WorldWideScience

Sample records for hydrogen mitigation test

  1. Computer system requirements specification for 101-SY hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    McNeece, S.G.; Truitt, R.W.

    1994-01-01

    The system requirements specification for SY-101 hydrogen mitigation test project (HMTP) data acquisition and control system (DACS-1) documents the system requirements for the DACS-1 project. The purpose of the DACS is to provide data acquisition and control capabilities for the hydrogen mitigation testing of Tank SY-101. Mitigation testing uses a pump immersed in the waste, directed at varying angles and operated at different speeds and time durations. Tank and supporting instrumentation is brought into the DACS to monitor the status of the tank and to provide information on the effectiveness of the mitigation test. Instrumentation is also provided for closed loop control of the pump operation. DACS is also capable for being expanded to control and monitor other mitigation testing. The intended audience for the computer system requirements specification includes the SY-101 hydrogen mitigation test data acquisition and control system designers: analysts, programmers, instrument engineers, operators, maintainers. It is intended for the data users: tank farm operations, mitigation test engineers, the Test Review Group (TRG), data management support staff, data analysis, Hanford data stewards, and external reviewers

  2. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-01-01

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump's ability to mitigate the SY-101 tank hydrogen gas hazard

  3. Hydrogen mitigation systems - a Canadian regulatory perspective

    International Nuclear Information System (INIS)

    Khosla, J.K.; Rizk, M.

    1997-01-01

    This is a discussion paper to examine the regulatory requirements that may be necessary for the design, operation and maintenance of the hydrogen mitigation systems. These systems (if deemed necessary to maintain the containment function), may be considered to be a part of the containment systems. Therefore, these requirements are derived mostly from the AECB Regulatory Document R-7, which specifies the requirements for containment systems for CANDU nuclear power plants. Some additional requirements, which are specific to these systems have also been included. These requirements relate to a systematic examination of the hazards of hydrogen, the design basis for the mitigation systems, their functional and design requirements, analytical support to justify their selection, and operating and testing requirements. The requirements for severe accident have not yet been developed. It is, however, anticipated that the design of the hydrogen mitigation system would be such that future requirement can be accommodated. These requirements are intended for application to the new reactors in Canada. For the existing reactors, their application will be subjected to practicability. (author)

  4. Test report for the run-in acceptance testing of the hydrogen mitigation retrieval Pump-3

    International Nuclear Information System (INIS)

    Berglin, B.G.; Nash, Ch.R.

    1997-01-01

    This report will provide the findings of the demonstration test conducted on the Double-Shell Tank (DST) 241-SY-101 HMR Pump-3 in accordance with WHC-SDWM-TP-434 ''Test plan for run-in acceptance testing of hydrogen mitigation/retrieval pump-3'' at the 400 Area Maintenance and Storage Facility (MASF) building from 7 June 1996 through 30 July 1996 per work package 4A-96-92/W. The DST 241-SY-101 hydrogen mitigation retrieval Pump-3 is a 200-HP submersible electric driven pump that has been modified for use in the DST 241-SY-101 containing mixed waste located in the 200W area. The pump has a motor driven rotation mechanism that allows the pump column to rotate through 355 degree. Prior to operation, pre-operational checks were performed which included loop calibration grooming and alignment of instruments, learning how plumb HMR-3 assembly hung in a vertical position and bump test of the motor to determine rotation direction. The pump was tested in the MASF Large Diameter Cleaning Vessel (LDCV) with process water at controlled temperatures and levels. In addition, the water temperature of the cooling water to the motor oil heat exchanger was recorded during testing. A 480-volt source powered a Variable Frequency Drive (VFD). The VFD powered the pump at various frequencies and voltages to control speed and power output of the pump. A second VFD powered the oil cooling pump. A third VFD was not available to operate the rotational drive motor during the 72 hour test, so it was demonstrated as operational before and after the test. A Mini Acquisition and Control System (Mini-DACS) controls pump functions and monitoring of the pump parameters. The Mini-DACS consists of three computers, software and some Programmable Logic Controllers (PLC). Startup and shutdown of either the pump motor or the oil cooling pump can be accomplished by the Mini-DACS. When the pump was in operation, the Mini-DACS monitors automatically collects data electronically. However, some required data

  5. Development and testing of hydrogen ignition devices

    International Nuclear Information System (INIS)

    Renfro, D.; Smith, L.; Thompson, L.; Clever, R.

    1982-01-01

    Controlled ignition systems for the mitigation of hydrogen produced during degraded core accidents have been installed recently in several light water reactor (LWR) containments. This paper relates the background of the thermal igniter approach and its application to LWR controlled ignition systems. The process used by the Tennessee Valley Authority (TVA) to select a hydrogen mitigation system in general and an igniter type in particular is described. Descriptions of both the Interim Distributed Ignition System and the Permanent Hydrogen Mitigation System installed by TVA are included as examples. Testing of igniter durability at TVA's Singleton Materials Engineering Laboratory and of igniter performance at Atomic Energy of Canada's Whiteshell Nuclear Research Establishment is presented

  6. The Implementation of hydrogen mitigation techniques: summary and conclusions: OECD Workshop

    International Nuclear Information System (INIS)

    1996-01-01

    The OECD Workshop on the Implementation of Hydrogen Mitigation Techniques was held in Winnipeg, Canada from 1996 May 13 to 15. Sixty-five experts from twelve OECD Member countries and the Russian Federation attended the meeting. Thirty-five papers were presented in six sessions: accident management and analyses, relevant aspects of hydrogen production, distribution and mixing, engineering, technology, possible side-effects and consequences, new designs. The objectives of the Workshop were to establish the state-of-the-art of hydrogen mitigation techniques, with emphasis on igniters and catalytic recombiners, to exchange information on Member countries' strategies in managing hydrogen mitigation and to establish dialogue as to differences in approach, to determine whether there is now an adequate technical basis for such strategies or whether more work - in which areas - is desirable, and to exchange information on future plans for implementation of hydrogen mitigation techniques

  7. Mitigation of hydrogen hazards in water cooled power reactors

    International Nuclear Information System (INIS)

    2001-02-01

    post-accident containments is complex and highly plant- and scenario-specific. Many aspects must be considered in analysis of a hydrogen threat: accident sequences, hydrogen production rates, atmosphere thermal hydraulics, mixing processes, combustion phenomena, accident management strategies and mitigation hardware performance. Research activities on these topics have been continuing in several countries for the past two decades. This report summarizes current concepts for hydrogen mitigation in containments, concentrating primarily on measures that are already being implemented or those that show promise in the near future for hydrogen mitigation in severe accidents

  8. Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-07-01

    Consideration of severe accidents in nuclear power plants is an essential component of the defence in depth approach in nuclear safety. Severe accidents have very low probabilities of occurring, but may have significant consequences resulting from the degradation of nuclear fuel. The generation of hydrogen and the risk of hydrogen combustion, as well as other phenomena leading to overpressurization of the reactor containment in case of severe accidents, represent complex safety issues in relation to accident management. The combustion of hydrogen, produced primarily as a result of heated zirconium metal reacting with steam, can create short term overpressure or detonation forces that may exceed the strength of the containment structure. An understanding of these phenomena is crucial for planning and implementing effective accident management measures. Analysis of all the issues relating to hydrogen risk is an important step for any measure that is aimed at the prevention or mitigation of hydrogen combustion in reactor containments. The main objective of this publication is to contribute to the implementation of IAEA Safety Standards, in particular, two IAEA Safety Requirements: Safety of Nuclear Power Plants: Design and Safety of Nuclear Power Plants: Operation. These Requirements publications discuss computational analysis of severe accidents and accident management programmes in nuclear power plants. Specifically with regard to the risk posed by hydrogen in nuclear power reactors, computational analysis of severe accidents considers hydrogen sources, hydrogen distribution, hydrogen combustion and control and mitigation measures for hydrogen, while accident management programmes are aimed at mitigating hydrogen hazards in reactor containments.

  9. Level maintenance for Tank 101-SY mitigation-by-mixing test. Revision 2

    International Nuclear Information System (INIS)

    Larsen, D.C.

    1994-01-01

    The Phase A, Phase B and Full Scale testing portions of the Mitigation-By-Mixing Test have demonstrated the effectiveness of the Mixer Pump to maintain the waste in tank 101-SY in the desired mitigated state. The operation of the 101-SY Mixer Pump for short periods of time results in a controlled release of hydrogen gas in concentrations well below the established safety limits. Additionally, it has been shown that operation of the pump on a regular schedule minimizes the historical generation rate of hydrogen inventory in the waste. Generation of hydrogen inventory is exhibited by waste level growth. The primary objective of this procedure is to maintain the waste level in tank 241-SY-101 within the safe operating range as defined by the Safety Assessment and the Test Plan. The secondary objective is to operate the pump on a schedule that maximizes its useful lifespan and prevents the formation of obstructions in the normal flow path of the pump

  10. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control Systemm (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable

  11. Proceedings of the OECD/NEA/CSNI workshop on the implementation of hydrogen mitigation techniques

    International Nuclear Information System (INIS)

    Koroll, G.W.; Rohde, J.; Royen, J.

    1997-03-01

    The Workshop on the Implementation of Hydrogen Mitigation Techniques was held in Winnipeg, Manitoba,Canada from 1996 May 13 to 15. It was organized in collaboration with the Whiteshell Laboratories of Atomic Energy of Canada Limited (AECL), Ontario Hydro and the CANDU Owner's Group (COG). Sixty-five experts from twelve OECD Member countries and the Russian Federation attended the meeting. Papers presented in the sessions included topics: accident management and analysis, relevant aspects of hydrogen production, distribution and mixing, engineering, technology, possible side-effects consequences and new designs. The objectives of the Workshop were the following: to establish the state of the art of hydrogen mitigation techniques, with emphasis on igniters and catalytic recombiners; to exchange information on Member countries' strategies in managing hydrogen mitigation, and to establish dialogue as to differences in approach; to determine whether there is now an adequate technical basis for such strategies or whether more work is needed; to exchange information on future plans for implementation of hydrogen mitigation techniques

  12. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  13. Proceedings of the OECD/NEA/CSNI workshop on the implementation of hydrogen mitigation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Koroll, G.W. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Rohde, J. [GRS, Koln (Germany); Royen, J. [OECD NEA, Issy-les-Moulineaux (France)

    1997-03-01

    The Workshop on the Implementation of Hydrogen Mitigation Techniques was held in Winnipeg, Manitoba,Canada from 1996 May 13 to 15. It was organized in collaboration with the Whiteshell Laboratories of Atomic Energy of Canada Limited (AECL), Ontario Hydro and the CANDU Owner's Group (COG). Sixty-five experts from twelve OECD Member countries and the Russian Federation attended the meeting. Papers presented in the sessions included topics: accident management and analysis, relevant aspects of hydrogen production, distribution and mixing, engineering, technology, possible side-effects consequences and new designs. The objectives of the Workshop were the following: to establish the state of the art of hydrogen mitigation techniques, with emphasis on igniters and catalytic recombiners; to exchange information on Member countries' strategies in managing hydrogen mitigation, and to establish dialogue as to differences in approach; to determine whether there is now an adequate technical basis for such strategies or whether more work is needed; to exchange information on future plans for implementation of hydrogen mitigation techniques.

  14. Analysis of mitigating measures during steam/hydrogen distributions in nuclear reactor containments with the 3D field code gasflow

    International Nuclear Information System (INIS)

    Royl, P.; Travis, J.R.; Haytcher, E.A.; Wilkening, H.

    1997-01-01

    This paper reports on the recent model additions to the 3D field code GASFLOW and on validation and application analyses for steam/hydrogen transport with inclusion of mitigation measures. The results of the 3D field simulation of the HDR test E11.2 are summarized. Results from scoping analyses that simulate different modes of CO2 inertization for conditions from the HDR test T31.5 are presented. The last part discusses different ways of recombiner modeling during 3D distribution simulations and gives the results from validation calculations for the HDR recombiner test E11.8.1 and the Battelle test MC3. The results demonstrate that field code simulations with computer codes like GASFLOW are feasible today for complex containment geometries and that they are necessary for a reliable prediction of hydrogen/steam distribution and mitigation effects. (author)

  15. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  16. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  17. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    Ermi, A.M.

    1997-01-01

    Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status

  18. Work plan for transition of SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    McClees, J.; Truitt, R.W.

    1994-01-01

    The purpose of this effort is to transfer operating and maintenance responsibility for the 241-SY-101 data acquisition and control system (DACS-1) from Los Alamos National Laboratory to Westinghouse Hanford Company. This work plan defines the tasks required for a successful turnover. It identifies DACS-1 transition, deliverables, responsible organizations and individuals, interfaces, cost, and schedule. The transition plan will discuss all required hardware, software, documentation, maintenance, operations, and training for use at Hanford Waste Tank 241-SY-101. The transfer of responsibilities for DACS-1 to WHC is contingent on final approval of applicable Acceptance for Beneficial Use documentation by Waste Tank Operations. The DACS-1 was designed to provide data monitoring, display, and storage for Tank 241-SY-101. The DACS-1 also provides alarm and control of all the hydrogen mitigation testing systems, as well as ancillary systems and equipment (HVAC, UPS, etc.) required to achieve safe and reliable operation of the testing systems in the tank

  19. Functional design criteria for SY-101 hydrogen mitigation test project Data Acquisition and Control System (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-09-01

    Early in 1990, the potential for a large quantity of hydrogen and nitrous oxide to exist as an explosive mixture within some Hanford waste tanks was declared an unreviewed safety question. The waste tank safety task team was established at that time to carry out safety evaluations and plan the means for mitigating this potential hazard. Action was promptly taken to identify those tanks with the highest hazard and to implement interim operating requirements to minimize ignition sources

  20. Hydrogen behaviour and mitigation in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Della Loggia, E.

    1992-01-01

    The Commission of the European Communities (CEC) and the International Atomic Energy Agency (IAEA), within the framework of their safety research activities, initiated and arranged a series of specialist meetings and research contracts on hydrogen behaviour and control. The result of this work is summarized in a report jointly prepared by the two international organizations entitled 'Hydrogen in water-cooled nuclear power reactors'. Independently, the Kurchatov Atomic Energy Institute organized a workshop on the hydrogen issue in Sukhumi, USSR, with CEC and IAEA cooperation. Commonly expressed views have emerged and recommendations were formulated to organize the subsequent seminar/workshop concentrating mainly on the most recent research and analytical projects and findings related to the hydrogen behaviour, and-most importantly-on the practical approaches and engineering solutions to the hydrogen control and mitigation. The seminar/workshop, therefore, addressed the 'theory and practice' aspects of the hydrogen issue. The workshop was structured in the following sessions: combustible gas production; hydrogen distribution; combustion phenomena; combustion effects and threats; and detection and migration

  1. Current state of the construction of an integrated test facility for hydrogen risk

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong-Ho; Hong, Seong-Wan [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Experimental research on hydrogen as a combustible gas is important for an assessment of the integrity of a containment building under a severe accident. The Korea Atomic Energy Research Institute (KAERI) is preparing a large-scaled test facility, called SPARC (SPray-Aerosol-Recombiner-Combustion), to estimate the hydrogen behavior such as the distribution, combustion and mitigation. This paper introduces the experimental research activity on hydrogen risk, which was presented at International Congress on Advances in Nuclear Power Plants (ICAPP) this year. The KAERI is preparing a test facility, called SPARC (SPray-Aerosol-Recombiner-Combustion test facility), for an assessment of the hydrogen risk. In the SPARC, hydrogen behavior such as mixing with steam and air, distribution, and combustion in the containment atmosphere will be observed. The SPARC consists of a pressure vessel with a 9.5 m height and 3.4 m in diameter and the operating system to control the thermal hydraulic conditions up to 1.5 MPa at 453 K in a vessel. The temperature, pressure, and gas concentration at various locations will be measured to estimate the atmospheric behavior in a vessel. To install the SPARC, an experimental building, called LIFE (Laboratory for Innovative mitigation of threats from Fission products and Explosion), was constructed at the KAERI site. LIFE has an area of 480 m''2 and height of 18.6 m, and it was designed by considering the experimental safety and specification of a large-sized test facility.

  2. A designer's view of hydrogen mitigation (invited paper)

    International Nuclear Information System (INIS)

    Meneley, D.A.

    1997-01-01

    It is commonplace today to design nuclear power plants to control and manage the potential effects of hydrogen evolution following accidents. Hydrogen management has two purposes - to protect the containment structure itself against structural failure following rapid deflagration of hydrogen, and to protect systems inside containment against local damage due to hydrogen combustion. Post-accident hydrogen control has become one of the normal elements of the design basis for containment and, through environmental requirements for internal components, on several NSSS systems. The term ''design basis'' is used here in the sense of inclusion in the design requirements of any system. National practices vary but, from a designers's point of view any event for which processes or equipment must be provided to meet specific performance requirements becomes part of the design basis of the plant, even if the postulated event is not formally a ''design basis accident''. The most difficult aspect of hydrogen mitigation design, from the designer's point of view, is the uncertainty as to whether recombination, especially if done via ignition, will improve or degrade systems' safety. This uncertainty generates several questions of release location, timing, reliability, chemistry, location of ignitors and/or recombiners as well as the question of their proper location in relation to sources and atmosphere circulation patterns. In general terms these uncertainties create a ''fuzzy'' design problem the worst kind of problem given the atmosphere of rigid regulation

  3. Analysis method for the design of a hydrogen mitigation system with passive autocatalytic recombiners in OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C-H.; Sung, J-J.; Ha, S-J. [Korea Hydro and Nuclear Power Co. Ltd., Central Research Inst., Daejeon (Korea, Republic of); Yeo, I-S. [KEPCO Engineering and Construction Co. Ltd, Gyeonggi-do (Korea, Republic of)

    2014-07-01

    The importance of hydrogen safety in nuclear power plants has been emphasized especially after the Fukushima accident in Japan. A passive autocatalytic recombiner (PAR) is considered as a viable option for the mitigation of hydrogen risk because of its passive operation for hydrogen removal. This paper presents a licensed hydrogen analysis method of OPR-1000, a 1,000MWe Korea standardized pressurized water reactor with a large dry containment, to determine the capacity and locations of PARs for the design of a hydrogen mitigation system with PAR. Various accident scenarios have been adopted considering important event sequences from a combination of probabilistic methods, deterministic methods and sound engineering judgment. A MAAP 4.0.6+ with a multi-compartment model is used as an analysis tool with conservative hydrogen generation and removal models. The detailed analyses are performed for selected severe accident scenarios including sensitivity analysis with/without operations of various safety systems. The possibility of global flame acceleration (FA) and deflagration-to-detonation transient (DDT) are assessed with sigma (flame acceleration potential) and 7-lambda (DDT potential) criterion. It is concluded that the newly designed hydrogen mitigation system with twenty-four (24) PARs can effectively remove hydrogen in the containment atmosphere and prevent global FA and DDT. (author)

  4. Development of control technology for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency has been planning the demonstration test of hydrogen production with the High Temperature Engineering Test Reactor (HTTR). In a HTTR hydrogen production system (HTTR-H2), it is required to control a primary helium temperature within an allowable value at a reactor inlet to prevent a reactor scram. A cooling system for a secondary helium with a steam generator (SG) and a radiator is installed at the downstream of a chemical rector in a secondary helium loop in order to mitigate the thermal disturbance caused by the hydrogen production system. Prior to HTTR-H2, the simulation test with a mock-up test facility has been carried out to establish the controllability on the helium temperature using the cooling system against the loss of chemical reaction. It was confirmed that the fluctuations of the helium temperature at chemical reactor outlet, more than 200 K, at the loss of chemical reaction could be successfully mitigated within the target of ±10 K at SG outlet. A dynamic simulation code of the cooling system for HTTR-H2 was verified with the obtained test data

  5. Supported Pd nanoclusters for the hydrogen mitigation application in severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Zhengfeng; Zhu, Hongzhi; Zhang, Zhi; Zheng, Zhenghua [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China); Ma, Guohua [University of Science and Technology of Southwest, Mianyang 621010 (China); Lai, Xinchun; Li, Rong; Tang, Tao; Fu, Jun [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China); Gao, Bo, E-mail: gaobo@caep.cn [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China)

    2017-05-15

    Highlights: • Pd catalysts were prepared by electroless deposition path with no extra reduction agents. • The Pd catalysts not only have good hydrogen-oxygen recombination efficiency, but also have good stability. • The catalysts were proved to have good resistance to poisoning. • Pd catalysts could be supposed to be used for PARs in severe accidents. - Abstract: Accidents at TMI, USA and Fukushima, Japan have emphasized the need for hydrogen mitigation during nuclear plant accidental conditions, especially during severe accidents which will be no power, massive hydrogen, high temperature, long-term operation, and poisoning environment. Passive autocatalytic recombiners with catalyst sheets are the promising way to deal with the situation in severe accidents. Here we report a new kind of catalyst sheets based on stainless steel supported Pd nanoclusters prepared by electroless deposition route. The catalyst sheets were characterised for morphology and composition of surface by SEM and EDS. The catalytic activity of the catalyst sheets has been evaluated under the conditions of higher temperature, long-term operation and poisoning environments. The catalyst sheets showed high activity and good stability either operating above 500 °C for 24 h or continuous operating for 25 days. For the obtained catalyst sheets after exposed to methanal, iodine vapor and BaSO{sub 4} aerosol respectively with corresponding concentrations higher than SA conditions, the start-up time for H{sub 2}-O{sub 2} recombination reaction was less than 1 min and the catalytic efficiency was more than 90%. These results indicate the potential application of this type of catalyst sheets for hydrogen mitigation in severe accidents.

  6. HTTR hydrogen production system. Structure and main specifications of mock-up test facility (Contract research)

    International Nuclear Information System (INIS)

    Kato, Michio; Aita, Hideki; Inagaki, Yoshiyuki; Hayashi, Koji; Ohashi, Hirofumi; Sato, Hiroyuki; Iwatsuki, Jin; Takada, Shoji; Inaba, Yoshitomo

    2007-03-01

    The mock-up test facility was fabricated to investigate performance of the steam generator for mitigation of the temperature fluctuation of helium gas and transient behavior of the hydrogen production system for HTTR and to obtain experimental data for verification of a dynamic analysis code. The test facility has an approximate hydrogen production capacity of 120Nm 3 /h and the steam reforming process of methane; CH 4 +H 2 O=3H 2 +CO, was used for hydrogen production of the test facility. An electric heater was used as a heat source instead of the reactor in order to heat helium gas up to 880degC (4MPa) at the chemical reactor inlet which is the same temperature as the HTTR hydrogen production system. Fabrication of the test facility was completed in February in 2002, and seven cycle operations were carried out from March in 2002 to December in 2004. This report describes the structure and main specifications of the test facility. (author)

  7. Effect of spray on performance of the hydrogen mitigation system during LB-LOCA for CPR1000 NPP

    International Nuclear Information System (INIS)

    Huang, X.G.; Yang, Y.H.; Cheng, X.; Al-Hawshabi, N.H.A.; Casey, S.P.

    2011-01-01

    Highlights: → This paper presents the spray effect on HMS during LB-LOCA by using GASFLOW. → The positive and negative effects of spray are summarized. → And the combination of DIS and PAR system is suggested as reasonable countermeasures. → This research is an important work aimed at the study of spray and hydrogen mitigation. → The contents of this paper should become a required part of the safety analysis of Chinese NPPs. - Abstract: During the course of the hypothetical large break loss-of-coolant accident (LB-LOCA) in a nuclear power plant (NPP), hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel (RPV). It is then ejected from the break into the containment along with a large amount of steam. Management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen mitigation system (HMS) and spray system in CPR1000 NPP. The computational fluid dynamics (CFD) code GASFLOW is utilized in this study to analyze the spray effect on the performance of HMS during LB-LOCA. Results show that as a kind of HMS, deliberate igniter system (DIS) could initiate hydrogen combustion immediately after the flammability limit of the gas mixture has been reached. However, it will increase the temperature and pressure drastically. Operating the DIS under spray condition could result in hydrogen combustion being suppressed by suspended droplets inside the containment. Furthermore, the droplets could also mitigate local the temperature rise. Operation of a PAR system, another kind of HMS, consumes hydrogen steadily with a lower recombination rate which is not affected noticeably by the spray system. Numerical results indicate that the dual concept, namely the integrated application of DIS and PAR systems, is a constructive improvement for hydrogen safety under spray condition during LB-LOCA.

  8. Evaluation of innovative means of hydrogen risk mitigation in thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Maruejouls, C.

    2003-01-01

    One of the main accidents in ITER-type thermonuclear fusion reactors is the loss of coolant leading to hydrogen production. Within the framework of the studies on the ITER fusion reactor, a mitigation strategy for this risk must be devised by focusing on a system, which can be placed near the hydrogen source. The uncertainty as to the air content during such a scenario forbids the use of classic methods based on the hydrogen/oxygen reaction such as passive catalytic recombiners. Former studies have proposed a process based on the reduction of metallic oxides and more particularly that of the manganese dioxide enhanced by silver oxide mixture. The reaction studied is H 2 + MnO 2 → MnO + H 2 O (reaction enhanced by Ag 2 O). The purpose is to study the kinetic. The method used consists in comparing the experimental results obtained on the pilot facility CIGNE with those provided by a model. The experimental results were obtained from tests made on a pilot facility with a solid/gas reaction in a fixed bed. These underlined the importance of favoring the solid/gas contact surface. The modeling used in the MITRHY simulation program, coupled to an optimizer helped determine the kinetic parameters and the data on the material and temperature transfers. The kinetic is of first order rate for hydrogen with an activation energy of 29428 J/mol and a kinetic coefficient of 142 m.s -1 . Integrated in the MITRHY program, the kinetic parameters were used to simulate the hydrogen elimination in the accident conditions on the ITER experimental reactor. This study achieved a pre-design basis of the device (bed of about 30 cm with grains of a diameter of less than 5 mm) to be implemented. It also underlined the need to favor the specific surface to improved process efficiency. (author)

  9. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

  10. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-01-01

    corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ∼5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ∼2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60 C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ∼80 C and ∼95 C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

  11. Safety Evaluation for Packaging 101-SY Hydrogen Mitigation Mixer Pump package

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1994-01-01

    This Safety Evaluation for Packaging (SEP) provides analysis and considered necessary to approve a one-time transfer of the 101-SY Hydrogen Mitigation Mixer Pump (HMMP). This SEP will demonstrate that the transfer of the HMMP in a new shipping container will provide an equivalent degree of safety as would be provided by packages meeting US Department of Transportation (DOT)/US Nuclear Regulatory Commission (NRC) requirements. This fulfills onsite, transportation requirements implemented by WHC-CM-2-14

  12. Safety Evaluation for Packaging 101-SY Hydrogen Mitigation Mixer Pump package

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, R.F.

    1994-10-05

    This Safety Evaluation for Packaging (SEP) provides analysis and considered necessary to approve a one-time transfer of the 101-SY Hydrogen Mitigation Mixer Pump (HMMP). This SEP will demonstrate that the transfer of the HMMP in a new shipping container will provide an equivalent degree of safety as would be provided by packages meeting US Department of Transportation (DOT)/US Nuclear Regulatory Commission (NRC) requirements. This fulfills onsite, transportation requirements implemented by WHC-CM-2-14.

  13. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  14. Implementation of hydrogen mitigation techniques during severe accidents in nuclear power plants

    International Nuclear Information System (INIS)

    1996-01-01

    concentration and under special geometric conditions, an accelerated flame or even a local detonation may occur which would produce higher dynamic loads than a deflagration and a more serious threat to equipment and structures. Should it occur in spite of its low probability, a global detonation, following prolonged and extensive accumulation of hydrogen in the containment atmosphere, would be a major threat to the containment integrity. The goal of hydrogen mitigation techniques is to prevent loads, resulting from hydrogen combustion, which could threaten containment integrity. The risk of containment failure depends on the overall hydrogen concentration which is dependent on the amount of hydrogen released and the containment volume. A possible containment failure also depends on the containment structure and design which is very important in the resistance of the containment to a global combustion. Geometrical sub-compartmentalization is also very important, because significant amounts of hydrogen could accumulate in compartments to create high local concentrations of hydrogen that could be well within the detonability limits. Once accident management measures aimed at preventing severe accidents from occurring have failed and hydrogen is being generated and released to the containment atmosphere in large amounts, the first step is to reduce the possibility of hydrogen accumulating to flammable concentrations. Where flammable concentrations cannot be precluded, the next step is to minimize the volume of gas at flammable concentrations and the third and last step is to prevent further increasing hydrogen levels from the flammable to detonable mixture concentrations. The purpose of this paper is to present a snapshot, from a technical viewpoint, of the current situation regarding the implementation of hydrogen mitigation techniques for severe accident conditions in nuclear power plants. Broader aspects related to overall accident management policies are not considered here

  15. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  16. Study on control characteristics for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Ohashi, Hirofumi; Nishihara, Tetsuo; Sato, Hiroyuki; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji

    2005-01-01

    The Japan Atomic Energy Research Institute has a demonstration test plan of a hydrogen production system by steam reforming of methane coupling with the High-Temperature Engineering Test Reactor (HTTR). Prior to the coupling of a hydrogen production plant with the HTTR, simulation tests with a mock-up test facility of the HTTR hydrogen production system (HTTR-H2) is underway. The test facility is a 1/30-scale of the HTTR-H2 and simulates key components downstream from an intermediate heat exchanger of the HTTR. The main objective of the simulation tests is the establishment and demonstration of control technology, focusing on the mitigation of a thermal disturbance to the reactor by a steam generator (SG) and on the controllability of the pressure difference between the helium and process gases at the reaction tube in a steam reformer (SR). It was confirmed that the fluctuation of the outlet helium gas temperature at the SG and the pressure difference in the SR can be controlled within the allowable range for the HTTR-H2 in the case of the system controllability test for the fluctuation of chemical reaction. In addition, a dynamic simulation code for the HTTR-H2 was verified with the obtained test data

  17. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    Energy Technology Data Exchange (ETDEWEB)

    ERMI, A.M.

    2000-01-24

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.

  18. CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment

    Energy Technology Data Exchange (ETDEWEB)

    Heitsch, Matthias, E-mail: Matthias.Heitsch@ec.europa.e [Institute for Energy, Joint Research Centre, PO Box 2, 1755 ZG Petten (Netherlands); Huhtanen, Risto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Techy, Zsolt [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Fry, Chris [Serco, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH (United Kingdom); Kostka, Pal [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Niemi, Jarto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Schramm, Berthold [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany)

    2010-02-15

    In the PHARE project 'Hydrogen Management for the VVER440/213' (HU2002/000-632-04-01), CFD (Computational Fluid Dynamics) calculations using GASFLOW, FLUENT and CFX were performed for the Paks NPP (Nuclear Power Plant), modelling a defined severe accident scenario which involves the release of hydrogen. The purpose of this work is to demonstrate that CFD codes can be used to model gas movement inside a containment during a severe accident. With growing experience in performing such analyses, the results encourage the use of CFD in assessing the risk of losing containment integrity as a result of hydrogen deflagrations. As an effective mitigation measure in such a situation, the implementation of catalytic recombiners is planned in the Paks NPP. In order to support these plans both unmitigated and recombiner-mitigated simulations were performed. These are described and selected results are compared. The codes CFX and FLUENT needed refinement to their models of wall and bulk steam condensation in order to be able to fully simulate the severe accident under consideration. Several CFD codes were used in parallel to model the same accident scenario in order to reduce uncertainties in the results. Previously it was considered impractical to use CFD codes to simulate a full containment subject to a severe accident extending over many hours. This was because of the expected prohibitive computing times and missing physical capabilities of the codes. This work demonstrates that, because of developments in the capabilities of CFD codes and improvements in computer power, these calculations have now become feasible.

  19. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Y. F. [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  20. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    Science.gov (United States)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-02-01

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate surface-applied soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manure additive to mitigate emissions of odorous volatile organic compounds (VOC) including dimethyl disulfide/methanethiol (DMDS/MT), dimethyl trisulfide, n-butyric acid, valeric acid, isovaleric acid, p-cresol, indole, and skatole. The secondary impact on emissions of NH3, H2S, and GHG was also measured. The SBP was tested at four treatments (2.28-45.7 kg/m2 manure) with CaO2 (4.2% by weight of SBP) over 137 days. Significant reductions in VOC emissions were observed: DMDS/MT (36.2%-84.7%), p-cresol (53.1%-89.5%), and skatole (63.2%-92.5%). There was a corresponding significant reduction in NH3 (14.6%-67.6%), and significant increases in the greenhouse gases CH4 (32.7%-232%) and CO2 (20.8%-124%). The remaining emissions (including N2O) were not statistically different. At a cost relative to 0.8% of a marketed hog it appears that SBP/CaO2 treatment could be a promising option at the lowest (2.28 kg/m2) treatment rate for reducing odorous gas and NH3 emissions at swine operations, and field-scale testing is warranted.

  1. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  2. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    International Nuclear Information System (INIS)

    Hallam, Brett; Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-01-01

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation

  3. Electric hydrogen recombiner special tests

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1975-12-01

    Westinghouse has produced an electric hydrogen recombiner to control hydrogen levels in reactor containments following a postulated loss-of-coolant accident. The recombiner underwent extensive testing for NRC qualification (see WCAP 7709-L and Supplements 1, 2, 3, 4). As a result, WCAP 7709-L and Supplements 1, 2, 3, and 4 have been accepted by the NRC for reference in applications not committed to IEEE-323-1974. Supplement 5 and the next supplement will demonstrate conformance to IEEE-323-1974. This supplement describes additional tests, beyond those necessary to qualify the system, which will be referenced in supplement 6. Each test has demonstrated a considerable margin of safety over required performance. Concurrently, the test results increased the fund of technical information on the electric hydrogen recombiner

  4. Therapeutic metabolic inhibition: hydrogen sulfide significantly mitigates skeletal muscle ischemia reperfusion injury in vitro and in vivo

    NARCIS (Netherlands)

    Henderson, Peter W.; Singh, Sunil P.; Weinstein, Andrew L.; Nagineni, Vijay; Rafii, Daniel C.; Kadouch, Daniel; Krijgh, David D.; Spector, Jason A.

    2010-01-01

    BACKGROUND:: Recent evidence suggests that hydrogen sulfide is capable of mitigating the degree of cellular damage associated with ischemia-reperfusion injury. The purpose of this study was to determine whether it is protective in skeletal muscle. METHODS:: This study used both in vitro (cultured

  5. Renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions: Review

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. The objective of this paper is to review the use of soybean peroxidase (SBP) and peroxides as a manure additive to mitigate emissions of odor...

  6. Mitigation of the most hazardous tank at the Hanford Site

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1994-09-01

    Various tanks at the Hanford Site have been declared to be unresolved safety problems. This means that the tank has the potential to be beyond the limits covered by the current safety documentation. Tank 241-SY-101 poses the greatest hazard. The waste stored in this tank has periodically released hydrogen gas which exceeds the lower flammable limits. A mixer pump was installed in this tank to stir the waste. Stirring the waste would allow the hydrogen to be released slowly in a controlled manner and mitigate the hazard associated with this tank. The testing of this mixer pump is reported in this document. The mixer pump has been successful in controlling the hydrogen concentration in the tank dome to below the flammable limit which has mitigated the hazardous gas releases

  7. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  8. Mitigation of hydrogen by oxidation using nitrous oxide and noble metal catalysts

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This test studied the ability of a blend of nuclear-grade, noble-metal catalysts to catalyze a hydrogen/nitrous oxide reaction in an effort to mitigate a potential hydrogen (H 2 ) gas buildup in the Hanford Site Grout Disposal Facility. For gases having H 2 and a stoichiometric excess of either nitrous oxide or oxygen, the catalyst blend can effectively catalyze the H 2 oxidation reaction at a rate exceeding 380 μmoles of H 2 per hour per gram of catalyst (μmol/h/g) and leave the gas with less than a 0.15 residual H 2 Concentration. This holds true in gases with up to 2.25% water vapor and 0.1% methane. This should also hold true for gases with up to 0.1% carbon monoxide (CO) but only until the catalyst is exposed to enough CO to block the catalytic sites and stop the reaction. Gases with ammonia up to 1% may be slightly inhibited but can have reaction rates greater than 250 μmol/h/g with less than a 0.20% residual H 2 concentration. The mechanism for CO poisoning of the catalyst is the chemisorption of CO to the active catalyst sites. The CO sorption capacity (SC) of the catalyst is the total amount of CO that the catalyst will chemisorb. The average SC for virgin catalyst was determined to be 19.3 ± 2.0 μmoles of CO chemisorbed to each gram of catalyst (μmol/g). The average SC for catalyst regenerated with air was 17.3 ± 1.9 μmol/g

  9. THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S., E-mail: gupta@becker-technologies.com [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Schmidt, E.; Laufenberg, B. von; Freitag, M.; Poss, G. [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Funke, F. [AREVA GmbH, P.O. Box 1109, 91001 Erlangen (Germany); Weber, G. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Forschungszentrum, Boltzmannstraße 14, 85748 Garching (Germany)

    2015-12-01

    Highlights: • Large scale facility for investigating representative LWR severe accident scenarios. • Coupled effect tests in the field of thermal-hydraulics, hydrogen, aerosol and iodine. • Measurement techniques improved and adapted for severe accident conditions. • Testing of passive mitigation systems (e.g. PAR) under accident conditions. • THAI data application for validation and development of CFD and LP codes. - Abstract: The test facility THAI (thermal-hydraulics, hydrogen, aerosol, and iodine) aims at addressing open questions concerning gas distribution, behaviour of hydrogen, iodine and aerosols in the containment of light water reactors during severe accidents. Main component of the facility is a 60 m{sup 3} stainless steel vessel, 9.2 m high and 3.2 m in diameter, with exchangeable internals for multi-compartment investigations. The maximal design pressure of the vessel is 14 bar which allows H{sub 2} combustion experiments at a severe accident relevant H{sub 2} concentration level. The facility is approved for the use of low-level radiotracer I-123 which enables the measurement of time resolved iodine behaviour. The THAI test facility allows investigating various accident scenarios, ranging from turbulent free convection to stagnant stratified containment atmospheres and can be combined with simultaneous use of hydrogen, iodine and aerosol issues. THAI experimental research also covers investigations related to mitigation systems employed in light water reactor containments by performing experiments on, e.g. pressure suppression pool hydrodynamics, performance behaviour of passive autocatalytic recombiners, and spray interaction with hydrogen–steam–air flames in phenomenon orientated and coupled-effects experiments. The THAI experimental data have been widely used for the validation and further development of Lumped Parameter and Computational Fluid Dynamics codes with 3D capabilities, e.g. International Standard Problems ISP-47 (thermal

  10. Yeager Airport Hydrogen Vehicle Test Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Williams [West Virginia University Research Corporation, Morgantown, WV (United States)

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  11. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  12. Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohmmad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

  13. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk

    International Nuclear Information System (INIS)

    Peng, Cheng; Tong, Lili; Cao, Xuewu

    2016-01-01

    Highlights: • A three-dimensional computational model was built and the applicability was discussed. • The formation of helium stratification was further studied. • Three influencing factors on the post-inerting of hydrogen risk were analyzed. - Abstract: In the case of severe accidents, the risk of hydrogen explosion threatens the integrity of the nuclear reactor containment. According to nuclear regulations, hydrogen control is required to ensure the safe operation of the nuclear reactor. In this study, the method of Computational Fluid Dynamics (CFD) has been applied to analyze process of hydrogen stratification and the post-inerting of hydrogen risk in the Large-Scale Gas Mixing Facility. A three-dimensional computational model was built and the applicability of different turbulence models was discussed. The result shows that the helium concentration calculated by the standard k–ε turbulence model is closest to the experiment data. Through analyzing the formation of helium stratification at different injection velocities, it is found that when the injection mass flow is constant and the injection velocity of helium increases, the mixture of helium and air is enhanced while there is rarely influence on the formation of helium stratification. In addition, the influences of mass flow rate, injection location and direction and inert gas on the post-inerting of hydrogen risk have been analyzed and the results are as follows: with the increasing of mass flow rate, the mitigation effect of nitrogen on hydrogen risk will be further improved; there is an obvious local difference between the mitigation effects of nitrogen on hydrogen risk in different injection directions and locations; when the inert gas is injected at the same mass flow rate, the mitigation effect of steam on hydrogen risk is better than that of nitrogen. This study can provide technical support for the mitigation of hydrogen risk in the small LWR containment.

  14. Optimization of the dissolved hydrogen level in PWR to mitigate stress corrosion cracking of nickel alloys. Bibliographic review, modelling and recommendations

    International Nuclear Information System (INIS)

    Labousse, M.; Deforge, D.; Gressier, F.; Taunier, S.; Le Calvar, M.

    2012-09-01

    Nickel based alloys Stress Corrosion Cracking (SCC) has been a major concern for the Nuclear Power Plants (NPP) utilities since more than 40 years. At EDF, this issue led to the replacement of all upper vessel heads and of most of the steam generators with Alloy 600 MA tubes. Under the scope of plant lifetime extension, there is some concerns about the behaviour of Bottom Mounted Instrumentation Nozzles (BMI) made of Alloy 600 welded with Alloy 182 and a few vessel dissimilar metal welds made of Alloy 82, for only three 1450 MWe plants. It is considered for long that Primary Water Stress Corrosion Cracking (PWSCC) is influenced by the dissolved hydrogen (DH) level in primary coolant. Now, the whole community clearly understands that there is a hydrogen level corresponding to a maximum in terms of SCC susceptibility. Many experimental studies were done worldwide to optimize the hydrogen level in primary water during power operation, both in terms of SCC initiation and propagation. From these studies, most of American plants decided to increase the dissolved hydrogen level in order to mitigate crack propagation. Conversely, in Japan, based on crack initiation data, it is thought that drastically decreasing the hydrogen content would rather be beneficial. In order to consolidate EDF position, a review of laboratory tests data was made. Studies on the influence of hydrogen on nickel alloys 600 and 182 PWSCC were compiled and rationalized. Data were collapsed using a classical Gaussian model, such as initially proposed by Morton et al. An alternative model based on more phenomenological considerations was also proposed. Both models lead to similar results. The maximum susceptibility to SCC cracking appears to be rather consistent with the Ni/NiO transition, which was not taken as an initial hypothesis. Regarding crack initiation, an inverse Gaussian model was proposed. Based on the current hydrogen concentration range during power operation and considering components

  15. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    Energy Technology Data Exchange (ETDEWEB)

    ERMI, A.M.

    1999-08-25

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation, The original system was designed and implemented by LANL, supplied to WHC, and turned over to LMHC for operation. In 1999, the hardware and software were upgraded to provide a state-of-the-art, Year-2000 compliant system.

  16. A study on the hydrogen behavior and its mitigation in the APR1400 containment during a severe accident

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Hong, Seong Wan; Park, Rae Joon; Kim, Sang Baik

    2005-02-01

    During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by the active reaction of fuel-cladding and steam in the reactor pressure vessel and released with steam into the containment. In this study, the analysis of the hydrogen and steam behavior during selected severe accidents in the APR1400 containment has been conducted by using the GASFLOW code. For the SBLOCA, hydrogen was accumulated in the containment dome region quickly when only PARSs were used. When the igniters were turned on, a standing flame was formed around a coolant pump and burnt most of the hydrogen blown-out. For the TLOFW accident, the flap-type pressure damper installed at the IRWST vents strongly affected the flow structure of the hydrogen. And by the steam-rich and oxygen starvation conditions in the IRWST, DDT is not likely to occur. For the SBO accident, dry hydrogen was release in the IRWST by the assumption of full condensation of the released steam in the IRWST water. In this case, the possibility of flame acceleration is high in the IRWST and annular compartment. In this study two design modifications were proposed in view of the hydrogen mitigation strategy and their effectiveness was evaluated by the GASFLOW analysis

  17. Information needs and instrumentation availability for hydrogen control and management

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Park, Gun Chul; Suh, Kune Y.; Lee, Seung Dong; Lee, Jin Yong [Seoul National Univ., Seoul (Korea, Republic of); Jae, Moo Sung [Hansung Univ., Seoul (Korea, Republic of)

    1999-03-15

    This study is concerned with development of comprehensive hydrogen management strategies based on identification of a severe accident condition and formulation of hydrogen models. Reducing containment hydrogen during a severe accident will mitigate a potential containment failure mechanism. One of the hydrogen control strategies is intentional burning by the hydrogen igniter. Though intentional hydrogen burn strategy will cause pressure and temperature spikes, it is the fastest way of reducing the containment hydrogen concentration. Based on the Westinghouse owners group Severe Accident Management Guidance (SAMG) hydrogen ignition decision tree was developed. From the information of decision tree, hydrogen ignition decision can be determined in Containment Event Tree (CET). We have examined previous hydrogen generation related models in fuel coolant interaction (FCI) and developed transient model for it. Using this model, we have simulated the Argonne National Laboratory (ANL) tests which are single droplet experiments, and Fully Instrumented Test Site (FITS) tests which contain dynamic fragmentation.

  18. Hydrogen embrittlement of titanium tested with fracture mechanics specimens

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Rahko, P.

    1990-11-01

    Titanium is one of the possible canister materials for spent nuclear fuel. The aim of this study is to determine whether the hydrogen embrittlement of titanium could be a possible deterioration mechanism of titanium canisters. This experimental study was preceded by a literature review and an experimental study on crack nucleation. Tests in this study were carried out with hydrogen charged fracture mechanics specimens. The studied hydrogen contents were as received, 100 ppm, 200 ppm, 500 ppm and 700 ppm and the types of the studied titanium were ASTM Grades 2 and 12. Test methods were slow tensile test (0.027 mm/h) and fatigue test (stress ratio 0.7 or 0.8 and frequency 5 Hz). According to the literature titanium may be embrittled by hydrogen at slow strain rates and cracking may occur under sustained load. In this study no evidence of hydrogen embrittlement was noticed in slow strain rate tension with bulk hydrogen contents up to 700 ppm. The fatigue tests of titanium Grades 2 and 12 containing 700 ppm hydrogen showed even slower crack growth compared to the as received condition. Very high hydrogen contents well in eccess of 700 ppm on the surface of titanium can, however, facilitate surface crack nucleation and crack growth, as shown in the previous study

  19. Test Plan for Hydrogen Getters Project - Phase II

    International Nuclear Information System (INIS)

    Mroz, G.

    1999-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

  20. Scaled Testing of Hydrogen Gas Getters for Transuranic Waste

    International Nuclear Information System (INIS)

    Kaszuba, J.; Mroz, E.; Haga, M.; Hollis, W. K.; Peterson, E.; Stone, M.; Orme, C.; Luther, T.; Benson, M.

    2006-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage and shipment containers. Hydrogen forms a flammable mixture with air over a wide range of concentrations (5% to 75%), and very low energy is needed to ignite hydrogen-air mixtures. For these reasons, the concentration of hydrogen in waste shipment containers (Transuranic Package Transporter-II or TRUPACT-II containers) needs to remain below the lower explosion limit of hydrogen in air (5 vol%). Accident scenarios and the resulting safety analysis require that this limit not be exceeded. The use of 'hydrogen getters' is being investigated as a way to prevent the build up of hydrogen in TRUPACT-II containers. Preferred getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it into the solid state. In this study, two getter systems are evaluated: a) 1,4-bis (phenylethynyl)benzene or DEB, characterized by the presence of carbon-carbon triple bonds; and b) a proprietary polymer hydrogen getter, VEI or TruGetter, characterized by carbon-carbon double bonds. Carbon in both getter types may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. With oxygen present, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB and VEI performed satisfactorily in lab scale tests using small test volumes (ml-scale), high hydrogen generation rates, and short time spans of hours to days. The purpose of this study is to evaluate whether DEB and VEI perform satisfactorily in actual drum-scale tests with realistic hydrogen generation rates and time frames. The two getter systems were evaluated in test vessels comprised of a Gas Generation Test Program-style bell-jar and a drum equipped with a composite drum filter. The vessels were scaled to replicate the ratio between void space in the

  1. Development of BWR components SCC mitigation method by the TiO{sub 2} treating technique

    Energy Technology Data Exchange (ETDEWEB)

    Takamori, K.; Suzuki, J.; Suzuki, S.; Miyazaki, A. [Tokyo Electric Power Co., Tokohama-city (Japan); Okamura, M.; Osato, T.; Ichikawa, N. [Toshiba Corp., Kawasaki-city (Japan); Urata, H.; Takagi, J. [Toshiba Corp., Yokohama-city (Japan)

    2007-07-01

    Stress Corrosion Cracking (SCC) susceptibility of Boiling Water Reactor (BWR) materials is mitigated by reduction of the electrochemical corrosion potential (ECP). In the reactor there is a photo-excitation reaction between TiO{sub 2} and ultraviolet Cherenkov radiation. The TiO{sub 2} treatment technique plans to mitigate SCC by reducing the ECP without hydrogen addition. We conducted the demonstration tests of the TiO{sub 2} treatment technique in a test reactor and in BWR plant piping systems. The test results showed that the ECP of TiO{sub 2} treated type 316L stainless steel and the Ni based alloy 600 were reduced to -350 mV vs. the standard hydrogen electrode (SHE) in the reactor system in normal water chemistry (NWC). In the no Cherenkov radiation area, the ECP of the TiO{sub 2} treated stainless steel still decreased as the dissolved hydrogen concentration in feed water up to 0.3 ppm. (a condition that will be referred as 'low HWC.') (author)

  2. Experimental facilities for large-scale and full-scale study of hydrogen accidents

    Energy Technology Data Exchange (ETDEWEB)

    Merilo, E.; Groethe, M.; Colton, J. [SRI International, Poulter Laboratory, Menlo Park, CA (United States); Chiba, S. [SRI Japan, Tokyo (Japan)

    2007-07-01

    This paper summarized some of the work that has been performed at SRI International over the past 5 years that address safety issues for the hydrogen-based economy. Researchers at SRI International have conducted experiments at the Corral Hollow Experiment Site (CHES) near Livermore California to obtain fundamental data on hydrogen explosions for risk assessment. In particular, large-scale hydrogen tests were conducted using homogeneous mixtures of hydrogen in volumes from 5.3 m{sup 3} to 300 m{sup 3} to represent scenarios involving fuel cell vehicles as well as transport and storage facilities. Experiments have focused on unconfined deflagrations of hydrogen and air, and detonations of hydrogen in a semi-open space to measure free-field blast effects; the use of blast walls as a mitigation technique; turbulent enhancement of hydrogen combustion due to obstacles within the mixture, and determination of when deflagration-to-detonation transition occurs; the effect of confined hydrogen releases and explosions that could originate from an interconnecting hydrogen pipeline; and, large and small accidental releases of hydrogen. The experiments were conducted to improve the prediction of hydrogen explosions and the capabilities for performing risk assessments, and to develop mitigation techniques. Measurements included hydrogen concentration; flame speed; blast overpressure; heat flux; and, high-speed, standard, and infrared video. The data collected in these experiments is used to correlate computer models and to facilitate the development of codes and standards. This work contributes to better safety technology by evaluating the effectiveness of different blast mitigation techniques. 13 refs., 13 figs.

  3. Ozone mitigation tests at the APS

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Collins, J.T.; Pisharody, M.; Job, P.K.; Wang Zhibi.

    1996-09-01

    Ozone is generated in the APS experimental stations whenever the x-ray beam has a chance to interact with air. Ozone concentrations in an experimental station have to be below a certain defined limit (current OSHA regulations specify 0.08 ppm as the maximum limit) before an experimenter can reenter the hutch. This limit is said to be currently under study for a downward adjustment. One method of depleting the ozone generated in an experimental station is mitigation through either adsorption or direct destruction. In recent tests, both methods were tried using commercially available units. Test results and some analytical predictions are presented

  4. Hydrogen cracking and stress corrosion of pipeline steels. Contribution of the cracking mechanisms study to the understanding of the in-service damage and to the definition of a ranking test; Fissuration assistee par l'hydrogene et corrosion sous contrainte des aciers de pipelines. Apports de l'etude des mecanismes de fissuration a la comprehension de l'endommagement de service et a la definition d'un test de classification

    Energy Technology Data Exchange (ETDEWEB)

    Le Friant, D.

    2000-12-19

    This work is based on the study of the cracking of a French oil transmission pipeline protected by a cathodic protection system. The objective is to identify field parameters, which contribute to the cracks propagation, and to assess changes in the operating conditions, which could lead to a mitigation of the phenomenon. We have focused on the study of the micro-mechanisms by means of slow strain rate tests. Then, cyclic loading tests were carried out to investigate cracks propagation mechanisms. Smooth and pre-notched specimens were tested at free and cathodic potential. Hydrogen is responsible for crack advance through changes in the local steels properties. Such effects take place when two phenomenons occur: favourable conditions for hydrogen entry and, a localisation of hydrogen and its effects. In particular, we have shown the essential role of a dynamic loading in promoting hydrogen entry into the steel (especially at the very crack tip). At cathodic potential, hydrogen-related effects are exacerbated by the presence of MnS inclusions which leads to the initiation of internal cracks (HIC) and to a SOHIC-like crack morphology. At free potential, the lesser amount of available hydrogen give localisation-related effects a greater importance. Cracking is then related to a hydrogen-induced SCC mechanism. Three parameters are involved in the field cracking: operating pressure variations, period of over-protection and a sensitive steels microstructure (MnS). Cathodic protection appears to be the most efficient field parameter to mitigate the phenomenon: it requires a better control of the polarisation level. Finally, a ranking test is outlined from the study of the cracking mechanisms. (author)

  5. Simulation of hydrogen mitigation in catalytic recombiner. Part-II: Formulation of a CFD model

    International Nuclear Information System (INIS)

    Prabhudharwadkar, Deoras M.; Iyer, Kannan N.

    2011-01-01

    Research highlights: → Hydrogen transport in containment with recombiners is a multi-scale problem. → A novel methodology worked out to lump the recombiner characteristics. → Results obtained using commercial code FLUENT are cast in the form of correlations. → Hence, coarse grids can obtain accurate distribution of H 2 in containment. → Satisfactory working of the methodology is clearly demonstrated. - Abstract: This paper aims at formulation of a model compatible with CFD code to simulate hydrogen distribution and mitigation using a Passive Catalytic Recombiner in the Nuclear power plant containments. The catalytic recombiner is much smaller in size compared to the containment compartments. In order to fully resolve the recombination processes during the containment simulations, it requires the geometric details of the recombiner to be modelled and a very fine mesh size inside the recombiner channels. This component when integrated with containment mixing calculations would result in a large number of mesh elements which may take large computational times to solve the problem. This paper describes a method to resolve this simulation difficulty. In this exercise, the catalytic recombiner alone was first modelled in detail using the best suited option to describe the reaction rate. A detailed parametric study was conducted, from which correlations for the heat of reaction (hence the rate of reaction) and the heat transfer coefficient were obtained. These correlations were then used to model the recombiner channels as single computational cells providing necessary volumetric sources/sinks to the energy and species transport equations. This avoids full resolution of these channels, thereby allowing larger mesh size in the recombiners. The above mentioned method was successfully validated using both steady state and transient test problems and the results indicate very satisfactory modelling of the component.

  6. Test report for run-in acceptance testing of hydrogen mitigation test pump-2

    International Nuclear Information System (INIS)

    Brewer, A.K.; Kolowith, R.

    1995-01-01

    This document provides the results of the run-in test of the replacement mixer pump for the Tank 241-SY-101. The test was conducted at the 400 Area MASF facility between August 12 and September 29, 1994. The report includes findings, analysis, recommendations, and corrective actions taken

  7. Status Report on Hydrogen Management and Related Computer Codes

    International Nuclear Information System (INIS)

    Liang, Z.; Chan, C.K.; Sonnenkalb, M.; Bentaib, A.; Malet, J.; Sangiorgi, M.; Gryffroy, D.; Gyepi-Garbrah, S.; Duspiva, J.; Sevon, T.; Kelm, S.; Reinecke, E.A.; Xu, Z.J.; Cervone, A.; Utsuno, H.; Hotta, A.; Hong, S.W.; Kim, J.T.; Visser, D.C.; Stempniewicz, M.M.; Kuriene, L.; Prusinski, P.; Martin-Valdepenas, J.M.; Frid, W.; Isaksson, P.; Dreier, J.; Paladino, D.; Algama, D.; Notafrancesco, A.; Amri, A.; Kissane, M.; )

    2014-01-01

    In follow-up to the Fukushima Daiichi NPP accident, the Committee on the Safety of Nuclear Installations (CSNI) decided to launch several high priority activities. At the 14. plenary meeting of the Working Group on Analysis and Management of Accidents (WGAMA), a proposal for a status paper on hydrogen generation, transport and mitigation under severe accident conditions was approved. The proposed activity is in line with the WGAMA mandate and it was considered to be needed to revisit the hydrogen issue. The report is broken down into five Chapters and two appendixes. Chapter 1 provides background information for this activity and expected topics defined by the WGAMA members. A general understanding of hydrogen behavior and control in severe accidents is discussed. A brief literature review is included in this chapter to summarize the progress obtained from the early US NRC sponsored research on hydrogen and recent international OECD or EC sponsored projects on hydrogen related topics (generation, distribution, combustion and mitigation). Chapter 2 provides a general overview of the various reactor designs of Western PWRs, BWRs, Eastern European VVERs and PHWRs (CANDUs). The purpose is to understand the containment design features in relation to hydrogen management measures. Chapter 3 provides a detailed description of national requirements on hydrogen management and hydrogen mitigation measures inside the containment and other places (e.g., annulus space, secondary buildings, spent fuel pool, etc.). Discussions are followed on hydrogen analysis approaches, application of safety systems (e.g., spray, containment ventilation, local air cooler, suppression pool, and latch systems), hydrogen measurement strategies as well as lessons learnt from the Fukushima Daiichi nuclear power accident. Chapter 4 provides an overview of various codes that are being used for hydrogen risk assessment, and the codes capabilities and validation status in terms of hydrogen related

  8. Delayed hydrogen cracking test design for pressure tubes

    International Nuclear Information System (INIS)

    Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo

    1999-01-01

    CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)

  9. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover

    International Nuclear Information System (INIS)

    Schalenbach, Maximilian; Stolten, Detlef

    2015-01-01

    Highlights: • New technique to reduce gas crossover during water electrolysis • Increase of the efficiency of pressurized water electrolysis • Prevention of safety hazards due to explosive gas mixtures caused by crossover • Experimental realization for a polymer electrolyte membrane electrolyzer • Discussion of electrochemical crossover mitigation for alkaline water electrolysis - Abstract: Hydrogen produced by water electrolysis can be used as an energy carrier storing electricity generated from renewables. During water electrolysis hydrogen can be evolved under pressure at isothermal conditions, enabling highly efficient compression. However, the permeation of hydrogen through the electrolyte increases with operating pressure and leads to efficiency loss and safety hazards. In this study, we report on an innovative concept, where the hydrogen crossover is electrochemically mitigated by an additional electrode between the anode and the cathode of the electrolysis cell. Experimentally, the technique was applied to a proton exchange membrane water electrolyzer operated at a hydrogen pressure that was fifty times larger than the oxygen pressure. Therewith, the hydrogen crossover was reduced and the current efficiency during partial load operation was increased. The concept is also discussed for water electrolysis that is operated at balanced pressures, where the crossover of hydrogen and oxygen is mitigated using two additional electrodes

  10. PWSCC Mitigation of alloy 182: Testing of various mitigation processes

    International Nuclear Information System (INIS)

    Curieres, I. de; Calonne, O.; Crooker, P.

    2011-01-01

    Since the mid nineties, Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 182 welds has occurred. This affects different components, even ones that are considered to have 'low-susceptibility' due to a low operating temperature such as the 'low operating temperature' reactor pressure vessel (RPV) heads in the global PWR fleet and bottom-mounted instrumentation nozzles, a location where currently there is no ready-to-deploy repair or replacement solution. Hence, there is an incentive to identify effective remedial measures to delay or prevent PWSCC initiation, even at 'low temperature' RPV heads in order to avoid wholesale replacement in the future. Working with EPRI, Areva has assessed the efficiency of various technological processes including brushing, polishing or compressive stress methods to mitigate PWSCC in Alloy 182. A first phase of the program is completed and the results will be presented. The emphasis will be put on the program's different testing phases and the different mitigation processes that were tested. Efficiency of 'chemical' surface treatments is not yet proved. EPRI stabilized chromium had a deleterious effect on crack initiation that should be reproduced and understood before drawing a definitive conclusion. The electropolishing process considered does not seem to be sufficiently reliable on Alloy 182 surfaces but longer exposures are required for a more definitive evaluation of this treatment. All tested 'mechanical' surface treatments i.e. -) GE-RENEW brushing, -) Fiber laser peening (Toshiba), -) Water Jet Peening (Mitsubishi), -) Water Jet Peening (Hitachi), -) Combination of GE-RENEW and Hitachi WJP have successfully inhibited crack initiation even though the surface compressive stresses induced on U-ends are lower than those expected on massive components. Past experience shows that crack initiation occurs in less than 250 h on U-bends with 'heavily ground' reference surfaces. Thus, it can be deduced that the present results show

  11. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji

    1999-01-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm 3 /h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  12. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-07-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm{sup 3}/h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  13. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1). Revision 1

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-01-01

    This document provides descriptions of components and tasks that are involved in the computer system for the data acquisition and control of the mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los alamos National Laboratory and supplied to Westinghouse Hanford Company. The computers (both personal computers and specialized data-taking computers) and the software programs of the system will hereafter collectively be referred to as the DACS (Data Acquisition and Control System)

  14. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov (United States)

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen Systems Integration Facility or ESIF. Research projects including H2FIRST, component testing, hydrogen

  15. Rationale for the implementation of hydrogen mitigation techniques on French PWRs

    International Nuclear Information System (INIS)

    Duco, J.; Durin, M.; Lecomte, C.

    1997-01-01

    The actual benefit, in terms of improved safety, of implementing specific counter-measures to deal with the issue of hydrogen in the containment of a given type of PWR, under severe accident conditions, should be assessed in as realistic a way as feasible before a decision is finalized. Existing methodologies, based on current codes and data bases, are expected to provide a first-degree assessment, with specific input data and models intended to compensate for physical uncertainties. The IPSN has launched a comprehensive research and assessment program on such key hydrogen behavior uncertainties. A state-of-the-art realistic assessment of hydrogen production has been recently prepared by the Institute. Regarding hydrogen evolution and distribution in the containment, priority is placed on subcompartments, where high hydrogen concentrations could result in detonation, either directly or through a deflagration-to-detonation transition. In a first step, efforts are being directed towards setting criteria which delimit the non-transition realm for representative air steam-hydrogen mixtures at high temperature. IPSN participation in the RUT experiments is expected to provide relevant data. As to a better assessment of the hydrogen distribution between sub-compartments, as well as to the pressure-time history onto the walls in the event of either a deflagration or a detonation, the new 3-D, meshed TONUS code is currently being developed at CEA for IPSN, partially based on models already existing in the TRIO-EF/VF, CASTEM 2000 and PLEXUS codes. Some highly important thermalhydraulic models, like those for wail condensation and aspersion, will be validated by various analytical experiments and by specific tests under representative severe accident conditions in the projected IPSN TOSQAN facility at Saclay. The TONUS code should also provide guidance for an optimized positioning of hydrogen measuring devices and/or of hydrogen depleting devices like recombiners, should the

  16. Is liquid hydrogen a solution for mitigating air pollution by airports?

    Energy Technology Data Exchange (ETDEWEB)

    Janic, Milan [OTB Research Institute, Delft University of Technology Jaffalaan 9, 2628 BX Delft (Netherlands)

    2010-03-15

    This paper investigates the potential of LH{sub 2} (Liquid Hydrogen) as an alternative fuel for achieving more sustainable long-term development of large airports in terms of mitigating their air pollution. For such purpose, a methodology for quantifying the potential of LH{sub 2} is developed. It consists of two models: the first model enables the estimation of the fuel demand and the specification of the fuel production and storage capacity needed to satisfy that demand at a given airport under given conditions; the other model enables assessment of the effects of introducing LH{sub 2} on mitigating air pollution at that airport. The main inputs for the methodology are scenarios of the long-term growth of air traffic demand at the airport in terms of the annual number of ATM (Air Transport Movements), i.e. flights and related LTO (Landing and Take-Off) cycles and their time characteristics, the aircraft fleet mix, characterized by the aircraft size and proportions of conventional and cryogenic aircraft, the fuel consumption per particular categories of aircraft/flights; and specifically, the fuel consumption and related emission rates of particular air pollutants by these aircraft during LTO cycles. The output from the methodology includes an estimation of the long-term development of demand at a given airport in terms of the volume and structure of ATM, which depend on: the scenarios of traffic growth and introduction of cryogenic aircraft, the required production and storage capacity of particular fuel types, the fuel consumed, and the quantities of related air pollutants emitted during LTO cycles carried out during the period concerned. The airport planners and policy makers can use the methodology for estimating, planning, design, and managing the fuel production and storage capacity, as well as for setting a cap on the air pollution depending of the circumstances. (author)

  17. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  18. Design of a hydrogen test facility

    International Nuclear Information System (INIS)

    Morgan, M.J.; Beam, J.E.; Sehmbey, M.S.; Pais, M.R.; Chow, L.C.; Hahn, O.J.

    1992-01-01

    The Air Force has sponsored a program at the University of Kentucky which will lead to a better understanding of the thermal and fluid instabilities during blowdown of supercritical fluids at cryogenic temperatures. An integral part of that program is the design and construction of that hydrogen test facility. This facility will be capable of providing supercritical hydrogen at 30 bars and 35 K at a maximum flow rate of 0.1 kg/s for 90 seconds. Also presented here is an extension of this facility to accommodate the use of supercritical helium

  19. Feasibility of the hydrogen sulfide test for the assessment of drinking water quality in post-earthquake Haiti.

    Science.gov (United States)

    Weppelmann, Thomas A; Alam, Meer T; Widmer, Jocelyn; Morrissey, David; Rashid, Mohammed H; De Rochars, Valery M Beau; Morris, J Glenn; Ali, Afsar; Johnson, Judith A

    2014-12-01

    In 2010, a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and wastewater infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholerae resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti's drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low-cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65 % and a specificity of 93 %. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88 %, even with fecal coliform concentrations greater than 100 colony-forming units per 100 ml. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low-resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources.

  20. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji

    2001-03-01

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  1. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    International Nuclear Information System (INIS)

    Haagenstad, T.

    1999-01-01

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility

  2. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  3. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  4. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  5. Development of a load cell for mechanical testing in hydrogen

    International Nuclear Information System (INIS)

    McCabe, L.P.

    1982-01-01

    Mechanical testing in hydrogen environments is performed on materials to determine hydrogen compatibility. Many tests are performed on small test samples in pressure vessels where monitoring of actual sample load is difficult. A method was developed to monitor small samples by placing inside the vessel a miniature load cell which is capable of measuring loads of less than 100 lbs. The load cell monitors load by means of a Wheatstone Bridge circuit composed of four strain gages. Two of the gages are mounted on a stainless steel stub which becomes part of the vessel load string; the others are wired outside the pressure vessel. Previously, load cells have been short-lived because of hydrogen diffusion into the epoxy-phenolic adhesive used to attach the strain gages to the stub. The use of a flame-sprayed ceramic, however, rather than an organic epoxy to mount the strain gages appears to produce a load cell resistant to the hydrogen test environment

  6. Hydrogen explosion testing with a simulated transuranic drum

    International Nuclear Information System (INIS)

    Dykes, K.L.; Meyer, M.L.

    1990-01-01

    Transuranic (TRU) waste generated at the Savannah River Site (SRS) is currently stored onsite for future retrieval and permanent disposal at the Waste Isolation Pilot Plant (WIPP). Some of the TRU waste is stored in vented 210-liter (55-gallon) drums and consists of gloves, wipes, plastic valves, tools, etc. Gas generation caused by radiolysis and biodegradation of these organic waste materials may produce a flammable hydrogen-air mixture (>4% v/v) in the multi-layer plastic waste bags. Using a worst case scenario, a drum explosion test program was carried out to determine the hydrogen concentration necessary to cause removal of the drum lid. Test results indicate an explosive mixture up to 15% v/v of hydrogen can be contained in an SRS TRU drum without total integrity failure via lid removal

  7. Hydrogen management in nuclear reactor containment

    International Nuclear Information System (INIS)

    Iyer, Kannan

    2014-01-01

    The talk will present the systematic methodology evolved to assess the hydrogen management in nuclear reactor containment during a severe accident. The focus is on the methodology evolved as the full problem is yet to be solved completely. First, the method to quantify mixing of hydrogen is presented. It is demonstrated that buoyancy modified model is adequate to quantify the process satisfactorily. On noting that the hydrogen levels are higher than the safe limits, effort was directed towards mitigating the concentration. Passive Auto-catalytic Recombiners (PAR) were identified as the potential devices for mitigation. Efforts were then directed to model these and a satisfactory one-step reaction derived from a 12 reaction model was evolved. This model was satisfactory when compared with experimental results with hydrogen concentration below 4%. However, the same when extended to hydrogen concentration of 20%, predicts very high concentration thereby indicating the need for experiments at high hydrogen concentration. (author)

  8. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  9. Separate effects tests on hydrogen combustion during direct containment heating events

    International Nuclear Information System (INIS)

    Meyer, L.; Albrecht, G.; Kirstahler, M.; Schwall, M.; Wachter, E.

    2008-01-01

    In the frame of severe accident research for light water reactors Forschungszentrum Karlsruhe (FZK/IKET) operates the facilities DISCO-C and DISCO-H since 1998, conceived to investigate the direct containment heating (DCH) issue. Previous DCH experiments have investigated the corium dispersion and containment pressurization during DCH in different European reactor geometries using an iron-alumina melt and steam as model fluids. The analysis of these experiments showed that the containment was pressurized by the debris-to-gas heat transfer but also to a large part by hydrogen combustion. The need was identified to better characterize the hydrogen combustion during DCH. To address this issue separate effect tests in the DISCO-H facility were conducted. These tests reproduced phenomena occurring during DCH (injection of a hot steam-hydrogen mixture jet into the containment and ignition of the air-steam-hydrogen mixture) with the exception of corium dispersion. The effect of corium particles as igniters was simulated using sparkler systems. The data will be used to validate models in combustion codes and to extrapolate to prototypic scale. Tests have been conducted in the DISCO-H facility in two steps. First a small series of six tests was done in a simplified geometry to study fundamental parameters. Then, two tests were done with a containment geometry subdivided into a subcompartment and the containment dome. The test conditions were as follows: As initial condition in the containment an atmosphere was used either with air or with a homogeneous air-steam mixture containing hydrogen concentrations between 0 and 7 mol%, temperatures around 100 C and pressure at 2 bar (representative of the containment atmosphere conditions at vessel failure). Injection of a hot steam-hydrogen jet mixture into the reactor cavity pit at 20 bar, representative of the primary circuit blow down through the vessel and hydrogen produced during this phase. The most important variables

  10. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    Science.gov (United States)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  11. Hydrogen and water reactor safety: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability

  12. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  13. Hydrogen problems in reactor safety research

    International Nuclear Information System (INIS)

    Casper, H.

    1984-01-01

    The BMFT and BMI have initiated a workshop 'Hydrogen Problems in Reactor Safety Research' that took place October 3./4., 1983. The objective of this workshop was to present the state of the art in the main areas - Hydrogen-Production - Hydrogen-Distribution - Hydrogen-Ignition - Hydrogen-Burning and Containment Behaviour - Mitigation Measures. The lectures on the different areas are compiled. The most important results of the final discussion are summarized as well. (orig.) [de

  14. Farm-scale testing of soybean peroxidase and calcium peroxide for surficial swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    Science.gov (United States)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-10-01

    The swine industry, regulatory agencies, and the public are interested in farm-tested methods for controlling gaseous emissions from swine barns. In earlier lab- and pilot-scale studies, a renewable catalyst consisting of soybean peroxidase (SBP) mixed with calcium peroxide (CaO2) was found to be effective in mitigating gaseous emissions from swine manure. Thus, a farm-scale experiment was conducted at the university's 178-pig, shallow-pit, mechanically-ventilated swine barn to evaluate SBP/CaO2 as a surficial manure pit additive under field conditions. The SBP was applied once at the beginning of the 42-day experiment at an application rate of 2.28 kg m-2 with 4.2% CaO2 added by weight. Gas samples were collected from the primary barn exhaust fans. As compared to the control, significant reductions in gaseous emissions were observed for ammonia (NH3, 21.7%), hydrogen sulfide (H2S, 79.7%), n-butyric acid (37.2%), valeric acid (47.7%), isovaleric acid (39.3%), indole (31.2%), and skatole (43.5%). Emissions of dimethyl disulfide/methanethiol (DMDS/MT) increased by 30.6%. Emissions of p-cresol were reduced by 14.4% but were not statistically significant. There were no significant changes to the greenhouse gas (GHG) emissions of methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O). The total (material + labor) treatment cost was 2.62 per marketed pig, equivalent to 1.5% of the pig market price. The cost of CaO2 catalyst was ∼60% of materials cost. The cost of soybean hulls (SBP source) was 0.60 per marketed pig, i.e., only 40% of materials cost.

  15. Field test of hydrogen in the natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Iskov, H

    2010-08-15

    In order to prepare for a future use of hydrogen as a fuel gas it became evident that very little information existed regarding the compatibility between long-term exposure and transportation of hydrogen in natural gas pipelines. A program was therefore set to study the transportation in a small-scale pilot grid at the research centre in Hoersholm, Denmark. The test program included steel pipes from the Danish gas transmission grid and polymer pipes from the Danish and Swedish gas distribution grid. The test of polymer pipes was devised so that samples of all test pipes were cut out of the grid each year and analysis performed on these pipe samples; in this way any form of influence on the integrity of the polyethylene pipe would be detected. The analytical program for polymer was devised in order to detect any influence on the additivation of the polyethylene as this has an influence on oxidative resistance, as well as checking already encountered possible degradation caused by extrusion of the material. Further tools as rheology and melt flow rate were used for detecting any structural changes on the material. On the mechanical property side the tensile strength and modulus were followed as well as the most important property for the pipe line, namely slow crack growth. The results of the polymer pipe tests show no degradations of any kind related to the continuous hydrogen exposure for more than 4 years. This is a strong indication of the compatibility to hydrogen of the tested polymer materials PE 80 and PE 100. The object of the steel pipe test was to see the effect on fatigue life of existing natural gas transmission lines with hydrogen replacing the natural gas. Full-scale dynamic tests were performed using randomly selected cut-out API 5L X70 pipe sections with a diameter of 20 inches and a wall thickness of 7 millimetres from the Danish natural gas transmission system. The pipe sections contained field girth weld made during the installation of the pipe

  16. Field test of hydrogen in the natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Iskov, H.

    2010-08-15

    In order to prepare for a future use of hydrogen as a fuel gas it became evident that very little information existed regarding the compatibility between long-term exposure and transportation of hydrogen in natural gas pipelines. A program was therefore set to study the transportation in a small-scale pilot grid at the research centre in Hoersholm, Denmark. The test program included steel pipes from the Danish gas transmission grid and polymer pipes from the Danish and Swedish gas distribution grid. The test of polymer pipes was devised so that samples of all test pipes were cut out of the grid each year and analysis performed on these pipe samples; in this way any form of influence on the integrity of the polyethylene pipe would be detected. The analytical program for polymer was devised in order to detect any influence on the additivation of the polyethylene as this has an influence on oxidative resistance, as well as checking already encountered possible degradation caused by extrusion of the material. Further tools as rheology and melt flow rate were used for detecting any structural changes on the material. On the mechanical property side the tensile strength and modulus were followed as well as the most important property for the pipe line, namely slow crack growth. The results of the polymer pipe tests show no degradations of any kind related to the continuous hydrogen exposure for more than 4 years. This is a strong indication of the compatibility to hydrogen of the tested polymer materials PE 80 and PE 100. The object of the steel pipe test was to see the effect on fatigue life of existing natural gas transmission lines with hydrogen replacing the natural gas. Full-scale dynamic tests were performed using randomly selected cut-out API 5L X70 pipe sections with a diameter of 20 inches and a wall thickness of 7 millimetres from the Danish natural gas transmission system. The pipe sections contained field girth weld made during the installation of the pipe

  17. Transient dynamic finite element analysis of hydrogen distribution test chamber structure for hydrogen combustion loads

    International Nuclear Information System (INIS)

    Singh, R.K.; Redlinger, R.; Breitung, W.

    2005-09-01

    Design and analysis of blast resistant structures is an important area of safety research in nuclear, aerospace, chemical process and vehicle industries. Institute for Nuclear and Energy Technologies (IKET) of Research Centre- Karlsruhe (Forschungszentrum Karlsruhe or FZK) in Germany is pursuing active research on the entire spectrum of safety evaluation for efficient hydrogen management in case of the postulated design basis and beyond the design basis severe accidents for nuclear and non-nuclear applications. This report concentrates on the consequence analysis of hydrogen combustion accidents with emphasis on the structural safety assessment. The transient finite element simulation results obtained for 2gm, 4gm, 8gm and 16gm hydrogen combustion experiments concluded recently on the test-cell structure are described. The frequencies and damping of the test-cell observed during the hammer tests and the combustion experiments are used for the present three dimensional finite element model qualification. For the numerical transient dynamic evaluation of the test-cell structure, the pressure time history data computed with CFD code COM-3D is used for the four combustion experiments. Detail comparisons of the present numerical results for the four combustion experiments with the observed time signals are carried out to evaluate the structural connection behavior. For all the combustion experiments excellent agreement is noted for the computed accelerations and displacements at the standard transducer locations, where the measurements were made during the different combustion tests. In addition inelastic analysis is also presented for the test-cell structure to evaluate the limiting impulsive and quasi-static pressure loads. These results are used to evaluate the response of the test cell structure for the postulated over pressurization of the test-cell due to the blast load generated in case of 64 gm hydrogen ignition for which additional sets of computations were

  18. Hydrogen Induced Crack and Phase Transformation in Hydrogen Pressured Tensile Test of 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Un Bong; Nam, Sung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Choe, Byung Hak; Shim, Jong Hun [Gangneung-Wonju National University, Gangneung (Korea, Republic of); Kim, Young Uk [Hanyang University, Ansan (Korea, Republic of); Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Keyyong [Korea Research Institute of Ship and Ocean Engineering, Deajeon (Korea, Republic of)

    2015-02-15

    The aim of this investigation is to prove the mechanism of hydrogen induced crack (HIC) of 316L stainless steels in hydrogen pressured tensile test. Microstructures like twin, planar slip, and abnormal phase transformation around the HIC were analyzed by transmission electron microscopy. Deformation twin accompanied by planar slip could be related to the main cause of HIC in the hydrogen pressured tensile condition, because intragranular HICs were mainly observed along the boundaries of twins and planar slip lines. An abnormal forbidden diffraction was also accompanied by HIC in the hydrogen attacked area. Examination of the HIC mechanism in austenitic stainless steel can be applied to the fitness of use for alloys with the possibility of various susceptible cracks in a hydrogen and stress atmosphere.

  19. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  20. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    mitigation measures. Based on sensitivity analyses and parameter studies performed on the THAI HM2 test, quality guidelines are developed by NRG for the practical application of this CFD containment model. In order to confirm the general applicability of the containment model and model settings, more experimental tests have been analyzed. In this paper, the CFD containment model of NRG is further validated in the context of hydrogen distribution with experiments from the TOSQAN, THAI and PANDA facility. The selected experimental tests cover different processes and conditions typical for a severe accident. The CFD based containment model shows an overall good agreement with the experiments

  1. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    mitigation measures. Based on sensitivity analyses and parameter studies performed on the THAI HM2 test, quality guidelines are developed by NRG for the practical application of this CFD containment model. In order to confirm the general applicability of the containment model and model settings, more experimental tests have been analyzed. In this paper, the CFD containment model of NRG is further validated in the context of hydrogen distribution with experiments from the TOSQAN, THAI and PANDA facility. The selected experimental tests cover different processes and conditions typical for a severe accident. The CFD based containment model shows an overall good agreement with the experiments.

  2. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  3. An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin C.; Wolf, Michael; Zmeskal, Johann; Widmann, Eberhard

    2015-01-01

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.

  4. Hydrogen risk reduction in Nuclear power plant

    International Nuclear Information System (INIS)

    Movahed, M.A.; Travis, J.R.

    1999-01-01

    In case of a severe accident in a nuclear power plant with core melt and hydrogen production, the hydrogen risk is one of the main concerns. It may jeopardize the containment integrity due to violent deflagration that can lead to DDT (Deflagration Detonation Transient) or even detonation of proper hydrogen mitigation means are not available. The design of the EPR (European Pressurized water Reactor) Hydrogen mitigation and control system is based on the lumped parameter code WAVCO and the 3D code GASFLOW. The concept consists of recombiners and igniters to cope with all scenarios including those without steam. The system has been checked to avoid DDT by the 7λ criteria that's implemented in GASFLOW. Future analysis could deal with determining dynamic pressure loads, if appropriate, and some sensitivity studies to check the hydrogen control measures with respect to different source locations and mass flow rates. Also a conditional criterion for determining the likelihood of fast deflagration should be developed. (author)

  5. Hydrogen Field Test Standard: Laboratory and Field Performance

    Science.gov (United States)

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give equivalent answers if proper sensors without drift are

  6. 700 bar hydrogen cylinder design, testing and certification

    International Nuclear Information System (INIS)

    Duncan, M.

    2004-01-01

    'Full text:' Light weight and high pressure cylinders for compressed hydrogen storage are essential components for fuel cell vehicles. Storage volume and mass are two key considerations. Current on-board hydrogen storage systems are based on a maximum pressure of 350 bar. While 350 bar systems are excellent solutions for many applications, some situations required higher storage densities due to space restrictions. As a result significant research and development work has been expended by cylinder manufacturers, systems providers, testing agencies and automotive manufacturers to develop 700 bar systems to reduce storage volume. Dynetek Industries Ltd has proactively developed a range of 700 bar storage cylinders based on a seamless aluminum liner over wrapped with a carbon fiber composite. This paper presents the challenges and processes involved in the design, testing and certification of the Dynetek Industries Ltd 700 bar cylinder. The paper also provides reasoning for further volume and mass optimization of compressed hydrogen cylinders by incorporating realistic cylinder usage parameters into standards. In particular the overly conservative fill life requirement for cylinders will be examined. (author)

  7. Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation

    DEFF Research Database (Denmark)

    already spent on these technologies also lead to commercial success. The project ‘Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation’ was aiming at starting with the Establishment of such a center. The following report documents the achievements within the project...... of the fluctuating wind energy. As the fuel cell and hydrogen technologies come closer to commercialization, development of testing methodology, qualified testing and demonstration become increasingly important. Danish industrial players have expressed a strong need for support in the process to push fuel cell...... and hydrogen technologies from the research and development stage into the commercial domain. A Center to support industry with test, development, analysis, approval, certification, consultation, and training in the areas of fuel cell and hydrogen technologies was needed. Denmark has demonstrated leading...

  8. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.

    1998-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment

  9. Characterization of Pump-Induced Acoustics in Space Launch System Main Propulsion System Liquid Hydrogen Feedline Using Airflow Test Data

    Science.gov (United States)

    Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.

    2015-01-01

    High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.

  10. Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors

    Science.gov (United States)

    Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.

    2017-12-01

    The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.

  11. Understanding of the operation behaviour of a Passive Autocatalytic Recombiner (PAR) for hydrogen mitigation in realistic containment conditions during a severe Light Water nuclear Reactor (LWR) accident

    International Nuclear Information System (INIS)

    Payot, Frédéric; Reinecke, Ernst-Arndt; Morfin, Franck; Sabroux, Jean-Christophe; Meynet, Nicolas; Bentaib, Ahmed; March, Philippe; Zeyen, Roland

    2012-01-01

    Highlights: ► Recombineur operation in the presence of fission products (severe accident conditions). ► Operation of catalysts in the integral and small-scale tests. ► The catalyst performance was observed by measuring the coupon temperature increase. ► The experimental observations were corroborated by numerical calculations (SPARK code). - Abstract: In the context of hydrogen risk mitigation in nuclear power plants (NPPs), experimental studies of a possible poisoning of Passive Autocatalytic Recombiners (PARs) by fission products (FPs) and aerosols released during a core meltdown accident were mainly conducted in the past with non-radioactive fission product surrogates (e.g., in the H2PAR facility at Cadarache, France). The decision was taken in 1997 to complete these studies by a test in the Phébus facility, a research nuclear reactor also at Cadarache: it was a rare opportunity to expose catalyst samples to an atmosphere as representative as possible of a core meltdown accident, containing gaseous fission products and aerosols released during the degradation of an actual irradiated nuclear fuel bundle. Before testing in Phébus during the FPT3 experiment, reference and qualification tests were performed in the H2PAR facility using the same samples — the so-called “coupons” — and coupons holder to check that the apparatus was functional and correctly designed for avoiding to tamper with the thermal-hydraulics and chemical conditions in the Phébus containment. The correct operation of catalysts was checked by measuring the surface temperature increase of the coupons due to the exothermic reaction between hydrogen and oxygen. After the Phébus FPT3 test (November 2004), REKO-1 tests were initiated at Jülich, Germany, to confirm the discrepancy in coupons temperature observed in Phébus FPT3 and H2PAR PHEB-03 tests, and to study the operation behaviour of PARs. Besides, before REKO-1 tests, a first interpretation of H2PAR and Phébus experiments

  12. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  13. Nickel-hydrogen battery testing for Hubble Space Telescope

    Science.gov (United States)

    Baggett, Randy M.; Whitt, Thomas H.

    1989-01-01

    The authors identify objectives and provide data from several nickel-hydrogen battery tests designed to evaluate the possibility of launching Ni-H2 batteries on the Hubble Space Telescope (HST). Test results from a 14-cell battery, a 12-cell battery, and a 4-cell pack are presented. Results of a thermal vacuum test to verify the battery-module/bay heat rejection capacity are reported. A 6-battery system simulation breadboard is described, and test results are presented.

  14. Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique.

    Science.gov (United States)

    Wang, Min; Wang, Rong; Yang, Shan; Deng, Jin Ping; Tang, Shao Xun; Tan, Zhi Liang

    2016-02-01

    Methane (CH4 ) can be mitigated through directly inhibiting methanogen activity and starving methanogens by hydrogen (H2 ) sink. Three types of mechanism (i.e. bromoethanesulphonate (BES), nitrate and emodin) and doses of CH4 mitigation agents were employed to investigate their pathways of CH4 inhibition. Results indicated that both BES and emodin inhibited CH4 production and altered H2 balance, which could be accompanied by decreased dry matter disappearance (DMD), fractional rate of gH2 formation, volatile fatty acid (VFA) production, ability to produce and use reducing equivalences and molecular H2 , and increased final asymptotic gH2 production, time to the peak of gH2 , discrete lag time of gH2 production and fermentation efficiency. However, emodin decreased gas volume produced by rapidly fermentable components of substrate and the rate of fermentation at early stage of incubation, while BES supplementation inhibited gas volume produced by both rapidly and slowly fermentable components of substrate and the rate of fermentation at middle or late stage of incubation. The nitrate supplementation inhibited CH4 production without affecting VFA profile, because of its dual role as H2 sink and being toxic to methanogens. Nitrate supplementation had more complicated pattern of fermentation, VFA production and profile and H2 balance in comparison to BES and emodin supplementation. © 2015 Japanese Society of Animal Science.

  15. Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    Directory of Open Access Journals (Sweden)

    Gopa Chakraborty

    2016-12-01

    Full Text Available DMR-249A is an indigenously developed high strength low alloy steel for Indian ship building industry for making ship-hull and is extensively used in the construction of war ships and submarines. Welding electrodes conforming to SFA 5.5 AWS E8018 C1 has been indigenously developed for welding of this steel using shielded metal arc welding process. In the present study, susceptibility to hydrogen assisted cracking of DMR-249A steel welds made using this electrode has been assessed using implant test. Implant tests were conducted using this electrode at two different levels of diffusible hydrogen, measured using gas chromatography technique. It is observed that both the steel and the welding consumable are not susceptible to hydrogen assisted cracking even with a high diffusible hydrogen level of 9 mL/100g of weld metal. In implant tests, specimen did not fracture even after loading to stress levels higher than the yield strength of the base metal. The good resistance of this steel and the welding consumable, even with high levels of diffusible hydrogen, is attributed to absence of a susceptible microstructure in both the weld metal and heat affected zone. Hence, this study shows that, in the absence of a susceptible microstructure, hydrogen assisted cracking is unlikely to occur even if hydrogen level is high. It also confirms that in welding of DMR-249A with indigenously developed E8018 C1 electrode, hydrogen assisted cracking is not a concern and no preheating is required to avoid it during welding.

  16. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  17. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH 4 + H 2 O → 3H 2 O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m 3 N /h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  18. Prevalence of abnormal lactose breath hydrogen tests in children with functional abdominal pain.

    Science.gov (United States)

    Garg, Neha; Basu, Srikanta; Singh, Preeti; Kumar, Ruchika; Sharma, Lokesh; Kumar, Praveen

    2017-05-01

    The study was undertaken to determine the prevalence of abnormal lactose breath hydrogen test in children with non-organic chronic abdominal pain. Children with chronic abdominal pain were examined and investigated for organic causes. All children without a known organic cause underwent lactose and glucose breath hydrogen test. After a standard dose of 2 g/kg of lactose to a maximum of 50 g, hydrogen in breath was measured at 15 min intervals for 3 h. A rise of 20 ppm above baseline was considered suggestive of lactose malabsorption. Of 108 children screened, organic causes were found in 46 children. Sixty-two patients without any organic cause underwent hydrogen breath test. Lactose hydrogen breath test (HBT) was positive in 36 of 62 (58%), while 11 (17%) had positive HBT with glucose suggestive of small intestinal bacterial overgrowth (SIBO). Twenty out of 34 (59%) improved on lactose free diet while 8 out of 11 (72%) children of SIBO improved on antibiotics. Lactose malabsorption was seen in 58% of children with non-organic chronic abdominal pain.

  19. An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diermaier, M., E-mail: martin.diermaier@oeaw.ac.at; Caradonna, P.; Kolbinger, B. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Wolf, M.; Zmeskal, J.; Widmann, E. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2015-08-15

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter counterpart to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth’s magnetic field.

  20. Standard-B auto grab sampler hydrogen monitoring system, Acceptance Test Report

    International Nuclear Information System (INIS)

    Lott, D.T.

    1995-01-01

    Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on the Flammable gas waste tank AN-104. General Support Projects (8K510) was support by Test Engineering (7CH30) in the performance of the Acceptance Test Procedures (ATP) to qualify the SHMS cabinets on the waste tank. The ATP's performance was controlled by Tank Farm work package. This completed ATP is transmitted by EDT-601748 as an Acceptance Test Report (ATR) in accordance with WHC-6-1, EP 4.2 and EP 1.12

  1. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation

    Directory of Open Access Journals (Sweden)

    Raffaele Molinari

    2016-03-01

    Full Text Available Pd-loaded hierarchical FAU (Pd-FAU membranes, containing an intrinsic secondary non-zeolitic (mesoporosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP to produce phenylethanol (PE, an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat−1·h−1. The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat−1·h−1.

  2. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation.

    Science.gov (United States)

    Molinari, Raffaele; Lavorato, Cristina; Mastropietro, Teresa F; Argurio, Pietro; Drioli, Enrico; Poerio, Teresa

    2016-03-22

    Pd-loaded hierarchical FAU (Pd-FAU) membranes, containing an intrinsic secondary non-zeolitic (meso)porosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP) to produce phenylethanol (PE), an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat(-1)·h(-1)). The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat(-1)·h(-1)).

  3. Hydrogen gettering the overpressure gas from highly radioactive liquids

    International Nuclear Information System (INIS)

    Riley, D.L.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined

  4. Assessment of hydrogen levels in Zircaloy-2 by non-destructive testing

    International Nuclear Information System (INIS)

    De, P.K.; John, J.T.; Banerjee, S.; Jayakumar, T.; Thavasimuthu, M.; Raj, B.

    1998-01-01

    A non-destructive assessment of Zircaloy-2 samples charged with hydrogen in the range of 50 to 1150 mg/kg has been made using ultrasonic and eddy current testing. It has been found that the ratio of the longitudinal to the shear wave velocity is a parameter which can be directly correlated with the hydrogen content up to a level of 100 to 200 mg/kg. This parameter together with the values of longitudinal and shear wave velocities can be utilized in a multi-parametric correlation approach for estimation of higher levels of the hydrogen content (up to 1150 mg/kg). The sensitivity at different ranges has been found to be acceptable. Ultrasonic attenuation measurements at higher frequencies and eddy current test parameter are also effective for estimation of hydrogen levels above 250 mg/kg in zirconium alloys. Microstructural characterization including TEM studies have been carried out for studying the influence of the type and the morphology of hydride precipitates on ultrasonic parameters. (orig.)

  5. Electrochemical permeation tests on the kinetics of the hydrogen absorption of palladium and iron

    International Nuclear Information System (INIS)

    Dafft, E.G.

    1977-01-01

    Electrochemical permeation tests were performed to investigate the kinetics of the hydrogen development and hydrogen absorption. The cathode side of the samples was galvanostatically cathodically polarized in different electrolyte solutions with and without additions. THe hydrogen atoms diffusing out of the opposite side for iron and α-palladium were oxidized with potentiostatic, sufficiently anodic polarization. The thus registered stationary current is proportional to the hydrogen activity on the cathode side. Test apparatus and conditions are described. The measurements on iron are discussed. (orig./HPOE) [de

  6. Hydrogen recombiner catalyst test supporting data

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs

  7. Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhe, E-mail: zhe.liang@cnl.ca; Clouthier, Tony; Thomas, Bryan

    2016-03-15

    Highlights: • Combustion during continuous hydrogen release. • Periodical slow burning with a low release rate or weak turbulence. • Fast global burning with stratified hydrogen or strong turbulence. • Initiation of standing flame. - Abstract: Deliberate hydrogen ignition systems have been widely installed in many water cooled nuclear power plants to mitigate hydrogen risk in a loss-of-coolant accident. Experimental studies were performed at a large scale facility to simulate a post-accident containment scenario, where hydrogen is released into a volume (not closed) with an energized igniter. The test chamber had a volume of 60 m{sup 3}. The test parameters included hydrogen injection mass flow rate, injection elevation, igniter elevation, and level of turbulence in the chamber. Several dynamic combustion behaviors were observed. Under certain conditions, slow burning occurred periodically or locally without significant pressurization, and the hydrogen concentration could be maintained near the lean hydrogen flammability limit or a steady hydrogen distribution profile could be formed with a maximum hydrogen concentration less than 9 vol.%. Under other conditions, a global fast burn or a burn moving along the hydrogen dispersion pathway was observed and was followed by an immediate initiation of a standing flame. The study provided a better understanding of the dynamic combustion behavior induced by a deliberate igniter during a continuous hydrogen release. The data can be used for validation of combustion models used for hydrogen safety analysis.

  8. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

    OpenAIRE

    McPherson, M.; Johnson, N.; Strubegger, M.

    2018-01-01

    Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Y...

  9. Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow Through Test Apparatus: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cebolla, Rafeal O [Joint Research Centre, Petten, the Netherlands; Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands

    2017-11-06

    Certification of hydrogen sensors to standards often prescribes using large-volume test chambers [1, 2]. However, feedback from stakeholders such as sensor manufacturers and end-users indicate that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow through test methods potentially are an efficient, cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested, in series or in parallel, with an appropriate flow through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of this new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations, but there are potential drawbacks. According to ISO 26142 [1], flow through test methods may not properly simulate ambient applications. In chamber test methods, gas transport to the sensor can be dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Alternatively, in flow through methods, forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. One goal of the current activity in the JRC and NREL sensor laboratories [3, 4] is to develop a validated flow through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics, challenges associated with flow through methods include the ability to control environmental parameters (humidity, pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow through test apparatus design and protocols for the evaluation of

  10. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  11. Test plan for qualification testing of the 241-SY-101 Flexible Receiver System

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1994-01-01

    A mixer pump was installed in tank 241-SY-101 on July 3, 1993, to support hydrogen mitigation testing. This test mixer pump has proven to be very successful in mitigating the large gas releases, or ''burps,'' from the tank waste. Therefore, a decision has been made to fabricate a spare pump that will be installed upon failure of the existing test pump. Before replacement activities can be initiated, equipment must be available to remove the existing pump. A pump removal system is currently being designed and fabricated that will support the retrieval, transportation and disposal of the existing pump. The Equipment Removal System consists of six major components: the flexible receiver system (FRS), the equipment storage container, the container strongback system, the container transport trailer, the support cranes, and the pump washdown system

  12. SEU mitigation exploratory tests in a ITER related FPGA

    International Nuclear Information System (INIS)

    Batista, Antonio J.N.; Leong, Carlos; Santos, Bruno; Fernandes, Ana; Ramos, Ana Rita; Santos, Joana P.; Marques, José G.; Teixeira, Isabel C.; Teixeira, João P.; Sousa, Jorge; Gonçalves, Bruno

    2017-01-01

    Data acquisition hardware of ITER diagnostics if located in the port cells of the tokamak, as an example, will be irradiated with neutrons during the fusion reactor operation. Due to this reason the majority of the hardware containing Field Programmable Gate Arrays (FPGA) will be placed after the ITER bio-shield, such as the cubicles instrumentation room. Nevertheless, it is worth to explore real-time mitigation of soft-errors caused by neutrons radiation in ITER related FPGAs. A Virtex-6 FPGA from Xilinx (XC6VLX365T-1FFG1156C) is used on the ATCA-IO-PROCESSOR board, included in the ITER Catalog of Instrumentation & Control (I & C) products – Fast Controllers. The Virtex-6 is a re-programmable logic device where the configuration is stored in Static RAM (SRAM), the functional data is stored in dedicated Block RAM (BRAM) and the functional state logic in Flip-Flops. Single Event Upsets (SEU) due to the ionizing radiation of neutrons cause soft errors, unintended changes (bit-flips) of the logic values stored in the state elements of the FPGA. Real-time SEU monitoring and soft errors repairing, when possible, were explored in this work. An FPGA built-in Soft Error Mitigation (SEM) controller detects and corrects soft errors in the FPGA Configuration Memory (CM). BRAM based SEU sensors with Error Correction Code (ECC) detect and repair the respective BRAM contents. Real-time mitigation of SEU can increase reliability and availability of data acquisition hardware for nuclear applications. The results of the tests performed using the SEM controller and the SEU sensors are presented for a Virtex-6 FPGA (XC6VLX240T-1FFG1156C) when irradiated with neutrons from the Portuguese Research Reactor (RPI), a 1 MW nuclear fission reactor, operated by IST in the neighborhood of Lisbon. Results show that the proposed SEU mitigation technique is able to repair the majority of the detected SEU soft-errors in the FPGA memory.

  13. SEU mitigation exploratory tests in a ITER related FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Antonio J.N., E-mail: toquim@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Leong, Carlos [Instituto de Engenharia de Sistemas e Computadores – Investigação e Desenvolvimento (INESC-ID), 1000-029 Lisboa (Portugal); Santos, Bruno; Fernandes, Ana [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Ramos, Ana Rita; Santos, Joana P.; Marques, José G. [Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade de Lisboa - UL, 2695-066 Bobadela (Portugal); Teixeira, Isabel C.; Teixeira, João P. [Instituto de Engenharia de Sistemas e Computadores – Investigação e Desenvolvimento (INESC-ID), 1000-029 Lisboa (Portugal); Sousa, Jorge; Gonçalves, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2017-05-15

    Data acquisition hardware of ITER diagnostics if located in the port cells of the tokamak, as an example, will be irradiated with neutrons during the fusion reactor operation. Due to this reason the majority of the hardware containing Field Programmable Gate Arrays (FPGA) will be placed after the ITER bio-shield, such as the cubicles instrumentation room. Nevertheless, it is worth to explore real-time mitigation of soft-errors caused by neutrons radiation in ITER related FPGAs. A Virtex-6 FPGA from Xilinx (XC6VLX365T-1FFG1156C) is used on the ATCA-IO-PROCESSOR board, included in the ITER Catalog of Instrumentation & Control (I & C) products – Fast Controllers. The Virtex-6 is a re-programmable logic device where the configuration is stored in Static RAM (SRAM), the functional data is stored in dedicated Block RAM (BRAM) and the functional state logic in Flip-Flops. Single Event Upsets (SEU) due to the ionizing radiation of neutrons cause soft errors, unintended changes (bit-flips) of the logic values stored in the state elements of the FPGA. Real-time SEU monitoring and soft errors repairing, when possible, were explored in this work. An FPGA built-in Soft Error Mitigation (SEM) controller detects and corrects soft errors in the FPGA Configuration Memory (CM). BRAM based SEU sensors with Error Correction Code (ECC) detect and repair the respective BRAM contents. Real-time mitigation of SEU can increase reliability and availability of data acquisition hardware for nuclear applications. The results of the tests performed using the SEM controller and the SEU sensors are presented for a Virtex-6 FPGA (XC6VLX240T-1FFG1156C) when irradiated with neutrons from the Portuguese Research Reactor (RPI), a 1 MW nuclear fission reactor, operated by IST in the neighborhood of Lisbon. Results show that the proposed SEU mitigation technique is able to repair the majority of the detected SEU soft-errors in the FPGA memory.

  14. Test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  15. Risk Mitigation Testing with the BepiColombo MPO SADA

    Science.gov (United States)

    Zemann, J.; Heinrich, B.; Skulicz, A.; Madsen, M.; Weisenstein, W.; Modugno, F.; Althaus, F.; Panhofer, T.; Osterseher, G.

    2013-09-01

    A Solar Array (SA) Drive Assembly (SADA) for the BepiColombo mission is being developed and qualified at RUAG Space Zürich (RSSZ). The system is consisting of the Solar Array Drive Mechanism (SADM) and the Solar Array Drive Electronics (SADE) which is subcontracted to RUAG Space Austria (RSA).This paper deals with the risk mitigation activities and the lesson learnt from this development. In specific following topics substantiated by bread board (BB) test results will be addressed in detail:Slipring Bread Board Test: Verification of lifetime and electrical performance of carbon brush technology Potentiometer BB Tests: Focus on lifetime verification (> 650000 revolution) and accuracy requirement SADM EM BB Test: Subcomponent (front-bearing and gearbox) characterization; complete test campaign equivalent to QM test.EM SADM/ SADE Combined Test: Verification of combined performance (accuracy, torque margin) and micro-vibration testing of SADA systemSADE Bread Board Test: Parameter optimization; Test campaign equivalent to QM testThe main improvements identified in frame of BB testing and already implemented in the SADM EM/QM and SADE EQM are:• Improved preload device for gearbox• Improved motor ball-bearing assembly• Position sensor improvements• Calibration process for potentiometer• SADE motor controller optimization toachieve required running smoothness• Overall improvement of test equipment.

  16. QED Tests and Search for New Physics in Molecular Hydrogen

    Science.gov (United States)

    Salumbides, E. J.; Niu, M. L.; Dickenson, G. D.; Eikema, K. S. E.; Komasa, J.; Pachucki, K.; Ubachs, W.

    2013-06-01

    The hydrogen molecule has been the benchmark system for quantum chemistry, and may provide a test ground for new physics. We present our high-resolution spectroscopic studies on the X ^1Σ^+_g electronic ground state rotational series and fundamenal vibrational tones in molecular hydrogen. In combination with recent accurate ab initio calculations, we demonstrate systematic tests of quantum electrodynamical (QED) effects in molecules. Moreover, the precise comparison between theory and experiment can provide stringent constraints on possible new interactions that extend beyond the Standard Model. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).

  17. Final test results for the ground operations demonstration unit for liquid hydrogen

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.

  18. Hydrogen Generation, Combustibility and Mitigation in Nuclear Power Plant Systems

    International Nuclear Information System (INIS)

    Talha, K.A.; El-Sheikh, B.M.; Gad El-Mawla, A.S.

    2003-01-01

    The nuclear power plant is provided with features to insure safety. The engineered safety features (ESFs) are devoted to set operating conditions under accident conditions. If ESFs fail to apply in some accidents, this would lead to what called severe accidents, and core damage. In this case hydrogen will be generated from different sources particularly from metal-water reactions. Since the containment is the final barrier to protect the environment from the release of radioactive materials; its integrity should not be threatened. In recent years, hydrogen concentration represents a real problem if it exceeds the combustibility limits. This work is devoted to calculate the amount of hydrogen to be generated, indelicate its combustibility and how to inertize the containment using different gases to maintain its integrity and protect the environment from the release of radioactive materials

  19. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    OpenAIRE

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    2016-01-01

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...

  20. Construction and performance testing of a secondary cooling system with hydrogen gas (I)

    International Nuclear Information System (INIS)

    Hishida, M.; Nekoya, S.; Takizuka, T.; Emori, K.; Ogawa, M.; Ouchi, M.; Okamoto, Y.; Sanokawa, K.; Nakano, T.; Hagiwara, T.

    1979-08-01

    An experimental multi-purpose High-Temperature Gas Cooled Reactor (VHTR) which is supposed to be used for a direct steel-making is now being developed in JAeRI. In order to simulate the heat exchanging system between the primary helium gas and the secondary reducing gas system of VHTR, a hydrogen gas loop was constructed as a secondary cooling system of the helium gas loop. The maximum temperature and the maximum pressure of the hydrogen gas are 900 degrees C and 42 kg/cm 2 x G respectively. The construction of the hydrogen gas loop was completed in January, 1977, and was successfully operated for 1.000 h. Various performance tests, such as the hydrogen permeation test of a He/H2 heat exchanger and the thermal performance test of heat exchangers, were made. Especially, it was proved that hydrogen permeation rate through the heat exchanger was reduced to 1/30 to approximately 1/50 by a method of calorized coating, and the coating was stable during 1.000 h's operation. It was also stable against the temperature changes. This report describes the outline of the facility and performance of the components. (orig.) [de

  1. Influence of hydrogen and test temperature on mechanical properties of vanadium and niobium

    International Nuclear Information System (INIS)

    Stoloff, N.S.; Ashok, S.; Xiao, P.

    1981-01-01

    The influence of hydrogen on fatigue life of niobium and vanadium is described. In tests carried out under stress control conditions on unnotched material hydrogen extends fatigue life of both metals. However, in stress controlled tests on notched bars and in strain control tests on unnotched bars hydrogen is detrimental to fatigue life. Hydrided alloys are much more sensitive to notches than are the unalloyed metals. Frequency effects on fatigue life also are much more severe in hydrided alloys, lower frequency leading to shorter life. The results of delayed failure, creep tests and elevated temperature fatigue tests also are reported. Niobium and vanadium reveal reduced fatigue lives at elevated temperatures for tests carried out in vacuum. The results of limited hold time and low frequency tests on strain controlled fatigue life also are reported. Increasing hold time increases fatigue life of niobium in the range 450 to 650 0 C. Fractographic features change from striations in unalloyed metals to cleavage in the hydrided alloys tested at room temperature

  2. Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.

  3. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  4. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  5. Early hydrogen water chemistry in the boiling water reactor: industry-first demonstration

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Hydrogen injection into the BWR feedwater during power operation has resulted in significant IGSCC reductions. Further, noble metal application (NMCA) during shutdown or On-line NobleChem TM (OLNC) during power operation has greatly reduced the required hydrogen injection rate by catalyzing the hydrogen-oxygen reaction on the metal surfaces, reducing the electrochemical corrosion potential (ECP) at operating temperature to well below the mitigation ECP of -230 mV (SHE) at reactor water hydrogen to oxidant (O 2 + H 2 O 2 ) molar ratios of ≥2. Since IGSCC rates increase markedly at reduced temperature, and the potential for crack initiation exists, additional crack mitigation was desired. To close this gap in mitigation, the EPRI BWR Startup ECP Reduction research and development program commenced in 2008 to undertake laboratory and feasibility studies for adding a reductant to the reactor water system during start-ups. Under this program, ECP reductions of noble metal treated stainless steel sufficient to mitigate IGSCC at startup temperatures were achieved in the laboratory in the absence of radiation at hydrogen, hydrazine and carbohydrazide to oxygen molar ratios of ≥ 2, ≥1.5 and ≥0.7, respectively. Based on the familiarity of operating BWRs with using hydrogen, a demonstration of hydrogen injection during the startup of an actual BWR using noble metals was planned. This process, named EHWC (Early Hydrogen Water Chemistry), differs from the HDS (Hydrogen During Startup) approach that has been successful in Japan in that HDS injects sufficient hydrogen for bulk oxidant reduction whereas EHWC injects a smaller amount of hydrogen, sufficient to achieve a hydrogen:oxidant molar ratio of at least two at noble metal treated surfaces. The industry-first EHWC demonstration was performed at Exelon's Peach Bottom 3 nuclear power plant in October 2011. Prior to EHWC, Peach Bottom 3 had one NMCA (October 1999) and five annual OLNC applications (starting in 2007

  6. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  7. 75 Ah and 10 boilerplate nickel-hydrogen battery designs and test results

    Science.gov (United States)

    Daman, M. E.; Manzo, Michelle A.; Chang, R.; Cruz, E.

    1992-01-01

    The results of initial characterization testing of 75 Ah actively cooled bipolar battery designs and 10 boilerplate nickel-hydrogen battery designs are presented. The results demonstrate the extended cycle life capability of the Ah batteries and the high capacity utilizations at various discharge rates of the nickel-hydrogen batteries.

  8. Numerical analysis of hydrogen and methane propagation during testing of combustion engines

    Directory of Open Access Journals (Sweden)

    Dvořák V.

    2007-10-01

    Full Text Available The research of gas-fuelled combustion engines using hydrogen or methane require accordingly equipped test benches which take respect to the higher dangerous of self ignition accidents. This article deals with numerical calculations of flow in laboratory during simulated leakage of gas-fuel from fuel system of tested engine. The influences of local suction and influences of roof exhausters on the flow in the laboratory and on the gas propagation are discussed. Results obtained for hydrogen and for methane are compared. Conclusions for design and performance of suction devices and test benches are deduced from these results.

  9. Possibilities of hydrogen removal

    International Nuclear Information System (INIS)

    Langer, G.; Koehling, A.; Nikodem, H.

    1982-12-01

    In the event of hypothetical severe accidents in light-water reactors, considerable amounts of hydrogen may be produced and released into the containment. Combustion of the hydrogen may jeopardize the integrity of the containment. The study reported here aimed to identify methods to mitigate the hydrogen problem. These methods should either prevent hydrogen combustion, or limit its effects. The following methods have been investigated: pre-inerting; chemical oxygen absorption; removal of oxygen by combustion; post-inerting with N 2 , CO 2 , or halon; aqueous foam; water fog; deliberate ignition; containment purging; and containment venting. The present state of the art in both nuclear and non-nuclear facilities, has been identified. The assessment of the methods was based on accident scenarios assuming significant release of hydrogen and the spectrum of requirements derived from these scenarios was used to determine the advantages and drawbacks of the various methods, assuming their application in a pressurized-water reactor of German design. (orig.) [de

  10. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  11. The role of CFD computer analyses in hydrogen safety management

    International Nuclear Information System (INIS)

    Komen, E.M.J; Visser, D.C; Roelofs, F.; Te Lintelo, J.G.T

    2014-01-01

    The risks of hydrogen release and combustion during a severe accident in a light water reactor have attracted considerable attention after the Fukushima accident in Japan. Reliable computer analyses are needed for the optimal design of hydrogen mitigation systems, like e.g. passive autocatalytic recombiners (PARs), and for the assessment of the associated residual risk of hydrogen combustion. Traditionally, so-called Lumped Parameter (LP) computer codes are being used for these purposes. In the last decade, significant progress has been made in the development, validation, and application of more detailed, three-dimensional Computational Fluid Dynamics (CFD) simulations for hydrogen safety analyses. The objective of the current paper is to address the following questions: - When are CFD computer analyses needed complementary to the traditional LP code analyses for hydrogen safety management? - What is the validation status of the CFD computer code for hydrogen distribution, mitigation, and combustion analyses? - Can CFD computer analyses nowadays be executed in practical and reliable way for full scale containments? The validation status and reliability of CFD code simulations will be illustrated by validation analyses performed for experiments executed in the PANDA, THAI, and ENACCEF facilities. (authors)

  12. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    International Nuclear Information System (INIS)

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the open-quote normal close-quote configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge

  13. Hydrogen/deuterium isotope effects in water and aqueous solutions of organic molecules and proteins

    International Nuclear Information System (INIS)

    Price, David L.; Fu, Ling; Bermejo, F. Javier; Fernandez-Alonso, Felix; Saboungi, Marie-Louise

    2013-01-01

    Highlights: ► Hydrogen/deuterium substitution has significant effects in hydrogenous materials. ► The effects can involve structure, phase behavior and protein stability. ► The effects must be kept in mind in the interpretation of scattering experiments. ► The effects may be mitigated by an appropriate choice of experimental conditions. - Abstract: It is pointed out that hydrogen/deuterium substitution, frequently used in neutron scattering studies of the structure and dynamics of hydrogenous samples, can have significant effects on structure, phase behavior and protein stability. The effects must be kept in mind in the interpretation of such experiments. In suitable cases, these effects can be mitigated by an appropriate choice of experimental conditions

  14. Training for power plant personnel on hydrogen production and control

    International Nuclear Information System (INIS)

    Dickelman, G.J.

    1982-01-01

    It is the purpose of this paper to address the issue of training for power plant personnel in the area of hydrogen control. The authors experience in the training business indicates that most of the operations and engineering personnel have a very limited awareness of this phenomenon. Topics discussed in this paper include: 1) theory of hydrogen combustion kinetics; 2) incidents involving hydrogen combustion events; 3) normal operations interfacing with hydrogen; 4) accident conditions; and 5) mitigation schemes

  15. Construction and performance tests of a secondary hydrogen gas cooling system

    International Nuclear Information System (INIS)

    Sanokawa, K.; Hishida, M.

    1980-01-01

    With the aim of a multi-purpose use of nuclear energy, such as direct steel-making, an experimental multi-purpose high-temperature gas-cooled reactor (VHTR) is now being developed by the Japan Atomic Energy Research Institute (JAERI). In order to simulate a heat exchanging system between the primary helium gas loop and the secondary reducing gas system of the VHTR, a hydrogen gas loop as a secondary cooling system of the existing helium gas loop was completed in 1977, and was successfully operated for over 2000 hours. The objectives of constructing the H 2 secondary loop were: (1) To get basic knowledge for designing, constructing and operating a high-temperature and high-pressure gas facility; (2) To perform the following tests: (a) hydrogen permeation at the He/H 2 heat exchanger (the surfaces of the heat exchanger tubes are coated by calorizing to reduce hydrogen permeation), (b) thermal performance tests of the He/H 2 heat exchanger and the H 2 /H 2 regenerative heat exchanger, (c) performance test of internal insulation, and (d) performance tests of the components such as a H 2 gas heater and gas purifiers. These tests were carried out at He gas temperature of approximately 1000 0 C, H 2 gas temperature of approximately 900 0 C and gas pressures of approximately 40 kg/cm 2 G, which are almost the same as the operating conditions of the VHTR

  16. Existing and emerging cyanocidal compounds: new perspectives for cyanobacterial bloom mitigation

    Czech Academy of Sciences Publication Activity Database

    Matthijs, H. C. P.; Jančula, Daniel; Visser, P. M.; Maršálek, Blahoslav

    2016-01-01

    Roč. 50, č. 3 (2016), s. 443-460 ISSN 1386-2588 Institutional support: RVO:67985939 Keywords : algicides * hydrogen peroxide * lake mitigation * sustainability Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.500, year: 2016

  17. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    International Nuclear Information System (INIS)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments

  18. Draft test plan for hydrogen getters project

    International Nuclear Information System (INIS)

    Mroz, G.; Weinrach, J.

    1998-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP

  19. Evaluation of hydrogen sulphide test for detection of fecal coliform ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... on production of hydrogen sulphide by bacteria that are associated with fecal contamination. This rapid fields test needs no technical staff and the cost is lower than ..... Sources and Potable Water Supplies in Peru.

  20. Hydrogen-combustion analyses of large-scale tests

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1986-01-01

    This report uses results of the large-scale tests with turbulence performed by the Electric Power Research Institute at the Nevada Test Site to evaluate hydrogen burn-analysis procedures based on lumped-parameter codes like COMPARE-H2 and associated burn-parameter models. The test results: (1) confirmed, in a general way, the procedures for application to pulsed burning, (2) increased significantly our understanding of the burn phenomenon by demonstrating that continuous burning can occur, and (3) indicated that steam can terminate continuous burning. Future actions recommended include: (1) modification of the code to perform continuous-burn analyses, which is demonstrated, (2) analyses to determine the type of burning (pulsed or continuous) that will exist in nuclear containments and the stable location if the burning is continuous, and (3) changes to the models for estimating burn parameters

  1. Hydrogen-combustion analyses of large-scale tests

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1986-01-01

    This report uses results of the large-scale tests with turbulence performed by the Electric Power Research Institute at the Nevada Test Site to evaluate hydrogen burn-analysis procedures based on lumped-parameter codes like COMPARE-H2 and associated burn-parameter models. The test results (a) confirmed, in a general way, the procedures for application to pulsed burning, (b) increased significantly our understanding of the burn phenomenon by demonstrating that continuous burning can occur and (c) indicated that steam can terminate continuous burning. Future actions recommended include (a) modification of the code to perform continuous-burn analyses, which is demonstrated, (b) analyses to determine the type of burning (pulsed or continuous) that will exist in nuclear containments and the stable location if the burning is continuous, and (c) changes to the models for estimating burn parameters

  2. Design and building of a new experimental setup for testing hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-09-01

    For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics and thermodynamics the Materials Research Department has a high pressure balance. However, the drawback of this equipment is, that in order to load samples, exposure towards air is inevitable. This has prompted the design and building of a new experimental setup with a detachable reactor allowing samples to be loaded under protective atmosphere. The purpose of this report is to serve as documentation of the new setup. (au)

  3. Similarity analysis applied to the design of scaled tests of hydraulic mitigation methods for Tank 241-SY-101

    International Nuclear Information System (INIS)

    Liljegren, L.M.

    1993-02-01

    The episodic gas releases from Tank 241-SY-101 (SY-101) pose a potential safety hazard. It is thought that gas releases occur because gases are generated and trapped in layers of settled solids located at the bottom of the tank. This document focuses on issues associated with testing of hydraulic mitigation technologies proposed for SY-101. The basic assumption underlying the concept of hydraulic mitigation is that mobilization or maintained suspension of the solids settled in the bottom of the tank wig prevent gas accumulation. Engineering of hydraulic technologies will require testing to determine the operating parameters required to mobilize the solids and to maintain these solids in suspension. Because full scale testing is extremely expensive (even when possible), scaled tests are needed to assess the merit of the proposed technologies and to provide data for numerical or analytical modeling. This research is conducted to support testing and evaluation of proposed hydraulic mitigation concepts only. The work here is oriented towards determining the jet velocities, nozzle sizes, and other operating parameters required to mobilize the settled solids in SY- 101 and maintain them in suspension

  4. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  5. A Study on the Small Punch Test for Fracture Strength Evaluation of CANDU Pressure Tube Embrittled by Hydrogen

    International Nuclear Information System (INIS)

    Nho, Seung Hwan; Ong, Jang Woo; Yu, Hyo Sun; Chung, Se Hi

    1996-01-01

    The purpose of this study is to investigate the usefulness of small punch(SP) test using miniaturized specimens as a method for fracture strength evaluation of CANDU pressure tube embrittled by hydrogen. According to the test results, the fracture strength evaluation as a function of hydrogen concentration at -196 .deg. C was much better than that at room temperature, as the difference of SP fracture energy(Esp) with hydrogen concentration was more significant at -196 .deg. C than at room temperature for the hydrogen concentration up to 300ppm-H. It was also observed that the peak of average AE energy, the cumulative average AE energy and the cumulative average AE energy per equivalent fracture, strain increased with the increase of hydrogen concentration. From the results of load-displacement behaviors, Esp behaviors, macro- and micro-SEM fractographs and AE test it has been concluded that the SP test method using miniaturized specimen(10mmx10mmx0.5mm) will be a useful test method to evaluate the fracture strength for CANDU pressure tube embrittled by hydrogen

  6. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?

    Science.gov (United States)

    Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K

    2010-04-01

    The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.

  7. SOAR on Containment Thermal-hydraulics and Hydrogen Distribution - Prepared by an OECD/NEA Group of Experts

    International Nuclear Information System (INIS)

    Karwat, Helmut; Bardelay, Joel; Hashimoto, Takashi; Koroll, Grant W.; Krause, Matt; L'Heriteau, Jean-Pierre; Lundstroem, Petra; Notafrancesco, Allen; Royl, Peter; Schwinges, Bernd; Tezuka, Hiroko; Tills, Jack; Royen, Jacques

    1999-06-01

    During the course of severe accidents in water-cooled nuclear power plants, large amounts of hydrogen could be generated and released into the containment. The formation of hydrogen inevitably accompanies any core degradation process. The problem may be amplified by the less-likely core-concrete interaction during a subsequent basemat erosion. The integrity of the containment could be challenged by certain hydrogen combustion modes if no mitigative measures were available. International consensus is that a detailed knowledge of containment thermal-hydraulics is necessary to analyse the effectiveness of hydrogen mitigation methods, even though, at present, there are no generally accepted requirements for this purpose. During the last decade, considerable international efforts have been undertaken to better understand the associated problems by executing a large number of experiments and subjecting the test results to extensive analytical assessment. The CSNI Principal Working Group 4 at its meeting in September 1995 proposed to CSNI to draft a state-of-the-art-report (SOAR) on 'Containment Thermal-hydraulics and Hydrogen Distribution'. CSNI had endorsed the preparation of such a SOAR at its November 1995 meeting. The mandate for this SOAR can be best illustrated by several guiding questions that had been raised and discussed during earlier meetings of PWG4 and its Task Group on Severe Accident Phenomena in Containment (SAC): - What had been learnt from recent International Standard Problem (ISP) exercises on containment thermal-hydraulics and hydrogen distribution? - What could be concluded about the codes' abilities to predict the containment thermal behaviour from ISPs and from other related tests for plant application? - How should remaining uncertainties be best handled? - What more needs to be done, if anything? Consequently, the main objectives of this SOAR are: 1. to assess the current capabilities to make relevant predictions for the plant assessment of

  8. Hydrogen degradation of 21-6-9 and medium carbon steel by disc pressure test

    International Nuclear Information System (INIS)

    Zhou, D.H.; Zhou, W.X.; Xu, Z.L.

    1986-01-01

    This paper reports the method of disc pressure test and the results for 21-6-9 stainless steel and medium carbon steel in hydrogen gas with different pressures and time of storage. The results show the hydrogen induced degradation of these two kinds of steel. An attempt was made to establish an index which uses variation of area of deformed disc to determine the degradation of ductility in a hydrogen environment. (orig.)

  9. Mitigating Agricultural Diffuse Pollution: Learning from The River Eden Demonstration Test Catchment Experiments

    Science.gov (United States)

    Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.

    2016-12-01

    Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence

  10. One Step Hydrogen Generation Through Sorption Enhanced Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Jeff [Gas Technology Inst., Des Plaines, IL (United States)

    2017-08-03

    One-step hydrogen generation, using Sorption Enhanced Reforming (SER) technology, is an innovative means of providing critical energy and environmental improvements to US manufacturing processes. The Gas Technology Institute (GTI) is developing a Compact Hydrogen Generator (CHG) process, based on SER technology, which successfully integrates previously independent process steps, achieves superior energy efficiency by lowering reaction temperatures, and provides pathways to doubling energy productivity with less environmental pollution. GTI’s prior CHG process development efforts have culminated in an operational pilot plant. During the initial pilot testing, GTI identified two operating risks- 1) catalyst coating with calcium aluminate compounds, 2) limited solids handling of the sorbent. Under this contract GTI evaluated alternative materials (one catalyst and two sorbents) to mitigate both risks. The alternate catalyst met performance targets and did not experience coating with calcium aluminate compounds of any kind. The alternate sorbent materials demonstrated viable operation, with one material enabling a three-fold increase in sorbent flow. The testing also demonstrated operation at 90% of its rated capacity. Lastly, a carbon dioxide co-production study was performed to assess the advantage of the solid phase separation of carbon dioxide- inherent in the CHG process. Approximately 70% lower capital cost is achievable compared to SMR-based hydrogen production with CO2 capture, as well as improved operating costs.

  11. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    Science.gov (United States)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.

  12. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  13. Information needs and instrumentation for hydrogen control and management

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gun Chul; Suh, Kune Y.; Lee, Seung Dong; Lee, Jin Yong [Seoul National Univ., Seoul (Korea, Republic of); Jae, Moo Sung [Hanyang Univ., Seoul (Korea, Republic of)

    2000-03-15

    In this study we examined instrument information, which is related to the severe accident management, guidance. We also examined the hydrogen control and management strategy. Hydrogen control occupies and important part in severe accident management and adequate hydrogen control strategy i needed to maintain the plant integrity. Reducing containment hydrogen during a severe accident will mitigate a potential containment failure mechanism. One of the hydrogen control strategies os intentional burning by the hydrogen igniter. Though intentional hydrogen burn strategy may cause pressure and temperature spikes, which are adverse effects, it si the fastest way of reducing the containment hydrogen concentration. From the Ulchin 3 and 4 plant information we developed a simple hydrogen ignition decision tree. And from the information of decision tree, hydrogen ignition decision can be determined in Containment Event Tree (CET). The end branch values in the CET are hydrogen concentrations, which will be used to assess the accident management measure.

  14. Information needs and instrumentation for hydrogen control and management

    International Nuclear Information System (INIS)

    Park, Gun Chul; Suh, Kune Y.; Lee, Seung Dong; Lee, Jin Yong; Jae, Moo Sung

    2000-03-01

    In this study we examined instrument information, which is related to the severe accident management, guidance. We also examined the hydrogen control and management strategy. Hydrogen control occupies and important part in severe accident management and adequate hydrogen control strategy i needed to maintain the plant integrity. Reducing containment hydrogen during a severe accident will mitigate a potential containment failure mechanism. One of the hydrogen control strategies os intentional burning by the hydrogen igniter. Though intentional hydrogen burn strategy may cause pressure and temperature spikes, which are adverse effects, it si the fastest way of reducing the containment hydrogen concentration. From the Ulchin 3 and 4 plant information we developed a simple hydrogen ignition decision tree. And from the information of decision tree, hydrogen ignition decision can be determined in Containment Event Tree (CET). The end branch values in the CET are hydrogen concentrations, which will be used to assess the accident management measure

  15. Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium-Electroplating Processes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers an electronic hydrogen detection instrument procedure for measurement of plating permeability to hydrogen. This method measures a variable related to hydrogen absorbed by steel during plating and to the hydrogen permeability of the plate during post plate baking. A specific application of this method is controlling cadmium-plating processes in which the plate porosity relative to hydrogen is critical, such as cadmium on high-strength steel. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement, see Section 8. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  16. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  17. Investigation of hydrogen assisted cracking in acicular ferrite using site-specific micro-fracture tests

    Energy Technology Data Exchange (ETDEWEB)

    Costin, Walter L. [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Lavigne, Olivier, E-mail: Olivier.lavigne@adelaide.edu.au [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Kotousov, Andrei; Ghomashchi, Reza [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Linton, Valerie [Energy Pipelines Cooperative Research Centre, Faculty of Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-01-10

    Hydrogen assisted cracking (HAC) is a common type of failure mechanism that can affect a wide range of metals and alloys. Experimental studies of HAC are cumbersome due to various intrinsic and extrinsic parameters and factors (associated with stress, hydrogen and the materials microstructure) contributing to the hydrogen crack kinetics. The microstructure of many materials consists of diverse constituents with characteristic features and mechanical properties which only occur in very small material volumes. The only way to differentiate the effect of these individual constituents on the hydrogen crack kinetics is to miniaturise the testing procedures. In this paper we present a new experimental approach to investigate hydrogen assisted crack growth in a microstructural constituent, i.e. acicular ferrite. For this purpose, sharply notched micro-cantilevers were fabricated with a Focus Ion Beam within this selected microscopic region. Acicular ferrite can be found in many ferrous alloys including ferritic weld metal and has specific features that control its intrinsic susceptibility to HAC. These features were characterised via Electron Backscatter Diffraction and the specimens were subsequently loaded under uncharged and hydrogen charged conditions with a nano-indenter. The outcomes of the testing, demonstrated that the threshold stress intensity factor, K{sub th}, to initiate crack propagation in acicular ferrite ranges between 1.56 MPa m{sup 1/2} and 4.36 MPa m{sup 1/2}. This range is significantly below the values of K{sub th} reported for various ferrous alloys in standard macro-tests. This finding indicates that the mechanisms and resistance to HAC at micro-scale could be very different than at the macro-scale as not all fracture toughening mechanisms may be activated at this scale level.

  18. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-06

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particular interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.

  19. Feasibility study for the transition towards a hydrogen economy: A case study in Brazil

    International Nuclear Information System (INIS)

    Sacramento, E.M. do; Carvalho, Paulo C.M.; Lima, L.C. de; Veziroglu, T.N.

    2013-01-01

    Fossil fuels use has caused serious environmental impacts worldwide, mainly related with the greenhouse effect intensification. One strategy to mitigate such impacts is the use of hydrogen in combustion processes. Additionally, hydrogen can be utilized as an energy vector for storage purposes and is also classified as a fuel of the future, due to the low emission of pollutants into the atmosphere. The present paper shows results of a computational simulation carried out for the state of Ceará, Brazil, considering scenarios for the use of electrolytic hydrogen obtained with the use of photovoltaic (PV) modules and wind energy converters, as a substitute of fluid fossil fuels. -- Highlights: •The State of Ceará is already exploiting commercially wind and solar energy. •The system proposes the production of hydrogen from wind and solar energy. •The electrolytic hydrogen as a substitute for the utilization of fossil fluid fuels. •The hydrogen insertion into energy matrix will contributes to pollution mitigation. •Socioeconomic, technical, and environmental parameters were calculated

  20. Safety Implementation of Hydrogen Igniters and Recombiners for Nuclear Power Plant Severe Accident Management

    Institute of Scientific and Technical Information of China (English)

    XIAO Jianjun; ZHOU Zhiwei; JING Xingqing

    2006-01-01

    Hydrogen combustion in a nuclear power plant containment building may threaten the integrity of the containment. Hydrogen recombiners and igniters are two methods to reduce hydrogen levels in containment buildings during severe accidents. The purpose of this paper is to evaluate the safety implementation of hydrogen igniters and recombiners. This paper analyzes the risk of deliberate hydrogen ignition and investigates three mitigation measures using igniters only, hydrogen recombiners only or a combination of recombiners and igniters. The results indicate that steam can effectively control the hydrogen flame acceleration and the deflagration-to-detonation transition.

  1. Possibilities of hydrogen removal. Phase 2: Limitation of hydrogen effects in hypothetical severe accidents in PWR reactors

    International Nuclear Information System (INIS)

    Langer, G.; Koehling, A.; Nikodem, H.

    1984-01-01

    In the event of hypothetical severe accidents in light-water reactors, considerable amounts of hydrogen may be produced and released into the containment. Combustion of the hydrogen may jeopardize the integrity of the containment. The study reported here aimed to identify methods to mitigate the hydrogen problem. These methods should either prevent hydrogen combustion, or limit its effects. The following methods have been investigated: pre-inerting; chemical oxygen absorption; removal of oxygen by combustion; post-inerting with N 2 , CO 2 , or halon; aqueous foam; water fog; deliberate ignition; containment purging; and containment venting. The present state of the art in both nuclear and non-nuclear facilities, has been identified. The assessment of the methods was based on accident scenarios assuming significant release of hydrogen and the spectrum of requirements derived from these scenarios was used to determine the advantages and drawbacks of the various methods, assuming their application in a pressurized water reactor of German design. (orig./RW) [de

  2. BWR hydrogen addition for IGSCC

    International Nuclear Information System (INIS)

    Anderson, D.S.

    1985-01-01

    Mitigation of intergranular stress corrosion cracking (IGSCC) in austenitic stainless steel piping and other components exposed to the primary coolant in boiling water reactors has become a major industry challenge. Hydrogen water chemistry (HWC) has become a very popular recommended method of slowing the propagation of IGSCC and is a desirable alternative to material replacement. Although HWC is a reasonable solution for controlling IGSCC, it is not without significant drawbacks for some plants. Carolina Power and Light's (CP and L's) Brunswick Unit 2 is one of these plants where the use of HWC for the mitigation of IGSCC could have a major impact on the current operating philosophy

  3. Mitigation of severe accidents in light water reactors: Chapter 8

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Catton, I.

    1983-01-01

    As part of the NRC program on degraded core and core-melt accidents beyond the design basis, the work presented here focuses on containment mitigation systems. Included are studies aimed at estimating the risk reduction potential for filtered-vented containment systems, passive containment heat removal systems, and features to mitigate against hydrogen burns and base mat penetration. Specific aspects of mitigation for Zion, Indian Poin and Limerick plants are considered. For Zion, consideration of a filtered-vented containment system and a passive containment heat removal system was considered. For Indian Point, the use of heat pipes for passive heat removal was considered. Lastly, for Limerick a low-volume filtered venting system was found to provide a risk reduction factor on the order of 17, when based on man-rem reduction

  4. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Grosz, Tamas; Rosta, Laszlo; Hargitai, Tibor; Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A.

    1999-01-01

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  5. Light-water-reactor hydrogen manual

    International Nuclear Information System (INIS)

    Camp, A.L.; Cummings, J.C.; Sherman, M.P.; Kupiec, C.F.; Healy, R.J.; Caplan, J.S.; Sandhop, J.R.; Saunders, J.H.

    1983-06-01

    A manual concerning the behavior of hydrogen in light water reactors has been prepared. Both normal operations and accident situations are addressed. Topics considered include hydrogen generation, transport and mixing, detection, and combustion, and mitigation. Basic physical and chemical phenomena are described, and plant-specific examples are provided where appropriate. A wide variety of readers, including operators, designers, and NRC staff, will find parts of this manual useful. Different sections are written at different levels, according to the most likely audience. The manual is not intended to provide specific plant procedures, but rather, to provide general guidance that may assist in the development of such procedures

  6. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  7. Hydrogen control in the System 80+TM ALWR design

    International Nuclear Information System (INIS)

    Schneider, R.E.; Jacob, M.C.; Carpentino, F.L.; Wachowiak, R.M.

    2004-01-01

    This paper provides an assessment of the features built into the System 80 +TM Advanced Light Water Reactor (ALWR) design for controlling hydrogen concentration during a hypothetical severe accident. Although the significantly larger System 80 + containment volume serves to passively maintain the global average below detonable limits, the design incorporates a Hydrogen Mitigation System (HMS) to further reduce the local hydrogen concentration. The HMS consists of a large number of hydrogen ignitors distributed within the containment to selectively burn-off hydrogen at low concentrations. The criteria for the placement of these igniters are discussed along with an assessment of the effectiveness of the igniters to control the hydrogen concentrations. This assessment, which was performed using the generalized containment model of the MAAP 4 code, evaluated the potential for hydrogen build-up in the containment and calculated the best-estimate response of the igniters. (author)

  8. Present status of the disk pressure tests for hydrogen embrittlement

    International Nuclear Information System (INIS)

    Fidelle, J.P.

    1985-05-01

    The Disk Pressure Tests (DPT) have been developed considerably theoretically and experimentally for Internal Hydrogen Embrittlement (IHE) e.g. Co, Ti, U alloys, for Environment Embrittlement due to H 2 , hydrogenated media such as water vapor, alcohol, machining fluids or liquid NH 3 . The range has been expanded considerably for pressure up to 300 MPa and temperature (-160 0 C to 1000 0 C). Very low strain rate -longer than a month- tests have been able to evidence embrittlement of FFC alloys where H diffusivity is low. Conversely for very oxidation - sensitive metals (e.g. Nb and Ta) effects may appear only at somewhat high rates. The relationship between dynamic (increasing stress) tests, static (delayed failure) and low-cycle fatigue tests has been determined. In a number of instances, including SCC, other techniques and even fracture mechanics have been compared to the DPT and proved at best equivalent and several times, less sensitive than a well conducted DPT. At extreme they could not reproduce the field service phenomenon whereas the DPT did and could also be applied satisfactorily to low yield stress materials. The main rupture aspects have been analyzed mechanically and organized in a rational and comprehensive chart based on 12,000 + tests over 150 + materials in different conditions. From the tests on a large number of metal systems, a theory of HE has been derived which accounts for the behavior of metals and alloys either embrittled and or hydrited. Finally comparison of HGE tests and service behavior of a large variety of materials and industrial equipments has made possible to specify acceptance criteria for industrial service

  9. Dome load control and crane land path evaluation for Tank 241-SY-101 during hydrogen mitigation pump removal and installation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, M.P.; Lawler, D.M.

    1994-08-01

    This report revisits and consolidates two analyses previously performed for the installation of the Hydrogen Mitigation Pump (HMT) pump. The first report determines, as a function of the crane-imposed dome load, the point to which the crane can encroach into the exclusion zone without exceeding the 50-ton limit. The second performs a load evaluation for the crane and the components in the load path (crane lift accessories and pump). In doing so, it determines the weakest component in the load path and the effect of this component on the allowable encroachment distance. Furthermore, the second report sets operational limits on the allowable load decrease (unload) during installation in the event the pump sticks in the riser. The analysis presented here expands on the latter subject by setting an operational limit on the amount of allowable load increase (overload) during pump removal in the event the pump sticks in the riser.

  10. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  11. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  12. Hydrogen management techniques in German LWR-containments

    International Nuclear Information System (INIS)

    Berg, H.P.; Froehmel, T.

    1993-01-01

    Investigations are described which are necessary to develop an accident management concept for German PWRs, in particular possible solutions of the hydrogen problem resulting from a core melting accident. This work is an important part of the Nuclear Regulatory Research Programme initiated and financed by the Federal Office for Radiation Protection (BfS). Two fundamental strategies are discussed: prevention of the formation of inflammable gas mixtures by making the atmosphere of the containment inert, and mitigation of the consequence of possible combustion by limiting the local hydrogen concentration. (Z.S.) 1 fig

  13. Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2002 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Ohashi, Hirofumi; Inaba, Yoshitomo; Kato, Michio; Aita, Hideki; Morisaki, Norihiro; Takeda, Tetsuaki; Nishihara, Tetsuo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This report describes 2002 fiscal-year experimental test operations of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system. The improvement works were performed in May 2002. The second experimental test operation was performed from June 2002 and the performances of the improved parts were confirmed. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2002. The third experimental test operation was performed, from October 2002, for (a) start-up and shutdown test, (b) process change test, (c) chemical reaction shutdown test and (d) characteristics test on steam reformer. It was confirmed that the changes of helium gas temperature, caused at steam reformer, could be mitigated into the target range by the steam generator. Maintenance works of high-pressure gas production facilities were also performed in February 2003. This report is summarized with the outline and the results of the test, maintenance works and inspections, and operation records in mentioned above. (author)

  14. Hydrogen breath test for the diagnosis of lactose intolerance, is the routine sugar load the best one?

    Science.gov (United States)

    Argnani, Fiorenza; Di Camillo, Mauro; Marinaro, Vanessa; Foglietta, Tiziana; Avallone, Veronica; Cannella, Carlo; Vernia, Piero

    2008-10-28

    To evaluate the prevalence of lactose intolerance (LI) following a load of 12.5 g in patients diagnosed as high-grade malabsorbers using the hydrogen breath test (HBT)-25. Ninety patients showing high-grade malabsorption at HBT-25 were submitted to a second HBT with a lactose load of 12.5 g. Peak hydrogen production, area under the curve of hydrogen excretion and occurrence of symptoms were recorded. Only 16 patients (17.77%) with positive HBT-25 proved positive at HBT-12.5. Hydrogen production was lower as compared to HBT-25 (peak value 21.55 parts per million (ppm) +/- 29.54 SD vs 99.43 ppm +/- 40.01 SD; P lactose and a strict lactose restriction on the basis of a "standard" HBT is, in most instances, unnecessary. Thus, the 25 g lactose tolerance test should probably be substituted by the 12.5 g test in the diagnosis of LI, and in providing dietary guidelines to patients with suspected lactose malabsorption/intolerance.

  15. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    Science.gov (United States)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  16. Present status of the disk pressure tests for hydrogen embrittlements

    International Nuclear Information System (INIS)

    Fidelle, J.P.

    1988-01-01

    The Disk Pressure Tests (DPT) have been developed considerably. Theoretically: a finite elements mechanical analysis shows the build up of a triaxial stress state already at the beginning of the test, which, with other reasons accounts for the very high sensitivity. Experimentally: for Internal Hydrogen Embrittlement (IHE) e.g. Co, Ti, U alloys, for environment embrittlement due to H 2 hydrogenated media such as water vapor, alcohol, machining fluids or liquid NH 3 . The range has been expanded considerably: up to 300 MPa and up to 1000 0 C. Very low strain rate - longer than a month - tests have been able to evidence HGE; of FCC alloys where H diffusivity is low for very oxidation -sensitive metals such as Nb and Ta, effects may appear only at somewhat high rates. The relationship between dynamic tests, static and low-cycle fatigue tests has been determined. In a number of instances, including SCC, other techniques and even fracture mechanics have been compared to the DPT and proved at best equivalent and several times, less sensitive than a well conducted DPT. At extreme they could not reproduce the field service phenomenon whereas the DPT did and could also be applied satisfactorily to low yield stress materials. The main rupture aspects have been analysed mechanically and organized in a rational and comprehensive chart based on 12,000 + tests over 15O + materials in different conditions. Comparison of HGE tests and service behaviour of a large variety of materials and industrial equipments has made possible to specify acceptance criteria for industrial service, which, provided the shape of the stress strain curves is not significantly affected, can be expanded to IHE, HE by other fluids than H 2 , 36 refs

  17. Performance testing of a hydrogen heat pipe

    International Nuclear Information System (INIS)

    Alario, J.; Kosson, R.

    1980-01-01

    Test results are presented for a reentrant groove heat pipe with hydrogen working fluid. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady-state performance data taken over a 19 to 23 K temperature range indicated the following: (1) maximum heat transport capacity 5.4 W-m (2) static wicking height 1.42 cm and (3) overall heat pipe conductance 1.7 W/C. These data agreed remarkably well with extrapolations made from comparable ammonia test results. The maximum heat transport capacity is 9.5% larger than the extrapolated value, but the static wicking height is the same. The overall conductance is 29% of the ammonia value, which is close to the ratio of liquid thermal conductivities (24%). Also, recovery from a completely frozen condition was accomplished within 5 min by simply applying an evaporater heat load of 1.8 W

  18. Thermal shock testing of TiC-coated molybdenum with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1985-07-01

    Thermal shock testing of molybdenum samples, on which TiC is coated by TP-CVD and CVD methods, has been made by using a pulsed hydrogen beam. The power density applied was 2 kw/cm 2 . The test results showed that TiC coatings did not exfoliate until the melting of the substrate and showed good adhesion under the thermal shock condition. (author)

  19. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    International Nuclear Information System (INIS)

    Willms, R.S.; Taylor, D.J.; Enoeda, Mikio; Okuno, Kenji

    1994-01-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H 2 and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is an practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier

  20. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert; Brosha, Eric; Mukundan, Rangachary; James, C. Will; Keller, Jay

    2016-12-01

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.

  1. HECTR [Hydrogen Event: Containment Transient Response] analyses of the Nevada Test Site (NTS) premixed combustion experiments

    International Nuclear Information System (INIS)

    Wong, C.C.

    1988-11-01

    The HECTR (Hydrogen Event: Containment Transient Response) computer code has been developed at Sandia National Laboratories to predict the transient pressure and temperature responses within reactor containments for hypothetical accidents involving the transport and combustion of hydrogen. Although HECTR was designed primarily to investigate these phenomena in LWRs, it may also be used to analyze hydrogen transport and combustion experiments as well. It is in this manner that HECTR is assessed and empirical correlations, such as the combustion completeness and flame speed correlations for the hydrogen combustion model, if necessary, are upgraded. In this report, we present HECTR analyses of the large-scale premixed hydrogen combustion experiments at the Nevada Test Site (NTS) and comparison with the test results. The existing correlations in HECTR version 1.0, under certain conditions, have difficulty in predicting accurately the combustion completeness and burn time for the NTS experiments. By combining the combustion data obtained from the NTS experiments with other experimental data (FITS, VGES, ACUREX, and Whiteshell), a set of new and better combustion correlations was generated. HECTR prediction of the containment responses, using a single-compartment model and EPRI-provided combustion completeness and burn time, compares reasonably well against the test results. However, HECTR prediction of the containment responses using a multicompartment model does not compare well with the test results. This discrepancy shows the deficiency of the homogeneous burning model used in HECTR. To overcome this deficiency, a flame propagation model is highly recommended. 16 refs., 84 figs., 5 tabs

  2. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability.

    Science.gov (United States)

    Sigala, Paul A; Ruben, Eliza A; Liu, Corey W; Piccoli, Paula M B; Hohenstein, Edward G; Martínez, Todd J; Schultz, Arthur J; Herschlag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (ΔGf) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to ΔGf, but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H···O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite ΔGf differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond ΔGf are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  3. Analysis of Hydrogen Concentration Distribution during an SBO Accident for Shin-Ulchin APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong Wan [Korea Atomic energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    To prohibit the accumulation of hydrogen, the containment volume is considered to reduce the hydrogen concentration, or hydrogen mitigation devices such as PARs or igniters are installed in the containment. In the case of the Fukushima NPPs, the applied strategy for the hydrogen safety is the use of a containment venting system (CVS). In this way, the hydrogen accumulated in the containment vessel is vented into the environment. One of the causes of the hydrogen explosions occurring in the containment buildings of the Fukushima NPPs is expected to be the failure of the venting system. The hydrogen was therefore easily accumulated in the containment building. It is uncertain what the ignition source for the hydrogen combustion was during the accident. However, it is not too conservative to assume that an ignition source exists at any time and any place in a containment during a core-melt accident. Shin-Ulchin 1 and 2, which are construction plants of an APR 1400, are two of the newest NPPs in Korea. They have many features to enhance the safety margin during a design-based and beyond-design-based accident. One of them is the in-containment refueling water storage tank (IRWST) located inside the containment. It is used as a sink/source for feed-bleed operation. When the core is damaged along an accident progression, the hydrogen generated in the RPV can be released into the IRWST of the APR1400 with steam and water. From a previous study, it was found that a highly concentrated hydrogen/air mixture can be developed if the hydrogen is released into the IRWST. In the case of Shin-Ulchin 1 and 2, the hydrogen mitigation strategy during a high-pressure accident such as a station blackout (SBO) is changed by installing a 3-way valve. When a severe accident management (SAM) for the plant is initiated, the flow path from a pressurizer to the IRWST is changed into a steam-generator (S/G) compartment by turning the 3-wat valve actively (pilot operated). By doing so, it is

  4. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  5. Hydrogen-related challenges for the steelmaker: the search for proper testing

    Science.gov (United States)

    Thiessen, R. G.

    2017-06-01

    The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector, including the automotive sector, to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths, certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970), but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this, newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  6. The least-cost hydrogen for Southern California

    International Nuclear Information System (INIS)

    Lin, Zhenhong; Chen, Chien-Wei; Ogden, Joan; Fan, Yueyue

    2008-01-01

    Optimization is applied to identify the least-cost sequence of hydrogen infrastructure build-up in Southern California during 2010-2060. Given an exogenous demand, the model generates temporal and spatial decisions for building a hydrogen infrastructure, in terms of when, where, at what sizes and by what technologies, that minimize the net present value of technology, environment, and fuel accessibility costs. The least-cost sequence is then analyzed with respect to technology deployment, delivered hydrogen cost, capital requirements, subsidy need, subsidy capacity, and CO 2 mitigation. It is found that industrial hydrogen could play a critical role in initiating hydrogen transition, temporally bridged by onsite SMR to central production dominated at first by biomass gasification and later by coal gasification with carbon dioxide capture and storage (CCS). While a non-discounted capital investment of $24.43 billion is needed for the 50-year build-up, a hydrogen price below 3$/kg could pay back the costs in 20 years earning a 10% IRR. If hydrogen is purchased at the current equivalent gasoline price (2.517 $/gallon), the hydrogen industry could potentially provide $4715 as subsidy for each new FCV purchase. With CCS, 50% of 50-year CO 2 emissions could be avoided. (author)

  7. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  8. Production and detection of cold anti-hydrogen atoms A first step towards high precision CPT test

    CERN Document Server

    Variola, A; Bonomi, G; Boutcha, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Doser, Michael; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Montagna, P; Pruys, H S; Regenfus, C; Rotondi, A; Riedler, P; Testera, G; Van der Werf, D P

    2003-01-01

    Observations of anti-hydrogen in small quantities have been reported at CERN and at FermiLab, but these experiments were not suited to spectroscopy experiments. In 2002 the ATHENA collaboration reported the production and detection of very low energy anti-hydrogen atoms produced in cryogenic environment. This is the first major step in the study of antiatom's internal structure and it can lead to a high precision test of the CPT fundamental symmetry. The method of production and detection of cold anti-hydrogen will be introduced. The absolute rate of anti-hydrogen production and the signal to background ratio in the ATHENA experiment will be discussed. (7 refs) .

  9. Measurement of in-core and recirculation system response to hydrogen water chemistry at Nine Mile Point 1

    International Nuclear Information System (INIS)

    Head, R.A.; Indig, M.E.; Andresen, P.L.

    1991-03-01

    The value of hydrogen water chemistry (HWC) as a mitigation technique for out-of-core piping systems susceptible to intergranular stress corrosion cracking (IGSCC) is well established. However, certain reactor internal components exposed to high levels of radiation are susceptible to a cracking mechanism referred to as irradiation assisted stress corrosion cracking (IASCC). Some of the components potentially affected by IASCC include the top guide, SRM/IRM housings, the core shroud, and control blades. Fortunately, laboratory data indicate that IASCC can be controlled by altering the coolant environment. Hot cell tests performed at GE's Vallecitos Nuclear Center (VNC) on highly irradiated material produced a fracture surface with 99% IGSCC under normal BWR water chemistry. However, under HWC conditions, only ductile failure occurred. With this background, a program was established to determine the chemistry and oxidizing potential of the core bypass coolant at Nine Mile Point-1 (NMP-1) under normal and HWC conditions. The objective of the program was to assess whether HWC could sufficiently modify the core bypass environment to mitigate IASCC. Results showed that with the addition of hydrogen to the feedwater, core bypass dissolved oxygen decreased very rapidly, compared to the recirculation water, indicating very efficient recombination of hydrogen and oxygen in the non-boiling core bypass region. Since low concentrations of dissolved oxygen have been shown to eliminate IASCC, these results are encouraging. 8 figs., 1 tab

  10. Design of Multilayer Insulation for the Multipurpose Hydrogen Test Bed

    Science.gov (United States)

    Marlow, Weston A.

    2011-01-01

    Multilayer insulation (MLI) is a critical component for future, long term space missions. These missions will require the storage of cryogenic fuels for extended periods of time with little to no boil-off and MLI is vital due to its exceptional radiation shielding properties. Several MLI test articles were designed and fabricated which explored methods of assembling and connecting blankets, yielding results for evaluation. Insight gained, along with previous design experience, will be used in the design of the replacement blanket for the Multipurpose Hydrogen Test Bed (MHTB), which is slated for upcoming tests. Future design considerations are discussed which include mechanical testing to determine robustness of such a system, as well as cryostat testing of samples to give insight to the loss of thermal performance of sewn panels in comparison to the highly efficient, albeit laborious application of the original MHTB blanket.

  11. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  12. Characterization testing of a 40 AHR bipolar nickel-hydrogen battery

    Science.gov (United States)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1989-01-01

    Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.

  13. Hydrogen problems related to reactor accidents

    International Nuclear Information System (INIS)

    Bujor, A.

    1993-09-01

    At reactor accidents, the combustion of hydrogen causes pressure and temperature transients which pose supplementary loads in containment. In certain conditions, they could reach hazardous levels and impair the integrity of the containment and the operability of the safety systems. The mechanisms of chemical reactions specific for the hydrogen-oxygen system are presented. Conditions in which combustion can occur and the various combustion modes, including the transition to detonation are also described. The related safety aspects and mitigation methods are discussed. Examples for particular applications and safety approaches for various types of reactors, included those promoted for the advanced reactors are also given. Presentation of the experimental research completed at AECL-Research, Whiteshell Laboratory is given, where the multi-point ignition effects for constant volume and for vented combustion of dry hydrogen-air mixtures in various geometries have been investigated. Various aspects of modelling and simulation of hydrogen combustion are discussed. The adaptations and the new models implemented in the codes VENT and CONTAIN, aimed to widen the simulation capabilities of hydrogen combustion models are described. The capabilities and limitations of the modelling assumptions of these two codes are also evaluated. (EG) (11 tabs., 39 ills., 82 refs.)

  14. An informal judgment assessment of subsidence mitigation options for low-level radioactive waste management on the Nevada Test Site

    International Nuclear Information System (INIS)

    Crowe, B.M.; Besinger, H.; Dolenc, M.

    1999-01-01

    An assessment of options to mitigate the effects of subsidence at low-level radioactive waste disposal sites on the Nevada Test Site was conducted using an informal method of expert judgment. Mitigation options for existing waste cells and future waste cells were identified by a committee composed of knowledgeable personnel from the DOE and DOE-contractors. Eight ranking factors were developed to assess the mitigation options and these factors were scored through elicitation of consensus views from the committee. Different subsets of the factors were applied respectively, to existing waste cells and future waste cells, and the resulting scores were ranked using weighted and unweighted scores. These scores show that there is a large number of viable mitigation options and considerable flexibility in assessing the subsidence issue with a greater range of options for future waste cells compared to existing waste cells. A highly ranked option for both existing and future waste cells is covering the waste cells with a thick closure cap of native alluvium

  15. Hydrogen distribution studies relevant to CANDU containments

    International Nuclear Information System (INIS)

    Krause, M.; Whitehouse, D.R.; Chan, C.K.; Jones, S.C.A.

    1995-01-01

    Following a loss of coolant accident with coincident loss of emergency core cooling, hydrogen may be produced in a CANDU reactor from the in-core Zircaloy-steam reaction, and released into containment. To meet the requirements for predicting containment hydrogen distribution, and to support measures for mitigation, a computer code GOTHIC is used. Simulations of gas mixing were performed using simple well defined experiments in a small-scale compartment, helium being substituted for hydrogen. At the time of the conference, results indicated that GOTHIC could quantitatively predict the stratified gas distribution resulting from buoyant gas injection near the bottom of an unobstructed compartment. When gas was injected near the top, GOTHIC underpredicted maximum gas concentration at the top, and overpredicted mixing. These errors arise from the finite-volume approximation. 2 refs., 11 figs

  16. Analysis and test of a breadboard cryogenic hydrogen/Freon heat exchanger

    Science.gov (United States)

    Desjardins, L. F.; Hooper, J.

    1973-01-01

    System studies required to verify a tube-in-tube cryogenic heat exchanger as optimum for the space shuttle mission are described. Design of the optimum configuration, which could be fabricated from commercially available hardware, is discussed. Finally, testing of the proposed configuration with supercritical hydrogen and Freon 21 is discussed and results are compared with thermal and dynamic analysis.

  17. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.; Saum, D.W.

    1990-01-01

    This article reports on radon mitigation in school buildings. Subslab depressurization (SSD) has been the most successful and widely used radon reduction method in houses. Thus far, it has also substantially reduced radon levels in a number of schools. Schools often have interior footings or thickened slabs that may create barriers for subslab air flow if a SSD system is the mitigation option. Review of foundation plans and subslab air flow testing will help to determine the presence and effect of such barriers. HVAC systems in schools vary considerable and tend to have a greater influence on pressure differentials (and consequently radon levels) than do heating and air-conditioning systems encountered in the radon mitigation of houses. As part of any radon mitigation method, ASHRAE Standard 62-1989 should be consulted to determine if the installed HVAC system is designed and operated to achieve minimum ventilation standards for indoor air quality

  18. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  19. Thermal shock testing of low-Z coatings with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1982-03-01

    Thermal shock testing of candidate low-Z surface coatings for JT-60 application has been made by using a pulsed hydrogen beam apparatus which is operated at a power density of 2KW/cm 2 . The materials tested are PVD (Physical Vapor Deposited) TiC and PVD and CVD (Chemical Vapor Deposited) TiN on molybdenum and Inconel 625. The result shows that CVD TiC on Mo and CVD TiN on Inconel are the most interesting choices for the coating-substrate combinations. (author)

  20. Endogenous mitigation of H2S inside of the landfills.

    Science.gov (United States)

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  1. Analysis of two different types of hydrogen combustion during severe accidents in a typical pressurized water reactor

    International Nuclear Information System (INIS)

    Ko Yuchih; Lee Min

    2005-01-01

    Hydrogen combustion is an important phenomenon that may occur during severe accidents of Nuclear Power Plants (NPPs). Depending on the specific plant design, the initiating events, and mitigation actions executed, hydrogen combustion may have distinct characteristics and may damage the plant in various degrees. The worst scenario will be the catastrophic failure of containment. In this study two specific types of hydrogen combustion are analyzed to evaluate their impact on the containment integrity. In this paper, Station Blackout (SBO) and Loss of Coolant Accidents (LOCAs) sequences are analyzed using MAAP4 (Modular Accident Analysis Program) code. The former sequence is used to represent hydrogen combustion phenomenon under the condition that the reactor pressure vessel (RPV) breaches at high pressure and the latter sequence represents the phenomenon that RPV fails at low pressure. Two types of hydrogen combustion are observed in the simulation. The Type I hydrogen combustion represents global and instantaneous hydrogen combustion. Large pressure spike is created during the combustion and represents a threat to containment integrity. Type II hydrogen combustion is localized burn and burn continuously over a time period. There is hardly any impact of this type hydrogen burn on the containment pressurization rate. Both types of hydrogen combustion can occur in the severe accidents without any human intervention. From the accident mitigation point of view, operators should try to bring the containment into conditions that favor the Type II hydrogen combustion. (authors)

  2. Update on materials performance and electrochemistry in hydrogen water chemistry at Dresden-2 BWR

    International Nuclear Information System (INIS)

    Indig, M.E.; Weber, J.E.; Davis, R.B.; Gordon, B.M.

    1985-01-01

    Previous studies performed in 1982 indicated that if sufficient hydrogen was injected into the Dresden-2 BWR, IGSCC of sensitized austenitic stainless steel was mitigated. The present series of experiments were aimed at verification of the above finding, determining how much time off hydrogen water chemistry (HWC) could be tolerated and how HWC affected pre-existing cracks

  3. Enlarged test catalysts during the hydrogenation of 1,4-butynediol to 1,4-butanediol

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The highly effective catalyzer for butynediol-1;4 hydrogenation was designed and synthesized. Enlarged tests showed that the selectivity on butanediol-1.4 at the hydrogenation of butynediol-1.4 on the alloyed catalyst SKN-39H during 320 h was 84.6 %; that on 18 % higher than for  industrial MNH. The yield of product on the catalyst SKN-39 increases slowly from 3.1 to 7.3 % when on a catalyst MNH – 7.1 to 11.7 % from the initial content of butynediol-1;4. At the hydrogenation of  butynediol on catalyst SKN-39H process efficiency increases in 1.5-2 times and product purity on 2-3 % is higher in comparing with the industrial catalyst MNH. 

  4. LEO life tests on a 75 Ah bipolar nickel-hydrogen battery

    Science.gov (United States)

    Lenhart, S.; Koehler, C.; Applewhite, A.

    1988-01-01

    The design, building, and testing of an actively cooled 10-cell 75-Ah bipolar nickel/hydrogen battery are discussed. During the last 1000 cycles, the battery has shown some evidence of elecrical performance degradation. In particular, EOC and EOD voltages have increased and decreased by several millivolts, respectively, and deep discharge capacities to a 1.0 V/cell average cutoff voltage have decreased.

  5. Hydrogen and steam distribution following a small-break LOCA in large dry containment

    Institute of Scientific and Technical Information of China (English)

    DENG Jian; CAO Xuewu

    2007-01-01

    The hydrogen deflagration is one of the major risk contributors to threaten the integrity of the containment in a nuclear power plant, and hydrogen control in the case of severe accidents is required by nuclear regulations.Based on the large dry containment model developed with the integral severe-accident analysis tool, a small-break loss-of-coolant-accident (LOCA) without HPI, LPI, AFW and containment sprays, leading to the core degradation and large hydrogen generation, is calculated. Hydrogen and steam distribution in containment compartments is investigated. The analysis results show that significant hydrogen deflagration risk exits in the reactor coolant pump (RCP)compartment and the cavity during the early period, if no actions are taken to mitigate the effects of hydrogen accumulation.

  6. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  7. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  8. The Hydrogen Pickup Behavior for Zirconium-based Alloys in Various Out-of-pile Corrosion Test Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aomi, M.; Etoh, Y.; Ishimoto, S.; Une, K. [Nippon Nuclear Fuel Development, Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki-ken, 311-1313 (Japan); Ito, K. [Global Nuclear Fuel Japan Co., Ltd., 3-1 Uchikawa 2-chome, Yokosuka-shi, Kanagawa-ken, 239-0836 (Japan)

    2009-06-15

    An acceleration of hydrogen absorption in zirconium alloy claddings at high burnups is one of the most important issues limiting the fuel performance from the viewpoint of cladding integrity. In this context, advanced cladding materials with higher corrosion resistant and lower hydrogen absorption properties have been widely searched in various organizations. In this study, four kinds of zirconium-based alloys, whose in-pile data had been acquired [1,2] were subjected to comprehensive out-of-pile corrosion tests with various temperature and atmosphere conditions in order to investigate the correlation between in-pile and out-of-pile corrosion and hydrogen pick-up behavior, i.e. Zry-2, GNF-Ziron (Zry-2-based alloy with {approx}0.25 wt % of Fe), Hi-FeNi Zircaloy (Zry-2-based alloy with {approx}0.25 wt % of Fe and {approx}0.1 wt% Ni), and VB (Zr-based alloy containing Sn, Cr, and {approx}0.5 wt % of Fe). All the alloys were annealed in RXA condition. The out-of-pile corrosion tests were carried out in three different conditions of 400 deg. C steam, 475 deg. C supercritical water, and 290 deg. C LiOH aqueous solution. In addition to these alloys, several Zry-2-based alloys with various iron contents were tested in 290 deg. C LiOH aqueous solution. Among the four corrosion conditions, the 290 deg. C LiOH aqueous solution test well screened the hydrogen pick-up behavior of the alloys. The hydrogen absorption decreased with higher iron contents in the alloys in both the out-of-pile and in-pile conditions. Especially, the distinct suppression of hydrogen absorption was observed for VB with the highest iron content. The similar dependence of iron content on the hydrogen pick-up fraction was also obtained for the Zry-2-based alloys with different iron contents, which were corroded in the 290 deg. C LiOH aqueous solution condition. As for the corrosion behavior in the 290 deg. C LiOH aqueous solution condition, the weight gains of Zry-2, GNF-Ziron and VB followed the 1

  9. Hydrogen behavior in a large-dry pressurized water reactor containment building during a severe accident

    International Nuclear Information System (INIS)

    Hsu Wensheng; Chen Hungpei; Hung Zhenyu; Lin Huichen

    2014-01-01

    Following severe accidents in nuclear power plants, large quantities of hydrogen may be generated after core degradation. If the hydrogen is transported from the reactor vessel into the containment building, an explosion might occur, which might threaten the integrity of the building; this can ultimately cause the release of radioactive materials. During the Fukushima Daiichi nuclear accident in 2011, the primary containment structures remained intact but contaminated fragments broke off the secondary containment structures, which disrupted mitigation activities and triggered subsequent explosions. Therefore, the ability to predict the behavior of hydrogen after severe accidents may facilitate the development of effective nuclear reactor accident management procedures. The present study investigated the behavior of hydrogen in a large-dry pressurized water reactor (PWR). The amount of hydrogen produced was calculated using the Modular Accident Analysis Program. The hydrogen transport behavior and the effect of the explosion on the PWR containment building were simulated using the Flame Acceleration Simulator. The simulation results showed that the average hydrogen volume fraction is approximately 7% in the containment building and that the average temperature is 330 K. The maximum predicted pressure load after ignition is 2.55 bar, which does not endanger the structural integrity of the containment building. The results of this investigation indicate that the hydrogen mitigation system should be arranged on both the upper and lower parts of the containment building to reduce the impact of an explosion. (author)

  10. Environmental mitigation for SCC initiation of BWR core internals by hydrogen injection during start-up

    International Nuclear Information System (INIS)

    Dozaki, K.; Abe, A.; Nagata, N.; Takiguchi, H.

    2004-01-01

    Hydrogen injection into the reactor water has been applied to many BWR power stations. Since hydrogen injected accelerates recombination of oxidant generated by water radiolysis, oxidant concentration, such as dissolved oxygen concentration in reactor water can be reduced. As the result of the reduction of oxidant concentration, Electrochemical Corrosion Potential (ECP) at the surface of structural material can be lowered. Lowered ECP moderates Stress Corrosion Cracking (SCC) sensitivity of structural materials, such as stainless steels. As usual, hydrogen injection system begins to work after the plant start-up is finished, when the condition of normal operation is established. Accordingly, Hydrogen Water Chemistry (HWC) does not cover all the period of plant operation. As far as SCC crack growth is considered, loss of HWC during plant start-up does not result in significant crack growth, because of duration of plant start-up is much shorter than that of plant normal operation, when HWC condition is being satisfied. However, the reactor water environment and load conditions during a plant start-up may contribute to the initiation of SCC. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Dissolved oxygen (DO) and hydrogen peroxide (H 2 O 2 ) has a peak, and ECP is in high levels during start-up. Therefore it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation. We call it HWC During Start-up (HDS) here. (orig.)

  11. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  12. Permeability test and fuzzy orthogonal analysis of hydrogenated nitrile O-ring

    Directory of Open Access Journals (Sweden)

    Qin Hu

    2015-03-01

    Full Text Available In the high temperature, high pressure and high corrosive environment of the oil and gas drilling downhole, the weatherability of rubber sealing material has a great influence on the production safety. In order to study the important degree of every key environmental factor in downhole influencing the sealing performance of rubber sealing material, a new device of simulating downhole environment is designed to test the permeability of O-ring. The sample is hydrogenated nitrile O-ring and orthogonal experiment method is used to do nine tests by getting three levels from temperature, pressure and CO2 volume fraction. Test adopts fuzzy orthogonal method to analyze the main effects and the interaction between two factors, taking tensile strength, diameter variety rate and pH value of indicator as evaluation index. The results show that: the environmental factor influencing the sealing performance of hydrogenated nitrile O-ring from high to low by turns is temperature, pressure and CO2 volume fraction, while the interaction between temperature and pressure is the most significant. It provides a new way to study the influence of downhole complex environment on the performance of rubber sealing material. Moreover, the results have important reference value to further study the failure mechanism of rubber sealing ring in many environmental factors and the rational use in engineering.

  13. Radiolytic model of Cofrentes NPP using the BWRVIA: analysis of the effectiveness of mitigation in localizations of the vessel with noble metal application on-line

    International Nuclear Information System (INIS)

    Sanchez Zapata, J. D.; Martin-Serrano, C.

    2013-01-01

    Chemistry is one of the principal factors that takes part in IGSCC materials susceptibility. BWR industry has been applying different mitigation techniques against IGSCC: hydrogen injection and noble metals. Mitigation effectiveness is checked by studying chemical parameters: ECP (for hydrogen injection) and Molar Ratio (for noble metal application). There is a software from EPRI called BWRVIA that allows to modelize radiolysis influence in parameters variation and obtain them at different points in the vessel. Recently, this kind of studies have become very relevant within BWR industry because it is the previous step to implement BWRVIP-62-A guidelines in order to get longer inspection intervals at vessel location where mitigation effectiveness is justified, with the cost savings for plants that this means. (Author)

  14. Hydrogen fracture toughness tester completion

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  15. Characterization testing of a 40 ampere hour bipolar nickel-hydrogen battery

    Science.gov (United States)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1990-01-01

    Extensive characterization testing has been done on a second 40-ampere hour (A h), 10-cell, bipolar nickel-hydrogen (Ni-H2) battery, to study the effects of operating parameters such as charge and discharge rates, temperature, and pressure on capacity, A h and watt hour (W h) efficiencies, and end-of-charge and midpoint discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout the test matrix except during the high-rate (5 C and 10 C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 in. x 2 in. battery tests are to be used in studying this problem. Low earth orbit cycle life testing at a 40-percent depth of discharge and 10 C is scheduled to follow the characterization testing.

  16. An Experimental Study of Unconfined Hydrogen/Oxygen and Hydrogen/Air Explosions

    Science.gov (United States)

    Richardson, Erin; Skinner, Troy; Blackwood, James; Hays, Michael; Bangham, Mike; Jackson, Austin

    2014-01-01

    Development tests are being conducted to characterize unconfined Hydrogen/air and Hydrogen/Oxygen blast characteristics. Most of the existing experiments for these types of explosions address contained explosions, like shock tubes. Therefore, the Hydrogen Unconfined Combustion Test Apparatus (HUCTA) has been developed as a gaseous combustion test device for determining the relationship between overpressure, impulse, and flame speed at various mixture ratios for unconfined reactions of hydrogen/oxygen and hydrogen/air. The system consists of a central platform plumbed to inject and mix component gasses into an attached translucent bag or balloon while monitoring hydrogen concentration. All tests are ignited with a spark with plans to introduce higher energy ignition sources in the future. Surrounding the platform are 9 blast pressure "Pencil" probes. Two high-speed cameras are used to observe flame speed within the combustion zone. The entire system is raised approx. 6 feet off the ground to remove any ground reflection from the measurements. As of this writing greater than 175 tests have been performed and include Design of Experiments test sets. Many of these early tests have used bags or balloons between approx. 340L and approx. 1850L to quantify the effect of gaseous mixture ratio on the properties of interest. All data acquisition is synchronized between the high-speed cameras, the probes, and the ignition system to observe flame and shock propagation. Successful attempts have been made to couple the pressure profile with the progress of the flame front within the combustion zone by placing a probe within the bag. Overpressure and impulse data obtained from these tests are used to anchor engineering analysis tools, CFD models and in the development of blast and fragment acceleration models.

  17. Acceptance Test Procedure: SY101 air pallet system

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The purpose of this test procedure is to verify that the system(s) procured to load the SY-101 Mitigation Test Pump package fulfills its functional requirements. It will also help determine the man dose expected due to handling of the package during the actual event. The scope of this procedure focuses on the ability of the air pallets and container saddles to carry the container package from the new 100 foot concrete pad into 2403-WD where it will be stored awaiting final disposition. This test attempts to simulate the actual event of depositing the SY-101 hydrogen mitigation test pump into the 2403-WD building. However, at the time of testing road modifications required to drive the 100 ton trailer into CWC were not performed. Therefore a flatbed trailer will be use to transport the container to CWC. The time required to off load the container from the 100 ton trailer will be recorded for man dose evaluation on location. The cranes used for this test will also be different than the actual event. This is not considered to be an issue due to minimal effects on man dose

  18. Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating/Coating Processes and Service Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method describes mechanical test methods and defines acceptance criteria for coating and plating processes that can cause hydrogen embrittlement in steels. Subsequent exposure to chemicals encountered in service environments, such as fluids, cleaning treatments or maintenance chemicals that come in contact with the plated/coated or bare surface of the steel, can also be evaluated. 1.2 This test method is not intended to measure the relative susceptibility of different steels. The relative susceptibility of different materials to hydrogen embrittlement may be determined in accordance with Test Method F1459 and Test Method F1624. 1.3 This test method specifies the use of air melted AISI E4340 steel per SAE AMS-S-5000 (formerly MIL-S-5000) heat treated to 260 – 280 ksi (pounds per square inch x 1000) as the baseline. This combination of alloy and heat treat level has been used for many years and a large database has been accumulated in the aerospace industry on its specific response to exposure...

  19. Use of PSA for design of emergency mitigation systems in a hydrogen production plant using General Atomics SI cycle technology. Section 2: Sulphuric acid decomposition

    International Nuclear Information System (INIS)

    Mendoza, A.; Nelson, P.F.; Francois, J.L.

    2010-01-01

    Throughout the past decades, the need to reduce greenhouse gas emissions has prompted the development of technologies for the production of clean fuels through the use of zero emissions primary energy resources, such as heat from high temperature nuclear reactors. One of the most promising of these technologies is the generation of hydrogen by the sulphur-iodine cycle coupled to a high temperature nuclear reactor, initially proposed by General Atomics. By its nature and because these will have to be large-scale plants, development of these technologies from its current phase to its procurement and construction phase, will have to incorporate emergency mitigation systems in all its sections and nuclear-chemical 'tie-in points' to prevent unwanted events that can compromise the integrity of the plant and the nearby population centres. For the particular case of the SI thermochemical cycle, a large number of safety studies have been developed; however, most of these studies have focused on hydrogen explosions and failures in the primary cooling system. While these are the most catastrophic events, it is also true that there are many other events that without having a direct impact on the nuclear-chemical coupling, could jeopardise plant operations, safety of people in nearby communities and bring economic consequences. This study examined one of these events, which is the formation of a toxic cloud driven by an uncontrolled leakage of concentrated sulphuric acid in the second section of the General Atomics SI cycle. In this section, the concentration of sulphuric acid is close to 90% in conditions of high temperature and positive pressure. Under these conditions, sulphuric acid and sulphur oxides from the reactor would immediately form a toxic cloud, that in contact with operators could cause fatalities, or could produce choking, respiratory problems and eye irritation to people in neighbouring towns. The methodology used for this analysis is the design based on

  20. The economic feasibility of producing hydrogen from sunlight and wind

    International Nuclear Information System (INIS)

    Mann, M. K.; Spath, P. L.; Watt, A. S.

    1999-01-01

    The feasibility of utilizing photoelectrochemical and electrolytical technologies to convert energy from the sun and wind into hydrogen was studied. In exploring opportunities to reduce the cost of hydrogen production through interaction with the electric utility grid, it was found that direct photoelectrochemical (PEC) conversion of sunlight has the economic potential to compete with direct photovoltaic/electrolysis, notwithstanding the significant stability and efficiency issues that are still awaiting solution. Interaction with the grid, while maximizing electrolizer use, makes a significant impact on the economics of producing hydrogen by photovoltaic/electrolysis, making wind-based systems also more economical. Electrolysis was found to be the optimal solution only with electricity from renewable sources or with less expensive non-peak electricity. On the other hand, the delivered cost of hydrogen was found to the lowest when electricity production was decoupled from the hydrogen production operation. Decoupled hydrogen production also has an additional benefit, i.e. it produces the hydrogen where it is needed, therefore it mitigates the need for various storage and distribution costs. 6 refs., 4 tabs., 2 figs

  1. Enhanced Polymer Hydrogen Getters for Use in the TRUPACTT-II

    International Nuclear Information System (INIS)

    Tim Shepodd

    2002-01-01

    Addressing the needs to safely and more efficiently ship Transuranic (TRU) wastes that may generate flammable levels of hydrogen, polymer getters were previously evaluated for deployment in the TRUPACT-II. Subsequently, enhanced polymer getters, collectively known as ''TRUGETTER,'' were formulated and pelletized, then tested against the challenging conditions defined for transport of TRU wastes. Reaction rate, reversibility, compatibility, structure/shape, passivity and capacity were evaluated. The effects of temperature extremes, radiation exposure, poisons, pressure, and free liquids were quantified. The manufacturing parameters for production of getter powder and pellets were determined. The TRUGETTER hazards have been characterized and flammability studies completed demonstrating it is not regulated as a hazardous material by DOT. TRUGETTER is commercially available on a multikilogram scale. The precious metal content of the getters is easily recycled. The optimum formulation of TRUGETTER pellets has a hydrogen capacity of 6.3 mol kg -1 . The hydrogenation rate at 5% hydrogen, ambient temperature and 50% getter loading is 1.2 x 10 -3 mol s -1 kg -1 , and the rate is proportional to the hydrogen concentration (i.e., partial pressure). Therefore, the amount of getter required to meet the performance specification of 1.2 x 10 -5 mol s -1 for 60 days at ambient temperature is determined by the getter capacity rather than rate. About 20 kg of getter will provide 2X the required hydrogen capacity. Reducing the temperature to -20 F reduces the hydrogenation rate at 5% hydrogen and 50% getter loading to 1.4 x 10 -5 mol s -1 kg -1 . The rate of hydrogen removal from air at -20 F is about 10 times faster. Therefore, based on initial results 20 kg of getter should be sufficient to maintain the hydrogen concentration in the ICV below 0.4% by volume even at the low temperature extreme. Codeployment of the getter with zeolite and Hopcalite' catalyst mitigates the effects of

  2. Combustion of stratified hydrogen-air mixtures in the 10.7 m3 Combustion Test Facility cylinder

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Greig, D.R.; Koroll, G.W.

    1996-01-01

    This paper presents preliminary results from hydrogen concentration gradient combustion experiments in a 10.7 m 3 cylinder. These gradients, also referred to as stratified mixtures, were formed from dry mixtures of hydrogen and air at atmospheric temperature. Combustion pressures, burn fractions and flame speeds in concentration gradients were compared with combustion of well-mixed gases containing equivalent amounts of hydrogen. The studied variables included the quantity of hydrogen in the vessel, the steepness of the concentration gradient, the igniter location, and the initial concentration of hydrogen at the bottom of the vessel. Gradients of hydrogen and air with average concentrations of hydrogen below the downward propagation limit produced significantly greater combustion pressures when ignited at the top of the vessel than well-mixed gases with the same quantity of hydrogen. This was the result of considerably higher burn fractions in the gradients than in the well-mixed gas tests. Above the downward propagation limit, gradients of hydrogen ignited at the top of the vessel produced nearly the same combustion pressures as under well-mixed conditions; both gradients and well-mixed gases had high burn fractions. Much higher flame speeds were observed in the gradients than the well-mixed gases. Gradients and well-mixed gases containing up to 14% hydrogen ignited at the bottom of the vessel produced nearly the same combustion pressures. Above 14% hydrogen, gradients produced lower combustion pressures than well-mixed gases having the same quantity of hydrogen. This can be attributed to lower burn fractions of fuel from the gradients compared with well-mixed gases with similar quantities of hydrogen. When ignited at the bottom of the vessel, 90% of a gradient's gases remained unburned until several seconds after ignition. The remaining gases were then consumed at a very fast rate. (orig.)

  3. From insulation contracting to radon mitigation

    International Nuclear Information System (INIS)

    West, D.R.

    1990-01-01

    As the definition of house doctor has evolved over the past ten years and the field of energy services has grown more sophisticated, many contractors have expanded the services they offer their clients. This paper presents the story of one insulation contractor who has found a niche in radon testing and mitigation. The EPA now has a national program for the radon mitigator called the Radon Contractor Proficiency Program. The requirements include attending the Radon Technology for Mitigators course, passing an exam, and taking continuing education. In the Midwest, the most popular mitigation technique is the subslab depressurization system. To draw suction from under the slab, the system can take advantage of an existing sump crock or can penetrate the slab. Interior drain tiles collect water to empty into the crock, providing an excellent pathway to draw from. This mitigation process is explained

  4. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  5. GOTHIC analysis of post-accident hydrogen mixing behaviour in CANDU fuelling machine vault

    International Nuclear Information System (INIS)

    Yim, K.; Wong, R.C.; Fluke, R.J.

    1997-01-01

    The GOTHIC code was used to assess the post-accident hydrogen gas mixing patterns in a CANDU reactor containment and demonstrate the acceptability of Ontario Hydro Nuclear's hydrogen mitigation methods. The fuelling machine vault, being a small volume room containing major reactor piping, is the room of most concern with respect to hydrogen concentrations. Detailed three dimensional modelling of the gas mixing patterns in the fuelling machine vault was completed. Results showed that, even without forced air circulation, there is enough dispersion of hydrogen to other parts of containment to preclude the build-up of sensitive mixtures in the vault. For a brief time during the peak period of hydrogen release, hydrogen concentrations rise to close to the lower ignition limit in a small portion of the vault, but these hydrogen-steam-air mixtures are considered acceptable. Natural mixing alone is sufficient to preclude damaging hydrogen burns. (author)

  6. Hydrogen in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The Commission of the European Community (CEC) and the International Atomic Energy Agency (IAEA) decided in 1989 to update the state of the art concerning hydrogen in water cooled nuclear power reactors by commissioning a report which would review, all the available information to-date and make recommendations for the future. This joint report was prepared by committees formed by the IAEA and by the CEC. The aim of this report is to review the current understanding on the areas in which the research on hydrogen in LWR is conventionally presented, taking into account the results of the latest reported research developments. The main reactions through which hydrogen is produced are assessed together with their timings. An estimation of the amount of hydrogen produced by each reaction is given, in order to reckon their relative contribution to the hazard. An overview is then given of the state of knowledge of the most important phenomena taking place during its transport from the place of production and the phenomena which control the hydrogen combustion and the consequences of combustion under various conditions. Specific research work is recommended in each sector of the presented phenomena. The last topics reviewed in this report are the hydrogen detection and the prevent/mitigation of pressure and temperature loads on containment structures and structures and safety related equipment caused by hydrogen combustion

  7. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  8. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  9. Use of probabilistic safety analysis for design of emergency mitigation systems in hydrogen producer plant with sulfur-iodine technology, Section II: sulfuric acid decomposition

    International Nuclear Information System (INIS)

    Mendoza A, A.; Nelson E, P. F.; Francois L, J. L.

    2009-10-01

    Over the last decades, the need to reduce emissions of greenhouse gases has prompted the development of technologies for the production of clean fuels through the use of primary energy resources of zero emissions, as the heat of nuclear reactors of high temperature. Within these technologies, one of the most promising is the hydrogen production by sulfur-iodine cycle coupled to a high temperature reactor initially proposed by General Atomics. By their nature and because it will be large-scale plants, the development of these technologies from its present phase to its procurement and construction, will have to incorporate emergency mitigation systems in all its parts and interconnections to prevent undesired events that could put threaten the plant integrity and the nearby area. For the particular case of sulfur-iodine thermochemical cycle, most analysis have focused on hydrogen explosions and failures in the primary cooling systems. While these events are the most catastrophic, is that there are also many other events that even taking less direct consequences, could jeopardize the plant operation, the people safety of nearby communities and carry the same economic consequences. In this study we analyzed one of these events, which is the formation of a toxic cloud prompted by uncontrolled leakage of concentrated sulfuric acid in the second section of sulfur-iodine process of General Atomics. In this section, the sulfuric acid concentration is near to 90% in conditions of high temperature and positive pressure. Under these conditions the sulfuric acid and sulfur oxides from the reactor will form a toxic cloud that the have contact with the plant personnel could cause fatalities, or to reach a town would cause suffocation, respiratory problems and eye irritation. The methodology used for this study is the supported design in probabilistic safety analysis. Mitigation systems were postulated based on the isolation of a possible leak, the neutralization of a pond of

  10. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  11. Thermal hydraulic tests of a liquid hydrogen cold neutron source. NISTIR 5026

    International Nuclear Information System (INIS)

    Siegwarth, J.D.; Olson, D.A.; Lewis, M.A.; Rowe, J.M.; Williams, R.E.; Kopetka, P.

    1995-01-01

    Liquid hydrogen cold neutron source designed at NBSR contains neutron moderator chamber. The NIST-B electrically heated glass moderator chamber used to test the NBSR chamber testing showed the following results: Stable operation possible up to at least 2200 watts with two-phase flow; LH 2 mass quickly reaches new, stable value after heat load change; Void fraction well below 20 at anticipated power and pressure; Restart of H 2 flow verified after extending supply line; Visual inspection showed no dryout or unexpected voids

  12. Test Results of a Ten Cell Bipolar Nickel-hydrogen Battery

    Science.gov (United States)

    Cataldo, R. L.

    1984-01-01

    A study was initiated to design and evaluate a new design concept for nickel-hydrogen cells. This concept involved constructing a battery in a bipolar stack with cells consisting of a one plate for each nickel and hydrogen electrode. Preliminary designs at the system level of this concept promised improvements in both volumetric and gravimetric energy densities, thermal management, life extension, costs, and peak power capability over more conventional designs. Test results were most encouraging. This preprototype battery, built with less than ideal components and hardware, exceeded expectations. A total of 2000 LEO cycles at 80 percent depth of discharge were accrued. A cycle life goal of 30,000 cycles appears achievable with minor design changes. These improvements include advanced technology nickel electrodes, insulated bipolar plates and specifically designed frames to minimize shunt currents. The discharge rate capability of this design exceeds 25C. At the 10C discharge rate, 80% of the battery capacity can be withdrawn in six minutes. This data shows that the bipolar design is well suited for those applications requiring high peak power pulses.

  13. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  14. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  15. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  16. Analysis of Hydrogen Control Strategy Using Igniter during Severe Accident

    International Nuclear Information System (INIS)

    Lee, Sung Bok; Kim, Hyeong Taek; Lee, Keo Hyoung

    2008-01-01

    The Severe Accident Management Guidelines (SAMGs) for the operating pressurized water reactor (PWR) have been completed within 2006. Among the SAMG strategies, mitigation-07 is the most important strategy for managing a severe accident of a PWR in order to reduce containment hydrogen. The fastest way to reduce the containment hydrogen concentration is to intentionally ignite the hydrogen. For this strategy, igniters exist in Optimized Power Reactor 1000 (OPR 1000) to burn hydrogen for a severe accident. For using the igniters during a severe accident, the adverse effects such as the explosion of the hydrogen mixture should be considered for containment integrity. However, an applicable discrimination method to activate the igniters does not exist, so that the hydrogen control strategy using the igniters cannot be chosen during a severe accident. Thus, this study focused on suggesting an applicable discrimination method to carry out the strategy of using the igniters. In this study, the specific plant used for this analysis is Ulchin Unit 5 and 6, OPR 1000 plant, in Korea

  17. Hydrogen gas getters: Susceptibility to poisoning

    International Nuclear Information System (INIS)

    Mroz, E.J.; Dye, R.C.; Duke, J.R.; Weinrach, J.

    1998-01-01

    About 40% (∼9,000) of the ∼23,000 transuranic (TRU) waste drums at Los Alamos National Laboratory (LANL) are presently unshippable because conservative calculations suggest that the hydrogen concentration may exceed the lower explosive limit for hydrogen. This situation extends across nearly all DOE sites holding and generating TRU waste. The incorporation of a hydrogen getter such as DEB into the waste drums (or the TRUPACT II shipping containers) could substantially mitigate the explosion risk. The result would be to increase the number of drums that qualify for transportation to the Waste Isolation Pilot Plant (WIPP) without having to resort to expensive re-packaging or waste treatment technologies. However, before this approach can be implemented, key technical questions must be answered. Foremost among these is the question of whether the presence of other chemical vapors and gases in the drum might poison the catalytic reaction between hydrogen and DEB. This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to obtain fundamental information on the chemical mechanism of the catalytic reaction of hydrogen with one commonly used hydrogen getter, DEB. Experiments with these materials showed that the method of exposure affects the nature of the reaction products. The results of this work contributed to the development of a mechanistic model of the reaction

  18. Effect of dissolved hydrogen concentration on IASCC initiation susceptibility of type 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min-Jae; Kim, Sung Woo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The effect of DH concentration on PWSCC of nickel based alloys has been studied, higher dissolved hydrogen strategy is being considered to obtain partial mitigation of PWSCC. In the case of stainless steels, it is necessary to research the effect of DH concentration on irradiation assisted stress corrosion cracking(IASCC). In this research, we tried to evaluate the effect of DH concentration on IASCC initiation susceptibility using the proton irradiated type 316 stainless steels under the condition of simulated primary water. The slow strain rate tests were performed using the proton irradiated type 316 stainless steels at the simulated primary water conditions, crack length per unit area for all tested specimens were calculated. IASCC initiation susceptibility was increased by increasing irradiation doses and by increasing DH concentration.

  19. GOTHIC-3D applicability to hydrogen combustion analysis

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Lee, Jin Yong; Park, Goon Cherl; Yoo, Ho Jong; Kim, Hyeong Taek; Lee, Byung Chul; Oh, Seung Jong

    2005-01-01

    Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling of large- and small-scale facilities was introduced through sensitivity studies on cell size and burn modeling parameters. Use of a turbulent burn option of the eddy dissipation concept enabled scale-free applications. Lowering the burn parameter values for the flame thickness and the burn temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default burn modeling parameters for large-scale facilities. However, the code needs further modifications of its burn modeling parameters to be applied to either small-scale facilities or extremely fast transients

  20. The U.S. department of energy program on hydrogen production

    International Nuclear Information System (INIS)

    Henderson, David; Paster, Mark

    2003-01-01

    Clean forms of energy are needed to support sustainable global economics growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision roadmap for moving toward a hydrogen economy-a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. DOE has examined and organized its hydrogen activities in pursuit of this national vision. This includes the development of fossil and renewable sources, as well as nuclear technologies capable of economically producing large quantities of hydrogen. (author)

  1. Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Jian; Zhang, Bo

    2011-01-01

    This paper compared the effects of hydrogen and hydrogen-oxygen blends (hydroxygen) additions on the performance of a gasoline engine at 1400 rpm and a manifolds absolute pressure of 61.5 kPa. The tests were carried out on a 1.6 L gasoline engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was applied to adjust the hydrogen and hydroxygen volume fractions in the intake increasing from 0% to about 3% and keep the hydrogen-to-oxygen mole ratio at 2:1 in hydroxygen tests. For each testing condition, the gasoline flow rate was adjusted to maintain the mixture global excess air ratio at 1.00. The test results confirmed that engine fuel energy flow rate was decreased after hydrogen addition but increased with hydroxygen blending. When hydrogen or hydroxygen volume fraction in the intake was lower than 2%, the hydroxygen-blended gasoline engine produced a higher thermal efficiency than the hydrogen-blended gasoline engine. Both the additions of hydrogen and hydroxygen help reduce flame development and propagation periods of the gasoline engine. HC emissions were reduced whereas NOx emissions were raised with the increase of hydrogen and hydroxygen addition levels. CO was slightly increased after hydrogen blending, but reduced with hydroxygen addition. -- Highlights: → We compared the effects of hydrogen and hydroxygen additions on the gasoline engine performance. → The hydroxygen should be added into the engine only at low blending levels. → CO is decreased with hydroxygen addition whereas increased with hydrogen blending.

  2. EUV tools: hydrogen gas purification and recovery strategies

    Science.gov (United States)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  3. CO2-free hydrogen as a substitute to fossil fuels: What are the targets? Prospective assessment of the hydrogen market attractiveness

    International Nuclear Information System (INIS)

    Mansilla, C.; Avril, S.; Imbach, J.; Le Duigou, A.

    2012-01-01

    Hydrogen is usually presented as a promising energy carrier that has a major role to play in low carbon mobility, through the use of fuel cells. However, such a market is not expected in the short term. In the meantime, hydrogen may also contribute to reduce carbon emissions in diverse sectors: oil refining, low carbon mobility through the industrial deployment of advanced bio-fuels, natural gas consumption, and methanol production. According to the targeted market, objective costs are rather different; and so is the reachable mitigated CO 2 amount. This paper assesses the dynamics of these markets' attractiveness, in order to provide target costs for CO 2 -free hydrogen production. The potential of the markets of hydrogen as a fuel and hydrogen for the biomass-to-liquid production is highlighted, as they could represent significant volumes by 2050, as well as interesting perspectives for CO 2 emission reduction. However the targets are very sensitive to the CO 2 price, thus highlighting the requirement for economic instruments in order to facilitate the penetration of such technologies. Hydrogen is then highlighted as a key player of the energy system in the years to come, as the connection of the energy and mobility sectors. (authors)

  4. Conceptual design and feasibility test of two-phase hydrogen thermal siphon system of CNS in CARR

    International Nuclear Information System (INIS)

    Bi Qincheng; Chen Tingkuan; Feng Quanke; Du Shejiao; Li Xiaoming; Wei Liang

    2004-01-01

    Conceptual design of the hydrogen system of cold neutron source (CNS) in China Advanced Research Reactor (CARR) was proposed, and feasibility test was carried out. In order to determine the void fraction in neutron moderator, the circulation ability of the two-phase hydrogen thermal siphon system, and the structure of components of the CNS, the mockup test was performed using Freon-113 as working fluid. To obtain the modeling criterion so that the above experimental results can be applied to the design of CARR, the bubble rising velocities in different liquids were investigated to study the effects of physical properties such as density, viscosity and surface tension on bubble rising velocity, void fraction and circulation ability

  5. Mechanical test of E110 cladding material oxidized in hydrogen rich steam atmosphere

    International Nuclear Information System (INIS)

    Windberg, P.; Perez-Fero, E.

    2005-01-01

    The behavior of the fuel cladding under accidental conditions has been studied at the AEKI for more than a decade. Earlier, the effect of oxygen and hydrogen content on the mechanical properties was studied separately. The present experiments can help to understand what kind of processes took place in the cleaning tank at Paks NPP (2003). The purpose of our experiments was to investigate high temperature oxidation of E110 cladding in steam + hydrogen mixture. A high temperature tube furnace was used for oxidation of the samples. The oxidation was carried out at three different temperatures (900 0 C, 1000 0 C, 1100 0 C). The hydrogen content in the steam was varied between 19-36 vol%. The oxygen content of the sample was defined as oxidation ratio. Two sizes (length: 2 and 8 mm) of cladding rings and 100 mm long E110 cladding tubes were oxidized. After the oxidation we made compression and tensile tests for rings, and ballooning experiments for 100 mm long tube. The most important conclusions were the following. Oxidation in H-rich steam atmosphere need longer time to get the same oxidation ratio compared to the steam oxidation without hydrogen. The shorter oxidation time results in a more compact oxide layer. The longer oxidation time leads to a cracked oxide layer. (author)

  6. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  7. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    Science.gov (United States)

    Hilliard, L. M.; Rajagopalan, Ganesh; Turner, Charles; Stevenson, Thomas; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  8. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  9. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  10. Mitigation of Tank 241-SY-101 by pump mixing: Results of testing phases A and B

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Chvala, W.D.; Friley, J.R.; Gregory, W.B.; Hudson, J.D.; Michener, T.E.; Panisko, F.E.; Stewart, C.W.; Wise, B.M. [Pacific Northwest Lab., Richland, WA (United States); Efferding, L.E.; Fadeff, J.G.; Irwin, J.J.; Kirch, N.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    A spare mixing pump from the Hanford Grout Program was installed in Hanford double-shell waste Tank 241-SY-101 on July 3, 1993, after being modified to take advantage of waste stratification. It was anticipated that pump mixing would prevent large episodic flammable gas releases that had been occurring about every 100-150 days. A cautious initial test plan, called Phase A, was run to find how the pump and tank would behave in response to very brief and gentle pump operation. No large gas releases were triggered, and the pump performed well except for two incidents of nozzle plugging. On October 21, 1993, the next test series, Phase B, began, and the pump was applied more aggressively to mix the tank contents and mitigate uncontrolled gas releases. Orienting the pump in new directions released large volumes of gas and reduced the waste level to a near-record low. Results of the entire period from pump installation to the end of Phase B on December 17, 1993, are presented in detail in this document. Though long-term effects require further evaluation, we conclude from these data that the jet mixer pump is an effective means of controlling flammable gas release and that it has met the success criteria for mitigation in this tank.

  11. Modeling of hydrogen stratification in a pressurized water reactor containment with the contain computer code

    International Nuclear Information System (INIS)

    Kljenak, I.; Skerlavaj, A.; Parzer, I.

    1999-01-01

    Hydrogen distribution during a severe accident in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN computer code. The accidents is initiated by a large-break loss-of-coolant accident which is nit successfully mitigated by the action of the emergency core cooling system. Cases with and without successful actuation of spray systems and fan coolers were considered. The simulations predicted hydrogen stratification within the containment main compartment with intensive hydrogen mixing in the containment dome region. Pressure and temperature responses were analyzed as well.(author)

  12. Hydrogen peroxide test for intraoperative bile leak detection.

    Science.gov (United States)

    Trehan, V; Rao, Pankaj P; Naidu, C S; Sharma, Anuj K; Singh, A K; Sharma, Sanjay; Gaur, Amit; Kulkarni, S V; Pathak, N

    2017-07-01

    Bile leakage (BL) is a common complication following liver surgery, ranging from 3 to 27% in different series. To reduce the incidence of post-operative BL various BL tests have been applied since ages, but no method is foolproof and every method has their own limitations. In this study we used a relatively simpler technique to detect the BL intra-operatively. Topical application of 1.5% diluted hydrogen peroxide (H 2 O 2 ) was used to detect the BL from cut surface of liver and we compared this with conventional saline method to know the efficacy. A total of 31 patients included all patients who underwent liver resection and donor hepatectomies as part of Living Donor Liver Transplantation. After complete liver resection, the conventional saline test followed by topical diluted 1.5% H 2 O 2 test was performed on all. A BL was demonstrated in 11 patients (35.48%) by the conventional saline method and in 19 patients (61.29%) by H 2 O 2 method. Statistically compared by Wilcoxon signed-rank test showed significant difference ( P  = 0.014) for minor liver resections group and ( P  = 0.002) for major liver resections group. The topical application of H 2 O 2 is a simple and effective method of detection of BL from cut surface of liver. It is an easy, non-invasive, cheap, less time consuming, reproducible, and sensitive technique with no obvious disadvantages.

  13. Progress of the ELISE test facility: towards one hour pulses in hydrogen

    Science.gov (United States)

    Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team

    2016-10-01

    In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.

  14. Performance test results of helium gas circulator of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akira; Kato, Michio; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Hydrogen production system by steam reforming of methane will be connected to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) against development of nuclear heat utilization system. To obtain design and safety database of the HTTR hydrogen production system, mock-up test facility with full-scale reaction was constructed in FY 2001 and hydrogen of 120m{sup 3}N{sub /}h was successfully produced in overall performance test. This report describes performance test results of a helium gas circulator in this facility. The circulator performance curves regarding to pressure-rise, input power and adiabatic thermal efficiency at standard revolution number were made based on the measured flow-rate, temperature and pressure data in overall performance test. The circulator performance prediction code was made based on these performance curves. The code can calculate revolution number, electric power and temperature-rise of the circulator using flow-rate, inlet temperature, inlet pressure and pressure-rise data. The verification of the code was carried out with the test data in FY 2002. Total pressure loss of the helium gas circulation loop was also evaluated. The circulator should be operated in conditions such as pressure from 2.7MPa to 4.0MPa and flow-rate from 250g/s to 400g/s and at maximum pressure-rise of 250 kPa in test operation. It was confirmed in above verification and evaluations that the circulator had performance to satisfy above conditions within operation limitation of the circulator such as maximum input-power of 150 kW and maximum revolution number of 12,000 rpm. (author)

  15. Development of assessment technology for hydrogen burn and fission product behavior in containment

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, J. T.; Ha, K. S.; Hong, S. W.; Song, Y. M.; Park, J. H.; Cho, Y. R.; Kang, H. S.

    2012-04-01

    Analysis tools for hydrogen burn was established to resolve the hydrogen issues in containment. To validate CFX commercial CFD(computational fluid dynamics) code, the hydrogen combustion experiments such as FLAME and ENACEFF for reactor containment were analyzed. And OpenFOAM hydrogen combustion code was developed and validated. Experiments for the flame propagation characteristics in IRWST and the run-up-distance for DDT(Deflagration to detonation transition) were performed and analytical model was evaluated to evaluation of the performance of hydrogen mitigation system, that is, PAR(Passive auto-catalistic re-combiner) To improvement of the fission product modelling in containment, separate analysis module for Iodine behavior and its application tool of K-IODIP (Korea IODIne Package) were developed. PHEBUS FPT-3 analysis was performed to validate MELCOR code. And also the characteristics of fission product behaviors in Future Reactors(GEN-IV) were compared

  16. Fade Mitigation Techniques at Ka-Band

    Science.gov (United States)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  17. Find a Radon Test Kit or Measurement and Mitigation Professional

    Science.gov (United States)

    Find a qualified radon service professional to fix or mitigate your home. If you have questions about a radon, you should contact your state radon contact and/or contact one or both of the two privately-run National Radon Proficiency Programs

  18. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  19. Multiport riser and flange assemblies acceptance test report

    International Nuclear Information System (INIS)

    Precechtel, D.R.; Schroeder, B.K.

    1994-01-01

    This document presents the results of the acceptance test for the multiport riser (MPR) and multiport flange (MPF) assemblies. The accepted MPR and MPF assemblies will be used in support of the hydrogen mitigation project for double-shell waste tank 241-SY-101 and other related projects. The testing described in this document verifies that the mechanical and interface features are operating as designed and that the unit is ready for field service. The objectives of the acceptance testing were as follows: Basic equipment functions and mechanical interfaces were verified; Installation and removal of equipment were demonstrated to the degree possible; Operation of the decon spray system and all valving was confirmed; and the accumulated leak rate of the MPR and MPF assemblies was determined

  20. The structure of horizontal hydrogen-steam diffusion flames

    International Nuclear Information System (INIS)

    Chan, C.K.; Guerrero, A.

    1997-01-01

    This paper summarizes a systematic study on the stability, peak temperature and flame length of various horizontal hydrogen-steam diffusion flames in air. Results from this study are discussed in terms of their impact on hydrogen management in a nuclear containment building after a nuclear reactor accident. They show that, for a certain range of emerging hydrogen-steam compositions, a stable diffusion flame can anchor itself at the break in the primary heat transport system. The length of this flame can be up to 100 times the break diameter. This implies that creation of a stable diffusion flame at the break is a possible outcome of the deliberate ignition mitigation scheme. The high temperature and heat flux from a diffusion flame can threaten nearby equipment. However, due to the presence of steam and turbulent mixing with surrounding air, the peak temperatures of these diffusion flames are much lower than the adiabatic constant pressure combustion temperature of a stoichiometric hydrogen-air mixture. These results suggest that the threat of a diffusion flame anchored at the break may be less severe than conservative analysis would indicate. Furthermore, such a flame can remove hydrogen at the source and minimize the possibility of a global gas explosion. (author)

  1. Mecanical Properties Degradation by Hydrogen Embrittlement

    International Nuclear Information System (INIS)

    Bertolino, G; Meyer, G; Perez Ipina J

    2001-01-01

    The presence of hydrogen-rich media during nuclear plant operation motivates the study of the zirconium alloys degradation of their mechanical properties influenced by hydrogen content and temperature.In this work we study samples with a microstructure of equiaxial grains resulted from hot-rolled, and with different homogeneous hydrogen content obtained by electrochemical charge and a thermal treatment.The influence of hydrogen content and temperature was analyzed from the results of fracture-mechanical tests on CT (compact test) probes using the J-criteria

  2. Hydrogen Safety Analysis of the OPR1000 Nuclear Power Plant during a Severe Accident by a Small-Break Loss of Coolant

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Park, Soo Yong; Ha, Kwang Soon; Hong, Seong Wan; Kim, Sang Baik

    2009-01-01

    A huge amount of hydrogen can be generated in a nuclear reactor and released into the reactor containment if a hypothetical severe accident happens. Even for the accident, the hydrogen concentrations must be safely controlled. In order to prove a nuclear power plant (NPP) safe from hydrogen, a simulation of hydrogen distributions in the containment are usually conducted by using a 1-dimensional thermo-hydraulic system code. If there exists a possibility of a hydrogen explosion in the containment, it is required to install a hydrogen mitigation system such as igniters or hydrogen recombiner. For a licensing of NPP construction and operation, the hydrogen combustion and hydrogen mitigation system in the containment is one of the important safety issues. In Korea, two OPR1000 NPPs by the name of Shin-Wolsung 1 and 2 are under construction. The hydrogen safety and its control for the new NPPs will be evaluated in detail until a licensing of the operation. Until now, simulations of the hydrogen behaviors in the OPR1000 have been conducted by a lumped method for each compartment in the containment using CONTAIN or MAAP. This 1-dimensional method is very efficient for a long-term simulation of an accident because of its fast running time, and it is very effective for establishing the averaged hydrogen concentrations in each compartment. But a 3-dimensional flow structure developed by a discharged mass from a reactor vessel and local concentrations of hydrogen are difficult to be resolved by the lumped method. In this study, hydrogen distributions and characteristics of hydrogen mixture cloud such as a possibility of flame acceleration in each compartment of OPR1000 containment were evaluated by using GASFLOW code

  3. Analysis of jet flames and unignited jets from unintended releases of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Houf, W.G.; Evans, G.H.; Schefer, R.W. [Sandia National Laboratories, Livermore, CA 94551-0969 (United States)

    2009-07-15

    A combined experimental and modeling program is being carried out at Sandia National Laboratories to characterize and predict the behavior of unintended hydrogen releases. In the case where the hydrogen leak remains unignited, knowledge of the concentration field and flammability envelope is an issue of importance in determining consequence distances for the safe use of hydrogen. In the case where a high-pressure leak of hydrogen is ignited, a classic turbulent jet flame forms. Knowledge of the flame length and thermal radiation heat flux distribution is important to safety. Depending on the effective diameter of the leak and the tank source pressure, free jet flames can be extensive in length and pose significant radiation and impingement hazard, resulting in consequence distances that are unacceptably large. One possible mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. The reasoning is that walls will reduce the extent of unacceptable consequences due to jet releases resulting from accidents involving high-pressure equipment. While reducing the jet extent, the walls may introduce other hazards if not configured properly. The goal of this work is to provide guidance on configuration and placement of these walls to minimize overall hazards using a quantitative risk assessment approach. The program includes detailed CFD calculations of jet flames and unignited jets to predict how hydrogen leaks and jet flames interact with barriers, complemented by an experimental validation program that considers the interaction of jet flames and unignited jets with barriers. As a first step in this work on barrier release interaction the Sandia CFD model has been validated by computing the concentration decay of unignited turbulent free jets and comparing the results with the classic concentration decay laws for turbulent free jets taken from experimental data. Computations for turbulent hydrogen

  4. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  5. The study of hydrogen removal

    International Nuclear Information System (INIS)

    Yasufuku, Katsumi; Fukuhara, Masashi; Izaki, Takashi; Nakase, Takeshi

    1979-01-01

    Two methods of hydrogen removal from the helium coolant for high temperature helium gas-cooled nuclear reactor plants were investigated; the one is the process absorbing hydrogen with titanium sponges and the other is the water removal with zeolite, after hydrogen is converted to water utilizing copper oxide (CuO). The special feature of these two hydrogen removal methods is to treat the very low hydrogen concentration in helium about 0.06 mm Hg (2 Vpm, 41 ata). As for the titanium sponge method, a preliminary experimental facility was constructed to test the temperature dependences of the quantity of equilibrium absorption of hydrogen and the diffusion velocity inside titanium sponge by the batch type constant volume process. The temperature of titanium sponge was 800 deg C, the vacuum was from 2 to 3 x 10 -7 mm Hg and hydrogen partial pressure was from 1.0 to 10 -4 mm Hg in the experiment. The measured hydrogen absorption rate and the diffusion velocity data are presented, and the experimental conditions were evaluated. After the preliminary experiment, a mini-loop was constructed to confirm the temperature and velocity dependences of overall capacity factor, and the overall capacity factor and the regenerating characteristics of titanium sponge were tested. These experimental data are shown, and were evaluated. Concerning the hydrogen removal method utilizing CuO, the experiment was carried out under the following test conditions: the temperature from 400 to 265 deg C, the linear velocity from 50.3 to 16.7 cm/sec and the hydrogen concentration from 12.0 to 1.93 mm/Hg. The hydrogen removal rate and capacity were obtained in this experiment, and the data are presented and explained. (Nakai, Y.)

  6. Final comparison report on ISP-35: Nupec hydrogen mixing and distribution test (Test M-7-1)

    International Nuclear Information System (INIS)

    1994-12-01

    This final comparison report summarizes the results of the OECD/CSNI sponsored ISP-35 exercise which was based on NUPEC's Hydrogen Mixing and Distribution Test M-7-1. 12 organizations from 10 different countries took part in the exercise. For the ISP-35 test, a steam/light gas (helium) mixture was released into the lower region of a simplified model of a PWR containment. At the same time, the dome cooling spray was also activated. the transient time histories for gas temperature and concentrations were recorded for each of the 25 compartments of the model containment. The wall temperatures as well as the dome pressure were also recorded. The ISP-35 participants simulated the test conditions and attempted to predict the time histories using their accident analysis codes. Results of these analyses are presented, and comparisons are made between the experimental data and the calculated data. In general, predictions for pressure, helium concentration and gas distribution patterns were achieved with acceptable accuracy

  7. Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air

    Science.gov (United States)

    2012-03-22

    Jay Rutledge (Member) Date v AFIT/GAE/ENY/12-M36 Abstract Rotating detonation engines ( RDEs ) have the potential for greater...efficiencies over conventional engines by utilizing pressure gain combustion. A new modular RDE (6 in diameter) was developed and successfully run on...hydrogen and standard air. The RDE allows for variation of injection scheme and detonation channel widths. Tests provided the operational space of the

  8. Fluor-Hanford 3013 Digital Radiography Dead Zone Mitigation Project Pressure Test Report

    International Nuclear Information System (INIS)

    Gibbs, K.

    2003-01-01

    The use of digital radiographic (DR) measurement of lid deflection as an indication of pressurization of the 3013 inner can was first reported by the Savannah River Technology Center (SRTC). The conclusions of this report were that for cans with relatively large initial concavity, lid deflection could be used to meet the 3013 standard (DOE-STD-3013-2000) requirement for a nondestructive indication of a pressurization of 100 psig. During acceptance testing of the system in the Spring of 2003, it was confirmed that for some cans the DR measured lid deflection could become insensitive to the change in lid deflection when compared to actual mechanical measurements. The basic explanation of this phenomenon is that characteristics of the lid geometry such as tilt and wobble can obfuscate the bottom of the lid where the deflection is measured. The purpose of this report is to document the results of the pressure testing and the efficacy of the alternate imaging and analysis methods developed to mitigate the dead zone problem. Prior to review of the results, a review of the current method and an introduction to the newly developed methods and techniques is provided

  9. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  10. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    Science.gov (United States)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  11. Current state of the construction of SPARC test facility for observing hydrogen′s behavior

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong-Ho; Park, Ki Han; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen combustion can make a dynamic load, which can cause severe damage to a structure or facility. Many studies on hydrogen behavior, such as distribution, combustion and mitigation, have been conducted since the TMI accident, and they were recently summarized in. A large-scaled experimental facility is required for simulating the complex severe accident phenomena in a closed containment building. We are preparing the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk as well as the validation of the Korean PAR (Passive Auto-catalytic Recombiner). This paper summarized the previous study submitted to the NUTHOS-11, which introduced the SPARC test facility. KAERI (Korea Atomic Energy Research Institute) is preparing a test facility, called the SPARC for an assessment of the containment integrity under a severe accident. In the SPARC test facility, the hydrogen behavior such as mixing with steam and air, distribution, and combustion will be observed under various thermal-hydraulic conditions. We will carry out the performance tests of the safety systems such as the spray, cooling fan, PAR, and igniter. The SPARC test facility consists of a pressure vessel with a 9.5 m height and 3.4 m diameter, and an operating system to control and measure the thermal hydraulic conditions. In a commissioning test, we verified the controllable thermal conditions. It took about 8,400 seconds to increase up to 5 bar. The increment rate of the atmosphere temperature is about 34° C/h from room temperature to 100° C.

  12. Fuel behaviour and fission product release under realistic hydrogen conditions comparisons between HEVA 06 test results and Vulcain computations

    International Nuclear Information System (INIS)

    Dumas, J.M.; Lhiaubet, G.

    1989-07-01

    The HEVA 06 test was designed to simulate the conditions existing at the time when fission products are released from irradiated fuel under hydrogen conditions occurring in a PWR core at low pressure. The test conditions were defined from results provided by the core degradation module of the ESCADRE system (1): VULCAIN. This computer code has been recently used to analyse the early core degradation of a 900 MWe PWR in the AF accident sequence (as defined in WASH - 1400, USNRC - 1975). In this scenario, the core would begin to uncover about one day after scram with the system pressure at about 0.4 MPa. The fission product release starts 70 minutes after core dewatering. The F.P. are transferred to the core outlet in an increasingly hydrogen-rich steam atmosphere. The carrier gas is nearly pure hydrogen in the time period 100 - 130 minutes after core uncovering. A large release of F.P. is predicted in the upper part of the core when the steam starvation occurs. At that time, two thirds of the cladding have been oxidised on an average. Before each HEVA test a fuel sample with a burn-up of 36 GWd/tU is reirradiated in order to observe the release of short-lived fission products. A pre-oxidation was primarely conducted in the HEVA 06 test at a temperature of 1300 0 C and controlled to reach a 2/3 cladding oxidation state. Then the steam was progressively replaced by hydrogen and a heat-up rate of 1.5 0 C/s was induced to reach a temperature of 2100 0 C. The fuel was maintained at this temperature for half an hour in hydrogen. The volatile F.P. release kinetics were observed by on-line gamma spectrometry. Pre test calculations of F.P. release kinetics performed with the EMIS module based on the CORSOR models (3) are compared with the test results. Measured releases of cesium and iodine are really lower than those predicted. Axial and radial F.P. distributions in the fuel pellets are available from gamma tomography measurements performed after the test. Tellurium seems

  13. Electric system management through hydrogen production - A market driven approach in the French context

    International Nuclear Information System (INIS)

    Mansilla, C.; Dautremont, S.; Thais, F.; Louyrette, J.; Martin, J.; Albou, S.; Barbieri, G.; Collignon, N.; Bourasseau, C.; Salasc, B.; Valentin, S.

    2012-01-01

    Hydrogen is usually presented as a promising energy carrier that has a major role to play in low carbon transportation, through the use of fuel cells. However, such a development is not expected in the short term. In the meantime, hydrogen may also contribute to reduce carbon emissions in diverse sectors among which methanol production. Methanol can be produced by combining carbon dioxide and hydrogen, hence facilitating carbon dioxide emission mitigation while providing a beneficial tool to manage the electric system, if hydrogen is produced by alkaline electrolysis operated in a variable way driven by the spot and balancing electricity markets. Such a concept is promoted by the VItESSE project (Industrial and Energy value of CO 2 through Efficient use of CO 2 -free electricity - Electricity Network System Control and Electricity Storage). Through the proposed market driven approach, hydrogen production offers a possibility to help managing the electric system, together with an opportunity to reduce hydrogen production costs. (authors)

  14. Lactose tolerance tests

    Science.gov (United States)

    Hydrogen breath test for lactose tolerance ... Two common methods include: Lactose tolerance blood test Hydrogen breath test The hydrogen breath test is the preferred method. It measures the amount of hydrogen ...

  15. The behaviour of hydrogen in Excel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ells, C.E. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Coleman, C.E. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Cheadle, B.A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Sagat, S. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Rodgers, D.K. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1995-12-15

    To enable mitigation of deleterious effects from hydride on the mechanical behaviour of Excel alloy, Zr-3.5 wt.% Sn-0.8 wt.% Mo-0.8 wt.% Nb, the behaviours of hydrogen and hydride in the alloy have been studied. Properties of interest are the terminal solid solubility, diffusivity, heat of transport, stress reorientation, and the initiation and crack growth of delayed hydride cracking. The results obtained are compared with those of other zirconium-rich alloys, notably Zr-2.5 wt.% Nb. (orig.)

  16. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    Science.gov (United States)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  17. Hydrogen sulfide adsorption on activated carbon fiber. Tests on Parisian subway; Elimination du sulfure d'hydrogene par adsorption sur tissu de charbon actif. Essais sur site RATP

    Energy Technology Data Exchange (ETDEWEB)

    Bouzaza, A.; Marsteau, St.; Laplanche, A. [Ecole Nationale Superieure de Chimie, Lab. Chimie des Nuissances et Genie de l' Environnement - CNGE, 35 - Rennes (France); Garrot, B. [RATP, Dept. Environnement et Securite-Domaines d' Expertises de l' Environnement-Entite Qualite de l' Air, 75 - Paris (France)

    2003-06-01

    Hydrogen sulfide has an unpleasant odor and may cause damage to the electrical materials of the Parisian subway. The activated carbon has some intrinsic catalytic activity, so the removal of hydrogen sulfide is due to an adsorption-oxidation process. In a laboratory scale, some kinetic parameters were acquired, which allowed us to build up two dynamic reactors. These continuous reactors, equipped with activated carbon fibers, were tested on the Madeleine station of the Parisian subway. The feasibility of the elimination of H{sub 2}S by continuous adsorption-oxidation was confirmed. The relative humidity of the gas phase was found to play an important role in the performance of the elimination. The durability of the pilot tested was compatible with an industrial exploitation of the process. (authors)

  18. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  19. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  20. Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh

    International Nuclear Information System (INIS)

    Kudriakov, S.; Studer, E.; Bin, C.

    2011-01-01

    Recent studies of J.H. Song et al., and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size. Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment, in particular, the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter). In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically. (authors)

  1. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  2. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH 4 +H 2 O = 3H 2 +CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm 3 /h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  3. Radon mitigation experience in difficult-to-mitigate schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.

    1990-01-01

    Initial radon mitigation experience in schools has shown sub-slab depressurization (SSD) to be generally effective in reducing elevated levels of radon in schools that have a continuous layer of clean, coarse aggregate underneath the slab. However, mitigation experience is limited in schools without sub-slab aggregate and in schools with characteristics such as return-air ductwork underneath the slab or unducted return-air plenums in the drop ceiling that are open to the sub-slab area (via open tops of block walls). Mitigation of schools with utility tunnels and of schools constructed over crawl spaces is also limited. Three Maryland schools exhibiting some of the above characteristics are being researched to help understand the mechanisms that control radon entry and mitigation in schools where standard SSD systems are not effective. This paper discusses specific characteristics of potentially difficult-to-mitigate schools and, where applicable, details examples from the three Maryland schools

  4. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  5. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  6. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  7. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  8. Opinion on the management of hydrogen safety in the Saint-Laurent-des-Eaux CNPE in normal and accidental situations. Study report

    International Nuclear Information System (INIS)

    Daubech, Jerome; Leprette, Emmanuel; Proust, Christophe

    2014-01-01

    This report addresses the issue of hydrogen safety management in an electricity production nuclear plant (CNPE) either during normal operation or during an accidental situation in which risks of explosion are present. The study comprised a description of concerned installations, the identification of reasons for hydrogen leakage, an analysis of return on experience, the study of consequences of a hydrogen leakage or explosion for nuclear safety, the description of the general approach to hydrogen risk management, and the statement of an opinion on this approach and on the efficiency of existing mitigation measures

  9. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  10. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review

    Directory of Open Access Journals (Sweden)

    Patrizia Formoso

    2017-07-01

    Full Text Available The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented.

  11. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review.

    Science.gov (United States)

    Formoso, Patrizia; Pantuso, Elvira; De Filpo, Giovanni; Nicoletta, Fiore Pasquale

    2017-07-28

    The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented.

  12. Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2015-02-01

    Full Text Available The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS, unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled

  13. Experimental Investigation In The PANDA Facility Of The Impact Of A Hydrogen Release On Passive Containment Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Auban, O.; Paladino, D.; Candreia, P.; Huggenberger, M.; Strassberger, H.J

    2003-03-01

    The large-scale, thermal-hydraulics PANDA facility has been used in the past for investigating passive decay-heat removal systems and related containment phenomena for a number of next-generation Light Water Reactors. Passive Containment Condenser (PCC) systems operate by transferring heat via steam condensation from inside the containment to outside, and serve to mitigate pressure build-up in the event of steam discharge from the primary circuit. Five new integral tests have recently been performed in the context of the 5th European Framework Program project TEMPEST. One main objective was to assess the influence of a light gas (hydrogen) on the performance of the Passive Containment Cooling System (PCCS). Hydrogen release in the case of a severe accident is simulated in PANDA by injecting helium with steam into the Drywell. In addition, the impact of a new accident-mitigating design feature, the Drywell Gas Re-Circulation System (DGRS), on the long-term containment behaviour was tested. Another important objective was also to provide relevant data for the validation of modern 3/4 mainly Computational Fluid Dynamics (CFD) 3/4 codes. The paper reports main observations from two of these new integral tests in which standard PANDA instrumentation has provided important data concerning system response when helium is released in the course of the transient. The results show that some important stratification phenomena have occurred, as a result of the buoyant flow generated by the helium injection. The resulting temperature and concentration measurements show how helium is being distributed in the Drywell (DW) volume during the helium injection phase, and how helium is retained or vented out of these vessels once the injection stops. The paper includes some discussion concerning the influence of gas mixing and stratification and the effect of the DGRS on PCC performance and system pressure build-up. (author)

  14. Comparison of an increased waist circumference with a positive hydrogen breath test as a clinical predictor of lactose intolerance.

    Science.gov (United States)

    Zapata-Castilleja, Carlos A; Montes-Tapia, Fernando F; Treviño-Garza, Consuelo; Martínez-Cobos, María C; García-Cantú, Jesús; Arenas-Fabbri, Vincenzo; de la O-Escamilla, Norma; de la O-Cavazos, Manuel

    2017-04-01

    Lactose intolerance is a common disease in pediatrics, and its wrong diagnosis will lead to morbidity. The primary objective of this study was to assess the usefulness of an increased waist circumference during the hydrogen breath test as a predictor of lactose intolerance. The secondary objective was to analyze the impact of body mass index, waist circumference measurement, and age on the abdominal distension of patients with lactose intolerance. A total of 138 subjects aged 3 to 15 years were included. They underwent serial measurements of the waist circumference and hydrogen levels in the breath every 30 minutes over 3 hours during the hydrogen breath test. Out of the entire sample, 35 (25.4%) patients had lactose intolerance. An increase of 0.85 cm in waist circumference compared to the baseline waist circumference results in a sensitivity of 88% and a specificity of 85% to predict lactose intolerance (odds ratio: 42.14, 95% confidence interval: 13.08-135.75, p ≤ 0.001). The body mass index and waist circumference measurement did not affect abdominal distension (p= not significant); however, age modified the time of distension. A 0.85 cm increase in waist circumference compared to the baseline waist circumference during the hydrogen breath test is a useful parameter for the diagnosis of lactose intolerance in pediatrics. Variations in relation to body mass index and waist circumference did not affect the usefulness of an increased waist circumference, unlike age.

  15. Hydrogen environment embrittlement

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1975-01-01

    Exposure of many metals to gaseous hydrogen causes losses in elongation, reduction of area, and fracture toughness, and causes increases in slow crack growth rate or fatigue life compared with values obtained in air or vacuum. Hydrogen pressure, temperature, and purity significantly influence deleterious effects. The strength and structural characteristics of the metal influence the degradation of its properties by hydrogen. Several theories have been proposed to explain the loss of properties in hydrogen, but none has gained wide acceptance. The embrittlement mechanism and the role of diffusion are, therefore, open questions and need more quantitative experimental data both to test the proposed theories and to allow the development of realistic preventive measures. (U.S.)

  16. Comparison of event tree, fault tree and Markov methods for probabilistic safety assessment and application to accident mitigation

    International Nuclear Information System (INIS)

    James, H.; Harris, M.J.; Hall, S.F.

    1992-01-01

    Probabilistic safety assessment (PSA) is used extensively in the nuclear industry. The main stages of PSA and the traditional event tree method are described. Focussing on hydrogen explosions, an event tree model is compared to a novel Markov model and a fault tree, and unexpected implication for accident mitigation is revealed. (author)

  17. Hydrogen-plasticity in the austenitic alloys; Interactions hydrogene-plasticite dans les alliages austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    De lafosse, D. [Ecole Nationale Superieure des Mines, Lab. PECM-UMR CNRS 5146, 42 - Saint-Etienne (France)

    2007-07-01

    This presentation deals with the hydrogen effects under stresses corrosion, in austenitic alloys. The objective is to validate and characterize experimentally the potential and the limits of an approach based on an elastic theory of crystal defects. The first part is devoted to the macroscopic characterization of dynamic hydrogen-dislocations interactions by aging tests. then the hydrogen influence on the plasticity is evaluated, using analytical classic models of the elastic theory of dislocations. The hydrogen influence on the flow stress of bcc materials is analyzed experimentally with model materials. (A.L.B.)

  18. The hydrogen 700 project - 700 Bar Co

    International Nuclear Information System (INIS)

    Gambone, L.; Webster, C.

    2004-01-01

    'Full text:' Major automotive companies, including DaimlerChrysler, Ford, Hyundai, Nissan, PSA Peugeot-Citroen, and Toyota, are co-operating in the Hydrogen 700 project at Powertech to establish a global basis for high pressure hydrogen fuel systems for vehicles. The fuel systems will store compressed hydrogen on-board at pressures up to 700 bar (10,000psi). It is anticipated that the 700 bar storage pressure will provide hydrogen powered vehicles with a range comparable to the range of petroleum-fueled vehicles. The Hydrogen 700 project has contracted world leaders in high pressure technologies to provide 700 bar fuel system components for evaluation. The data from these tests will be used as the basis for the development of relevant standards and regulations. In a development that complements the Hydrogen 700 project, Powertech Labs has established the world's first 700 bar hydrogen station for fast filling operations. This prototype station will be used to evaluate the performance of the 700 bar vehicle fuel system components. The presentation will provide an overview of the Hydrogen 700 project. Safety issues surrounding the use of compressed hydrogen gas as a vehicle fuel, as well as the use of higher storage pressures, will be reviewed. Test data involving the fire testing of vehicles containing hydrogen fuel systems will be presented. The project is intended to result in the introduction of 700 bar fuel systems in the next generation of hydrogen powered vehicles. (author)

  19. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH{sub 4}+H{sub 2}O = 3H{sub 2}+CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm{sup 3}/h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  20. Hydrogen related safety issues in the context of containments of Indian PHWRs

    International Nuclear Information System (INIS)

    Markendeya, S.G.; Ghosh, A.K.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Full text: Assessment of risk due to hydrogen released during postulated hypothetical accident scenarios in the nuclear power plants (NPPs) has been an important area of R and D studies world over. The issues, such as appropriate methodologies for estimation of hydrogen source term and for hydrogen dispersion calculations, technology development for hydrogen mitigation in containment of NPPs and assessment of damage due to deflagration/detonation of hydrogen (if it occurs) are being addressed as a part of some of the multidisciplinary study programs currently underway in BARC. While a significant overall progress has been achieved in general as a result of these programs, requirements of further fine-tuning of these studies have also emerged. The present paper takes a brief look at the current state-of the-art technology available to address these issues. The progress of R and D studies underway at BARC has also been critically reviewed in the paper to bring out necessary planning of further studies so as to enhance the safety of Indian NPPs

  1. State of the art of mitigation and relation mitigation/adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Lenstra, W.J.; Van Doorn, J.; Verheggen, B.; Sahan, E.; Boersma, A.R. [ECN Biomass, Coal and Environment Research, Petten (Netherlands)

    2009-04-15

    This study has the main purpose to make useful information available for the programming of the Knowledge for Climate (KfC) program. The emphasis has been laid on a broad overview of mitigation options and relations, complemented with more detailed information on new or less known options and insights. The mitigation option biomass gets special attention in this study. The production of biomass has many (positive and negative) relations with other elements of the KfC program like space use and adaptation. Recently a global discussion on biomass usage for biofuels has started (food or fuel). Therefore a separate chapter will be dedicated to the sustainability aspects of biomass. An overview of technical mitigation measures with emphasis on the energy supply side is presented. This overview shows the large number of available and innovative options and the vast potential for reduction of the emissions of Greenhouse Gases (GHG) of these mitigation measures. The effectiveness of many mitigation options is strongly dependent on local conditions and implementation issues. A number of innovative mitigation measures such as aquatic biomass and biomass in combination with Carbon Capture and Storage (CCS) are described in more detail. Biomass for energy has many different forms and applications. It is one of the mitigation options with a high potential, but at the same time it can have negative environmental impacts and might compete with other forms of land use including food production. This makes bio-energy a promising but complex option, which makes careful evaluation necessary. Several examples of multifunctional land use show that by combining functions, synergy can be achieved. This could lead to a reduction of potentially negative impacts and thus easier implementation. Furthermore, novel technologies for reducing or offsetting climate change such as air capture and artificial cooling might have a high potential as mitigation option, but need to be examined before

  2. Hydrogen removal from LWR containments by catalytic-coated thermal insulation elements (THINCAT)

    International Nuclear Information System (INIS)

    Fischer, K.; Broeckerhoff, P.; Ahlers, G.; Gustavsson, V.; Herranz, L.; Polo, J.; Dominguez, T.; Royl, P.

    2003-01-01

    In the THINCAT project, an alternative concept for hydrogen mitigation in a light water reactor (LWR) containment is being developed. Based on catalytic coated thermal insulation elements of the main coolant loop components, it could be considered either as an alternative to backfitting passive autocatalytic recombiner devices, or as a reinforcement of their preventive effect. The present paper summarises the results achieved at about project mid-term. Potential advantages of catalytic thermal insulation studied in the project are:-reduced risk of unintended ignition,;-no work space obstruction in the containment,;-no need for seismic qualification of additional equipment,;-improved start-up behaviour of recombination reaction. Efforts to develop a suitable catalytic layer resulted in the identification of a coating procedure that ensures high chemical reactivity and mechanical stability. Test samples for use in forthcoming experiments with this coating were produced. Models to predict the catalytic rates were developed, validated and applied in a safety analysis study. Results show that an overall hydrogen concentration reduction can be achieved which is comparable to the reduction obtained using conventional recombiners. Existing experimental information supports the argument of a reduced ignition risk

  3. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  4. Reduction of methane emission from landfills using bio-mitigation systems – from lab tests to full scale implementation

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    , or open or closed bed biofilter systems. The objective of this paper is to describe the relationship between research on process understanding of the oxidation of landfill gas contained methane and the up-scale to full bio-mitigation systems implemented at landfills. The oxidation of methane is controlled...... for implementing a bio-mitigation system is presented, and the reported landfill-implemented bio-mitigation systems either established as full-scale or pilot-scale systems are reviewed. It is concluded that bio-mitigation systems have a large potential for providing cost-efficient mitigation options for reducing...

  5. Hydrogen Fire Spectroscopy Issues Project

    Science.gov (United States)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  6. Hydrogen production from small hyropower sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    A synergistic relationship was not found to exist between low-head hydropower and electrolytic hydrogen production. The storageability of hydrogen was expected to mitigate problems of hydrogen generation variability associated with the use of low-head hydropower as the power source. The expense of gaseous hydrogen storage equipment effectively eliminates storage as a means to decouple hydrogen demand and power/hydrogen production. From the opposite perspective, the availability of a low and stable cost of power from low-head hydro was expected to improve the competitiveness of electrolysis. In actuality, the results indicated that hydroelectric power from small dams would be comparatively expensive by current grid power standards (mid-1979). Electrolysis, in the capacity range considered here, is less sensitive to the cost of the power than originally presumed. Other costs including depreciation and capital related charges are more significant. Due to power generation variability, sole reliance on low-head hydropower to provide electricity to the cells would reduce the utilization of the hydrogen production investment, resulting in an increase in unit production costs. These factors were paramount in the Air Products recommendation to discontinue the study before continuing to more detailed stages of analysis, including an analysis of a site specific facility and the construction of a demonstration facility. Another major factor was the unavailability of a pipeline hydrogen supply situation which, because of lower distribution and capital costs, could have been commercially viable. An unfavorable judgment on the combined facility should not be misinterpreted and extended to the component systems. Although a detailed analysis of the individual prospects for electrolysis and low-head hydropower was beyond the study scope, the reader will realize, as the study is reviewed, that each is worthy of individual consideration.

  7. Prospects for Lorentz and CPT tests with hydrogen and antihydrogen

    CERN Document Server

    Becker, Tobias Frederic

    2017-01-01

    As a summer student for 13 weeks in the ASACUSA-CUSP collaboration, under the supervision of Chloé Malbrunot, my project consisted in a first part on the theoretical treatment of Lorentz and CPT violation in hydrogen & antihydrogen in the framework of the Standard Model Extension SME and in second part on experimental measurements on a hydrogen beam.

  8. GOTHIC 3D applicability to fast hydrogen combustions

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Park, Goon Cherl; Lee, Byung Chul; Yoo, Ho Jong; Kim, Hyeong Taek; Oh, Seung Jong

    2004-01-01

    Under severe accidents in nuclear power plant (NPP), the hydrogen can be generated by chemical reactions and may threaten the containment integrity via hydrogen combustion. For containment analyses, three-dimensional mechanistic code, GOTHIC had to be applied near source compartments in order to predict whether highly reactive gas mixture can be formed or not under hydrogen mitigation system (HMS) working. For its applicability, this paper presents numerical calculation results of GOTHIC 3D on some hydrogen combustion experiments, which are the FLAME (Sandia National Lab.) experiments, the LSVCTF (AECL Whiteshell Lab.) experiments and the SNU-2D (Seoul National Univ.) experiments. A technical basis for the modeling of the large- and small-scale facilities was developed through sensitivity studies on cell size and combustion modeling parameters. It was found that for large-scale facilities, there were no significant differences in the results with different turbulent burn options, while for small-scale facility, the option using the eddy dissipation concept showed the faster flame propagations. The flame velocity became larger with smaller burn parameters such as the flame thickness δ f and the burn temperature limit T lim . The best estimate modeling parameters found from this study would be applied to real plant simulation of GOTHIC 3D later

  9. Hydrogen production by several cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhruv; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India). Dept. of Botany)

    1992-11-01

    Twenty species belonging to eleven genera of nitrogen-fixing and non-nitrogen-fixing cyanobacteria were screened for production of hydrogen. Only one species each of Nostoc and Anabaena showed light-and nitrogenase-dependent aerobic hydrogen production. The highest rate of aerobic hydrogen production was recorded in Anabaena sp. strain CA. When incubated anaerobically under 99% Ar + 1% CO[sub 2], all the tested strains produced hydrogen. Nickel supplementation completely abolished hydrogen production both under aerobic and anaerobic conditions, except in Anabaena sp. strain CA, where only the rate of production was decreased. Species of Plectonema, Oscillatoria and Spirulina showed methyl viologen-dependent (hydrogenase-dependent) hydrogen production. Other physiological activities were also studied with a view to selecting a suitable organism for large-scale production of hydrogen. (author)

  10. Rupture mechanics of metallic alloys for hydrogen transport

    International Nuclear Information System (INIS)

    Moro, I.; Briottet, L.; Lemoine, P.; Andrieu, E.; Blanc, C.

    2007-01-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  11. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  12. Precision spectroscopy on hydrogen and deuterium. Test of the bound-state quantum electrodynamics

    International Nuclear Information System (INIS)

    Fendel, P.

    2005-06-01

    An optical measurement of the hyperfine splitting of the 2s state in deuterium performed for the first time and the description of the arrangement for the measurement of the 1s-3s frequency in hydrogen by excitation with a frequency combexpect the reader of this thesis. Both experiments have the goal to test the bound-state quantum electrodynamics (QED) with high precision. The measurement of the hyperfine splitting serves thereby for the improvement of the accuracy of the so called D 21 =8E HFS (2s)-E HFS (1s) difference. Because D 21 is far-reachingly independent on the nuclear structure in spite of not accurately known proton charge radii QED can be tested on a level of 10 -7 . In the framework of the thesis present here the error of this quantity was reduced by a factor of three. The result for the 2s hyperfine splitting is: f D HFS =40924454(7) Hz. By a new kind of the data acquisition furthermore many systematic errors, especially the nonlinear drift of the reference resonator, could be reduced in comparison to a similar measurement on hydrogen. The second part of the thesis describes the efforts which were and will be taken in order to test QED by means of their perdiction of the 1s Lamb shift. For this the frequency of the 1s-3s transition in hydrogen shall be measured absolutely for the first time. A further novum is that for this a frequency-quadrupled mode-coupled laser shall be come into operation. Especially the construction and the stabilization of a ps laser, the construction of two frequency-doubling stages, the arrangement for the measurement of the absolute frequency of the spectroscopy laser, the alteration of the existing 1s-2s vacuum system, and the development of the measurement software is described. Additionally in this thesis the theory of the two-photon frequency-comb spectroscopy is further developed. Concrete expressions for the expected line shape and the influence of the chirp on the excitation rate are presented

  13. Building sustainable energy systems: the role of nuclear-derived hydrogen

    International Nuclear Information System (INIS)

    Hans-Holger Rogner; Sanborn Scott, D.

    2001-01-01

    Global climate change is the most critical environmental threat of the 21. century. As evidenced in the preliminary draft of the Intergovernmental Panel on Climate Change (IPCC) new Third Assessment Report (TAR), the scientific support for this conclusion is both extensive and growing. In this paper we first review features of the 21. century energy system - how that system evolved and where it seems to be taking us, unless there are clear and aggressive multinational initiatives to mitigate and then reverse the contribution that today's energy system makes to the risks of global climate change. The paper then turns to the extensive deployment of the two non-carbon based energy currencies electricity and hydrogen, which we will call hydricity, that we believe are essential for future reductions in anthropogenic carbon dioxide (CO 2 ) emissions. Of these two, hydrogen will be the newcomer to energy systems. Popular thinking often identifies renewable as the category of energy sources that can provide electricity and hydrogen in sufficient quantities, although much of the public does not realize there will still be a need for a chemical currency to allow renewable to power the market where carbon is most difficult to mitigate, transportation. Renewable, however, while able to make important contributions to future energy supplies, cannot realistically provide the magnitude of energy that will be required. The paper outlines the quantitative limits to the overall renewable contribution and argues that the large-scale deployment of nuclear fission will be essential for meeting future energy needs while limiting greenhouse gas (GHG) emissions. (authors)

  14. Improvement works report on mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Sakaki, Akihiro; Kato, Michio; Hayashi, Koji; Fujisaki, Katsuo; Aita, Hideki; Ohashi, Hirofumi; Takada, Shoji; Shimizu, Akira; Morisaki, Norihiro; Maeda, Yukimasa; Sato, Hiroyuki; Hanawa, Hiromi; Yonekawa, Hideo; Inagaki, Yoshiyuki

    2005-04-01

    In order to establish the system integration technology to connect a hydrogen production system to a high temperature gas cooled reactor; the mock-up test facility with a full-scale reaction tube for the steam reforming HTTR hydrogen production system was constructed in fiscal year 2001 and its functional test operation was performed in the year. Seven experimental test operations were performed from fiscal year 2001 to 2004. On a period of each test operation, there happened some troubles. For each trouble, the cause was investigated and the countermeasures and the improvement works were performed to succeed the experiments. The tests were successfully achieved according to plan. This report describes the improvement works on the test facility performed from fiscal year 2001 to 2004. (author)

  15. Simulation of hydrogen distribution in an Indian Nuclear Reactor Containment

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudharwadkar, Deoras M. [Department of Mechanical Engineering, Indian Institute of Technology, Mumbai (India); Iyer, Kannan N., E-mail: kiyer@iitb.ac.i [Department of Mechanical Engineering, Indian Institute of Technology, Mumbai (India); Mohan, Nalini; Bajaj, Satinder S. [Nuclear Power Corporation of India Ltd., Mumbai (India); Markandeya, Suhas G. [Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2011-03-15

    Research highlights: This work addresses hydrogen dispersion in commercial nuclear reactor containment. The numerical tool used for simulation is first benchmarked with experimental data. Parametric results are then carried out for different release configurations. Results lead to the conclusion that the dispersal is buoyancy dominated. Also, the hydrogen concentration is high enough to demand mitigation devices. - Abstract: The management of hydrogen in a Nuclear Reactor Containment after LOCA (Loss Of Coolant Accident) is of practical importance to preserve the structural integrity of the containment. This paper presents the results of systematic work carried out using the commercial Computational Fluid Dynamics (CFD) software FLUENT to assess the concentration distribution of hydrogen in a typical Indian Nuclear Reactor Containment. In order to obtain an accurate estimate of hydrogen concentration distribution, a suitable model for turbulence closure is required to be selected. Using guidelines from the previous studies reported in the literature and a comparative simulation study using simple benchmark problems, the most suitable turbulence model for hydrogen mixing prediction was identified. Subsequently, unstructured meshes were generated to represent the containment of a typical Indian Nuclear Reactor. Analyses were carried out to quantify the hydrogen distribution for three cases. These were (1) Uniform injection of hydrogen for a given period of time at room temperature, (2) Time varying injection as has been computed from an accident analysis code, (3) Time varying injection (as used in case (2)) at a high temperature. A parametric exercise was also carried out in case (1) where the effect of various inlet orientations and locations on hydrogen distribution was studied. The results indicate that the process of hydrogen dispersal is buoyancy dominated. Further for typical injection rates encountered following LOCA, the dispersal is quite poor and most

  16. Simulation of hydrogen distribution in an Indian Nuclear Reactor Containment

    International Nuclear Information System (INIS)

    Prabhudharwadkar, Deoras M.; Iyer, Kannan N.; Mohan, Nalini; Bajaj, Satinder S.; Markandeya, Suhas G.

    2011-01-01

    Research highlights: → This work addresses hydrogen dispersion in commercial nuclear reactor containment. → The numerical tool used for simulation is first benchmarked with experimental data. → Parametric results are then carried out for different release configurations. → Results lead to the conclusion that the dispersal is buoyancy dominated. → Also, the hydrogen concentration is high enough to demand mitigation devices. - Abstract: The management of hydrogen in a Nuclear Reactor Containment after LOCA (Loss Of Coolant Accident) is of practical importance to preserve the structural integrity of the containment. This paper presents the results of systematic work carried out using the commercial Computational Fluid Dynamics (CFD) software FLUENT to assess the concentration distribution of hydrogen in a typical Indian Nuclear Reactor Containment. In order to obtain an accurate estimate of hydrogen concentration distribution, a suitable model for turbulence closure is required to be selected. Using guidelines from the previous studies reported in the literature and a comparative simulation study using simple benchmark problems, the most suitable turbulence model for hydrogen mixing prediction was identified. Subsequently, unstructured meshes were generated to represent the containment of a typical Indian Nuclear Reactor. Analyses were carried out to quantify the hydrogen distribution for three cases. These were (1) Uniform injection of hydrogen for a given period of time at room temperature, (2) Time varying injection as has been computed from an accident analysis code, (3) Time varying injection (as used in case (2)) at a high temperature. A parametric exercise was also carried out in case (1) where the effect of various inlet orientations and locations on hydrogen distribution was studied. The results indicate that the process of hydrogen dispersal is buoyancy dominated. Further for typical injection rates encountered following LOCA, the dispersal is

  17. FEMA Hazard Mitigation Assistance Flood Mitigation Assistance (FMA) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Flood Mitigation Assistance (FMA)....

  18. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    Science.gov (United States)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-03-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  19. Effect of soluble zinc additions on the SCC performance of nickel alloys in deaerated hydrogenated water

    International Nuclear Information System (INIS)

    Morton, D.S.; Thompson, C.D.; Gladding, D.; Schurman, M.K.

    1997-08-01

    Stress corrosion crack growth rates (SCCGR) of alloy 600, EN82H and X-750 were measured in deaerated hydrogenated water to determine if soluble zinc mitigates SCCGR. Constant load compact tension specimen tests were conducted. Two test strategies were used to discern a possible zinc effect. The first strategy employed separate SCCGR tests in zinc and non-zinc environments and compared the resulting crack growth rates. The second strategy varied zinc levels at the midterm of single specimen SCCGR tests and characterized the resulting crack growth rate effect through an electrical potential drop in-situ crack monitor. Results from the direct comparison and midterm changing chemistry tests did not discern a zinc influence; any apparent zinc influence is within test to test variability (∼1.5x change in crack growth rate). AEM, AUGER and ESCA crack tip fracture surface studies identified that zinc was not incorporated within crack tip oxides. These studies identified nickel rich crack tip oxides and spinel, with incorporated zinc, (∼5 atom percent) bulk surface oxides

  20. Examining hydrogen transitions.

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  1. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  2. Risk mitigation strategy for the ITER electron cyclotron upper port launcher

    International Nuclear Information System (INIS)

    Goede, A.P.H.; Bongers, W.A.; Elzendoorn, B.S.Q.; Graswinckel, M.F.; Baar, M.R. de

    2010-01-01

    A basic requirement for ITER equipment to meet is a high level of reliability, because ITER operation time is precious and radioactive operation leaves limited scope for repair. In order to reduce the risk of failure during ITER operation an effective risk mitigation strategy is necessary. This paper presents such strategy for the ITER electron cyclotron upper port launcher (ECUPL). A preliminary ECUPL risk analysis identifies possible failure modes. A probabilistic risk assessment quantifies the risk of failure using a 4 x 4 impact-likelihood matrix. Impact is quantified through technical, cost and schedule elements. Likelihood depends on the risk mitigation strategy adopted. A cost benefit analysis determines the most cost effective risk mitigation strategy. An essential element in risk mitigation is the testing of equipment prior to installation on the ITER machine. This paper argues the need for low- and highpower millimetre wave tests carried out on the fully assembled ECUPL. It presents a conceptual design for a dedicated on-site test bed that can handle 2 of 8 microwave beams at 2 MW long pulse operation.

  3. Effects of Internal and External Hydrogen on Inconel 718

    Science.gov (United States)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  4. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    Science.gov (United States)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  5. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Michael W. Patterson

    2008-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible

  6. Residents in a high radon potential geographic area: Their risk perception and attitude toward testing and mitigation

    International Nuclear Information System (INIS)

    Ferng, S.F.; Lawson, J.K.

    1996-01-01

    Boone County, Indiana was identified by the EPA as one of the high radon potential geographic areas. Health education campaigns are needed to prevent resident's unnecessary radon exposure. In order to design suitable programs, a questionnaire mail survey was conducted to measure socio-demographic characteristics of County resident's knowledge about radon, attitude toward radon testing and mitigation, support of education campaigns, and the best media to deliver radon education campaigns. A stratified random sampling method was applied for a total of 400 samples. The number of samples from each township/city was a proportion of their taxable parcels. The survey return rate was 39.8%. The data were analyzed by Epi Info and SPSS. The statistical significant level was set at α = 0.05. The results showed that resident's knowledge about radon was at a relatively superficial level. There was no association identified between the knowledge of radon and gender, age, family income, or education, except that females more frequently believed in false effects caused by radon. A significant correlation between radon knowledge and home radon tests was observed. Also found in this study was that respondents with better knowledge about diseases caused by radon had more confidence in radon mitigation actions. Newspaper was chosen by respondents as the most favorite media to deliver radon health education campaigns. Health education campaigns for the residents of Boone County might be conducted by local governments and/or other organizations

  7. Hydrogen energy system in California

    International Nuclear Information System (INIS)

    Zweig, R.M.

    1995-01-01

    Results of experiences on the use of hydrogen as a clean burning fuel in California and results of the South Coast Air Quality Management district tests using hydrogen as a clean burning environmentally safe fuel are given. The results of Solar Hydrogen Projects in California and recent medical data documentation of human lung damage of patients living in air polluted urban areas are summarized

  8. Hydrogen damage in metals, particularly in steels

    International Nuclear Information System (INIS)

    Funes, A.J.

    1982-03-01

    Hydrogen damage examples of practical interest for the engineer are presented, showing the scope of the problem and its importance in relation to technological development, particularly of CANDU reactor and of heavy water production plants. The fundamental triangle of the hydrogen embrittlement is established as follows: presence of hydrogen in the crystalline network, structure susceptible of damage, and effort. The initial collection of examples is classified in function of the observed effects. For the consideration of the causes of said effects three models of hydrogen interaction with the crystalline network are described, indicating their scopes and limitations. Then the use of the models is explained, both in order to obtain practical information (evaluation tests, acceptance and rejection criteria) and for the validation and improvement of the models themselves (study methods). Solutions for attenuating the hydrogen embrittlement and a programme of studies and tests are proposed to be carried out by the National Atomic Energy Commission. Among the latter, the local development of a microimpression method to detect the evaluation of absorbed hydrogen, comparable with the autoradiography of high resolution, and a mechanical test yielding results on fragility comparable with those obtained through the test of standard disks, are described. (M.E.L.) [es

  9. Development of sulfur- and nitrogen- free hydrogen odorants - An important step toward a safe hydrogen society -

    International Nuclear Information System (INIS)

    Nakamura, N.; Oshikawa, K.; Hasegawa, H.; Le Lay, M.; Iwase, M.; Braun, N.A.; Eilers, J.; Walz, A.; Vogt, M.; Herr, M.

    2006-01-01

    We have developed four sulfur-free and nitrogen-free odorants, which can be effectively used to odorize hydrogen. The odors were described through an olfactory test as alarming, strange, and chemical, giving sense of danger to the person who smells the odor. The safety of the material has been assessed and has been shown to be safe for usage. Testing the stability of odorized hydrogen in 80 MPa pressurized state, it was shown for a period of 13 weeks that the odorant retained its warning odor. Using the odorized hydrogen, FC duration test at 0.2 A/cm 2 was carried out for over 900 h without significant decrease in performance or the detectable degradation of MEA. The outlet of the fuel cell had no warning odor, suggesting deodorization on the catalyst. Use of activated charcoal as an adsorbent showed that the deodorization could be effectively carried out, ensuring that normal operation conditions are not perceived as a hydrogen leakage. (authors)

  10. Rupture mechanics of metallic alloys for hydrogen transport; Mecanique de la rupture des alliages metalliques pour le transport de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.; Briottet, L.; Lemoine, P. [CEA Grenoble (DRT/LITEN/DTH/LEV), 38 (France); Andrieu, E.; Blanc, C. [Centre Interuniversitaire de Recherche et d' Ingenierie des Materiaux (ENSIACET/CIRIMAT), 31 - Toulouse (France)

    2007-07-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  11. Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Franklin, D.G.; Duffin, W.J.; Peters, H.R.

    1996-01-01

    Zircaloy-4, which is widely used as a core structural material in Pressurized-Water Reactors (PWR), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and hydrides precipitate after the Zircaloy-4 matrix becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4. To study hydrogen pickup and concentration, a postirradiation nondestructive radiographic technique for measuring hydrogen concentration was developed and qualified. Experiments on hydrogen pickup were conducted in the Advanced Test Reactor (ATR). Ex-reactor tests were conducted to determine the conditions for which hydrogen would dissolve, migrate, and precipitate. Finally, a phenomenological model for hydrogen diffusion was indexed to the data. This presentation describes the equipment and the model, presents the results of experiments, and compares the model predictions to experimental results

  12. Hydrogen atom as test field of theoretical models

    International Nuclear Information System (INIS)

    Baiquni, A.

    1976-01-01

    Semi classical theory, covering Bohr atom theory, Bohr Sommerfeld theory, Sommerfeld relativistic theory, and quantum theory such as particle and complementarity dualism, wave mechanics, approximation method, relativistic quantum mechanics, and hydrogen atom fine structure, are discussed. (SMN)

  13. A dynamic general equilibrium analysis on fostering a hydrogen economy in Korea

    International Nuclear Information System (INIS)

    Bae, Jeong Hwan; Cho, Gyeong-Lyeob

    2010-01-01

    Hydrogen is anticipated to become one of the major alternative energy technologies for a sustainable energy system. This study analyzes the dynamic economic impacts of building a hydrogen economy in Korea employing a dynamic Computable General Equilibrium (CGE) model. As a frontier technology, hydrogen is featured as having a slow diffusion rate due to option value, positive externality, resistance of old technology, and complementary vintages. Without government intervention, hydrogen-derived energy will supply up to 6.5% of final energy demand by 2040. Simulation outcomes show that as price subsidy rates increase by 10%, 20%, and 30%, hydrogen demand will increase by 9.2%, 15.2%, and 37.7%, respectively, of final energy demand by 2040. The output of the transportation sector will increase significantly, while demands for oil and electricity will decline. Demands for coal and LNG will experience little change. Household consumption will decline because of the increase of income taxes. Overall GDP will increase because of the increase in exports and investments. CO 2 emission will decline for medium and high subsidy rate cases, but increase for low subsidy cases. Ultimately, subsidy policy on hydrogen will not be an effective measure for mitigating CO 2 emission in Korea when considering dynamic general equilibrium effects. (author)

  14. A hydrogen refill for cellular phone

    Science.gov (United States)

    Prosini, Pier Paolo; Gislon, Paola

    A device has been designed to generate hydrogen for a fuel cell powered cellular phone. The device is based on the chemical reaction between NaBH 4 and hydrochloric/water solution to satisfy the hydrogen request at room temperature and pressure. The operation mechanism and controlling method is based on the Kipp's gas generating apparatus. A prototype has been built and tested to evaluate the optimum salt/acid and acid/solution ratios and check the hydrogen mass flow rates upon operation and the pressure variation in stand-by condition. The system works delivering hydrogen flows ranging between 0 and 10 ml min -1. In a typical test the hydrogen flow was set to 5 ml min -1 to match a 1 W power fuel cell. The working pressure was slightly higher than the atmospheric one. The hydrogen capacity was as high as 2.5% (w/w). By converting this amount of hydrogen in electricity by a fuel cell working at 0.8 V it is possible to achieve a system energy density of about 720 Wh kg -1, four times larger than commercial high energy density lithium-ion batteries.

  15. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate

  16. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  17. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Science.gov (United States)

    Klimov, N. S.; Putrik, A. B.; Linke, J.; Pitts, R. A.; Zhitlukhin, A. M.; Kuprianov, I. B.; Spitsyn, A. V.; Ogorodnikova, O. V.; Podkovyrov, V. L.; Muzichenko, A. D.; Ivanov, B. V.; Sergeecheva, Ya. V.; Lesina, I. G.; Kovalenko, D. V.; Barsuk, V. A.; Danilina, N. A.; Bazylev, B. N.; Giniyatulin, R. N.

    2015-08-01

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic-martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, "corrugated" surface, with hills and valleys spaced by 0.2-2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  18. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Putrik, A.B. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Linke, J. [Forschungszentrum Jülich GmbH, EURATOM Association, Jülich D-52425 (Germany); Pitts, R.A. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Zhitlukhin, A.M. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Kuprianov, I.B. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Spitsyn, A.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., 1, Moscow 123182 (Russian Federation); Ogorodnikova, O.V. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Ivanov, B.V.; Sergeecheva, Ya.V.; Lesina, I.G. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Kovalenko, D.V.; Barsuk, V.A.; Danilina, N.A. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Bazylev, B.N. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Giniyatulin, R.N. [Efremov Institute, Doroga na Metallostroy, 3 bld., Metallostroy, Saint-Petersburg 196641 (Russian Federation)

    2015-08-15

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic–martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, “corrugated” surface, with hills and valleys spaced by 0.2–2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  19. Determination of hydrogen content of Jatropha biodiesel oil using neutron reflection technique

    International Nuclear Information System (INIS)

    Okunade, I. O.; Jonah, S. A.; Omede, M.

    2014-01-01

    Biofuel is an environmental-friendly alternative to fossil fuel and holds immense potential for the future energy needs of the country. Non-edible jatropha biodiesel oil has been identified as one of the suitable bio-fuel options. In this work, experimental measurements were performed to determine the total hydrogen content of jatropha oil and jatropha-synthetic diesel oil mixture. The work was carried out using a neutron reflection facility at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria. Jatropha oil and jatropha-synthetic diesel mixture were subjected to experimental measurements for the purpose of determining bulk hydrogen content using neutron reflection facility that had been previously calibrated using various hydrocarbon materials of known hydrogen content. The hydrogen content of the sample were subsequently determined using their measured neutron reflection coefficient values and calibration data. In general, results obtained indicate high hydrogen content range of 10.68-12.16wt% for jatropha oil and the various jatropha-synthetic diesel mixtures. The implication of this is that jatropha oil or jatrophal-synthetic diesel mixture can be used as alternative fuel to mitigate high carbon monoxide emission.

  20. Hydrogen pellet injection device

    International Nuclear Information System (INIS)

    Kanno, Masahiro.

    1992-01-01

    In a hydrogen pellet injection device, a nozzle block having a hydrogen gas supply channel is disposed at the inner side of a main cryogenic housing, and an electric resistor is attached to the block. Further, a nozzle block and a hydrogen gas introduction pipe are attached by way of a thermal insulating spacer. Electric current is supplied to the resistor to positively heat the nozzle block and melt remaining solid hydrogen in the hydrogen gas supply channel. Further, the effect of temperature elevation due to the resistor is prevented from reaching the side of the hydrogen gas introduction pipe by the thermal insulation spacer. That is, the temperature of the nozzle block is directly and positively elevated, to melt the solid hydrogen rapidly. Preparation operation from the injection of the hydrogen pellet to the next injection can be completed in a shorter period of time compared with a conventional case thereby enabling to make the test more efficient. Further, only the temperature of the nozzle block is elevated with no effect of temperature elevation due to the resistor to other components by the thermal insulation flange. (N.H.)

  1. Catching fire? Social interactions, beliefs, and wildfire risk mitigation behaviors

    Science.gov (United States)

    Katherine Dickinson; Hannah Brenkert-Smith; Patricia Champ; Nicholas Flores

    2015-01-01

    Social interactions are widely recognized as a potential influence on risk-related behaviors. We present a mediation model in which social interactions (classified as formal/informal and generic-fire-specific) are associated with beliefs about wildfire risk and mitigation options, which in turn shape wildfire mitigation behaviors. We test this model using survey data...

  2. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  3. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  4. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  5. Investigation of the explosion hazards of hydrogen sulphide

    International Nuclear Information System (INIS)

    Saber, A.J.; Sulmistras, A.; Moen, I.O.; Thibault, P.A.

    1986-03-01

    The results of Phase I of an investigation directed towards quantifying the explosion hazards of hydrogen sulphide in air are described. The first phase is focussed on detonation in free hydrogen sulphide/air clouds. Detonation properties, including velocity and pressure, have been calculated and compared with experimental results. The observed detonation structure together with critical tube tests tests are used to assess the detonability of hydrogen sulphide/air mixtures relative to hydrogen and common hydrocarbon gases. Detailed chemical kinetic modelling of hydrogen sulphide combustion in air has been performed to correlate the detonation cell size data and to determine the influence of water vapour on the detonability of hydrogen sulphide in air. Calculations of the blast wave properties for detonation of a hydrogen sulphide/air cloud provide the data required to assess the blast effects of such explosions

  6. Blast mitigation experimental and numerical studies

    CERN Document Server

    2013-01-01

    Presents experimental methods of material and structural response to dynamic blast loads Includes computational analysis of material and structural response to dynamic blast loads Offers mitigation measures for structures in various environments Relates lab experiments to larger field tests Features more than 150 illustrations

  7. A rationale for large inertial fusion plants producing hydrogen for powering low emission vehicles

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-01-01

    Inertial Fusion Energy (IFE) has been identified in the 1991 National Energy Strategy, along with Magnetic Fusion Energy (MFE), as one of only three inexhaustible energy sources for long term energy supply (past 2025), the other alternatives being fission and solar energy. Fusion plants, using electrolysis, could also produce hydrogen to power low emission vehicles in a potentially huge future US market: > 500 GWe would be needed for example, to replace all foreign oil imports with equal-energy hydrogen, assuming 70%-efficient electrolysis. Any inexhaustible source of electricity, including IFE and MFE reactors, can thus provide a long term renewable source of hydrogen as well as solar, wind and biomass sources. Hydrogen production by both high temperature thermochemical cycles and by electrolysis has been studied for MFE, but avoiding trace tritium contamination of the hydrogen product would best be assured using electrolysis cells well separated from any fusion coolant loops. The motivations to consider IFE or MFE producing renewable hydrogen are: (1) reducing US dependence on foreign oil imports and the associated trade deficient; (2) a hydrogen-based transportation system could greatly mitigate future air pollution and greenhouse gases; (3) investments in hydrogen pipelines, storage, and distribution systems could be used for a variety of hydrogen sources; (4) a hydrogen pipeline system could access and buffer sufficiently large markets that temporary outages of large (>> 1 GWe size) fusion hydrogen units could be tolerated

  8. Test and approval center for fuel cell and hydrogen technologies: Phase I. Initiation. Final report; Test- og godkendelsescenter for braendselscelle- og brintteknologier. Fase 1. Opstart. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, A. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)

    2012-09-15

    The aim of the present project was to initialize a Test and Approval Center for Fuel Cell and Hydrogen Technologies at the sites of the project partners Risoe DTU (Fuel Cells and Solid State Chemistry Division), and DGC (work package 1). The project furthermore included start-up of first activities with focus on the development of accelerated life-time tests of fuel cell systems, preparations for standardization of these methods, and advising in relation to certification and approval of fuel cell systems (work package 2). The main achievements of the project were: Work package 1: 1) A large national and international network was established comprising of important commercial players, research institutions, and other test centers; 2) The test center is known in large part of the international Fuel Cell and Hydrogen community due to substantial efforts in 'marketing'; 3) New national and international projects have been successfully applied for, with significant roles of the test center, which secure the further establishment and development of the center. Work package 2: 1) Testing equipment was installed and commissioned at DTU (Risoe Campus); 2) A comprehensive survey among international players regarding activities on accelerated SOFC testing was carried out; 3) A test procedure for 'compressed' testing of SOFC in relation to {mu} CHP application was developed and used for one-cell stack and 50-cell-stack testing; 4) Guidelines for Danish authority handling were formulated. (Author)

  9. Magnesium mechanical alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Ivanov, E.; Konstanchuk, I.; Stepanov, A.; Boldyrev, V.

    1985-01-01

    Metal hybrides are currently being used to store and handle hydrogen and its isotopes. They are also being tested in hydrogen compressors and in heat energy, refrigerators and in hydrogen and thermal storage devices. Metal hydrides have been proposed as one of the possible media for hydrogen storage to overcome the limitations of other techniques in regard to safety hydrogen weight and volume ration. The suitability of metal hybrides as a hydrogen storage media depends on a number of factors such as storage capacity, reactivity with hydrogen at various pressures and temperatures, and the cost of base materials. Magnesium based alloys are promising materials for storing hydrogen. They are generally made by argon melting and no attention has been payed to other fabrication techniques such as mechanical alloying or powder technique

  10. A framework for evaluating hydrogen control and management

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Suh, Kune Yul; Jae, Moosung

    2003-01-01

    The present paper presents a new framework for assessing accident management strategies using decision trees. The containment event tree (CET) model considers characteristics associated with the implementation of each strategy. It is constructed and quantified using data obtained from NUREG-1150, other probabilistic risk assessments, and the MAAP4 calculations. The proposed framework for evaluating hydrogen control strategies is based on the concept of a measure using a risk triplet. Ulchin units of nuclear power plants 3 and 4 are used as the reference plant. On the basis of best-estimate assessment, it is shown that it is beneficial to execute hydrogen igniters rather than to do nothing with respect to expected value of hydrogen concentration in the containment during an accident. The proposed approach is shown to be flexible in that it can be applied to various accident management strategies based on the timing of mitigation. The advantage of using the CET for assessing an accident management strategy lies with its capability for modeling both the positive and negative aspects associated with progression of the accident, which may in turn affect the containment failure mode

  11. Navy radon assessment and mitigation program: Final report

    International Nuclear Information System (INIS)

    1994-10-01

    This final report encompasses the events from the beginning of the Navy Radon Assessment and Mitigation Program to the closure of the program on October 31, 1994. Included in the report are discussions of the phases of the program including screening, assessment, mitigation, and post-mitigation. The primary discussion involves screening and assessment. The report addresses recommendations made to the Naval Facilities Engineering Command by the Hazardous Waste Remedial Actions Program of Martin Marietta Energy Systems, Inc., and the final decisions that were made. Special emphasis is placed on quality assurance/quality control (QA/QC), since QA/QC was given top priority during the implementation of this program. Included in the discussion on QA/QC are ana overview of the measurement process, positive and negative controls, replicated measurements, and application of chamber exposures to data calibration. The report concludes with a discussion of testing considerations for naval facilities and radon mitigation considerations for the Department of the Navy

  12. What factors influence mitigative capacity?

    International Nuclear Information System (INIS)

    Winkler, Harald; Baumert, Kevin; Blanchard, Odile; Burch, Sarah; Robinson, John

    2007-01-01

    This article builds on Yohe's seminal piece on mitigative capacity, which elaborates 'determinants' of mitigative capacity, also reflected in the IPCC's third assessment report. We propose a revised definition, where mitigative capacity is a country's ability to reduce anthropogenic greenhouse gas emissions or enhance natural sinks. By 'ability' we mean skills, competencies, fitness, and proficiencies that a country has attained which can contribute to GHG emissions mitigation. A conceptual framework is proposed, linking mitigative capacity to a country's sustainable development path, and grouping the factors influencing mitigative capacity into three main sets: economic factors, institutional ones, and technology. Both quantitative and qualitative analysis of factors is presented, showing how these factors vary across countries. We suggest that it is the interplay between the three economic factors-income, abatement cost and opportunity cost-that shape mitigative capacity. We find that income is an important economic factor influencing mitigative capacity, while abatement cost is important in turning mitigative capacity into actual mitigation. Technology is a critical mitigative capacity, including the ability to absorb existing climate-friendly technologies or to develop innovative ones. Institutional factors that promote mitigative capacity include the effectiveness of government regulation, clear market rules, a skilled work force and public awareness. We briefly investigate such as high abatement cost or lack of political willingness that prevent mitigative capacity from being translated into mitigation

  13. Solid hydrogen-plasma interaction

    International Nuclear Information System (INIS)

    Joergensen, L.W.

    1976-03-01

    A review of the need of refuelling fusion reactors and of the possible refuelling methods, in particular injection of pellets of solid hydrogen isotopes, is given. The interaction between hydrogen pellets and a fusion plasma is investigated and a theoretical model is given. From this it is seen that the necessary injected speed is above 10 4 m/sec. Experiments in which hydrogen pellets are interacting with a rotating test plasma (puffatron plasma) is described. The experimental results partly verify the basic ideas of the theoretical model. (Auth.)

  14. Decarbonization and sequestration for mitigating global warming

    International Nuclear Information System (INIS)

    Steinberg, M.

    2000-01-01

    Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO 2 from power generation plants and sequestration in the ocean represents one possibility of making a major impact on reducing CO 2 emissions to the atmosphere. This paper will briefly review the progress made in ocean disposal and present some alternative schemes. (author)

  15. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  16. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  17. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    Science.gov (United States)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  18. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  19. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  20. Natural Frequency Testing and Model Correlation of Rocket Engine Structures in Liquid Hydrogen - Phase I, Cantilever Beam

    Science.gov (United States)

    Brown, Andrew M.; DeLessio, Jennifer L.; Jacobs, Preston W.

    2018-01-01

    Many structures in the launch vehicle industry operate in liquid hydrogen (LH2), from the hydrogen fuel tanks through the ducts and valves and into the pump sides of the turbopumps. Calculating the structural dynamic response of these structures is critical for successful qualification of this hardware, but accurate knowledge of the natural frequencies is based entirely on numerical or analytical predictions of frequency reduction due to the added-fluid-mass effect because testing in LH2 has always been considered too difficult and dangerous. This fluid effect is predicted to be approximately 4-5% using analytical formulations for simple cantilever beams. As part of a comprehensive test/analysis program to more accurately assess pump inducers operating in LH2, a series of frequency tests in LH2 were performed at NASA/Marshall Space Flight Center's unique cryogenic test facility. These frequency tests are coupled with modal tests in air and water to provide critical information not only on the mass effect of LH2, but also the cryogenic temperature effect on Young's Modulus for which the data is not extensive. The authors are unaware of any other reported natural frequency testing in this media. In addition to the inducer, a simple cantilever beam was also tested in the tank to provide a more easily modeled geometry as well as one that has an analytical solution for the mass effect. This data will prove critical for accurate structural dynamic analysis of these structures, which operate in a highly-dynamic environment.

  1. The hydrogen influenced cold cracking tendency of two high strength low alloy steels - evaluated by the implant-test

    International Nuclear Information System (INIS)

    Neumann, V.; Schoenherr, W.

    1978-01-01

    A possible way of evaluating the hydrogen influenced cold cracking tendency of constructional steels is the implant test. Using this testing method, it is possible to adjust extensively independently of one other the three influencing parameters - hydrogen content of the welding deposit and the heat-affected zone, hardness structure and stresses - and to examine their effect on the crack behaviour. Due to the same microstructure formation in the heat affected zone of the implant samples and in the non-heat affected regions from the consequent position of the heat affected zone of component seams, welding conditions can be determined with suitable changing of the sample whose application to the real component practically excludes the danger of cold cracking. The broken surfaces in cold cracking are partly ductile and poor in deformation. The deformation-poor fracturing can possibly take an intercrystalline or transcrystalline course according to the chemical composition of the steel. The investigation confirm the theories and test results of other authors: The formation of deformation-poor, typical fracture sections for cold cracking was only obtained when there was a clear delay between putting on the test load and fracture of the sample. (orig./RW) [de

  2. Real-Time RFI Mitigation in Pulsar Observations

    Science.gov (United States)

    Ramey, Emily; Joslyn, Nick; Prestage, Richard; Whitehead, Mark; Lam, Michael Timothy; Blattner, Tim; Hawkins, Luke; Viou, Cedric; Masson, Jessica

    2018-01-01

    As the use of wireless technology has increased around the world, Radio Frequency Interference (RFI) has become more and more of a problem for radio astronomers. Preventative measures exist to limit the presence of RFI, and programs exist to remove it from saved data, but the routine use of algorithms to detect and remove RFI as an observation is occurring is much less common. Such a method would be incredibly useful for observations in which the data must undergo several rounds of processing before being saved, as in pulsar timing studies. Strategies for real-time mitigation have been discussed and tested with simulated data (Buch et al., 2016), but ideally the results of any approach would be validated by a detailed comparison of the final data products - for pulsar timing, the variance in the pulse times of arrival (TOAs) - with and without mitigation applied. The goal of this project is to develop an RFI mitigation approach based on the previously suggested strategies and test this program on actual data from the observation of pulsar J1713+0747. We use a Median Absolute Deviation (MAD) filter to identify interference in the observation and replace the compromised data with random Gaussian noise to match a characteristic radio signal from space. In order to verify our results, we analyze the pulsar’s TOAs obtained both from the mitigated data and from the unmitigated data processed through offline RFI removal software. Comparing the two, our preliminary findings indicate that our program is able to improve the quality of timing results from the observation.

  3. Hydrogen utilization efficiency in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Metkemeyer, R; Achard, P; Rouveyre, L; Picot, D [Ecole des Mines de Paris, Centre D' energrtique, Sophia Antipolis (France)

    1998-07-01

    In this paper, we present the work carried out within the framework of the FEVER project (Fuel cell Electric Vehicle for Efficiency and Range), an European project coordinated by Renault, joining Ecole des Mines de Paris, Ansaldo, De Nora, Air Liquide and Volvo. For the FEVER project, where an electrical air compressor is used for oxidant supply, there is no need for hydrogen spill over, meaning that the hydrogen stoichiometry has to be as close to one as possible. To determine the optimum hydrogen utilization efficiency for a 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) fed with pure hydrogen, a 4 kW prototype fuel cell was tested with and without a hydrogen recirculator at the test facility of Ecole des Mines de Paris. Nitrogen cross over from the cathodic compartment to the anodic compartment limits the hydrogen utilization of the fuel cell without recirculator to 97.4 % whereas 100% is feasible when a recirculator is used. 5 refs.

  4. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage p....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0.......Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage...... problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults...

  5. Mitigation Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  6. Researches concerning the use of mixed Hydrogen in the combustion of dense biomass

    International Nuclear Information System (INIS)

    Negreanu, Gabriel-Paul; Mihaescu, Lucian; Pisa, Ionel; Berbece, Viorel; Lazaroiu, Gheorghe

    2014-01-01

    The paper deals with theoretical basis and experimental tests of mixed hydrogen diffusion in the dense system of biomass. Research regarding hydrogen diffusion in the porous system of biomass is part of wider research focusing on using hydrogen as an active medium for solid biomass combustion. In parallel with hydrogen diffusion in solid biomass, tests regarding biomass combustion previously subjected to a hydrogen flux will be carried out. Keywords: biomass, hydrogen diffusion, combustion, experimental tests

  7. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  8. Gaseous hydrogen embrittlement of an API X80 ferrito-pearlitic steel; Fragilisation par l'hydrogene gazeux d'un acier ferrito-perlitique de grade API X80

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.

    2009-11-15

    This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)

  9. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    Science.gov (United States)

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  10. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  11. Micro hydrogen for portable power : generating opportunities for hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A new fuel cell technology for portable applications was reviewed. Success for the fuel cell industry will be achieved primarily by supplanting lithium-ion batteries, and fuel cells for portable applications have clear advantages to batteries in addition to their known environmental benefits. Micro hydrogen {sup TM} is the integrated combination of hydrogen fuel cell, hydrogen storage and delivery, fluidic interconnects and power conditioning electronics required for creating high energy density portable power sources. The small size, low heat production, environmental sustainability and refueling flexibility of the systems provides enormous economic opportunities for the use of micro hydrogen in cell phone technology, personal digital assistants and other electronic gadgets. Details of a trial to test and evaluate micro hydrogen fuel cell powered bike lights were presented. Further programs are planned for external demonstrations of high-beam search and rescue lighting, flashlights for security personnel and portable hydrogen power sources that will be used by multiple organizations throughout British Columbia. It was concluded that fuel cell technology must match the lithium-ion battery's performance by providing fast recharge, high energy density, and adaptability. Issues concerning refueling and portable and disposable cartridges for micro hydrogen systems were also discussed. 8 figs.

  12. Single event and TREE latchup mitigation for a star tracker sensor: An innovative approach to system level latchup mitigation

    International Nuclear Information System (INIS)

    Kimbrough, J.R.; Colella, N.J.; Davis, R.W.; Bruener, D.B.; Coakley, P.G.; Lutjens, S.W.; Mallon, C.E.

    1994-08-01

    Electronic packages designed for spacecraft should be fault-tolerant and operate without ground control intervention through extremes in the space radiation environment. If designed for military use, the electronics must survive and function in a nuclear radiation environment. This paper presents an innovative ''blink'' approach rather than the typical ''operate through'' approach to achieve system level latchup mitigation on a prototype star tracker camera. Included are circuit designs, flash x-ray test data, and heavy ion data demonstrating latchup mitigation protecting micro-electronics from current latchup and burnout due to Single Event Latchup (SEL) and Transient Radiation Effects on Electronics (TREE)

  13. The J-2X Fuel Turbopump - Design, Development, and Test

    Science.gov (United States)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  14. Hydrogen in CANDU fuel elements

    International Nuclear Information System (INIS)

    Sejnoha, R.; Manzer, A.M.; Surette, B.A.

    1995-01-01

    Unirradiated and irradiated CANDU fuel cladding was tested to compare the role of stress-corrosion cracking and of hydrogen in the development of fuel defects. The results of the tests are compared with information on fuel performance in-reactor. The role of hydriding (deuteriding) from the coolant and from the fuel element inside is discussed, and the control of 'hydrogen gas' content in the element is confirmed as essential for defect-free fuel performance. Finally, implications for fuel element design are discussed. (author)

  15. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  16. Tests of Hercules/Ultramet CVD coatings in hot hydrogen

    International Nuclear Information System (INIS)

    Vanier, P.E.; Barletta, R.E.; Svandrlik, J.; Adams, J.

    1992-01-01

    The effort by Hercules and Ultramet to produce CVD NbC coatings, which protect carbon-carbon substrates from hot hydrogen, has had some success but with some limitations. The coatings increase the survival time at atmospheric pressure and low flow rate of hydrogen by about a factor of 40 over uncoated graphite at 3000 K. However, the grain structure is not stable at these temperatures, and after about 10--20 minutes, the coating is subject to rapid degradation by spalling in visible chunks. Further experiments would have to be performed to determine the effects of higher pressures and flow rates, for it is not clear how these factors would affect the survival time, considering that one of the main failure mechanisms is independent of the atmosphere

  17. Trapping and spectroscopy of hydrogen

    International Nuclear Information System (INIS)

    Cesar, Claudio Lenz

    1997-01-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 10 12 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 10 18 . While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen

  18. Preliminary analyses on hydrogen diffusion through small break of thermo-chemical IS process hydrogen plant

    International Nuclear Information System (INIS)

    Somolova, Marketa; Terada, Atsuhiko; Takegami, Hiroaki; Iwatsuki, Jin

    2008-12-01

    Japan Atomic Energy Agency has been conducting a conceptual design study of nuclear hydrogen demonstration plant, that is, a thermal-chemical IS process hydrogen plant coupled with the High temperature Engineering Test Reactor (HTTR-IS), which will be planed to produce a large amount of hydrogen up to 1000m 3 /h. As part of the conceptual design work of the HTTR-IS system, preliminary analyses on small break of a hydrogen pipeline in the IS process hydrogen plant was carried out as a first step of the safety analyses. This report presents analytical results of hydrogen diffusion behaviors predicted with a CFD code, in which a diffusion model focused on the turbulent Schmidt number was incorporated. By modifying diffusion model, especially a constant accompanying the turbulent Schmidt number in the diffusion term, analytical results was made agreed well with the experimental results. (author)

  19. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  20. Containment hydrogen and atmosphere activity control to mitigate severe accidents in VVERs and Western PWRs. Design and status of implementation

    International Nuclear Information System (INIS)

    Feuerbach, R.

    2002-01-01

    For accident management nuclear power plants in Europe have been or will be back-fitted with supplementary systems for monitoring the containment hydrogen concentration, for the early removal and reduction of hydrogen and filtered venting systems to retain radioactive aerosols and iodine. The hydrogen monitoring system (HMS) provides the information of local H 2 concentration in the containment during DBA and severe accident situations. The new HMS contains of overall H 2 -sensors and is installed inside the confinement. It provides continuos information about the local and temporal distribution of hydrogen, reported directly to the Emergency Response Team in case of severe accident. The hydrogen Reduction System (HRS) consists of several Passive Autocatalytic Recombiners (PAR) located in several compartments in the containment. The number of PARs to be installed depends on the type of NPP, structure of containment and the investigated accident scenario e.g. DBA conditions - approx. 6 to 20 PARs; severe accident conditions - 20-60 PARs). In case of severe accident it does not need any operator actions. The Filtered Venting System (FVS) is is especially important for WWER-440/230 maintaining sub atmospheric pressure in the confinement. For severe accident the on-site Emergency Response Team has to take the necessary strategic decisions for containment depressurization via the FVS

  1. Prevention and mitigation of severe accidents

    International Nuclear Information System (INIS)

    Weisshaeupl, H.

    1996-01-01

    For the European Pressurized water Reactor (EPR), jointly developed by French and German industry, great emphasis is laid to gain further improvement in prevention of severe accidents based on the accumulative experience and proven technology of the French and German PWR reactors. In this evolutionary development, a balanced and comprehensive approach in respect to implement new passive features has been chosen. Improvements in each step of the defense in depth concept lead to a further decrease in the probability of occurrence of a severe accident with partial or even gross melting of the core. The different phenomenons that occur during such an hypothetical accident must be taken into account during the conception of specific measurements necessary to mitigate accident consequences. To cope with the consequences of a severe accident with core melt down means to deal with different phenomena which may threaten the integrity of the containment or may lead to an enhanced fission product release into the environment: high pressure reactor pressure vessel failure; energetic molten fuel coolant interaction; direct containment heating, molten core concrete interaction; hydrogen combustion; long term pressure and temperature increase in the containment. The EPR approach follows the recommendations from the DFD (Deutsch-Franzosischer Direktionsausschuss), jointly prepared by the French and German safety authorities. The EPR concept consist to prevent or eliminate as far as possible scenarios which are connected with high loads (high pressure failure of the reactor pressure vessel, or global hydrogen detonation etc..) by dedicated design provisions, and to deal with the consequences of severe accident scenarios which are not ruled out by specific safety measures. The measures comprise: the primary system depressurization; the control of hydrogen; the stabilisation and cooling of the melted core; the containment heat removal. They are completed by specific characteristics

  2. Missouri S&T hydrogen transportation test bed equipment & construction.

    Science.gov (United States)

    2010-08-01

    Investments through the National University Transportation Center at Missouri University of Science and Technology have really scored on the Centers mission areas and particularly Transition-state fuel vehicle infrastructure leading to a hydrogen ...

  3. TWRS hydrogen mitigation portable standard hydrogen monitoring system platform design and fabrication engineering task plan

    International Nuclear Information System (INIS)

    Philipp, B.L.

    1997-01-01

    The primary function of portable gas monitoring is to quickly determine tank vapor space gas composition and gas release rate, and to detect gas release events. Characterization of the gas composition is needed for safety analysis. The lower flammability limit, as well as the peak burn temperature and pressure, are dependent upon the gas composition. If there is little or no knowledge about the gas composition, safety analysis utilize compositions that yield the worst case in a deflagration or detonation. This conservative approach to unknowns necessitates a significant increase in administrative and engineering costs. Knowledge of the true composition could lead to reductions in the assumptions and therefore contribute to a reduction in controls and work restrictions. Also, knowledge of the actual composition will be required information for the analysis that is needed to remove tanks from the Watch List. Similarly, the rate of generation and release of gases is required information for performing safety analysis, developing controls, designing equipment, and closing safety issues. To determine release rate, both the gas concentrations and the dome space ventilation rates (exhauster flow rate or passive dome/atmosphere exchange rate) are needed. Therefore, to quickly verify waste tank categorization or to provide additional characterization for tanks with installed gas monitoring, a temporary, portable standard hydrogen monitoring system is needed that can be used to measure gas compositions at both high and low sensitivities

  4. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  5. Characterization and Testing of Improved Hydrogen Getter Materials - FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandoval, Cynthia Wathen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    Organic-based hydrogen getter materials have been in use for many years. These materials are able to prevent the dangerous buildup of hydrogen gas in sealed containers, and are also used to protect surrounding materials from degradation caused by chemical reactions. This document describes these materials.

  6. Coal mine subsidence: effects of mitigation on crop yields

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn (Zea mays L.) and soybean (Glycine max L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly (α0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs

  7. Hydrogen energy technology

    International Nuclear Information System (INIS)

    Morovic, T.; Pilhar, R.; Witt, B.

    1988-01-01

    A comprehensive assessment of different energy systems from the economic point of view has to be based on data showing all relevant costs incurred and benefits drawn by the society from the use of such energy systems, i.e. internal costs and benefits visible to the energy consumer as prices paid for power supplied, as well as external costs and benefits. External costs or benefits of energy systems cover among other items employment or wage standard effects, energy-induced environmental impacts, public expenditure for pollution abatement and mitigation of risks and effects of accidents, and the user costs connected with the exploitation of reserves, which are not rated high enough to really reflect and demonstrate the factor of depletion of non-renewable energy sources, as e.g. fossil reserves. Damage to the natural and social environment induced by anthropogenous air pollutants up to about 90% counts among external costs of energy conversion and utilisation. Such damage is considered to be the main factor of external energy costs, while the external benefits of energy systems currently are rated to be relatively unsignificant. This means that an internalisation of external costs would drive up current prices of non-renewable energy sources, which in turn would boost up the economics of renewable energy sources, and the hydrogen produced with their energy. Other advantages attributed to most of the renewable energy sources and to hydrogen energy systems are better environmental compatibility, and no user costs. (orig.) [de

  8. An integrated approach to hydrogen economy in Sicilian islands

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Fabio V.; Sapienza, C.; Andaloro, L.; Dispensa, G.; Ferraro, M.; Antonucci, V. [Italian National Research Council, Institute of Advanced Energy Technologies ' ' Nicola Giordano' ' , salita S. Lucia sopra Contesse, 5, Messina 98126 (Italy)

    2009-08-15

    CNR-ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources. (author)

  9. Hydrogen isotope technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Hydrogen pumping speeds on panels of molecular sieve types 5A and Na-Y were compared for a variety of sieve (and chevron) temperatures between 10 and 30 K. Although pumping speeds declined with time, probably because of the slow diffusion of hydrogen from the surface of the sieve crystals into the internal regions, the different sieve materials and operating conditions could be compared using time-averaged pump speeds. The (average) pumping speeds declined with increasing temperature. Under some conditions, the Na-Y sieve performed much better than the 5A sieve. Studies of the effect of small concentrations (approx. 4%) of hydrogen on helium pumping indicate that compound cryopumps in fusion reactors will not have to provide complete screening of hydrogen from helium panels. The concentrations of hydrogen did not lower effective helium pumping speeds or shorten the helium operating period between instabilities. Studies of tritium recovery from blankets of liquid lithium focused on design and construction of a flowing-lithium test system and on ultimate removal of tritium from yttrium sorbents. At 505 0 C, tritium release from yttrium behaves as a diffusion-controlled process, but the release rates are very low. Apparently, higher temperatures will be required for effective sorbent regeneration. An innovative technique for separating hydrogen isotopes by using bipolar electrolysis with permeable electrodes was analyzed to determine its potential usefulness in multistage separation

  10. Hydrogen engine performance analysis. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1978-08-01

    Many problems associated with the design and development of hydrogen-air breathing internal combustion engines for automotive applications have been identified by various domestic and foreign researchers. This project addresses the problems identified in the literature, seeks to evaluate potential solutions to these problems, and will obtain and document a design data-base convering the performance, operational and emissions characteristics essential for making rational decisions regarding the selection and design of prototype hydrogen-fueled, airbreathing engines suitable for manufacture for general automotive use. Information is included on the operation, safety, emission, and cost characteristics of hydrogen engines, the selection of a test engine and testing facilities, and experimental results. Baseline data for throttled and unthrottled, carburetted, hydrogen engine configurations with and without exhaust gas recirculation and water injection are presented. In addition to basic data gathering concerning performance and emissions, the test program conducted was formulated to address in detail the two major problems that must be overcome if hydrogen-fueled engines are to become viable: flashback and comparatively high NO/sub x/ emissions at high loads. In addition, the results of other hydrogen engine investigators were adjusted, using accepted methods, in order to make comparisons with the results of the present study. The comparisons revealed no major conflicts. In fact, with a few exceptions, there was found to be very good agreement between the results of the various studies.

  11. Planning calculations of spray tests for the ERCOSAM-SAMARA project

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Andreani, M. [Paul Scherrer Institut, Laboratory for Thermal-Hydraulics, Villigen (Switzerland)

    2012-07-01

    Within the framework of the ERCOSAM-SAMARA project, co-funded by the European Union and the Russian State Atomic Energy Corporation, planning and pre-test calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium (substitute for hydrogen) layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the spray tests to be performed in the PANDA facility. The effects of spray flow rate, temperature and injection height on depressurization, erosion of helium cloud and gas transport behavior are studied. This analysis is valuable because only a limited number of conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of spray with a stratified atmosphere. (author)

  12. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  13. Operational experience in mitigating flammable gas releases from Hanford Site Tank 241-SY-101

    International Nuclear Information System (INIS)

    Lentsch, J.W.; Babad, H.; Kirch, N.W.

    1995-01-01

    Flammable gases consisting of hydrogen, nitrous oxide, ammonia, and methane are periodically released from Hanford Site waste tank 241-SY-101 at concentrations above the flammable limit. A large mixer pump installed in the tank in 1993 has effectively mitigated this problem by continuously releasing small amounts of the flammable gases at the rate they are generated. Tank 241-SY-101 is also equipped with multiple high-sensitivity gas monitoring systems and level detection systems to measure the quantity of gas that is retained in and released from the waste

  14. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  15. Investigation of Local Hydrogen Risk in the RDT Compartment of OPR1000 under SBO Scenario

    International Nuclear Information System (INIS)

    Kim, Nam Kyung; Jeon, Joon Goo; Choi, Won Jun; Song, Kyu Sang; Jeun, Gyoo Dong; Kim, Sung Joong

    2016-01-01

    As TMI-2 and Fukushima accidents revealed, a high concentration of hydrogen in a nuclear power plant (NPP) could cause hydrogen combustion. In order to take follow-up measures, an average and local hydrogen concentration in the NPP containment are regulated below 0.1 using hydrogen mitigation system such as igniter and/or passive autocatalytic recombiner (PAR). During a severe accident, some compartments of the NPP containment temporarily may show peaks of the local hydrogen concentration over 0.1 depending on the geometry of the containment structure and hydrogen transportation path. For example, the compartment of a reactor drain tank (RDT) is connected to the pressurizer nozzle and if the relieved pressure drives the significant amount of steam and hydrogen, then substantial peaks of the hydrogen concentration can occur. Before the RPV failure under SBO scenario, the RDT compartment was the main region for hydrogen release due to the RDT break. Therefore, confirming the local hydrogen risk in the RDT compartment is very important to verify the integrity of the NPP containment. In this study, the local hydrogen risk in the RDT compartment of OPR1000 under SBO scenario was evaluated using MELCOR 1.8.6 code in terms of the hydrogen volume fraction and the Shapiro diagram. (1) The RDT compartment showed the peaks of the hydrogen volume fraction over 0.1. As a future work, the local hydrogen risk of the compartment of a steam generator (SG) needs to be analyzed under SBLOCA scenario. Because the SG compartment is also a main region of hydrogen release under SBLOCA scenario. In the long run, the analysis for the detailed hydrogen distribution, based on detailed modeling of the whole OPR1000 containment, needs to be performed.

  16. The hydrogen mine introduction initiative

    Energy Technology Data Exchange (ETDEWEB)

    Betournay, M.C.; Howell, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    In an effort to address air quality concerns in underground mines, the mining industry is considering the use fuel cells instead of diesel to power mine production vehicles. The immediate issues and opportunities associated with fuel cells use include a reduction in harmful greenhouse gas emissions; reduction in ventilation operating costs; reduction in energy consumption; improved health benefits; automation; and high productivity. The objective of the hydrogen mine introduction initiative (HMII) is to develop and test the range of fundamental and needed operational technology, specifications and best practices for underground hydrogen power applications. Although proof of concept studies have shown high potential for fuel cell use, safety considerations must be addressed, including hydrogen behaviour in confined conditions. This presentation highlighted the issues to meet operational requirements, notably hydrogen production; delivery and storage; mine regulations; and hydrogen behaviour underground. tabs., figs.

  17. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  18. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  19. Participation of C.N. Vandellos II as a pilot plant in the PWROG PA-ASC-1084 project about analysis and distribution of hydrogen in the containment buildings annexes; Participacion de C. N. Vandellos II como planta piloto en el proyecto del PWROG PA-ASC-1084 sobre analisis y distribucion del hidrogeno en edificios anexos a la Contencion

    Energy Technology Data Exchange (ETDEWEB)

    Fornos Herrando, J.

    2013-07-01

    Fukushima accident has demonstrated that hydrogen outside the Containment building, due to its potential combustion or explosion, may result in loss of mitigation equipment, thus hindering the recovery of the plant. This reality has been treated in the framework of Stress Tests that are being developed at European level, and the Spanish nuclear power plants should evaluate this potential risk according to the specific design of each plant. The aim of this paper is to introduce this hydrogen problem and to present the main developments of the Vandellos II NPP experience as pilot plant in the project that PWROG is developing to analyze the potential risk of hydrogen in the Containment outbuildings.

  20. Development and field tests of a damping controller to mitigate electromechanical oscillations on large diesel generating units

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Fabricio G.; Barreiros, Jose A.L.; Barra, Walter Jr.; Costa, Carlos T. Jr. [Universidade Federal do Para (UFPA), Instituto de Tecnologia, Faculdade de Engenharia Eletrica, Campus Universitario do Guama, CEP: 66075-900, Belem (Brazil); Ferreira, Andre M.D. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Campus Belem, Departamento de Controle e Processos Industriais, Av. Almirante Barroso, 1155 (Marco), CEP: 66093-020, Belem (Brazil)

    2011-02-15

    This paper presents the development and field tests of a digital damping controller designed to mitigate intra-plant electromechanical oscillations via the speed governor system of fast acting units. The controller performance is assessed on an 18-MVA diesel generating unit, at Santana Power Plant (Amapa State, Amazon Region at Northern Brazil). In order to design the damping control law, a set of parametric ARX models representing the plant dynamics at several load conditions, are previously identified from data collected on field tests. The damping controller gains are calculated by using the identified ARX models parameters as inputs to a discrete-time pole-placement design method (pole-shifting) and then embedded on a DSP based microcontroller digital system, for field tests assessment. The digital damping controller modulates the diesel engine inlet valve position according to the observed oscillation on the measured electric power, using a PWM device, which is specially developed to this application. The experimental results shown the good performance of the developed controller on damping efficiently the electromechanical oscillations observed between generating units at Santana Power Plant. (author)

  1. Spare mitigation/retrieval mixer pumps

    International Nuclear Information System (INIS)

    Taylor, S.

    1995-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a waste tank mixer pump. The mixer pump will be operated to eliminate the periodic releases of large quantities of flammable gas (e.g., hydrogen) from Hanford Site waste tanks and also to accommodate retrieval of tank waste

  2. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the

  3. Effects of hydrogen-charging on the properties of S235JR steel

    Science.gov (United States)

    Pietkun-Greber, Izabela

    2017-10-01

    The paper presents the test results of the S235JR steel susceptibility to damage under the influence of hydrogen. The test of mechanical properties was performed on the basis of a static stretch test of non-hydrogenated samples and after cathodic polarization. Electrochemical measurements for the assessment of corrosion resistance of non-hydrogenated and hydrogenated steels were carried out using open circuit potential measurement and registering of potentiodynamic polarization curves in a three-electrode measuring system. Hydrogenation was carried out for between 3 and 24 hours in a solution of 0.1 N sulfuric acid (VI) with the addition of 2 mg/dm 3 of arsenic oxide (III) at an electric current density of 10 mA/cm2. The hydrogen content in the steel before and after saturation with hydrogen was determined using the analyzer. Fracture samples after tensile test were observed using scanning electron microscope. The results of the research showed that as the hydrogen concentration in the examined steel increased (the lengthening of the saturation time), the deterioration of its mechanical and electrochemical properties occurred.

  4. Hydrogen embrittlement of Zr-2.5Nb PT with temperature

    International Nuclear Information System (INIS)

    Oh, Dong Joon; Ahn, Sang Bok; Kim, Young Suk

    2003-01-01

    The aim of this study is to investigate the effect of hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube. The tests were performed at three hydrogen contents for transverse tensile and CCT specimens while the test temperatures were changed (RT to 300 .deg. C). The specimens were directly machined from the tube retaining original curvature using electric discharge machine. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over 250 .deg. C

  5. JUSTIFICATION FOR A LIMIT OF 15 PERCENT HYDROGEN IN A 55-GALLON DRUM

    International Nuclear Information System (INIS)

    MARUSICH, R.M.

    2007-01-01

    The concentration of 15% hydrogen in air in a waste drum is used as the concentration at which the drum remains intact in the case of a deflagration. The following describes what could happen to the drum if 15% hydrogen or more in air were ignited. Table 2 of the Savannah River report WSRC-TR-90-165 ''TRU Drum Hydrogen Explosion Tests'' provides the results of tests performed in 55-gallon drums filled with hydrogen and air mixtures. The hydrogen-air mixtures were ignited by a hot-wire igniter. The results of the tests are shown in Table 1. They concluded that drums can withstand deflagration involving hydrogen concentration up to 15% hydrogen. Testing was performed at Idaho Falls and documented in a letter from RH Beers, Waste Technology Programs Division, EG and G Idaho, to CP Gertz, Radioactive Waste Technology Branch, DOE dated Sept. 29, 1983. In these tests, 55-gallon drums were filled with hydrogen-air mixtures which were ignited. The results in Table 2.2 showed that ignition for drums containing 11% and 14% hydrogen, the drum lid remained on the drum. Ignition in drum with 30% hydrogen resulted in lid loss. It is concluded from the results of these two tests that, for uncorroded drums, a 15% hydrogen in air mixture will not result in loss of drum integrity (i.e., lid remains on, walls remain intact). The drum walls however, may be thinned due to corrosion. The effect of the deflagration on thinner walls is assessed next. Assume a 15% hydrogen in air mixture exists in a drum. The pressure assuming adiabatic isochoric complete combustion (AICC) conditions is 69 psig (using the same deflagration pressure calculation method as in HNF-19492, ''Revised Hydrogen Deflagration Analysis which got 82 psig for 20% hydrogen in air)

  6. Mitigation Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The Final Supplemental Environmental Impact Report (SEIR) (September 1992) for the Proposed Renewal of the Contract between the United States Department of Energy and The Regents of the University of California for the Operation and Management of the Lawrence Berkeley Laboratory identifies the environmental impacts associated with renewing the contract and specifies a series of measures designed to mitigate adverse impacts to the environment. This Mitigation Monitoring Plan describes the procedures the University will use to implement the mitigation measures adopted in connection with the approval of the Contract.

  7. Detection of hydrogen buildup in initially pure nonhydrogenous liquids

    International Nuclear Information System (INIS)

    McNeany, S.R.; Jenkins, J.D.

    1978-12-01

    A technique for monitoring hydrogen buildup in initially pure nonhydrogenous liquids is described in this report. The detection method is based upon the neutron-moderating properties of hydrogen. The analysis leading to the selection and design of a hydrogen-monitoring device is described. An experimental mockup of the device was then constructed and tested for hydrogen sensitivity. A hot cell was used for these tests. A device proved capable of measuring hydrogen concentrations in the range of 0 to 13.0 x 10 27 atoms/m 3 , with an accuracy of about 1.0 x 10 27 atoms/m 3 . A typical measurement can be made in 3 to 5 min. The experimental results confirmed the sensitivities predicted by the analysis and demonstrated that such a device would be practical for hydrogen concentration measurements for criticality control in an HTGR fuel refabrication plant

  8. Modeling of hydrogen induced cold cracking in a ferritic steel

    International Nuclear Information System (INIS)

    Chen, Qianqiang

    2015-01-01

    This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)

  9. Hydrogen gas driven permeation through tungsten deposition layer formed by hydrogen plasma sputtering

    International Nuclear Information System (INIS)

    Uehara, Keiichiro; Katayama, Kazunari; Date, Hiroyuki; Fukada, Satoshi

    2015-01-01

    Highlights: • H permeation tests for W layer formed by H plasma sputtering are performed. • H permeation flux through W layer is larger than that through W bulk. • H diffusivity in W layer is smaller than that in W bulk. • The equilibrium H concentration in W layer is larger than that in W bulk. - Abstract: It is important to evaluate the influence of deposition layers formed on plasma facing wall on tritium permeation and tritium retention in the vessel of a fusion reactor from a viewpoint of safety. In this work, tungsten deposition layers having different thickness and porosity were formed on circular nickel plates by hydrogen RF plasma sputtering. Hydrogen permeation experiment was carried out at the temperature range from 250 °C to 500 °C and at hydrogen pressure range from 1013 Pa to 101,300 Pa. The hydrogen permeation flux through the nickel plate with tungsten deposition layer was significantly smaller than that through a bare nickel plate. This indicates that a rate-controlling step in hydrogen permeation was not permeation through the nickel plate but permeation though the deposition layer. The pressure dependence on the permeation flux differed by temperature. Hydrogen permeation flux through tungsten deposition layer is larger than that through tungsten bulk. From analysis of the permeation curves, it was indicated that hydrogen diffusivity in tungsten deposition layer is smaller than that in tungsten bulk and the equilibrium hydrogen concentration in tungsten deposition layer is enormously larger than that in tungsten bulk at same hydrogen pressure.

  10. Nickel brittling by hydrogen. Temperature effect

    International Nuclear Information System (INIS)

    Lapitz, P.A; Fernandez, S; Alvarez, M.G

    2006-01-01

    The results of a study on the effect of different variables on the susceptibility to brittling by hydrogen and the velocity of propagation of fissures in nickel wire (99.7% purity) are described. The hydrogen load was carried out by cathodic polarization in H 2 SO 4 0.5m solution. The susceptibility to brittling by hydrogen was determined with traction tests at slow deformation speed and constant cathodic potential, and the later observation of the fracture surface by scanning electron microscopy. The variables studied were: applied cathodic overpower, speed of initial deformation and temperature. The results showed that the speed of fissure propagation in the nickel by brittleness from hydrogen is a function of the applied potential and the speed of deformation used. Without tension, the hydrogen load by cathodic polarization at room temperature leads to the formation of cavities similar to those observed when the hydrogenation is performed in the presence of gaseous hydrogen at high pressure and temperature (CW)

  11. Westinghouse-GOTHIC modeling of NUPEC's hydrogen mixing and distribution test M-4-3

    International Nuclear Information System (INIS)

    Ofstun, R.P.; Woodcock, J.; Paulsen, D.L.

    1994-01-01

    NUPEC (NUclear Power Engineering Corporation) ran a series of hydrogen mixing and distribution tests which were completed in April 1992. These tests were performed in a 1/4 linearly scaled model containment and were specifically designed to be used for computer code validation. The results of test M-4-3, along with predictions from several computer codes, were presented to the participants of ISP-35 (a blind test comparison of code calculated results with data from NUPEC test M-7-1) at a meeting in March 1993. Test M-4-3, which was similar to test M-7-1, released a mixture of steam and helium into a steam generator compartment located on the lower level of containment. The majority of codes did well at predicting the global pressure and temperature trends, however, some typical lumped parameter modeling problems were identified at that time. In particular, the models had difficulty predicting the temperature and helium concentrations in the so called 'dead ended volumes' (pressurizer compartment and in-core chase region). Modeling of the dead-ended compartments using a single lumped parameter volume did not yield the appropriate temperature and helium response within that volume. The Westinghouse-GOTHIC (WGOTHIC) computer code is capable of modeling in one, two or three dimensions (or any combination thereof). This paper describes the WGOTHIC modeling of the dead-ended compartments for NUPEC test M-4-3 and gives comparisons to the test data. 1 ref., 1 tab., 14 figs

  12. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  13. An electrochemical hydrogen meter for measuring hydrogen in sodium using a ternary electrolyte mixture

    CERN Document Server

    Sridharan, R; Nagaraj, S; Gnanasekaran, T; Periaswami, G

    2003-01-01

    An electrochemical sensor for measuring hydrogen concentration in liquid sodium that is based on a ternary mixture of LiCl, CaCl sub 2 and CaHCl as the electrolyte has been developed. DSC experiments showed the eutectic temperature of this ternary system to be approx 725 K. Impedance spectroscopic analysis of the electrolyte indicated ionic conduction through a molten phase at approx 725 K. Two electrochemical hydrogen sensors were constructed using the ternary electrolyte of composition 70 mol% LiCl:16 mol% CaHCl:14 mol% CaCl sub 2 and tested at 723 K in a mini sodium loop and at hydrogen levels of 60-250 ppb in sodium. The sensors show linear response in this concentration range and are capable of detecting a change of 10 ppb hydrogen in sodium over a background level of 60 ppb. Identification of this electrolyte system and its use in a sensor for measuring hydrogen in sodium are described in this paper.

  14. Development of a hydrogen permeation sensor for future tritium applications

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: sergi.colominas@iqs.es

    2014-10-15

    Highlights: • Designing and testing of a hydrogen permeation sensor. • Palladium and α-iron have been used as a hydrogen permeation materials in the sensor. • The experiments performed using both membranes showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure. - Abstract: Tritium monitoring in lithium–lead eutectic is of great importance for the performance of liquid blankets in fusion reactors. In addition, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. In this work, an experimental set up was designed in order to test the permeation hydrogen sensors at 500 °C. This experimental set-up allowed working with controlled environments (different hydrogen partial pressures) and the temperature was measured using a thermocouple connected to a temperature controller that regulated an electrical heater. In a first set of experiments, a hydrogen sensor was constructed using an α-iron capsule as an active hydrogen area. The sensor was mounted and tested in the experimental set up. In a second set of experiments the α-iron capsule was replaced by a welded thin palladium disk in order to minimize the death volume. The experiments performed using both membranes (α-iron and palladium) showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure.

  15. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    Wille, G.W.; Davis, J.W.

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500 0 C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150 0 C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  16. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  17. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 6. Development of fuel cell of pure hydrogen fueled solid polymer type; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 6. Junsuiso kyokyu kotai kobunshigata nenryo denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for research and development Task-6. The objective is to verify performance and reliability, by means of field tests, of a power generation plant using fuel cells of pure hydrogen fueled solid polymer type with power transmission terminal efficiency of 45% and output of 30 kW. The fuel cells were developed by using the cathode humidification process as a humidification method suitable for operation at high utilization rates. With a three-cell stack made by using this humidification process (having an effective area of 289 cm{sup 2}), verification was made on the current density of 0.2A/cm{sup 2}, the characteristics of 0.75V or higher, and the uniform voltage distribution performance being the immediate targets. In order to mitigate the hydrogen utilization in the fuel cells, discussions were given on the serial flow system that divides the laminated cells into two blocks. Thus, operation was found possible with the utilization rate in each block reduced to about 80% by selecting an adequate division rate even if the hydrogen utilization rate is 96% in the entire stack. Stable operation has been performed in the 5-kW class power generation test using the cathode interior humidifying system. Specifications for 30-kW class power plant, system configuration, safety, and material balance were discussed. The basic design was made on the hydrogen gas humidity adjusting system. (NEDO)

  18. Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2003 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Morisaki, Norihiro; Ohashi, Hirofumi; Kato, Michio; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This is a report on the experimental operations and maintenances of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2003 fiscal year. The fourth and fifth experimental test operations were performed, from May to July and from October to December in 2003, for the following tests; (a) start-up and shutdown operation test, (b) process change test, (c) continuous hydrogen-production test and (d) chemical reaction shutdown test. From the results, a long time-range stability of the hydrogen production system was confirmed, a behavior of the helium-gas cooling system, consists of steam generator and radiator; during chemical reaction shutdown, was understood, and so on. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2003. This report is summarized on outlines and results of the tests, outlines and results of the periodic inspections, and operation records of the mock-up test facility. (author)

  19. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics.

  20. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    International Nuclear Information System (INIS)

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics

  1. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  2. Development of Evaluation Technology for Hydrogen Combustion in containment and Accident Management Code for CANDU

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, D. H.; Song, Y. M.

    2011-08-01

    For a licensing of nuclear power plant(NPP) construction and operation, the hydrogen combustion and hydrogen mitigation system in the containment is one of the important safety issues. Hydrogen safety and its control for the new NPPs(Shin-Wolsong 1 and 2, Shin-Ulchin 1 and 2) have been evaluated in detail by using the 3-dimensional analysis code GASFLOW. The experimental and computational studies on the hydrogen combustion, and participations of the OEDE/NEA programs such as THAI and ISP-49 secures the resolving capabilities of the hydrogen safety and its control for the domestic nuclear power plants. ISAAC4.0, which has been developed for the assessment of severe accident management at CANDU plants, was already delivered to the regulatory body (KINS) for the assessment of the severe accident management guidelines (SAMG) for Wolsong units 1 to 4, which are scheduled to be submitted to KINS. The models for severe accident management strategy were newly added and the graphic simulator, CAVIAR, was coupled to addition, the ISAAC computer code is anticipated as a platform for the development and maintenance of Wolsong plant risk monitor and Wolsong-specific SAMG

  3. Hydrogenation of stainless steels implanted with nitrogen

    International Nuclear Information System (INIS)

    Silva Ramos, L.E. da.

    1989-01-01

    In the present work the effects of both ion implantation and hydrogenation on the fatigue behaviour of an AISI-304 type unstable stainless steel was studied. The material was tested under the following microstructural conditions: annealed; annealed plus hydrogenated; annealed plus ion-implanted; annealed, ion-implanted and hydrogeneted. The hydrogen induced phase transformations were also studied during the outgassing of the samples. The ion implanted was observed to retard the kinetics of the hydrogen induced phase transformations. It was also observed that the nitrogen ion implantation followed by both natural (for about 4 months) and artificial (100 0 C for 6 hours) aging treatments was beneficial to the fatigue life of both non hydrogenated and severely hydrogenated samples. (author) [pt

  4. Analyses on Cost Reduction and CO2 Mitigation by Penetration of Fuel Cells to Residential Houses

    Science.gov (United States)

    Aki, Hirohisa; Yamamoto, Shigeo; Kondoh, Junji; Murata, Akinobu; Ishii, Itaru; Maeda, Tetsuhiko

    This paper presents analyses on the penetration of polymer electrolyte fuel cells (PEFC) into a group of 10 residential houses and its effects of CO2 emission mitigation and consumers’ cost reduction in next 30 years. The price is considered to be reduced as the penetration progress which is expected to begin in near future. An experimental curve is assumed to express the decrease of the price. Installation of energy interchange systems which involve electricity, gas and hydrogen between a house which has a FC and contiguous houses is assumed to utilize both electricity and heat more efficiently, and to avoid start-stop operation of fuel processor (reformer) as much as possible. A multi-objective model which considers CO2 mitigation and consumers’ cost reduction is constructed and provided a Pareto optimum solution. A solution which simultaneously realizes both CO2 mitigation and consumers’ cost reduction appeared in the Pareto optimum solution. Strategies to reduce CO2 emission and consumers’ cost are suggested from the results of the analyses. The analyses also revealed that the energy interchange systems are effective especially in the early stage of the penetration.

  5. Dependence of hydrogen arcjet operation on electrode geometry

    Science.gov (United States)

    Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.

    1992-01-01

    The dependence of 2 kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet performance considerations over the ranges tested. Initial studies were conducted on hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.

  6. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  7. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  8. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    Science.gov (United States)

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  9. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  10. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Saum, D.; Craig, A.B.; Leovic, K.

    1990-01-01

    Since 1987, more than 40 schools in Maryland, Virginia, Tennessee and North Carolina were visited by the U.S. Environmental Protection Agency (EPA). School characteristics that potentially influence radon entry and impact mitigation system design and performance were identified. Mitigation systems that had proven successful in house mitigation were then installed in several of these schools. Many of the systems were installed by school personnel with some assistance from EPA and an experienced radon diagnostician. This article presents the diagnostic measurements made in the schools and it discusses in detail the specific mitigation systems that were installed in four Maryland schools by the EPA

  11. The evolution of hydrogen and iodine by the decomposition of ammonium iodide and hydrogen iodide

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Nakane, Masanori; Ishii, Eiichi; Uehara, Itsuki; Miyake, Yoshizo

    1977-01-01

    As a fundamental study on thermochemical production of hydrogen from water, the evolution of hydrogen and iodine from ammonium iodide and hydrogen iodide was investigated. Hydrogen was evolved by the reaction of nickel with ammonium iodide or with hydrogen iodide, and the resulting nickel(II) iodide was decomposed thermally at 600 -- 700 0 C to form nickel. First, the iodination of powdered nickel with ammonium iodide was studied by heating their powder mixture. The maximum yield of hydrogen was obtained at a temperature near 430 0 C. The iodination of powdered nickel with gaseous ammonium iodide or with dry hydrogen iodide gas was also investigated. In this case, coating of nickel particles with a layer of resulting nickel(II) iodide prevented further conversion of nickel and lowered the reaction rate. Such a retardation effect was appreciably lessened by use of carrier. When nickel was supported on such a carrier as ''isolite'', the nickel was converted into nickel(II) iodide easily. In a reaction temperature from 400 to 500 0 C, the rate of reaction between nickel and hydrogen iodide increased slightly with the elevation of the reaction temperature. In the case of ammonium iodide, the reaction rate was higher than that for hydrogen iodide and decreased apparently with the elevation of the reaction temperature, because ammonium iodide decomposed to ammonia and hydrogen iodide. Tests using a fixed bed reactor charged with 8 -- 10 mesh ''isolite''-nickel (30 wt%) were also carried out. The maximum yield of hydrogen was about 80% for ammonium iodide at 430 0 C of reaction temperature and 60% for hydrogen iodide at 500 0 C. (auth.)

  12. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  13. Thermal and chemical analysis on steam reforming in an out-of-pile test facility (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Suyama, Kazumasa; Inagaki, Yoshiyuki; Hayashi, Kohji; Ogawa, Masuro

    1999-08-01

    An out-of-pile test facility of a hydrogen production system whose scale is 1/30th of the HTTR hydrogen production system is presently under construction at the Oarai Establishment of the Japan Atomic Energy Research Institute. In this system, a steam generator works as a thermal buffer for mitigating the heat consumption fluctuation in a steam reformer so as not to affect an operation of the reactor system. To control the thermal buffer system properly, it is important to evaluate the effect of the steam reforming parameters on the heat fluctuation in advance. So, using the mass and thermal balance analysis code developed for a simulation of the out-of-pile test facility, the heat consumption fluctuation in the steam reformer was analyzed by various changes of the process gas flow rate, the process gas inlet temperature, the process gas composition etc. From the analytical results, it was found that the heat transfer augmentation of the reformer tube by using repeated fins was effective in increasing the hydrogen production rate of up to 12.5%. Also, the fluctuation of the process gas flow rate tended to greatly affect the heat consumption rate for the steam reforming reaction, so that the helium gas temperature increased from 586degC to 718degC. (author)

  14. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  15. Japan's Sunshine Project. 1991 Annual Summary of Hydrogen Energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In the study of hydrogen production, tests and experiments were conducted concerning electrolysis of water in solid polymer electrolytes and electrolysis of high-temperature steam. In the study of hydrogen storage and transportation, use of metal hydrides for these purposes was tested with attention paid to CaNi{sub 5} degradation and metal element substitution in ZrMn{sub 2}. In the study of hydrogen application, electrodes in hydrogen storage alloy-aided energy conversion were investigated and hydrogen-oxygen combustion systems were experimented. In the study of hydrogen safety, a fracture in a heat affected weld and fatigue crack propagation therein were simulated, and the effect of hydrogen on the episode was investigated. Investigated in the study of a hydrogen-fired turbine were hydrogen combustion, hydrogen-fired power generation thermal efficiency, fuel cost, power generation cost, etc. (NEDO)

  16. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    Science.gov (United States)

    Korkala, Essi A E; Hugg, Timo T; Jaakkola, Jouni J K

    2014-01-01

    Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%). Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%), the Semi-active (63%) and the Active (11%) and two classes among women: the Semi-active (72%) and the Active (28%). The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  17. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    Directory of Open Access Journals (Sweden)

    Essi A E Korkala

    Full Text Available Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%. Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%, the Semi-active (63% and the Active (11% and two classes among women: the Semi-active (72% and the Active (28%. The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  18. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  19. Research on Improving Low Rank Coal Caking Ability by Moderate Hydrogenation

    Science.gov (United States)

    Huang, Peng

    2017-12-01

    The hydrogenation test of low metamorphic coal was carried out by using a continuous hydrogen reactor at the temperature of (350-400)°C and the initial hydrogen pressure of 3 ~ 6Mpa. The purpose of the experiment was to increase the caking property, and the heating time was controlled from 30 to 50min. The test results show that the mild hydrogenation test, no adhesion of low metamorphic coal can be transformed into a product having adhesion, oxygen elements in coal have good removal, the calorific value of the product has been improved significantly and coal particles during pyrolysis, swelling, catalyst, hydrogenation, structural changes and the combined effects of particles a new component formed between financial and is a major cause of coal caking enhancement and lithofacies change, coal blending test showed that the product can be used effectively in the coking industry.

  20. Quantum-chemical prediction of the effects of Ni-loading on the hydrogenation and water-splitting efficiency of TiO2 nanoparticles with an experimental test

    Science.gov (United States)

    Lin, Cheng-Kuo; Chuang, Chung-Ching; Raghunath, Putikam; Srinivasadesikan, V.; Wang, T. T.; Lin, M. C.

    2017-01-01

    The effects of Ni-loading on TiO2 nanoparticles can pronouncedly reduce the barriers for dissociation of H2 from 48 kcal/mol on the pure TiO2 to as low as 1-3 kcal/mol on the loaded samples facilitating the hydrogenation of NPs. Preliminary data of our test indicate that the hydrogenation of Ni-loaded TiO2 NPs results in a significant UV-visible absorption extending well beyond 750 nm with an increase in water splitting efficiency by as much as 67 times over those of pure and hydrogenated TiO2 NPs without Ni-loading under our mild hydrogenation condition using 800 Torr of H2 at 300 °C for 3 h.

  1. Mock-up tests on the combustion of hydrogen-air mixture in the vertical tube simulating the CNS channel of the CARR

    International Nuclear Information System (INIS)

    Yu Qingfeng; Feng Quanke; Kawai, Takeshi; Xu Jian

    2007-01-01

    A two-phase thermo-siphon loop for removing nuclear heating and maintaining the stable liquid level in the moderator cell was adopted for the cold neutron source (CNS) of the China advanced research reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon loop consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The main feature of the loop is that the moderator cell is covered by the helium sub-cooling system. The cold helium gas from the helium refrigerator is firstly introduced into the helium sub-cooling system and then flows up through the tube covering the moderator transfer tube into the condenser. The main part of this system is installed in the CNS vertical channel made of aluminum alloy 6061 T6 (Al-6061-T6) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS channel, the combustion tests using a tube compatible with the CNS channel were carried out using the hydrogen-air mixture under which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.14 MPa G. This condition is involved with the maximum design basis accident of the CARR-CNS. The peak pressure due to combustion was 1.09 MPa, and the design pressure of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the maximum design basis accident occurs. The pressure and stress distributions along the axial direction and the displacement of the tube were also measured

  2. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  3. Enhanced Practical Photosynthetic CO2 Mitigation. Quarterly Technical Report

    International Nuclear Information System (INIS)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2005-01-01

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO 2 Mitigation Project during the ending 12/31/2004. Specific results and accomplishments for the program include review of pilot scale testing and design of a new bioreactor. Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing

  4. Four-sample lactose hydrogen breath test for diagnosis of lactose malabsorption in irritable bowel syndrome patients with diarrhea.

    Science.gov (United States)

    Yang, Jian-Feng; Fox, Mark; Chu, Hua; Zheng, Xia; Long, Yan-Qin; Pohl, Daniel; Fried, Michael; Dai, Ning

    2015-06-28

    To validate 4-sample lactose hydrogen breath testing (4SLHBT) compared to standard 13-sample LHBT in the clinical setting. Irritable bowel syndrome patients with diarrhea (IBS-D) and healthy volunteers (HVs) were enrolled and received a 10 g, 20 g, or 40 g dose lactose hydrogen breath test (LHBT) in a randomized, double-blinded, controlled trial. The lactase gene promoter region was sequenced. Breath samples and symptoms were acquired at baseline and every 15 min for 3 h (13 measurements). The detection rates of lactose malabsorption (LM) and lactose intolerance (LI) for a 4SLHBT that acquired four measurements at 0, 90, 120, and 180 min from the same data set were compared with the results of standard LHBT. Sixty IBS-D patients and 60 HVs were studied. The genotype in all participants was C/C-13910. LM and LI detection rates increased with lactose dose from 10 g, 20 g to 40 g in both groups (P lactose doses in both groups. Reducing the number of measurements from 13 to 4 samples did not significantly impact on the accuracy of LHBT in health and IBS-D. 4SLHBT is a valid test for assessment of LM and LI in clinical practice.

  5. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  6. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    Science.gov (United States)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data

  7. Experimental results and analysis on hydrogen combustion

    International Nuclear Information System (INIS)

    Dorofeev, S.B.; Efimenko, A.A.; Kochurko, A.S.; Sidorov, V.P.; Bezmelnitsin, A.V.

    1994-01-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam-mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperature between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15% and 50%, and for a mixture of equimolar hydrogen-air and 30% steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44% hydrogen, and from 15 to 11% hydrogen, were observed on a time frame of minutes. The DeSoete rate equation predicts the 50% experiment very well, but greatly underestimates the reaction rate of the lean mixtures

  8. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  9. Canadian programme overview

    International Nuclear Information System (INIS)

    Fluke, R.J.

    1997-01-01

    In a severe accident, hydrogen is released into containment. When it is well mixed, the hydrogen mixture is nonflammable because there is sufficient dilution by the large containment volume. This is the desired end point. However, the release may occur into smaller compartments of containment, stratification may occur, and local pockets of flammable mixtures may arise if hydrogen is released faster than processes that mix and disperse it. Long term hydrogen generation from water radiolysis must also be considered. Hydrogen mitigation and control strategies adopted or considered in Canada include fanforced mixing, glow plug igniters, recombiners, venting through filters, or combinations of these. The Canadian hydrogen programme is focussed on understanding hydrogen combustion behaviour and providing the data needed to demonstrate the adequacy of hydrogen mitigation and control strategies. The programme includes both experimental and modelling components of hydrogen combustion and distribution. Experiments include mixing tests, deflagration tests, diffusion flames, transition from deflagration to detonation, and testing the performance of igniters and recombiners. Modelling is focussing on the GOTHIC code as an industry standard. Detailed three dimensional modelling of gas mixing and combustion are underway, and a code validation matrix is being assembled for validation exercises. Significant progress has been made, highlights from which are being presented at this workshop. (author)

  10. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  11. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  12. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  13. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    International Nuclear Information System (INIS)

    Cannon, N.S.

    1994-01-01

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported

  14. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  15. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  16. Evaluating the perspectives for hydrogen energy uptake in communities: Success criteria and their application

    International Nuclear Information System (INIS)

    Shaw, Suzanne; Mazzucchelli, Paola

    2010-01-01

    In recent years, a number of initiatives have been supported in Europe in the hydrogen energy sector. Communities can play an important role in the adoption process of these emerging technologies: supporting pre-commercial deployment, building public acceptance, and promoting innovation clusters, all of which lay the foundations for more widespread and sustained technology deployment. Participation by communities is hinged on the perceived contribution of technology adoption to community socio-economic and energy related goals, such as, climate change mitigation, air quality improvement, creation of new industries and businesses, exploitation of abundant renewable resources, and meeting growing energy needs. Hydrogen uptake in communities therefore stands to benefit development of the hydrogen energy sector and the communities themselves. This paper presents a methodology for evaluating the potential for successful large-scale hydrogen and fuel cell technology adoption-beyond demonstration projects-within defined community frameworks. This methodology can be a valuable tool, for community decision-makers and industry stakeholders alike, to evaluate and identify opportunities for large-scale hydrogen technology adoption. Results of applying the methodology are presented for three community types: islands, cities and regions. The work in this paper reflects work done within the frame of the European Commission-funded 'Roads2HyCom' project, Work Package 3.

  17. Test results of a 60 volt bipolar nickel-hydrogen battery

    Science.gov (United States)

    Cataldo, Robert L.; Gonzalez-Sanabria, Olga; Gahn, Randall F.; Manzo, Michelle A.; Gemeiner, Russel P.

    1987-01-01

    In July 1986, a high-voltage nickel-hydrogen battery was assembled at the NASA Lewis Research Center. This battery incorporated bipolar construction techniques to build a 50-cell stack with approximately 1.0 A-hr capacity (C) and an open-circuit voltage of 65 V. The battery was characterized at both low and high current rates prior to pulsed and nonpulsed discharges. Pulse discharges at 5 and 10 C were performed before placing the battery on over 1400, 40-percent depth-of-discharge, low-earth-orbit cycles. The successful demonstration of a high-voltage bipolar battery in one containment vessel has advanced the technology to where nickel-hydrogen high-voltage systems can be constructed of several modules instead of hundreds of individual cells.

  18. 3D Printed Shock Mitigating Structures

    Science.gov (United States)

    Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit

    Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.

  19. Hydrogen: a new resource for the Venice industrial area

    International Nuclear Information System (INIS)

    Giorgio Mattiello

    2006-01-01

    Hydrogen Park is based in Marghera, inside the Venice Municipality, where it is produced the 40% of the Italian production of hydrogen, as by-product of industrial processes. This availability gives the possibility to develop and to test new technologies based on hydrogen without the gas generation constrain. The Company deal is to coordinate the partners activities to utilize the Hydrogen resources available in Marghera. (authors)

  20. Review of Offshore Wind Farm Impact Monitoring and Mitigation with Regard to Marine Mammals.

    Science.gov (United States)

    Verfuss, Ursula K; Sparling, Carol E; Arnot, Charlie; Judd, Adrian; Coyle, Michael

    2016-01-01

    Monitoring and mitigation reports from 19 UK and 9 other European Union (EU) offshore wind farm (OWF) developments were reviewed, providing a synthesis of the evidence associated with the observed environmental impact on marine mammals. UK licensing conditions were largely concerned with mitigation measures reducing the risk of physical and auditory injury from pile driving. At the other EU sites, impact monitoring was conducted along with mitigation measures. Noise-mitigation measures were developed and tested in UK and German waters in German government-financed projects. We highlight some of the review's findings and lessons learned with regard to noise impact on marine mammals.

  1. Basic tuning of hydrogen powered car and artificial intelligent prediction of hydrogen engine characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania, 7001 (Australia); Karri, Vishy [Australian College of Kuwait, P.O. Box 1411, Safat 13015 (Kuwait)

    2010-09-15

    Many studies of renewable energy have shown hydrogen is one of the major green energy in the future. This has lead to the development of many automotive application of using hydrogen as a fuel especially in internal combustion engine. Nonetheless, there has been a slow growth and less knowledge details in building up the prototype and control methodology of the hydrogen internal combustion engine. In this paper, The Toyota Corolla 4 cylinder, 1.8l engine running on petrol was systematically modified in such a way that it could be operated on either gasoline or hydrogen at the choice of the driver. Within the scope of this project, several ancillary instruments such as a new inlet manifold, hydrogen fuel injection, storage system and leak detection safety system were implemented. Attention is directed towards special characteristics related to the basic tuning of hydrogen engine such as: air to fuel ratio operating conditions, ignition timing and injection timing in terms of different engine speed and throttle position. Based on the experimental data, a suite of neural network models were tested to accurately predict the effect of different engine operating conditions (speed and throttle position) on the hydrogen powered car engine characteristics. Predictions were found to be {+-}3% to the experimental values for all of case studies. This work provided better understanding of the effect of hydrogen engine characteristic parameters on different engine operating conditions. (author)

  2. Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments

    International Nuclear Information System (INIS)

    Han, Gwangwoo; Lee, Sangho; Bae, Joongmyeon

    2015-01-01

    Highlights: • The concept of diesel reforming using hydrogen peroxide was newly proposed. • Characteristics of hydrogen peroxide was experimentally investigated. • Thermodynamically possible operating conditions were analyzed. • Catalytic performance of Ni–Ru/CGO for various diesel compounds was evaluated. • Long-term testing was successfully conducted using Korean commercial diesel. - Abstract: To operate fuel cells effectively in low-oxygen environments, such as in submarines and unmanned underwater vehicles, a hydrogen source with high hydrogen storage density is required. In this paper, diesel autothermal reforming (ATR) with hydrogen peroxide as an alternative oxidant is proposed as a hydrogen production method. Diesel fuel has higher hydrogen density than metal hydrides or other hydrocarbons. In addition, hydrogen peroxide can decompose into steam and oxygen, which are required for diesel ATR. Moreover, both diesel fuel and hydrogen peroxide are liquid states, enabling easy storage for submarine applications. Hydrogen peroxide exhibited the same characteristics as steam and oxygen when used as an oxidant in diesel reforming when pre-decomposition method was used. The thermodynamically calculated operating conditions were a steam-to-carbon ratio (SCR) of 3.0, an oxygen-to-carbon ratio (OCR) of 0.5, and temperatures below 700 °C to account for safety issues associated with hydrogen peroxide use and exothermic reactions. Catalytic activity and stability tests over Ni–Ru (19.5–0.5 wt.%)/Ce 0.9 Gd 0.1 O 2−x were conducted using various diesel compounds. Furthermore, long-term diesel ATR tests were conducted for 200 h using Korean commercial diesel. The degradation rate was 3.67%/100 h without the production of ethylene

  3. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Directory of Open Access Journals (Sweden)

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  4. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  5. Hydrogen pressure dependence of the fracture mode transition in nickel

    International Nuclear Information System (INIS)

    Jones, R.H.; Baer, D.R.; Bruemmer, S.M.; Thomas, M.T.

    1983-01-01

    A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed as C /SUB S/ α P /SUP -n/ /SUB H2/ where C /SUB S/ is the critical grain boundary sulfur concentration corresponding to 50% transgranular and 50% intergranular fracture and P /SUB H2/ is the hydrogen pressure. The value of n was found to be between 0.34 and 0.9. This expression was derived by relating C /SUB S/ to the hydrogen overpotential with the Nernst equation. At a cathodic test potential of -0.3 V (SCE), C /SUB S/ was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures, C /SUB S/ decreased such that at -0.72 V (SCE) C /SUB S/ was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberich et al. for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel

  6. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  7. PWG4 perspective on ex-vessel hydrogen sources

    International Nuclear Information System (INIS)

    2000-07-01

    The purpose of this perspective document is to identify the potential ex-vessel hydrogen sources and to address the question whether, considered the uncertainties associated to these sources, further investigations are required. The statement is established with reference to the needs for safety evaluation of nuclear reactors under severe accident conditions. It is recognised that the views could be different if one looks at these issues from another standpoint. Since the TMI-2 accident in 1979, there had been a large interest in the nuclear reactor safety community for studying the behaviour of hydrogen in case of a severe accident. As a result, different 'state of the art' reports were produced. Examples of these documents are NUREG/CR-1561 and EUR 14307. In particular, they identified potential hydrogen sources during accidents, including ex-vessel sources. Various ex-vessel hydrogen sources, covering a variety of physical and chemical processes, were identified. Although their precise quantification and relative importance is to be established on a case by case basis with respect to the specific reactor design of interest, general trends can be formulated. The sources to be considered are the followings: - radiolysis of water; - corrosion reactions, - reaction of urania with steam and water; - core-concrete interaction; - debris-atmosphere interaction. These sources are discussed successively. The PWG4 (CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases) perspective on Ex-vessel Hydrogen Sources can be summarised in the following statements: 1. The issue of hydrogen sources must be considered as a whole and cannot be separated into in-vessel and ex-vessel issues. For significant sources that may not be accommodated by mitigation means associated to DBA, the uncertainty is largely dominated by the unknown extent of Zr oxidation during the in-vessel phase. 2. PWG4 notes that hydrogen production during corium quenching by water is

  8. Standard-E hydrogen monitoring system shop acceptance test procedure

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1997-10-02

    The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication.

  9. Standard-E hydrogen monitoring system shop acceptance test report

    International Nuclear Information System (INIS)

    Schneider, T.C.

    1997-01-01

    The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication

  10. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    Won, Soon Ho; Hyun, Yang Ki; Lee, Jong O; Cho, Kyung Shik; Lee, Jae Do

    2001-01-01

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  11. Startech Hydrogen Production Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  12. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  13. Overview of containment integrity test at NUPEC

    International Nuclear Information System (INIS)

    Takumi, K.; Yamada, T.

    2004-01-01

    NUPEC has started NUPEC Containment Integrity project entitled 'Proving Test on the Reliability for Reactor Containment Vessel' since June 1987. This is the project for the term of twelve years sponsored by MITI (Ministry of International Trade and Industry, Japanese Government). The test items are (1) Hydrogen mixing and distribution test, (2) Hydrogen Burning Test, (3) Iodine trapping characteristics test, and (4) Structural behavior test. Based on the test results, computer codes are verified and as the results of analysis and evaluation by the computer codes, containment integrity is to be confirmed. This paper indicates the results of hydrogen mixing and distribution test and hydrogen burning test. The NUPEC tests conducted so far suggest that hydrogen will be well mixed in the model containment vessel and the prediction by the computer code is in excellent agreement with the data. The NUPEC hydrogen burning test data is in good agreement with the FITS data at SNL that were obtained at the lower hydrogen concentration condition. (author)

  14. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part B: Chain analysis of promising CCS options

    NARCIS (Netherlands)

    Damen, K.J.; van Troost, M.M.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355

    2007-01-01

    Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is

  15. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J

  16. NASA Lewis advanced IPV nickel-hydrogen technology

    Science.gov (United States)

    Smithrick, John J.; Britton, Doris L.

    1993-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80

  17. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    Science.gov (United States)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  18. Molecular Hydrogen Attenuates Neuropathic Pain in Mice

    Science.gov (United States)

    Kawaguchi, Masanori; Satoh, Yasushi; Otsubo, Yukiko; Kazama, Tomiei

    2014-01-01

    Neuropathic pain remains intractable and the development of new therapeutic strategies are urgently required. Accumulating evidence indicates that overproduction of oxidative stress is a key event in the pathogenesis of neuropathic pain. However, repeated intra-peritoneal or intrathecal injections of antioxidants are unsuitable for continuous use in therapy. Here we show a novel therapeutic method against neuropathic pain: drinking water containing molecular hydrogen (H2) as antioxidant. The effect of hydrogen on neuropathic pain was investigated using a partial sciatic nerve ligation model in mice. As indicators of neuropathic pain, temporal aspects of mechanical allodynia and thermal hyperalgesia were analysed for 3 weeks after ligation. Mechanical allodynia and thermal hyperalgesia were measured using the von Frey test and the plantar test, respectively. When mice were allowed to drink water containing hydrogen at a saturated level ad libitum after ligation, both allodynia and hyperalgesia were alleviated. These symptoms were also alleviated when hydrogen was administered only for the induction phase (from day 0 to 4 after ligation). When hydrogen was administered only for the maintenance phase (from day 4 to 21 after ligation), hyperalgesia but not allodynia was alleviated. Immunohistochemical staining for the oxidative stress marker, 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine, showed that hydrogen administration suppressed oxidative stress induced by ligation in the spinal cord and the dorsal root ganglion. In conclusion, oral administration of hydrogen water may be useful for alleviating neuropathic pain in a clinical setting. PMID:24941001

  19. Radiolytic model of Cofrentes NPP using the BWRVIA: analysis of the effectiveness of mitigation in localizations of the vessel with noble metal application on-line; Modelo Radiolitico de C.N. Cofrentes utilizando el BWRVIA: analisis de la efectividad de mitigacion en localizaciones de la vasija con aplicacion de metales nobles on-line

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Zapata, J. D.; Martin-Serrano, C.

    2013-03-01

    Chemistry is one of the principal factors that takes part in IGSCC materials susceptibility. BWR industry has been applying different mitigation techniques against IGSCC: hydrogen injection and noble metals. Mitigation effectiveness is checked by studying chemical parameters: ECP (for hydrogen injection) and Molar Ratio (for noble metal application). There is a software from EPRI called BWRVIA that allows to modelize radiolysis influence in parameters variation and obtain them at different points in the vessel. Recently, this kind of studies have become very relevant within BWR industry because it is the previous step to implement BWRVIP-62-A guidelines in order to get longer inspection intervals at vessel location where mitigation effectiveness is justified, with the cost savings for plants that this means. (Author)

  20. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance