WorldWideScience

Sample records for hydrogen materials science

  1. Sustainable hydrogen - A challenge for materials science and equipment design

    International Nuclear Information System (INIS)

    Duta, Anca; Enesca, Alexandru Ioan; Perniu, Dana

    2006-01-01

    Full text: Hydrogen is the ideal fuel, considering its fully non-polluting by-products. Still, in discussions on 'sustainable hydrogen', there must be considered all the steps implied in hydrogen production, storage and use and the overall energy balance represents the real starting point of evaluating the sustainability. So far, hydrogen production is related to rather energy-consuming processes; extended research is devoted to develop high efficiency processes, but the industrial hydrogen production makes use of either large electrical or thermal energy amounts. Hydrogen production via water photolysis represents, consequently a viable alternative although many steps have to be elaborated to reached the industrial scale of these processes. Hydrogen storing represents another problem that affects its application; a safe storage way, in metal hydrides, is still under intensive research all over the world. The group of the Centre of Product Design for Sustainable Development is engaged in research for developing a laboratory photolyser, able to produce hydrogen and to offer an efficient storage alternative. The photolyser is a photo-electrochemical cell, and the efficiency of the photolysis process depends on several factors: - the photo-electrodes: thin films of wide band gap semiconductors with tailored properties; - the aqueous environment, with effect on the electrode materials properties and stability; - the external bias; - the cell design. The paper focuses mainly on the photo-electrode materials that were tested. The influence of the composition, crystalline and defect structure, of the morphology and of the interfaces on the photolysis process are reviewed. The effect of the pH in the aqueous media is discussed along with the stability of the materials and the reversibility of the adsorption/desorption processes. The design criteria that must be fulfilled in developing the photolyser are also discussed. (authors)

  2. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  3. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  4. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  5. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  6. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  7. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  8. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  9. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  10. Materials science

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Materials Science Division is engaged in research on physical properties of materials and the effects of radiation upon them. This involves solid state materials undergoing phase transitions, energy storing materials, and biomaterials. The Division also offers research facilities for M.S. and Ph.D. thesis work in the fields of physics, chemistry, materials, and radiation sciences in cooperation with the various colleges and departments of the UPR Mayaguez Campus. It is anticipated that it will serve as a catalyst in starting energy-related research programs in cooperation with UPR faculty, especially programs involving solar energy. To encourage and promote cooperative efforts, contact is maintained with former graduate students and with visiting scientists from Latin American research institutions

  11. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  12. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  13. Storage of hydrogen in nanostructured carbon materials

    OpenAIRE

    Yürüm, Yuda; Yurum, Yuda; Taralp, Alpay; Veziroğlu, T. Nejat; Veziroglu, T. Nejat

    2009-01-01

    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing trait...

  14. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  15. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  17. High capacity hydrogen storage nanocomposite materials

    Science.gov (United States)

    Zidan, Ragaiy; Wellons, Matthew S.

    2017-12-12

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  18. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  19. Hydrogen permeation preventive structural materials

    International Nuclear Information System (INIS)

    Fukushima, Kimichika; Nakahigashi, Shigeo; Imura, Masashi; Terasawa, Michitaka; Ebisawa, Katsuyuki.

    1986-01-01

    Purpose: To provide highly practical wall materials for use in thermonuclear reactors capable of effectively preventing the permeation of hydrogen isotopes such as tritium thereby preventing the contamination of coolants. Constitution: Helium gas is injected into or at the surface of base materials comprising stainless steel plates to form a helium gas region. Alternatively, boron, nitrogen or the compound thereof having a greater helium forming nuclear reaction cross section than that of the base materials is mixed or injected into the base material to form the helium gas region through (n,α) reaction under neutron irradiation. Since the helium gas region constitutes a diffusion barrier for the tritium as the hydrogen isotope, the permeation amount of tritium is significantly suppressed. Helium gas bubbles or lattice defects are formed in the helium gas region under the neutron irradiation, by which the hydrogen isotope capturing effect can also be effected. In this way, permeation of the hydrogen isotope, contamination of the coolants, etc. can be prevented to provide great practical effectives. (Kawakami, Y.)

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 4. Issue front cover thumbnail. Volume 27, Issue 4. August 2004, pages 323-394. pp 323-325 Crystal Growth. Growth features of ammonium hydrogen -tartrate single crystals · G Sajeevkumar R Raveendran B S Remadevi Alexander Varghese Vaidyan.

  1. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amarnath. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 435-439 Biomaterials. Effect of heat treatments on the hydrogen embrittlement susceptibility of API X-65 grade line-pipe steel · G Ananta Nagu Amarnath T K G Namboodhiri.

  3. Nuclear reaction analysis of hydrogen in materials: Principals and applications

    International Nuclear Information System (INIS)

    Lanford, W.A.

    1991-01-01

    Analysis for hydrogen in materials is difficult by most traditional analytic methods. Because hydrogen has no Auger transitions, no X-ray transitions, does not neutron activate, and does not backscatter ions, it is invisible in analytical methods based on these effects. In addition, since hydrogen is a universal contaminant in vacuum systems, techniques based on mass spectrometry are difficult unless extreme measures are taken to reduce hydrogen backgrounds. Because of this situation, methods have been developed for analyzing for hydrogen in solid materials based on nuclear reactions between bombarding ions and hydrogen atoms (protons) in the samples. The nuclear reaction methods are now practiced at laboratories around the world. The basic principals of nuclear reaction analysis will be briefly presented. This method will be illustrated by applications to problems ranging from basic physics, to geology, to materials science, and to art history and archeology

  4. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

    2005-07-01

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  5. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  6. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  7. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    Influence of the presence of Fe2+ ion in nickel-zinc ferrite -- C M Srivastava, ... Investigation of hydrogenous materials using neutrons -- B A Dasannacharya and P S Goyal ... of potassium gold-cyanide -- Indira Rajagopal and S R Rajagopalan .... A novel method of RF powder sputtering -- K Solomon Harshavardhanan and ...

  8. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  9. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  10. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  11. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  12. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  13. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2016-01-01

    The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Electro-optical properties, decomposition pathways and the hydrostatic pressure-dependent behaviours of a double-cation hydrogen storage material of Al 3 Li 4 (BH 4 ) 13. MEHMET SIMSEK. Volume 40 Issue 5 September 2017 pp 907-915 ...

  15. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  16. Hydrogen adsorption in new carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2006-07-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO{sub 3}){sub 2} to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO{sub 2} adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  17. Hydrogen adsorption in new carbon materials

    International Nuclear Information System (INIS)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2006-01-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO 3 ) 2 to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO 2 adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  18. Materials science and architecture

    Science.gov (United States)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  19. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  20. Development of porous materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Shinji Oshima; Osamu Kato; Takeshi Kataoka; Yoshihiro Kobori; Michiaki Adachi [Hydrogen and New Energy Research Laboratory Nippon Oil Corporation 8, Chidoricho, Naka-ku, Yokohama, 231-0815 (Japan)

    2006-07-01

    To achieve hydrogen storage of more than 5 mass%, we are focusing on porous materials that consist of light elements. At WHEC 15, we reported that KOH-activated bamboo charcoal showed 0.79 mass% hydrogen uptake at 9.5 MPa and 303 K. After examining various carbon materials, we found that carbonized and KOH-activated polyacrylonitrile fibers showed 1.0 mass% hydrogen uptake at 9.5 MPa and 303 K. When the pressure was raised to 35 MPa, this material showed 1.5 mass% hydrogen uptake at 303 K. Besides porous carbon, other materials, such as coordination polymers, were examined. Since these materials contain elements other than carbon, different adsorption phenomena may be expected. Although the values of their hydrogen uptakes are still lower than those of carbon materials, a coordination polymer which showed 0.38 mass% hydrogen uptake at 9.5 MPa and 303 K was revealed to give an adsorption density of 47 kg/m{sup 3} at 0.1 MPa and 77 K, the highest value reported for a coordination polymer. (authors)

  1. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  2. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  3. Hydrogen isotope permeation in elastomeric materials

    International Nuclear Information System (INIS)

    Steinmeyer, R.H.; Braun, J.D.

    1976-01-01

    The permeabilities of elastomeric and polymeric materials to hydrogen isotopes were measured at room temperature. The technique for measuring permeation rates is based on the following constant-volume method: a fixed pressure of gas is applied to one side of the specimen to be studied and the permeability constant is determined from the observed rate of pressure increase in an initially evacuated volume on the other side of the specimen. Permeability constants for hydrogen, deuterium, and tritium were measured for Mylar, Teflon, Kapton, Saran, Buna-N, and latex rubber. Results were compared with literature values for hydrogen and deuterium where available and showed excellent agreement

  4. Profiling hydrogen in materials using ion beams

    International Nuclear Information System (INIS)

    Ziegler, J.F.; Wu, C.P.; Williams, P.

    1977-01-01

    Over the last few years many ion beam techniques have been reported for the profiling of hydrogen in materials. Nine of these were evaluated using similar samples of hydrogen ion-implanted into silicon. When possible the samples were analyzed using two or more techniques to confirm the ion-implanted accuracy. The results of this analysis which has produced a consensus profile of H in silicon which is useful as a calibration standard are reported. The analytical techniques used have capabilities ranging from very high depth resolution (approximately 50 A) and high sensitivity (less than 1 ppM) to deep probes for hydrogen which can sample throughout thin sheets

  5. Porous polymeric materials for hydrogen storage

    Science.gov (United States)

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  6. Material Technologies Developments for Solar Hydrogen

    International Nuclear Information System (INIS)

    Agrafiotis, C.; Pagkoura, C.; Lorentzou, S.; Hoguet, J.C.; Konstandopoulos, A.G.

    2006-01-01

    The present work presents recent activities of our Laboratory in the field of solar-aided hydrogen production materials and reactor technologies that can be fully integrated into solar thermal power plants. Emphasis is given on structured monolithic solar reactors where ceramic supports optimized to absorb solar radiation and develop sufficiently high temperatures, are coated with active materials to perform a variety of 'solar-aided' reactions such as water splitting or natural gas reforming. Particular examples discussed include properties'' assessment of monolithic ceramic honeycombs used as volumetric solar thermal reactors/receivers, synthesis of active water-splitting redox materials for the production of hydrogen and their tailored deposition upon porous supports and design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. (authors)

  7. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  8. Materials Discovery | Materials Science | NREL

    Science.gov (United States)

    Discovery Materials Discovery Images of red and yellow particles NREL's research in materials characterization of sample by incoming beam and measuring outgoing particles, with data being stored and analyzed Staff Scientist Dr. Zakutayev specializes in design of novel semiconductor materials for energy

  9. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    Buczek, B.; Wolak, E.

    2005-01-01

    higher temperatures than liquefaction [3]. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation [4]. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor [5]. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage. [1]G. D. Berry, A. D. Pastemak, G. D. Rambach, J. R. Smith, N. Schock, Energy. 21, 289, 1996; [2]L. Czepirski, Przem. Chem. 70, 129, 1991 (in Polish); [3]B. Buczek, L. Czepirski, Inz. Chem. Proc., 24, 545, 2003; [4]U. Huczko, Przem. Chem. 81, 19, 2002 (in Polish); [5]U. Buenger, W. Zittel, Appl. Phys. A 72, 147, 2001. (authors)

  10. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    B Buczek; E Wolak

    2005-01-01

    temperatures than liquefaction. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage

  11. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  12. Hydrogen interaction with fusion-relevant materials

    International Nuclear Information System (INIS)

    Caorlin, M.

    1990-01-01

    This paper is an outline of the work carried out at JRC Ispra in the Tritium-materials Interaction Laboratory, on the interaction of gaseous hydrogen with several materials of interest in the field of fusion technology. Experimental work is reported and a concise review of relevant theoretical and numerical supporting activity is given as well. A period of about seven years is covered since 1982. Current work and possible future extensions are also briefly mentioned. 11 figs., 18 refs

  13. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  14. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  15. USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results

    Science.gov (United States)

    Coplen, T.B.; Qi, H.

    2012-01-01

    Because there are no internationally distributed stable hydrogen and oxygen isotopic reference materials of human hair, the U.S. Geological Survey (USGS) has prepared two such materials, USGS42 and USGS43. These reference materials span values commonly encountered in human hair stable isotope analysis and are isotopically homogeneous at sample sizes larger than 0.2 mg. USGS42 and USGS43 human-hair isotopic reference materials are intended for calibration of δ(2)H and δ(18)O measurements of unknown human hair by quantifying (1) drift with time, (2) mass-dependent isotopic fractionation, and (3) isotope-ratio-scale contraction. While they are intended for measurements of the stable isotopes of hydrogen and oxygen, they also are suitable for measurements of the stable isotopes of carbon, nitrogen, and sulfur in human and mammalian hair. Preliminary isotopic compositions of the non-exchangeable fractions of these materials are USGS42(Tibetan hair)δ(2)H(VSMOW-SLAP) = -78.5 ± 2.3‰ (n = 62) and δ(18)O(VSMOW-SLAP) = +8.56 ± 0.10‰ (n = 18) USGS42(Indian hair)δ(2)H(VSMOW-SLAP) = -50.3 ± 2.8‰ (n = 64) and δ(18)O(VSMOW-SLAP) = +14.11 ± 0.10‰ (n = 18). Using recommended analytical protocols presented herein for δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurements, the least squares fit regression of 11 human hair reference materials is δ(2)H(VSMOW-SLAP) = 6.085δ(2)O(VSMOW-SLAP) - 136.0‰ with an R-square value of 0.95. The δ(2)H difference between the calibrated results of human hair in this investigation and a commonly accepted human-hair relationship is a remarkable 34‰. It is critical that readers pay attention to the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) of isotopic reference materials in publications, and they need to adjust the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurement results of human hair in previous publications, as needed, to ensure all results on are on the same scales.

  16. Destructive hydrogenation of carbonaceous material, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-30

    A process is described for the destructive hydrogenation of solid distillable carbonaceous material, consisting of mixing the raw material in a paste by means of a mixture practically free from asphalt, from an oil obtained initially from the products coming out of the reaction space as vapor, particularly heavy oil, and oils obtained by pushing just to the state of pitch or coke the distillation of all the products which come out of the reaction space in any state but the vapor and which restrain some of the raw material intact and part of the products.

  17. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  18. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  19. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  20. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  1. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China; Department of Physics, Shanghai University, Shanghai 200444, China; State Key Laboratory of Crystal Material, Shandong ...

  3. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M K Rabinal. Articles written in Bulletin of Materials Science. Volume 35 Issue 4 August 2012 pp 529-532. An optical tweezer-based study of antimicrobial activity of silver nanoparticles · Yogesha Sarbari Bhattacharya M K Rabinal Sharath Ananthamurthy · More Details Abstract ...

  5. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    D Cazorla Amoros; D Lozano Castello; F Suarez Garcia; M Jorda Beneytoa; A Linares Solano

    2005-01-01

    Full text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ). [1] A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous carbons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  6. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    Cazorla-Amoros, D.; Lozano-Castello, D.; Suarez-Garcia, F.; Jorda-Beneyto, M.; Linares-Solano, A.

    2005-01-01

    Complete text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ) [1]. A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous cartons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  7. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Jianding Li

    2018-02-01

    Full Text Available Magnesium (Mg-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed.

  8. Pressure hydrogenation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Kroenig, W

    1942-09-28

    A process is described for the continuous pressure hydrogenation of solid, nonfusible carbonaceous material, such as coal, oil shale, or peat, in a pasted condition, characterized in that the charge is heated in a known way under pressure, together with water, nearly to the reaction temperature, then it is led into a pressure vessel, whose volume amounts to 20 to 40% of the usual reaction space without any change at the same temperature, and the charge then goes through the reaction vessel, after which its temperature is raised to the reaction height.

  9. Materials Sciences Research.

    Science.gov (United States)

    1974-07-01

    Committee: A. B. Kunz, R.. Marshall, M. Salamon, G. Stucky 3. Chemical Analytical Laboratory This laboratory is concerned, primarily, with trace ...respectively. The symbol L represents a phosphine or phosphite ligand, and x may vary from 0 to 5, although not all members of the series have been...which influence the migratory npitude 5. of the hydrogen in this type of system are not known. In both systems, strong catalysis by trace impurities

  10. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    Low temperature preparation of some perovskites La2MM'O6 (M,M'=Cr,Mn,Fe ... Inorganic materials for optical data storage -- S K Date ... Dielectric and polarization studies on some organic materials -- B jagannadh and Lalitha Sirdeshmukh.

  12. Contributions to materials science

    International Nuclear Information System (INIS)

    Asbeck, O.W.; Matucha, K.H.

    1989-01-01

    The ten papers presented at a festive colloquium held on November 14, 1988 in Frankfurt to honour Prof. Peter Wincierz deal with the texture and mechanical anisotropy of zirconium alloys (by E. Tenckhoff), materials for cladding tubes (H. Boehm), aluminium materials achieved by near technology (W. Bunk), dispersion-strengthened materials (H. Fischmeister), materials for plain bearings (K.H. Matucha), and the archeometallurgy of copper (H.-G. Bachmann). (MM) [de

  13. Cathodoluminescence | Materials Science | NREL

    Science.gov (United States)

    shown on a computer screen; the image of a sample semiconductor material appears as a striated oval material sample shown above; the image is a high-contrast light and dark oval on a dark background and was top left of copper indium gallium selenide semiconductor material sample; the image is shown on a

  14. Reactions on carbonaceous materials with hydrogenating gases

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Simon, W; Kronig, W

    1933-02-08

    A process is given for the production of valuable hydrocarbons by treatment of distillable carbonaceous materials with added hydrogenating gases under pressure in contact with catalysts. The process comprises adding to the initial materials before or during the said treatment organic sulphonic acids together with metals of groups 4 to 8 of the periodic system or compounds thereof, or free organic carboxylic acids which when inorganic salts are simultaneously present do not combine therewith to form complex ansolvo acids, or acid salts of strong acids or acid salts of heavy metals, lithium, magnesium, and aluminum, with the exception of aluminum hydrosilicates, or inorganic oxygen containing acids of sulfur or nitrogen or the anhydrides of said inorganic oxygen-containing acids.

  15. Materials science challenges in paintings.

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-01-23

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  16. Materials science challenges in paintings

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-02-01

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  17. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  18. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  19. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1 .... Na + /B 3 + phosphor has a potential application in white light-emitting diodes based ... College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China ...

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 ... In this study, a modified model for the application of the thermionic and hopping current ... Departments of Mathematics and Physics, Arab American University, Jenin 240, ...

  1. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  2. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1 ... I D S – V b g branches in accordance with the SERS results and humidity responses. ... Ni˘gde University, Graduate School Natural and Applied Sciences, Ni˘gde 51240, ...

  4. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  5. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  6. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    -organic chemical vapour deposited (MOCVD) gamma iron oxide thin film for ... V2)5-Te)2 glasses using heterogeneous conductor model -- M Pal, S K Saha and ... The hardness-flow stress correlation in metallic materials -- G Soundararajan ...

  7. Chemistry and Materials Science

    International Nuclear Information System (INIS)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director's initiatives and individual projects, and transactinium institute studies

  8. Weightless Materials Science

    Science.gov (United States)

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  9. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Issue front cover thumbnail. Volume 26, Issue 5. August 2003, pages 461-568. pp 461-464 Sensor Materials. Preparation, characterization and dielectric behaviour of some yttrium doped strontium stannates · P K Bajpai Kuldeep Ratre Mukul Pastor T P ...

  11. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2 ... films deposited by rf magnetron sputtering using a high quality ceramic target ... Critical shear stress produced by interaction of edge dislocation with nanoscale inhomogeneity ... production cost limiting zircon usage as a raw material at an industrial scale.

  12. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1984-12-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  13. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  14. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1985-01-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particular electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Small-angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of in situ time-dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. Examples will be given of small-angle scattering projects from the nuclear metallurgy, coal, oil, cement, detergent and plastics industries. High-resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasingly complex phases. The structure and volume fraction of minority phase can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Neutron diffraction is unique in being able to measure the full strain tensor from a specified volume within a bulk specimen. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. Examples will be chosen from the field of catalysis where inelastic spectroscopy has revealed the nature of the bonding of hydrocarbon molecules. (author)

  16. Comparative study of hydrogen storage on metal doped mesoporous materials

    Science.gov (United States)

    Carraro, P. M.; Sapag, K.; Oliva, M. I.; Eimer, G. A.

    2018-06-01

    The hydrogen adsorption capacity of mesoporous materials MCM-41 modified with Co, Fe, Ti, Mg and Ni at 77 K and 10 bar was investigated. Various techniques including XRD, N2 adsorption and DRUV-vis were employed for the materials characterization. The results showed that a low nickel loading on MCM-41 support promoted the presence of hydrogen-favorable sites, increasing the hydrogen storage capacity.

  17. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  18. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  19. High-pressure torsion for new hydrogen storage materials.

    Science.gov (United States)

    Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji

    2018-01-01

    High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials.

  20. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  1. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 5. Issue front cover thumbnail. Volume 23, Issue 5. October 2000, pages 341-452. pp 341-344 Synthesis. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes · B Rajesh K Ravindranathan Thampi J -M Bonard B Viswanathan · More Details ...

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. BOTAN JAWDAT ABDULLAH QING JIANG MUSTAFA SAEED OMAR. Volume 39 Issue 5 September 2016 pp 1295-1302 ...

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 4. Issue front cover thumbnail. Volume 32, Issue 4. August 2009, pages 369-463. pp 369-373 Thin Films. Mobility activation in thermally deposited CdSe thin films · Kangkan Sarmah Ranjan Sarma · More Details Abstract Fulltext PDF. Effect of illumination on ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Structural, microstructural and optical properties of Cu 2 ZnSnS 4 thin films prepared by thermal evaporation: effect of substrate temperature and annealing. U CHALAPATHI S UTHANNA V SUNDARA RAJA. Volume 40 Issue 5 September 2017 pp 887-895 ...

  6. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 1. Issue front cover thumbnail. Volume 24, Issue 1. February 2001, pages 1-94. pp 1-21 Review---Phase Transitions. Kinetics of pressure induced structural phase transitions—A review · N V Chandra Shekar K Govinda Rajan · More Details Abstract Fulltext ...

  7. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Issue front cover thumbnail. Volume 25, Issue 6. November 2002, pages 449-582. pp 449- .... Bi-layer functionally gradient thick film semiconducting methane sensors .... Thermal sensor properties of PANI(EB)–CSA ( = 0.4 ± 0.1 mol) polymer thin films.

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 1. Issue front cover thumbnail. Volume 30, Issue 1. February 2007, pages 1-71. pp 1-3 Single Crystals. Thermoluminescence characteristics of Sm doped NaYF4 crystals · M V Ramana Reddy Ch Gopal Reddy K Narasimha Reddy · More Details Abstract ...

  9. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. V V Deshpande1 M M Patil1 S C Navale2 V Ravi1. Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  11. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Self-assembling behaviour of Pt nanoparticles onto surface of TiO2 and their resulting photocatalytic activity. M Qamar Ashok K Ganguli. Volume 36 Issue 6 November 2013 pp 945-951 ...

  12. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 3. Issue front cover thumbnail. Volume 32, Issue 3. June 2009, pages 215-367. pp 215-215. Foreword · S B Krupanidhi H L Bhat · More Details Fulltext PDF. pp 217-225. Molecule-based magnets · J V Yakhmi · More Details Abstract Fulltext PDF.

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Layered LiNi1/3Co1/3Mn1/3O2 was synthesized by a citric acid assisted ... was investigated by the galvanostatic intermittent titration technique (GITT) ... The State Key Laboratory Base of Novel Functional Materials and Preparation Science; ...

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Issue front cover thumbnail. Volume 23, Issue 3. June 2000, pages 159-238. pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 2. Issue front cover thumbnail. Volume 32, Issue 2. April 2009, pages 117-214. pp 117-123 Thin Films and Nanomatter. Microstructural characteristics and mechanical properties of magnetron sputtered nanocrystalline TiN films on glass substrate.

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 4 ... were synthesized by self-propagating high temperature synthesis (SHS) method. ... Structure determination at room temperature and phase transition studies above T c in .... Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn Heusler alloys.

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 3 ... Sintering of nano crystalline silicon carbide by doping with boron carbide ... of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. ... pp 213-217 Alloys and Steels.

  18. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 .... (EDX) and UV–vis spectroscopy were used to study the chemical composition and optical .... Enhanced microactuation with magnetic field curing of magnetorheological ... Structure, morphology and corrosion resistance of Ni–Mo+PTh composite coatings.

  19. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Issue front cover thumbnail. Volume 29, Issue 1. February 2006, pages 1-99. pp 1-5 Nanomaterials. A simple synthesis and characterization of CuS nanocrystals · Ujjal K Gautam Bratindranath Mukherjee · More Details Abstract Fulltext PDF. Water-soluble ...

  1. Setting science free from materialism.

    Science.gov (United States)

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Multi-component hydrogen storage material

    Science.gov (United States)

    Faheem, Syed A.; Lewis, Gregory J.; Sachtler, J.W. Adriaan; Low, John J.; Lesch, David A.; Dosek, Paul M.; Wolverton, Christopher M.; Siegel, Donald J.; Sudik, Andrea C.; Yang, Jun

    2010-09-07

    A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0hydrogen storage compared to binary systems such as MgH.sub.2--LiNH.sub.2.

  3. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  4. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  5. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  6. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    Science.gov (United States)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and

  7. Development of Separation Materials Containing Palladium for Hydrogen Isotopes Separation

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qian Xiaojing

    2010-01-01

    Displacement chromatography (DC) is a ascendant technique for hydrogen isotopes separation. The performance of separation materials is a key factor to determine the separation effect of DC. At present,kinds of materials are researched, including palladium materials and non-palladium materials. It is hardly replaceable because of its excellent separation performance, although palladium is expensive. The theory of hydrogen isotopes separation using DC was introduced at a brief manner, while several palladium separation materials were expatiated in detail(Pd/K, Pd-Al 2 O 3 , Pd-Pt alloy). Development direction of separation materials for DC was forecasted elementarily. (authors)

  8. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  9. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  10. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  11. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-01-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested

  12. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  13. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  14. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  15. Color Changing Material for Hydrogen Leak Detection

    Science.gov (United States)

    Victor, Megan E.

    2014-01-01

    Kennedy Space Center scientists developed a hydrogen leak sensor utilizing a combination of chemochromic pigment and polymer that can be molded or fiber spun into rigid or flexible shapes such as tape. The sensor turns a dark color when exposed to hydrogen gas. This sensor has proven to be very effective for pinpointing the exact location of leaks in hydrogen gas lines and fittings at launch pads. Kennedy Space Center exclusively licensed this technology to the University of Central Florida (UCF), who also holds patents that are complimentary to KSC's. UCF has bundled the patents and exclusively licensed the portfolio to HySense Technology LLC, a startup company founded by a UCF professor who supports the UCF Florida Solar Energy Center (FSEC). HySense has fully developed its product (known as Intellipigment"TM"), and currently has five commercial customers. The company recently won the $100,000 first-place award at the CAT5 innovation competition at the Innovation Concourse of the Southeast: Safety & Manufacturing event in Orlando, FL. Commercial production and sales of this technology by HySense Technology will make this leak sensor widely available for use by NASA, DoD, and industries that utilize hydrogen gas.

  16. Hydrogen storage in sonicated carbon materials

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G.S.; Choi, Y.J.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P.

    2001-01-01

    The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this

  17. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  18. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  19. Density functional theory for hydrogen storage materials: successes and opportunities

    International Nuclear Information System (INIS)

    Hector, L G Jr; Herbst, J F

    2008-01-01

    Solid state systems for hydrogen storage continue to be the focus of considerable international research, driven to a large extent by technological demands, especially for mobile applications. Density functional theory (DFT) has become a valuable tool in this effort. It has greatly expanded our understanding of the properties of known hydrides, including electronic structure, hydrogen bonding character, enthalpy of formation, elastic behavior, and vibrational energetics. Moreover, DFT holds substantial promise for guiding the discovery of new materials. In this paper we discuss, within the context of results from our own work, some successes and a few shortcomings of state-of-the-art DFT as applied to hydrogen storage materials

  20. Develop Improved Materials to Support the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael C. Martin

    2012-07-18

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  1. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Screen printing; ferroelectricity; piezoelectricity; nonlinear property. .... Luoyang Institute of Science and Technology, Luoyang 471023, China; Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China; Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, ...

  3. Use of a material conducting hydrogen cations

    International Nuclear Information System (INIS)

    Howe, A.T.; Shilton, M.G.

    1986-01-01

    The invention concerns a separator conducting hydrogenous for electrical devices, which contains at least one compound with the formula H(UO 2 )PO 4 x nH 2 O, H(UO 2 )AsO 4 x nH 2 O or H(UO 2 )IO 4 (OH) 2 x nH 2 O, where not more than 50% by weight of the H + is replaced by one or more cations, such as Li + , Na + , K + , NH 4 + , Cu 2+ , Mg 2+ , Ca 2+ , Ba 2+ , Sr 2+ , Pb 2+ , Fe 2+ , Co 2+ , Ni 2+ , Mn 2+ or Al 3+ . The electrical device having the separator can be an electrolysis cell, for example, an electro chromium cell. (H x WO 3 ), a hydrogen isotope enrichment device, a proton-sensitive electrode (eg for a pH meter), a battery or a fuel cell. (orig./MM) [de

  4. Thermogravimetric research of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kleperis, J; Grinberga, L; Ergle, M; Chikvaidze, G; Klavins, J

    2007-01-01

    During thermogravimetric research of metal hydrides we noticed mass growth of samples above 200 deg. C even in an argon atmosphere. Further heating is leading to the growth of weight up to 2-7 weight% till 500 0 C. Second run of the same sample without taking out of DTA instrument gave only small mass changes, indicating that noticed mass increase during first run is permanent. Microscope and elemental analyses were made to determine the reason of mass growth. XRD inspection revealed the formation of new phase with bunsenite NiO structure with deformed cubic structure. The new phase is no more active to hydrogen sorption/desorption. Our results demonstrated that the usage of hydrogen storage alloys AB 5 must be taken with care - it is important not to exceed some critical temperature were irreversible structural, compositional and morphological changes will occur

  5. Destructive hydrogenation of carbonaceous materials, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-02-15

    A process is described for the destructive hydrogenation continuously of solid and infusible carbonaceous substances, consisting of heating the charge to the same temperature as the added hydrogen, under a pressure essentially equal to that of the reaction, from the first to at least 300/sup 0/C, but not more than 440/sup 0/C, while passing the heated charge through a zone the contents of which are equal to about 20 per cent to 40 per cent of that of the reaction space, maintaining the charge for a certain time at the temperature without sensible change in the pressure, then reheating the charge to at least the temperature to prime the reaction and finally to introduce the charge into the reaction space.

  6. Hydrogenated arsenenes as planar magnet and Dirac material

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengli; Cai, Bo; Zeng, Haibo, E-mail: Huziyu@csrc.ac.cn, E-mail: zeng.haibo@njust.edu.cn [Institute of Optoelectronics and Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Hu, Yonghong [Institute of Optoelectronics and Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100 (China); Hu, Ziyu, E-mail: Huziyu@csrc.ac.cn, E-mail: zeng.haibo@njust.edu.cn [Beijing Computational Science Research Center, Beijing 100084 (China)

    2015-07-13

    Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.

  7. Hydrogenated arsenenes as planar magnet and Dirac material

    International Nuclear Information System (INIS)

    Zhang, Shengli; Cai, Bo; Zeng, Haibo; Hu, Yonghong; Hu, Ziyu

    2015-01-01

    Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices

  8. Hydrogenated arsenenes as planar magnet and Dirac material

    Science.gov (United States)

    Zhang, Shengli; Hu, Yonghong; Hu, Ziyu; Cai, Bo; Zeng, Haibo

    2015-07-01

    Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.

  9. The structural science of functional materials.

    Science.gov (United States)

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; Department of Materials Science and Engineering, Luoyang Institute of Science and ...

  11. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  12. Reinventing Material Science - Continuum Magazine | NREL

    Science.gov (United States)

    by Sandia National Laboratories Reinventing Material Science It's not often that scientists set out pursuing in the field of material science. The vision of the center is to revolutionize the discovery of new material science. "In the old days, if you wanted somebody to calculate the properties of a

  13. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; T. Adams

    2008-09-12

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using gaseous hydrogen permeation testing techniques.

  14. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  15. Advanced nanostructured materials as media for hydrogen storage

    International Nuclear Information System (INIS)

    David, E.; Niculescu, V.; Armeanu, A.; Sandru, C.; Constantinescu, M.; Sisu, C.

    2005-01-01

    Full text: In a future sustainable energy system based on renewable energy, environmentally harmless energy carriers like hydrogen, will be of crucial importance. One of the major impediments for the transition to a hydrogen based energy system is the lack of satisfactory hydrogen storage alternatives. Hydrogen storage in nanostructured materials has been proposed as a solution for adequate hydrogen storage for a number of applications, in particular for transportation. This paper is a preliminary study with the focus on possibilities for hydrogen storage in zeolites, alumina and nanostructured carbon materials. The adsorption properties of these materials were evaluated in correlation with their internal structure. From N 2 physisorption data the BET surface area (S BET ) , total pore volume (PV), micropore volume (MPV) and total surface area (S t ) were derived. H 2 physisorption measurements were performed at 77 K and a pressure value of 1 bar. From these data the adsorption capacities of sorbent materials were determined. Apparently the microporous adsorbents, e.g activated carbons, display appreciable sorption capacities. Based on their micropore volume, carbon-based sorbents have the largest adsorption capacity for H 2 , over 230 cm 3 (STP)/g, at the previous conditions. By increasing the micropore volume (∼ 1 cm 3 /g) of sorbents and optimizing the adsorption conditions it is expected to obtain an adsorption capacity of ∼ 560 cm 3 (STP)/g, close to targets set for mobile applications. (authors)

  16. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  17. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  18. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W

    2007-01-01

    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  19. Radiography with neutrons: use in inspection of hydrogenated materials

    International Nuclear Information System (INIS)

    Pugliesi, R.; Assuncao, M.P.M.

    1989-01-01

    Neutron radiography technique is used for showing the viability of inspecting hydrogenated materials. The experimental disposition is installed in irradiation radial channel n. 10 from IEA-R1 (IPEN-CNEN-SP). The inspetionated materials were munitions for gun and rifle. (C.G.C.)

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 5 ... The electrical performances of thin film material can be improved largely by dopants. ... Department of Materials Science and Engineering, Jinan University, Jinan 250022, PR China; The State Key Laboratory of Material Composite and Advanced ...

  1. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  2. Hydrogen Bearing Material in the Lunar Exosphere

    Science.gov (United States)

    Hurley, D.; Benna, M.; Colaprete, A.; Retherford, K. D.; Cook, J. C.; Elphic, R. C.; Farrell, W. M.; Killen, R. M.; Sarantos, M.

    2015-12-01

    We report on observations of water and its daughters in the lunar exosphere. Data from LADEE NMS, LADEE UVS, and LRO LAMP indicating the presence of H, H2, OH, and H2O are presented in terms of their relationship to external drivers. These observations point to the roles of solar wind and micrometeoroids in the source and release of hydrogen-bearing atoms and molecules in the exosphere. In particular, the implantation of H via solar wind is found to be the largest contributor to H2 in the moon's exosphere. However, the spatial distribution is more consistent with a release mechanism centered on the morning hemisphere. Thus the data are consistent with H2 created through a 2-step process involving the implantation of solar wind and subsequent release by micrometeoroids. This accounts for >12% of the solar wind H budget, leaving day water cycle occurring on the Moon.

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Submicron particles of Co, Ni and Co–Ni alloys ... precursors and starting compositions have yielded reliable routes to produce particles of ... Effect of cationic size in Hg(Tl/Bi)Ba2Ca2Cu3O8+ on superconducting and microstructural characteristics .... On critical hydrogen concentration for hydrogen embrittlement of Fe3Al.

  4. Multiscale study on hydrogen mobility in metallic fusion divertor material

    International Nuclear Information System (INIS)

    Heinola, K.

    2010-01-01

    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and

  5. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    In the last one decade hydrogen has attracted worldwide interest as an energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and applications of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel and richest in energy per unit mass. Hydrogen as a fuel can be used to cook food, drive cars, jet planes, run factories and for all our domestic energy requirements. It can provide cheap electricity. In short, hydrogen shows the solution and also allows the progressive and non-traumatic transition of today's energy sources, towards feasible safe reliable and complete sustainable energy chains. The present article deals with the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials. Many metals combine chemically with Hydrogen to form a class of compounds known as Hydrides. These hydrides can discharge hydrogen as and when needed by raising their temperature or pressure. An optimum hydrogen-storage material is required to have various properties viz. high hydrogen capacity per unit mass and unit volume which determines the amount of available energy, low dissociation temperature, moderate dissociation pressure, low heat of formation in order to minimize the energy necessary for hydrogen release, low heat dissipation during the exothermic hydride formation, reversibility, limited energy loss during charge and discharge of hydrogen, fast kinetics, high stability against O 2 and moisture for long cycle life, cyclibility, low cost of recycling and charging infrastructures and high safety. So far most of the hydrogen storage alloys such as LaNi 5 , TiFe, TiMn 2 , have hydrogen storage capacities, not more than 2 wt% which is not satisfactory for practical application as per DOE Goal. A group of Mg based

  6. The electrochemistry and modelling of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Vermeulen, P.; Ledovskikh, A.V.; Danilov, D.; Notten, P.H.L.

    2007-01-01

    Mg-based alloys are promising hydrogen storage materials because of the high gravimetric energy density of MgH 2 (7.6 wt.%). A major disadvantage, however, is its very slow desorption kinetics. It has been argued that, in contrast to the well-known rutile-structured Mg hydride, hydrided Mg-transition metal alloys have a much more open crystal structure facilitating faster hydrogen transport. In this paper, the electrochemical aspects of new Mg-Sc and Mg-Ti materials will be reviewed. Storage capacities as high as 6.5 wt.% hydrogen have been reached with very favourable discharge kinetics. A theoretical description of hydrogen storage materials has also been developed by our group. A new lattice gas model is presented and successfully applied to simulate the thermodynamic properties of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, for example mutual atomic hydrogen interaction energies. A good fit of the lattice gas model to the experimental data is found in all cases

  7. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 5 ... Polyester urethane; scaffold; tensile strength; swelling; degradation; cell culture. ... Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Ming Kang1 2 Xiaoming Liao1 Guangfu Yin1 Xun Sun3 Xing Yin4 Lu Xie4 Jun Liu2. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China; College of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Department of ...

  10. Hydrogen isotopes transport parameters in fusion reactor materials

    International Nuclear Information System (INIS)

    Serra, E.; Ogorodnikova, O.V.

    1998-01-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.)

  11. Potential of AlN nanostructures as hydrogen storage materials.

    Science.gov (United States)

    Wang, Qian; Sun, Qiang; Jena, Puru; Kawazoe, Yoshiyuki

    2009-03-24

    The capability of AlN nanostructures (nanocages, nanocones, nanotubes, and nanowires) to store hydrogen has been studied using gradient-corrected density functional theory. In contrast to bulk AlN, which has the wurtzite structure and four-fold coordination, the Al sites in AlN nanostructures are unsaturated and have two- and three-fold coordination. Each Al atom is capable of binding one H(2) molecule in quasi-molecular form, leading to 4.7 wt % hydrogen, irrespective of the topology of the nanostructures. With the exception of AlN nanotubes, energetics does not support the adsorption of additional hydrogen. The binding energies of hydrogen to these unsaturated metal sites lie in the range of 0.1-0.2 eV/H(2) and are ideal for applications under ambient thermodynamic conditions. Furthermore, these materials do not suffer from the clustering problem that often plagues metal-coated carbon nanostructures.

  12. Screening of electrocatalytic materials for hydrogen evolution

    DEFF Research Database (Denmark)

    Björketun, Mårten; Bondarenko, Alexander S.; Abrams, Billie

    2010-01-01

    A general scheme for high-throughput screening of electrocatalysts is presented. By systematically exploiting a collection of theoretical and experimental materials databases, supplemented with quantum mechanical calculations, it locates systems that meet a set of pre-imposed selection criteria...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. BALDEV RAJ. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 449-460 Instrumentation. Thermogravimetry-evolved gas analysis–mass spectrometry system for materials research · M Kamruddin P K Ajikumar S Dash A K Tyagi Baldev Raj.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D S Prasad. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 79-83 Materials Synthesis. Preparation of high purity tellurium by zone refining · N R Munirathnam D S Prasad Ch Sudheer A J Singh T L Prakash · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S R Dhage. Articles written in Bulletin of Materials Science. Volume 27 Issue 1 February 2004 pp 43-45 Dielectric Materials. Nonlinear – characteristics study of doped SnO2 · S R Dhage V Ravi S K Date · More Details Abstract Fulltext PDF. When tin oxide is doped with ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. U S Sajeev. Articles written in Bulletin of Materials Science. Volume 27 Issue 2 April 2004 pp 155-161 Magnetic Materials. Magnetic field induced assembling of nanoparticles in ferrofluidic liquid thin films based on NiFe1-Fe2O4 · V S Abraham S Swapna Nair S Rajesh U S ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SARAVANA KUMAR JAGANATHAN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Roy. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 513-515. Improved zinc oxide film for gas sensor applications · S Roy S Basu · More Details Abstract Fulltext PDF. Zinc oxide (ZnO) is a versatile material for different commercial ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. DANUTA OLSZEWSKA. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 16. Influence of the conditions of a solid-state synthesis anode material Li 4 Ti 5 O 12 on its electrochemical properties of lithium cells · DANUTA OLSZEWSKA ANNA ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. ISABEL HERRMANN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR JAGANATHAN A ...

  1. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  2. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  3. Ice XVII as a Novel Material for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Leonardo del Rosso

    2017-02-01

    Full Text Available Hydrogen storage is one of the most addressed issues in the green-economy field. The latest-discovered form of ice (XVII, obtained by application of an annealing treatment to a H 2 -filled ice sample in the C 0 -phase, could be inserted in the energy-storage context due to its surprising capacity of hydrogen physisorption, when exposed to even modest pressure (few mbars at temperature below 40 K, and desorption, when a thermal treatment is applied. In this work, we investigate quantitatively the adsorption properties of this simple material by means of spectroscopic and volumetric data, deriving its gravimetric and volumetric capacities as a function of the thermodynamic parameters, and calculating the usable capacity in isothermal conditions. The comparison of ice XVII with materials with a similar mechanism of hydrogen adsorption like metal-organic frameworks shows interesting performances of ice XVII in terms of hydrogen content, operating temperature and kinetics of adsorption-desorption. Any application of this material to realistic hydrogen tanks should take into account the thermodynamic limit of metastability of ice XVII, i.e., temperatures below about 130 K.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium and hydrogen ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University, 664-14 Deokjin-Dong 1Ga Deokjin-Gu Jeonju Jeonbuk, 561-756, South Korea; Department of Materials Engineering, Graduate School, Chonbuk National University, 664-14 ...

  6. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  7. Hydrogen like energy and materials for fuel cells

    International Nuclear Information System (INIS)

    Fernandez V, S. M.

    2010-01-01

    The researches on the production, storage and the use of hydrogen like fuel or energy carrying are carried out in several laboratories around the world. In the Instituto Nacional de Investigaciones Nucleares (ININ), from the year of 1993 they are carried out researches about the synthesis of electro-catalysts materials than can serve in the hydrogen production starting from the electrolysis of the water, or in fuel cells, as well as of semiconductor materials for the photo-electrolysis of the water. Recently, in collaboration with other Departments of the ININ, the hydrogen production has been approached starting from fruit and vegetable wastes, with the purpose of evaluating the possibility that this residuals can be utilized for the energy obtaining and that they are not only garbage that causes problems of environmental pollution, generate toxic gases and pollute the soil with the organic acids that take place during their fermentation. (Author)

  8. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  9. Hydrogen storage materials at INCDTIM Cluj - Napoca. Achievements and outlook

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A.R.; Misan, I.

    2005-01-01

    Introducing hydrogen fuel to the transportation area poses key challenges for research on hydrogen storage materials. As one of the most promising alternative fuels for transport, hydrogen offers the long-term potential for an energy system that produces near-zero emissions and can be based on renewable energy sources. The Joint Research Centre (JRC), a Directorate-General of the European Commission fosters research for safe methods for storing hydrogen, for use in fuel cells or modified combustion engines in cars and other road vehicles. Hydrogen storage materials focused, in the last 30 years, the attention of the research programs in the many countries. Due to the fast development of the fuel cell technologies, the subject is much more stringent now. For mobile applications to fuel cell powered vehicles, on-board storage materials with hydrogen absorption/desorption capacities of at least 6.5%H are needed. For an efficient storage system the goal is to pack hydrogen as close as possible. Hydrogen storage implies the reduction of an enormous volume of H 2 gas (1 kg of gas has a volume of 11 m 3 at ambient temperature and pressure). To reach the high volumetric and gravimetric density suitable for mobile applications, basically six reversible storage methods are known today according to A. Zuettel: 1) high-pressure gas cylinders, 2) liquid in cryogenic tanks, 3) physisorbed on a solid surface e.g. carbon-nanotubes 4) metal hydrides of the metals or intermetallic compounds. 5) complex hydrides of light elements such as alanates and boranates, 6) storage via chemical reactions. Recently, the storage as hydrogen hydrates at 50 bar using promoters has been reported by F. Peetom. The paper discusses the feasibility of each of these storing alternatives. The authors presents their experience and results of the work in the field of metal hydrides and application obtained since 1975. All classes of hydrogen absorbing intermetallic compounds were studied: LaNi 5 , FeTi, Ti

  10. Corrosion resistant materials for fluorine and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hauffe, K.

    1984-12-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with <0,3 mm.a/sup -1/ is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a/sup -1/. In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials.

  11. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  12. Materials and fabrication processes for operation in hot hydrogen

    International Nuclear Information System (INIS)

    Tuffias, R.H.; Duffy, A.J.; Arrieta, V.M.; Abrams, W.M.; Benander, R.E.

    1997-01-01

    Operation in hot (2500 endash 3000 K) hydrogen severely limits the choice of structural materials. Rhenium is nonreactive with and has low permeability to hydrogen, and has sufficient strength up to 2800 K. Carbon, in the form of graphite or carbon composites, has excellent high temperature strength but reacts with hydrogen to form methane at a rapid rate above 2000 K. The carbides of zirconium, niobium, hafnium, and tantalum are nonreactive with and have low permeability to hydrogen, but they can be reliably fabricated only in the form of coatings. In order to demonstrate the Integrated Solar Upper Stage (ISUS) solar-thermal propulsion concept, rhenium and rhenium-coated graphite were chosen as the structural materials for the receiver-absorber-converter (RAC) component of the ISUS system. Several methods were investigated for fabricating the rhenium parts and coatings, with chemical vapor deposition (CVD) and Ultramet chosen as the most likely process and company for success. The CVD or rhenium and other refractory materials were thus applied to the ISUS program for fabrication of the RAC subsystem. copyright 1997 American Institute of Physics

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... (K) 0.25 ( N H _4 ) _{0.75}H 2 PO 4 : tuning of short strong hydrogen bonds by ionic interactions .... Construction of CaF 2 -appended PVA nanofibre scaffold ... luminescent enzyme hydrogel: an efficient redox active immobilized scaffold ...... on microstructures and thermal properties of short carbon fibre–Al composites.

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Theoretical approaches to superionic conductivity ... X-ray structure determination and analysis of hydrogen interactions in 3,3′-dimethoxybiphenyl · Rajnikant Dinesh ... A fresh study of optical and thermal properties of polystyrene solutions · S Durai P ... Fabrication of silicon based glass fibres for optical communication.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Department of Physics, Sultan Qaboos University, Muscat, P.O. Box 36, Code 123, Oman; Department of Polymer Science andRubber Technology, Cochin University of Science and Technology, Cochin 682022, India; Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Bulletin of Materials Science. Editor. Giridhar U. Kulkarni, Centre for Nano and Soft Matter Science, Bengaluru. Associate Editors. Ayan Datta, Indian Association for the Cultivation of Science, Kolkata M. Eswaramoorthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru A.K. Ganguli ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Mirza. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 377-382 Glass Ceramics. Preparation and characterization of magnesium–aluminium–silicate glass ceramics · Madhumita Goswami T Mirza A Sarkar Shobha Manikandan Sangeeta ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Murali Sastry. Articles written in Bulletin of Materials Science. Volume 23 Issue 3 June 2000 pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rajeev Gupta. Articles written in Bulletin of Materials Science. Volume 34 Issue 3 June 2011 pp 447-454. An investigation in InGaO3(ZnO)m pellets as cause of variability in thin film transistor characteristics · Sonachand Adhikari Rajeev Gupta Ashish Garg Deepak.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amit Sinha. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 653-657 Bioceramics. Development of calcium phosphate based bioceramics · Amit Sinha A Ingle K R Munim S N Vaidya B P Sharma A N Bhisey · More Details Abstract Fulltext ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3. Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method ... Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016, India; Material Science Division, Indira Gandhi Centre for Atomic Research, ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MURAT UYGUN. Articles written in Bulletin of Materials Science. Volume 39 Issue 2 April 2016 pp 353-359. Hydrophobic nano-carrier for lysozyme adsorption · CANAN ALTUNBAS FULDEN ZEYNEP URAL MURAT UYGUN NESIBE AVCIBASI UGUR AVCIBASI DENIZ AKTAS ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ch Sudheer. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 545-547. Tellurium purification: various techniques and limitations · D S Prasad Ch Sudheer N R Munirathnam T L Prakash · More Details Abstract Fulltext PDF. Limitations and ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B P Singh. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 11-16 Molecular Magnets. Synthesis and magnetic properties of one-dimensional metal oxalate networks as molecular-based magnets · B P Singh B Singh · More Details Abstract ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhanshuang Li. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shunxiao Zhang. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Kumar. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 335-341 Glasses. Optical absorption and fluorescent behaviour of titanium ions in silicate glasses · Manoj Kumar Aman Uniyal A P S Chauhan S P Singh · More Details Abstract ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Rajendra Babu. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 249-252 Crystal Growth. Thermal behaviour of strontium tartrate single crystals grown in gel · M H Rahimkutty K Rajendra Babu K Sreedharan Pillai M R Sudarsana Kumar C M K ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. RITWIK SARKAR. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 293-298 Alloys and Steels. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles · Ritwik Sarkar Nar Singh Swapan Kumar Das.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Prasad. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 547-553 Glasses and Ceramics. Impedance analysis of Pb2Sb3LaTi5O18 ceramic · C K Suman K Prasad R N P Choudhary · More Details Abstract Fulltext PDF. Polycrystalline ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Mondal. Articles written in Bulletin of Materials Science. Volume 36 Issue 1 February 2013 pp 51-58. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 coating in borate buffer solution · G Gupta A P Moon K Mondal · More Details Abstract Fulltext PDF.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SABRI BAYLAV. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 49. Synthesis and characterization of metal ion-imprinted polymers · YASEMIN ISIKVER SABRI BAYLAV · More Details Abstract Fulltext PDF. In this study, ion-imprinted polymeric ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P M Raole. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 81-88. Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K Avasthi P M Raole · More Details ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anjum Qureshi. Articles written in Bulletin of Materials Science. Volume 29 Issue 6 November 2006 pp 605-609. Analysis of organometallics dispersed polymer composite irradiated with oxygen ions · N L Singh Anjum Qureshi A K Rakshit D K Avasthi · More Details Abstract ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Singh. Articles written in Bulletin of Materials Science. Volume 28 Issue 7 December 2005 pp .... Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit Kumar S S Sharma B Tripathi M Singh Y K Vijay.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and ... Author Affiliations. A S Singha1 Anjali Shama1 Vijay Kumar Thakur1. Material Science Laboratory, National Institute of Technology, Hamirpur 177 005, India ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. Mickiewicza 30, 30-059 Krakow, Poland; The Pennsylvania State University, Department of Physics and Center for 2-Dimensional and Layered Materials, 104 Davey Laboratory, University Park, PA ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China; Anhui Provincial Laboratory of High Performance Nonferrous Metals Material, Wuhu, Anhui 241000, P.R. China; Department of Materials Science and Engineering, University of Science and Technology of ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Y Arthoba Naik. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 495-501 Thin Films. A new condensation product for zinc plating from non-cyanide alkaline bath · Y Arthoba Naik T V Venkatesha · More Details Abstract Fulltext PDF.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dinesh Kumar. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 549-551. Semiconductor applications of plasma immersion ion implantation technology · Mukesh Kumar Rajkumar Dinesh Kumar P J George · More Details Abstract Fulltext ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Murugesan. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Gopalakrishnan. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 235-241 Polymers. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol · C V Mythili A Malar Retna S Gopalakrishnan · More Details ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. E Subramanian. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. HUA WANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Raji George. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 183-185 Nanomaterials. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles · Arnab Ganguly Raji George · More Details Abstract Fulltext PDF. Nanoparticles of ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Vinmathi. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 625-628. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Bajpai. Articles written in Bulletin of Materials Science. Volume 25 Issue 1 February 2002 pp 21-23 Mechanical Properties. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment · R Bajpai V Mishra Pragyesh Agrawal S C Datt · More Details ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Bajpai. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 529-534 Review—Polymers. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nitai Debnath. Articles written in Bulletin of Materials Science. Volume 37 Issue 2 April 2014 pp 199-206. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria · Prasun Patra Shouvik Mitra Nitai Debnath Panchanan Pramanik ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K B R Varma. Articles written in Bulletin of Materials Science. Volume 30 Issue 6 December 2007 pp 567-570 Ceramics and Glasses. Microwave synthesis and sintering characteristics of CaCu3Ti4O12 · P Thomas L N Sathapathy K Dwarakanath K B R Varma · More Details ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Arunkumar Lagashetty. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 491-495 Nanomaterials. Adsorption study of Pb ions on nanosized SnO2, synthesized by self-propagating combustion reaction · Arunkumar Lagashetty A ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. TRAN NGOC TUYEN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 6. Lead ions removal from aqueous solution using modified carbon nanotubes · NGUYEN DUC VU QUYEN TRAN NGOC TUYEN DINH QUANG KHIEU HO VAN MINH ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N J KARALE. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1335-1345. Chemical synthesis and characterization of nano-sized rare-earth ruthenium pyrochlore compounds Ln 2 Ru 2 O 7 (Ln = rare earth) · R A PAWAR A K NIKUMBH ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Komath. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 135-140 Biomaterials. On the development of an apatitic calcium phosphate bone cement · Manoj Komath H K Varma R Sivakumar · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Le Minh Duc. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc · More Details ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Veera Brahmam. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 411-414 Single Crystals. Crystal growth and reflectivity studies of Zn1–MnTe crystals · K Veera Brahmam D Raja Reddy B K Reddy · More Details Abstract Fulltext PDF.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Wein-Duo Yang. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Neelotpal Sen Sarma. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Md HABIB. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 56. Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach · NARENDRA NATH GHOSH Md HABIB ANUP PRAMANIK PRANAB SARKAR SOUGATA PAL.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhang Lei. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 161-167. Characterization on strength and toughness of welded joint for Q550 steel · Jiang Qinglei Li Yajiang Wang Juan Zhang Lei · More Details Abstract Fulltext PDF. Q550 high ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B L Kalsotra. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B N Dev. Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer · J Kamila S Roy K Bhattacharjee B Rout B N Dev R Guico J Wang A W Haberl P Ayyub P V Satyam.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Bhimasankaram. Articles written in Bulletin of Materials Science. Volume 23 Issue 6 December 2000 pp 483-489 Oxide Ceramics. Effect of HIPing on conductivity and impedance measurements of DyBi5Fe2Ti3O18 ceramics · N V Prasad G Prasad Mahendra Kumar S V ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. REGINA C SO. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1179-1187. Preparation, characterization of chitosan/bamboo charcoal/poly(methacrylate) composite beads · DOROTHY CAMINOS-PERUELO WEI-CHIEH WANG ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. F Wang. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Pal. Articles written in Bulletin of Materials Science. Volume 24 Issue 4 August 2001 pp 415-420 Biomaterials. A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin · G Saraswathy S Pal C Rose T P Sastry · More Details Abstract Fulltext PDF.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Thotapalli P Sastry. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 177-181. Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder · Gunasekaran Krithiga Thotapalli P Sastry.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Annie John. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 141-154 Biomaterials. Bone growth response with porous hydroxyapatite granules in a critical sized lapine tibial-defect model · Annie John S Abiraman H K Varma T V Kumari P R ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LIFANG ZHANG. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 811-816. Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture · Lifang Zhang Yanyan Zheng Chengdong Xiong · More Details Abstract ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S S Samal. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 379-386 Polymers. Carbon nanotube reinforced polymer composites—A state of the art · S Bal S S Samal · More Details Abstract Fulltext PDF. Because of their high mechanical ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N K PANDEY. Articles written in Bulletin of Materials Science. Volume 40 Issue 2 April 2017 pp 253-262. Electrical and optical properties of ZnO–WO 3 nanocomposite and its application as a solid-state humidity sensor · VANDNA SHAKYA N K PANDEY SUNEET KUMAR ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P K Parhi. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 143-149. Failure analysis of multiple delaminated composite plates due to bending and impact · P K Parhi S K Bhattacharyya P K Sinha · More Details Abstract Fulltext PDF. The present ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shweta Agrawal. Articles written in Bulletin of Materials Science. Volume 32 Issue 6 December 2009 pp 569-573 Thin Films and Nanomatter. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sandeep Arya. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SURESH KUMAR. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 787-794. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Prakash. Articles written in Bulletin of Materials Science. Volume 29 Issue 4 August 2006 pp 339-345 Ceramics and Glasses. Solution-combustion synthesis of Bi1–LnO1.5 (Ln = Y and La–Yb) oxide ion conductors · Manjunath B Bellakki A S Prakash C Shivakumara M S ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Uma Maheswar Rao. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 587-593 Surface Studies. Investigation of surface modifications in ethylene propylene diene monomer (EPDM) rubber due to tracking under a.c. and d.c. voltages.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jiuxing Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 825-828. Magnetocaloric effect of Gd5Si2Ge2 alloys in low magnetic field · Hong Zeng Chunjiang Kuang Jiuxing Zhang Ming Yue · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H N Sheikh. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P P PRADYUMNAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 5 September 2017 pp 1007-1011. Structural and magnetic studies on copper succinate dihydrate single crystals · M P BINITHA P P PRADYUMNAN · More Details Abstract Fulltext PDF.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rani Joseph. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 343-348 Thin Films. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly(vinyl chloride) films · M Ushamani N G Leenadeenja K Sreekumar ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R AHMED. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1105-1110. Structural, elastic, optoelectronic and magnetic properties of CdHo 2 S 4 spinel: a first-principle study · I HATRAF O MERABIHA T SEDDIK H BALTACHE R KHENATA R ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MONICA KATIYAR. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 653-660. Processing and performance of organic insulators as a gate layer in organic thin film transistors fabricated on polyethylene terephthalate substrate · Saumen Mandal ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K R Rajesh. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 95-99. High mobility polymer gated organic field effect transistor using zinc phthalocyanine · K R Rajesh V Kannan M R Kim Y S Chae J K Rhee · More Details Abstract Fulltext PDF.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Avasthi. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Shrinet. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect of ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Rakshit. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Chandra. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 309-314 Biomaterials. Characteristics of porous zirconia coated with hydroxyapatite as human bones · V V Narulkar S Prakash K Chandra · More Details Abstract Fulltext PDF.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Austrian Centre of Competence for Tribology, Viktor Kaplan-Straße 2, A 2700 Wiener Neustadt, Austria; Institute of Industrial Electronics and Material Science, Vienna University of Technology, A 1040 Vienna, Austria; Institute of Material Science and Testing, Vienna University of Technology, A 1040 Vienna, Austria; Institute ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. XIAOWEN ZHANG. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 895-902. Structural evolution, electrical and optical properties of AZO films deposited by sputtering ultra-high density target · Jiwen Xu Zupei Yang Hua Wang Xiaowen Zhang.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KANNAIYAN DINAKARAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 4 August 2000 pp 295-299 Alloys. A test for diffusional coherency strain hypothesis in the discontinuous precipitation in Mg–Al alloy · K T Kashyap C Ramachandra V Bhat B Chatterji · More Details Abstract ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. AGNIESZKA SOBCZAK-KUPIEC. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 755-764. Effect of calcination conditions of pork bone sludge on behaviour of hydroxyapatite in simulated body fluid · Agnieszka Sobczak-Kupiec Zbigniew ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SUDHANSHU CHOUDHARY. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 713-718. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube · Sudhanshu Choudhary ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KADARKARAI MURUGAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YONG J IANG. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1255-1261. Molecular dynamics study on the relaxation properties of bilayered graphene with defects · WEI ZHANG JIU-REN YIN PING ZHANG YAN-HUAI DING YONG J IANG.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B Swarna Latha. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 883-888. Structural, spectroscopic and electrochemical study of V substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries · A Venkateswara Rao V Veeraiah A V Prasada ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B V Radhakrishna Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 109-117 Composites. Optimization of processing parameters for making alumina–partially stabilized zirconia laminated composites · S Deb B V Radhakrishna Bhat.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Biswas. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 251-255 Polymers. Effect of substrate roughness on growth of diamond by hot filament CVD · Awadesh K Mallik S R Binu L N Satapathy Chandrabhas Narayana Md Motin Seikh S A ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jadu Samuel. Articles written in Bulletin of Materials Science. Volume 36 Issue 6 November 2013 pp 981-987. Green chemical incorporation of sulphate into polyoxoanions of molybdenum to nano level · Jadu Samuel S Hari Prasad M K Sreedhar · More Details Abstract Fulltext ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T K Bhattacharya. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 703-706 Cements. Solid state sintering of lime in presence of La2O3 and CeO2 · T K Bhattacharya A Ghosh H S Tripathi S K Das · More Details Abstract Fulltext PDF.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dong Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 25-28. Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication · Tian-You Zhang Dong Zhang · More Details Abstract Fulltext PDF.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Ganesan. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 609-615 Thin Films. Structural morphology of amorphous conducting carbon film · P N Vishwakarma V Prasad S V Subramanyam V Ganesan · More Details Abstract Fulltext PDF.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Mandal. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 743-752. Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification · M Mandal D Singh Gouthama B S Murty S Sangal K Mondal · More Details ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Kharat. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 453-455 Ceramics and Glasses. Characterization and microstructure of porous lead zirconate titanate ceramics · B Praveenkumar H H Kumar D K Kharat · More Details Abstract ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Hui Shen. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 101-104 Single Crystals. Piezoelectric properties of Sr3Ga2Ge4O14 single crystals · Anhua Wu Jiayue Xu Juan Zhou Hui Shen · More Details Abstract Fulltext PDF. A new piezoelectric ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anhua Wu. Articles written in Bulletin of Materials Science. Volume 27 Issue 4 August 2004 pp 333-336 Crystal Growth. Bridgman growth and defects of Nd : Sr3Ga2Ge4O14 laser crystals · Jiaxuan Ding Anhua Wu Jiayue Xu · More Details Abstract Fulltext PDF.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G Prasad. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 431-437 High T c Superconductors. Studies on electrical properties of SrBi4Ti4–3Fe4O15 · N Venkat Ramulu G Prasad S V Suryanarayana T Bhima Sankaram · More Details ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Muthulakshmi. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1575-1582. Effect of temperature on the AC impedance of protein and carbohydrate biopolymers · S Muthulakshmi S Iyyapushpam D Pathinettam Padiyan · More Details ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Sahu. Articles written in Bulletin of Materials Science. Volume 32 Issue 3 June 2009 pp 285-294. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview · A K Sahu S Pitchumani P Sridhar A K Shukla · More Details Abstract Fulltext PDF.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N L Singh. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sejal Shah. Articles written in Bulletin of Materials Science. Volume 30 Issue 5 October 2007 pp 477-480 Polymers. Study of microhardness and electrical properties of proton irradiated polyethersulfone (PES) · Nilam Shah Dolly Singh Sejal Shah Anjum Qureshi N L Singh K P ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Prasannakumar. Articles written in Bulletin of Materials Science. Volume 24 Issue 5 October 2001 pp 535-538 Polymers. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K V Shah. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 715-720 Glasses and Ceramics. Preparation and studies of some thermal, mechanical and optical properties of Al2O3(1 – )NaPO3 glass system · K V Shah V Sudarsan M ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ganesh Sanjeev. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 191-196 Thin Films and Nanomatter. Dielectric properties of electron irradiated PbZrO3 thin films · Shetty Aparna V M Jali Ganesh Sanjeev Jayanta Parui S B Krupanidhi.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LING YANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  17. Qi Liu - Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. QI LIU. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 183-189. Study of structural transformations and phases formation upon calcination of Zn–Ni–Al hydrotalcite nanosheets · Zhanshuang Li Yanchao Song Jun Wang Qi Liu Piaoping Yang ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Singha. Articles written in Bulletin of Materials Science. Volume 31 Issue 1 February 2008 pp 7-13 Polymers. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre · A S Singha Anjali Shama ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. L C GUPTA. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1121-1125. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2 · ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H P Sachin. Articles written in Bulletin of Materials Science. Volume 30 Issue 1 February 2007 pp 57-63 Electrochemistry. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath · H P Sachin Ganesha Achary Y Arthoba Naik T V Venkatesha.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Petrič. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 113-119. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives · M Humar M Pavlič D Žlindra M Tomažič M Petrič.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Hafez. Articles written in Bulletin of Materials Science. Volume 33 Issue 2 April 2010 pp 149-155 Polymers. Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol · A B Elaydy M Hafez · More Details ...

  3. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  4. Hydrogen in tungsten as plasma-facing material

    Science.gov (United States)

    Roth, Joachim; Schmid, Klaus

    2011-12-01

    Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in

  5. Materials Science and the Problem of Garbage

    Science.gov (United States)

    McPherson, Heather

    2016-01-01

    Materials science--the science of stuff--has made our lives better by making it possible for manufacturers to supply us with products. Students have misconceptions about materials use. Many may think using bottled water, for example, is harmless because they recycle the plastic empties, but they fail to consider the resources and energy used to…

  6. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  7. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  8. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  9. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  10. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  11. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  12. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

    2004-10-25

    Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

  13. Developments in reactor materials science methodology

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Ivanov, V.B.

    1987-01-01

    Problems related to organization of investigations into reactor materials science are considered. Currently the efficiency and reliability of nuclear power units are largely determined by the fact, how correctly and quickly conclusions concerning the parameters of designs and materials worked out for a long time in reactor cores, are made. To increase information value of materials science investigations it is necessary to create a uniform system, providing for solving methodical, technical and organizational problems. Peculiarities of the current state of reactor material science are analysed and recommendations on constructing an optimal scheme of investigations and data flow interconnection are given

  14. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2012-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Photoproduction of hydrogen was achieved by photolysis of aqueous suspensions of mixed TiO2/V2O5 or CdS/ZnS semiconductor (SC) nanoparticle in phosphate buffers containing [Fe(CN)6]4−. Manipulations of the band structure of the SC materials took place by either combining oxides/sulphides in binary mixtures or by ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Anisotropic optical properties of ZnS thin films with zigzag structure ... behaviours of a double-cation hydrogen storage material of Al 3 Li 4 (BH 4 ) .... Synthesis, structural and dielectric properties of 0.8PMN–0.2PT relaxor ..... Hence, the effects of three polymers of polyvinyl pyrrolidone, polyethylene glycol (PEG)and starch ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G P Nayaka. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K C Anjaneya. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  19. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    Science.gov (United States)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  20. Materials for Hydrogen Storage in Nanocavities: Design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Unidad Legaria, Legaria 694, Col. Irrigacion (Mexico)

    2009-11-15

    The adsorption potential for a given adsorbate depends of both, material surface and adsorbate properties. In this contribution the possible guest-host interactions for H{sub 2} within a cavity or on a surface are discussed considering the molecule physical properties. Five different interactions contribute to the adsorption forces for this molecule: 1) quadrupole moment interaction with the local electric field gradient; 1) electron cloud polarization by a charge center; 3) dispersive forces (van der Waals); 4) quadrupole moment versus quadrupole moment between neighboring H{sub 2} molecules, and, 5) H{sub 2} coordination to a metal center. The relative importance of these five interactions for the hydrogen storage in nanocavities is discussed from experimental evidences in order to extract materials design criteria for molecular hydrogen storage. (author)

  1. The Science of Smart Materials

    Science.gov (United States)

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  2. Radiation materials science. V. 7

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  3. Radiation materials science. V. 6

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  4. Nanoenergetics and High Hydrogen Content Materials for Space Propulsion

    Science.gov (United States)

    2014-01-28

    past twenty years. Ammonia borane has already been used with success to produce hydrogen for chemical lasers and fuel cells. The alternatives being...adduct solution in the presence of a titanium catalyst under an inert atmosphere. The resulting material was used to reduce complexes of gold, nickel...A. Varma, B. Legrand, C. Chauveau, and I. Gokalp, “Ignition and Combustion of Al Particles Clad by Ni”, Combust. Sci. Tech., Vol. 174, 2002, pp

  5. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4 ... Microwave materials; ceramic dielectric resonators; polytitanates; co-precipitation. ... hypotheses viz. diffusion, high surface and nucleation energy, potential barrier, non-stoichiometry etc as critical factors limiting formation of 2 : 9 as single-phase material.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This generated great interest in the development of these heteroatom structured materials through different processing routes. ... of Materials Science, Sardar Patel University, Vallabh Vidyanagar 388 120, India; Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama 226, Japan ...

  8. Electric field enhanced hydrogen storage on polarizable materials substrates

    Science.gov (United States)

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  9. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  10. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  11. Process of producing carbonaceous materials; reaction with hydrogen gases

    Energy Technology Data Exchange (ETDEWEB)

    1933-01-13

    A process is described for the production of valuable hydrocarbons by treating distillable carbonaceous materials together with hydrogen gases, under pressure and in contact with catalysts, the process consisting in adding to the original materials, first or during treatment, organic sulfonic acids together with metals from the fourth or eighth groups of the periodic system or a combination of these, or organic carbosilicic acids or inorganic acids containing oxides of sulfur or nitrogen or the anhydrides of these inorganic acids or variation of these compounds.

  12. Sodium hydrazinidoborane: a chemical hydrogen-storage material.

    Science.gov (United States)

    Moury, Romain; Demirci, Umit B; Ichikawa, Takayuki; Filinchuk, Yaroslav; Chiriac, Rodica; van der Lee, Arie; Miele, Philippe

    2013-04-01

    Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  14. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  15. Electrocatalytic hydrogenation of organic molecules on conductive new catalytic material

    Energy Technology Data Exchange (ETDEWEB)

    Tountian, D. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide; Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Brisach-Wittmeyer, A.; Menard, H. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Nkeng, P.; Poillerat, G. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide

    2008-07-01

    Electrocatalytic hydrogenation (ECH) of organic molecules is a process where chemisorbed hydrogen is produced by electroreduction of water which reacts with the species in bulk. Greater emphasis is being placed on improving the nature of the building material of the electrodes in order to increase ECH efficiency. The effectiveness of the ECH is known to be linked to the nature of electrode materials used and their adsorption properties. This work presented the effect of conductive support material on ECH. The conductive catalysts were obtained from tin dioxide which is chemically stable. Palladium was the catalytic metal used in this study. The production of chemisorbed hydrogen was shown to depend on the quantity of metallic nanoaggregates in electrical contact with the reticulated vitreous carbon use as electrode. The conductive support, F-doped tin dioxide, was obtained by the sol-gel method. The electrocatalysts were characterized by different methods as resistivity measurements, linear sweep voltammetry, XRD, SEM, TGA/DSC, and FTIR analysis. The effects of temperature and time of calcination were also investigated. The study showed that the F-doped SnO2 electrocatalyst appeared to increase the rate of phenol electrohydrogenation. It was concluded that the improved electrocatalytic activity of Pd/F-doped SnO2 can be attributed to the simultaneous polarization of all the metallic Pd nanoaggregates present on the surface as well as in the pores of the matrix by contact with RVC. This results in a better production of chemisorbed atomic hydrogen with a large number of adlienation points. 9 refs., 3 figs.

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. Yasser B Saddeek1 Moenis A Azooz2 Amr Bakr Saddek3. Faculty of Science, Physics Department, Al-Azhar University, Assiut, Egypt; Glass Research Department, National Research Center, Dokki, Cairo, Egypt; Faculty of Engineering, Civil Engineering Department, Beni-Suef University, Beni-Suef, Egypt ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ankur Jain1 R K Jain1 Shivani Agarwal1 I P Jain1. Material Science Laboratory, Centre for Non-Conventional Energy Resources, 14, Vigyan Bhawan, University of Rajasthan, Jaipur 302 004, India ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation ... Keywords. Gamma irradiation; graft copolymerization; spectroscopic analysis; XRD; kinetics of thermal decomposition; activation energy.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Bulletin of Materials Science began in the year 1979. ... one of the world's leading interactive databases of high quality STM journals, book series, books, reference works and online archives collection. ... Sadashivanagar, P.B. No. 8005 ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Romania; 'Alexandru Ioan Cuza' University, Research Center on Advanced Materials and Technologies, Sciences Department, 11 Carol I Blvd., 700506 Iasi, Romania; Photonics Laboratory, Angers University, 2, Bd. Lavoisier, 49045 Angers, ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiaoming Liao1 Hongyang Zhu1 Guangfu Yin1 Zhongbing Huang1 Yadong Yao1 Xianchun Chen1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, P.R. of China ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7 ... pulse electrodeposition with ultrasound agitation from nickelWatts-type bath. ... The results showed that wear resistance increased with increase in duty cycle and frequency.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4 ... has a dielectric anomaly of ferroelectric to paraelectric type at 198°C, and exhibits ... that the compound has negative temperature coefficient of resistance (NTCR) behaviour.

  4. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi, Morocco; LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco; Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. U D Lanke1 2. Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Mumbai 400 076, India; School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. G KOROTCENKOV1 V BRINZARI2 B K CHO1. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500712, Republic of Korea; Department of Theoretical Physics, State University of Moldova, Chisinau, Republic of Moldova ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    MOHAMMOD AMINUZZAMAN1 LIM POH YING1 WEE-SHENOG GOH1 AKIRA WATANABE2. Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Malaysia; Institute of Multidisciplinary Research for Advanced Materials ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement ... Author Affiliations. I Janotka1 L' Krajèi1. Institute of Construction and Architecture of the Slovak Academy of Sciences, Bratislava, Slovak Republic ...

  10. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LI-XIA YANG. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 233-237. Shape control synthesis of low-dimensional calcium sulfate · Li-Xia Yang Yan-Feng Meng Ping Yin Ying-Xia Yang Ying-Ying Tang Lai-Fen Qin · More Details Abstract ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Singh. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 561-563. Synthesis of SiC from rice husk in a plasma reactor · S K Singh B C Mohanty S Basu · More Details Abstract Fulltext PDF. A new route for production of SiC from rice husk ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. C H Xia. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    scale grain growth of two nanocrystalline materials, Pd81Zr19 and RuAl. ... Structural, optical and electrical properties of chemically deposited copper selenide films .... Effect of substitution of titanium by magnesium and niobium on structure and ...

  15. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  16. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  17. Materials science for nuclear detection

    OpenAIRE

    Peurrung, Anthony

    2008-01-01

    The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detec...

  18. Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction

    Energy Technology Data Exchange (ETDEWEB)

    Luduena, Guillermo Andres

    2011-07-01

    This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding

  19. Some aspects of hydrogen interaction with amorphous metallic materials

    International Nuclear Information System (INIS)

    Spivak, L.V.; Khonik, V.A.; Skryabina, N.E.

    1995-01-01

    For the first time is considered change of some properties of amorphous metallic materials (AMM) directly in the process of hydrogenation. A supposition is made that many found effects are consequence of accumulation and relief of internal stresses during hydrogenation, exposure or following annealing of AMM. Fe 81 B 14 Si 15 , Fe 52 Co 20 Si 15 B 13 , Fe 5 Co 70 Si 15 B 10 , Fe 5 Co 58 Ni 10 Si 11 B 16 , Co 67 Fe 4 Cr 7 Si 8 B 14 84KChSP, Ni 60 Nb 35 Ti 5 , Ni 60 Nb 40 and Pd 17,5 Cu 6 Si 16.5 AMM were investigated. 24 refs.; 4 figs

  20. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  1. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  2. Hydrogen storage in nanoporous carbon materials: myth and facts.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Terrones, Mauricio; Terrones, Humberto

    2007-04-21

    We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H(2) m(-3)) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H(2) m(-3). The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H(2) m(-3). All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of "clean" energy.

  3. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    NARCIS (Netherlands)

    Callini, Elsa; Aguey-Zinsou, Kondo Francois; Ahuja, Rajeev; Ares, Jos Ramon; Bals, Sara; Biliskov, Nikola; Chakraborty, Sudip; Charalambopoulou, Georgia; Chaudhary, Anna Lisa; Cuevas, Fermin; Dam, Bernard; de Jongh, Petra; Dornheim, Martin; Filinchuk, Yaroslav; Novakovic, Jasmina G.; Hirscher, Michael; Hirscher, M.; Jensen, Torben R.; Jensen, Peter Bjerre; Novakovic, Nikola; Lai, Qiwen; Leardini, Fabrice; Gattia, Daniele Mirabile; Pasquini, Luca; Steriotis, Theodore; Turner, Stuart; Vegge, Tejs; Zuttel, Andreas; Montone, Amelia

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated

  4. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...

  5. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  6. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  7. Microgravity Materials Science Conference 2000. Volume 1

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  8. Microgravity Materials Science Conference 2000. Volume 3

    Science.gov (United States)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  9. Microgravity Materials Science Conference 2000. Volume 2

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  10. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  11. Davisson-Germer Prize Talk: Hydrogen storage in nanoporous materials

    Science.gov (United States)

    Chabal, Yves

    2009-03-01

    To develop a hydrogen-based energy technology, several classes of materials are being considered to achieve the DOE targets for gravimetric and volumetric hydrogen densities for hydrogen storage, including liquids (e.g. ammonium borohydrides), clathrate structures, complex metal hydrides, nanostructured (e.g. carbon) an nanoporous materials. Fundamental studies are necessary to determine the ultimate hydrogen capacity of each system. Nanoporous Metal-organic Framework (MOF) materials are promising candidates for hydrogen storage because the chemical nature and size of their unit cell can be tailored to weakly attract and incorporate H2 molecules, with good volumetric and mass density. In this talk, we consider the structure M2(BDC)2(TED), where M is a metal atom (Zn, Ni, Cu), BDC is benzenedicarboxylate and TED triethylenediamine, to determine the location and interaction of H2 molecules within the MOF. These compounds are isostructural and crystallize in the tetragonal phase (space group P4/ncc), they construct 3D porous structures with relatively large pore size (˜7-8 A ), pore volume (˜0.63-0.84 cc/g) and BET surface area (˜1500-1900 m^2/g). At high pressures (300-800 psi), the perturbation of the H-H stretching mode can be measured with IR absorption spectroscopy, showing a 35 cm-1 redshift from the unperturbed ortho (4155 cm-1 ) and para (4161 cm-1 ) frequencies. Using a newly developed non empirical van der Waals DFT method vdW-DFT),ootnotetextJ.Y. Lee, D.H. Olson, L. Pan, T.J. Emge, J. Li, Adv. Func. Mater. 17, 1255 (2007) it can be shown that the locus of the deepest H2 binding positions lies within to types of narrow channels. The energies of the most stable binding sites, as well as the number of such binding sites, are consistent with the values obtained from experimental adsorption isotherms, and heat of adsorption) data.ootnotetextM. Dion, H. Ryberg, E. Schroder, D. C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). Importantly, the

  12. Superconductivity in hydrogen-rich materials at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, Alexander

    2016-07-01

    A room temperature superconductor is probably one of the most desired systems in solid state physics. The highest critical temperature (T{sub c}) that has been achieved so far is in the copper oxide system: 133 kelvin (K) at ambient pressure ([82]Schilling et al. 1993) and 160 K under pressure ([42]Gao et al. 1994). The nature of superconductivity in the cuprates and in the recently discovered iron-based superconductor family (T{sub c}=57 K) is still not fully understood. In contrast, there is a class of superconductors which is well-described by the Bardeen, Cooper, Schrieffer (BCS) theory - conventional superconductors. Great efforts were spent in searching for high-temperature (T{sub c} > 77 K) conventional superconductor but only T{sub c} = 39 K has been reached in MgB2 ([68]Nagamatsu et al. 2001). BCS theory puts no bounds for T{sub c} as follows from Eliashberg's formulation of BCS theory. T{sub c} can be high, if there is a favorable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. It does not predict however in which materials all three parameters are large. At least it gives a clear indication that materials with light elements are favorable as light elements provide high frequencies in the phonon spectrum. The lightest element is hydrogen, and Ashcroft made a first prediction that metallic hydrogen will be a high-temperature superconductor ([6]Ashcroft 1968). As pressure of hydrogen metallization was too high (about 400-500 GPa) for experimental techniques then he proposed that compounds dominated by hydrogen (hydrides) also might be good high temperature superconductors ([6]Ashcroft 1968; [7]Ashcroft 2004). A lot of the followed calculations supported this idea. T{sub c} in the range of 50-235 kelvin was predicted for many hydrides. Unfortunately, only a moderate T{sub c} of 17 kelvin has been observed experimentally ([27]Eremets et al. 2008) so far. A goal of the present work is to find a

  13. Editorial: Defining materials science: A vision from APL Materials

    Directory of Open Access Journals (Sweden)

    Judith MacManus-Driscoll

    2014-07-01

    Full Text Available These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    pp 235-241 Polymers. Synthesis, mechanical, thermal and chemical properties of ... pp 243-249 Polymers. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene ... showed reduction in g value. pp 251-262 Polymers. Analysis of surface degradation of high density polyethylene (HDPE) insulation material due to tracking.

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Synthesis and characterization of fluorophore attached silver nanoparticles ... by X-ray diffraction, differential thermal analysis, thermogravimetric analysis, Fourier ..... Infrared spectra, Raman laser, XRD, DSC/TGA and SEM investigations on the ..... composite materials based on polyaniline–polyethylene glycol–CdS system.

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Mullite retains the usual orthorhombic habit of sillimanite. Rounded to sub rounded zirconia dispersed within the mullite matrix of the sample ZA is noticed. pp 221-225 Sol-gel Materials. Role of binder in the synthesis of titania membrane · K S Seshadri M Selvaraj R Kesava Moorthy K Varatharajan M P Srinivasan K B Lal.

  17. Introduction into modern materials science

    International Nuclear Information System (INIS)

    Brostow, W.

    1984-01-01

    This book is divided into the following headings: Preliminary remarks on mathematics, statistical mechanics, intermolecular interactions; gases and fluids - general fundamentals, liquids and solutions, crystals, metals and alloys, non-metallic solids, composites; thermodynamic properties, mechanical properties, electric conductivity, dielectric and magnetic properties, surface effects, and materials testing - an outline. (orig./MM) With 128 figs., 21 tabs [de

  18. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Studies on relative catalytic efficiencies of zinc and aluminium on nucleation of ... Production of boron carbide powder by carbothermal synthesis of gel material .... Studies on CdIn2O4 derived from CdIn2S4 prepared by flux method ... and thermally stimulated discharge conductivity (TSDC) study in polymer thin films.

  19. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... metal oxides in the process of chloride induced corrosion of steel reinforcement ... Paper pulp waste—A new source of raw material for the synthesis of a porous .... Utilization of mixed pond ash in integrated steel plant for manufacturing ...

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Department of Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210 702, Korea; Graduate School of Green Energy Technology, Chungnam National University, Daejeon 305 764, Korea; Department of Civil Engineering, Gangneung-Wonju National University, Gangneung 210 702, ...

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    deposition and annealing · G Ranga Rao .... Fine structure at the diffusion welded interface of Fe3Al/Q235 dissimilar materials · Wang Juan ... and Steels. Effect of zirconium addition on the recrystallization behaviour of a commercial Al–Cu–Mg alloy.

  2. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.) [pt

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 5 ... of CdTe nanoparticles before and after transfer from liquid phase to polystyrene ... Catalytic synthesis of ZnO nanorods on patterned silicon wafer—An optimum material for gas .... Hot-rolled, warm-rolled and heat treated alloys were examined using optical ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 27 Issue 5 October 2004 pp 417-420 Nuclear Related Materials. Irradiation of large area Mylar membrane and characterization of ... Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wang Juan1 Li Yajiang1 Wu Huiqiang1 Ren Jiangwei1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P.R. China ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Key Lab for Green Processing and Functionalization of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, P.R. China; State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; Zhuxi ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 4 ... Permittivity; polarization effects; strontium tartrate; thermal properties; dielectric properties. ... It is explained that crystallographic change due to polymorphic phase transition may be occurring in the material, besides the change due to loss of water ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Optimization of growth of InGaAs/InP quantum wells using photoluminescence and secondary ion mass spectrometry. S Bhunia P Banerji T K Chaudhuri A R Haldar D N Bose Y Aparna M B Chettri B R Chakraborty. Semiconducting Materials Volume 23 ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites. Smrutisikha Bal ... Author Affiliations. Smrutisikha Bal1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769 008, India ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher ... National Metallurgical Laboratory, Jamshedpur 831 007, India; Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Sanjay Panwar1 D B Goel2 O P Pandey1. School of Physics and Materials Science, Thapar Institute of Engineering & Technology, Patiala 147 004, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Preparation of new thermoluminescent material ( 100 − x )B 2 O 3 –xLi 2 O: Cu 2 + for sensing and detection of radiation. Zeid A Alothman Tansir Ahamad Mu Naushad Saad M Alshehri. Volume 39 Issue 1 February 2016 pp 331-336 ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 6 ... by microwave route and nature of anatase–rutile phase transition in nano TiO2 .... properties of AgPb10SbTe12 prepared by high pressure method .... the crystal field strength around Mn(V) such that a blue colour results for materials with small values of .

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Chemical and Materials Engineering, National University of Science and Technology, H/12 Islamabad, Pakistan; Austrian Institute of Technology GmbH, Advanced Materials & Aerospace Technologies, A-2444 Seibersdorf, Austria; Centre of Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 6 .... modified with 4–12% 3,3′-bis(maleimidophenyl) phenylphosphine oxide and cured ... Study of effect of composition, irradiation and quenching on ionic ... Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 4. CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials. Yuan Fang Rijing Wang Guohua Jiang He Jin Yin Wang Xinke Sun Sheng Wang Tao Wang. Volume 35 Issue 4 August 2012 pp 495-499 ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 6. Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites. M R Anantharaman K A Malini S Sindhu E M Mohammed S K Date S D Kulkarni P A Joy Philip Kurian. Magnetic Materials Volume 24 Issue 6 December 2001 ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiuqiang Li1 Dong Zhang1 Peiying Zhu1 Chao Yang1. Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, College of Materials Science and Engineering, Tongji University, 4800 CaoAn Road, Shanghai 200092, China ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 4. Phase analysis and dielectric properties of ceramics in PbO–MgO–ZnO–Nb2O5 system: A comparative study of materials obtained by ceramic and molten salt synthesis routes. M Thirumal A K Ganguli. Ceramics Volume 23 Issue 4 August 2000 pp 255-261 ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Materials Chemistry Laboratory, Department of Materials Science, Gulbarga University, Gulbarga 585 106, India; Veeco-India Nanotechnology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India; R&D Centre Premier Explosives Pvt. Ltd., Hyderabad 500 015, India ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The critical hydrogen concentration for hydrogen embrittlement in iron aluminide, Fe3Al has been estimated (0.42 wppm). The estimated critical hydrogen content has been correlated to structural aspects of the decohesion mechanism of hydrogen embrittlement.

  2. Modifications for the improvement of catalyst materials for hydrogen evolution

    Directory of Open Access Journals (Sweden)

    DRAGAN SLAVKOV

    2006-02-01

    Full Text Available The structural and electrocatalytic characteristics of composite materials based on non-precious metals were studied. Precursors of metallic phase (Ni, Co or CoNi and oxide phase (TiO2 were grafted on a carbon substrate (Vulcan XC-72 by the sol-gel procedure and thermally treated at 250 ºC. Ni and CoNi crystals of 10–20 nm were produced, in contrast the Co and TiO2 were amorphous. The dissimilar electronic character of the components gives rise to a significant electrocatalytic activity for the hydrogen evolution reaction (HER, even in the basic series of prepared materials. Further improvement of the catalysts was achieved by modification of all three components. Hence, Mo was added into the metallic phase, TiO2 was converted into the crystalline form and multiwall carbon nanotubes (MWCNTs were used instead of carbon particles. The improvement, expressed in terms of the lowering the hydrogen evolution overpotential at 60 mA cm–2, was the most pronounced in the Ni-based systems grafted on MWCNTs (120 mV lower HER overpotential compared to 60 mV in case of Ni-based systems grafted on crystalline TiO2 (TiO2 prepared at 450 ºC and of Ni-based systems containing 25 at.% Mo. Nevertheless, even with the realized enhancement, of all the fested materials, the Co-based systems remained superior HER catalysts.

  3. Intervention of hydrogen analysis laboratory for radioactive materials study

    International Nuclear Information System (INIS)

    Bruno, N.; Vinces, H.; Figueroa, S.

    1996-01-01

    The objective of the practice was the measurement of the hydrogen concentration on structural material from the Central Nuclear Atucha I (CNA-I) cooling channels using a LECO gas analyser. Original samples were previously separated into fractions at the Laboratiorio para Ensayos de Post-Irradiacion (LAPEP), Centro Atomico Ezeiza. The practice and the preliminary conditions of the laboratory and equipment to reduce the occupational dose for personnel and the work area contamination are described in this paper. In addition to the training activity for workers, the radiological control performed during the intervention and procedure followed to decontaminate LECO and the laboratory are summarized here. (authors)

  4. Material science and neutron scattering

    International Nuclear Information System (INIS)

    1983-01-01

    Neutron scattering experiments complete and extend the condensed matter studies made with X and gamma rays. Then story show a permanent evolution of the instrumentation, methods and experimental techniques to improve the result quality. This is more especially important as neutron sources are weaker than photon and electron sources. Progress in this research domain is due, in most part, to discovery and development of materials for the different measurement device components [fr

  5. Release of hydrogen isotopes from carbon based fusion reactor materials

    International Nuclear Information System (INIS)

    Vainonen-Ahlgren, E.

    2000-01-01

    The purpose of this study is to understand the annealing behavior of hydrogen isotopes in carbon based materials. Also, the density of the material and structural changes after thermal treatment and ion irradiation are examined. The study of hydrogen diffusion in diamondlike carbon films revealed an activation energy of 2.0 eV, while the deuterium diffusion, due to better measuring sensitivity, is found to be concentration dependent with the effective diffusion coefficient becoming smaller with decreasing deuterium concentration. To explain the experimentally observed profiles, a model according to which atomic deuterium diffuses and deuterium in clusters is immobile is developed. The concentration of immobile D was assumed to be an analytical function of the total D concentration. To describe the annealing behavior of D incorporated in diamondlike carbon films during the deposition process, a model taking into account diffusion of free D and thermal detrapping and trapping of D was developed. The difference in the analysis explains the disagreement of activation energy (1.5 ± 0.2 eV) with the value of 2,9± 0.1 eV obtained for D implanted samples earlier. The same model was applied to describe the experimental profiles in Si doped diamondlike carbon films. Si affects the retention of D in diamondlike carbon films. The amount of D depends on Si content in the co-deposited but not implanted samples. Besides, Si incorporation into carbon coating decreases to some extent the graphitization of the films and leads to formation of a structure which is stable under thermal treatment and ion irradiation. Hydrogen migration in the hydrogen and methane co-deposited films was also studied. In samples produced in methane atmosphere and annealed at different temperatures, the hydrogen concentration level decreases in the bulk, with more pronounced release at the surface region. In the case of coatings deposited by a methane ion beam, the H level also decreases with increasing

  6. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  7. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-11-30

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as related to DOE hydrogen storage targets and explains the basis for the down select decisions.

  8. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  9. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  10. Uses and evaluation methods of potential hydrogen permeation barriers for nuclear reactor materials

    International Nuclear Information System (INIS)

    Noga, J.O.; Piercy, G.R.; Bowker, J.T.

    1985-07-01

    This report summarizes results on the use of coatings as hydrogen permeation barriers on nuclear reactor component materials. Two classes of base materials were considered, exothermic hydrogen absorbers and endothermic hydrogen absorbers. The results of the tests indicate that substantial reductions in the amount of hydrogen absorbed by a metal can be achieved through the use of hydrogen permeation barrier coatings. Gold was determined to provide an effective hydrogen permeation barrier on Zr-2-1/2 Nb pressure tube material. Tin was determined to be a suitable hydrogen permeation barrier when applied on AISI 410 stainless steel and iron. Both gas phase and electrochemical permeation techniques were used to determine hydrogen permeabilities through coatings and base materials

  11. Particle-solid interactions and 21st century materials science

    International Nuclear Information System (INIS)

    Feldman, L.C.; Lupke, G.; Tolk, N.H.; Lopez, R.; Haglund, R.F.; Haynes, T.E.; Boatner, L.A.

    2003-01-01

    The basic physics that governs the interaction of energetic ion beams with solids has its roots in the atomic and nuclear physics of the last century. The central formalism of Jens Lindhard, describing the 'particle-solid interaction', provides a valuable quantitative guide to statistically meaningful quantities such as energy loss, ranges, range straggling, channeling effects, sputtering coefficients, and damage intensity and profiles. Modern materials modification (nanoscience, solid state dynamics) requires atomic scale control of the particle-solid interaction. Two recent experimental examples are discussed: (1) the control of the size distribution of nanocrystals formed in implanted materials and (2) the investigation of the site-specific implantation of hydrogen into silicon. Both cases illustrate unique solid-state configurations, created by ion implantation, that address issues of current materials science interest

  12. Effect of hydrogen on reduction of burden materials

    Energy Technology Data Exchange (ETDEWEB)

    Hooey, P L [Rautaruukki Oy, Raahe (Finland). Raahe Steel

    1997-12-31

    Efficient operation of iron blast furnaces requires that the iron bearing burden material have good reduction, softening and melting characteristics. These characteristics are determined by the physical operation of the blast furnace and the mineralogical composition of the agglomerate. Increasing oil injection rates will increase the hydrogen content of the reducing gas significantly. The aim of this work is to establish how different burden materials react to this change in gas environment, and develop sinters which have optimal properties. The testing of sinter and pellets is broken into two areas: development of the test methods; and determination of sinter and pellet characteristics. The test method requires development because recent testwork has shown that the reducibility of the sinter is now so high that the reduction under load test is no longer sensitive. A new control program and more realistic gas compositions are currently being tested. The softening and melting characteristics of sinters of varying composition, acid pellets and olivine pellets have been tested using the reduction under load test at Rautaruukki Oy Research Centre. The effect of hydrogen in the reducing gas on the different iron ore agglomerates has been evaluated SULA 2 Research Programme; 6 refs.

  13. Effect of hydrogen on reduction of burden materials

    Energy Technology Data Exchange (ETDEWEB)

    Hooey, P.L. [Rautaruukki Oy, Raahe (Finland). Raahe Steel

    1996-12-31

    Efficient operation of iron blast furnaces requires that the iron bearing burden material have good reduction, softening and melting characteristics. These characteristics are determined by the physical operation of the blast furnace and the mineralogical composition of the agglomerate. Increasing oil injection rates will increase the hydrogen content of the reducing gas significantly. The aim of this work is to establish how different burden materials react to this change in gas environment, and develop sinters which have optimal properties. The testing of sinter and pellets is broken into two areas: development of the test methods; and determination of sinter and pellet characteristics. The test method requires development because recent testwork has shown that the reducibility of the sinter is now so high that the reduction under load test is no longer sensitive. A new control program and more realistic gas compositions are currently being tested. The softening and melting characteristics of sinters of varying composition, acid pellets and olivine pellets have been tested using the reduction under load test at Rautaruukki Oy Research Centre. The effect of hydrogen in the reducing gas on the different iron ore agglomerates has been evaluated SULA 2 Research Programme; 6 refs.

  14. Proceedings of the workshop on new material development. Nano-technology and hydrogen energy society

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Ohshima, Takeshi; Sugimoto, Masaki; Ohgaki, Junpei

    2005-03-01

    We have newly held the Workshop on New Material Development in order to enhance the research activities on new material development using radiation. Theme of this workshop was 'nano-technology and hydrogen', both of which are considered to have great influence on our social life and have shown rapid progress in the related researches, recently. Researchers from domestic universities, research institutes, and private companies have attended at the workshop and had the opportunity to exchange information and make discussions about the latest trend in the leading edge researches, and have contributed to the material development in future. The technology for manufacturing and evaluation of very fine materials, which is essential for the nano-technology, and the development of new functional materials, which will support the hydrogen energy society in future, have increasingly become important and have been intensively investigated by many research groups. In such investigation, the ionizing radiation is indispensable as the tool for probing and modifying materials. For this reason, this workshop was held at JAERI, Takasaki, a center of excellence for radiation application in Japan. This workshop was held by JAERI, Takasaki, on November 19, 2004 under the joint auspices of the Atomic Energy Society of Japan, the Chemical Society of Japan, the Polymer Science Society of Japan and the Japanese Society of Radiation Chemistry. The workshop was attended by 97 participates. We believe that this workshop supported by many academic societies will largely contribute to the research on new material development in the field of nano-technology and hydrogen. The 10 of the presented papers are indexed individually. (J.P.N.)

  15. Characterization and Testing of Improved Hydrogen Getter Materials - FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandoval, Cynthia Wathen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    Organic-based hydrogen getter materials have been in use for many years. These materials are able to prevent the dangerous buildup of hydrogen gas in sealed containers, and are also used to protect surrounding materials from degradation caused by chemical reactions. This document describes these materials.

  16. Electron microscopy studies of materials used for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, Carmen M.

    2004-07-01

    Concerns over global warming and air pollution have stimulated the concept of the ''Hydrogen Economy'' and the potential extensive use of hydrogen as an energy carrier. Hydrogen storage in a solid matrix has become one of the promising solutions for vehicular applications. In this study, several transmission electron microscopy (TEM) techniques such as high resolution (HR), electron diffraction, energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFT EM) as well as scanning electron microscopy (SEM) have been used to study the microstructure of materials related to hydrogen storage applications. Some of the results are compared with powder X-ray diffraction (PXD) data. A TbNiAl compound processed by the hydrogenation-disproportionation-desorption-recombination (HDDR) route has been studied using a combination of SEM, TEM and PXD. Information about the variations in the composition and surface topography in both disproportionation and recombination stages is given by the SEM backscattered electrons and secondary electrons images. The crystallites that have undergone the recombination process were found smaller in size. The sodium alanate, NaAIH4 is one of the most promising candidate materials for hydrogen storage. Ti additives are effective at reducing the reaction temperatures and improving the efficiency of the kinetics. The microstructure of NaAlH4 with TiF3 additive has been examined after the initial ball milling and after 15 cycles, using TEM, SEM and EDS. The effect of the additive on particle morphology, grain size and distribution of the phases has been studied. The additive has uneven distribution in the sample after initial ball milling. After 15 cycles, EDS maps show some combination of Ti with the alanate phase. No significant change in grain size of the Na/Al rich particles between the ball milled and 15 cycled sample was observed. The LiAlD4

  17. Density functional theory in materials science.

    Science.gov (United States)

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  18. Material Science Experiments on Mir

    Science.gov (United States)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  19. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  20. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  1. Low-Cost Precursors to Novel Hydrogen Storage Materials

    International Nuclear Information System (INIS)

    Linehan, Suzanne W.; Chin, Arthur A.; Allen, Nathan T.; Butterick, Robert; Kendall, Nathan T.; Klawiter, I. Leo; Lipiecki, Francis J.; Millar, Dean M.; Molzahn, David C.; November, Samuel J.; Jain, Puja; Nadeau, Sara; Mancroni, Scott

    2010-01-01

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH 4 ), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH 4 from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H 2 ) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH 4 as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH 4 is a key building block to most boron-based fuels, and the ability to produce NaBH 4 in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering

  2. Low-Cost Precursors to Novel Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This

  3. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  4. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  5. The potential of organic polymer-based hydrogen storage materials.

    Science.gov (United States)

    Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan

    2007-04-21

    The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 1. Characterization and in vitro and in vivo evaluation of cross-linked chitosan films as implant for controlled release of citalopram. Patit P Kundu Santosh Kumar Jindal Manish Goswami. Volume 36 Issue 1 February 2013 pp 175-182 ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 5. Influence of additives on electrodeposition of bright Zn–Ni alloy on mild steel from acid sulphate bath. S Shivakumara U Manohar Y Arthoba Naik T V Venkatesha. Alloys and Steels Volume 30 Issue 5 October 2007 pp 455-462 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Structural investigation of V 2 O 5 –P 2 O 5 –K 2 O glass system with antibacterial potential. N S VEDEANU I B COZAR R STANESCU R STEFAN D VODNAR O COZAR. Volume 39 Issue 3 June 2016 pp 697-702 ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer ... optical and secondary electron microscopic experimental methods. Volume 34 Issue 4 July 2011 pp 595-599. Thermal stability of gold-PS nanocomposites thin films.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions. CHOKKALINGAM PRIYA GANESSIN ARAVIND WILSON RICHARD THILAGARAJ. Volume 39 Issue 2 April 2016 ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 3. Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses. S P Singh Aman Anal Tarafder. Glasses Volume 27 Issue 3 June 2004 pp 281-287 ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    K Ramachandran. Articles written in Bulletin of Materials Science. Volume 25 Issue 4 August 2002 pp ... Volume 27 Issue 5 October 2004 pp 403-407 Phase Transitions. Phase transition in L-alaninium oxalate by ... Thermal and structural properties of spray pyrolysed CdS thin film · P Raji C Sanjeeviraja K Ramachandran.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of rolling deformation and solution treatment on ... By the solution treatment, the elongated and broken crystalline grains recrystallize which leads to the formation of finer grains (<10 m) of austenite. X-ray diffraction analysis has corroborated well with ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    University of Mohammed V, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.O. Box 1014, Rabat–Agdal 10106, Morocco; Departamento de Ingeniería Química Industrial y del Medio Ambiente, E.T.S.I. Industriales, Universidad Politécnica ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Magnetic resonance in superparamagnetic zinc ferrite. Jitendra Pal Singh Gagan Dixit R C Srivastava Hemant Kumar H M Agrawal Prem Chand. Volume 36 Issue 4 August 2013 pp 751-754 ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Liu Jinlian Wu Xianming Chen Shang Liu Jianben He Zeqiang. Volume 36 Issue 4 August 2013 pp 687-691 ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K L Sahoo1 Rina Sahu1 M Ghosh1 S Chatterjee2. Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India; Department of Metallurgical and Materials Engineering, Bengal Engineering and Science University, Howrah 711 103, India ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effect of height to diameter ( h / d ) ratio on the deformation behaviour of Fe–Al 2 O 3 metal matrix nanocomposites. PALLAV GUPTA DEVENDRA KUMAR A K JHA OM PARKASH. Volume 39 Issue 5 September 2016 pp 1245-1258 ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Synthesis and luminescence properties of Tb 3 + − d o p e d L i M g P O _4$ phosphor. C B PALAN N S BAJAJ A SONI S K OMANWAR. Volume 39 Issue 5 September ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses to probe local environment. GAJANAN V HONNAVAR K P RAMESH ... Keywords. Tellurite glasses; Raman spectroscopy; photoluminscence; Stark level splitting; UV visible spectroscopy.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of nitrogen flow ratio on structure and properties of zirconium nitride films on Si(100) prepared by ion beam sputtering. Shahab Norouzian Majid Mojtahedzadeh Larijani Reza Afzalzadeh. Volume 35 Issue 5 October 2012 pp 885-887 ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 5. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques. Nishat Arshi Junqing Lu Chan Gyu Lee Jae Hong Yoon Bon Heun Koo Faheem Ahmed. Volume 36 Issue 5 October 2013 pp ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. K Kumari P P Kundu. Polymers Volume 31 Issue 2 April 2008 pp 159-167 ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 26 Issue 2 February 2003 pp 247-253 Electrical Properties. Impedance spectroscopy ... the a.c. conductivity data. Volume 26 Issue 7 December 2003 pp 745-747 Electrical Properties. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 301-308 Biomaterials. Adhesive B-doped DLC films on ... Volume 30 Issue 4 August 2007 pp 407-413 Alloys and Steels. Structural phase transitions and piezoelectric anomalies in ordered Sc0.5Ga0.5N alloys · A M Alsaad A A Ahmad.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 2 ... Surface texture modification of spin-coated SiO2 xerogel thin films by TMCS silylation .... Influence of pH and bath composition on properties of Ni–Fe alloy films ... Diffuse phase transition, piezoelectric and optical study of Bi0.5Na0.5TiO3 ceramic.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Fereshteh Chekin Samira Bagheri Sharifah Bee Abd Hamid. Volume 38 Issue 7 December 2015 pp 1711-1716 ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 2 ... TSDC; PS; naphthalene; thermo-electrets; glass transition temperature (g). Abstract. The electrical conductivity of naphthalene doped polystyrene (PS) films (≈ 61.58 m thick) was studied as a function of dopant concentration and temperature.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    V Renteria. Articles written in Bulletin of Materials Science. Volume 38 Issue 1 February 2015 pp 29-40. Yttrium deposition on mesoporous TiO2: textural design and UV decolourization of organic dyes · M L Ojeda C Velasquez V Renteria A Campero M A García-Sánchez F Rojas · More Details Abstract Fulltext PDF.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4. Preparation of titanium diboride powders from titanium alkoxide ... The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... The energy diagram shows the feasibility of La2CuO4 for the H2 evolution under visible light. ... Laboratory of Storage and Valorization of Renewable Energies, Faculty of ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 3. Microstructural and optical properties of transparent conductive ZnO : Al : Mo films deposited by template-assisted sol–gel method. H-Y He J-F Huang Z He J Lu Q Shen. Volume 37 Issue 3 May 2014 pp 519-525 ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2. Evaluation of borax solid wastes in production of frits suitable for fast single-fired wall tile opaque glass–ceramic glazes. K Pekkan B Karasu. Ceramics and Glasses Volume 33 Issue 2 April 2010 pp 135-144 ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 4 .... Synthesis and structural studies of Na2O–ZnO–ZnF2–B2O3 oxyfluoride glasses ... processing: A potential technique for preparing NiO–YSZ composite and Ni–YSZ cermet.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 3. Effect of composition on the polarization and ohmic resistances of LSM/YSZ composite cathodes in solid oxide fuel cell. B SHRI PRAKASH S SENTHIL KUMAR S T ARUNA. Volume 40 Issue 3 June 2017 pp 441-452 ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Medicine and Dentistry, James Cook University, Cairns 4878, Australia; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China; Institute of Dental Materials, Wenzhou Medical University, Wenzhou ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 2. Effect of annealing temperature on the structural–microstructural and electrical characteristics of thallium bearing HTSC films prepared by chemical spray pyrolysis technique. K K Verma R S Tiwari O N Srivastava. Superconductors Volume 28 Issue 2 April ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. Effect of oxygen vacancies on Li-storage of anatase TiO 2 (001) facets: a first principles study. H CHEN Y H DING X Q TANG W ZHANG J R YIN P ZHANG Y JIANG. Volume 41 Issue 2 April 2018 Article ID 51 ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 4. Structural, spectroscopic and electrochemical study of V5+ substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries. A Venkateswara Rao V Veeraiah A V Prasada Rao B Kishore Babu B Swarna Latha K Rama Rao. Volume 37 Issue 4 June 2014 pp ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Special Issues. Bulletin of Materials Science. pp 199-584 Volume 31 Issue 3 June 2008. Proceedings of the 'National Review and Coordination Meeting on Nanoscience and Nanotechnology', Hyderabad, 2007. Editor: S. B. Krupanidhi Guest Editors: G. Sundararajan and Tata Narasinga Rao. pp 547-651 Volume 29 Issue ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Bulletin of Materials Science; Volume 29; Issue 2. Mechanism of cube grain nucleation during recrystallization of deformed commercial purity aluminium. K T Kashyap R George. Nucleation Studies Volume 29 Issue ... Keywords. Recrystallization; cube texture; commercial purity aluminium; differential stored energy model.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Harnessing renewable solar energy through different technologies is greatly dependent on the advancement of solar grade materials' science and engineering. In this article, the prominent solar energy technologies, namely solarphotovoltaic and concentrated solar power and other relevant technologies, and aspects ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe 12 − 2 x O 19 nanoparticles synthesized by sol–gel auto-combustion method. S ALAMOLHODA S M MIRKAZEMI Z GHIAMI M NIYAIFAR. Volume 39 Issue 5 ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume ... Preparation and characterization of magnesium–aluminium–silicate glass ceramics ... Preparation and studies of some thermal, mechanical and optical properties of .... Surface degradation behaviour of sodium borophosphate glass in aqueous media: Some studies.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5 .... Influence of different heat treatment programs on properties of sol–gel ... The strong preferred c-axis orientation is lost due to cadmium doping and degree ... Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 4 ... Nacional de Investigaciones Científicas y Técnicas), A4408FVY Salta, Argentina; Fac. Ingeniería, Universidad Nacional de Salta, A4408FVY Salta, Argentina; Fac.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Acoustic study of nano-crystal embedded PbO–P2O5 glass. Sudip K Batabyal A Paul P Roychoudhury C Basu. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 357-363 ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Impedance and a.c. conductivity studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic prepared through conventional and microwave sintering route. Syed Mahboob G Prasad G S Kumar. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 347-355 ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Thermoluminescence dosimetry of rare earth doped calcium aluminate phosphors. K Madhukumar K Rajendra Babu K C Ajith Prasad J James T S Elias V Padmanabhan C M K Nair. Ceramics and Glasses Volume 29 Issue 2 April 2006 pp 119-122 ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film ... amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive -phase spots surrounded by amorphous regions. Scanning ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 4. Evaluation of solid–liquid interface profile during continuous casting by a spline based formalism. S K Das. Metals and Alloys Volume ... Keywords. Continuous casting; solidification; solid–liquid interface; front tracking algorithm; phase change; heat transfer.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 27; Issue 6. Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals. Namita Rajput S Tiwari B P Chandra. Optical Properties Volume 27 Issue 6 December 2004 pp 505-509 ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... of the nanoporous titania films attached with and without photosensitizer TCPP .... The positive values of free energy indicate the non-spontaneity of the sorption of HNTs ..... Effect of RF power and gas flow ratio on the growth and morphology of the PECVD ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Theoretical study of built-in-polarization effect on relaxation time and mean free path of phonons in Al x Ga 1 − x N alloy. B K SAHOO A PANSARI. Volume 39 Issue 7 December 2016 pp 1835-1841 ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3 ... The morphology and the nature of the protective layer grown under the paint film were also ... en Tecnología de Pinturas, Calle 52e/121 y 122, (B1900AYB), La Plata 1900, ...

  18. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  19. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  20. Trapping and detrapping of hydrogen in graphite materials exposed to hydrogen gas

    International Nuclear Information System (INIS)

    Atsumi, Hisao; Iseki, Michio; Shikama, Tatsuo.

    1994-01-01

    Measurements of hydrogen solubility have been performed for several unirradiated and neutron-irradiated graphite (and CFC) samples at temperatures between 973 and 1323 K under a ∼10 kPa hydrogen atmosphere. The hydrogen dissolution process has been studied and it is discussed here. The values of hydrogen solubility vary substantially among the samples up to about a factor of 16. A strong correlation has been observed between the values of hydrogen solubility and the degrees of graphitization determined by X-ray diffraction technique. The relation can be extended even for the neutron irradiated samples. Hydrogen dissolution into graphite can be explained with the trapping of hydrogen at defect sites (e.g. dangling carbon bonds) considering an equilibrium reaction between hydrogen molecules and the trapping sites. The migration of hydrogen in graphite is speculated to result from a sequence of detrapping and retrapping events with high energy activation processes. (author)

  1. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  2. Phase change materials: science and applications

    National Research Council Canada - National Science Library

    Raoux, Simone; Wuttig, Matthias

    2009-01-01

    ... are the Ovonic threshold switch, the multi-state Ovonic Universal Memory (OUM), and the Ovonic cognitive device which emulates the biological neurons with its plasticity and synaptic activity. The field of amorphous and disordered materials created not only a basic new area of science, but also important new technologies. It should be kept in mind that...

  3. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  4. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  5. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  6. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  7. Annual review of materials science. Volume 7

    International Nuclear Information System (INIS)

    Huggins, R.A.; Bube, R.H.; Roberts, R.W.

    1977-01-01

    A review is presented of recent materials science research. Topics covered include: point defects and their interaction; defect chemistry in crystalline solids; deep level impurities in semiconductors; structural aspects of one-dimensional conductors; structural transformations during aging of metal alloys; high rate thick film growth; metal forming, the application of limit analysis; kinetics and mechanisms of gas-metal interactions; erosion; reversible temper embrittlement; acoustic emission in brittle materials; capacitance transient spectroscopy; hot corrosion of high-temperature alloys; fundamental optical phenomena in infrared window materials; dental amalgam; and transparent conducting coatings

  8. Capture and transfer of pions in hydrogenous materials

    International Nuclear Information System (INIS)

    Armstrong, D.S.

    1990-05-01

    Pionic hydrogen is a short-lived exotic hydrogen isotope in which a negative pion replaces the atomic electron. The formation and subsequent interactions of pionic hydrogen are discussed, with emphasis on the process of pion transfer. Recent results using the pion charge-exchange reaction (π - , π 0 ) obtained at TRIUMF are reviewed. (Author) (35 refs., 3 tabs., 9 figs.)

  9. Hydrogen Storage using Physisorption : Modified Carbon Nanofibers and Related Materials

    NARCIS (Netherlands)

    Nijkamp, Marije Gessien

    2002-01-01

    This thesis describes our research on adsorbent systems for hydrogen storage for small scale, mobile application. Hydrogen storage is a key element in the change-over from the less efficient and polluting internal combustion engine to the pollution-free operating hydrogen fuel cell. In general,

  10. Materials science. Materials that couple sensing, actuation, computation, and communication.

    Science.gov (United States)

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  11. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Nanofluidics: A New Arena for Materials Science.

    Science.gov (United States)

    Xu, Yan

    2018-01-01

    A significant growth of research in nanofluidics is achieved over the past decade, but the field is still facing considerable challenges toward the transition from the current physics-centered stage to the next application-oriented stage. Many of these challenges are associated with materials science, so the field of nanofluidics offers great opportunities for materials scientists to exploit. In addition, the use of unusual effects and ultrasmall confined spaces of well-defined nanofluidic environments would offer new mechanisms and technologies to manipulate nanoscale objects as well as to synthesize novel nanomaterials in the liquid phase. Therefore, nanofluidics will be a new arena for materials science. In the past few years, burgeoning progress has been made toward this trend, as overviewed in this article, including materials and methods for fabricating nanofluidic devices, nanofluidics with functionalized surfaces and functional material components, as well as nanofluidics for manipulating nanoscale materials and fabricating new nanomaterials. Many critical challenges as well as fantastic opportunities in this arena lie ahead. Some of those, which are of particular interest, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  14. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Y. F. [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Investigation of localization effect in GaN-rich InGaN alloys and modified band-tail model. Chuan-Zhen Zhao Bin Liu De-Yi Fu Hui Chen Ming Li Xiang-Qian Xiu Zi-Li Xie Shu-Lin Gu You-Dou Zheng. Volume 36 Issue 4 August 2013 pp 619-622 ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Impedance spectroscopy studies on (Na0.5Bi0.5)0.94Ba0.06TiO3 + 0.3 wt% Sm2O3 + 0.25 wt% LiF lead-free piezoelectric ceramics. N Zidi A Chaouchi S D'Astorg M Rguiti C Courtois. Volume 38 Issue 3 June 2015 pp 731-737 ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In addition, 0.25Ca0.8Sr0.2 TiO3–0.75Li0.5Nd0.5TiO3 + 4.0 wt% LiF ceramics sintered at 1350°C for 4 h exhibited good microwave dielectric properties of r ... College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China; Department of Information Engineering, Guilin ...

  18. IAEA Activities on Application of Nuclear Techniques in Development and Characterization of Materials for Hydrogen Economy

    International Nuclear Information System (INIS)

    Salame, P.; Zeman, A.; Mulhauser, F.

    2011-01-01

    Hydrogen and fuel cells can greatly contribute to a more sustainable less carbon-dependent global energy system. An effective and safe method for storage of hydrogen in solid materials is one of the greatest technologically challenging barriers of widespread introduction of hydrogen in global energy systems. However, aspects related to the development of effective materials for hydrogen storage and fuel cells are facing considerable technological challenges. To reach these goals, research efforts using a combination of advanced modeling, synthesis methods and characterization tools are required. Nuclear methods can play an effective role in the development and characterization of materials for hydrogen storage. Therefore, the IAEA initiated a coordinated research project to promote the application of nuclear techniques for investigation and characterization of new/improved materials relevant to hydrogen and fuel cell technologies. This paper gives an overview of the IAEA activities in this subject. (author)

  19. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  20. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...