States)

    Rahim, Saleh M; Taha, Ekhlass M; Mubark, Zaid M; Aziz, Salam S; Simon, K D; Mazlan, A G

    2013-12-01

    Cymbopogon citratus (C. citratus) has antioxidant, anti-inflammatory, and chemoprotective properties. This study was conducted to evaluate the protective effect of C. citratus aqueous extract against hydrogen peroxide (H2O2)-induced oxidative stress and injury in the reproductive system of male rats. The twenty-five rats used in this study were divided into five groups, comprised of five rats each. The control group received standard food and drink. The H2O2 group received standard food and water with 0.5% H2O2. The rats in the H2O2 + C. citratus group and H2O2 + vitamin E group received standard food, H2O2, and C. citratus [100 mg·kg(-1) body weight (bw)], or vitamin E as an antioxidant reference (500 mg·kg(-1) bw), respectively. The C. citratus group was given C. citratus (100 mg·kg(-1) bw) in addition to the standard food and drink. The treatments were administered for 30 days. The H2O2 treatment significantly (P citratus, vitamin E, and H2O2 treatment significantly (P citratus aqueous extract reduced oxidative stress and protected male rats against H2O2-induced reproductive system injury.

  16. Chamomile confers protection against hydrogen peroxide-induced toxicity through activation of Nrf2-mediated defense response.

    Science.gov (United States)

    Bhaskaran, Natarajan; Srivastava, Janmejai K; Shukla, Sanjeev; Gupta, Sanjay

    2013-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H₂O₂)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H₂O₂-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD(P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H₂O₂-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. Copyright © 2012 John Wiley & Sons, Ltd.

  17. The octadecaneuropeptide ODN protects astrocytes against hydrogen peroxide-induced apoptosis via a PKA/MAPK-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Yosra Hamdi

    Full Text Available Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN an endogenous ligand of both central-type benzodiazepine (CBR and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H(2O(2-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo(1-8[DLeu(5]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H(2O(2-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H(2O(2 of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H(2O(2 on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.

  18. Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung.

    Science.gov (United States)

    Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y

    2001-09-01

    Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.

  19. Can Melatonin Act as an Antioxidant in Hydrogen Peroxide-Induced Oxidative Stress Model in Human Peripheral Blood Mononuclear Cells?

    Directory of Open Access Journals (Sweden)

    Solaleh Emamgholipour

    2016-01-01

    Full Text Available Purpose. We aimed to investigate the possible effects of melatonin on gene expressions and activities of MnSOD and catalase under conditions of oxidative stress induced by hydrogen peroxide (H2O2 in peripheral blood mononuclear cells (PBMCs. Materials and Methods. PBMCs were isolated from healthy subjects and treated as follows: (1 control (only with 0.1% DMSO for 12 h; (2 melatonin (1 mM for 12 h; (3 H2O2 (250 μM for 2 h; (4 H2O2 (250 μM for 2 h following 10 h pretreatment with melatonin (1 mM. The gene expression was evaluated by real-time PCR. MnSOD and catalase activities in PBMCs were determined by colorimetric assays. Results. Pretreatment of PBMCs with melatonin significantly augmented expression and activity of MnSOD which were diminished by H2O2. Melatonin treatment of PBMCs caused a significant upregulation of catalase by almost 2-fold in comparison with untreated cells. However, activity and expression of catalase increased by 1.5-fold in PBMCs under H2O2-induced oxidative stress compared with untreated cell. Moreover, pretreatment of PBMCs with melatonin resulted in a significant 1.8-fold increase in catalase expression compared to PBMCs treated only with H2O2. Conclusion. It seems that melatonin could prevent from undesirable impacts of H2O2-induced oxidative stress on MnSOD downregulation. Moreover, melatonin could promote inductive effect of H2O2 on catalase mRNA expression.

  20. NMR-based untargeted metabolomic study of hydrogen peroxide-induced development and diapause termination in brine shrimp.

    Science.gov (United States)

    Hong, Ming-Chang; Ding, Shangwu; Lin, Cheng-Chi; Chu, Tah-Wei; Chiu, Kuo-Hsun

    2017-12-01

    Artemia diapause has been extensively studied in embryonic biology for a long time. It has been demonstrated that hydrogen peroxide (H2O2) can increase the hatching rate in the development and diapause termination of Artemia cysts. This study used an untargeted 1H NMR-based metabolomic approach to explore the physiological regulation of H2O2 in initiating the development and terminating the diapause of Artemia cysts. This experiment was divided into two parts. In the first part, we analyzed three groups with or without H2O2 as control-0h, control-5h and H2O2 (180μM)-5h; in the second part, after 7-d incubation, the non-hatching cysts were treated with different H2O2 concentrations as low as 180μM and as high 1800μM. The results showed that arginine and proline metabolism were up-regulated after 5h, and H2O2 up-regulated valine, leucine and isoleucine biosynthesis in the development of cysts. In the second part, low H2O2 (180μM) showed alanine, aspartate and glutamate metabolism, but high H2O2 (1800μM) also up-regulated arginine and proline metabolism, as in the control group without H2O2 stimulus. These results suggest that enough H2O2 can catalyze cell transcription and translation in Artemia cysts, and it improves the cell growth rate, thus allowing embryo cells to grow again. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Antioxidant activity of herbaceous plant extracts protect against hydrogen peroxide-induced DNA damage in human lymphocytes

    Science.gov (United States)

    2013-01-01

    Background Herbaceous plants containing antioxidants can protect against DNA damage. The purpose of this study was to evaluate the antioxidant substances, antioxidant activity, and protection of DNA from oxidative damage in human lymphocytes induced by hydrogen peroxide (H2O2). Our methods used acidic methanol and water extractions from six herbaceous plants, including Bidens alba (BA), Lycium chinense (LC), Mentha arvensis (MA), Plantago asiatica (PA), Houttuynia cordata (HC), and Centella asiatica (CA). Methods Antioxidant compounds such as flavonol and polyphenol were analyzed. Antioxidant activity was determined by the inhibition percentage of conjugated diene formation in a linoleic acid emulsion system and by trolox-equivalent antioxidant capacity (TEAC) assay. Their antioxidative capacities for protecting human lymphocyte DNA from H2O2-induced strand breaks was evaluated by comet assay. Results The studied plants were found to be rich in flavonols, especially myricetin in BA, morin in MA, quercetin in HC, and kaemperol in CA. In addition, polyphenol abounded in BA and CA. The best conjugated diene formation inhibition percentage was found in the acidic methanolic extract of PA. Regarding TEAC, the best antioxidant activity was generated from the acidic methanolic extract of HC. Water and acidic methanolic extracts of MA and HC both had better inhibition percentages of tail DNA% and tail moment as compared to the rest of the tested extracts, and significantly suppressed oxidative damage to lymphocyte DNA. Conclusion Quercetin and morin are important for preventing peroxidation and oxidative damage to DNA, and the leaves of MA and HC extracts may have excellent potential as functional ingredients representing potential sources of natural antioxidants. PMID:24279749

  2. Inhibition of Hydrogen Peroxide-Induced Human Umbilical Vein Endothelial Cells Aging by Allicin Depends on Sirtuin1 Activation.

    Science.gov (United States)

    Lin, Xiao-Long; Liu, Yuanbo; Liu, Mihua; Hu, HuiJun; Pan, Yongquan; Fan, Xiao-Juan; Hu, Xue-Mei; Zou, Wei-Wen

    2017-01-31

    BACKGROUND The abnormal activity of Sirtuin 1 (Sirt1) is closely related to the aging of vascular endothelial cells. As a bioactive molecule, allicin has antioxidant, anti-inflammatory, and lipid-regulating mechanisms. However, few reports about the relationship of allicin and Sirt1 have been published. In this study, we aimed to elucidate the effect of allicin on Human Umbilical Vein Endothelial Cells (HUVECs) aging induced by hydrogen peroxide (H2O2) and the role of Sirt1 in this phenomenon. MATERIAL AND METHODS HUVEC were exposed to H2O2 to establish the aging model. The expression of protein and RNA were detected by Western blot and Reverse transcription-quantitative polymerase chain reaction. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess cell viability. Sirt1 enzyme activity assay was used to analyze enzymatic activity. Reactive oxygen species was detected by dichlorofluorescein diacetate (DCFH-DA). Cell aging was detected by Senescence β-Galactosidase (SA-β-gal) staining. RESULTS Results of this study revealed that pretreating HUVECs with 5 ng/mL allicin before exposure to H2O2 resulted in increased cell viability and reduced reactive oxygen species generation. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that H2O2 attenuated the phosphorylation and activation of Sirt1 and increased the expression of plasminogen activator inhibitor-1(PAI-1) protein. Moreover, H2O2 also promoted HUVEC aging. These effects were significantly alleviated by 5 ng/mL allicin co-treatment. Furthermore, the anti-aging effects of allicin were abolished by the Sirt1 inhibitor nicotinamide (NAM). CONCLUSIONS Overall, the results demonstrated that allicin protects HUVECs from H2O2-induced oxidative stress and aging via the activation of Sirt1.

  3. Differential response of Porphyromonas gingivalis to varying levels and duration of hydrogen peroxide-induced oxidative stress

    Science.gov (United States)

    Johnson, Neal A.; Aruni, Wilson; Dou, Yuetan; Masinde, Godfred; Fletcher, Hansel M.

    2012-01-01

    Porphyromonas gingivalis, an anaerobic oral pathogen implicated in adult periodontitis, can exist in an environment of oxidative stress. To evaluate its adaptation to this environment, we have assessed the response of P. gingivalis W83 to varying levels and durations of hydrogen peroxide (H2O2)-induced stress. When P. gingivalis was initially exposed to a subinhibitory concentration of H2O2 (0.1 mM), an adaptive response to higher concentrations could be induced. Transcriptome analysis demonstrated that oxidative stress can modulate several functional classes of genes depending on the severity and duration of the exposure. A 10 min exposure to H2O2 revealed increased expression of genes involved in DNA damage and repair, while after 15 min, genes involved in protein fate, protein folding and stabilization were upregulated. Approximately 9 and 2.8 % of the P. gingivalis genome displayed altered expression in response to H2O2 exposure at 10 and 15 min, respectively. Substantially more genes were upregulated (109 at 10 min; 47 at 15 min) than downregulated (76 at 10 min; 11 at 15 min) by twofold or higher in response to H2O2 exposure. The majority of these modulated genes were hypothetical or of unknown function. One of those genes (pg1372) with DNA-binding properties that was upregulated during prolonged oxidative stress was inactivated by allelic exchange mutagenesis. The isogenic mutant P. gingivalis FLL363 (pg1372 : : ermF) showed increased sensitivity to H2O2 compared with the parent strain. Collectively, our data indicate the adaptive ability of P. gingivalis to oxidative stress and further underscore the complex nature of its resistance strategy under those conditions. PMID:22745271

  4. Protective Effect of Crocodile Hemoglobin and Whole Blood Against Hydrogen Peroxide-Induced Oxidative Damage in Human Lung Fibroblasts (MRC-5) and Inflammation in Mice.

    Science.gov (United States)

    Phosri, Santi; Jangpromma, Nisachon; Patramanon, Rina; Kongyingyoes, Bunkerd; Mahakunakorn, Pramote; Klaynongsruang, Sompong

    2017-02-01

    A putative protective effect of cHb and cWb against H 2 O 2 -induced oxidative damage was evaluated in detail using MRC-5 cells. In addition, the carrageenan (Carr)-induced mouse paw edema model and the cotton pellet-induced granuloma model were employed to examine the in vivo anti-inflammatory activity of cHb and cWb in mice. It was demonstrated that both cHb and cWb treatments significantly increased cell viability and inhibited morphology alterations in MRC-5 cells exposed to H 2 O 2 . Orally administered cHb and cWb significantly reduced Carr-induced paw edema volume and cotton pellet-induced granuloma formation. Moreover, cHb and cWb decreased the expression levels of important pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α), while only cWb was found to increase the expression of the anti-inflammatory cytokine IL-10 significantly. Finally, the activity of antioxidant enzymes (SOD, CAT, and GPx) in the liver improved after cHb and cWb treatment under acute and chronic inflammation. Taken collectively, the results of this study suggest that both cHb and cWb protect against hydrogen peroxide-induced damage in fibroblast cells. Moreover, cHb and cWb were found to exhibit anti-inflammatory activity in both the acute and chronic stages of inflammation and appear to enhance antioxidant enzyme activity and decrease lipid peroxidation in the livers of mice. Therefore, this study indicates that cHb and cWb have great potential to be used in the development of dietary supplements for the prevention of oxidative stress related to inflammatory disorders.

  5. Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5P3 dependent pathway.

    Directory of Open Access Journals (Sweden)

    Jianing Zhang

    Full Text Available Sodium reabsorption through the epithelial sodium channel (ENaC at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2 stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3 in the apical membrane. Here we report that H2S can antagonize H2O2-induced activation of ENaC in A6 cells. Our cell-attached patch-clamp data show that ENaC open probability (PO was significantly increased by exogenous H2O2, which is consistent with our previous finding. The aberrant activation of ENaC induced by exogenous H2O2 was completely abolished by H2S (0.1 mM NaHS. Pre-treatment of A6 cells with H2S slightly decreased ENaC P(O; however, in these cells H2O2 failed to elevate ENaC PO . Confocal microscopy data show that application of exogenous H2O2 to A6 cells significantly increased intracellular reactive oxygen species (ROS level and induced accumulation of PI(3,4,5P3 in the apical compartment of the cell membrane. These effects of exogenous H2O2 on intracellular ROS levels and on apical PI(3,4,5P3 levels were almost completely abolished by treatment of A6 cells with H2S. In addition, H2S significantly inhibited H2O2-induced oxidative inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN which is a negative regulator of PI(3,4,5P3. Moreover, BPV(pic, a specific inhibitor of PTEN, elevated PI(3,4,5P3 and ENaC activity in a manner similar to that of H2O2 in A6 cells. Our data show, for the first time, that H2S prevents H2O2-induced activation of ENaC through a PTEN-PI(3,4,5P3 dependent pathway.

  6. Hydrogen Peroxide-induced Cell Death in Arabidopsis : Transcriptional and Mutant Analysis Reveals a Role of an Oxoglutarate-dependent Dioxygenase Gene in the Cell Death Process

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Minkov, Ivan N.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide is a major regulator of plant programmed cell death (PCD) but little is known about the downstream genes from the H2O2-signaling network that mediate the cell death. To address this question, a novel system for studying H2O2-induced programmed cell death in Arabidopsis thaliana was

  7. Extracts of Mauritian Carica papaya (var. solo) protect SW872 and HepG2 cells against hydrogen peroxide induced oxidative stress.

    Science.gov (United States)

    Somanah, Jhoti; Bourdon, Emmanuel; Bahorun, Theeshan

    2017-06-01

    In line with literature documenting the pluripotent activities of tropical fruits, this study evaluated the antioxidant effects of Carica papaya fruit extracts at cellular level. Investigations using cellular models of oxidative stress provided complementary evidence of the antioxidant activities of papaya fruit. At 2 mg dry weight ml-1, extracts of seed from ripe and unripe fruit significantly reduced oxidative stress levels within human pre-adipocytes (SW872) and hepatocellular carcinoma cells (HepG2) exposed to hydrogen peroxide (H2O2). Maintenance of mitochondrial viability, reduction of intracellular reactive oxygen species levels and mediation of pro-inflammatory cytokine secretory levels (tumour necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1) were all indicative of its cytoprotective effects against oxidative-inflammation. This work demonstrates that the Mauritian Solo papaya is an important source of natural antioxidants that could be used for the dietary modulation of oxidative stress and inflammation.

  8. Frozen fruit pulp of Euterpe oleraceae Mart. (Acai) prevents hydrogen peroxide-induced damage in the cerebral cortex, cerebellum, and hippocampus of rats.

    Science.gov (United States)

    Spada, Patricia D S; Dani, Caroline; Bortolini, Giovana V; Funchal, Claudia; Henriques, João A P; Salvador, Mirian

    2009-10-01

    Oxidative stress is implicated in several human illnesses, including neurological disorders such as Parkinson's and Alzheimer's diseases. Acai is largely consumed in Brazil and contains high levels of antioxidant compounds. This work aims to study the antioxidant activity of acai frozen fruit pulp in the cerebral cortex, hippocampus, and cerebellum of rats treated with the oxidizing agent hydrogen peroxide (H(2)O(2)). Pretreatment of tissue with acai decreased H(2)O(2)-induced damage of both lipids and proteins in all tissues tested. This fruit was also able to reduce the activities of the antioxidant enzymes superoxide dismutase and catalase to basal levels. We observed a negative correlation between the polyphenol content of acai and the levels of lipid (r = -0.689; P data suggest that acai has a positive contribution in the development of age-related neurodegenerative diseases.

  9. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants1[OPEN

    Science.gov (United States)

    Biswas, Md. Sanaullah; Mano, Jun’ichi

    2015-01-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed. PMID:26025050

  10. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    Science.gov (United States)

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  11. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells.

    Science.gov (United States)

    Tian, Xing; Guo, Li-Ping; Hu, Xiao-Long; Huang, Jin; Fan, Yan-Hua; Ren, Tian-Shu; Zhao, Qing-Chun

    2015-04-01

    Accumulated evidence has shown that excessive reactive oxygen species (ROS) have been implicated in neuronal cell death related with various chronic neurodegenerative disorders. This study was designed to explore neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) on hydrogen peroxide (H2O2)-induced cell injury in human SH-SY5Y neuroblastoma cells. The cell viability was significantly decreased after exposure to 200 μM H2O2, whereas pretreatment with different concentrations of EAL attenuated the H2O2-induced cytotoxicity. Hoechst 33342 staining indicated that EAL reversed nuclear condensation in H2O2-treated cells. Meanwhile, TUNEL assay with DAPI staining showed that EAL attenuated apoptosis was induced by H2O2. Pretreatment with EAL also markedly elevated activities of antioxidant enzyme (GSH-Px and SOD), reduced lipid peroxidation (MDA) production, prevented ROS formation, and the decrease of mitochondrial membrane potential. In addition, EAL showed strong radical scavenging ability in 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays. Furthermore, EAL inhibited H2O2-induced apoptosis by increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, and attenuation of caspase-3, caspase-9 activities, and expressions. These findings suggest that EAL may be regarded as a potential antioxidant agent and possess potent neuroprotective activity against H2O2-induced injury.

  12. Allicin protects rat cardiomyoblasts (H9c2 cells) from hydrogen peroxide-induced oxidative injury through inhibiting the generation of intracellular reactive oxygen species.

    Science.gov (United States)

    Chan, Jackie Yan-Yan; Tsui, Hei-Tung; Chung, Ivan Ying-Ming; Chan, Robbie Yat-Kan; Kwan, Yiu-Wa; Chan, Shun-Wan

    2014-11-01

    Oxidative stress is considered an important factor that promotes cell death in response to a variety of pathophysiological conditions. This study investigated the antioxidant properties of allicin, the principle ingredient of garlic, on preventing oxidative stress-induced injury. The antioxidant capacities of allicin were measured by using 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and hydrogen peroxide (H(2)O(2))-induced cell damage on H9c2 cardiomyoblasts. Allicin (0.3-10 μM) pre-incubation could concentration-dependently attenuate the intracellular reactive oxygen species (ROS) increase induced by H(2)O(2) on H9c2 cells. It could also protect H9c2 cells against H(2)O(2)-induced cell damage. However, the DPPH free radical scavenging activity of allicin was shown to be low. Therefore, it is believed that the protective effect of allicin on H9c2 cells could inhibit intracellular ROS production instead of scavenging extracellular H(2)O(2) or free radicals. For the observed protective effect on H9c2 cells, allicin might also be effective in reducing free radical-induced myocardial cell death in ischemic condition.

  13. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    Science.gov (United States)

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  14. Oregano Essential Oil Induces SOD1 and GSH Expression through Nrf2 Activation and Alleviates Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells

    Science.gov (United States)

    Zou, Yi; Wang, Jun; Peng, Jian

    2016-01-01

    Oregano essential oil (OEO) has long been used to improve the health of animals, particularly their intestinal health. The health benefits of OEO are generally attributed to antioxidative actions, but the mechanisms remain unclear. Here, we investigate the antioxidative effects of OEO and their underlying molecular mechanisms in porcine small intestinal epithelial (IPEC-J2) cells. We found that OEO treatment prior to hydrogen peroxide (H2O2) exposure increased cell viability and prevented lactate dehydrogenase (LDH) release into the medium. H2O2-induced reactive oxygen species (ROS) and malondialdehyde (MDA) were remarkably suppressed by OEO. OEO dose-dependently increased mRNA and protein levels of the nuclear factor-erythroid 2-related factor-2 (Nrf2) target genes Cu/Zn-superoxide dismutase (SOD1) and g-glutamylcysteine ligase (GCLC, GLCM), as well as intracellular concentrations of SOD1 and glutathione. OEO also increased intranuclear expression of Nrf2 and the activity of an antioxidant response element reporter plasmid in IPEC-J2 cells. The OEO-induced expression of Nrf2-regulated genes and increased SOD1 and glutathione concentrations in IPEC-J2 cells were reduced by Nrf2 small interfering (si) RNAs, counteracting the protective effects of OEO against oxidative stress in IPEC-J2 cells. Our results suggest that OEO protects against H2O2-induced IPEC-J2 cell damage by inducing Nrf2 and related antioxidant enzymes. PMID:28105249

  15. Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway.

    Science.gov (United States)

    Zhu, Ye; Shi, Ya-Ping; Wu, Dan; Ji, Ya-Jing; Wang, Xue; Chen, Hua-Li; Wu, Si-Si; Huang, De-Jia; Jiang, Wei

    2011-10-01

    Oxidative stress induces serious tissue injury in cardiovascular diseases. Salidroside, with its strong antioxidative and cytoprotective actions, is of particular interest in the development of antioxidative therapies for oxidative injury in cardiac diseases. We examined the pharmacological effects of salidroside on H9c2 rat cardiomyoblast cells under conditions of oxidative stress induced by hydrogen peroxide (H2O2) challenge. Salidroside attenuated H2O2-impaired cell viability in a concentration-dependent manner, and effectively inhibited cellular malondialdehyde production, lethal sarcolemmal disruption, cell necrosis, and apoptosis induced by H2O2 insult. Salidroside significantly augmented Akt phosphorylation at Serine 473 in the absence or presence of H2O2 stimulation; wortmannin, a specific inhibitor of PI3K, abrogated salidroside protection. Salidroside increased the intracellular mRNA expression and activities of catalase and Mn-superoxide dismutases in a PI3K-dependent manner. Our results indicated that salidroside protected cardiomyocytes against oxidative injury through activating the PI3K/Akt pathway and increasing the expression and activities of endogenous PI3K dependent antioxidant enzymes.

  16. Apical, but not basolateral, endotoxin preincubation protects alveolar epithelial cells against hydrogen peroxide-induced loss of barrier function: the role of nitric oxide synthesis.

    Science.gov (United States)

    Rose, Frank; Guthmann, Bernd; Tenenbaum, Tobias; Fink, Ludger; Ghofrani, Ardeschir; Weissmann, Norbert; König, Peter; Ermert, Leander; Dahlem, Gabriele; Haenze, Joerg; Kummer, Wolfgang; Seeger, Werner; Grimminger, Friedrich

    2002-08-01

    The influence of LPS preincubation on hydrogen peroxide (H(2)O(2))-induced loss of epithelial barrier function was investigated in rat alveolar epithelial type II cells (ATII). Both apical and basolateral H(2)O(2) administration caused a manyfold increase in transepithelial [(3)H]mannitol passage. Apical but not basolateral preincubation of ATII with LPS did not influence control barrier properties but fully abrogated the H(2)O(2)-induced leakage response. The effect of apical LPS was CD14 dependent and was accompanied by a strong up-regulation of NO synthase II mRNA and protein and NO release. Inhibition of NO by N(G)-monomethyl-L-arginine suppressed the LPS effect, whereas it was reproduced by exogenous application of gaseous NO or NO donor agents. Manipulation of the glutathione homeostasis (buthionine-(S,R)-sulfoximine) and the cGMP pathway (1H-(1,2,4)oxadiazolo[4,3-alpha]quinoxaline-1-one; zaprinast) did not interfere with the protective effect of LPS. Superoxide (O*(-)(2)) generation by ATII cells was reduced by exogenous NO and LPS preincubation. O*(-)(2) scavenging with exogenous superoxide dismutase, the intracellular superoxide dismutase analog Mn(III)tetrakis(4-benzoic acid) porphyrin, and the superoxide scavenger nitroblue tetrazolium and, in particular, hydroxyl radical scavenging with hydroxyl radical scavenger 1,3-dimethyl-thiourea inhibited the H(2)O(2)-induced epithelial leakage response. In conclusion, apical but not basolateral LPS preincubation of ATII cells provides strong protection against H(2)O(2)-induced transepithelial leakage, attributable to an up-regulation of epithelial NO synthesis. It is suggested that the LPS-induced NO formation is effective via interaction with reactive oxygen species, including superoxide and hydroxyl radicals. The polarized epithelial response to LPS may be part of the lung innate immune system, activated by inhaled endotoxin or under conditions of pneumonia.

  17. Protective effects of (E)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeine against hydrogen peroxide-induced injury in PC12 cells.

    Science.gov (United States)

    Chen, Bingyang; Yue, Rongcai; Yang, Yongge; Zeng, Huawu; Chang, Wanlin; Gao, Na; Yuan, Xing; Zhang, Weidong; Shan, Lei

    2015-03-01

    (E)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeine (HOEC), a naturally caffeic ester isolated from Incarvillea mairei, has been reported to possess anti-inflammatory activity by targeting 5-lipoxygenase. However, its other potential activities have yet to be explored. In this study, we measured antioxidant activity of HOEC using the DPPH free radical-scavenging assay. Then, we exposed rat pheochromocytoma (PC12) cells to hydrogen peroxide (H2O2)-induced damage and investigated the antioxidant activity of HOEC. Cell viability, lactate dehydrogenase (LDH) release, cellular morphology, Hoechst 33342 fluorescent staining, and apoptosis of the PC12 cells were assessed after treatment with 0.3-10 μM HOEC for 2 h and exposure to 600 μM H2O2. Additionally, glutathione reductase (GR), superoxide dismutase (SOD), lipid peroxidation malondialdehyde (MDA), and intracellular reactive oxygen species (ROS) accumulation were assayed after the PC12 cells were exposed to H2O2. To investigate mechanism, apoptosis-related protein were evaluated, including cleaved caspase 3/7, cleaved PARP, Bcl-2, Bcl-XL, and cytochrome c. The results showed that HOEC possessed potent antioxidant activity and pre-treatment with HOEC prior to H2O2 exposure significantly increased cell viability, reduced the release of LDH, ameliorated changes in cell morphology, and inhibited apoptosis. Further, HOEC did the following: reduced intracellular accumulation of ROS and MDA; rescued loss of SOD and GR activities; inhibited activated caspase-3 and caspase-7, cleaved PARP, and cytochrome c release; up-regulated the antiapoptosis-related protein Bcl-2 and Bcl-XL; and down-regulated the apoptosis-related proteins Bax and Bad. These findings suggested that HOEC may be a therapeutic agent for treating oxidative stress-derived neurodegenerative disorders.

  18. Cinnamon polyphenols attenuate the hydrogen peroxide-induced down regulation of S100β secretion by regulating sirtuin 1 in C6 rat glioma cells.

    Science.gov (United States)

    Qin, Bolin; Panickar, Kiran S; Anderson, Richard A

    2014-04-25

    It is well established that the brain is particularly susceptible to oxidative damage due to its high consumption of oxygen. The objective of this study was to investigate the protective effects of a water soluble polyphenol-rich extract of cinnamon and the possible mechanisms, under conditions of oxidative stress-induced by hydrogen peroxide, in rat C6 glioma cells. After 24h of H2O2 incubation, the secretion and intracellular expression of S100β were determined by immunoprecitation/immunoblotting and immunofluorescence imaging. Cinnamon polyphenols (CP) counteracted the oxidative effects of H2O2 on S100β secretion and expression. CP also enhanced the impaired protein levels of sirtuins 1, 2, and 3, which are deacetylases important in cell survival. H2O2 also induced the overexpression of the proinflammatory factors, TNF-α, phospho-NF-κB p65, as well as of Bcl-xl, Bax and Caspase-3, which are all the members of the Bcl-2 family. CP not only suppressed the expression of these proteins but also attenuated the phosphorylation induced by H2O2. CP also upregulated the decreased Bcl-2 protein levels in H2O2 treated C6 cells. The effects of CP on H2O2-induced downregulation of S100β secretion were blocked by SIRT1 siRNA demonstrating that SIRT1 plays a regulatory role in CP-mediated prevention by H2O2. These data demonstrate that Cinnamon polyphenols may exert neuroprotective effects in glial cells by the regulation of Bcl-2 family members and enhancing SIRT1 expression during oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Arctiin blocks hydrogen peroxide-induced senescence and cell death though microRNA expression changes in human dermal papilla cells

    Directory of Open Access Journals (Sweden)

    Seunghee Bae

    2014-01-01

    Full Text Available BACKGROUND: Accumulating evidence indicates that reactive oxygen species (ROS are an important etiological factor for the induction of dermal papilla cell senescence and hair loss, which is also known alopecia. Arctiin is an active lignin isolated from Arctium lappa and has anti-inflammation, anti-microbial, and anti-carcinogenic effects. In the present study, we found that arctiin exerts anti-oxidative effects on human hair dermal papilla cells (HHDPCs. RESULTS: To better understand the mechanism, we analyzed the level of hydrogen peroxide (H2O2-induced cytotoxicity, cell death, ROS production and senescence after arctiin pretreatment of HHDPCs. The results showed that arctiin pretreatment significantly inhibited the H2O2-induced reduction in cell viability. Moreover, H2O2-induced sub-G1 phase accumulation and G2 cell cycle arrest were also downregulated by arctiin pretreatment. Interestingly, the increase in intracellular ROS mediated by H2O2 was drastically decreased in HHDPCs cultured in the presence of arctiin. This effect was confirmed by senescence associated-beta galactosidase (SA-β-gal assay results; we found that arctiin pretreatment impaired H2O2-induced senescence in HHDPCs. Using microRNA (miRNA microarray and bioinformatic analysis, we showed that this anti-oxidative effect of arctiin in HHDPCs was related with mitogen-activated protein kinase (MAPK and Wnt signaling pathways. CONCLUSIONS: Taken together, our data suggest that arctiin has a protective effect on ROS-induced cell dysfunction in HHDPCs and may therefore be useful for alopecia prevention and treatment strategies.

  20. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium.

    Science.gov (United States)

    Palumbo, Dora Rita; Occhiuto, Francesco; Spadaro, Federica; Circosta, Clara

    2012-06-01

    The aim of this study was to investigate the neuroprotective effects of a titolated extract from Rhodiola rosea L. (RrE) and of salidroside (Sa), one of the major biologically active compounds extracted from this medicinal plant, against oxidative stressor hydrogen peroxide (H₂O₂) and glutamate (GLU)-induced cell apoptosis in a human cortical cell line (HCN 1-A) maintained in culture. The results obtained indicate that exposure of differentiated HCN 1-A neurons to GLU or H₂O₂ resulted in concentration-dependent cell death. A 24 h pre-treatment with RrE significantly increased cell survival and significantly prevented the plasma membrane damage and the morphological disruption caused by GLU or H₂O₂, indicating that neurons treated with RrE were protected from the neurotoxicity induced by the oxidative stressor used. In addition, RrE significantly reduced H₂O₂ or GLU-induced elevation of intracellular free Ca²⁺ concentration. The results obtained have also shown that Sa caused similar effects in all experimental models used; however, the potency of the action was lower than that of the extract containing corresponding quantities of Sa. These findings indicate that RrE has a neuroprotective effect in cortical neurons and suggest that the antioxidant activity of the RrE, due to the structural features of the synergic active principles they contain, may be responsible for its ability to stabilize cellular Ca²⁺ homeostasis. Copyright © 2011 John Wiley & Sons, Ltd.

  1. miR-21 Reduces Hydrogen Peroxide-Induced Apoptosis in c-kit+ Cardiac Stem Cells In Vitro through PTEN/PI3K/Akt Signaling

    Directory of Open Access Journals (Sweden)

    Wenwen Deng

    2016-01-01

    Full Text Available The low survival rate of cardiac stem cells (CSCs in the infarcted myocardium hampers cell therapy for ischemic cardiomyopathy. MicroRNA-21 (miR-21 and one of its target proteins, PTEN, contribute to the survival and proliferation of many cell types, but their prosurvival effects in c-kit+ CSC remain unclear. Thus, we hypothesized that miR-21 reduces hydrogen peroxide- (H2O2- induced apoptosis in c-kit+ CSC and estimated the contribution of PTEN/PI3K/Akt signaling to this oxidative circumstance. miR-21 mimics efficiently reduced H2O2-induced apoptosis in c-kit+ CSC, as evidenced by the downregulation of the proapoptosis proteins caspase-3 and Bax and upregulation of the antiapoptotic Bcl-2. In addition, the gain of function of miR-21 in c-kit+ CSC downregulated the protein level of PTEN although its mRNA level changed slightly; in the meantime, miR-21 overexpression also increased phospho-Akt (p-Akt. The antiapoptotic effects of miR-21 were comparable with Phen (bpV, the selective inhibitor of PTEN, while miR-21 inhibitor or PI3K’s inhibitor LY294002 efficiently attenuated the antiapoptotic effect of miR-21. Taken together, these results indicate that the anti-H2O2-induced apoptosis effect of miR-21 in c-kit+ CSC is contributed by PTEN/PI3K/Akt signaling. miR-21 could be a potential molecule to facilitate the c-kit+ CSC therapy in ischemic myocardium.

  2. Effects of the cyclophilin-type peptidylprolyl cis-trans isomerase from Pyropia yezoensis against hydrogen peroxide-induced oxidative stress in HepG2 cells.

    Science.gov (United States)

    Kim, Eun-Young; Choi, Youn Hee; Choi, Chang Geun; Nam, Taek-Jeong

    2017-06-01

    The present study aimed to describe the expression and purification of cyclophilin-type peptidylprolyl cis-trans isomerase (PPI) from the red alga Pyropia yezoensis. The antioxidant activity of the purified protein was also demonstrated, based on its ability to act against oxidative stress in HepG2 human hepatocellular carcinoma cells. HepG2 cells that were treated with recombinant PPI protein exhibited a reduction in the formation of hydrogen peroxide (H2O2)‑mediated reactive oxygen species (ROS). In HepG2 cells, treatment of recombinant PPI protein expression diminished H2O2‑mediated oxidative stress and restored both the expression and the activity of certain antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin reductase (TRR). CAT, SOD and TRR activities were upregulated by treatment with the purified protein. CAT mRNA expression was significantly increased in HepG2 cells treated with recombinant PPI protein. These enzymes are the first line of antioxidant defense against ROS generated in times of oxidative stress. Accordingly, data from the present study indicate that the recombinant PPI protein is able to regulate the expression of antioxidant enzymes. Recombinant PPI has antioxidant properties that prevent oxidative stress‑induced toxicity, enhance cell viability, decrease ROS production and inhibit oxidative damage and mitochondrial dysfunction in HepG2 cells. Therefore, the present study hypothesizes that the recombinant PPI protein has the potential to protect the liver against oxidative stress‑induced cell damage and should be considered as an antioxidant.

  3. Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation.

    Science.gov (United States)

    Xu, Mao-Chun; Shi, Hai-Ming; Wang, Hao; Gao, Xiu-Fang

    2013-07-01

    Antioxidative therapy is considered an effective strategy for treating oxidative stress-induced apoptosis in cardiovascular diseases. Salidroside has been used as an antioxidative therapy for oxidative injury in cardiac diseases. However, the mechanism underlying its antioxidant effect is poorly understood. The present study aimed to investigate the pharmacological effects of salidroside on cultured human umbilical vein endothelial cells (HUVECs) under conditions of oxidative injury induced by hydrogen peroxide (H2O2) and the underlying mechanisms in vitro. HUVECs pretreated with or without salidroside for 24 h were exposed to H2O2-induced oxidative stress conditions for 6 h and then cell viability, apoptosis, HIF-1α, regulated in development and DNA damage responses-1 (REDD1) and the PI3K/Akt/mTOR pathway were investigated. The results demonstrated that salidroside effectively attenuated H2O2-impaired cell viability and the production of reactive oxygen species (ROS) in a concentration-dependent manner. Reduced H2O2-induced apoptosis and activation of the cellular PI3K/Akt/mTOR pathway were demonstrated in HUVECs pretreated with salidroside. Furthermore, the level of REDD1, a direct regulator of mitochondrial metabolism, significantly increased in parallel with the level of HIF-1α following pretreatment with salidroside. The antioxidative effect of salidroside was abrogated in REDD1 knockdown cells. However, LY294002, a PI3K inhibitor, attenuated the anti-apoptotic effect of salidroside and blocked the increase of Akt and mTOR; however, did not affect the antioxidative effect of salidroside. These findings suggested that salidroside was capable of protecting HUVECs against H2O2-induced apoptosis by activating the PI3K/Akt/mTOR-dependent pathway and inhibiting ROS production by activating REDD1.

  4. Myocyte Enhancer Factor 2A Regulates Hydrogen Peroxide-Induced Senescence of Vascular Smooth Muscle Cells Via microRNA-143.

    Science.gov (United States)

    Zhao, Wang; Zheng, Xi-Long; Peng, Dao-Quan; Zhao, Shui-Ping

    2015-09-01

    Myocyte enhancer factor 2A (MEF2A) is involved in vascular smooth muscle cell (VSMC) proliferation, migration, and senescence. MicroRNA-143/145 (miR-143/145), which may be regulated by MEF2A, is known to promote cellular senescence. We hypothesized that MEF2A may promote VSMC senescence via miR-143/145. VSMC senescence was induced by hydrogen peroxide (H(2)O(2)), followed by detection using a senescence-associated β-galactosidase staining kit. The MEF2A protein, mRNA, and miR-143/145 levels in VSMCs were detected using Western blot analysis and SYBR green real-time quantitative PCR, respectively. We further manipulated the expression levels of MEF2A and miR-143 through viral or transient transfection. VSMC proliferation and migration were determined by methylthiazolyldiphenyl-tetrazolium bromide and Millicell chamber, respectively. Both MEF2A and miR-143, but not miRNA-145, were up-regulated in senescent VSMCs. Overexpression of either MEF2A or miR-143 significantly enhanced VSMC senescence, but reduced proliferation and migration. MEF2A knockdown or miR-143 inhibitor suppressed cellular senescence and increased proliferation and migration. We further revealed AKT signaling as a potential miR-143 target, and an induction of miR-143 expression by MEF2A via KLF2. Additionally, overexpression of MEF2A and miR-143 resulted in synergistic effects on promotion of senescence, and MEF2A knockdown and miR-143 reduction by inhibitor had synergistic inhibitory effects. Finally, MEF2A barely promoted VSMC senescence when miR-143 was inhibited, and miR-143 overexpression antagonized the inhibitory effect of MEF2A knockdown on VSMC senescence. Our results revealed a link and interaction between MEF2A and miR-143 and suggested a potential mechanism for MEF2A to regulate H(2)O(2) -induced VSMC senescence. © 2015 Wiley Periodicals, Inc.

  5. Hypochlorous acid and hydrogen peroxide-induced negative regulation of Salmonella enterica serovar Typhimurium ompW by the response regulator ArcA

    Directory of Open Access Journals (Sweden)

    Morales Eduardo H

    2012-05-01

    Full Text Available Abstract Background Hydrogen peroxide (H2O2 and hypochlorous acid (HOCl are reactive oxygen species that are part of the oxidative burst encountered by Salmonella enterica serovar Typhimurium (S. Typhimurium upon internalization by phagocytic cells. In order to survive, bacteria must sense these signals and modulate gene expression. Growing evidence indicates that the ArcAB two component system plays a role in the resistance to reactive oxygen species. We investigated the influx of H2O2 and HOCl through OmpW and the role of ArcAB in modulating its expression after exposure to both toxic compounds in S. Typhimurium. Results H2O2 and HOCl influx was determined both in vitro and in vivo. A S. Typhimurium ompW mutant strain (∆ompW exposed to sub-lethal levels of H2O2 and HOCl showed a decreased influx of both compounds as compared to a wild type strain. Further evidence of H2O2 and HOCl diffusion through OmpW was obtained by using reconstituted proteoliposomes. We hypothesized that ompW expression should be negatively regulated upon exposure to H2O2 and HOCl to better exclude these compounds from the cell. As expected, qRT-PCR showed a negative regulation in a wild type strain treated with sub-lethal concentrations of these compounds. A bioinformatic analysis in search for potential negative regulators predicted the presence of three ArcA binding sites at the ompW promoter region. By electrophoretic mobility shift assay (EMSA and using transcriptional fusions we demonstrated an interaction between ArcA and one site at the ompW promoter region. Moreover, qRT-PCR showed that the negative regulation observed in the wild type strain was lost in an arcA and in arcB mutant strains. Conclusions OmpW allows the influx of H2O2 and HOCl and is negatively regulated by ArcA by direct interaction with the ompW promoter region upon exposure to both toxic compounds.

  6. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. Copyright © 2015. Published by Elsevier B.V.

  7. Hydrogen Peroxide-Induced Change in Meat Quality of the Breast Muscle of Broilers Is Mediated by ROS Generation, Apoptosis, and Autophagy in the NF-κB Signal Pathway.

    Science.gov (United States)

    Chen, Xiangxing; Zhang, Lin; Li, Jiaolong; Gao, Feng; Zhou, Guanghong

    2017-05-17

    We investigated the relationship between meat quality and oxidative damage caused by hydrogen peroxide (H2O2) in the breast muscle of broilers. Moreover, we explored the occurrence of apoptosis and autophagy, as well as the expression of NF-κB in these signaling pathways to provide evidence of possible oxidative damage mechanisms. The broilers received a basal diet and were randomly divided into five treatments (noninjected control, 0.75% saline-injected, and 2.5%, 5.0%, or 10.0% H2O2-injected treatments; 1.0 mL/kg in body weight). The results showed that oxidative stress induced by H2O2 had a negative effect on relative muscle weight, histomorphology, and redox status, while the underlying oxidative damage caused a decline in meat quality (decrease of pH24h, 10% H2O2 treatment; increase of shear force, 5% and 10% H2O2 treatments) of broilers. This could be attributed to the apoptosis and autophagy processes triggered by excessive reactive oxygen species that suppress the NF-κB signaling pathway.

  8. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Sougata Roy Chowdhury

    Full Text Available Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2-induced stress in human lung fibroblast (WI38 cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42% conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1H/(13C/2D-COSY NMR. H2O2 (300 µM insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases. Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.

  9. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells.

    Science.gov (United States)

    Roy Chowdhury, Sougata; Sengupta, Suman; Biswas, Subir; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1)H/(13)C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.

  10. Vitamin E protects rat mesenchymal stem cells against hydrogen peroxide-induced oxidative stress in vitro and improves their therapeutic potential in surgically-induced rat model of osteoarthritis.

    Science.gov (United States)

    Bhatti, F U; Mehmood, A; Latief, N; Zahra, S; Cho, H; Khan, S N; Riazuddin, S

    2017-02-01

    Oxidative stress is a major obstacle against cartilage repair in osteoarthritis (OA). Anti-oxidant agents can play a vital role in addressing this issue. We evaluated the effect of Vitamin E preconditioning in improving the potential of mesenchymal stem cells (MSCs) to confer resistance against oxidative stress prevailing during OA. Vitamin E pretreated MSCs were exposed to oxidative stress in vitro by hydrogen peroxide (H 2 O 2 ) and also implanted in surgically-induced rat model of OA. Analysis was done in terms of cell proliferation, apoptosis, cytotoxicity, chondrogenesis and repair of cartilage tissue. Vitamin E pretreatment enabled MSCs to counteract H 2 O 2 -induced oxidative stress in vitro. Proliferative markers, proliferating cell nuclear antigen (PCNA) and Ki67 were up-regulated, along with the increase in the viability of MSCs. Expression of transforming growth factor-beta (TGFβ) was also increased. Reduction of apoptosis, expression of vascular endothelial growth factor (VEGF) and caspase 3 (Casp3) genes, and lactate dehydrogenase (LDH) release were also observed. Transplantation of Vitamin E pretreated MSCs resulted in increased proteoglycan contents of cartilage matrix. Increased expression of chondrogenic markers, Aggrecan (Acan) and collagen type-II alpha (Col2a1) accompanied by decreased expression of collagen type-I alpha (Col1a1) resulted in increased differentiation index that signifies the formation of hyaline cartilage. Further, there was an increased expression of PCNA and TGFβ genes along with a decreased expression of Casp3 and VEGF genes with increased histological score. Taken together results of this study demonstrated that Vitamin E pretreated MSCs have an improved ability to impede the progression of OA and thus increased potential to treat OA. Copyright © 2016 Osteoarthritis Research Society International. All rights reserved.

  11. Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes

    Science.gov (United States)

    2013-01-01

    Background There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer’s disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD. Methods The total phenolic content and antioxidant capacity of the ethyl acetate extract of GBR were compared to that of brown rice (BR), and the cytotoxicity of both extracts were determined on human SH-SY5Y neuronal cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay. Based on its higher antioxidant potentials, the effect of the GBR extract on morphological changes due to hydrogen peroxide (H2O2)-induced oxidative damage in human SH-SY5Y neuronal cells was examined using inverted light microscope and fluorescence microscope by means of acridine orange-propidium iodide (AO/PI) staining. Also, evaluation of the transcriptional regulation of antioxidant and apoptotic genes was carried out using Multiplex Gene Expression System. Results The ethyl acetate extract of GBR had higher total phenolic content and antioxidant capacity compared to BR. The cytotoxicity results showed that GBR extract did not cause any damage to the human SH-SY5Y neuronal cells at concentrations of up to 20 ppm, and the morphological analyses showed that the GBR extract (up to 10 ppm) prevented H2O2-induced apoptotic changes in the cells. Furthermore, multiplex gene expression analyses showed that the protection of the cells by the GBR extract was linked to its ability to induce transcriptional changes in antioxidant (SOD 1, SOD 2 and

  12. Chlorella vulgaris modulates hydrogen peroxide-induced dna ...

    African Journals Online (AJOL)

    A decline in DNA damage was observed in post-treated cells which proves Chlorella vulgaris to present bioremediative properties. In cells induced with oxidative stress, telomere length decreased significantly coupled with a concomitant decline of telomerase activity (p<0.05). However, these reductions were prevented with ...

  13. Lipid peroxidation induced by phenylbutazone radicals.

    Science.gov (United States)

    Miura, Toshiaki; Muraoka, Sanae; Fujimoto, Yukio

    2002-04-19

    Lipid peroxidation was investigated to evaluate the deleterious effect on tissues by phenylbutazone (PB). PB induced lipid peroxidation of microsomes in the presence of horseradish peroxidase and hydrogen peroxide (HRP-H2O2). The lipid peroxidation was completely inhibited by catalase but not by superoxide dismutase. Mannitol and dimethylsulfoxide had no effect. These results indicated no paticipation of superoxide and hydroxyl radical in the lipid peroxidation. Reduced glutathione (GSH) efficiently inhibited the lipid peroxidation. PB radicals emitted electron spin resonance (ESR) signals during the reaction of PB with HRP-H2O2. Microsomes and arachidonic acid strongly diminished the ESR signals, indicating that PB radicals directly react with unsaturated lipids of microsomes to cause thiobarbituric acid reactive substances. GSH sharply diminished the ESR signals of PB radicals, suggesting that GSH scavenges PB radicals to inhibit lipid peroxidation. Also, 2-methyl-2-nitrosopropan strongly inhibited lipid peroxidation. R-Phycoerythrin, a peroxyl radical detector substance, was decomposed by PB with HRP-H2O2. These results suggest that lipid peroxidation of microsomes is induced by PB radicals or peroxyl radicals, or both.

  14. Stress-induced premature senescence or stress-induced senescence-like phenotype: one in vivo reality, two possible definitions?

    Science.gov (United States)

    Toussaint, Olivier; Dumont, Patrick; Remacle, José; Dierick, Jean-François; Pascal, Thierry; Frippiat, Christophe; Magalhaes, Joao Pedro; Zdanov, Stéphanie; Chainiaux, Florence

    2002-01-29

    No consensus exists so far on the definition of cellular senescence. The narrowest definition of senescence is irreversible growth arrest triggered by telomere shortening counting cell generations (definition 1). Other authors gave an enlarged functional definition encompassing any kind of irreversible arrest of proliferative cell types induced by damaging agents or cell cycle deregulations after overexpression of proto-oncogenes (definition 2). As stress increases, the proportion of cells in "stress-induced premature senescence-like phenotype" according to definition 1 or "stress-induced premature senescence," according to definition 2, should increase when a culture reaches growth arrest, and the proportion of cells that reached telomere-dependent replicative senescence due to the end-replication problem should decrease. Stress-induced premature senescence-like phenotype and telomere-dependent replicatively senescent cells share basic similarities such as irreversible growth arrest and resistance to apoptosis, which may appear through different pathways. Irreversible growth arrest after exposure to oxidative stress and generation of DNA damage could be as efficient in avoiding immortalisation as "telomere-dependent" replicative senescence. Probabilities are higher that the senescent cells (according to definition 2) appearing in vivo are in stress-induced premature senescence rather than in telomere-dependent replicative senescence. Examples are given suggesting these cells affect in vivo tissue (patho)physiology and aging.

  15. Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland

    DEFF Research Database (Denmark)

    Lazzerini Denchi, Eros; Attwooll, Claire; Pasini, Diego

    2005-01-01

    in hyperproliferation, it is not sufficient to mimic loss of Rb, sustain proliferation of melanotrophs, and ultimately induce pituitary tumors. Similarly, we found that primary cells in tissue culture become insensitive to sustained E2F3 activation and undergo premature senescence in a pRB-, p16Ink4a-, and p19Arf......, while long-term exposure to deregulated E2F activity results in hyperplasia of the intermediate lobe, it did not lead to tumor formation. In fact, melanotrophs become insensitive to sustained E2F stimulation and enter an irreversible senescence-like state. Thus, although deregulated E2F activity results......-dependent manner. Thus, we conclude that deregulated E2F activity is not sufficient to fully mimic loss of Rb due to the engagement of a senescence response....

  16. Benzoyl peroxide-induced damage to DNA and its components

    DEFF Research Database (Denmark)

    Hazlewood, C; Davies, Michael Jonathan

    1996-01-01

    , sugars, nucleosides, nucleotides, RNA, and DNA have been examined and the intermediate species have been identified in many cases. Comparison of these data with those obtained with Ph. alone has allowed the reactions of PhCO2. and Ph. to be distinguished. Evidence has been obtained which is consistent...... with both the addition of these radicals to the C5-C6 double bond of the pyrimidines to give adduct species, and hydrogen abstraction from the sugar rings. The former process is the major reaction for nucleosides and nucleotides. Studies with RNA and DNA also provide strong evidence for the formation...... of base adducts, though the exact identity of the species detected in these cases could not be determined due to the complexity of the spectra. Hydrogen abstraction at the sugar-phosphate backbone is also believed to occur with these substrates as strand breakage is observed; the extent of the latter...

  17. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  18. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  19. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Zhi-gao Sun

    2016-01-01

    Full Text Available The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different concentrations (50 and 100 μM was used to treat H2O2 (150 μM-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene expression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis.

  20. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells.

    Science.gov (United States)

    Sun, Zhi-Gao; Chen, Li-Ping; Wang, Fa-Wei; Xu, Cheng-Yong; Geng, Miao

    2016-07-01

    The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different concentrations (50 and 100 μM) was used to treat H2O2 (150 μM)-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene expression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis.

  1. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  2. Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.

    Science.gov (United States)

    Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi

    2014-12-01

    Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.

  3. 8-Alkylcoumarins from the Fruits of Cnidium monnieri Protect against Hydrogen Peroxide Induced Oxidative Stress Damage

    OpenAIRE

    Chi-I Chang; Wan-Chiao Hu; Che-Piao Shen; Ban-Dar Hsu; Wei-Yong Lin; Ping-Jyun Sung; Wei-Hsien Wang; Jin-Bin Wu; Yueh-Hsiung Kuo

    2014-01-01

    Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1), 7-methoxy-8-(3-methyl- 2,3-epoxy-1-oxobutyl)chromen-2-one (2), and 3'-O-methylvaginol (3), together with seven known compounds (4–10) were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the th...

  4. PKCa and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation.

    OpenAIRE

    Andersson Anneli; Bluwstein Andrej; Kumar Nitin; Teloni Federico; Traenkle Jens; Baudis Michael; Altmeyer Matthias; Hottiger Michael O

    2016-01-01

    Harmful oxidation of proteins lipids and nucleic acids is observed when reactive oxygen species (ROS) are produced excessively and/or the antioxidant capacity is reduced causing 'oxidative stress'. Nuclear poly ADP ribose (PAR) formation is thought to be induced in response to oxidative DNA damage and to promote cell death under sustained oxidative stress conditions. However what exactly triggers PAR induction in response to oxidative stress is incompletely understood. Using reverse phase pro...

  5. Lentinula edodes (Shiitake) mushroom extract protects against hydrogen peroxide induced cytotoxicity in peripheral blood mononuclear cells.

    Science.gov (United States)

    Kuppusamy, U R; Chong, Y L; Mahmood, A A; Indran, M; Abdullah, Noorlidah; Vikineswary, S

    2009-04-01

    Lentinula edodes (Berk) Pegler, commonly known as Shiitake mushroom has been used as medicinal food in Asian countries, especially in China and Japan and is believed to possess strong immunomodulatory property. In the present study, the methanolic extract of the fruit bodies of L. edodes was investigated for cytoprotective effect against H2O2-induced cytotoxicity in human peripheral blood mononuclear cells (PBMCs) by measuring the activities of xanthine oxidase (XO) and glutathione peroxidase (GPx) . H2O2 at a concentration of 5 microM caused 50% inhibition of PBMCs viability. The extract improved the PBMC viability and exerted a dose-dependent protection against H2O2-induced cytotoxicity. At 100 microg/ml of extract concentration, the cell viability increased by 60% compared with the PBMCs incubated with H2O2 alone. The extract also inhibited XO activity in PBMC, while showing moderate stimulatory effect on GPx. However, in the presence of H2O2 alone, both the enzyme activities were increased significantly. The GPx activity increased, possibly in response to the increased availability of H2O2 in the cell. When the cells were pretreated with the extract and washed (to remove the extract) prior to the addition of H2O2, the GPx and XO activities as well as the cell viability were comparable to those when incubated with the extract alone. Thus, it is suggested that one of the possible mechanisms via which L. edodes methanolic extract confers protection against H2O2-induced oxidative stress in PBMC is by inhibiting the superoxide-producing XO and increasing GPx activity which could rapidly inactivate H2O2.

  6. Steady-state hydrogen peroxide induces glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Deng, Xin; Liang, Haihua; Ulanovskaya, Olesya A; Ji, Quanjiang; Zhou, Tianhong; Sun, Fei; Lu, Zhike; Hutchison, Alan L; Lan, Lefu; Wu, Min; Cravatt, Benjamin F; He, Chuan

    2014-07-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H2O2 by bacterial catalase, only steady-state but not one-dose treatment with H2O2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H2O2, which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H2O2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H2O2-stalled glycolysis in S. aureus and P. aeruginosa, respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Polyphenols from Berries of Aronia melanocarpa Reduce the Plasma Lipid Peroxidation Induced by Ziprasidone

    Directory of Open Access Journals (Sweden)

    Anna Dietrich-Muszalska

    2014-01-01

    Full Text Available Background. Oxidative stress in schizophrenia may be caused partially by the treatment of patients with antipsychotics. The aim of the study was to establish the effects of polyphenol compounds derived from berries of Aronia melanocarpa (Aronox on the plasma lipid peroxidation induced by ziprasidone in vitro. Methods. Lipid peroxidation was measured by the level of thiobarbituric acid reactive species (TBARS. The samples of plasma from healthy subjects were incubated with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml alone and with Aronox (5 ug/ml; 50 ug/ml. Results. We observed a statistically significant increase of TBARS level after incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml (after 24 h incubation: P=7.0 × 10−4, P=1.6 × 10−3, and P=2.7 × 10−3, resp. and Aronox lipid peroxidation caused by ziprasidone was significantly reduced. After 24-hour incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml in the presence of 50 ug/ml Aronox, the level of TBARS was significantly decreased: P=6.5 × 10−8, P=7.0 × 10−6, and P=3.0 × 10−5, respectively. Conclusion. Aronox causes a distinct reduction of lipid peroxidation induced by ziprasidone.

  8. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lihua; Lei, Zhiwen [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Xu, Chuanhui, E-mail: xuhuiyee@gxu.edu.cn [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Yukun, E-mail: cyk@scut.edu.cn [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, China(South China University of Technology), Guangzhou, 510640 (China)

    2016-02-15

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  9. Inhibiting effect of tea catechins on the lipid peroxidation induced in tritiated water

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, M. [Radiochemical Research Laboratory, University of Shizuoka, 836 Ohya, Shizuoka-shi 422-8529 (Japan); Takeuchi, Y. [Radiochemical Research Laboratory, University of Shizuoka, 836 Ohya, Shizuoka-shi 422-8529 (Japan); Okuno, K. [Radiochemical Research Laboratory, University of Shizuoka, 836 Ohya, Shizuoka-shi 422-8529 (Japan); Yoshioka, H. [Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka-shi 422-8526 (Japan); Yoshioka, H. [Radiochemical Research Laboratory, University of Shizuoka, 836 Ohya, Shizuoka-shi 422-8529 (Japan)]. E-mail: srhyosi@ipc.shizuoka.ac.jp

    2006-02-15

    Lipid peroxidation induced by {beta}-ray in tritiated water and the inhibiting effect of tea catechins on it were studied using a spin probe method. A hydrophobic spin probe, 16-doxylstearic acid (16NS), was incorporated into a liposome prepared from egg yolk phosphatidylcholine, which was dispersed in tritiated water; the catechins were added to the solution. The rate of the decrease of ESR intensity of 16NS was a measure of the peroxidation and of the inhibiting effect. Inhibiting activity increased with an increase in the concentration of the catechin. Inhibiting ability estimated from the slope of the curves was in the order of (-)-epicatechin gallate > (-)-epigallocatechin gallate > (-)-epicatechin > (-)-epigallocatechin. The activity decreased with increasing temperature and the temperature dependence increased with the catechin concentration. These results were explained by a model; the initiator of the peroxidation is the hydroxyl radical (OH) and catechin is adsorbed on the surface of the membrane and scavenges OH coming into there from the water phase. The activity depended on the ratio of the adsorbed catechin, namely the partition coefficient between the water and the lipid.

  10. Beryllium sulfate induces p21 CDKN1A expression and a senescence-like cell cycle arrest in susceptible cancer cell types.

    Science.gov (United States)

    Gorjala, Priyatham; Gary, Ronald K

    2010-12-01

    In fibroblasts, beryllium salt causes activation of the p53 transcription factor and induction of a senescence-like state. It is not known whether Be(2+) can affect the proliferation of cancer cells, which are generally unsusceptible to senescence. A172 glioblastoma and RKO colon carcinoma cell lines each have wildtype p53, so these cell types have the potential to be responsive to agents that activate p53. In A172 cells, BeSO(4) produced a G(0)/G(1)-phase cell cycle arrest and increased expression of senescence-associated β-galactosidase, an enzymatic marker of senescence. BeSO(4) caused phosphorylation of serine-15 of p53, accumulation of p53 protein, and expression of p21, the cyclin-dependent kinase inhibitor that is prominent during senescence. BeSO(4) inhibited A172 growth with an IC(50) = 4.7 μM in a 6-day proliferation assay. In contrast, BeSO(4) had no effect on RKO cells, even though Be(2+) uptake was similar for the two cell types. This differential responsiveness marks BeSO(4) as a reagent capable of activating a separable branch of the p53 signaling network. A172 and RKO cells are known to exhibit p53-dependent upregulation of p21 in response to DNA damage. The RKO cells produced high levels of p21 when exposed to DNA damaging agents, yet failed to express p21 when treated with BeSO(4). Conversely, BeSO(4) did not cause DNA damage in A172 cells, yet it was a potent inducer of p21 expression. These observations indicate that the growth control pathway affected by BeSO(4) is distinct from the DNA damage response pathway, even though both ultimately converge on p53 and p21.

  11. Hydrogen Peroxide Toxicity Induces Ras Signaling in Human Neuroblastoma SH-SY5Y Cultured Cells

    Directory of Open Access Journals (Sweden)

    Jirapa Chetsawang

    2010-01-01

    Full Text Available It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  12. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  13. CREB-mediated Bcl-2 expression contributes to RCAN1 protection from hydrogen peroxide-induced neuronal death.

    Science.gov (United States)

    Kim, Seon Sook; Jang, Shin Ah; Seo, Su Ryeon

    2013-05-01

    Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. In this study, we investigated the functional role of RCAN1 in the reactive oxygen species (ROS)-mediated neuronal death signaling. We found that RCAN1 was able to protect the cells from H(2)O(2) -induced cytotoxicity. The expression of RCAN1 caused an inhibition of the H(2)O(2) -induced activation of mitogen-activated protein kinases (MAPKs) and AP-1. In contrast, RCAN1 significantly enhanced the activity of cAMP response element-binding protein (CREB). Furthermore, RCAN1 induced the expression of the CREB target gene, Bcl-2. Consistently, knockdown of endogenous RCAN1 using shRNA down regulated the phosphorylation of CREB and the expression of Bcl-2, which protects the cells from H(2)O(2) -induced cytotoxicity. Our data provide a new mechanism for the cytoprotective function of RCAN1 in response to oxidant-induced apoptosis. Copyright © 2012 Wiley Periodicals, Inc.

  14. Protective effect of DHEA on hydrogen peroxide-induced oxidative damage and apoptosis in primary rat Leydig cells.

    Science.gov (United States)

    Ding, Xiao; Yu, Lei; Ge, Chongyang; Ma, Haitian

    2017-03-07

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement due to its putative anti-aging properties. However, the effect of DHEA in Leydig cells, a major target cell of DHEA biotransformation in male, are not clear. The present study aimed to investigate the preventative effect of DHEA on oxidative damage and apoptosis after H2O2 treatment in Leydig cells. The results showed that DHEA treatment attenuated the reduction of cell viability induced by H2O2. No differences were observed on the superoxide anion (O2-) content, while DHEA treatment decreased reactive oxygen species (ROS) and hydroxyl radical (•OH) content in H2O2-treated Leydig cells. Pre-treatment with DHEA increased peroxidase (POD) activity and decreased glutathione peroxidase (GSH-Px) activity in H2O2-treated Leydig cell. DHEA treatment attenuated DNA damage as indicated by the decreasing of tail moment, comet length and olive tail moment. Total apoptosis ratio and early apoptosis ratio were significantly decreased in H2O2-treated Leydig cell that were pre-treatment with DHEA. DHEA treatment decreased Bax, capase-9 and capase-3 mRNA levels in H2O2-treated Leydig cells. Our results demonstrated that pre-treatment with DHEA prevented the Leydig cells oxidative damage caused by H2O2 through increasing POD activity, which resulted in inhibition of •OH generation. Meanwhile, pre-treatment with DHEA inhibited H2O2-induced Leydig cells early apoptosis which mainly by reducing the pro-apoptotic protein Bax and caspases-9, caspases-3 mRNA levels. This information is important to understand the molecular mechanism of anti-ageing effect and potential application in treatment of oxidative stress induced related diseases of DHEA.

  15. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress

    OpenAIRE

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of bo...

  16. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Nadia Ferlazzo

    2015-01-01

    Full Text Available It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.

  17. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress.

    Science.gov (United States)

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.

  18. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis.

    Science.gov (United States)

    Shi, Kai; Wang, Xulei; Zhu, Jie; Cao, Guiqun; Zhang, Kang; Su, Zhiguang

    2015-01-01

    Oxidative stress can cause injury in retinal endothelial cells. Salidroside is a strong antioxidative and cytoprotective supplement in Chinese traditional medicine. In this study, we investigated the effects of salidroside on H2O2-induced primary retinal endothelial cells injury. Salidroside decreased H2O2-induced cell death, and efficiently suppressed cellular ROS production, malondialdehyde generation, and cell apoptosis induced by H2O2 treatment. Salidroside induced the intracellular mRNA expression, protein expression, and enzymatic activities of catalase and Mn-SOD and increased the ratio of Bcl2/Bax. Our results demonstrated that salidroside protected retinal endothelial cells against oxidative injury through increasing the Bcl2/Bax signaling pathway and activation of endogenous antioxidant enzymes. This finding presents salidroside as an attractive agent with potential to attenuate retinopathic diseases.

  19. Salvianolic Acid Y: A New Protector of PC12 Cells against Hydrogen Peroxide-Induced Injury from Salvia officinalis

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2015-01-01

    Full Text Available Salvianolic acid Y (TSL 1, a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC and circular dichroism (CD experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1 was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1 protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%.

  20. Salvianolic acid Y: a new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis.

    Science.gov (United States)

    Gong, Jun; Ju, Aichun; Zhou, Dazheng; Li, Dekun; Zhou, Wei; Geng, Wanli; Li, Bing; Li, Li; Liu, Yanjie; He, Ying; Song, Meizhen; Wang, Yunhua; Ye, Zhengliang; Lin, Ruichao

    2015-01-06

    Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC) and circular dichroism (CD) experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1) was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1) protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%).

  1. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  2. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  3. Effect of propofol on in vitro lipid peroxidation induced by different free radical generating systems: a comparison with vitamin E.

    Science.gov (United States)

    Hans, P; Deby, C; Deby-Dupont, G; Vrijens, B; Albert, A; Lamy, M

    1996-04-01

    Propofol has been reported to have antioxidant properties and to inhibit lipid peroxidation. In this study, we examined the ability of propofol to inhibit lipid peroxidation induced by three free radical systems (hydroxyl, ferryl, and oxo-ferryl radicals), and we compared the effect of propofol with that of vitamin E, an endogenous antioxidant. Lipid peroxidation was induced by exposing a linoleic acid emulsion to either water gamma radiation, a ferrous iron-ascorbate solution, or human hemoglobin, generating the hydroxyl, ferryl, and oxo-ferryl radicals, respectively. Each experiment was performed in triplicate with and without propofol or vitamin E at concentrations between 10(-5) and 10(-4) M. Lipid peroxidation was quantified by gas chromatography measurement of the pentane released (nmoles) from lipid decomposition. In each condition, a significant dose-response relationship was found between the release of pentane and the concentration of either propofol or vitamin E. The antioxidant activities of both agents were similar but significantly higher against the hydroxyl than the ferryl and oxo-ferryl radicals. The study suggests that propofol could be beneficial as an anesthetic or sedative drug in patients presenting pathologies associated with free radical reactions.

  4. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    Science.gov (United States)

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics.

  5. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury.

    Science.gov (United States)

    Oh, Hwa Min; Kang, Young Jin; Lee, Young Soo; Park, Min Kyu; Kim, Sun Hee; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Chang, Ki Churl

    2006-01-16

    It has been proposed that the inducible isoform of heme oxygenase (HO) protects cells against oxidant-mediated injury. Although components of Agastache rugosa showed antioxidant effect, it is unclear this effect is related with HO-1 activity. Thus, we investigated the effects of Agastache rugosa leaf extract (ALE) on HO-1 protein expression and enzyme activity, and its protective effect against H(2)O(2)-induced oxidative damage was also investigated using RAW264.7 macrophage cells. Results showed that ALE concentration dependently increased HO-1 protein and enzyme activity, and protected cells from H(2)O(2)-induced cytotoxicity, with an IC(50) of 0.526 mg/ml. Hemin, a HO-1 inducer, also showed similar effect to ALE. Furthermore, the protective effect of both ALE and hemin was inhibited by a HO inhibitor, zinc protoporphyrin IX. The expression of HO-1 protein by ALE was reduced by pretreatment with LY83583 and ODQ, specific inhibitors of guanylate cyclase, but not by PKA inhibitors, H89 and KT5720, indicating that PKG signaling pathway regulates HO-1 induction by ALE. Taken together, it is concluded that PKG-dependent HO-1 induction is one of the important antioxidant mechanisms by which ALE protects RAW264.7 cells from H(2)O(2). Thus, ALE along with other actions may be beneficial for the treatment of oxidant-induced cellular injuries.

  6. Ethanol extract of Prunus mume fruit attenuates hydrogen peroxide-induced oxidative stress and apoptosis involving Nrf2/HO-1 activation in C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    Full Text Available ABSTRACT The fruit of the Prunus mume (Siebold Siebold & Zucc., Rosaceae (Korean name: Maesil has long been used as a health food or valuable medicinal material in traditional herb medicine in Southeast Asian countries. In this study, we determined the potential therapeutic efficacy of the ethanol extract of P. mume fruits (EEPM against H2O2-induced oxidative stress and apoptosis in the murine skeletal muscle myoblast cell line C2C12, and sought to understand the associated molecular mechanisms. The results indicated that exposure of C2C12 cells to H2O2 caused a reduction in cell viability by increasing the generation of intracellular reactive oxygen species and by disrupting mitochondrial membrane permeability, leading to DNA damage and apoptosis. However, pretreatment of the cells with EEPM before H2O2 exposure effectively attenuated these changes, suggesting that EEPM prevented H2O2-induced mitochondria-dependent apoptosis. Furthermore, the increased ex-pression and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2 and up-regulation of heme oxygenase-1 (HO-1, a phase II antioxidant enzyme, were detected in EEPM-treated C2C12 cells. We also found that zinc protoporphyrin IX, an HO-1 inhibitor, attenuated the protective effects of EEPM against H2O2-induced reactive oxygen species accumulation and cytotoxicity. Therefore, these results indicate that the activation of the Nrf2/HO-1 pathway might be involved in the protection of EEPM against H2O2-induced cellular oxidative damage. In conclusion, these results show that EEPM contributes to the prevention of oxidative damage and could be used as a nutritional agent for oxidative stress-related diseases.

  7. The beneficial effect of ginsenosides extracted by pulsed electric field against hydrogen peroxide-induced oxidative stress in HEK-293 cells

    Directory of Open Access Journals (Sweden)

    Di Liu

    2017-04-01

    Conclusion: The present study demonstrated the antioxidative effect of ginsenosides extracted by PEF in vitro. Furthermore, rather than SCSE, PEF may be more useful as an alternative extraction technique for the extraction of ginsenosides with enhanced antioxidant activity.

  8. The beneficial effect of ginsenosides extracted by pulsed electric field against hydrogen peroxide-induced oxidative stress in HEK-293 cells.

    Science.gov (United States)

    Liu, Di; Zhang, Ting; Chen, Zhifei; Wang, Ying; Ma, Shuang; Liu, Jiyun; Liu, Jingbo

    2017-04-01

    Ginsenosides are the main pharmacological components of Panax ginseng root, which are thought to be primarily responsible for the suppressing effect on oxidative stress. 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and oxygen radical absorption capacity were applied to evaluate the antioxidant activities of the ginsenosides. Human embryonic kidney 293 (HEK-293) cells were incubated with ginsenosides extracted by pulsed electric field (PEF) and solvent cold soak extraction (SCSE) for 24 h and then the injury was induced by 40μM H 2 O 2 . The cell viability and surface morphology of HEK-293 cells were studied using MTS assay and scanning electron microscopy, respectively. Dichloro-dihydro-fluorescein diacetate fluorescent probe assay was used to measure the level of intracellular reactive oxygen species. The intracellular antioxidant activities of ginsenosides were evaluated by cellular antioxidant activity assay in HepG2 cells. The PEF extracts displayed the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and stronger oxygen radical absorption capacity (with an oxygen radical absorption capacity value of 14.48 ± 4.04μM TE per μg/mL). The HEK-293 cell model also suggested that the protective effect of PEF extracts was dose-dependently greater than SCSE extracts. Dichloro-dihydro-fluorescein diacetate assay further proved that PEF extracts are more active (8% higher than SCSE extracts) in reducing intracellular reactive oxygen species accumulation. In addition, scanning electron microscopy images showed that the HEK-293 cells, which were treated with PEF extracts, maintained more intact surface morphology. Cellular antioxidant activity values indicated that ginsenosides extracted by PEF had stronger cellular antioxidant activity than SCSE ginsenosides extracts. The present study demonstrated the antioxidative effect of ginsenosides extracted by PEF in vitro . Furthermore, rather than SCSE, PEF may be more useful as an alternative extraction technique for the extraction of ginsenosides with enhanced antioxidant activity.

  9. N-Acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: A novel hypothesis for autologous stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fatima Ali

    2016-03-01

    Conclusion: This study demonstrates the potential benefits of pharmacological preconditioning of diabetic-mouse-derived MSCs with NAC for amelioration of apoptosis and oxidative stress in H2O2 induced injury.

  10. Neuroprotective effects of Salvia aristata Aucher ex Benth. on hydrogen peroxide induced apoptosis in SH-SY5Y neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    M. A. Esmaeili

    2015-08-01

    Full Text Available Background and objectives: Oxidative stress is implicated in the neuronal damage associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotropic lateral sclerosis and cerebral ischemic stroke. The present work was designed to establish the neuroprotective effects of Salvia aristata extract on H2O2-induced apoptosis in human dopaminergic SH-SY5Y cells. Methods: The total phenol and flavonoids contents of the plant extracts were quantified by colorimetric methods. The antioxidant activity was assessed using DPPH free radicals scavenging activity assay, and the neuroprotective effect on H2O2-induced oxidative stress was also investigated using human dopaminergic SH-SY5Y cells by MTT assay and western blotting techniques. Results: The highest scavenging activity was found for methanol extract of S. aristata roots (85.28 ± 2.61 μg/mL, with the highest total phenolic and flavonoids content (90.28 mg total phenols as gallic acid and 250.12 mg total flavonoids as rutin, respectively. Our results also, showed that H2O2-induced cytotoxicity in SH-SY5Y cells was suppressed by treatment with S. aristata. Moreover, S. aristata root extract was effective in attenuating the disruption of mitochondrial membrane potential and apoptotic cell death has induced by H2O2.  S. aristata suppressed the down-regulation of Bcl-2, upregulation of Bax, and the release of mitochondrial cytochrome c to cytosol. In addition, S. aristata attenuated caspase-3, and -9 activation, and eventually protected the cells against H2O2-induced apoptosis. Conclusion: Theresults of the present study suggest that treatment of SH-SY5Y cells with S. aristata could block H2O2-induced apoptosis by regulating Bcl-2 family members and by suppressing caspase cascade activation.

  11. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.

    Science.gov (United States)

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-06-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.

  12. Synthesis of sulfoxides by the hydrogen peroxide induced oxidation of sulfides catalyzed by iron tetrakis(pentafluorophenyl)porphyrin: scope and chemoselectivity.

    Science.gov (United States)

    Baciocchi, Enrico; Gerini, Maria Francesca; Lapi, Andrea

    2004-05-14

    The oxidation of sulfides with H(2)O(2) catalyzed by iron tetrakis(pentafluorophenyl)porphyrin in EtOH is an efficient and chemoselective process. With a catalyst concentration 0.03-0.09% of that of the substrate, sulfoxides are obtained with yields generally around 90-95% of isolated product. With vinyl and allyl sulfides, no epoxidation is observed. With a catalyst concentration between 0.09% and 0.25% of that of the substrate, sulfones are obtained in almost quantitative yield and with the same high chemoselectivity observed in the synthesis of sulfoxides.

  13. Comparision of Inhibitory effects of Satureja Khozistanica,vitamin E and coenzyme Q10 on LDL peroxidation induced-CuSO4 in vitro

    Directory of Open Access Journals (Sweden)

    hasan Ahmadvand

    2010-02-01

    Full Text Available Oxidation of low-density lipoprotein (LDL has been strongly suggested as a key factor in the pathogenesis of atherosclerosis. Thus the inclusion of some anti-oxidant compounds such as Satureja Khozistanica,vitamin E and coenzyme Q10 in daily dietary food stuff may inhibit the production of oxidized LDL and may decrease both the development and the progression of atherosclerosis. The present study investigated the inhibitory effects of Satureja Khozistanica, vitamin E and coenzyme Q10 on LDL peroxidation induced by CuSO4 quantitatively in vitro. Materials and Methods: LDL was incubated with CuSO4 and the formation of conjugated dienes and thiobarbituric acid reactive substances (TBARS of LDL were monitored as markers of LDL oxidation. Inhibition of this Cu-induced oxidation was studied in the presence of extracts of Satureja Khozistanica,vitamin E and coenzyme Q10. Results: It was demonstrated that Satureja Khozistanica like vitamin E and coenzyme Q10 is able to inhibit LDL oxidation and decrease the resistance of LDL against oxidation in vitro. Conclusion: This study showed that Satureja Khozistanica similar to vitamin E and coenzyme Q10 prevented the oxidation of LDL in vitro and it may suggest that they have the similar effect in vivo

  14. In situ reactive compatibilization of polypropylene/ethylene-propylene-diene monomer thermoplastic vulcanizate by zinc dimethacrylate via peroxide-induced dynamic vulcanization.

    Science.gov (United States)

    Chen, Yukun; Xu, Chuanhui; Liang, Xingquan; Cao, Liming

    2013-09-12

    This work demonstrates an approach of in situ reactive compatibilization between polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) by using zinc dimethacrylate (ZDMA) as a compatibilizer and, simultaneously, as a very strong reinforcing agent. With the incorporation of 7phr ZDMA in the PP/EPDM (30/70, w/w) thermoplastic vulcanizate (TPV), the tensile strength, tear strength, elongation at break, and hardness of PP/EPDM/ZDMA TPV were increased from 5.3 MPa, 31.3 kN/m, 222%, and 78 up to 11.2 MPa, 64.2 kN/m, 396%, and 83, respectively. This tremendous reinforcing as well as the compatibilization effect of the ZDMA was understood by polymerization of ZDMA and ZDMA reacted with EPDM and PP during peroxide-induced dynamic vulcanization. A peculiar phase structure that rubber particles were surrounded and "bonded" by a thick transition zone that contained numerous of nanoparticles with dimensions of about 20-30 nm was observed from transmission electron microscopy. Scanning electron microscopy results confirmed that incorporation of ZDMA reduced the size of the cross-linked EPDM particles. Moreover, we found that the compatibilized TPV showed a higher tan δ peak temperature for EPDM phase and a lower tan δ peak temperature for PP phase. The suggested method for in situ reactive compatibilization of PP and EPDM offers routes to the design of new TPV-based technical products for diversified applications.

  15. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  16. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zonios, George [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Dimou, Aikaterini [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Galaris, Dimitrios [Laboratory of Biological Chemistry, School of Medicine, University of Ioannina, 45110 Ioannina (Greece)

    2008-01-07

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H{sub 2}O{sub 2} solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  17. Flavokawains A and B from kava (Piper methysticum) activate heat shock and antioxidant responses and protect against hydrogen peroxide-induced cell death in HepG2 hepatocytes.

    Science.gov (United States)

    Pinner, Keanu D; Wales, Christina T K; Gristock, Rachel A; Vo, Hoa T; So, Nadine; Jacobs, Aaron T

    2016-09-01

    Context Flavokawains are secondary metabolites from the kava plant (Piper methysticum Forst. f., Piperaceae) that have anticancer properties and demonstrated oral efficacy in murine cancer models. However, flavokawains also have suspected roles in rare cases of kava-induced hepatotoxicity. Objective To compare the toxicity flavokawains A and B (FKA, FKB) and monitor the resulting transcriptional responses and cellular adaptation in the human hepatocyte cell line, HepG2. Materials and methods HepG2 were treated with 2-100 μM FKA or FKB for 24-48 h. Cellular viability was measured with calcein-AM and changes in signalling and gene expression were monitored by luciferase reporter assay, real-time PCR and Western blot of both total and nuclear protein extracts. To test for subsequent resistance to oxidative stress, cells were pretreated with 50 μM FKA, 10 μM FKB or 10 μM sulphoraphane (SFN) for 24 h, followed by 0.4-2.8 mM H2O2 for 48 h, and then viability was assessed. Results FKA (≤100 μM) was not toxic to HepG2, whereas FKB caused significant cell death (IC50=23.2 ± 0.8 μM). Both flavokawains activated Nrf2, increasing HMOX1 and GCLC expression and enhancing total glutathione levels over 2-fold (p < 0.05). FKA and FKB also activated HSF1, increasing HSPA1A and DNAJA4 expression. Also, flavokawain pretreatment mitigated cell death after a subsequent challenge with H2O2, with FKA being more effective than FKB, and similar to SFN. Conclusions Flavokawains promote an adaptive cellular response that protects hepatocytes against oxidative stress. We propose that FKA has potential as a chemopreventative or chemotherapeutic agent.

  18. Effect of 16.16 dimethyl prostaglandin E2, N-acetyl-cysteine and the proton pump inhibitor BY 831-78 on hydrogen peroxide-induced mucosal damage in the rat stomach.

    Science.gov (United States)

    Schürer-Maly, C C; Haussner, V; Halter, F

    1990-01-01

    Reactive oxygen species are noxious to gastrointestinal mucosa and contribute to a variety of gastrointestinal diseases. We examined whether 16.16 dimethyl prostaglandin E2 (PG) is protective against the oxidizing action of 6% H2O2 causing gross hemorrhagic lesions in rat gastric mucosa. Male Wistar rats were treated with PG, 0.005-5 micrograms/kg, either intragastrically (i.g.) or subcutaneously, 30 min prior to i.g. administration of 6% H2O2, 0.5 ml/100 g. Further animals received 25 mg of the mucus dissolvent N-acetyl-cystein (NAC) following oral PG treatment or 30 mumol/kg of the H+K(+)-ATPase inhibitor BY 831-78 (BY), 4 h before onset of the experiments. Volume, pH and beta-N-acetyl-glucosaminidase and lactate dehydrogenase as parameters of cell damage were determined in the gastric juice. i.g. PG treatment achieved 60 and 55% reduction of the mucosal lesions in doses between 5 and 0.05 micrograms/kg, respectively. i.p. PG administration was effective in all doses tested. Gastric juice volume was only slightly and enzymes were not significantly affected by PG treatment. NAC did not diminish PG efficacy or aggravate mucosal lesions. Gastric acid suppression did not increase PG-induced protection but was strongly protective by itself, reducing damage by 75%. Low-dose PG treatment achieves an effective protection against oxidative damage in gastric mucosa, which is not the result of dilution or enhanced mucus production.

  19. Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping: the role of copper- and carbonate radical anion-mediated oxidations.

    Science.gov (United States)

    Ramirez, Dario C; Gomez Mejiba, Sandra E; Mason, Ronald P

    2005-01-15

    We have reinvestigated the biochemistry of H2O2-induced Cu,Zn-superoxide dismutase (SOD1)-centered radicals, detecting them by immuno-spin trapping. These radicals are involved in H2O2-induced structural and functional damage to SOD1, and their mechanism of generation depends on copper and/or (bi)carbonate (i.e., CO2, CO3(-2), or HCO3-). First, in the absence of DTPA and (bi)carbonate, Cu(II) was partially released and rebound at His, Cys, and Tyr residues in SOD1 with the generation of protein-copper-bound oxidants outside the SOD1 active site by reaction with excess H2O2. These species produced immuno-spin trapping-detectable SOD1-centered radicals associated with H2O2-induced active site ( approximately 5 and approximately 10 kDa fragments) and non-active site (smearing between 3 and 16 kDa) copper-dependent backbone oxidations and subsequent fragmentation of SOD1. Second, in the presence of DTPA, which inhibits H2O2-induced SOD1 non-active site fragmentation, (bi)carbonate scavenged the enzyme-bound oxidant at the SOD1 active site to produce the carbonate radical anion, CO3*-, thus protecting against active site SOD1 fragmentation. CO3*- diffuses and produces side chain oxidations forming DMPO-trappable radical sites outside the enzyme active site. Both mechanisms for generating immuno-spin trapping-detectable SOD1-centered radicals were susceptible to inhibition by cyanide and enhanced at high pH values. In addition, (bi)carbonate enhanced H2O2-induced SOD1 turnover as demonstrated by an enhancement in oxygen evolution and SOD1 inactivation. These results help clarify the free radical chemistry involved in the functional and structural oxidative damage to SOD1 by H2O2 with the intermediacy of copper- and CO3*--mediated oxidations.

  20. Hydrogen Generator

    Science.gov (United States)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  1. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  2. Kinetics of Oxidation of Cobalt(III Complexes of a Acids by Hydrogen Peroxide in the Presence of Surfactants

    Directory of Open Access Journals (Sweden)

    Mansur Ahmed

    2008-01-01

    Full Text Available Hydrogen peroxide oxidation of pentaamminecobalt(III complexes of α-hydroxy acids at 35°C in micellar medium has been attempted. In this reaction the rate of oxidation shows first order kinetics each in [cobalt(III] and [H2O2]. Hydrogen peroxide induced electron transfer in [(NH35 CoIII-L]2+ complexes of α-hydroxy acids readily yields 100% of cobalt(II with nearly 100% of C-C bond cleavage products suggesting that it behaves mainly as one equivalent oxidant in micellar medium. With unbound ligand also it behaves only as C-C cleavage agent rather than C-H cleavage agent. With increasing micellar concentration an increase in the rate is observed.

  3. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  4. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  5. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  6. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  7. Hydrogen usage

    Energy Technology Data Exchange (ETDEWEB)

    1942-10-22

    This short tabular report listed the number of m/sup 3/ of hydrogen required for a (metric) ton of product for various combinations of raw material and product in a hydrogenation procedure. In producing auto gasoline, bituminous coal required 2800 m/sup 3/, brown coal required 2400 m/sup 3/, high-temperature-carbonization tar required 2100 m/sup 3/, bituminous coal distillation tar required 1300 m/sup 3/, brown-coal low-temperature-carbonization tar required 850 m/sup 3/, petroleum residues required 900 m/sup 3/, and gas oil required 500 m/sup 3/. In producing diesel oil, brown coal required 1900 m/sup 3/, whereas petroleum residues required 500 m/sup 3/. In producing diesel oil, lubricants, and paraffin by the TTH (low-temperature-hydrogenation) process, brown-coal low-temperature-carbonization tar required 550 m/sup 3/. 1 table.

  8. Versatile Hydrogen

    Indian Academy of Sciences (India)

    Hydrogen is probably the most intriguing ele- ment in the periodic table. Although it is only the seventh most abundant element on earth, it is the most abundant element in the uni- verse. It combines with almost all the ele- ments of the periodic table, except for a few transition elements, to form binary compounds of the type E.

  9. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available The effects of hydrogen on various metals and the use of metal hydrides for hydrogen storage are discussed. The mechanisms of, and differences between, hydrogen embrittlement and hydrogen attack of ferritic steels are compared, common sources...

  10. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  11. A hydrogen ice cube

    NARCIS (Netherlands)

    Peters, C.J.; Schoonman, J.; Schrauwers, A.

    2004-01-01

    Hydrogen is considered to be a highly promising energy carrier. Nonetheless, before hydrogen can become the fuel of choice for the future a number of slight problems will have to be overcome. For example, how can hydrogen be safely stored? Motor vehicles running on hydrogen may be clean in concept

  12. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  13. Hydrogen nanobubble at normal hydrogen electrode

    Science.gov (United States)

    Nakabayashi, S.; Shinozaki, R.; Senda, Y.; Yoshikawa, H. Y.

    2013-05-01

    Electrochemically formed hydrogen nanobubbles at a platinum rotating disk electrode (RDE) were detected by re-oxidation charge. The dissolution time course of the hydrogen nanobubbles was measured by AFM tapping topography under open-circuit conditions at stationary platinum and gold single-crystal electrodes. The bubble dissolution at platinum was much faster than that at gold because two types of diffusion, bulk and surface diffusion, proceeded at the platinum surface, whereas surface diffusion was prohibited at the gold electrode. These findings indicated that the electrochemical reaction of normal hydrogen electrode partly proceeded heterogeneously on the three-phase boundary around the hydrogen nanobubble.

  14. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  15. BRAF(E600)-associated senescence-like cell cycle arrest of human naevi

    NARCIS (Netherlands)

    Michaloglou, Chrysiis; Vredeveld, Liesbeth C. W.; Soengas, Maria S.; Denoyelle, Christophe; Kuilman, Thomas; van der Horst, Chantal M. A. M.; Majoor, Donné M.; Shay, Jerry W.; Mooi, Wolter J.; Peeper, Daniel S.

    2005-01-01

    Most normal mammalian cells have a finite lifespan(1), thought to constitute a protective mechanism against unlimited proliferation(2-4). This phenomenon, called senescence, is driven by telomere attrition, which triggers the induction of tumour suppressors including p16(INK4a) (ref. 5). In cultured

  16. Hydrogen in semiconductors

    CERN Document Server

    Pankove, Jacques I

    1991-01-01

    Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed cove

  17. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  18. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  19. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  20. Hydrogen transport membranes

    Science.gov (United States)

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  1. Solar hydrogen generator

    Science.gov (United States)

    Sebacher, D. I.; Sabol, A. P. (Inventor)

    1977-01-01

    An apparatus, using solar energy to manufacture hydrogen by dissociating water molecules into hydrogen and oxygen molecules is described. Solar energy is concentrated on a globe containing water thereby heating the water to its dissociation temperature. The globe is pervious to hydrogen molecules permitting them to pass through the globe while being essentially impervious to oxygen molecules. The hydrogen molecules are collected after passing through the globe and the oxygen molecules are removed from the globe.

  2. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  3. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum.

    Science.gov (United States)

    Flores-Cruz, Zomary; Allen, Caitilyn

    2011-09-01

    The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.

  4. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...

  5. Biological hydrogen photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Y. [Univ. of Miami, FL (United States)

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  6. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation

    Science.gov (United States)

    Reis, A C; Alessandri, A L; Athayde, R M; Perez, D A; Vago, J P; Ávila, T V; Ferreira, T P T; de Arantes, A CS; de Sá Coutinho, D; Rachid, M A; Sousa, L P; Martins, M A; Menezes, G B; Rossi, A G; Teixeira, M M; Pinho, V

    2015-01-01

    Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils. PMID:25675292

  7. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  8. Safe venting of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.F.; Dewart, J.M.; Edeskuty, F.J.

    1990-01-01

    The disposal of hydrogen is often required in the operation of an experimental facility that contains hydrogen. Whether the vented hydrogen can be discharged to the atmosphere safely depends upon a number of factors such as the flow rate and atmospheric conditions. Calculations have been made that predict the distance a combustible mixture can extend from the point of release under some specified atmospheric conditions. Also the quantity of hydrogen in the combustible cloud is estimated. These results can be helpful in deciding of the hydrogen can be released directly to the atmosphere, or if it must be intentionally ignited. 15 refs., 5 figs., 2 tabs.

  9. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  10. Cyclooctanaminium hydrogen succinate monohydrate

    Directory of Open Access Journals (Sweden)

    Sanaz Khorasani

    2012-04-01

    Full Text Available In the title hydrated salt, C8H18N+·C4H5O4−·H2O, the cyclooctyl ring of the cation is disordered over two positions in a 0.833 (3:0.167 (3 ratio. The structure contains various O—H.·O and N—H...O interactions, forming a hydrogen-bonded layer of molecules perpendicular to the c axis. In each layer, the ammonium cation hydrogen bonds to two hydrogen succinate anions and one water molecule. Each hydrogen succinate anion hydrogen bonds to neighbouring anions, forming a chain of molecules along the b axis. In addition, each hydrogen succinate anion hydrogen bonds to two water molecules and the ammonium cation.

  11. Hydrogen storage methods

    Science.gov (United States)

    Züttel, Andreas

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at Tchemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8 kg.m-3, and large volumes, where the thermal losses are small, can cause hydrogen to reach a

  12. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    bonding configuration due to hydrogen migration have been proposed as a mechanism of defect generation in a-Si:H [6,7]. Thus hydrogen plays a dual role in a-Si:H: (1) acting as a .... the sphere of radius R0 and allows to express. ∆F as a function of localization radius R0. Using eqs (10) and (11), the volume integration.

  13. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  14. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  15. Allylammonium hydrogen oxalate hemihydrate

    Directory of Open Access Journals (Sweden)

    Błażej Dziuk

    2014-08-01

    Full Text Available In the title hydrated molecular salt, C3H8N+·C2HO4−·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3° and the dihedral angle between the CO2 and CO2H planes in the anion is 1.0 (4°. In the crystal, the hydrogen oxalate ions are linked by O—H...O hydrogen bonds, generating [010] chains. The allylammonium cations bond to the chains through N—H...O and N—H...(O,O hydrogen bonds. The water molecule accepts two N—H...O hydrogen bonds and makes two O—H...O hydrogen bonds. Together, the hydrogen bonds generate (100 sheets.

  16. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up....... A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling...

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  18. Pathways to Metallic Hydrogen

    OpenAIRE

    Silvera, Isaac F.; Deemyad, Shanti

    2008-01-01

    The traditional pathway that researchers have used in the goal of producing atomic metallic hydrogen is to compress samples with megabar pressures at low temperature. A number of phases have been observed in solid hydrogen and its isotopes, but all are in the insulating phase. The results of experiment and theory for this pathway are reviewed. In recent years a new pathway has become the focus of this challenge of producing metallic hydrogen, namely a path along the melting line. It has bee...

  19. Hydrogen rich gas generator

    Science.gov (United States)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  20. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  1. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  2. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  3. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  4. Molecular hydrogen ameliorates several characteristics of preeclampsia in the Reduced Uterine Perfusion Pressure (RUPP) rat model.

    Science.gov (United States)

    Ushida, Takafumi; Kotani, Tomomi; Tsuda, Hiroyuki; Imai, Kenji; Nakano, Tomoko; Hirako, Shima; Ito, Yumiko; Li, Hua; Mano, Yukio; Wang, Jingwen; Miki, Rika; Yamamoto, Eiko; Iwase, Akira; Bando, Yasuko K; Hirayama, Masaaki; Ohno, Kinji; Toyokuni, Shinya; Kikkawa, Fumitaka

    2016-12-01

    Oxidative stress plays an important role in the pathogenesis of preeclampsia. Recently, molecular hydrogen (H 2 ) has been shown to have therapeutic potential in various oxidative stress-related diseases. The aim of this study is to investigate the effect of H 2 on preeclampsia. We used the reduced utero-placental perfusion pressure (RUPP) rat model, which has been widely used as a model of preeclampsia. H 2 water (HW) was administered orally ad libitum in RUPP rats from gestational day (GD) 12-19, starting 2 days before RUPP procedure. On GD19, mean arterial pressure (MAP) was measured, and samples were collected. Maternal administration of HW significantly decreased MAP, and increased fetal and placental weight in RUPP rats. The increased levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and diacron reactive oxygen metabolites as a biomarker of reactive oxygen species in maternal blood were decreased by HW administration. However, vascular endothelial growth factor level in maternal blood was increased by HW administration. Proteinuria, and histological findings in kidney were improved by HW administration. In addition, the effects of H 2 on placental villi were examined by using a trophoblast cell line (BeWo) and villous explants from the placental tissue of women with or without preeclampsia. H 2 significantly attenuated hydrogen peroxide-induced sFlt-1 expression, but could not reduce the expression induced by hypoxia in BeWo cells. H 2 significantly attenuated sFlt-1 expression in villous explants from women with preeclampsia, but not affected them from normotensive pregnancy. The prophylactic administration of H 2 attenuated placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress. These results support the theory that H 2 has a potential benefit in the prevention of preeclampsia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  6. Metastable ultracondensed hydrogenous materials

    Science.gov (United States)

    Nellis, W. J.

    2017-12-01

    The primary purpose of this paper is to stimulate theoretical predictions of how to retain metastably hydrogenous materials made at high pressure P on release to ambient. Ultracondensed metallic hydrogen has been made at high pressures in the fluid and reported made probably in the solid. Because the long quest for metallic hydrogen is likely to be concluded in the relatively near future, a logical question is whether another research direction, comparable in scale to the quest for metallic H, will arise in high pressure research. One possibility is retention of metastable solid metallic hydrogen and other hydrogenous materials on release of dynamic and static high pressures P to ambient. If hydrogenous materials could be retained metastably on release, those materials would be a new class of materials for scientific investigations and technological applications. This paper is a review of the current situation with the synthesis of metallic hydrogen, potential technological applications of metastable metallic H and other hydrogenous materials at ambient, and general background of published experimental and theoretical work on what has been accomplished with metastable phases in the past and thus what might be accomplished in the future.

  7. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  8. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  9. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  10. Chlorific efficiency of coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, H.

    1942-10-20

    In studies on the calorific efficiency of coal hydrogenation, the efficiency for H/sub 2/ production was calculated to be 26%, the efficiency for hydrogenation was calculated to be 49%, and the efficiency of hydrogenation including H/sub 2/ production was 27.2%. The efficiency of hydrogenation plus hydrogen production was almost equal to the efficiency of hydrogen production alone, even though this was not expected because of the total energy calculated in the efficiency of hydrogenation proper. It was entirely possible, but did not affect computations, that the efficiency of one or the other components of hydrogenation process differed somewhat from 49%. The average efficiency for all cases was 49%. However, when hydrogen was not bought, but was produced--(efficiency of hydrogen production was 26%, not 100%-- then the total energy changed and the efficiency of hydrogen production and combination was not 26%, but 13%. This lower value explained the drop of hydrogenation efficiency to 27.2%.

  11. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  12. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.; Misra, A.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  13. A green hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.W. II [Clark Communications, Beverly Hills, CA (United States). Green Hydrogen Scientific Advisory Committee; Rifkin, J. [The Foundation on Economic Trends (United States)

    2006-11-15

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand. (author)

  14. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  15. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  16. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  17. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  18. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  19. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  20. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  1. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  2. Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Liquid hydrogen is used extensively by NASA to support cryogenic rocket testing. In addition, there are many commercial applications in which delivery and use of...

  3. Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket test operations at NASA Stennis Space Center (SSC) result in substantial quantities of hydrogen gas that is flared from the facility and helium gas that is...

  4. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  5. Water's Hydrogen Bond Strength

    CERN Document Server

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  6. Thin film hydrogen sensor

    Science.gov (United States)

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  7. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  8. Cryogenic hydrogen release research.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  9. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  10. Cytosinium hydrogen selenite

    Directory of Open Access Journals (Sweden)

    Radhwane Takouachet

    2014-02-01

    Full Text Available In the crystal structure of the title salt, C4H6N3O+·HSeO3−, systematic name 6-amino-2-methylidene-2,3-dihydropyrimidin-1-ium hydrogen selenite, the hydrogenselenite anions and the cytosinium cations are linked via N—H...O, N—H...Se, O—H...O, O—H··Se and C—H...O hydrogen bonds, forming a three-dimensional framework.

  11. Ash removal by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.; von Hartmann, G.B.

    1942-10-17

    This method for the production of high-quality electrode coke involved the hydrogenation of coal to a filterable bitumen product. The hydrogenation and splitting processes were carried out to end at high-molecular-weight bitumens with some lighter oils produced. Variations in temperature, pressure, and throughput determined the type and amount of bitumens. Proper conditions allowed sufficient middle oil for recirculation as pasting oil as well as for increasing filterability by dilution. This partial hydrogenation could be performed without the addition of hydrogen, if hydrogen-producing aromatic compounds, such as tetraline or cresol, were used as pasting oils. For 700-atm hydrogenation, it was found that the Upper Silesian coal was the best with respect to yield, filterability, and recovery of the recycle oils. The lower pressures gave a better filterability while sacrificing yield and recycle oil. The more severe the hydrogenating conditions, the lighter the bitumens and the lower the melting point. For the range of 300 to 600 atm, it was found that filterability improved with increased temperature and decreased with a pressure gain. Larger throughputs caused relatively moderate decreases in filterability. The use of iron catalysts decreased filterability while changing gas and pasting-oil content had little effect. The optimum conditions established a pasting-oil equilibrium with the best filterability. Greater degrees of hydrogenation or splitting produced more recycle middle oils but decreased filterability, thus only the necessary paste oil was produced. By selecting proper conditions, an ashfree bituminous binder could be produced, as used in the production of the Soederberg electrode. 2 tables, 2 graphs

  12. Hydrogen Delivery Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  13. Hydrogen Sorption and Transport

    Science.gov (United States)

    McNeece, C. J.; Hesse, M. A.

    2015-12-01

    Hydrogen is unique among aqueous ions, both in its importance for geochemical reactions, and in its complex transport behavior through reactive media. The structure of hydrogen reaction fronts can be analyzed in the advective limit of the transport equation. At local chemical equilibrium, sorption of hydrogen onto the media surface (sorption isotherm) controls reaction front morphology. Transport modeling thus necessitates accurate knowledge of surface chemistry. Though motivated by transport, sorption models are often parameterized against batch titration experiments. The validity of these parameterizations, in a transport setting, are seldom tested. The analytic solution to the transport equation gives an algebraic relationship between concentration velocity and equilibrium sorption behavior. In this study, we conduct a suite of column flow experiments through quartz sand. Hydrogen concentration breakthrough curves at the column outlet are used to infer the "transport sorption isotherm." These results are compared to the batch titration derived sorption isotherm. We find excellent agreement between the datasets. Our findings suggest that, for aqueous hydrogen, local chemical equilibrium is a valid assumption. With the goal of a predictive transport model, we parameterize various sorption models against this dataset. Models which incorporate electrostatic effects at the surface predict transport well. Nonelectrostatic models such as the Kd, Langmuir, and Freundlich models fail. These results are particularly compelling as nonelectrostatic models are often employed to predict hydrogen transport in many reactive transport code.

  14. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  15. Examining hydrogen transitions.

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  16. Hydrogen supplies for SPFC vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hart, D.; Bauen, A.; Fouquet, R.; Leach, M.; Pearson, P.; Anderson, D.

    2000-07-01

    This report summarises the findings of a study investigating the potential of using hydrogen fuel for fuel cell-powered fleet vehicles based at a depot in a range of counties. An overview of current hydrogen supply and demand is presented, and research already carried out on potential hydrogen refuelling infrastructures, and the costs of producing hydrogen as a transportation fuel are examined. Hydrogen demand modelling, and supplying hydrogen to fleet vehicles, alternative hydrogen supply options, energy and emissions comparison with competing fuels, and health and safety standards are discussed.

  17. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  18. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  19. Hydrogen as an energy vector

    OpenAIRE

    Valenzuela Ortega, Daniel

    2013-01-01

    Study of the use of the Hydrogen to storage big amounts of energy. In this project there will be an study about the different energies that are profitable to use them to obtain hydrogen, the study of the different technologies to obtain hydrogen (electrolysis, gasification, etc.), the study of the technologies for storage the hydrogen and the study of the different ways to obtain final energy with the hydrogen. There will be also an overall analysis of the efficiency of the process a...

  20. Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equivalents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment.

    Science.gov (United States)

    Xiao, Li; Miwa, Nobuhiko

    2017-04-01

    The aim of the present study is to investigate protective effects of hydrogen-rich water (HW) against reactive oxygen species (ROS)-induced cellular harmful events and cell death in human gingival fibroblasts (HGF) and three-dimensional (3D-) gingival tissue equivalents. HW was prepared with a magnesium stick in 600-mL double distilled water (DDW) overnight. Dissolved hydrogen was about 1460 ± 50 μg/L versus approximately 1600 μg/L for the saturated hydrogen. Under cell-free conditions, HW, dose-dependently, significantly scavenged peroxyl radicals (ROO·) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Extract from HW-treated HGF cells scavenged ROO· more markedly than that from DDW-treated cells, suggesting that HW can increase the intracellular antioxidant capacity. Hydrogen peroxide dose-dependently increased the intracellular ROS generation, which was significantly repressed by HW, both in the cytoplasm and nuclei. LIVE/DEAD staining and our original cell viability dye-extraction assay showed that HW significantly protected HGF cells from hydrogen peroxide-induced cell death. Hydrogen peroxide also diminished the contents of intracellular glutathione, which were appreciably relieved by HW-pretreatment. Additionally, HW noticeably prevented cumene hydroperoxide-induced generation of cellular ROS in epidermis parts of 3D-gingival equivalents. The in vitro scratch assay showed that HW was able to diminish physical injury-induced ROS generation and promote wound healing in HGF cell monolayer sheets. In summary, HW was able to increase intracellular antioxidative capacity and to protect cells and tissue from oxidative damage. Thus, HW might be used for prevention/treatment of oxidative stress-related diseases.

  1. Brown Adipose Tissue Regulates Small Artery Function Through NADPH Oxidase 4-Derived Hydrogen Peroxide and Redox-Sensitive Protein Kinase G-1α.

    Science.gov (United States)

    Friederich-Persson, Malou; Nguyen Dinh Cat, Aurelie; Persson, Patrik; Montezano, Augusto C; Touyz, Rhian M

    2017-03-01

    Biomedical interest in brown adipose tissue (BAT) has increased since the discovery of functionally active BAT in adult humans. Although white adipose tissue (WAT) influences vascular function, vascular effects of BAT are elusive. Thus, we investigated the regulatory role and putative vasoprotective effects of BAT, focusing on hydrogen peroxide, nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4), and redox-sensitive signaling. Vascular reactivity was assessed in wild-type and Nox4-knockout mice (Nox4(-/-)) by wire myography in the absence and presence of perivascular adipose tissue of different phenotypes from various adipose depots: (1) mixed WAT/BAT (inguinal adipose tissue) and (2) WAT (epididymal visceral fat) and BAT (intrascapular fat). In wild-type mice, epididymal visceral fat and perivascular adipose tissue increased EC50 to noradrenaline without affecting maximum contraction. BAT increased EC50 and significantly decreased maximum contraction, which were prevented by a hydrogen peroxide scavenger (polyethylene glycated catalase) and a specific cyclic GMP-dependent protein kinase G type-1α inhibitor (DT-3), but not by inhibition of endothelial nitric oxide synthase or guanylate cyclase. BAT induced dimerization of cyclic GMP-dependent protein kinase G type-1α and reduced phosphorylation of myosin light chain phosphatase subunit 1 and myosin light chain 20. BAT from Nox4-knockout mice displayed reduced hydrogen peroxide levels and no anticontractile effects. Perivascular adipose tissue from β3 agonist-treated mice displayed browned perivascular adipose tissue and an increased anticontractile effect. We identify a novel vasoprotective action of BAT through an anticontractile effect that is mechanistically different to WAT. Specifically, BAT, via Nox4-derived hydrogen peroxide, induces cyclic GMP-dependent protein kinase G type-1α activation, resulting in reduced vascular contractility. BAT may constitute an interesting therapeutic target to

  2. Hydrogen Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-05-16

    This volume highlights the scientific content of the 2006 Hydrogen Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) on behalf of the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). Hydrogen Contractors Meeting held from May 16-19, 2006 at the Crystal Gateway Marriott Hotel Arlington, Virginia. This meeting is the second in a series of research theme-based Contractors Meetings sponsored by DMS&E held in conjunction with our counterparts in the Office of Energy Efficiency and Renewable Energy (EERE) and the first with the Hydrogen, Fuel Cells and Infrastructure Technologies Program. The focus of this year’s meeting is BES funded fundamental research underpinning advancement of hydrogen storage. The major goals of these research efforts are the development of a fundamental scientific base in terms of new concepts, theories and computational tools; new characterization capabilities; and new materials that could be used or mimicked in advancing capabilities for hydrogen storage.

  3. Hot Hydrogen Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  4. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  5. Hydrogen in Martian Meteorites

    Science.gov (United States)

    Peslier, A. H.; Hervig, R.; Irving, T.

    2017-01-01

    Most volatile studies of Mars have targeted its surface via spacecraft and rover data, and have evidenced surficial water in polar caps and the atmosphere, in the presence of river channels, and in the detection of water bearing minerals. The other focus of Martian volatile studies has been on Martian meteorites which are all from its crust. Most of these studies are on hydrous phases like apatite, a late-stage phase, i.e. crystallizing near the end of the differentiation sequence of Martian basalts and cumulates. Moreover, calculating the water content of the magma a phosphate crystallized from is not always possible, and yet is an essential step to estimate how much water was present in a parent magma and its source. Water, however, is primarily dissolved in the interiors of differentiated planets as hydrogen in lattice defects of nominally anhydrous minerals (olivine, pyroxene, feldspar) of the crust and mantle. This hydrogen has tremendous influence, even in trace quantities, on a planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Studies of hydrogen in nominally anhydrous phases of Martian meteorites are rare. Measuring water contents and hydrogen isotopes in well-characterized nominally anhydrous minerals of Martian meteorites is the goal of our study. Our work aims at deciphering what influences the distribution and origin of hydrogen in Martian minerals, such as source, differentiation, degassing and shock.

  6. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Tetramethylammonium hydrogen terephthalate

    Directory of Open Access Journals (Sweden)

    Leila Dolatyari

    2012-10-01

    Full Text Available The asymmetric unit of the title salt, C4H12N+·C8H5O4−, contains one half of a tetramethylammonium cation and one half of a hydrogen terephthalate monoanion. The N atom of the ammonium cation lies on a twofold rotation axis and the centre of mass of the terephthalate anion is on a centre of inversion. In the crystal, the centrosymmetric terephthalate ions are linked by a very short symmetric O—H...O hydrogen bond [O...O = 2.4610 (19 Å] into a one-dimensional polymeric chain along [1-12]. The tetramethylammonium cations and terephthalate anions are then connected through a pair of bifurcated acceptor C—H...O hydrogen bonds, generating a three-dimensional supramolecular network. The carboxylate groups at both ends of the terephthalate anion are charge-shared with an equal probability of 0.5.

  8. Hydrogen gas detector card

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez Niño

    2016-04-01

    Full Text Available A small card used for detecting hydrogen gas in a crystal growth system by the liquid phase epitaxy technique was designed and built. The small size of the card enables its portability to other laboratories where leakage detection of hydrogen or other flammable gas is required. Card dimensions are approximately 10 cm long and 5 cm wide enabling easy transportation. The design is based on a microcontroller which reads the signal from the hydrogen sensor and internally compares the read value with preset values. Depending on the signal voltage a red, yellow or green LED will light to indicate the levels of concentration of the flammable gas. The card is powered by a 9 V battery.

  9. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast at tempe......A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  10. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  11. Hydrogen: Fueling the Future

    Energy Technology Data Exchange (ETDEWEB)

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  12. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  13. Polyhydride complexes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    Polyhydride metal complexes are being developed for application in hydrogen storage. Efforts have focused on developing complexes with improved available hydrogen weight percentages. We have explored the possibility that complexes containing aromatic hydrocarbon ligands could store hydrogen at both the metal center and in the ligands. We have synthesized novel indenyl hydride complexes and explored their reactivity with hydrogen. The reversible hydrogenation of [IrH{sub 3}(PPh{sub 3})({eta}{sup 5}-C{sub 10}H{sub 7})]{sup +} has been achieved. While attempting to prepare {eta}{sup 6}-tetrahydronaphthalene complexes, we discovered that certain polyhydride complexes catalyze both the hydrogenation and dehydrogenation of tetrahydronaphthalene.

  14. Electrocatalysts for hydrogen energy

    CERN Document Server

    Losiewicz, Bozena

    2015-01-01

    This special topic volume deals with the development of novel solid state electrocatalysts of a high performance to enhance the rates of the hydrogen or oxygen evolution. It contains a description of various types of metals, alloys and composites which have been obtained using electrodeposition in aqueous solutions that has been identified to be a technologically feasible and economically superior technique for the production of the porous electrodes. The goal was to produce papers that would be useful to both the novice and the expert in hydrogen technologies. This volume is intended to be us

  15. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  16. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment....... The curve visually shows students that the best HER catalysts are characterized by an optimal hydrogen binding energy (reactivity), as stated by the Sabatier principle. In addition, students may use this volcano curve to predict the activity of an untested catalyst solely from the catalyst reactivity...

  17. Hydrogen Energy Conversion

    Science.gov (United States)

    1976-07-27

    Schoeppei, R.J. and Gray, C.L., "The Hydrogen Engine in P^srectl^e", Proceedings 7th international Energy Conversion Encrineering C^ference.: San Dxego...Conversion Engineering Conference, San Diego, Sept. 19/^, pp. 1349-1354. 10. Hausz, W., Leeth, G., and Meyer, C., "Eco-Energy", ibid, pp. 1316-1322. II...75114, . 24. ^schütz, R.H., "Hydrogen Burning Engine Experience", presented at Symposium, see Ref. 8. 25. A. Presto filipo (Pnblio Service’Electric S

  18. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  19. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    S.A. Mendanha

    2012-06-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2. The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h, which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  20. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    Science.gov (United States)

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  1. Nanomaterials for Hydrogen Storage

    Indian Academy of Sciences (India)

    temperature T, by an equation analogous to the ideal gas law: π V=iRT. (1). R is the gas .... vehicular applications. Nanomaterials are a ... development of materials for hydrogen storage are the low rate of bulk hydride sorption and the high temperatures required for gas release. 3.0. Bulk material. <100 nm. Nanoparticles.

  2. Nanomaterials for Hydrogen Storage

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 5. Nanomaterials for Hydrogen Storage - The van't Hoff Connection. C S Sunandana. General Article Volume 12 Issue 5 May 2007 pp 31-36. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  4. Hydrogen storage for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.

    1979-01-01

    Results of an analysis of hydrogen-fueled automobiles are presented as a part of a continuing study conducted by Lawrence Livermore Laboratory (LLL) on Energy Storage Systems for Automobile Propulsion. The hydrogen is stored either as a metal hydride at moderate pressure in TiFe/sub 0/ /sub 9/Mn/sub 0/ /sub 1/H/sub x/ and at low pressure in MgH/sub x/ catalyzed with 10 wt % Ni, or it is stored in hollow glass microspheres at pressures up to about 400 atm. Improved projections are given for the two hydrides, which are used in combination to take advantage of their complementary properties. In the dual-hydride case and in the microsphere case where Ti-based hydride is used for initial operation, hydrogen is consumed in an internal-combustion engine; whereas in the third case, hydrogen from Ti-based hydride is used with air in an alkaline fuel cell/Ni-Zn battery combination which powers an electric vehicle. Each system is briefly described; and the results of the vehicle analysis are compared with those for the conventional automobile and with electric vehicles powered by Pb-acid or Ni-Zn batteries. Comparisons are made on the basis of automobile weight, initial user cost, and life-cycle cost. In this report, the results are limited to those for the 5-passenger vehicle in the period 1985-1990, and are provided as probable and optimistic values.

  5. Economic data on hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    1943-07-22

    General information is recorded about hydrogenation plants and their operation up to July 1943. For 12 German plants, there is a table indicating date of beginning construction, start of operation, and production capacity, including gas. Another chart gives the same data for foreign plants, in the United States, England, Italy, Iran and Holland. Domestic and foreign partners and agreements are also listed, as well as license returns from hydrogenation. Extent of I.G. Farben patent ownership is given in a short list. Development of production costs for liquid products is indicated for the years 1927-1941. Data on test costs are also given. Production figures for hydrogenation are shown, as well as the share of Farben synthetics in total German fuel production. The report gives a breakdown for requirements of raw materials, manpower, capital, and construction steels for production of four million metric tons of fuels from hydrogenation. Finally, the report lists the special areas in which Farben was carrying on work related to synthetic fuels. The data are given mostly in tabular form.

  6. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  7. Onboard hydrogen generation for automobiles

    Science.gov (United States)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  8. Biomimetic Production of Hydrogen

    Science.gov (United States)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  9. Detroit Commuter Hydrogen Project

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with

  10. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  11. Task D: Hydrogen safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Sievert, B.G. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1996-10-01

    This report covers two topics. The first is a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels. The second is an experimental investigation of hydrogen flame impingement. Four areas of concern in the conversion of natural gas safety publications to hydrogen safety publications are delineated. Two suggested design criteria for hydrogen vehicle fuel systems are proposed. It is concluded from the experimental work that light weight, low cost, firewalls to resist hydrogen flame impingement are feasible.

  12. Hydrogen Fire Spectroscopy Issues Project

    Science.gov (United States)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  13. Magnetic levitation of condensed hydrogen

    Science.gov (United States)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  14. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  15. Muonic processes in solid hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G.M.; Beveridge, J.L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada); Bailey, J.M. [Chester Technology, Chester (United Kingdom); Beer, G.A.; Knowles, P.E.; Maier, M.; Mason, G.R.; Olin, A.; Porcelli, T.A. [University of Victoria, Victoria, BC (Canada); Fujiwara, M.C. [University of British Columbia, Vancouver, BC (Canada); Huber, T.M. [Gustavus Adolphus College, St. Peter, Minnesota (United States); Jacot-Guillarmod, R.; Mulhauser, F.; Schaller, L.A. [University of Fribourg, Fribourg (Switzerland); Kammel, P. [Lawrence Berkeley Laboratory, Berkeley, California (United States); Kim, S.K. [Jeonbuk National University, Jeonju City, S. (Korea); Kunselman, A.R. [University of Wyoming, Laramie, Wyoming (United States); Petitjean, C. [PSI, Villigen (Switzerland); Zmeskal, J. [IMEP, Vienna (Austria)

    1998-08-01

    Muonic hydrogen participates in many different interactions, including muon induced fusion of hydrogen nuclei. Conventional experimental techniques cannot always unravel and separate the processes of interest. Some of the most important measurements may be more reliably accomplished with the use of a unique and versatile target consisting of layers of different solid hydrogen isotope mixtures. {copyright} {ital 1998 American Institute of Physics.}

  16. Realizing a hydrogen future: Hydrogen Technical Advisory Panel recommendations (brochure)

    Energy Technology Data Exchange (ETDEWEB)

    Cook, G.

    1999-08-01

    When generated from renewable sources, hydrogen production and use is part of a clean, cyclic process. Hydrogen can be used to generate electricity, heat homes and businesses, fuel vehicles, and produce commodities used every day. The Hydrogen Technical Advisory Panel's (HTAP) primary functions are to advise the Secretary of Energy on the implementation of the U.S.DOE programs in hydrogen RD and D and to review and make recommendations on the economic, technical, and environmental consequences of deploying safe hydrogen energy systems.

  17. Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis

    DEFF Research Database (Denmark)

    Šaric, Manuel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    A relation between hydrogen evolution and hydrodesulfurization catalysis was found by density functional theory calculations. The hydrogen evolution reaction and the hydrogenation reaction in hydrodesulfurization share hydrogen as a surface intermediate and, thus, have a common elementary step...

  18. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    Science.gov (United States)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  19. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  20. Hydrogen adsorption on rhodium

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, M.E.; Michri, A.A.; Kalish, T.V.; Pshenichnikov, A.G.; Kazarinov, V.E.

    1987-09-01

    Measurements of thermal desorption and electron work function were used to investigate the mechanism of hydrogen adsorption from the gas phase on rhodium single-crystal faces and on a polycrystalline rhodium sample at room temperatures over the pressure range from 1.3-10/sup -3/ to 1.3 x 10/sup -5/ Pa. It was found that dipoles oriented with their negative ends toward the gas phase (dipoles of type I) form more rapidly than dipoles having the opposite orientation (dipoles of type II). For formation of the latter, a mechanism is proposed according to which the rate-determining step of the overall process is the transition of reversibly adsorbed hydrogen to dipoles of type II (the spillover), which occurs at surface defects. It was shown that the kinetics of this process with respect to the individual defect obeys an equation which is zeroth order in theta/sub H/ and pressure.

  1. Reversible hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  2. Offshore Facilities to Produce Hydrogen

    Directory of Open Access Journals (Sweden)

    Pilar Blanco-Fernández

    2017-06-01

    Full Text Available As a result of international agreements on the reduction of CO2 emissions, new technologies using hydrogen are being developed. Hydrogen, despite being the most abundant element in Nature, cannot be found in its pure state. Water is one of the most abundant sources of hydrogen on the planet. The proposal here is to use energy from the sea in order to obtain hydrogen from water. If plants to obtain hydrogen were to be placed in the ocean, the impact of long submarines piping to the coast will be reduced. Further, this will open the way for the development of ships propelled by hydrogen. This paper discusses the feasibility of an offshore installation to obtain hydrogen from the sea, using ocean wave energy.

  3. Molecular and Metallic Hydrogen

    Science.gov (United States)

    1977-05-01

    Livermore Laboratory, Dr. J. C. Raich of the Colorado State University, and Dr. R. H. Wentorf, Jr., of the General Electric Company for their reviews...investigated by Raich and Etters [8], who have made ground-state energy calculations for hydrogen molecules retaining the orientation dependence of the...consistent with work of Raich and Etters [8], who have made similar calculations during the course of their work on the rotational transition in solid

  4. Coal liquefaction and hydrogenation

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  5. Phosphorylation in hydrogen bacteria.

    Science.gov (United States)

    Bongers, L

    1967-05-01

    The electron-transport system of cell-free extracts obtained from Hydrogenomonas H-20 has been studied with particular reference to phosphorylation associated with the oxyhydrogen reaction. Cell-free preparations of this organism exhibit oxidative phosphorylation with hydrogen and succinate as electron donors. This activity could be uncoupled with a number of agents. Ratios of phosphorylative activity to oxidative activity observed varied from 0.2 to 0.7. Factors affecting the efficiency of phosphorylation were examined. Inhibitor and spectrophotometric studies indicated that phosphorylation with hydrogen as electron donor occurs exclusively at a site in an abbreviated electron transport chain between H(2) and cytochrome b. The possible occurrence of a cytochrome b oxidase and the requirement for a quinone are discussed, as well as the correlation between the abbreviated pathway and the energy generation by the cell. Evidence is presented which indicates that nicotinamide adenine dinucleotide does not participate in the hydrogen oxidation path which is coupled to adenosine triphosphate formation.

  6. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Zhang, Z. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. Photoelectrochemical devices-direct photoconversion systems utilizing a photovoltaic-type structure coated with water-splitting catalysts-represent a promising option to meet this goal. Direct solar-to-chemical conversion efficiencies greater than 7% and photoelectrode lifetimes of up to 30 hours in 1 molar KOH have been demonstrated in our laboratory using low-cost, amorphous-silicon-based photoelectrodes. Loss analysis models indicate that the DOE`s goal of 10% solar-to-chemical conversion can be met with amorphous-silicon-based structures optimized for hydrogen production. In this report, we describe recent progress in the development of thin-film catalytic/protective coatings, improvements in photoelectrode efficiency and stability, and designs for higher efficiency and greater stability.

  7. Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence?

    OpenAIRE

    Steinbauer, M.J.; Burns, A. E.; Hall, A.; M. Riegler(Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10/136, A-1040 Vienna, Austria); Taylor, G. S

    2014-01-01

    Some herbivores can modify the physiology of plant modules to meet their nutritional requirements. Induction of premature leaf senescence could benefit herbivores since it is associated with the mobilisation of nutrients. We compared the effects of nymphal feeding by Cardiaspina near densitexta on Eucalyptus moluccana with endogenous processes associated with senescence to assess the relative merits of an insect manipulation or plant defence interpretation of responses. Evidence supporting in...

  8. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Alex; Couture, Jean-Philippe [Departement de Biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (Canada); Blouin, Richard, E-mail: Richard.Blouin@USherbrooke.ca [Departement de Biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (Canada)

    2011-09-23

    Highlights: {yields} Role of DLK in cell proliferation. {yields} Modulation of DLK expression during cell cycle progression. {yields} DLK knockdown induces proliferation arrest and senescence. {yields} DLK-depleted cells display loss of cyclin D1 and up-regulation of p21. {yields} DLK participates in cell proliferation by modulating cell cycle regulator expression. -- Abstract: DLK, a serine/threonine kinase that functions as an upstream activator of the mitogen-activated protein kinase (MAPK) pathways, has been shown to play a role in development, cell differentiation, apoptosis and neuronal response to injury. Interestingly, recent studies have shown that DLK may also be required for cell proliferation, although little is known about its specific functions. To start addressing this issue, we studied how DLK expression is modulated during cell cycle progression and what effect DLK depletion has on cell proliferation in WI-38 fibroblasts. Our results indicate that DLK protein levels are low in serum-starved cells, but that serum addition markedly stimulated it. Moreover, RNA interference experiments demonstrate that DLK is required for ERK activity, expression of the cell cycle regulator cyclin D1 and proliferation of WI-38 cells. DLK-depleted cells also show a senescent phenotype as revealed by senescence-associated galactosidase activity and up-regulation of the senescence pathway proteins p53 and p21. Consistent with a role for p53 in this response, inhibition of p53 expression by RNA interference significantly alleviated senescence induced by DLK knockdown. Together, these findings indicate that DLK participates in cell proliferation and/or survival, at least in part, by modulating the expression of cell cycle regulatory proteins.

  9. Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence?

    Science.gov (United States)

    Steinbauer, M J; Burns, A E; Hall, A; Riegler, M; Taylor, G S

    2014-12-01

    Some herbivores can modify the physiology of plant modules to meet their nutritional requirements. Induction of premature leaf senescence could benefit herbivores since it is associated with the mobilisation of nutrients. We compared the effects of nymphal feeding by Cardiaspina near densitexta on Eucalyptus moluccana with endogenous processes associated with senescence to assess the relative merits of an insect manipulation or plant defence interpretation of responses. Evidence supporting insect manipulation included increased size of fourth and fifth instar nymphs (in the latter the effect was restricted to forewing pad length of females) on leaves supporting high numbers of conspecifics and feeding preventing leaf necrosis. Intra-specific competition negated greater performance at very high densities. High and very high abundances of nymphs were associated with increased concentrations of amino acid N but only very high abundances of nymphs tended to be associated with increased concentrations of six essential amino acids. Contrary to the insect manipulation interpretation, feeding by very high abundances of nymphs was associated with significant reductions in chlorophyll, carotenoids and anthocyanins. Evidence supporting plant defence included the severity of chlorosis increasing with the abundance of nymphs. Leaf reddening did not develop because ambient conditions associated with photoinhibition (high irradiance and low temperature) were not experienced by leaves with chlorotic lesions. Leaf reddening (from anthocyanins) alone is not expected to adversely affect nymphal survival; only leaf necrosis would kill nymphs. For senescence-inducing psyllids, nutritional enhancement does not fit neatly into either an insect manipulation or plant defence interpretation.

  10. Age-related increase in Wnt inhibitor causes a senescence-like phenotype in human cardiac stem cells.

    Science.gov (United States)

    Nakamura, Tamami; Hosoyama, Tohru; Murakami, Junichi; Samura, Makoto; Ueno, Koji; Kurazumi, Hiroshi; Suzuki, Ryo; Mikamo, Akihito; Hamano, Kimikazu

    2017-06-03

    Aging of cardiac stem/progenitor cells (CSCs) impairs heart regeneration and leads to unsatisfactory outcomes of cell-based therapies. As the precise mechanisms underlying CSC aging remain unclear, the use of therapeutic strategies for elderly patients with heart failure is severely delayed. In this study, we used human cardiosphere-derived cells (CDCs), a subtype of CSC found in the postnatal heart, to identify secreted factor(s) associated with CSC aging. Human CDCs were isolated from heart failure patients of various ages (2-83 years old). Gene expression of key soluble factors was compared between CDCs derived from young and elderly patients. Among these factors, SFRP1, a gene encoding a Wnt antagonist, was significantly up-regulated in CDCs from elderly patients (≥65 years old). sFRP1 levels was increased significantly also in CDCs, whose senescent phenotype was induced by anti-cancer drug treatment. These results suggest the participation of sFRP1 in CSC aging. We show that the administration of recombinant sFRP1 induced cellular senescence in CDCs derived from young patients, as indicated by increased levels of markers such as p16, and a senescence-associated secretory phenotype. In addition, co-administration of recombinant sFRP1 could abrogate the accelerated CDC proliferation induced by Wnt3A. Taken together, our results suggest that canonical Wnt signaling and its antagonist, sFRP1, regulate proliferation of human CSCs. Furthermore, excess sFRP1 in elderly patients causes CSC aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...... ammonia and benefits from the properties of ammonia as a fuel. The system can be used as a safe, reversible, low-cost hydrogen carrier....

  12. Hydrogen application dynamics and networks

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)

    2010-12-30

    The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)

  13. Hydrogen ICE Vehicle Testing Activities

    Energy Technology Data Exchange (ETDEWEB)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  14. Preparation of slightly hydrogenated coal

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1943-05-03

    Processes serving as producers of slightly hydrogenated coal are discussed. It was established that the working process of an extracting hydrogenation from coal alone did not present optimal conditions for production of slightly hydrogenated coal, and therefore led to unfavorably high costs. More favorable operating costs were expected with the use of larger amounts of gas or with simultaneous production of asphalt-free oils in larger quantity. The addition of coal into the hydrogenation of low temperature carbonization tars made it possible to produce additional briquetting material (slightly hydrogenated coal) in the same reaction space without impairment of the tar hydrogenation. This was to lower the cost still more. For reasons of heat exchange, the process with a cold separator was unfavorable, and consideration of the residue quality made it necessary to investigate how high the separator temperature could be raised. 3 tables.

  15. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  16. Tetraphenylphosphonium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Philip A. W. Dean

    2008-01-01

    Full Text Available In the title compound, C24H20P+·C2HO4−, two symmetry-independent ion pairs are present. The cations aggregate into puckered sheets via zigzag infinite chains of sixfold phenyl embraces and parallel fourfold phenyl embraces, while the anions form hydrogen-bonded chains between the sheets of cations. In the two independent oxalate anions, the angles between the normals to the two least-squares carboxylate COO planes are unusually large, viz. 72.5 (1 and 82.1 (1°.

  17. Recirculating cryogenic hydrogen maser

    Energy Technology Data Exchange (ETDEWEB)

    Huerlimann, M.D.; Hardy, W.N.; Berlinsky, A.J.; Cline, R.W.

    1986-08-01

    We report on the design and initial testing of a new type of hydrogen maser, operated at dilution refrigerator temperatures, in which H atoms circulate back and forth between a microwave-pumped state selector and the maser cavity. Other novel design features include liquid-/sup 4/He-coated walls, He-cooled electronics, and the use of microscopic magnetic particles to relax the two lowest hyperfine levels in the state selector. Stabilities at least as good as that of a Rb clock and a high-stability quartz oscillator are observed for measuring times between 1 and 300 s.

  18. Hydrogen storage development

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E. [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  19. National Hydrogen Roadmap Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy future and outline the key barriers and needs to achieve the hydrogen vision. The National Hydrogen Roadmap Workshop was held April 2-3, 2002. These proceedings were compiled into a formal report, The National Hydrogen Energy Roadmap, which is also available online.

  20. The Montreal hydrogen airport project

    Energy Technology Data Exchange (ETDEWEB)

    Bose, T.K. [Hydrogen Research Inst., Trois-Rivieres, Quebec (Canada)

    2004-07-01

    'Full text:' The transition to a hydrogen economy presents a unique opportunity for Canada. It spells growth and investment opportunities for Canadian industry and offers a sustainable solution to climate change and pollution, particularly in our cities. The H{sub 2}EA program set forth by the government of Canada fosters the development and early introduction into the market place in Canada of multiple hydrogen technologies that support the transition to a hydrogen economy. A group of leading suppliers, manufacturers and users of hydrogen and hydrogen compatible technologies intend to demonstrate various applications for hydrogen in the area of power generation and transportation. The project will take place at the Pierre-Elliot-Trudeau Airport in Montreal in collaboration with Aeroport de Montreal (ADM). ADM has already invested approximately $50 million in environment related initiatives and The Montreal Hydrogen Airport project will further demonstrate its leadership in this area. The project will be divided into 14 sub-projects, which are: 1. Hydrogen internal combustion engine (HICE) shuttle buses. 2. Fuel cell shuttle bus. 3. Air terminal people movers powered by H2 fuel cell technologies. 4. HICE powered tugs and luggage carts. 5. H2 fuelling station. 6. H2 filling station. 7. Mobile hydrogen auxiliary power units for ADM vehicles. 8. Stationary hydrogen auxiliary power units for airport facilities. 9. ADM truck conversion to HICE. 10. Maintenance and certification centre. 11. Project promotion. 12. Training. 13. Compliance testing and project impact analysis. 14. Project management. This project is undoubtedly ambitious and yet realistic. Set in the second largest airport in the country, it can play the double role of showcasing the Canadian hydrogen industry to the entire world while implementing the strategic elements of the hydrogen economy in the second largest population centre in Canada. (author)

  1. Hydrogen production costs -- A survey

    Energy Technology Data Exchange (ETDEWEB)

    Basye, L.; Swaminathan, S.

    1997-12-04

    Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

  2. Hydrogen fracture toughness tester completion

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  3. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  4. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  5. Memorandum on coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Struss

    1942-10-27

    The first test facility was built in Ludwigshafen in Building 35 in 1924. During the Technical Committee meeting of February 4, 1926, Carl Bosch reported briefly for the first time on the status of coal hydrogenation and promised a comprehensive report to follow. Next, in connection with the Technical Committee meeting of July 13, 1926, Bosch arranged for the Committee to tour the test facility. Subsequently, the first industrial facility, for a yearly output of 100,000 tons, was built in Leuna with great speed and began production in April 1927. For this facility RM 26.6 million in credit was appropriated during 1926 and 1927 (the costs, including associated units, were estimated at RM 46 million; the RM 26.6 million covered only erection of the plant). A further RM 264 million was written off to hydrogenation in the years 1926 to 1931 on tests in new areas. At the end of 1929 the large scale tests at Merseburg were interrupted. On April 7, 1932, in the Nitrogen Branch discussion at Ludwigshafen, Dr. Schneider reported on the improvement in coal decomposition percentage which had meanwhile been achieved: from 60% to 95%. He proposed a last large-scale test, which was to require RM 375,000 up to the starting point and RM 170,000 per month during the six-month test period. This last test then led to definitive success in 1933.

  6. Versatile Hydrogen-Hydrogen Bond with a Difference

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 6. Versatile Hydrogen-Hydrogen Bond with a Difference. A G Samuelson. Research News Volume 1 Issue 6 June 1996 pp 87-89. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/06/0087-0089 ...

  7. Hydrogen and fuel cells; Hydrogene et piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  8. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  9. Hydrogen vacancies facilitate hydrogen transport kinetics in sodium hydride nanocrystallites

    NARCIS (Netherlands)

    Singh, S.; Eijt, S.W.H.

    2008-01-01

    We report ab initio calculations based on density-functional theory, of the vacancy-mediated hydrogen migration energy in bulk NaH and near the NaH(001) surface. The estimated rate of the vacancy mediated hydrogen transport, obtained within a hopping diffusion model, is consistent with the reaction

  10. Muonium/muonic hydrogen formation in atomic hydrogen

    Indian Academy of Sciences (India)

    Abstract. The muonium/muonic hydrogen atom formation in µ±–H collisions is in- vestigated, using a two-state approximation in a time dependent formalism. It is found that muonium cross-section results are similar to the cross-section results obtained for positronium formation in e+–H collision. Muonic hydrogen atom ...

  11. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  12. The Norwegian hydrogen guide 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Hydrogen technologies are maturing at rapid speed, something we experience in Norway and around the globe every day as demonstration projects for vehicles and infrastructure expand at a rate unthinkable of only a few years ago. An example of this evolution happened in Norway in 2009 when two hydrogen filling stations were opened on May the 11th, making it possible to arrange the highly successful Viking Rally from Oslo to Stavanger with more than 40 competing teams. The Viking Rally demonstrated for the public that battery and hydrogen-electric vehicles are technologies that exist today and provide a real alternative for zero emission mobility in the future. The driving range of the generation of vehicles put into demonstration today is more than 450 km on a full hydrogen tank, comparable to conventional vehicles. As the car industry develops the next generation of vehicles for serial production within the next 4-5 years, we will see vehicles that are more robust, more reliable and cost effective. Also on the hydrogen production and distribution side progress is being made, and since renewable hydrogen from biomass and electrolysis is capable of making mobility basically emission free, hydrogen can be a key component in combating climate change and reducing local emissions. The research Council of Norway has for many years supported the development of hydrogen and fuel cell technologies, and The Research Council firmly believes that hydrogen and fuel cell technologies play a crucial role in the energy system of the future. Hydrogen is a flexible transportation fuel, and offers possibilities for storing and balancing intermittent electricity in the energy system. Norwegian companies, research organisations and universities have during the last decade developed strong capabilities in hydrogen and fuel cell technologies, capabilities it is important to further develop so that Norwegian actors can supply high class hydrogen and fuel cell technologies to global markets

  13. Hydrogen and OUr Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  14. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  15. Hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.

    2007-01-01

    cum laude graduation (with distinction) To replace fossil fuels, society is currently considering alternative clean fuels for transportation. Hydrogen could be such a fuel. In theory, large amounts of renewable hydrogen can be produced from organic contaminants in wastewater. During his PhD research

  16. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  17. Hydrogen effects in corrosion: discussion

    Science.gov (United States)

    Stopher, Miles A.; Simpson, E. Luke

    2017-06-01

    This session contained talks on the characterization of hydrogen-enhanced corrosion of steels and nickel-based alloys, emphasizing the different observations across length scales, from atomic-scale spectrographic to macro-scale fractographic examinations. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  18. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  19. Hydrogen manufacturing using plasma reformers

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  20. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  1. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  2. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  3. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  4. Metallization of fluid hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Louis, A.A.; Ashcroft, N.W.

    1997-05-14

    The electrical activity of liquid hydrogen has been measured at the high dynamic pressures, and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 CPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) process in which structural changes are paramount.

  5. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  6. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K; Kondo, T [Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yoshioka, S; Kamiya, K; Numazawa, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan)], E-mail: kmatsu@kenroku.kanazawa-u.ac.jp

    2009-02-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  7. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  8. High capacity hydrogen storage nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy; Wellons, Matthew S.

    2017-12-12

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  9. Storage of liquid hydrogen in natural zeolite

    National Research Council Canada - National Science Library

    Pavol Rybár; Carsten Drebenstedt; Mário Molokáč; Ladislav Hvizdák; Ľubomír Štrba

    2015-01-01

    .... Therefore, the storage of hydrogen is relatively dangerous. A storage of liquid hydrogen in the natural zeolite, which is placed in large capacity battery, appears to be a suitable hydrogen storage method...

  10. High capacity hydrogen storage nanocomposite materials

    Science.gov (United States)

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  11. Hydrogen sulfide intoxication.

    Science.gov (United States)

    Guidotti, Tee L

    2015-01-01

    Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths. © 2015 Elsevier B.V. All rights reserved.

  12. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  13. Liquid hydrogen: back to basics

    Energy Technology Data Exchange (ETDEWEB)

    Sherif, S.A. [Dept. of Mechanical and Aerospace Engineering, Univ. of Florida, Florida (United States)

    2009-07-01

    'Full text': Liquid hydrogen is primarily used as a rocket fuel and is predestined for supersonic and hypersonic space vehicles to a large extent because it has the lowest boiling point density and the highest specific thrust of any known fuel. Its favorable characteristics include its high heating value per unit mass, its wide ignition range in hydrogen/oxygen or air mixtures, as well as its large flame speed and cooling capacity due to its high specific heat which permits very effective engine cooling and cooling the critical parts of the outer skin. Liquid hydrogen has some other important uses such as in high-energy nuclear physics and bubble chambers. The transport of hydrogen is vastly more economical when it is in liquid form even though cryogenic refrigeration and special Dewar vessels are required. Although liquid hydrogen can provide a lot of advantages, its uses are restricted in part because liquefying hydrogen by existing conventional methods consumes a large amount of energy (around 30% of its heating value). Liquefying 1 kg of hydrogen in a medium-size plant requires 10 to 13 kWh of electric energy. In addition, boil-off losses associated with the storage, transportation, and handling of liquid hydrogen can consume up to 40% of its available combustion energy. It is therefore important to search for ways that can improve the efficiency of the liquefiers and diminish the boil-off losses. This lecture gives an overview of the main issues associated with the production, storage, and handling of liquid hydrogen. Some discussion of promising ways of hydrogen liquefaction will also be presented. (author)

  14. Storage of liquid hydrogen in natural zeolite

    OpenAIRE

    Pavol Rybár; Carsten Drebenstedt; Mário Molokáč; Ladislav Hvizdák; Ľubomír Štrba

    2015-01-01

    When producing and utilizing hydrogen, its storage is one of the biggest problems. Hydrogen, as a gas, is extremely fluid with very low specific weight. Moreover, at a certain rate, the hydrogen-oxygen mixture is explosive. Therefore, the storage of hydrogen is relatively dangerous. A storage of liquid hydrogen in the natural zeolite, which is placed in large capacity battery, appears to be a suitable hydrogen storage method. Proposed and constructed pressure tank, large cap...

  15. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  16. High efficiency stationary hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Truslow, S. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  17. Hydrogen-Based Energy Conservation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sustainable Innovations is developing a technology for efficient separation and compression of hydrogen gas. The electrochemical hydrogen separator and compressor...

  18. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  19. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  20. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  1. Extensive analysis of hydrogen costs

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, D.M.; Martin, D.; Garcia-Alegre, M.C.; Guinea, D. [Consejo Superior de Investigaciones Cientificas, Arganda, Madrid (Spain). Inst. de Automatica Industrial; Agila, W.E. [Acciona Infraestructuras, Alcobendas, Madrid (Spain). Dept. I+D+i

    2010-07-01

    Cost is a key issue in the spreading of any technology. In this work, the cost of hydrogen is analyzed and determined, for hydrogen obtained by electrolysis. Different contributing partial costs are taken into account to calculate the hydrogen final cost, such as energy and electrolyzers taxes. Energy cost data is taken from official URLs, while electrolyzer costs are obtained from commercial companies. The analysis is accomplished under different hypothesis, and for different countries: Germany, France, Austria, Switzerland, Spain and the Canadian region of Ontario. Finally, the obtained costs are compared to those of the most used fossil fuels, both in the automotive industry (gasoline and diesel) and in the residential sector (butane, coal, town gas and wood), and the possibilities of hydrogen competing against fuels are discussed. According to this work, in the automotive industry, even neglecting subsidies, hydrogen can compete with fossil fuels. Hydrogen can also compete with gaseous domestic fuels. Electrolyzer prices were found to have the highest influence on hydrogen prices. (orig.)

  2. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  3. Nanoporous polymers for hydrogen storage.

    Science.gov (United States)

    Germain, Jonathan; Fréchet, Jean M J; Svec, Frantisek

    2009-05-01

    The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydrogen storage focuses on metal hydrides, these materials are currently limited by slow kinetics and energy inefficiency. Nanostructured materials with high surface areas are actively being developed as another option. These materials avoid some of the kinetic and thermodynamic drawbacks of metal hydrides and other reactive methods of storing hydrogen. In this work, progress towards hydrogen storage with nanoporous materials in general and porous organic polymers in particular is critically reviewed. Mechanisms of formation for crosslinked polymers, hypercrosslinked polymers, polymers of intrinsic microporosity, and covalent organic frameworks are discussed. Strategies for controlling hydrogen storage capacity and adsorption enthalpy via manipulation of surface area, pore size, and pore volume are discussed in detail.

  4. Solar hydrogen for urban trucks

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  5. Hydrogenation of zirconium film by implantation of hydrogen ions

    Science.gov (United States)

    Liu, Yang; Fang, Kaihong; Lv, Huiyi; Liu, Jiwei; Wang, Boyu

    2017-03-01

    In order to understand the drive-in target in a D-D type neutron generator, it is essential to study the mechanism of the interaction between hydrogen ion beams and the hydrogen-absorbing metal film. The present research concerns the nucleation of hydride within zirconium film implanted with hydrogen ions. Doses of 30 keV hydrogen ions ranging from 4.30 × 1017 to 1.43 × 1018 ions cm-2 were loaded into the zirconium film through the ion beam implantation technique. Features of the surface morphology and transformation of phase structures were investigated with scanning electron microscopy, atomic force microscopy and x-ray diffraction. Confirmation of the formation of δ phase zirconium hydride in the implanted samples was first made by x-ray diffraction, and the different stages in the gradual nucleation and growth of zirconium hydride were then observed by atomic force microscope and scanning electron microscopy.

  6. 4-Chloroanilinium hydrogen oxalate hemihydrate

    Directory of Open Access Journals (Sweden)

    Hajer Rahmouni

    2010-04-01

    Full Text Available In the title hydrated molecular salt, C6H7ClN+·C2HO4−·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, the anions are linked by O—H...O hydrogen bonds, forming chains propagating along the b axis. These chains are interconnected through O—H...O hydrogen bonds from the water molecules and N—H...O hydrogen bonds from the cations, building layers parallel to the ab plane.

  7. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  8. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet

    Science.gov (United States)

    Provenzano, J. J.

    1995-02-01

    Clean Air Now (CAN), a non-profit corporation, acting under U.S. Department of Energy Cooperative Agreement will build a Solar Hydrogen Generating Facility at the Xerox Corp. Facility in El Segundo, CA. An integral component of this system is an electrolyzer and related equipment for compression and storage of the produced hydrogen gas. CAN has selected The Electrolyser Corporation (T.E.C) to fulfill this requirement.

  9. Ionization of hydrogen and hydrogenic ions by antiprotons

    Science.gov (United States)

    Schultz, D. R.; Krstić, P. S.; Reinhold, C. O.; Wells, J. C.

    1996-05-01

    Motivated by earlier theoretical studies which utilized simplified models and by a very recent experiment regarding antiproton-impact of hydrogen, we present a description (D.R. Schultz, P.S. Krstić, C.O. Reinhold, and J.C. Wells, Phys. Rev. Lett. (1996) submitted.) of ionization of hydrogen and hydrogenic ions based on very large scale numerical solutions of the time-dependent Schrödinger equation in three spatial dimensions and on analysis of the topology of the electronic eigenenergy surfaces in the plane of complex internuclear distance. It is illustrated how ionization of atomic hydrogen and hydrogenic ions by antiprotons is quite different from that for impact by positively charged particles at low energies. Most significantly, for hydrogen targets, the quasi-molecular electronic eigenenergies approach close to and ultimately merge with the continuum at small distances, leading to a plateau of the low energy ionization cross section. Work supported by US DOE Office of BES through contract No. DE-AC05-84OR21400 managed by Lockheed Martin Energy Research Corp.

  10. Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk

    OpenAIRE

    Shimouchi, Akito; Nose, Kazutoshi; Yamaguchi, Makoto; Ishiguro, Hiroshi; Kondo, Takaharu

    2009-01-01

    Objective: To compare how and to what extent ingestion of hydrogen water and milk increase breath hydrogen in adults.Methods: Five subjects without specific diseases, ingested distilled or hydrogen water and milk as a reference material that could increase breath hydrogen. Their end-alveolar breath hydrogen was measured.Results: Ingestion of hydrogen water rapidly increased breath hydrogen to the maximal level of approximately 40 ppm 10–15 min after ingestion and thereafter rapidly decrease...

  11. Modeling Mars' Hydrogen Exosphere

    Science.gov (United States)

    Holmstrom, M.

    2006-12-01

    Traditionally, exospheric densities and velocity distributions are modelled by spherical symmetric analytical Chamberlain functions, assuming gravity is the only force acting on the neutrals. Planetary exospheres are however not spherical symmetric to any good approximation, as evident from observations, due to non- uniformexobase conditions and effects such as photoionization, radiation pressure, charge exchange, recombination and planetary rotation. To account for these effects numerical simulations are needed. Using Monte Carlo test particle simulations it is possible to account for the above effects (if ion distributions are assumed). Even though neutrals in the exospheres by definition do not collide often, collisions occur. Especially near the exobase the transition is gradual from collision dominated regions at lower heights (with Maxwellian velocity distributions) to essentially collisionless regions at greater heights. We present exospheric simulations that include collisions self consistently using the direct simulation Monte Carlo (DSMC) approach. The code is three dimensional, parallel and uses an adaptive grid, allowing many particles to be included in the simulations, leading to accurate results. In particular, we here study Mars' hydrogen exosphere and the effects of the above processes, including thermal escape rates.

  12. Fiber optic hydrogen sensor

    Science.gov (United States)

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  13. Biological hydrogen production from phytomass

    Energy Technology Data Exchange (ETDEWEB)

    Bartacek, J.; Zabranska, J. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Water Technology and Environmental Engineering

    2004-07-01

    Renewable sources of energy have received wide attention lately. One candidate is hydrogen which has the added advantage of involving no greenhouse gases. Biological hydrogen production from wastewater or biowastes is a very attractive production technique. So far, most studies have concentrated on the use of photosynthetic bacteria. However, dark fermentation has recently become a popular topic of research as it has the advantage of not requiring light energy input, something that limits the performance of the photosynthetic method. While pure cultures have been used in most of the investigations to date, in industrial situations mixed cultures will probably be the norm because of unavoidable contamination. In this investigation the phytomass of amaranth (Amaranthus cruentus L) was used to produce hydrogen. Specific organic loading, organic loading, and pH were varied to study the effect on hydrogen production. 18 refs., 1 tab., 6 figs.

  14. Hydrogen-powered lawn mower

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, K.; Lorenzoni, J.-L. (Geneva Univ. (Switzerland). Lab. de Cristallographie)

    1993-04-01

    We present a hydrogen-powered lawn mower which was adapted from a commercial model running on gasoline. The necessary modifications include adjustments to the carburettor and the insulation of a hydrogen reservoir containing about 5 kg of a metal hydride powder. Hydrogen is obtained by desorption of that powder at ambient temperature and 2 - 20 bar pressure. The reservoir is rechargeable at a hydrogen pressure of about 25 bar within less than 1 h. One charge lasts about 40 min. corresponding to about 800 m[sup 2] of cut lawn. The engine shows a reduced noise level and no tendency to backfiring. The prototype has run successfully for more than 1 year. (Author)

  15. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  16. Hydrogen Fire Spectroscopy Issues Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This one year effort had four aspects; complete and document the calibrated spectral intensity of a hydrogen flame, understand the role of atmospheric attenuation on...

  17. Hydrogen bonding in tight environments

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; Solomon, Gemma C.; Franco, Ignacio

    2016-01-01

    The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force-extension (F-L) isotherms...... of the host-guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F-L curves exhibit peaks that signal conformational changes during elongation, the most prominent...... of which is in the 60-180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F-L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained...

  18. 1. European Hydrogen Energy Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    This conference is the first of a series of EHA (European Hydrogen Association) conferences that will take place every two years in Europe with the collaboration of the national European Hydrogen Associations. EHEC 2003 takes place within the context of the debates on long term energy strategies organized by the international authorities and the governments of many countries. Under the patronage of the European Commission and the French government, the conference will aim at providing a comprehensive picture of the research work and demonstrations on hydrogen and fuel cells that the currently being carried out all over the globe. EHEC 2003 will provide an opportunity to define the role that hydrogen will have in tomorrow's energy landscape and, in particular, the benefits with regard to: 1)sustainable development of energy 2)control of climate change 3)development of renewable energy 4)increase demand for ground transport. (O.M.)

  19. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  20. Hydrogen storage in nanotubes & nanostructures

    OpenAIRE

    Froudakis, George E.

    2011-01-01

    Over the last several years, a significant share of the scientific community has focused its attention on the hydrogen storage problem. Since 1997, when carbon nanotubes appeared to be a promising storage material, many theoretical and experimental groups have investigated the hydrogen storage capacity of these carbon nanostructures. These efforts were not always successful and consequently, the results obtained were often controversial. In the current review we attempt to summarize some the ...

  1. Chemical utilization of hydrogen from fluctuating energy sources – Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems

    OpenAIRE

    Geburtig, Denise; Preuster, Patrick; Bösmann, Andreas; Müller, Karsten; Wasserscheid, Peter

    2016-01-01

    Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way for storing and distributing hydrogen from electrolysis using excess energies from solar or wind power plants. In this contribution, an alternative, high-value utilization of such hydrogen is proposed namely its use in steady-state chemical hydrogenation processes. We here demonstrate that the hydrogen-rich form of the LOHC system dibenzyltoluene/perhydro-dibenzyltoluene can be directly applied as sole source of hydrog...

  2. 29 CFR 1910.103 - Hydrogen.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Hydrogen. 1910.103 Section 1910.103 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.103 Hydrogen. (a) General—(1) Definitions. As used in this section (i) Gaseous hydrogen system is one in which the hydrogen is delivered, stored...

  3. Hydrogen in the Methanol Production Process

    Science.gov (United States)

    Kralj, Anita Kovac; Glavic, Peter

    2006-01-01

    Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…

  4. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  5. Hydrogenation properties of Mg-Al alloys

    DEFF Research Database (Denmark)

    Andreasen, Anders

    2008-01-01

    . Further, it is found that the kinetics of hydrogenation, as well dehydrogenation, may be significantly improved by alloying compared to pure Mg. The expense of these improvements of the hydrogenation/dehydrogenation properties is a lower gravimetric hydrogen density in the hydrogenated product, (C) 2008...

  6. Hydrogen induced plastic deformation of stainless steel

    NARCIS (Netherlands)

    Gadgil, V.J.; Keim, Enrico G.; Geijselaers, Hubertus J.M.

    1998-01-01

    Hydrogen can influence the behaviour of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the

  7. Selective purge for hydrogenation reactor recycle loop

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  8. IEA HIA Task 37 - Hydrogen Safety

    DEFF Research Database (Denmark)

    Markert, Frank

    The work plan and objectives of this task are designed to support the acceleration of safe implementation of hydrogen infrastructure through coordinated international collaborations and hydrogen safety knowledge dissemination.......The work plan and objectives of this task are designed to support the acceleration of safe implementation of hydrogen infrastructure through coordinated international collaborations and hydrogen safety knowledge dissemination....

  9. 49 CFR 173.163 - Hydrogen fluoride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  10. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    Polyhydride metal complexes are being developed for application to hydrogen storage. Complexes have been found which catalyze the reversible hydrogenation of unsaturated hydrocarbons. This catalytic reaction could be the basis for a low temperature, hydrogen storage system with a available hydrogen density greater than 7 weight percent. The P-C-P pincer complexes, RhH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) and IrH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) have unprecedented, long term stability at elevated temperatures. The novel iridium complex catalyzes the transfer dehydrogenation of cycloctane to cyclooctene at the rate of 716 turnovers/h which is 2 orders of magnitude greater than that found for previously reported catalytic systems which do not require the sacrificial hydrogenation of a large excess of hydrogen acceptor.

  12. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  13. Influence of hydrogen on hydrogenated cadmium telluride optical spectra

    Energy Technology Data Exchange (ETDEWEB)

    Pociask, M.; Polit, J.; Sheregii, E.; Cebulski, J. [Institute of Physics, University of Rzeszow (Poland); Kisiel, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Mycielski, A. [Institute of Physics, PAS, Warszawa (Poland); Morgiel, J. [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, Krakow (Poland); Piccinini, M. [INFN-Laboratori Nazionali di Frascati (Italy); Dipartimento Scienze Geologiche, Universita Roma Tre, Rome (Italy); Marcelli, A.; Robouch, B.; Guidi, M.C. [INFN-Laboratori Nazionali di Frascati (Italy); Savchyn, V. [Ivan Franko Lviv National University (Ukraine); Izhnin, I.I. [Institute for Materials SRC ' ' Carat' ' , Lviv (Ukraine); Zajdel, P. [Institute of Fizyki, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice (Poland); Nucara, A. [Universita' di Roma La Sapienza, P. le Aldo Moro 1, Rome (Italy)

    2009-09-15

    The presence of oxygen impurity in semiconducting materials affects the electrical properties of crystals and significantly limits their application. To remove oxygen impurity, ultra-pure hydrogen is used while growing Te-containing crystals such as CdTe, CdZnTe, and ZnTe. The hydrogenation of CdTe crystals is a technological process that purifies the basic material from oxygen, mainly cadmium and tellurium oxide compounds incorporated in CdTe crystalline lattice. In the present work we analyses the deformations induced by hydrogen and oxygen atoms in CdTe crystals looking at their influence on the near fundamental band (NFB), middle infrared (MIR) and far infrared (FIR) reflectivity spectra as well as on cathodoluminescence (CL) spectra. Comparison of the hydrogenated CdTe phonon structure profiles confirms the presence of hydrogen atoms bounded inside the lattice. The possible localization of hydrogen and oxygen ions within the tetrahedron coordinated lattice is discussed in the framework of a model that shows a good agreement with recent NFB, MIR and FIR experiments carried out on hydrogenated CdTe crystals. Measured reflection spectra in the wavelength range 190-1400 nm (NFB) indicate the appearance in CdTe(H{sub M}) and CdTe(H{sub L}) of additional maxima at 966 nm related to the electron transitions from level about 0.2 eV above the valence band. The CL spectra confirmed existence of this electron level. We present a possible H{sub 2} alignment similar to the single H model i.e., over the face (at about 0.38 Aa). For this model the angle from the central atom to the H atoms is equal to 64 which is also close to the bonding angle of CdH{sub 2} (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  15. Gas-phase hydrogenation influence on defect behavior in titanium-based hydrogen-storage material

    OpenAIRE

    Laptev, Roman S.; Viktor N. Kudiiarov; Bordulev, Yuri S.; Mikhaylov, Andrey A.; Andrey M. Lider

    2017-01-01

    Titanium and its alloys are promising materials for hydrogen storage. However, hydrogen penetration accompanies the exploitation of hydrogen storage alloys. In particular, hydrogen penetration and accumulation in titanium alloys changes their mechanical properties. Therefore, the research works of such materials are mainly focused on improving the reversibility of hydrogen absorption-liberation processes, increasing the thermodynamic characteristics of the alloys, and augmenting their hydroge...

  16. On critical hydrogen concentration for hydrogen embrittlement of Fe3Al

    Indian Academy of Sciences (India)

    Unknown

    The critical hydrogen concentration for hydrogen embrittlement in iron aluminide, Fe3Al has been estimated (0⋅42 wppm). The estimated critical hydrogen content has been correlated to structural aspects of the decohesion mechanism of hydrogen embrittlement. Keywords. Iron aluminides; hydrogen embrittlement; critical ...

  17. Hydrogen storage properties on mechanically milled graphite

    OpenAIRE

    Ichikawa, Takayuki; Chen, D. M.; Isobe, Shigehito; Gomibuchi, Emi; Fujii, Hironobu

    2004-01-01

    We investigated hydrogen absorption/desorption and structural properties in mechanically milled graphite under hydrogen pressures up to 6 MPa to clarify catalytic and hydrogen pressure effects in the milling. The results indicate that a small amount of iron contamination during milling plays a quite important role as a catalyst for hydrogen absorption/desorption properties in graphite. Two-peak structure for hydrogen desorption in the TDS profile is due to existence of two different occupatio...

  18. 2010 Annual Progress Report DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  19. Fuel Manifold Resists Embrittlement by Hydrogen

    Science.gov (United States)

    Adams, T.

    1986-01-01

    Completely-cast hydrogen-compatible alloy preferable to protective plating. Complexity of plating, welding, and brazing unnecessary if hydrogen-compatible alloy used for entire casting instead of protective overlay. Parts exposed to high-pressure hydrogen made immune to hydrogen embrittlement if fabricated from new alloy, Incoly 903 (or equivalent). Material strong and compatible with hydrogen at all temperatures and adapted for outlet manifold of Space Shuttle main combustion chamber.

  20. Thermodynamics of Hydrogen in Confined Lattice

    OpenAIRE

    Xiao, Xin

    2016-01-01

    Three of the most important questions concerning hydrogen storage in metals are how much hydrogen can be absorbed, how fast it can be absorbed (or released) and finally how strongly the hydrogen is bonded. In transition metals hydrogen occupies interstitial sites and the absorption as well as desorption of hydrogen can be fast. The enthalpy of the hydride formation is determined by the electronic structure of the absorbing material, which determines the amount of energy released in the hydrog...

  1. Prospects for hydrogen storage in graphene

    OpenAIRE

    Tozzini, Valentina; Pellegrini, Vittorio

    2012-01-01

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tan...

  2. Photoelectrochemical Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  3. Measurements of Hydrogen Storage

    Science.gov (United States)

    Meisner, Gregory P.

    2004-03-01

    The many sensational claims of vast quantities of hydrogen (H) stored in carbon materials reported since 1996 have resulted in the H storage and carbon scientific literature now being cluttered with misinformation and some genuinely bad science. H storage experiments are not trivial, and they are prone to error and misinterpretation. For example, volumetric experiments use equilibrium gas pressures (P) and temperatures (T) measured in calibrated volumes to determine the number of moles of gas, and changes in P without changes in T (or leakage) are then interpreted as sorption. A typical mistake is measuring P vs. time after pressurizing a sample chamber and interpreting a drop in P as sorption. This is difficult to interpret as real absorption because all confounding effects (leaks, T drifts, thermal inhomogeneities, etc.) are nearly impossible to eliminate. Moreover, the basic thermodynamic properties of gas flow systems tell us that high-P gases filling evacuated chambers experience non-negligible rises in T. Another example of misinterpretation arises in gravimetric experiments that use weight (W) measurements corrected for large T-dependent buoyancy effects to determine gas sorption. Here a typical mistake is interpreting the actual sorption of heavy residual impurity gases as H sorption. These and other techniques for measuring H sorption must be performed and interpreted with great care due to difficulties associated with small sample sizes, high gas pressures, very reactive materials, contamination, low signal-to-noise, poor experimental design, and, in some cases, bad science. Good science respects the difference between measurement precision (the number of significant digits of P or W measurements) and experimental accuracy (the degree of certainty that P or W changes really represent H sorption). At General Motors, we endeavor to understand, conduct, and promote reliable H storage measurements on new materials and routinely use both volumetric

  4. Switching off hydrogen peroxide hydrogenation in the direct synthesis process.

    Science.gov (United States)

    Edwards, Jennifer K; Solsona, Benjamin; N, Edwin Ntainjua; Carley, Albert F; Herzing, Andrew A; Kiely, Christopher J; Hutchings, Graham J

    2009-02-20

    Hydrogen peroxide (H2O2) is an important disinfectant and bleach and is currently manufactured from an indirect process involving sequential hydrogenation/oxidation of anthaquinones. However, a direct process in which H2 and O2 are reacted would be preferable. Unfortunately, catalysts for the direct synthesis of H2O2 are also effective for its subsequent decomposition, and this has limited their development. We show that acid pretreatment of a carbon support for gold-palladium alloy catalysts switches off the decomposition of H2O2. This treatment decreases the size of the alloy nanoparticles, and these smaller nanoparticles presumably decorate and inhibit the sites for the decomposition reaction. Hence, when used in the direct synthesis of H2O2, the acid-pretreated catalysts give high yields of H2O2 with hydrogen selectivities greater than 95%.

  5. Hydrogen: the future energy carrier.

    Science.gov (United States)

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  6. Heavy hydrogen in the stratosphere

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2003-01-01

    Full Text Available We report measurements of the deuterium content of molecular hydrogen (H2 obtained from a suite of air samples that were collected during a stratospheric balloon flight between 12 and 33 km at 40º N in October 2002. Strong deuterium enrichments of up to 400 permil versus Vienna Standard Mean Ocean Water (VSMOW are observed, while the H2 mixing ratio remains virtually constant. Thus, as hydrogen is processed through the H2 reservoir in the stratosphere, deuterium is accumulated in H2 . Using box model calculations we investigated the effects of H2 sources and sinks on the stratospheric enrichments. Results show that considerable isotope enrichments in the production of H2  from CH4 must take place, i.e., deuterium is transferred preferentially to H2 during the CH4 oxidation sequence. This supports recent conclusions from tropospheric H2 isotope measurements which show that H2 produced photochemically from CH4 and non-methane hydrocarbons must be enriched in deuterium to balance the tropospheric hydrogen isotope budget. In the absence of further data on isotope fractionations in the individual reaction steps of the CH4 oxidation sequence, this effect cannot be investigated further at present. Our measurements imply that molecular hydrogen has to be taken into account when the hydrogen isotope budget in the stratosphere is investigated.

  7. Hydrogen treatment of titanium based alloys

    Science.gov (United States)

    Losertová, M.; Hartmann, M.; Schindler, I.; Drápala, J.

    2017-11-01

    The positive effect of the hydrogen on hot deformation behaviour at 700 and 750 °C was investigated after thermal hydrogen treatment of Ti6Al4V and Ti26Nb alloys. Comparing the results obtained for the non-hydrogenated and hydrogenated specimens of both alloys, it was found that the hydrogen content as high as 1325 wt. ppm has an obvious benefit effect on high temperature deformation behaviour in the Ti6Al4V alloy by stabilizing beta phase and lowering thermal deformation resistance. In the case of Ti26Nb alloy the hydrogen content of 2572 wt. ppm suppressed stress instabilities during hot compression but slightly increased thermal deformation resistance. The microstructure study was performed before and after the isothermal compression tests on the specimens in hydrogenated as well as in non-hydrogenated condition. The hydrogen amounts in the specimens were measured by means of an analyser LECO RH600.

  8. Hydrogen generation from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Loges, Bjoern

    2009-09-04

    In this thesis, the hydrogen generation by dehydrogenation of 2-propanol and formic acid as model substances for renewable resources have been studied, which is of importance for hydrogen storage. For the base-assisted dehydrogenation of 2-propanol, a ruthenium diamine catalyst system has been investigated. For the selective decomposition of formic acid to hydrogen and carbon dioxide, a system has been established containing ruthenium catalysts and formic acid amine adducts as substrates. The best catalyst activity and productivity have been achieved with in situ generated ruthenium phosphine catalysts, e.g. [RuCl{sub 2}(benzene)]{sub 2} / dppe (TOF = 900 h{sup -1}, TON = 260,000). The gas evolved has been directly used in fuel cells. Furthermore, the influence of irradiation with visible light has been described for the ruthenium phosphine catalysts. (orig.)

  9. Revisiting the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Tomkiewicz, M. [Brooklyn College of CUNY, NY (United States)

    1996-09-01

    Research aimed at the development of technology to advance the solar-hydrogen alternative is per definition mission oriented. The priority that society puts on such research rise and fall with the priorities that we associate with the mission. The mission that we associate with the hydrogen economy is to provide a technological option for an indefinitely sustainable energy and material economies in which society is in equilibrium with its environment. In this paper we try to examine some global aspects of the hydrogen alternative and recommend formulation of a {open_quotes}rational{close_quotes} tax and regulatory system that is based on efforts needed to restore the ecological balance. Such a system, once entered into the price structure of the alternative energy schemes, will be used as a standard to compare energy systems that in turn will serve as a base for prioritization of publicly supported research and development.

  10. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  11. Hydrogen in marine diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Voegler, Arne

    2010-07-01

    To investigate ways of reducing the yearly fuel oil consumption of the UK fishing fleet of 300 million liters, with associated carbon emissions of 802,500tonnes, experiments were undertaken to explore the feasibility of supplementing diesel fuel in compression ignition engines with both on board generated oxy hydrogen and bottled hydrogen. A Beta Marine BD722 3 cylinder engine fitted on board of a 9.4m vessel was used as a test bed and parameters monitored included the in cylinder pressure, fuel economy (tank to propeller thrust analysis), exhaust gas analysis and the thermal performance at various load conditions. The outlet of an oxy hydrogen electrolyzer was connected to the air intake of the engine and the performance was monitored by powering the unit directly from the engine's alternator and also by an external battery. Another approach used bottled hydrogen gas which was introduced into the air intake at varying rates between 5%- 20% of the overall energy supplied and measured values were compared with baseline data gathered during diesel fuel only operations. By examining the force applied to a mooring rope under static conditions the propeller thrust of the vessel underway was calculated for varying speeds and the mechanical engine efficiency for different fuel ratios and loads was determined. Results have confirmed that modest fuel savings can be achieved by supplying hydrogen into the air intake of a diesel engine. The occurrence of engine knock at higher hydrogen supply rates was observed and it is indicated that this could be counter acted upon by shifting the injection timing closer towards top dead centre. (Author)

  12. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  13. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  14. Waste/By-Product Hydrogen

    Science.gov (United States)

    2011-01-13

    Biogas , including anaerobic digester gas, can be reformed to produce hydrogen and used in a fuel cell to produce significant amounts of electricity...Waste/By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...and heat. � When biogas is produced and used on‐site in a fuel cell, fuel utilization or overall energy efficiency can reach 90% and can reduce

  15. Hydrogen-rich gas generator

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1976-01-01

    A process and apparatus are described for producing hydrogen-rich product gases. A spray of liquid hydrocarbon is mixed with a stream of air in a startup procedure and the mixture is ignited for partial oxidation. The stream of air is then heated by the resulting combustion to reach a temperature such that a signal is produced. The signal triggers a two way valve which directs liquid hydrocarbon from a spraying mechanism to a vaporizing mechanism with which a vaporized hydrocarbon is formed. The vaporized hydrocarbon is subsequently mixed with the heated air in the combustion chamber where partial oxidation takes place and hydrogen-rich product gases are produced.

  16. National Hydrogen Vision Meeting Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-11-01

    This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, kicked off the public-private partnership that will pave the way to a more secure and cleaner energy future for America. These proceedings were compiled into a formal report, A National Vision of America''s Transition to a Hydrogen Economy - To 2030 and Beyond, which is also available online.

  17. Antiproton collisions with molecular hydrogen

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Theoretical antiproton and proton cross sections for ionization and excitation of hydrogen molecules as well as energy spectra of the ionized electrons were calculated in the impact-energy range from 8  to  4000  keV. The cross sections were computed with the close-coupling formulation of the sem......Theoretical antiproton and proton cross sections for ionization and excitation of hydrogen molecules as well as energy spectra of the ionized electrons were calculated in the impact-energy range from 8  to  4000  keV. The cross sections were computed with the close-coupling formulation...

  18. Ablation of Hydrogen Pellets in Hydrogen and Helium Plasmas

    DEFF Research Database (Denmark)

    Jørgensen, L W; Sillesen, Alfred Hegaard; Øster, Flemming

    1975-01-01

    Measurements on the interaction between solid hydrogen pellets and rotating plasmas are reported. The investigations were carried out because of the possibility of refuelling fusion reactors by the injection of pellets. The ablation rate found is higher than expected on the basis of a theory...

  19. Towards a sustainable hydrogen economy: Hydrogen pathways and infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, Grietus; Lenaers, Guido [VITO, Boeretang 200, B-2400 Mol (Belgium); Hetland, Jens [SINTEF Energy Research, Kolbjorn Hejesvei 1A, N-7465 Trondheim (Norway)

    2007-07-15

    Results from the European HySociety project (2003-2005) are revealed in which political, societal and technical challenges for developing a European hydrogen economy have been addressed. The focus is placed on the assessments of hydrogen pathways and infrastructure. It will show that no chain can be selected as an obvious winner according to primary energy demand, emission and cost. In order to ensure that the pathway losses are compensated by the more efficient end-use of the H{sub 2} fuel, calculations based on well-to-tank losses and tank-to-wheel efficiencies are used. Furthermore, in order to look into the consequences of introducing hydrogen, a top-down scenario has been worked out. The message is that certainly the hydrogen distribution part for the transport application has to be improved to avoid loosing the emission gain that is obtainable, especially via carbon capture and storage of the CO{sub 2}. In order to quantify the market development a bottom-up approach has been established in particular for the transport sector. (author)

  20. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    The aim of this work is to support the development of a high-profile demonstration of hydrogen generation technologies in a Swedish context. The overall objective of the demonstration is to deploy a reforming based hydrogen refilling station along the Swedish west coast; intermediate to the Malmoe refuelling station and planned stations in Goeteborg. In this way, the Norwegian hydrogen highway will be extended through the south of Sweden and down into Denmark. The aim of the project's first phase, where this constitutes the final report, was to demonstrate the ability to operate the IE reforming system on the E.On/SGC site-specific fuel. During the project, a preliminary system design has been developed, based on IE's proprietary reformer. The system has been operated at pressure, to ensure a stable operation of the downstream PSA; which has been operated without problems and with the expected hydrogen purity and recovery. The safe operation of the proposed and tested system was first evaluated in a preliminary risk assessment, as well as a full HazOp analysis. A thorough economic modelling has been performed on the viability of owning and operating this kind of hydrogen generation equipment. The evaluation has been performed from an on-site operation of such a unit in a refuelling context. The general conclusion from this modelling is that there are several parameters that influence the potential of an investment in a Hestia hydrogen generator. The sales price of the hydrogen is one of the major drivers of profitability. Another important factor is the throughput of the unit, more important than efficiency and utilization. Varying all of the parameters simultaneously introduce larger variations in the NPV, but 60% of the simulations are in the USD 90 000 to USD 180 000 interval. The chosen intervals for the parameters were: Hydrogen Sales Price (USD 5 - USD 7 per kg); Investment Cost (USD 70 000 - USD 130 000 per unit); Throughput (20 - 30 kg

  1. Why are Hydrogen Bonds Directional?

    Indian Academy of Sciences (India)

    for an interaction to be characterized as a hydro- gen bond but does not provide any rationale for the same. This article reports a rationale for limiting the angle, based on the electron density topology using the quantum theory of atoms in molecules. Electron density topol- ogy for common hydrogen bond donors HF, HCl, ...

  2. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  3. dimensional architectures via hydrogen bonds

    Indian Academy of Sciences (India)

    Administrator

    dimensional architectures via hydrogen bonds. LALIT RAJPUT, MADHUSHREE SARKAR and KUMAR BIRADHA*. Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302 e-mail: kbiradha@chem.iitkgp.ernet.in. Abstract. The reactions of bis(pyridylcarboxamido)alkanes (amides) and bis(3-pyridyl) ...

  4. Noncovalent synthesis using hydrogen bonding

    NARCIS (Netherlands)

    Prins, L.J.; Reinhoudt, David; Timmerman, P.

    2001-01-01

    Hydrogen bonds are like human beings in the sense that they exhibit typical grouplike behavior. As an individual they are feeble, easy to break, and sometimes hard to detect. However, when acting together they become much stronger and lean on each other. This phenomenon, which in scientific terms is

  5. Hydrogenation balances for bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Hoelscher

    1944-02-11

    This report was intended to set up predictive curves concerning how certain variables involved in coal hydrogenation output would change in response to changes in certain operational or input variables, for hydrogenation of Gelsenberg coal. The particular dependences investigated in the article were the following: (1) for liquid phase, the dependence of oil output, amount of product to be distilled, and hydrogen use upon the ash content of the coal, the carbon content of the coal, and the percentage of formation of gases, and (2) for vapor phase, the dependence of gasoline yield, hydrogen use, and excess hydrocarbon gas products on the percentage of gasification in the 6434 step. Within certain limits of validity, these dependences seemed mostly to be linear and were illustrated in graphs in the report (most of which were very hard to read on the microfilm image). The limits of validity were 2 to 8% ash content, 80 to 86.2% carbon content, 20 to 25% gasification in liquid phase, and 17 to 25% gasification in the 6434 vapor phase. As an example of the data and calculations, it was observed that at 2% ash content, there was 628 kg of oil output in the liquid phase, at 4% ash content, there was 621 kg oil output, and at 8% ash content, there was 607 kg oil output, so it was calculated that oil output would decrease by 0.56% for each percent increase in ash content between 2% and 8%. 7 tables, 2 graphs.

  6. Safety of hydrogen pressure gauges.

    Science.gov (United States)

    Voth, R. O.

    1972-01-01

    Study of the relative safety afforded an operator by various hydrogen-pressure gauge case designs. It is shown that assurance of personnel safety, should a failure occur, requires careful selection of available gauge designs, together with proper mounting. Specific gauge case features and mounting requirements are recommended.

  7. Hydrogen-Trapping Mechanisms in Nanostructured Steels

    Science.gov (United States)

    Szost, B. A.; Vegter, R. H.; Rivera-Díaz-del-Castillo, Pedro E. J.

    2013-10-01

    Nanoprecipitation-hardened martensitic bearing steels (100Cr6) and carbide-free nanobainitic steels (superbainite) are examined. The nature of the hydrogen traps present in both is determined via the melt extraction and thermal desorption analysis techniques. It is demonstrated that 100Cr6 can admit large amounts of hydrogen, which is loosely bound to dislocations around room temperature; however, with the precipitation of fine coherent vanadium carbide traps, hydrogen can be immobilized. In the case of carbide-free nanostructured bainite, retained austenite/bainite interfaces act as hydrogen traps, while concomitantly retained austenite limits hydrogen absorption. In nanostructured steels where active hydrogen traps are present, it is shown that the total hydrogen absorbed is proportional to the trapped hydrogen, indicating that melt extraction may be employed to quantify trapping capacity.

  8. Solid-State Hydrogen Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Availability of a safe, low-pressure, lightweight, compact hydrogen storage system is an enabling technology for hydrogen electric fuel cell usage for space...

  9. Hydrogen-Based Energy Conservation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and many others often rely on delivery of cryogenic hydrogen to meet their facility needs. NASA's Stennis Space Center is one of the largest users of hydrogen,...

  10. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and

  11. Cosmology: Photons from dwarf galaxy zap hydrogen

    Science.gov (United States)

    Erb, Dawn K.

    2016-01-01

    The detection of photons sufficiently energetic to ionize neutral hydrogen, coming from a compact, star-forming galaxy, offers clues to how the first generation of galaxies may have reionized hydrogen gas in the early Universe. See Letter p.178

  12. Hydrogen, Fuel Cells & Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    This plan details the goals, objectives, technical targets, tasks and schedule for EERE's contribution to the DOE Hydrogen Program. Similar detailed plans exist for the other DOE offices that make up the Hydrogen Program.

  13. Renewable Hydrogen: Integration, Validation, and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. W.; Martin, G. D.

    2008-07-01

    This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

  14. Analysis of Published Hydrogen Vehicle Safety Research

    Science.gov (United States)

    2010-02-01

    Hydrogen-fueled vehicles (HFVs) offer the promise of providing safe, clean, and efficient transportation in a setting of rising fuel prices and tightening environmental regulations. However, the technologies needed to store or manufacture hydrogen on...

  15. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  16. Hydrogen bond dynamics in bulk alcohols

    NARCIS (Netherlands)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen

  17. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, B.; Graaf, de R.M.; Staay, van der G.W.M.; Alen, T.A.; Richard, G.; Gabalon, T.; Hoek, van A.H.A.M.; Moon - van der Staay, S.Y.; Koopman, W.J.H.; Hellemond, van J.J.; Tielens, A.G.M.; Friedrich, T.; Veenhuis, M.; Huynen, M.A.; Hackstein, J.H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen(1), and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates(2). Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and

  18. Asymmetric hydrogenation using monodentate phosphoramidite ligands

    NARCIS (Netherlands)

    Minnaard, Adriaan J.; Feringa, Ben L.; Lefort, Laurent; De Vries, Johannes G.

    2007-01-01

    Monodentate phosphoramidites are excellent ligands for Rh-catalyzed asymmetric hydrogenations of substituted olefins. Enantioselectivities between 95 and 99% were obtained in the asymmetric hydrogenation of protected alpha- and beta-dehydroamino acids and esters, itaconic acid and esters, aromatic

  19. Hydrogen generation in tru waste transportation packages

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B; Sheaffer, M K; Fischer, L E

    2000-03-27

    This document addresses hydrogen generation in TRU waste transportation packages. The potential sources of hydrogen generation are summarized with a special emphasis on radiolysis. After defining various TRU wastes according to groupings of material types, bounding radiolytic G-values are established for each waste type. Analytical methodologies are developed for prediction of hydrogen gas concentrations for various packaging configurations in which hydrogen generation is due to radiolysis. Representative examples are presented to illustrate how analytical procedures can be used to estimate the hydrogen concentration as a function of time. Methodologies and examples are also provided to show how the time to reach a flammable hydrogen concentration in the innermost confinement layer can be estimated. Finally, general guidelines for limiting the hydrogen generation in the payload and hydrogen accumulation in the innermost confinement layer are described.

  20. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  1. Enhanced Hydrogen Dipole Physisorption, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Channing [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-01-03

    The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.

  2. Properties of carbonaceous-palladium hydrogen sensor

    Science.gov (United States)

    Kamińska, Anna; Krawczyk, Sławomir; Wronka, Halina; Czerwosz, ElŻbieta; Firek, Piotr; Kalenik, Jerzy; Szmidt, Jan

    2013-07-01

    In this paper we present studies of hydrogen sensors based on nanostructural C-Pd films deposited on alundum substrate with silver or titanium electrodes. These C-Pd films were prepared by PVD method. Films were characterized by SEM and EDS. Sensitivity of films toward hydrogen were measured in specially prepare experimental set-up with small chamber (50ml). Response time was also registered for different percentage of hydrogen / nitrogen mixture (up to 1% of hydrogen).

  3. Hydrogen uptake in vanadium first wall structures

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, E.P.; Jones, R.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    Evaluation of hydrogen sources and transport are needed to assess the mechanical integrity of V structures. Two sources include implantation and transmutation. The proposed coatings for the DEMO and ITER first wall strongly influence retention of hydrogen isotopes. Upper limit calculations of hydrogen inventory were based on recycling to the plasma and an impermeable coolant-side coating. Hydrogen isotope concentrations in V approaching 1,000 appm may be activated.

  4. Capacitive level meter for liquid hydrogen

    OpenAIRE

    Matsumoto, Koichi; Sobue, Masamitsu; Asamoto, Kai; Nishimura, Yuta; Abe, Satoshi; Numazawa, Takenori

    2011-01-01

    A capacitive level meter working at low temperatures was made to use in magnetic refrigerator for hydrogen liquefaction. The liquid level was measured from the capacitance between parallel electrodes immersed in the liquid. The meter was tested for liquid nitrogen, hydrogen, and helium. The operation was successful using an AC capacitance bridge. The estimated sensitivity of the meter is better than 0.2 mm for liquid hydrogen. The meter also worked with pressurized hydrogen. © 2010.

  5. Hydrogen from Biomass for Urban Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Boone, William

    2008-02-18

    The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

  6. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    OpenAIRE

    T. Lupascu; M. Ciobanu; V. Botan; T. Gromovoy; S. Cibotaru

    2013-01-01

    The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground ...

  7. Sieving hydrogen based on its high compressibility

    Science.gov (United States)

    Chen, Hangyan; Sun, Deyan; Gong, Xingao; Liu, Zhifeng

    2011-03-01

    Based on carbon nanotube intramolecular junction and a C60, a molecular sieve for hydrogen is presented. The small interspace between C60 and junction provides a size changeable channel for the permselectivity of hydrogen while blocking Ne and Ar. The sieving mechanism is due to the high compressibility of hydrogen.

  8. Hydrogen adsorption in carbon nanostructures compared

    NARCIS (Netherlands)

    Schimmel, H.G.; Nijkamp, M.G.; Kearley, G.J.; Rivera, A.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam ‘opened’

  9. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  10. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  11. Simple, Chemoselective Hydrogenation with Thermodynamic Stereocontrol

    OpenAIRE

    Iwasaki, Kotaro; Wan, Kanny K.; Oppedisano, Alberto; Crossley, Steven W. M.; Shenvi, Ryan A.

    2014-01-01

    Few methods permit the hydrogenation of alkenes to a thermodynamically favored configuration when steric effects dictate the alternative trajectory of hydrogen delivery. Dissolving metal reduction achieves this control, but with extremely low functional group tolerance. Here we demonstrate a catalytic hydrogenation of alkenes that affords the thermodynamic alkane products with remarkably broad functional group compatibility and rapid reaction rates at standard temperature and pressure.

  12. Simple, chemoselective hydrogenation with thermodynamic stereocontrol.

    Science.gov (United States)

    Iwasaki, Kotaro; Wan, Kanny K; Oppedisano, Alberto; Crossley, Steven W M; Shenvi, Ryan A

    2014-01-29

    Few methods permit the hydrogenation of alkenes to a thermodynamically favored configuration when steric effects dictate the alternative trajectory of hydrogen delivery. Dissolving metal reduction achieves this control, but with extremely low functional group tolerance. Here we demonstrate a catalytic hydrogenation of alkenes that affords the thermodynamic alkane products with remarkably broad functional group compatibility and rapid reaction rates at standard temperature and pressure.

  13. Precipitation hardening and hydrogen embrittlement of aluminum ...

    Indian Academy of Sciences (India)

    AA7020 Al–Mg–Zn, a medium strength aluminium alloy, is used in welded structures in military and aerospace applications. As it may be subjected to extremes of environmental exposures, including high pressure liquid hydrogen, it could suffer hydrogen embrittlement. Hydrogen susceptibility of alloy AA7020 was ...

  14. Carbon: Hydrogen Carrier or Disappearing Skeleton?

    NARCIS (Netherlands)

    Jong, K.P. de; Wechem, H.M.H. van

    1994-01-01

    The use of liquid hydrocarbons as energy carriers implies the use of carbon as a carrier for hydrogen to facilitate hydrogen transport and storage. The current trend for liquid energy carriers used in the transport sector is to maximize the load of hydrogen on the carbon carrier. The recently

  15. THEORETICAL STUDY OF CATALYTIC HYDROGENATION OF ...

    African Journals Online (AJOL)

    Preferred Customer

    Hydrogen. (H2). Figure 1. Drawings of molecules contained in the chemical systems studied. During the hydrogenation process of each molecule, one atom of the hydrogen molecule is turned to the oxygen atom O of the adsorbed molecule. At the beginning of process, the distance of OH between those both atoms was 10 ...

  16. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  17. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  18. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  19. 41 CFR 50-204.68 - Hydrogen.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...

  20. Radiolytic and thermolytic bubble gas hydrogen composition

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-11

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  1. Hydrogen Storage in Nanostructured Light Metal Hydrides

    NARCIS (Netherlands)

    Singh, S.

    2009-01-01

    The global energy issues can be solved by the abundantly available hydrogen on earth. Light metals are a compact and safe medium for storing hydrogen. This makes them attractive for vehicular use. Unfortunately, hydrogen uptake and release is slow in light metals at practical temperature and

  2. Hydrogen: The Ultimate Fuel and Energy Carrier.

    Science.gov (United States)

    Dinga, Gustav P.

    1988-01-01

    Lists 24 frequently asked questions concerning hydrogen as a fuel with several responses given to each question. Emphasized are hydrogen production, storage, transmission, and application to various energy-consuming sectors. Summarizes current findings and research on hydrogen. An extensive bibliography is included. (ML)

  3. Bioelectrocatalytic hydrogen production by hydrogenase electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, S.V.; Karyakina, E.E.; Karyakin, A.A. [M.V. Lomonosov Moscow State University (Russian Federation). Faculty of Chemistry; Vignais, P.M. [Universite Joseph Fourier, Grenoble (France). Departement de Biologie Moleculaire et Structurale, Laboratoire de Biochimie et Biophysique des Systemes Integres; Cournac, L. [Universite Mediterranee, Saint-Paul-lez-Durance (France). Departement d' Ecophysiologie Vegetale et de Microbiologie, Laboratoire d' Ecophysiologie de la Photosintese; Zorin, N.A. [Russian Academy of Science, Puschino (Russian Federation). Institute of Basic Biological Problems; Cosnier, S. [Universite Joseph Fourier, Grenoble (France). Laboratoire d' Electrochimie Organique et Photochimie Redox

    2002-12-01

    Production of molecular hydrogen by enzyme electrodes based on direct bioelectrocatalysis by [NiFe] hydrogenases from different sources (Thiocapsa roseopersicina and Desulfovibrio fructosovorans) was investigated. Hydrogen evolution was independently controlled by means of mass spectrometry. A strong correlation between the cathodic current generated by the hydrogenase electrodes and the rate of hydrogen evolution was demonstrated. (author)

  4. Storage, generation, and use of hydrogen

    Science.gov (United States)

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  5. Micromechanics of high temperature hydrogen attack

    NARCIS (Netherlands)

    Schlögl, Sabine M.; Giessen, Erik van der

    1999-01-01

    Hydrogen attack is a material degradation process that occurs at elevated temperatures in hydrogen-rich environments, such as found in petro-chemical installations. Weldments in components such as reactor vessels are particularly susceptible to hydrogen attack. This paper discusses a multi-scale

  6. Metallic Hydrogen and Nano-Tube Magnets

    Science.gov (United States)

    Cole, John W.

    2004-01-01

    When hydrogen is subjected to enough pressure the atoms will be pressed into close enough proximity that each electron is no longer bound to a single proton. The research objectives is to find whether metallic hydrogen can be produced and once produced will the metallic hydrogen be metastable and remain in the metallic form when the pressure is released.

  7. MIS-based sensors with hydrogen selectivity

    Science.gov (United States)

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  8. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example...

  9. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  10. Prospects for hydrogen storage in graphene.

    Science.gov (United States)

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  11. Biogas and Hydrogen Systems Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  12. Hydrogen infrastructure development in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ruben; Weeda, Marcel; De Groot, Arend [Energy Research Centre of The Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)

    2007-07-15

    Increasingly people think of how a hydrogen energy supply system would look like, and how to build and end up at such a system. This paper presents the work on modelling and simulation of current ideas among Dutch hydrogen stakeholders for a transition towards the widespread use of a hydrogen energy. Based mainly on economic considerations, the ideas about a transition seem viable. It appears that following the introduction of hydrogen in niche applications, the use of locally produced hydrogen from natural gas in stationary and mobile applications can yield an economic advantage when compared to the conventional system, and can thus generate a demand for hydrogen. The demand for hydrogen can develop to such an extent that the construction of a large-scale hydrogen pipeline infrastructure for the transport and distribution of hydrogen produced in large-scale production facilities becomes economically viable. In 2050, the economic viability of a large-scale hydrogen pipeline infrastructure spreads over 20-25 of the 40 regions in which The Netherlands is divided for modelling purposes. Investments in hydrogen pipelines for a fully developed hydrogen infrastructure are estimated to be in the range of 12,000-20,000 million Euros. (author)

  13. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation.

    Science.gov (United States)

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A; Milstein, David

    2015-04-17

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system.

  14. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation

    OpenAIRE

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David

    2015-01-01

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydro...

  15. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  16. Optical Fiber Grating Hydrogen Sensors: A Review.

    Science.gov (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  17. Hydrogen. Production and application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Dueker, A. [Sued-Chemie AG, Muenchen (Germany)

    2010-12-30

    Hydrogen is one of the most fascinating elements in Universe. Its unique properties made it to a matter that is used in a wide range of different industrial applications. Besides the chemical role of Hydrogen as a hydrogenation agent, it will play an ever more important role in the global energy house hold. This presentation focuses on the classical technologies for the production of Hydrogen based on a variety of raw materials and will show the most important applications of Hydrogen in large scale industry. (orig.)

  18. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  20. Metabolic engineering to enhance bacterial hydrogen production

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2008-01-01

    Summary Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K‐12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of the formate hydrogen lyase (FHL) system for synthesizing hydrogen from formate via hydrogenase 3 were also manipulated to enhance hydrogen production. Specifically, we altered regulation of FHL by controlling the regulators HycA and FhlA, removed hydrogen consumption by hydrogenases 1 and 2 via the hyaB and hybC mutations, and re‐directed formate metabolism using the fdnG, fdoG, narG, focA, fnr and focB mutations. The result was a 141‐fold increase in hydrogen production from formate to create a bacterium (BW25113 hyaB hybC hycA fdoG/pCA24N‐FhlA) that produces the largest amount of hydrogen to date and one that achieves the theoretical yield for hydrogen from formate. In addition, the hydrogen yield from glucose was increased by 50%, and there was threefold higher hydrogen production from glucose with this strain. PMID:21261819

  1. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  2. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  3. Hydrogen Sulfide and Polysulfide Signaling.

    Science.gov (United States)

    Kimura, Hideo

    2017-10-01

    Hydrogen sulfide (H2S) has been demonstrated to have physiological roles such as neuromodulation, vascular tone regulation, cytoprotection, oxygen sensing, inflammatory regulation, and cell growth. Recently, hydrogen polysulfides (H2Sn) have been found to be produced by 3-mercaptopyruvate sulfurtransferase and to regulate the activity of ion channels, tumor suppressers, and protein kinases. Furthermore, some of the effects previously reported to be mediated by H2S are now ascribed to H2Sn. Cysteine persulfide and cysteine polysulfide may also be involved in cellular redox regulation. The chemical interaction between H2S and nitric oxide (NO) can also produce H2Sn, nitroxyl, and nitrosopersulfide, suggesting their involvement in the reactions previously thought to be mediated by NO alone. This Forum focuses on and critically discusses the recent progress in the study of H2Sn, H2S, and NO as well as other per- or polysulfide species. Antioxid. Redox Signal. 00, 000-000.

  4. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  5. Improved Electrolytic Hydrogen Peroxide Generator

    Science.gov (United States)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  6. Hydrogen storage and fuel cells

    Science.gov (United States)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  7. Biological Chemistry of Hydrogen Selenide

    Directory of Open Access Journals (Sweden)

    Kellye A. Cupp-Sutton

    2016-11-01

    Full Text Available There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be “Reactive Selenium Compounds” relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe− at physiologic pH, is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry.

  8. Scattering of muonic hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mulhauser, F. [Universite de Fribourg (Switzerland); Adamczak, A. [Institute of Nuclear Physics (Poland); Beer, G.A. [University of Victoria (Canada); Bystritsky, V.M. [Joint Institute for Nuclear Research (Russian Federation); Filipowicz, M. [Institute of Physics and Nuclear Techniques (Poland); Fujiwara, M.C. [University of British Columbia (Canada); Huber, T.M. [Gustavus Adolphus College (United States); Jacot-Guillarmod, R. [Universite de Fribourg (Switzerland); Kammel, P. [University of California (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P. [Universite de Fribourg (Switzerland); Kunselman, A.R. [University of Wyoming (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Olin, A. [University of Victoria (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T.A. [University of Victoria (Canada); Stolupin, V.A. [Joint Institute for Nuclear Research (Russian Federation); Wozniak, J. [Institute of Physics and Nuclear Techniques (Poland)] (and others)

    1999-06-15

    Our measurement compares the energy dependence of the scattering cross-sections of muonic deuterium and tritium on hydrogen molecules for collisions in the energy range 0.1-45 eV. A time-of-flight method was used to measure the scattering cross-section as a function of the muonic atom beam energy and shows clearly the Ramsauer-Townsend effect. The results are compared with theoretical calculations by using Monte Carlo simulations. The molecular pd{mu} and pt{mu} formation creates background processes. We measure the formation rates in solid hydrogen by detecting the 5.5 MeV (pd{mu}) and 19.8 MeV (pt{mu}) {gamma}-rays emitted during the subsequent nuclear fusion processes.

  9. The interaction of hydrogen with metal alloys

    Science.gov (United States)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  10. Method for charging a hydrogen getter

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, C. Edwin (Golden, CO); Keyser, Matthew A. (Westminster, CO); Benson, David K. (Golden, CO)

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  11. Method for charging a hydrogen getter

    Science.gov (United States)

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  12. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  13. Storage of liquid hydrogen in natural zeolite

    Directory of Open Access Journals (Sweden)

    Pavol Rybár

    2015-10-01

    Full Text Available When producing and utilizing hydrogen, its storage is one of the biggest problems. Hydrogen, as a gas, is extremely fluid with very low specific weight. Moreover, at a certain rate, the hydrogen-oxygen mixture is explosive. Therefore, the storage of hydrogen is relatively dangerous. A storage of liquid hydrogen in the natural zeolite, which is placed in large capacity battery, appears to be a suitable hydrogen storage method. Proposed and constructed pressure tank, large capacity battery, allows long-term and safe storage of liquid hydrogen, with the possibility to change its state from liquid to gaseous or contrarily in real time. Natural zeolite is an inert material with large internal surface area and high thermal capacity. In the future, presented large capacity battery VAZEP can be a part of the system for production and storage of electric energy generated by photovoltaic modules from the sun.

  14. Hydrogen program summary Fiscal Year 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-03-01

    The annual program summary provides stakeholders within the hydrogen community with a snapshop of important advances that have occurred in the National Hydrogen Program over the fiscal year, including industry interactions and cooperation. The document will also be used to encourage additional potential industrial partners to join the Hydrogen Program Team. Fiscal Year 1994 marked a turning point for the Hydrogen Program, with a budget that grew significantly. The focus of the program was broadened to include development of hydrogen production technologies using municipal solid waste and biomass, in addition to an increased emphasis on industrial involvement and near-term demonstration projects. In order to maintain its near- and long-term balance, the Hydrogen Program will continue with basic, fundamental research that provides the long-term, high-risk, high-payoff investment in hydrogen as an energy carrier.

  15. 40-fs hydrogen Raman laser

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, N V; Konyashchenko, A V; Kostryukov, P V; Losev, L L; Pazyuk, V S [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Tenyakov, S Yu [Avesta Ltd., Troitsk, Moscow (Russian Federation); Molchanov, V Ya; Chizhikov, S I; Yushkov, K B [National University of Science and Technology ' MISIS' , Acoustooptical Research Center, Moscow (Russian Federation)

    2015-12-31

    40-fs first Stokes pulses at a wavelength of 1.2 μm were generated in a hydrogen SRS-converter pumped by orthogonally polarised double chirped pulses of a Ti : sapphire laser. To obtain a Stokes pulse close to a transform-limited one, a programmed acousto-optic dispersive delay line was placed between the master oscillator and regenerative amplifier. The energy efficiency of Stokes radiation conversion reached 22%. (lasers)

  16. Microwave Hydrogen Production from Methane

    Science.gov (United States)

    2012-04-01

    Renewable Energy Testing Center program also focuses on supporting relevant and emerging renewable energy technologies in the cellulosic waste...MW water treatment systems under the previous Army SBIR Phase II and Phase II Plus programs (FY 2003-2008). In FY 2009 CHA completed the field...demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater

  17. Hydrogen Leak Detection Sensor Database

    Science.gov (United States)

    Baker, Barton D.

    2010-01-01

    This slide presentation reviews the characteristics of the Hydrogen Sensor database. The database is the result of NASA's continuing interest in and improvement of its ability to detect and assess gas leaks in space applications. The database specifics and a snapshot of an entry in the database are reviewed. Attempts were made to determine the applicability of each of the 65 sensors for ground and/or vehicle use.

  18. Hydrolysis reactor for hydrogen production

    Science.gov (United States)

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  19. Hadronic shift in pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hennebach, M.; Gotta, D. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Anagnostopoulos, D.F. [University of Ioannina, Department of Materials Science and Engineering, Ioannina (Greece); Dax, A.; Liu, Y.W.; Markushin, V.E.; Simons, L.M. [Paul Scherrer Institut, Laboratory for Particle Physics, Villigen (Switzerland); Fuhrmann, H.; Gruber, A.; Hirtl, A.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Indelicato, P. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); CNRS, Laboratoire Kastler Brossel, Paris (France); Departement de Physique de l' Ecole Normale Superieure, Laboratoire Kastler Brossel, Paris (France); Manil, B. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); Rusi el Hassani, A.J. [Universite Abdelmalek Essaadi, Faculte des Sciences et Techniques, Tanger (Morocco); Trassinelli, M. [Sorbonne Universites, Institut des NanoSciences de Paris, Paris (France); CNRS, Institut des NanoSciences de Paris, Paris (France)

    2014-12-01

    The hadronic shift in pionic hydrogen has been redetermined to be ε {sub 1s} = 7.086 ± 0.007(stat) ± 0.006(sys) eV by X-ray spectroscopy of ground-state transitions applying various energy calibration schemes. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institut by using the cyclotron trap and an ultimate-resolution Bragg spectrometer with bent crystals. (orig.)

  20. Hydrogen Stark Broadened Brackett lines

    Directory of Open Access Journals (Sweden)

    C. Stehlé

    2010-01-01

    Full Text Available Stark-broadened lines of the hydrogen Brackett series are computed for the conditions of stellar atmospheres and circumstellar envelopes. The computation is performed within the Model Microfield Method, which includes the ion dynamic effects and makes the bridge between the impact limit at low density and the static limit at high density and in the line wings. The computation gives the area normalized line shape, from the line core up to the static line wings.

  1. Characterization of solid hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [British Columbia Univ., Vancouver, BC (Canada); Bailey, J.M.; Mulhauser, F. [Chester Technology (United Kingdom); Beer, G.A.; Douglas, J.L.; Knowles, P.E.; Maier, M.; Mason, G.R.; Olin, A.; Porcelli, T.A. [Victoria Univ., BC (Canada); Beveridge, J.L.; Marshall, G.M. [British Columbia Univ., Vancouver, BC (Canada). TRIUMF Facility; Huber, T.M. [Gustavus Adolphus Coll., St. Peter, MN (United States); Jacot-Guillarmod, R. [Fribourg Univ. (Switzerland); Kammel, P. [Lawrence Berkeley Lab., CA (United States); Kim, S.K. [Jeonbuk National Univ., Jeonju City (Korea, Republic of); Kunselman, A.R. [Wyoming Univ., Laramie, WY (United States); Martoff, C.J. [Temple Univ., Philadelphia, PA (United States); Petitjean, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zmeskal, J. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria)

    1996-10-01

    In experiments using the TRIUMF solid hydrogen target system, the knowledge of the target thickness and uniformity is often essential in order to extract physical parameters from the data. We have characterized the thickness and uniformity of frozen targets using the energy loss of alpha particles. An accuracy of {approx}5% was achieved, a limit imposed by the uncertainty in the stopping powers. The details of the method are described, and the thickness calibration of the target is presented. (orig.). 11 refs.

  2. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Zidan, R.A. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  3. Economy of bituminous coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    von Hochstetter, H.

    1944-05-11

    The influence of various factors on the production cost of (Janina) bituminous coal hydrogenation is analyzed briefly. The initial reckoning yielded a production cost of 188 marks per metric ton of gasoline and middle oils. The savings concomitant to changes of one percent in gasification, one percent in utilization of purified coal, one percent raising of space/time yield, one percent increase in throughput, one percent in coal concentration in the paste, and one percent in low temperature carbonization yield are listed. Factors affecting hydrogen consumption are listed in a table. Investigations showed the carbon-richest coal to produce a deviation in the effect of gasification upon the working costs by only 10 percent when compared with the Janina coal. Thus, the values listed were considered as guidelines for all kinds of bituminous coal. The calculations admitted the following conclusions: a maximum concentration of coal in the paste is desirable; one can assume a 2 percent reduction in the utilization with a 10 percent increase in throughput, as long as no changes in low temperature carbonization yield take place by changing the distribution in oil production; this configuration would change if the major concern were gas production instead of working costs, or if hydrogen production were the bottleneck. 1 table.

  4. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  5. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  6. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  7. Diffusion of Hydrogen in Proton Implanted Silicon: Dependence on the Hydrogen Concentration

    CERN Document Server

    Faccinelli, Martin; Jelinek, Moriz; Wuebben, Thomas; Laven, Johannes G; Schulze, Hans-Joachim; Hadley, Peter

    2016-01-01

    The reported diffusion constants for hydrogen in silicon vary over six orders of magnitude. This spread in measured values is caused by the different concentrations of defects in the silicon that has been studied. Hydrogen diffusion is slowed down as it interacts with impurities. By changing the material properties such as the crystallinity, doping type and impurity concentrations, the diffusivity of hydrogen can be changed by several orders of magnitude. In this study the influence of the hydrogen concentration on the temperature dependence of the diffusion in high energy proton implanted silicon is investigated. We show that the Arrhenius parameters, which describe this temperature dependence decrease with increasing hydrogen concentration. We propose a model where the relevant defects that mediate hydrogen diffusion become saturated with hydrogen at high concentrations. When the defects that provide hydrogen with the lowest energy positions in the lattice are saturated, hydrogen resides at energetically le...

  8. Gas-phase hydrogenation influence on defect behavior in titanium-based hydrogen-storage material

    Directory of Open Access Journals (Sweden)

    Roman S. Laptev

    2017-02-01

    Full Text Available Titanium and its alloys are promising materials for hydrogen storage. However, hydrogen penetration accompanies the exploitation of hydrogen storage alloys. In particular, hydrogen penetration and accumulation in titanium alloys changes their mechanical properties. Therefore, the research works of such materials are mainly focused on improving the reversibility of hydrogen absorption-liberation processes, increasing the thermodynamic characteristics of the alloys, and augmenting their hydrogen storage capacity. In the process of hydrogenation-dehydrogenation, the formed defects both significantly reduce hydrogen storage capacity and can also be used to create effective traps for hydrogen. Therefore, the investigation of hydrogen interaction with structural defects in titanium and its alloys is very important. The present work, the hydrogen-induced formation of defects in the alloys of commercially pure titanium under temperature gas-phase hydrogenation (873 K has studied by positron lifetime spectroscopy and Doppler broadening spectroscopy. Based on the evolution of positron annihilation parameters τf, τd, their corresponding intensities If, Id and relative changes of parameters S/S0 and W/W0, the peculiarities of hydrogen interaction with titanium lattice defects were investigated in a wide range of hydrogen concentrations from 0.8at% to 32.0at%.

  9. Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten

    Science.gov (United States)

    Wang, Li-Fang; Shu, Xiaolin; Lu, Guang-Hong; Gao, Fei

    2017-11-01

    An embedded-atom method potential has been developed for modeling hydrogen in body-centered-cubic (bcc) tungsten by fitting to an extensive database of density functional theory (DFT) calculations. Comprehensive evaluations of the new potential are conducted by comparing various hydrogen properties with DFT calculations and available experimental data, as well as all the other tungsten–hydrogen potentials. The new potential accurately reproduces the point defect properties of hydrogen, the interaction among hydrogen atoms, the interplay between hydrogen and a monovacancy, and the thermal diffusion of hydrogen in tungsten. The successful validation of the new potential confirms its good reliability and transferability, which enables large-scale atomistic simulations of tungsten–hydrogen system. The new potential is afterward employed to investigate the interplay between hydrogen and other defects, including [1 1 1] self-interstitial atoms (SIAs) and vacancy clusters in tungsten. It is found that both the [1 1 1] SIAs and the vacancy clusters exhibit considerable attraction for hydrogen. Hydrogen solution and diffusion in strained tungsten are also studied using the present potential, which demonstrates that tensile (compressive) stress facilitates (impedes) hydrogen solution, and isotropic tensile (compressive) stress impedes (facilitates) hydrogen diffusion while anisotropic tensile (compressive) stress facilitates (impedes) hydrogen diffusion.

  10. Hydrogen and oxygen isotope values in hydrogen peroxide.

    Science.gov (United States)

    Barnette, Janet E; Lott, Michael J; Howa, John D; Podlesak, David W; Ehleringer, James R

    2011-05-30

    Hydrogen peroxide (H(2)O(2)) is a widely used oxidizer with many commercial applications; unfortunately, it also has terrorist-related uses. We analyzed 97 hydrogen peroxide solutions representing four grades purchased across the United States and in Mexico. As expected, the range of hydrogen (δ(2)H, 230‰) and oxygen (δ(18)O, 24‰) isotope values of the H(2)O(2) solutions was large, reflecting the broad isotopic range of dilution waters. This resulted in predictable linear relationships of δ(2)H and δ(18)O values of H(2)O(2) solutions that were near parallel to the Meteoric Water Line (MWL), offset by the concentration of H(2)O(2) in the solution. By grade, dilute (3 to 35%) H(2)O(2) solutions were not statistically different in slope. Although the δ(2)H values of manufactured H(2)O(2) could be different from those of water, rapid H(2)O(2)-H(2)O exchange of H atoms eliminated any distinct isotope signal. We developed a method to measure the δ(18)O value of H(2)O(2) independent of dilution water by directly measuring O(2) gas generated from a catalase-induced disproportionation reaction. We predicted that the δ(18)O values of H(2)O(2) would be similar to that of atmospheric oxygen (+23.5‰), the predominant source of oxygen in the most common H(2)O(2) manufacturing process (median disproportionated δ(18)O=23.8‰). The predictable H-O relationships in H(2)O(2) solutions make it possible to distinguish commercial dilutions from clandestine concentration practices. Future applications of this work include synthesis studies that investigate the chemical link between H(2)O(2) reagents and peroxide-based explosive products, which may assist law enforcement in criminal investigations. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  12. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  13. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  14. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Jones, K.M.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  15. Mesenchymal stem cell conditioned medium alleviates oxidative stress injury induced by hydrogen peroxide via regulating miR143 and its target protein in hepatocytes.

    Science.gov (United States)

    Xu, Xuejing; Li, Dong; Li, Xue; Shi, Qing; Ju, Xiuli

    2017-12-19

    To investigate the impact of miRNA (microRNA) on hepatic oxidative stress damage under the human mesenchymal stem cell conditioned medium (MSC-CM) and explore the roles of the beta-1 adrenergic receptor (ADRB1) and hexokinase 2 (HK2) in this process. Hydrogen peroxide was used to induce oxidative stress injury in the human normal liver cell line L02. MSC-CM was separately prepared. After treatment with MSC-CM, the protective effects of MSC-CM on oxidative stress injury were assessed by changes in apoptosis, cell viability, cell cycle, and mitochondrial membrane potential. According to the microarray analysis, 19 disparately expressed miRNAs were selected for RT-PCR and miR143 identified as having significant differential expression in MSC-CM against oxidative stress injury. Subsequently, the predicted target proteins of miR143 were selected by bioinformatics software, and verified by western blot. In addition, down-regulation and up-regulation of miR143 expression and hydrogen peroxide induced hypoxia injury were carried out on L02 cells to study the role of miR143. MSC-CM significantly attenuated H 2 O 2 induced oxidative stress injury. The expression of miR143 was increased following oxidative stress injury whereas it decreased after MSC-CM treatment. The expression levels of HK2 and ADRB1 regulated by miR143 and Bcl-2 decreased under H 2 O 2 treatment but were restored following MSC-CM treatment. However the expression levels of Bax and BMF increased after H 2 O 2 injury and decreased after MSC-CM treatment. Moreover over-expression or down-regulation of miR143 aggravated or alleviated hepatocyte apoptosis respectively. MSC-CM may alleviate H 2 O 2 induced oxidative stress injury by inhibiting apoptosis and adjusting miRNA expression. Moreover down-regulation of miR143 protects L02 cells from apoptosis and initiates an adaptive process by adjusting the expression of HK2 ADRB1 and apoptosis-related proteins.

  16. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    OpenAIRE

    Ogden, Joan M; Yang, Christopher

    2005-01-01

    The development of a hydrogen infrastructure has been identified as a key barrier to implementing hydrogen as for a future transportation fuel. Several recent studies of hydrogen infrastructure have assessed near-term and long-term alternatives for hydrogen supply [1-2]. In this paper, we discuss how advances in material science related to hydrogen storage could change how a future hydrogen infrastructure is designed. Using a simplified engineering/economic model for hydrogen infrastructure d...

  17. Hydrogenated liquids and hydrogen production by non-thermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Centre national de la recherche scientifique, Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    In recent years, hydrogen (H{sub 2}) has been considered as a fuel for electricity generation and transportation purposes. H{sub 2} is a renewable energy source that does not contribute to the greenhouse effect. This paper reported on a comparative study of syngas production from alcohol, with particular reference to the plasma steam-reforming of ethanol, methanol, ammonia and vegetable oil. The H{sub 2} yields and energetic cost in function of hydrogen sources were presented. The non thermal plasma used in this study was a laboratory scale experimental device static discharge. An arc formed between two electrodes made of graphite. The efficiency of the process was determined through chemical diagnostics. Gas chromatography and Fourier transform infrared (FTIR) techniques were used to determine concentrations of H{sub 2}, carbon monoxide, carbon dioxide and carbon as functions of flow and inlet liquid mixture concentration parameters. This paper also presented the values of H{sub 2}/CO ratio and the composition of synthesis gas according to various operating conditions. 18 refs., 2 tabs., 8 figs.

  18. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  19. Hydrogen Uptake of DPB Getter Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Herberg, J L; Saab, A P; Weigle, J; Chinn, S C; Maxwell, R S; McLean II, W

    2008-05-30

    The physical and chemical properties of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB-Pd/C) in the form of pellets during hydrogenation were investigated. A thermogravimetric analyzer (TGA) was employed to measure the kinetics of the hydrogen uptake by the DPB getter pellets. The kinetics obtained were then used to develop a semi-empirical model, based on gas diffusion into solids, to predict the performance of the getter pellets under various conditions. The accuracy of the prediction model was established by comparing the prediction models with independent experimental data on hydrogen pressure buildup in sealed systems containing DPB getter pellets and subjected to known rates of hydrogen input. The volatility of the hydrogenated DPB products and its effects on the hydrogen uptake kinetics were also analyzed.

  20. Hydrogen on the rise. Wasserstoff im Aufwind

    Energy Technology Data Exchange (ETDEWEB)

    Bracha, M.; Patzelt, A. (Linde AG, Hoellriegelskreuth (Germany))

    1992-11-01

    With the growing environmental problems caused by the use of fossil fuels, hydrogen as clean secondary energy-carrier becomes part of the public interest, especially when the 'solar hydrogen economy' is concerned. Presently the biggest part of the worldwide hydrogen production is based on fossil sources, but regenerative energies combined with electrolyzer-plants will contribute to the future hydrogen production on a wider scale. Apart from typical areas such as the chemical or the semiconductor industry a new market for hydrogen is seen in civil-aviation and the overland traffic. Due to its high density and purity liquid-hydrogen (LH[sub 2]) is gaining special attention. (orig.).

  1. Potentialities of hydrogen production in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Boudries, R. [CDER, Route de l' Observatoire, Bouzareah Algiers (Algeria); USTHB, El Alia, Algiers (Algeria); Dizene, R. [USTHB, El Alia, Algiers (Algeria)

    2008-09-15

    The objective of the present study is to estimate the potentialities of hydrogen production in Algeria. Particular attention is paid to the clean and sustainable hydrogen production, i.e., production from renewable energy. First, the present overall energy situation in Algeria is reviewed. Trend in energy demand is analysed taking into account major parameters such as population growth, urbanization, improvement in quality of life and export opportunities. The resources available for hydrogen production are then presented. Finally, the estimation of hydrogen production potential using solar sources, the most important renewable energy sources in Algeria, is presented. This study indicates that the shift to hydrogen economy shows a promising prospect. Not only, it can meet the evergrowing local needs but it will also allow Algeria to keep its share of the energy market. Indeed, as is now the case for natural gas, hydrogen could be delivered to Western Europe through pipelines. (author)

  2. Simultaneous purification and storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Weber, R.; Carlson, E. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-08-01

    Specially coated magnesium particles have been shown to selectively absorb hydrogen from a hydrogen-rich gas stream such as reformate. These coated magnesium particles can store the absorbed hydrogen as required and subsequently deliver pure hydrogen, just as uncoated magnesium particles can. These coated magnesium particles could be used in a device that accepts a steady stream of reformate, as from a methane reformer, stores the selectively absorbed hydrogen indefinitely, and delivers purified hydrogen on demand. Unfortunately, this coating (magnesium nitride) has been shown to degrade over a period of several weeks, so that the magnesium within evidences progressively lower storage capacity. The authors are investigating two other coatings, one of which might be applicable to hydridable metals other than magnesium, to replace magnesium nitride.

  3. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown......The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  4. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink

    2006-01-01

    Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...... of fossil fuels, are main drivers for the currently increasing research and development efforts. However. significant technological breakthroughs are necessary for making a hydrogen economy feasible. In particular, it is necessary to develop appropriate hydrogen storage and transportation technologies....... Recently, metal ammine salts were proposed as safe, reversible. high-density and low-cost hydrogen carriers. Here, we discuss how this development could provide a platform for using ammonia as a fuel for the hydrogen economy, We do that by comparing various possible hydrogen carriers with respect to energy...

  5. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  6. Precision spectroscopy on atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Christian Godehard

    2011-12-15

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as {delta}{integral}{sub exp}=670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, {delta}{integral}{sub th}=670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r{sup 2} right angle {sub d}- left angle r{sup 2} right angle {sub p}=3.82007(65) fm{sup 2} and the deuteron structure radius r{sub str}=1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be {integral}{sub 1S-2S}=2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10{sup -15}. The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of {integral}{sub 1S-2S}=2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c{sub (TX)}-0.29c{sub (TY)}-0.08 c{sub (TZ)}=(2.2{+-}1.8) x 10{sup -11} within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level ({partial_derivative})/({partial_derivative}t)ln ({mu}{sub Cs})/({mu}{sub B})=-(3.0{+-}1.2) x 10{sup -15} yr{sup -1}.

  7. Ionic hydrogenation of organosulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Eckert-Maksic, M.; Margetic, D. (Rudjer Boskovic Institute, Zagreb (Yugoslavia). Dept. of Organic Chemistry and Biochemistry)

    Ionic hydrogenation of the three most abundant types of organosulfur constituents of coal, aromatic sulfides, aromatic disulfides, and benzo(b)thiophene derivatives, in BF{sub 3}.H{sub 2}O-Et{sub 3}SiH is studied. Reduction of aromatic sulfides results in partial saturation of the aromatic moiety and cleavage of the corresponding SR group. Aromatic disulfides undergo quantitative sulfur-sulfur bond cleavage, while benzo(b)thiophene derivatives produce 2,3-dihydrobenzo(b)thiophenes in high yields. 32 refs., 2 figs., 3 tabs.

  8. Assessment of Hydrogen as suistinable clean energy

    OpenAIRE

    Funez Guerra, C.; Clemente Jul, María del Carmen; Montes Ponce de León, M.

    2011-01-01

    The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells an...

  9. Phenazin-5-ium hydrogen sulfate monohydrate

    Directory of Open Access Journals (Sweden)

    Joseph deGeorge

    2013-04-01

    Full Text Available The crystal structure of the title salt, C12H9N2+·HSO4−·H2O, comprises inversion-related pairs of phenazinium ions linked by C—H...N hydrogen bonds. The phenazinium N—H atoms are hydrogen bonded to the bisulfate anions. The bisulfate anions and water molecules are linked by O—H...O hydrogen-bonding interactions into a structural ladder motif parallel to the a axis.

  10. Hydrogen production by alkaline water electrolysis

    OpenAIRE

    Santos, Diogo M. F.; César A. C. Sequeira; Figueiredo, José L.

    2013-01-01

    Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article...

  11. Hydrogen utilization potential in subsurface sediments

    DEFF Research Database (Denmark)

    Adhikari, Rishi Ram; Glombitza, Clemens; Nickel, Julia

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial...... Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen...

  12. Comparing hydrogen and hydrocarbon booster fuels

    Science.gov (United States)

    Martin, James A.

    1988-01-01

    The present evaluation of the consequences of hydrogen and hydrocarbon fuels as the basis of launch vehicle booster rocket-stage performance notes that hydrocarbon fuels lead to lower vehicle dry mass, for low-velocity requirements, while hydrogen fuel furnishes lower dry mass. Vehicles employing both types of fuel attempt to take advantage of the low intercept and slope of hydrocarbon fuel at low velocity, and subsequently, of the slope of the hydrogen curves at higher velocities.

  13. 2-Amino-3-nitropyridinium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Samah Akriche

    2009-04-01

    Full Text Available In the non-centrosymetric title compound, C5H6N3O2+·C2HO4−, the hydrogen oxalate anions form corrugated chains parallel to the c axis, linked by O—H...O hydrogen bonds. The 2-amino-3-nitropyridinium cations are anchored between theses chains by N—H...O and C—H...O hydrogen bonds and van der Waals and electrostatic interactions, creating a three-dimensional network.

  14. Extremely strong contiguous hydrogen bonding arrays

    OpenAIRE

    Thomson, Patrick

    2013-01-01

    When multiple hydrogen bonds lie in-plane and parallel to each other in close proximity, they experience additional positive or negative secondary electrostatic interactions. When a pair of molecules are arranged such that every hydrogen bond acceptor is on one molecule and every hydrogen bond donor is on another, the positive secondary electrostatic interactions are maximised, and thus the association constant of the complex is enhanced. This thesis will present the develop...

  15. Hydrogenation of biomass-derived substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C.; Waidmann, Christopher R.

    2016-06-07

    The .alpha.,.beta.-unsaturated ketone moiety of a substrate representative of non-food based biomass was hydrogenated to the corresponding saturated alcohol moiety using a composition including (1) a copper salt; (2) a phosphine; (3) a polar aprotic solvent such as acetonitrile, and (4) a compound suitable for providing hydrogen for the hydrogenation, such as a suitable silane material or a suitable siloxane material.

  16. Interaction of hydrogen with metallic nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Halbritter, Andras; Csonka, Szabolcs; Makk, Peter; Mihaly, Gyoergy [Electron Transport Research Group of the Hungarian Academy of Sciences and Department of Physics, Budapest University of Technology and Economics, 1111 Budapest (Hungary)

    2007-03-15

    We study the behavior of hydrogen molecules between atomic-sized metallic electrodes using the mechanically controllable break junction technique. We focus on the interaction H{sub 2} with monoatomic gold chains demonstrating the possibility of a hydrogen molecule being incorporated in the chain. We also show that niobium is strongly reactive with hydrogen, which enables molecular transport studies between superconducting electrodes. This opens the possibility for a full characterization of the transmission properties of molecular junctions with superconducting subgap structure measurements.

  17. Decentralized hydrogen production from diesel and biodiesel

    OpenAIRE

    Martin, S.; Kraaij, G.; Wörner, A.

    2014-01-01

    Assuming that from 2015 onwards an increasing amount of fuel cell powered vehicles will enter the market, hydrogen production from liquid fuels offers a promising option to meet short- and midterm hydrogen fuelling requirements. Besides, on-board hydrogen generation from logistic fuels for auxiliary power applications has attracted increasing attention. The German Aerospace Center acts as coordinator of the 3-year project NEMESIS2+ (www.nemesis-project.eu), a collaborative project funded ...

  18. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  19. Atomic hydrogen storage method and apparatus

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  20. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    Science.gov (United States)

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  1. The effect ofquercetine on lipid peroxidation induced by ziprasidone in human plasma – invitro studies

    Directory of Open Access Journals (Sweden)

    Justyna Kopka

    2014-03-01

    Full Text Available Niektóre leki przeciwpsychotyczne, w  tym zyprazydon (ZYP, przyczyniają się do zaburzeń równowagi proi antyoksydacyjnej u chorych na schizofrenię. Poszukiwanie skutecznej antyoksydacyjnej suplementacji zmniejszającej działanie prooksydacyjne leków przeciwpsychotycznych ma zatem duże znaczenie kliniczne. Celem badania było ustalenie wpływu ZYP na peroksydację lipidów ludzkiego osocza – przez oznaczenie stężenia związków reagujących z kwasem tiobarbiturowym (TBARS, w modelu in vitro. Materiał i metody: Krew do badań pobrano od zdrowych ochotników płci męskiej – na roztwór ACD. Substancję aktywną, czyli ZYP, rozpuszczono w 0,01% dimetylosulfotlenku do stężeń końcowych (40 ng/ml, 139 ng/ml i inkubowano z osoczem (1 i 24 godziny, 37°C. Osocze inkubowano również z kwercetyną (7,5 µg/ml, 15 µg/ml oraz z kwercetyną i ZYP, w różnych kombinacjach badanych stężeń. Do każdego doświadczenia wykonano próby kontrolne (bez leku. Oznaczenia stężenia TBARS przeprowadzono metodą spektrofotometryczną Rice’a-Evansa (modyfikacja: Wachowicz i Kustroń. Wyniki: ZYP w stężeniach 40 ng/ml i 139 ng/ml po 24 godzinach inkubacji z osoczem powoduje wzrost stężenia TBARS (p odpowiednio <0,01 i <0,002. Kwercetyna (7,5 µg/ml, 15 µg/ml inkubowana 24 godziny w osoczu wraz z ZYP zmniejsza peroksydację lipidów średnio o 38% (dla ZYP 40 ng/ml p odpowiednio <0,0003 i <0,0001, dla ZYP 139 ng/ml p odpowiednio <0,002 i <0,004. Wniosek: Kwercetyna istotnie obniża peroksydację lipidów wywoływaną przez zyprazydon.

  2. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Hoon [Cheongju Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.

  3. Hydrogen and Fuel Cells for IT Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer

    2016-03-09

    With the increased push for carbon-free and sustainable data centers, data center operators are increasingly looking to renewable energy as a means to approach carbon-free status and be more sustainable. The National Renewable Energy Laboratory (NREL) is a world leader in hydrogen research and already has an elaborate hydrogen infrastructure in place at the Golden, Colorado, state-of-the-art data center and facility. This presentation will discuss hydrogen generation, storage considerations, and safety issues as they relate to hydrogen delivery to fuel cells powering IT equipment.

  4. Patent landscape for biological hydrogen production.

    Science.gov (United States)

    Levin, David B; Lubieniechi, Simona

    2013-12-01

    Research and development of biological hydrogen production have expanded significantly in the past decade. Production of renewable hydrogen from agricultural, forestry, or other organic waste streams offers the possibility to contribute to hydrogen production capacity with no net, or at least with lower, greenhouse gas emissions. Significant improvements in the volumetric or molar yields of hydrogen production have been accomplished through genetic engineering of hydrogen synthesizing microorganisms. Although no commercial scale renewable biohydrogen production facilities are currently in operation, a few pilot scale systems have been demonstrated successfully, and while industrial scale production of biohydrogen still faces a number of technical and economic barriers, understanding the patent landscape is an important step in developing a viable commercialization strategy. In this paper, we review patents filed on biological hydrogen production. Patents on biohydrogen production from both the Canadian and American Patents databases were classified into three main groups: (1) patents for biological hydrogen by direct photolysis; (2) patents for biological hydrogen by dark fermentation; and (3) patents for process engineering for biological hydrogen production.

  5. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  6. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke

    2013-01-01

    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...... pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene...

  7. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  8. Hydrogen energy systems studies. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  9. Molecular hydrogen: a therapeutic antioxidant and beyond

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-01-01

    Full Text Available Molecular hydrogen (H2 medicine research has flourished since a landmark publication in Nature Medicine that revealed the antioxidant and cytoprotective effects of hydrogen gas in a focal stroke model. Emerging evidence has consistently demonstrated that molecular hydrogen is a promising therapeutic option for a variety of diseases and the underlying comprehensive mechanisms is beyond pure hydroxyl radicals scavenging. The non-toxicity at high concentrations and rapid cellular diffusion features of molecular hydrogen ensure the feasibility and readiness of its clinical translation to human patients.

  10. Hydrogen in an oscillating porous vycor glass

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Y.; Schindler, M.; Pobell, F. [Universitaet Bayreuth (Germany)

    1995-10-01

    The authors investigate hydrogen in porous Vycor glass with a torsional oscillator technique. Although our primary purpose is searching for a superfluid transition of hydrogen supercooled in Vycor, we find that hydrogen molecules which are adsorbed and liquefied in Vycor at T > T{sub 3} (triple point of bulk H{sub 2}) leave the Vycor when decreasing the temperature to below a characteristic value T{sub c} < T{sub 3}. We discuss this phenomenon in terms of a free enregy balance between solid/liquid hydrogen inside and outside the Vycor.

  11. Visual hydrogen detector with variable reversibilty

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  12. Overview of North American Hydrogen Sensor Standards

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Kathleen [SRA International, Inc., Colorado Springs, CO (United States); Lopez, Hugo [UL LLC, Chicago, IL (United States); Cairns, Julie [CSA Group, Cleveland, OH (United States); Wichert, Richard [Professional Engineering, Inc.. Citrus Heights, CA (United States); Rivkin, Carl [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-11

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensors in hydrogen infrastructure are presented.

  13. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  14. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  15. Hydrogen fuel dispensing station for transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.N.; Richmond, A.A. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1995-07-01

    A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on a hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.

  16. Probing hydrogen spillover in Pd@MIL-101(Cr) with a focus on hydrogen chemisorption

    OpenAIRE

    Szilágyi, P.Á; Callini, E.; Anastasopol, A.; Kwakernaak, C.; Sachdeva, S.; Van de Krol, R.; Geerlings, H; Borgschulte, A.; Züttel, A.; Dam, B.

    2014-01-01

    Palladium nanoparticles can split the dihydrogen bond and produce atomic hydrogen. When the metal nanoparticles are in intimate contact with a hydrogen-atom host, chemisorption of H-atoms by the host has been suggested to occur via the hydrogen spillover mechanism. Metal–organic frameworks were predicted to be able to act as effective chemisorption sites, and increased ambient-temperature hydrogen adsorption was reported on several occasions. The intimate contact was supposedly ensured by the...

  17. Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea Hydrogen Bonding.

    Science.gov (United States)

    Wen, Jialin; Jiang, Jun; Zhang, Xumu

    2016-09-16

    The strategy of secondary interaction enables enantioselectivity for homogeneous hydrogenation. By introducing hydrogen bonding of substrates with thiourea from the ligand, α,β-unsaturated carbonyl compounds, such as amides and esters, are hydrogenated with high enantiomeric excess. The substrate scope for this chemical transformation is broad with various substituents at the β-position. Control experiments revealed that each unit of the ligand ZhaoPhos is irreplaceable. No nonlinear effect was observed for this Rh/ZhaoPhos-catalyzed asymmetric hydrogenation.

  18. Hydrogen Generation Via Fuel Reforming

    Science.gov (United States)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  19. Accounting in hydrogenation (abridged translation)

    Energy Technology Data Exchange (ETDEWEB)

    Pichler, H.

    1943-09-24

    There was a need to split up the mixed costs according to the nature and origin of the finished goods. This was necessary for cost supervision and comparison. Low costs meant low labor requirements and lowered consumption of raw materials and power. To permit the desired breakdown of costs, a form of accounting was developed which permitted a rapid determination of the production costs of the finished products from different raw and intermediate products. Statements of yields were systematically presented by the operational control to permit the finding of the hydrogen consumption and the load upon the different units in the production of aviation gasoline from the different raw materials and intermediates. the cost of hydrogen and the credit for the circulating gas were known and the operating costs could be obtained at the different accounting stations and recalculated per ton input. In this way, costs could be readily calculated from the data on volume furnished by the operation control division for each raw product and intermediate used in the production of aviation gasoline. When costs of the auxiliary substances were treated in the same way as the costs of operation, the cost of production of one ton aviation gasoline in the second quarter of 1943 was 54.09 RM/ton.

  20. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines