Sample records for hydrogen jet flame

  1. Combustion characteristics of subsonic hydrogen jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S. [Kumamoto Univ., Kumamoto City (Japan)


    This study investigated the split flame and re-ignition phenomenon of subsonic jet diffusion flames. The aim of the study was to characterize the underlying combustion characteristics of hydrogen micro-jet diffusion flames. The effects of nozzle diameter and rim thickness on flame re-ignition characteristics were examined. Hydrogen gas was used as a fuel during the experiments, and the flame was visualized suing the Schlieren technique in order to determine temperature and concentration measurements. The experimental apparatus consisted of a fuel nozzle, a fuel supply system, a stagnation pressure measuring device, a high-speed camera, and an image-processing system. The study showed that re-ignition phenomenon occurred in certain region of the nozzle, a small flamelet was located in the vicinity of the nozzle rim after the blowout of the main flame occurred. Further increases in mass flow rates then caused the flamelet to become extinguished. The study demonstrated that intermittence of the flame re-ignition depended on fuel mass flow rates. Rim thickness did not influence mass flow rates at the onset or at the end of the re-ignition phenomenon. It was concluded that rim thickness had a significant influence on the flamelet formed near the nozzle rim. Increases in height differences of the rim extended flame blowouts and alleviated flame lift-off behaviour. 10 refs., 9 figs.

  2. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames (United States)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)


    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  3. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul


    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  4. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames (United States)


    in a dramatic reduction in the fibrous na- ture of the surface, as expected, due to evaporation pro - Figure 3. An instant in time of PAN and PN...attached flame to inner lip of the GH2 exit. No local flame extinction was observed regardless of the acoustic forcing amplitude. It has been...experi- mentally observed when the strain rates associated with acoustic forcing is high enough [22], local extinction of the flame and the flame holding

  5. Simultaneous temperature and multi-species measurements in opposed jet flames of nitrogen-diluted hydrogen and air (United States)

    Wehrmeyer, J. A.; Cheng, T. S.; Pitz, R. W.; Nandula, S.; Wilson, L. G.; Pellett, G. L.


    A narrowband UV Raman scattering system is used to obtain measurement profiles of major and minor species concentrations, temperature, and mixture fraction in opposed jet diffusion flames. The measurement profiles can be compared to previously obtained temperature and concentration profiles (Pellett et al., 1989), obtained using CARS, and they can also be qualitatively compared to the predicted concentration and temperature profiles in pure hydrogen/air flames (Gutheil and Williams, 1990) and in diluted hydrogen/air flames (Dixon-Lewis and Missaghi, 1988; Ho and Isaac, 1991). The applied stress-rates for the two flame conditions studied are 240/s and 340/s, with respective hydrogen concentrations in the fuel jet of 0.67 and 0.83, on a mole fraction basis (0.13 and 0.26 hydrogen mass fractions, respectively).

  6. Large Eddy Simulation of Autoignition in a Turbulent Hydrogen Jet Flame Using a Progress Variable Approach

    Directory of Open Access Journals (Sweden)

    Rohit Kulkarni


    Full Text Available The potential of a progress variable formulation for predicting autoignition and subsequent kernel development in a nonpremixed jet flame is explored in the LES (Large Eddy Simulation context. The chemistry is tabulated as a function of mixture fraction and a composite progress variable, which is defined as a combination of an intermediate and a product species. Transport equations are solved for mixture fraction and progress variable. The filtered mean source term for the progress variable is closed using a probability density function of presumed shape for the mixture fraction. Subgrid fluctuations of the progress variable conditioned on the mixture fraction are neglected. A diluted hydrogen jet issuing into a turbulent coflow of preheated air is chosen as a test case. The model predicts ignition lengths and subsequent kernel growth in good agreement with experiment without any adjustment of model parameters. The autoignition length predicted by the model depends noticeably on the chemical mechanism which the tabulated chemistry is based on. Compared to models using detailed chemistry, significant reduction in computational costs can be realized with the progress variable formulation.

  7. Transitional Gas Jet Diffusion Flames in Microgravity (United States)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)


    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  8. Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari, Alireza [Univ. of California, Irvine, CA (United States); Sullivan-Lewis, Elliot [Univ. of California, Irvine, CA (United States); McDonell, Vincent [Univ. of California, Irvine, CA (United States)


    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. In fact, flashback is a key operability issue associated with low emission combustion of high hydrogen content fuels. Flashback can cause serious damage to the premixer hardware. Hence, design tools to predict flashback propensity are of interest. Such a design tool has been developed based on the data gathered by experimental study to predict boundary layer flashback using non-dimensional parameters. The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e. 3 atm to 8 atm and 300 K to 500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive non-dimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high pressure jet flame flashback also indicates good agreement. The model developed using the high pressure test rig is able to predict flashback tendencies for a commercial gas turbine engine and can thus serve as a

  9. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates (United States)

    Sislian, J. P.


    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  10. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames (United States)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)


    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  11. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  12. Effects of molecular transport on turbulence-chemistry interactions in a hydrogen-argon-air jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Menon, S.; Calhoon, W.H. Jr.; Goldin, G. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Aerospace Engineering; Kerstein, A.R. [Sandia National Labs., Livermore, CA (United States)


    A numerical simulation of entrainment, turbulent advection, molecular import and chemical kinetics in a turbulent diffusion flame is used to investigate effects of molecular transport on turbulence-chemistry interactions. A fun finite-rate chemical mechanism is used to represent the combustion of a hydrogen-argon mixture issuing into air. Results based on incorporation of differential diffusion and variable Lewis number are compared to cases with the former effect, or both-effects, suppressed. Significant impact on radical species production and on NO emission index (based on a reduced mechanism for thermal NO) is found. A reduced mechanism for hydrogen-air combustion, omitting both effects and incorporating other simplifications, performs comparably except that its NO predictions agree well with the case of full chemistry and molecular transport, possibly due to cancellation of errors.

  13. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)


    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  14. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul


    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

  15. Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames

    KAUST Repository

    Guiberti, Thibault F.


    This paper presents a comprehensive study of the effects of pilot parameters on flame stability in a turbulent jet flame. The Sydney inhomogeneous piloted burner is employed as the experimental platform with two main fuels, namely, compressed natural gas and liquefied petroleum gas. Various concentrations of five gases are used in the pilot stream, hydrogen, acetylene, oxygen, nitrogen, and argon, to enable a sufficient range in exploring the following parameters: pilot heat release, temperature, burnt gas velocity, equivalence ratio, and H/C ratio. The experimental results are mainly presented in the form of blow-off limits and supported by simple calculations, which simulate various conditions of the pilot–mixture interface. It is found that increasing the pilot adiabatic flame temperature benefits the flame stability and has an even greater influence than the heat release, which is also known to enhance the blow-off limits. Conversely, increasing the pilot burnt gas velocity reduces the blow-off velocity, except for the limiting case when the jet is fully non-premixed. The H/C ratio has negligible effects, while resorting to lean pilots significantly increases the stability of globally rich partially premixed and premixed jets. Such findings are consistent with trends obtained from laminar flame calculations for rich fuel/air mixtures issuing against hot combustion products to simulate the pilot stream.

  16. Jet flow and premixed jet flame control by plasma swirler (United States)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang


    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  17. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul


    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  18. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.


    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  19. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)


    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  20. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun


    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  1. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)


    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  2. Pdf prediction of supersonic hydrogen flames (United States)

    Eifler, P.; Kollmann, W.


    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  3. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang


    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  4. Triple flame structure and dynamics at the stabilization point of a lifted jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Najm, H.N.; Milne, R.B. [Sandia National Labs., Livermore, CA (United States); Devine, K.D.; Kempka, S.N. [Sandia National Labs., Albuquerque, NM (United States)


    A coupled Lagrangian-Eulerian low-Mach-number numerical scheme is developed, using the vortex method for the momentum equations, and a finite difference approach with adaptive mesh refinement for the scalar conservation equations. The scheme is used to study the structure and dynamics of a forced lifted buoyant planar jet flame. Outer buoyant structures, driven by baroclinic vorticity generation, are observed. The flame base is found to stabilize in a region where flow velocities are sufficiently small to allow its existence. A triple flame is observed at the flame base, a result of premixing of fuel and oxidizer upstream of the ignition point. The structure and dynamics of the triple flame, and its modulation by jet vortex structures, are studied. The spatial extent of the triple flame is small, such that it fits wholly within the rounded flame base temperature field. The dilatation rate field outlines the edge of the hot fluid at the flame base. Neither the temperature field nor the dilatation rate field seem appropriate for experimental measurement of the triple flame in this flow.

  5. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.


    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  6. Application of Shear Plate Interferometry to Jet Diffusion Flame Temperature Measurements (United States)

    VanDerWege, Brad A.; OBrien, Chris J.; Hochgreb, Simone


    The recent ban on the production of bromotrifluoromethane (CF3Br) because of its high stratospheric ozone depletion potential has led to interest in finding alternative agents for fire extinguishing applications. Some of the promising alternatives are fluorinated hydrocarbons. A clear understanding of the effects of CF3Br and alternative chemical suppressants on diffusion flames is therefore necessary in the selection of alternative suppressants for use in normal and microgravity. The flame inhibition effects of halogen compounds have been studied extensively in premixed systems. The effect of addition of halocarbons (carbon-halogen compounds) to diffusion flames has been studied experimentally in coflow configurations and in counterflow gaseous and liquid-pool flames. Halogenated compounds are believed to inhibit combustion by scavenging hydrogen radicals to form the relatively unreactive compound HF, or through a catalytic recombination cycle involving HBr to form H2. Comparisons between halogens show that bromine inhibition is significantly more effective than chlorine or fluorine. Although fluorinated compounds are only slightly more effective inhibitors on a mass basis than nitrogen, they are more effective on a volume basis and are easily stored in liquid form. The objectives of this study are (a) to determine the stability limits of laminar jet diffusion flames with respect to inhibitor concentration in both normal and microgravity, and (b) to investigate the structure of halocarbon-inhibited flames. In the initial phase of this project, visual diagnostics were used to observe the structure and behavior of normal and microgravity flames. The initial observations showed significant changes in the structure of the flames with the addition of halocarbons to the surrounding environment, as discussed below. Furthermore, the study established that the flames are more stable relative to the addition of halocarbons in microgravity than in normal gravity. Visual

  7. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.


    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  8. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame (United States)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran


    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  9. Control of flames by tangential jet actuators in oxy-fuel burners

    Energy Technology Data Exchange (ETDEWEB)

    Boushaki, Toufik [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Universite de Toulouse-INPT-UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Allee Camille Soula, F-31400 Toulouse, Cedex (France); Sautet, Jean-Charles [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Labegorre, Bernard [Air Liquide, Centre de Recherche Claude-Delorme, Les Loges-en-Josas, B.P. 126 78354 Jouy-en-Josas, Cedex (France)


    The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NO{sub x} emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NO{sub x} reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NO{sub x} formation. (author)

  10. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard


    The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a thin......, and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  11. Oxy-Hydrogen Flame for Cutting of Steels


    Tušek, J.; Šraj, M.


    The paper deals with oxy-hydrogen cutting of steel plates. The first part deals with calculation of the combustion efficiency of an oxy-hydrogen flame. A device for supply of a hydrogen-oxygen mixture is described. The main part of the paper is focused on oxy-hydrogen cutting and its advantages. The main conclusions show that the cut surface is flat and very smooth, the heat-affected zone is very narrow, and the cutting speed is relatively high.

  12. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao


    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  13. Experimental and numerical studies of the effects of hydrogen addition on the structure of a laminar methane-nitrogen jet in hot coflow under MILD conditions

    NARCIS (Netherlands)

    Sepman, Alexey; Abtahizadeh, Ebrahim; Mokhov, Anatoli; van Oijen, Jeroen; Levinsky, Howard; de Goey, Philip


    In this work we investigate the effects of hydrogen addition on the flame structure of MILD combustion both experimentally and numerically using a laminar-jet-in-hot-coflow (LJHC) geometry. The addition of hydrogen appreciably decreases the flame height (similar to 25%), however only modestly

  14. Direct Numerical Simulation of Methane Oxidation in a Nonpremixed Plane Jet Flame (United States)

    James, S.; Givi, P.


    Direct numerical simulations are conducted of methane oxidation in a nonpremixed plane jet flame. The objective of the study is to assess the extent of applicability of realistic chemistry schemes in large scale simulations of turbulent diffusion flames. Reduced kinetic schemes with two-, three-, and four-steps mechanisms are employed. The fuel jet is diluted with 80% N_2, so the flame surface and vortical regions overlap causing severe straining of the flame surface. The results are comparatively assessed with those via a 25-step skeletal C1 scheme. The correlation of the tangential strain rates on the flame surface with temperature, and that of curvature with temperature are presented. The compositional flame structure is compared with that in a steady laminar jet flame configuration.

  15. Oxy-Hydrogen Flame for Cutting of Steels

    Directory of Open Access Journals (Sweden)

    Tušek, J.


    Full Text Available The paper deals with oxy-hydrogen cutting of steel plates. The first part deals with calculation of the combustion efficiency of an oxy-hydrogen flame. A device for supply of a hydrogen-oxygen mixture is described. The main part of the paper is focused on oxy-hydrogen cutting and its advantages. The main conclusions show that the cut surface is flat and very smooth, the heat-affected zone is very narrow, and the cutting speed is relatively high.

  16. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek


    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  17. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.


    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.

  18. An experimental study on flame stability and pollutant emission in a cyclone jet hybrid combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Cheol-Hong; Kim, Jong-Hyun; Lee, Chang-Eon [School of Mechanical Engineering, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea); Lee, Seungro [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States)


    The combustion characteristics of a cyclone jet hybrid combustor using a combination of swirling premixed and jet diffusion flames were experimentally investigated to achieve high flame stability and low pollutant emissions. Two kinds of combustion modes were examined: the diffusion combustion (DC) mode, which consists of swirling air flow and jet diffusion flame, and the hybrid combustion (HC) mode, which consists of swirling premixed and jet diffusion flames. In the HC mode, the effects of fuel nozzle geometry on fuel-air mixing were investigated in terms of flame stability and pollutant emissions. The results showed that the HC mode can significantly reduce soot, CO, and NOx emissions in a stable flame region compared to the DC mode. However, CO emission in the HC mode increases drastically when overall equivalence ratios drop below 0.75. By modifying the fuel nozzle for the jet diffusion flame, it was found that increases in fuel-air mixing using the improved nozzle provide a stable flame region approximately twice as wide as that of the fuel nozzle using a single hole. In addition, a multi-hole fuel nozzle shows a NOx reduction of 55% compared to that of the DC mode. (author)

  19. Experimental Study on Bluff-Body Stabilized Premixed Flame with a Central Air/Fuel Jet

    Directory of Open Access Journals (Sweden)

    Yiheng Tong


    Full Text Available Bluff-body flame holders are commonly employed in many industrial applications. A bluff-body is usually adopted to enhance the downstream mixing of the combustion products and the fresh fuel-air mixtures, thus to improve the flame stability and to control the combustion process. In the present paper, flames stabilized by a conical-shape bluff-body flame holder with a central air/fuel jet were studied. Effects of both a central air jet and a central fuel jet on the structures and lean blowout limits of the premixed annular flames, and on the temperature on the upper surface of the bluff-body were investigated and presented. It was revealed that a central jet led to a considerable reduction of the temperature on the upper surface of the bluff-body. It was proposed to be caused by the alternation of flow structures (in the case with a central air jet altogether with the flame lifting from the burner (in the case with a central fuel jet. Thus, it might be used to solve the problem of the bluff-body with high heat loads in practical applications. The flame stability characteristics, for example the unstable flame dynamics and the lean blowout limits, varied with the injection of an air or fuel jet through the central pipe. Different blowout behaviors, being with or without the occurrence of flame split and flashing, caused by a central air jet were presented in the paper. In addition, when a small amount of central fuel jet (i.e., Uf/Ua = 0.045 was injected into the flow fields, an unsteady circular motion of the flame tip along the outer edge of the bluff-body was observed as well. Whereas, with an increase in the amount of the central fuel jet, the flame detached from the outer edge of the bluff-body and then became much more unstable. With a central air or fuel jet injecting into the flow field, premixed flames stabilized by the bluff-body became more unstable and easier to blowout.

  20. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed


    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  1. Turbulent structure and emissions of strongly-pulsed jet diffusion flames (United States)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  2. Ray tracing of chemiluminescence in an unconfined non-premixed turbulent jet flame using large-eddy simulation (United States)

    Ertem, C. K.; Janicka, J.; Dreizler, A.


    Optical diagnostic techniques, such as chemiluminescence imaging, are commonly used to study turbulent flames. Inherent to turbulent flames is the spatio-temporal variation of the volumetric distribution of temperature and chemical composition. In consequence, the index of refraction varies accordingly and causes distortion of any optical ray intersecting the turbulent flame. This distortion is well known as beam steering. Beam steering may degrade imaging quality by reducing the overall spatial resolution. Its impact of course depends on the actual specifications of the imaging system itself. In this study a methodology is proposed to tackle this issue numerically and is exemplified for chemiluminescence imaging in a well-known turbulent hydrogen-fueled jet flame. Large-eddy simulation (LES) of this unconfined non-premixed flame is used to simulate instantaneous volumetric distributions of the flow and scalar fields including the local index of refraction. This simulation additionally predicts local concentrations of electronically excited chemiluminescent active species. At locations with significantly high concentrations of luminescent species, optical rays are initiated in the direction of the array detector used for recording single chemiluminescence images. Assuming the validity of geometrical optics, these rays are tracked along their pathways. Their direction of propagation changes according to the local instantaneous distribution of the index of refraction. After leaving the computational domain of the ray tracing code which is fed by the LES, each ray is processed by the commercial code ZEMAX® and imaged onto an array detector. Measured and numerically simulated ensemble-averaged chemiluminescence images are compared to each other. Overall, a satisfying agreement is observed. The primary aim of this paper is the exposition of this method where numerical and experimental results are not any more compared in the flame but where this comparison is shifted

  3. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    KAUST Repository

    Bisetti, Fabrizio


    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.

  4. Visualization of the heat release zone of highly turbulent premixed jet flames (United States)

    Lv, Liang; Tan, Jianguo; Zhu, Jiajian


    Visualization of the heat release zone (HRZ) of highly turbulent flames is significantly important to understand the interaction between turbulence and chemical reactions, which is the foundation to design and optimize engines. Simultaneous measurements of OH and CH2O using planar laser-induced fluorescence (PLIF) were performed to characterize the HRZ. A well-designed piloted premixed jet burner was employed to generate four turbulent premixed CH4/air jet flames, with different jet Reynolds numbers (Rejet) ranging from 4900 to 39200. The HRZ was visualized by both the gradient of OH and the pixel-by-pixel product of OH and CH2O. It is shown that turbulence has an increasing effect on the spatial structure of the flame front with an increasing height above the jet exit for the premixed jet flames, which results in the broadening of the HRZ and the increase of the wrinkling. The HRZ remains thin as the Rejet increases, whereas the preheat zone is significantly broadened and thickened. This indicates that the smallest turbulent eddies can only be able to enter the flame front rather than the HRZ in the present flame conditions. The flame quenching is observed with Rejet = 39200, which may be due to the strong entrainment of the cold air from outside of the burned gas region.

  5. Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame (United States)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.


    UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) techniques are combined and applied to a lifted hydrogen jet diffusion flame. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (H2, O2, N2, H2O), and absolute hydroxyl radical concentration (OH) are obtained with a 'single' excimer laser for the first time. For OH measurements, the use of LIPF makes quenching corrections unnecessary. Results demonstrate that fuel and oxidizer are in a rich, premixed, and unignited condition in the center core of the lifted flame base. In the lifted zone, combustion occurs in an intermittent annular turbulent flame brush and strong finite-rate chemistry effects result in nonequilibrium values of temperature, major species, and OH radicals. Downstream in the slow three-body recombination zone, the major species concentrations are in partial equilibrium, the OH concentrations are in superequilibrium, and the temperatures are in subequilibrium. Far downstream in the flame, equilibrium values of temperature, OH radical, and major species are found.

  6. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.


    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  7. The Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Wen Zeng


    Full Text Available Experimental studies have been performed to investigate the effects of hydrogen addition on the combustion characteristics of Chinese No.3 jet fuel (RP-3 kerosene/air premixed flames. Experiments were carried out in a constant volume chamber and the influences of the initial temperatures of 390 and 420 K, initial pressures of 0.1 and 0.3 MPa, equivalence ratios of 0.6–1.6 and hydrogen additions of 0.0–0.5 on the laminar burning velocities, and Markstein numbers of Hydrogen (H2/RP-3/air mixtures were investigated. The results show that the flame front surfaces of RP-3/air mixtures remain smooth throughout the entire flame propagation process at a temperature of 390 K, pressure of 0.3 MPa, equivalence ratio of 1.3 and without hydrogen addition, but when the hydrogen addition increases from 0.0 to 0.5 under the same conditions, flaws and protuberances occur at the flame surfaces. It was also found that with the increase of the equivalence ratio from 0.9 to 1.5, the laminar burning velocities of the mixtures increase at first and then decrease, and the highest laminar burning velocity was measured at an equivalence ratio of 1.2. Meanwhile, with the increase of hydrogen addition, laminar burning velocities of H2/RP-3/air mixtures increase. However, the Markstein numbers of H2/RP-3/air mixtures decrease with the increase of hydrogen addition, which means that the flames of H2/RP-3/air mixtures become unstable with the increase of hydrogen addition.

  8. An experimental and numerical study of nitrogen oxide formation mechanisms in ammonia-hydrogen-air flames (United States)

    Kumar, Praveen

    The demand for sustainable alternative fuels is ever-increasing in the power generation, transportation, and energy sectors due to the inherent non-sustainable characteristics and political constraints of current energy resources. A number of alternative fuels derived from cellulosic biomass, algae, or waste are being considered, along with the conversion of electricity to non-carbon fuels such as hydrogen or ammonia (NH3). The latter is receiving attention recently because it is a non-carbon fuel that is readily produced in large quantities, stored and transported with current infrastructure, and is often a byproduct of biomass or waste conversion processes. However, pure or anhydrous ammonia combustion is severely challenging due to its high auto-ignition temperature (650 °C), low reactivity, and tendency to promote NOx formation. As such, the present study focuses on two major aspects of the ammonia combustion. The first is an applied investigation of the potential to achieve pure NH3 combustion with low levels of emissions in flames of practical interest. In this study, a swirl-stabilized flame typically used in fuel-oil home-heating systems is optimized for NH3 combustion, and measurements of NO and NH3 are collected for a wide range of operating conditions. The second major focus of this work is on fundamental investigation of NO x formation mechanisms in flames with high levels of NH3 in H2. For laminar premixed and diffusion jet flames, experimental measurements of flame speeds, exhaust-gas sampling, and in-situ NO measurements (NO PLIF) are compared with numerically predicted flames using complex chemical kinetics within CHEMKIN and reacting CFD codes i.e., UNICORN. From the preliminary testing of the NOx formation mechanisms, (1) Tian (2) Konnov and (3) GRI-Mech3.0 in laminar premixed H2/NH 3 flames, the Tian and Konnov mechanisms are found to capture the reduction in measured flame speeds with increasing NH3 in the fuel mixture, both qualitatively and

  9. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min


    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  10. Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration

    KAUST Repository

    Luca, Stefano


    A set of lifted tribrachial n-heptane flames in a laminar jet configuration are simulated. The simulations are performed using finite rate chemistry and detailed transport, and aim at investigating the propagation of tribrachial flames. Varying the inlet velocity of the fuel, different stabilization heights are obtained, and the dependence of the stabilization height in the inlet velocity is compared with experimental data. A detailed analysis of the flame geometry is performed by comparingthe flame structure to that of unstretched premixed flames. Issues related to differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front are discussed.

  11. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao


    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  12. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong


    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  13. An experimental study on turbulent lifted flames of methane in coflow jets at elevated temperatures

    KAUST Repository

    Choi, Byungchul


    An experimental study was conducted on the effects of initial temperature variation on the stabilization characteristics of turbulent nonpremixed flames in coflow jets of methane fuel diluted by nitrogen. The typical behavior seen in the study showed that the liftoff height increased linearly with the jet velocity regardless of the initial temperature in the turbulent regime. Two models were investigated for predicting liftoff heights in the methane jets: the premixed flame model and the large-scale mixing model. For the premixed flame model, the liftoff heights in the methane jets were accurately predicted using the thermal diffusivity of the unburned gas temperature αst,0, instead of that of the burned gas temperature αst,b. For the large-scale mixing model, however, the prediction of liftoff heights differed slightly for the various fuel mole fractions. However, when considering the initial fuel mass fraction YF,0, the liftoff heights were successfully predicted. This result implies that the characteristics of the unburned fuel-air mixture play a crucial role for flame stabilization in coflow jets for a variety of initial conditions. In the turbulent regime, the blowout velocity and the liftoff height at blowout could be accurately predicted by the two models based on a consideration of the physical properties and the buoyancy effect of the initial temperature variation. © 2012 Elsevier Ltd. All rights reserved.

  14. Hydrogen Flame Imaging System Soars to New, Different Heights (United States)


    When Judy and Dave Duncan of Auburn, Calif.-based Duncan Technologies Inc. (DTI) developed their color hydrogen flame imaging system in the early 1990's, their market prospects were limited. 'We talked about commercializing the technology in the hydrogen community, but we also looked at commercialization on a much broader aspect. While there were some hydrogen applications, the market was not large enough to suppport an entire company; also, safety issues were a concern,' said Judy Duncan, owner and CEO of Duncan Technologies. Using the basic technology developed under the Small Business Innovation Research Program (SBIR); DTI conducted market research, identified other applications, formulated a plan for next generation development, and implemented a far-reaching marketing strategy. 'We took that technology; reinvested our own funds and energy into a second-generation design on the overall camera electronics and deployed that basic technology intially in a series of what we call multi-spectral cameras; cameras that could image in both the visible range and the infrared,' explains Duncan. 'The SBIR program allowed us to develop the technology to do a 3CCD camera, which very few compaines in the world do, particularly not small companies. The fact that we designed our own prism and specked the coding as we had for the hydrogen application, we were able to create a custom spectral configuration which could support varying types of research and applications.' As a result, Duncan Technologies Inc. of Auburn, Ca., has achieved a milestone $ 1 million in sales.

  15. Response to acoustic forcing of laminar coflow jet diffusion flames

    KAUST Repository

    Chrystie, Robin


    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar coflow diffusion flames were acoustically forced, whose frequency responses were recorded as a function of excitation frequency and amplitude. The evolving structure of such flames was also examined through the use of video analysis and particle imaging velocimetry (PIV). For specific combinations of excitation frequency and amplitude, the frequency response of the flames was found to couple to that of the forcing, where the contribution of natural puffing frequency disappears. Such instances of coupling exhibited many harmonics of the excitation frequency, related indirectly to the natural puffing frequency. We showed how such harmonics form, through application of PIV, and furthermore unveiled insight into the physics of how the flame couples to the forcing under certain conditions. Our frequency response characterization provides quantitative results, which are of utility for both modeling studies and active-control strategies. Copyright © Taylor & Francis Group, LLC.

  16. Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Peer -Timo; Weber, Gunther H.; Pascucci, Valerio; Day, Marc; Bell, John B.


    This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.

  17. The effect of CO{sub 2} dissolved in a diesel fuel on the jet flame characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jin; Huang Zhen; Qiao Xinqi; Hou Yuchun [Shanghai Jiao Tong University, Shanghai (China). Research Institute of Internal Combustion Engine


    This paper is concerned with an experimental study of the jet diffusion flame characteristics of fuel containing CO{sub 2}. Using diesel fuel containing dissolved CO{sub 2} gas, experiments were performed under atmospheric conditions with a diesel hole-type nozzle of 0.19 mm orifice diameter at constant injection pressure. In this study, four different CO{sub 2} mass fraction in diesel fuel such as 3.13%, 7.18%, 12.33% and 17.82% were used to study the effect of CO{sub 2} concentration on the jet flame characteristics. Jet flame characteristics were measured by direct photography, meanwhile the image colorimetry is used to assess the qualitative features of jet flame temperature. Experimental results show that the CO{sub 2} gas dilution effect and the atomization effect have a great influence on the flame structure and average temperature. When the injection pressure of diesel fuel increased from 4 MPa to 6 MPa, the low temperature flame length increased from 18.4 cm to 21.7 cm and the full temperature flame length decreased from 147.6 cm to 134.7 cm. With the increase of CO{sub 2} gas dissolved in the diesel fuel, the jet flame full length decreased for the jet atomization being improved greatly meanwhile the low temperature flame length increased for the CO{sub 2} gas dilution effect; with the increase of CO{sub 2} gas dissolved in the diesel fuel, the average temperature of flame increases firstly and then falls. Experimental results validate that higher injection pressure will improve jet atomization and then increased the flame average temperature. 27 refs., 13 figs.

  18. Stability and Blowout Behavior of Jet Flames in Oblique Air Flows

    Directory of Open Access Journals (Sweden)

    Jonathan N. Gomes


    Full Text Available The stability limits of a jet flame can play an important role in the design of burners and combustors. This study details an experiment conducted to determine the liftoff and blowout velocities of oblique-angle methane jet flames under various air coflow velocities. A nozzle was mounted on a telescoping boom to allow for an adjustable burner angle relative to a vertical coflow. Twenty-four flow configurations were established using six burner nozzle angles and four coflow velocities. Measurements of the fuel supply velocity during liftoff and blowout were compared against two parameters: nozzle angle and coflow velocity. The resulting correlations indicated that flames at more oblique angles have a greater upper stability limit and were more resistant to changes in coflow velocity. This behavior occurs due to a lower effective coflow velocity at angles more oblique to the coflow direction. Additionally, stability limits were determined for flames in crossflow and mild counterflow configurations, and a relationship between the liftoff and blowout velocities was observed. For flames in crossflow and counterflow, the stability limits are higher. Further studies may include more angle and coflow combinations, as well as the effect of diluents or different fuel types.

  19. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Alnoman, Saeed


    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted flames were analyzed. With the coflow air at relatively low initial temperatures below 940 K, an external ignition source was required to stabilize the flame. These lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization. At high initial temperatures over 940 K, the autoignited flames were stabilized without requiring an external ignition source. These autoignited lifted flames exhibited either tribrachial edge structures or mild combustion behaviors depending on the level of fuel dilution. Two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then to lifted mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. © 2015 Elsevier Ltd. All rights reserved.

  20. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul


    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800. K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. © 2010 The Combustion Institute.

  1. Conditional Moment Closure Modelling of a Lifted H2/N2 Turbulent Jet Flame Using the Presumed Mapping Function Approach

    Directory of Open Access Journals (Sweden)

    Ahmad El Sayed


    Full Text Available A lifted hydrogen/nitrogen turbulent jet flame issuing into a vitiated coflow is investigated using the conditional moment closure (CMC supplemented by the presumed mapping function (PMF approach for the modelling of conditional mixing and velocity statistics. Using a prescribed reference field, the PMF approach yields a presumed probability density function (PDF for the mixture fraction, which is then used in closing the conditional scalar dissipation rate (CSDR and conditional velocity in a fully consistent manner. These closures are applied to a lifted flame and the findings are compared to previous results obtained using β-PDF-based closures over a range of coflow temperatures (Tc. The PMF results are in line with those of the β-PDF and compare well to measurements. The transport budgets in mixture fraction and physical spaces and the radical history ahead of the stabilisation height indicate that the stabilisation mechanism is susceptible to Tc. As in the previous β-PDF calculations, autoignition around the “most reactive” mixture fraction remains the controlling mechanism for sufficiently high Tc. Departure from the β-PDF predictions is observed when Tc is decreased as PMF predicts stabilisation by means of premixed flame propagation. This conclusion is based on the observation that lean mixtures are heated by downstream burning mixtures in a preheat zone developing ahead of the stabilization height. The spurious sources, which stem from inconsistent CSDR modelling, are further investigated. The findings reveal that their effect is small but nonnegligible, most notably within the flame zone.

  2. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan


    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  3. Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow

    KAUST Repository

    Kim, Minkuk


    The stabilization characteristics of liftoff and blowoff in nonpremixed laminar jet flames in a coflow have been investigated experimentally for propane fuel by applying AC and DC electric fields to the fuel nozzle with a single-electrode configuration. The liftoff and blowoff velocities have been measured by varying the applied voltage and frequency of AC and the voltage and the polarity of DC. The result showed that the AC electric fields extended the stabilization regime of nozzle-attached flame in terms of jet velocity. As the applied AC voltage increased, the nozzle-attached flame was maintained even over the blowout velocity without having electric fields. In such a case, a blowoff occurred directly without experiencing a lifted flame. While for the DC cases, the influence on liftoff was minimal. There existed three different regimes depending on the applied AC voltage. In the low voltage regime, the nozzle-detachment velocity of either liftoff or blowoff increased linearly with the applied voltage, while nonlinearly with the AC frequency. In the intermediate voltage regime, the detachment velocity decreased with the applied voltage and reasonably independent of the AC frequency. At the high voltage regime, the detachment was significantly influenced by the generation of discharges. © 2009 The Combustion Institute.

  4. Experimental study of an oxygen-hydrogen diffusion flame laden with solid alumina particles; Etude experimentale d'une flamme de diffusion oxygene-hydrogene ensemencee en particules solides d'alumine

    Energy Technology Data Exchange (ETDEWEB)

    Labor, S.


    Monocrystalline sapphire microspheres are generated through the melting of alumina (AL{sub 2}O{sub 3}) particles in a flame. The alumina particles are injected in a very peculiar O{sub 2}/H{sub 2} confined diffusion flame as it is a downwards vertical flame having fuel in periphery of a central powdered oxygen jet. Quantitative measurements were carried out (ADL, PIV) and supplemented by a numerical study (N3S-Natur). (1) The laminar behavior of the isothermal conditions is kept through reactive flow. Therefore, particles will mainly collide due to speed gradients. (2) It has been shown that an axial particle will have a transit time int the high temperature zone very different to that of an off-line one. (3) The PIV date proved that the particle density was not homogeneous. (4) The hydrogen jet hardly influences the flame aerodynamic structure. Conversely, the central oxygen jet is at premium due to its effect on both the flame speed and temperature distribution. (author)

  5. Numerical and Experimental Investigation of Computed Tomography of Chemiluminescence for Hydrogen-Air Premixed Laminar Flames

    Directory of Open Access Journals (Sweden)

    Liang Lv


    Full Text Available Computed tomography of chemiluminescence (CTC is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The OH⁎ chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the OH⁎ chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1. The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.

  6. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust. (United States)

    Hu, Jichao; Chang, Juntao; Bao, Wen


    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  7. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu


    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  8. Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame (United States)

    You, Jiaping; Yang, Yue


    We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).

  9. Extending the predictions of chemical mechanisms for hydrogen combustion by Comparison of predicted and measured flame temperatures in burner-stabilized, 1-D flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    A method is presented for extending the range of conditions for which the performance of chemical mechanisms used to predict hydrogen burning velocities can be evaluated. Specifically, by comparing the computed variation of flame temperature with mass flux in burner-stabilized flat flames with those

  10. Acoustically Forced Coaxial Hydrogen/Liquid Oxygen Jet Flames (United States)


    propellants be stored in condensed form – e.g., kerosene, liquid oxygen in rockets • Combustion systems can no longer be designed to meet modern...of the reactants – e.g., liquid rockets, future gas turbines • When the combustion systems are for propulsion, limited tankage dictates that on-board...Symmetric recirculation zones Low-speed liquid O2 High-speed gaseous H2 Asymmetric recirculation zones Combustion case Results show large oxygen-side

  11. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber. (United States)

    Xiao, Huahua; Sun, Jinhua; Chen, Peng


    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dynamics of bluff-body-stabilized premixed hydrogen/air flames in a narrow channel

    KAUST Repository

    Lee, Bok Jik


    Two-dimensional direct numerical simulations were conducted for bluff-body stabilized flames of a lean hydrogen/air mixture at near-blowoff conditions in a meso-scale channel. Parametric simulations were conducted by incrementally varying the inflow velocity in the vicinity of the blowoff limit, and the corresponding flame response was monitored. The present study is a showcase of combustion DNS with embedded boundary representation, and full demonstration of the detailed visualization of the near-blowoff flame characteristics. As the inflow velocity approaches blowoff limit, the flame dynamics exhibit a complex sequence of events, such as periodic local extinction and recovery, and regrowth of the bulk flame by the flame segments attached behind the bluff-body. The total extinction is observed as the attached flames shrink down and are no longer able to regrow the bulk flames. Despite the disparity in the physical scale under study, the observed sequence of the extinction pathway shows a strong similarity with experimental observations at larger scale combustion systems. © 2015 The Combustion Institute.


    KAUST Repository

    Mansour, Morkous S.


    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  14. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions (United States)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal


    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  15. Blow-out of nonpremixed turbulent jet flames at sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang


    Blow-out limits of nonpremixed turbulent jet flames in quiescent air at sub-atmospheric pressures (50–100 kPa) were studied experimentally using propane fuel with nozzle diameters ranging 0.8–4 mm. Results showed that the fuel jet velocity at blow-out limit increased with increasing ambient pressure and nozzle diameter. A Damköhler (Da) number based model was adopted, defined as the ratio of characteristic mixing time and characteristic reaction time, to include the effect of pressure considering the variations in laminar burning velocity and thermal diffusivity with pressure. The critical lift-off height at blow-out, representing a characteristic length scale for mixing, had a linear relationship with the theoretically predicted stoichiometric location along the jet axis, which had a weak dependence on ambient pressure. The characteristic mixing time (critical lift-off height divided by jet velocity) adjusted to the characteristic reaction time such that the critical Damköhler at blow-out conditions maintained a constant value when varying the ambient pressure.

  16. The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body

    KAUST Repository

    Kim, Yu Jeong


    Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

  17. Autoignited and non-autoignited lifted flames of pre-vaporized n-heptane in coflow jets at elevated temperatures

    KAUST Repository

    Choi, Sangkyu


    The characteristics of laminar lifted flames of pre-vaporized n-heptane in coflow jets were investigated under both non-autoignited and autoignited conditions by varying the initial temperature. The fuel tested was n-heptane considering the importance as a primary reference fuel for gasoline and its low temperature ignition behavior at relatively low pressure. The results showed that the lifted flame edge in the non-autoignited regime had a tribrachial structure with lean and rich premixed flame wings together with a trailing diffusion flame. The liftoff heights correlated reasonably well with the fuel jet velocity scaled by the stoichiometric laminar burning velocity regardless of the initial temperature and the nitrogen dilution. The liftoff velocity multiplied by the buoyancy-induced velocity and the blowout velocity scaled by the mole fraction of the fuel correlated well with the stoichiometric laminar burning velocity. When the initial temperature was above 900. K, flames were autoignited without any external ignition source. Autoignited lifted flames with both tribrachial edges and mild combustion characteristics were observed. The correlation of the liftoff height with the calculated adiabatic ignition delay time was weak, unlike in cases with gaseous fuels of C1-C4 hydrocarbons in which the liftoff height of the autoignited flames correlated well with the square of the adiabatic ignition delay time. When the mole fraction of the fuel was small, mild combustion behaviors were exhibited with edge flames without distinct tribrachial structures. The liftoff height was correlated with the fuel jet velocity scaled by the initial fuel mass fraction, while the dependence on the ignition delay time was weak when compared with the gaseous fuels. © 2013 The Combustion Institute.

  18. Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry (United States)

    Coriton, Bruno; Frank, Jonathan H.


    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13 000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. The production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1 ¯-s2 ¯ plane and orthogonal to s3 ¯.

  19. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.


    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  20. Combined experimental and computational study of laminar, axisymmetric hydrogen-air diffusion flames

    NARCIS (Netherlands)

    Toro, V.V.; Mokhov, A.V.; Levinsky, H.B.; Smooke, MD


    We investigate the structure of two-dimensional, axisymmetric, laminar hydrogen-air flames in which a cylindrical fuel stream is surrounded by coflowing air, using laser-diagnostic and computational methods. Spontaneous Raman scattering and coherent anti-Stokes Raman scattering (CARS) are used to

  1. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem


    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  2. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives (United States)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.


    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  3. Quantification of the uncertainties in the prediction of extinction of hydrogen-air diffusion flames (United States)

    Kseib, Nicolas; Urzay, Javier; Iaccarino, Gianluca


    The study of the physical processes that lead to extinction of flames in gaseous hydrogen-air non-premixed combustion is of paramount importance for the reliable design of power plants and advanced propulsion systems in automobiles and hypersonic aircrafts. However, there remain several uncertainties in the experimental quantification of reaction rates of elementary steps in most of hydrogen-air mechanisms, which can produce hazards in hydrogen manipulation and engine malfunction. In this study, the effects of aleatory uncertainties in the chemical reaction-rate constants induced in hydrogen-air counterflow diffusion-flame extinction processes are addressed, with a probabilistic representation of the uncertain parameters sampled with a Markov-Chain Monte Carlo algorithm. Measurements of the reaction-rate constants and their associated uncertainty factors, reported earlier for the Stanford hydrogen-air detailed chemical mechanism, are used to study the propagation of uncertainties in the calculation of scalar dissipation rates at extinction. Non-intrusive methods are used to analyze the variablities, with the probability density function of the scalar dissipation rate being sampled around regions involving flame extinction and global sensitivity indices being computed by Monte Carlo sampling.

  4. Production of JET fuel containing molecules of high hydrogen content

    Directory of Open Access Journals (Sweden)

    Tomasek Sz.


    Full Text Available The harmful effects of aviation can only be reduced by using alternative fuels with excellent burning properties and a high hydrogen content in the constituent molecules. Due to increasing plastic consumption the amount of the plastic waste is also higher. Despite the fact that landfill plastic waste has been steadily reduced, the present scenario is not satisfactory. Therefore, the aim of this study is to produce JET fuel containing an alternative component made from straight-run kerosene and the waste polyethylene cracking fraction. We carried out our experiments on a commercial NiMo/Al2O3/P catalyst at the following process parameters: T=200-300°C, P=40 bar, LHSV=1.0-3.0 h-1, hydrogen/hydrocarbon ratio= 400 Nm3/m3. We investigated the effects of the feedstocks and the process parameters on the product yields, the hydrodesulfurization and hydrodearomatization efficiencies, and the main product properties. The liquid product yields varied between 99.7-99.8%. As a result of the hydrogenation the sulfur (1-1780 mg/kg and the aromatic contents (9.0-20.5% of the obtained products and the values of their smoke points (26.0-34.7 mm fulfilled the requirements of JET fuel standard. Additionally, the concentration of paraffins increased in the products and the burning properties were also improved. The freezing points of the products were higher than -47°C, therefore product blending is needed.

  5. Molecular emission characteristics of various fluorides in a low-temperature-hydrogen diffusion flame. (United States)

    Dagnall, R M; Fleet, B; Risby, T H; Deans, D R


    A capillary burner supporting a nitrogen/hydrogen diffusion flame has been evaluated as a possible means of detection for several volatile fluorides after their gas-chromatographic separation. The fluorides of As, B, C, Ge, I, Mo, P, Re, S, Sb, Se, Si, Te and W were formed by the reaction of the element with chlorine trifluoride, and the intense molecular emission given by each was recorded. An attempt was made to identify the emitting species.

  6. State Relationships of Laminar Permanently-Blue Opposed-Jet Hydrocarbon-Fueled Diffusion Flames. Appendix D (United States)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)


    The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon

  7. State Relationships of Laminar Permanently-Blue Opposed-Jet Hydrocarbon-Fueled Diffusion Flames. Appendix G (United States)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)


    The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240/s at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled diffusion

  8. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen


    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  9. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet (United States)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis


    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  10. Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions (United States)

    Markovich, D. M.; Abdurakipov, S. S.; Chikishev, L. M.; Dulin, V. M.; Hanjalić, K.


    Low-order coherent structures of non-reacting and combusting low- and high-swirl (swirl rates S = 0.41 and S = 1.0) jet flows in an open-ended cylindrical model combustor have been studied using the proper orthogonal decomposition (POD) and the dynamic mode decomposition (DMD) of high-repetition stereoscopic particle image velocimetry (PIV) velocity measurements. Lean methane-air mixture with the equivalence ratio of 0.6 was chosen for the reacting case as lean flames are generally less stable and more receptive to active control. The nonreacting and reacting flows at the same swirl rates exhibit qualitatively similar overall features characterized by highly turbulent annular jets enveloping the central retarding zone (for S = 0.41) or a recirculating bubble (for S = 1.0). At low swirl the dominant coherent structures appeared in the form of tilted ring vortices, evolving into helices as the swirl rate increases. The high-swirl flows are characterized by a pair of well-organized counter-rotating co-winding helical vortices originating in the inner and outer jet shear layers. Vortex cores were detected in both cases, but at low swirl it was less energetic and not associated with a distinct precession frequency. The core region of the low-swirl flame shows intermittent mild flow reversal without permanent central recirculation zone. The thermal expansion enhances the spreading of the reacting flow, especially at the high swirl number. Here the helices pitch is smaller and some neighbouring vortices merge into vortical sheets that act as shear shield confining the flame within the inner shear layer. Despite the significant effects of combustion on the time-averaged characteristics for the high-swirl, the dynamics of both flows were dominated by the global inviscid helical instability mode with a DMD detected conspicuous frequencies of 223 Hz for the nonreacting jet and 257 Hz for the flame.

  11. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES (United States)

    Cicoria, David; Chan, C. K.


    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  12. Hydrogen Adsorption in Flame Synthesized and Lithium Intercalated Carbon Nanofibers--A Comparative Study. (United States)

    Dhand, Vivek; Prasad, J Sarada; Rao, Venkateswer M; Kalluri, Sujith; Jain, Pawan Kumar; Sreedhar, B


    Carbon nanofibers (CNF) have been synthesized under partial combustion conditions in a flame reactor using different mixtures of hydrocarbon gases in the presence and absence of precursors. The hydrogen (H2) adsorption studies have been carried out using a high pressure Sievert's apparatus maintained at a constant temperature (24 degrees C). The flame synthesized CNFs showed high degree of H2 adsorption capacities at 100 atm pressure. The highest H2 capacities recorded have been 4.1 wt% [for CNF produced by liquefied petroleum gas (LPG)-Air (E-17)], 3.7 wt% [for nano carbons produced by Methane-Acetylene-Air (EMAC-4)] and 5.04 wt% for [Lithium intercalated sample (Li-EMAC-4)] respectively.


    KAUST Repository

    Lee, Bok Jik


    The flame stability is known to be significantly enhanced when the flame is attached to a bluff-body. The main interest of this study is on the stability of the flame in a meso-scale channel, considering applications such as combustion-based micro power generators. We investigate the dynamics of lean premixed hydrogen/air flames stabilized behind a square box in a two-dimensional meso-scale channel with high-fidelity numerical simulations. Characteristics of both non-reacting flows and reacting flows over the bluff-body are studied for a range of the mean inflow velocity. The flame stability in reacting flows is investigated by ramping up the mean inflow velocity step by step. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blowoff limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to blowoff limit, the local extinction and recovery becomes highly transient and a failure of recovery leads blowoff and extinction of the flame kernel.

  14. The Reaction between Sodium Hydroxide and Atomic Hydrogen in Atmospheric and Flame Chemistry. (United States)

    Gómez Martín, J C; Seaton, C; de Miranda, M P; Plane, J M C


    We report the first direct kinetic study of the gas-phase reaction NaOH + H → Na + H2O, which is central to the chemistry of sodium in the upper atmosphere and in flames. The reaction was studied in a fast flow tube, where NaOH was observed by multiphoton ionization and time-of-flight mass spectrometry, yielding k(NaOH + H, 230-298 K) = (3.8 ± 0.8) × 10(-11) cm(3) molecule (-1) s(-1) (at 2σ confidence level), showing no significant temperature dependence over the indicated temperature range and essentially in agreement with previous estimates of the rate constant in hydrogen-rich flames. We show, using theoretical trajectory calculations, that the unexpectedly slow, yet T-independent, rate coefficient for NaOH + H is explained by severe constraints in the angle of attack that H can make on NaOH to produce H2O. This reaction is also central to explaining Na-catalyzed flame inhibition, which has been proposed to occur via the sequence Na + OH (+ M) → NaOH followed by NaOH + H → Na + H2O, thereby effectively recombinating H and OH to H2O. RRKM calculations for the recombination of Na and OH yield k(Na + OH + N2, 300-2400 K) = 2.7 × 10(-29) (300/T)(1.2) cm(6) molecule(-2) s(-1), in agreement with a previous flash photolysis measurement at 653 K and Na-seeded flame studies in the 1800-2200 K range. These results therefore provide strong evidence to support the mechanism of flame inhibition by Na.

  15. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang


    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  16. Shock-wave proton acceleration from a hydrogen gas jet (United States)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly


    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  17. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari


    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  18. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame

    KAUST Repository

    Attili, Antonio


    The formation, growth, and transport of soot is investigated via large scale numerical simulation in a three-dimensional turbulent non-premixed n-heptane/air jet flame at a jet Reynolds number of 15,000. For the first time, a detailed chemical mechanism, which includes the soot precursor naphthalene and a high-order method of moments are employed in a three-dimensional simulation of a turbulent sooting flame. The results are used to discuss the interaction of turbulence, chemistry, and the formation of soot. Compared to temperature and other species controlled by oxidation chemistry, naphthalene is found to be affected more significantly by the scalar dissipation rate. While the mixture fraction and temperature fields show fairly smooth spatial and temporal variations, the sensitivity of naphthalene to turbulent mixing causes large inhomogeneities in the precursor fields, which in turn generate even stronger intermittency in the soot fields. A strong correlation is apparent between soot number density and the concentration of naphthalene. On the contrary, while soot mass fraction is usually large where naphthalene is present, pockets of fluid with large soot mass are also frequent in regions with very low naphthalene mass fraction values. From the analysis of Lagrangian statistics, it is shown that soot nucleates and grows mainly in a layer close to the flame and spreads on the rich side of the flame due to the fluctuating mixing field, resulting in more than half of the total soot mass being located at mixture fractions larger than 0.6. Only a small fraction of soot is transported towards the flame and is completely oxidized in the vicinity of the stoichiometric surface. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. Finally, given the difficulties in obtaining quantitative data in experiments of turbulent sooting flames, this simulation provides valuable data to guide the development of

  19. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)


    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  20. Experimental study of laminar and turbulent flame speed of a spherical flame in a fan-stirred closed vessel for hydrogen safety application

    Energy Technology Data Exchange (ETDEWEB)

    Goulier, J. [Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS-ICARE (France); Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France); Chaumeix, N., E-mail: [Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS-ICARE (France); Halter, F. [Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS-ICARE (France); Meynet, N.; Bentaïb, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France)


    The aim of this paper is to report new experimental results on the effect of turbulence on the propagation speed of hydrogen/air flames. To do so, a new experimental setup, called the spherical bomb, has been designed and built at CNRS-ICARE laboratory. With this new setup, the effect of a given and well-characterized turbulence intensity on the increase of hydrogen/air flame speed can be investigated. This new facility consists of a spherical vessel equipped (563 mm internal diameter) equipped with 8 motors which are linked to fans inside the bomb. Fan actuation induces the generation of a turbulent flow inside the vessel prior to any ignition. The spherical bomb is equipped with 4 quartz windows (200 mm optical diameter) that allow the use of a Particle Image Velocimetry diagnostic in order to characterize the turbulence level inside the bomb. The flame propagation was recorded using a high speed camera at 19,002 frames per second. These experiments were performed for lean to stoichiometric hydrogen/air mixtures (16–20% of H{sub 2} in air), initially at ambient temperature and pressure, and for a rotation speed from 1000 to 5000 rpm. The PIV measurements showed that a homogeneous and isotropic turbulence is created with a fluctuation speed that can reach 4 m/s at 5000 rpm.

  1. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Noel [Univ. of Texas, Austin, TX (United States)


    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  2. Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester (United States)

    Wang, Ten-See; Foote, John; Litchford, Ron


    A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  3. Mixing and combustion characterization in a high speed subsonic hydrogen/air jet configuration: mixing enhancement by stream-wise vorticity generation; Caracterisation du melange et de la combustion dans une configuration de jet hydrogene/air subsonique a haute vitesse: augmentation du melange par generation de vorticite longitudinale

    Energy Technology Data Exchange (ETDEWEB)

    Theron, M.


    This study deals with hydrogen/air combustion optimization in the combustion chambers of air-breathing propulsion systems. First, mixing and combustion are characterized experimentally in a hydrogen jet discharged from a slot-injector in a co-flowing air flow (basic configuration). The inert jet behaviour is rather similar to that of strongly advected jets, whereas in reactive conditions, it is characteristic of the transition between weakly and strongly advected jets, because of a strong favorable pressure gradient induced by heat release. Several points indicate that mixing is less efficient than in the inert jet. A coherent longitudinal pulsating movement is also detected in the reactive jet, at a frequency of 700 Hz. Reaction zone topology is studied and combustion efficiency calculation suggests the need for passive mixing enhancement devices for combustion optimization: stream-wise vorticity generators (tilted tabs at the injector trailing edge) are chosen. Results from a numerical study in inert conditions highlight the phenomena inherent to the use of such devices and the influence of tabs angle on the resulting mixture. An experimental study of the reactive case prove that these tabs are rather efficient. Finally, clues for future studies are given; they concern mainly mixing enhancement devices improvement, in order to solve flame stabilization problems encountered. (author)

  4. The Response of Cryogenic H2/O2 Coaxial Jet Flames to Acoustic Disturbances (POST PRINT) (United States)


    passages are sufficiently long to ensure fully-developed turbulent flow at the injector exit. High framerate images were captured using a Phantom 7.10...node / antinode with respect to the flame were examined. The flame response was doc- umented using high -speed imaging including backlit visualization... high -fidelity rocket engine design tools. Previous work at AFRL has made major contributions towards understanding the coupling between acoustic

  5. The chemical kinetics and thermodynamics of sodium species in oxygen-rich hydrogen flames (United States)

    Hynes, A. J.; Steinberg, M.; Schofield, K.


    Results are presented which, it is claimed, lead to a correction of previous misconceptions over the relative importance and kinetics of NaO2. It is shown that its rapid conversion to NaO and NaOH is such that it can severely perturb the NaOH/Na ratio and produce significant concentration overshoots over that predicted from the balance of the reaction of Na with H2O. This becomes increasingly the case in flames of large O2 concentrations and temperatures below 2500 K; and the corresponding large rate constants for the termolecular formation of the other alkali peroxides imply that similar considerations will be necessary for them. Depending on the rate constants for the exothermic conversions of MO2 to MO or MOH, the steady-state concentrations of MO2 could be more or less significant than for sodium. Owing to numerous reactions that produce these conversions, the MOH species will probably be the dominant species in all cases in oxygen-rich hydrogen or hydrocarbon flames, with MO concentrations at not greater than 1 percent of the bound metal.

  6. Flame-Made Cu/TiO2 and Cu-Pt/TiO2 Photocatalysts for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Massimo Bernareggi


    Full Text Available The effect of Cu or Cu-Pt nanoparticles in TiO2 photocatalysts prepared by flame spray pyrolysis in one step was investigated in hydrogen production from methanol photo-steam reforming. Two series of titanium dioxide photocatalysts were prepared, containing either (i Cu nanoparticles (0.05–0.5 wt% or (ii both Cu (0 to 0.5 wt% and Pt (0.5 wt% nanoparticles. In addition, three photocatalysts obtained either by grafting copper and/or by depositing platinum by wet methods on flame-made TiO2 were also investigated. High hydrogen production rates were attained with copper-containing photocatalysts, though their photoactivity decreased with increasing Cu loading, whereas the photocatalysts containing both Cu and Pt nanoparticles exhibit a bell-shaped photoactivity trend with increasing copper content, the highest hydrogen production rate being attained with the photocatalyst containing 0.05 wt% Cu.

  7. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame (United States)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.


    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.

  8. Turbulent Combustion Modelling of a Confined Premixed Methane/Air Jet Flame Using Tabulated Chemistry

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Kok, Jacobus B.W.; Vázquez, M.; Houzeaux, G.


    The present work addresses the coupling of a flamelet database that can accurately represent the flame structure in composition space with a low-Mach approximation of the Navier-Stokes equations. An advancement of the CFI combustion model, which is currently based on laminar premixed flamelets, is

  9. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.


    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  10. Approximate Deconvolution and Explicit Filtering For LES of a Premixed Turbulent Jet Flame (United States)


    Navier- Stokes equations are in their fully com- pressible form together with scalars balance equa- tions. The convective terms are computed resort- ing to...Layers an Turbulence, pp. 472–475. Amer- ican Meteorologic Society. Kim, W.-W., S. Menon, and H. C. Mongia (1999). Large-eddy simulation of a gas...Flame 157(3), 579–601. Tatsumi, S., L. Martinelli, and A. Jameson (1995). Flux-limited schemes for the compressible navier- stokes equations. AIAA

  11. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. (United States)

    Zhang, Jingjing; Zhao, Chen


    The traditional methodology includes a carbon-chain shortening strategy to produce bio-jet fuel from lipids via a two-stage process with hydrogen. Here, we propose a new solution using a carbon-chain filling strategy to convert C10 terpene and lipids to jet fuel ranged hydrocarbons with aromatic hydrocarbon ingredients in the absence of hydrogen.

  12. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae


    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  13. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed


    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.


    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  15. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David


    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  16. Electric and spectroscopic properties of argon-hydrogen RF microplasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Souza-Correa, J A; Oliveira, C; Amorim, J [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol-CTBE, Caixa Postal 6170, 13083-970, Campinas, Sao Paulo (Brazil); Gomes, M P, E-mail:, E-mail:, E-mail: gomesmp@ita.b, E-mail: [Departamento de Fisica, Instituto Tecnologico de Aeronautica-ITA, Praca Marechal Eduardo Gomes 50, 12.228-900, Sao Jose dos Campos, Sao Paulo (Brazil)


    Microplasma jets of argon-hydrogen (Ar-H{sub 2}) gas mixture were generated by 144.0 MHz radio-frequency (RF) waves at powers of 5 W, 10 W, 20 W and 50 W. The experimental setup employed creates stable microplasmas at atmospheric pressure from 5.0 mm up to 20.0 mm visual glow lengths. We have determined the rms voltages, the rms electric currents and the power absorptions of these microplasma jets. By making use of optical spectroscopy, the emission spectra of Ar-H{sub 2} microplasma jets were recorded in the range 3060-8200 A, in order to estimate the axial distribution profiles of electron density, rotational temperature, excitation temperature and hydrogen atomic temperature.

  17. Study of Buoyancy Effects in Diffusion Flames Using Rainbow Schlieren Deflectometry (United States)

    Agrawal, Ajay K.; Gollahalli, Subramanyam R.; Griffin, DeVon


    Diffusion flames are extensively encountered in many domestic and industrial processes. Even after many decades of research, a complete understanding of the diffusion flame structure is not available. The structure and properties of the flames are governed by the mixing (laminar or turbulent), chemical kinetics, radiation and soot processes. Another important phenomenon that affects flame structure in normal gravity is buoyancy. The presence of buoyancy has long hindered the rational understanding of many combustion processes. In gas jet diffusion flames, buoyancy affects the structure of the shear layer, the development of fluid instabilities, and formation of the coherent structures in the near nozzle region of the gas jets. The buoyancy driven instabilities generate vorticial structures outside the flame resulting in flame flicker. The vortices also strongly interact with the small-scale structures in the jet shear layer. This affects the transitional and turbulence characteristics of the flame. For a fundamental understanding of diffusion flames it is essential to isolate the effects of buoyancy. This is the primary goal of the experiments conducted in microgravity. Previous investigations, have shown dramatic differences between the jet flames in microgravity and normal gravity. It has been observed that flames in microgravity are taller and more sooty than in normal gravity. The fuels used in these experiments were primarily hydrocarbons. In the absence of buoyancy the soot resides near the flame region, which adversely affects the entrainment of reactants. It is very important to eliminate the interference of soot on flame characteristics in microgravity. The present work, therefore, focuses on the changes in the flame structure due to buoyancy without the added complexities of heterogeneous reactions. Clean burning hydrogen is used as the fuel to avoid soot formation and minimize radiative losses. Because of the low luminosity of hydrogen flames, we use

  18. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production (United States)

    Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.


    Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar  +  0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.

  19. Modelisations des effets de surface sur les jets horizontaux subsoniques d'hydrogene et de methane (United States)

    Gomez, Luis Fernando

    Le developpement des codes et de normes bases sur une methodologie scientifique requiert la capacite de predire l'etendue inflammable de deversements gazeux d'hydrogene sous differentes conditions. Des etudes anterieures ont deja etabli des modeles bases sur les lois de conservation de la mecanique des fluides basees sur des correlations experimentales qui permettent de predire la decroissance de la concentration et de la vitesse d'un gaz le long de l'axe d'un jet libre vertical. Cette etude s'interesse aux effets de proximite a une surface horizontale parallele sur un jet turbulent. Nous nous interessons a son impact sur l'etendue du champ de la concentration et sur l'enveloppe inflammable en particulier. Cette etude est comparative : l'hydrogene est compare au methane. Ceci permet de degager l'influence des effets de difference de la densite sur le comportement du jet, et de comparer le comportement de l'hydrogene aux correlations experimentales, qui ont ete essentiellement etablies pour le methane. Un modele decrivant l'evolution spatio-temporelle du champ de concentration du gaz dilue est propose, base sur la mecanique des fluides computationnelle. Cette approche permet de varier systematiquement les conditions aux frontieres (proximite du jet a la surface, par exemple) et de connaitre en detail les proprietes de l'ecoulement. Le modele est implemente dans le code de simulations par volumes finis de FLUENT. Les resultats des simulations sont compares avec les lois de similitudes decoulant de la theorie des jets d'ecoulements turbulents libres ainsi qu'avec les resultats experimentaux disponibles. L'effet de la difference des masses molaires des constituantes du jet et des constituantes du milieu de dispersion est egalement etudie dans le contexte du comportement d'echelle de la region developpee du jet.

  20. Experimental Investigations Of The Influence Of Pressure On Critical Extinction Conditions Of Laminar Nonpremixed Flames Burning Condensed Hydrocarbon Fuels, Jet Fuels, And Surrogates (United States)


    model combustion of practical fuels at high pressures. Commercial fuels, including jet fuels, kerosene, gasoline, and diesel , are composed of hundreds...the experimental testing of fuels with high boiling points for which it is difficult to avoid pyrolysis reactions during fuel vaporization [22]. Figure...flame as well as stabi- lize it. Product gases are cooled using fine water sprays within the burner body, then separated from the cooling water in a

  1. Experimental Study of Hydrogen Addition Effects on a Swirl-Stabilized Methane-Air Flame

    Directory of Open Access Journals (Sweden)

    Mao Li


    Full Text Available The effects of H2 addition on a premixed methane-air flame was studied experimentally with a swirl-stabilized gas turbine model combustor. Experiments with 0%, 25%, and 50% H2 molar fraction in the fuel mixture were conducted under atmospheric pressure. The primary objectives are to study the impacts of H2 addition on flame lean blowout (LBO limits, flame shapes and anchored locations, flow field characteristics, precessing vortex core (PVC instability, as well as the CO emission performance. The flame LBO limits were identified by gradually reducing the equivalence ratio until the condition where the flame physically disappeared. The time-averaged CH chemiluminescence was used to reveal the characteristics of flame stabilization, e.g., flame structure and stabilized locations. In addition, the inverse Abel transform was applied to the time-averaged CH results so that the distribution of CH signal on the symmetric plane of the flame was obtained. The particle image velocimetry (PIV was used to detect the characteristics of the flow field with a frequency of 2 kHz. The snapshot method of POD (proper orthogonal decomposition and fast Fourier transform (FFT were adopted to capture the most prominent coherent structures in the turbulent flow field. CO emission was monitored with an exhaust probe that was installed close to the combustor exit. The experimental results indicated that the H2 addition extended the flame LBO limits and the operation range of low CO emission. The influence of H2 addition on the flame shape, location, and flow field was observed. With the assistance of POD and FFT, the combustion suppression impacts on PVC was found.

  2. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.


    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  3. Cars measurements at high pressure in a CH4/O2 Jet flame (United States)

    Grisch, F.; Vingert, L.; Grenard, P.; Fabelinsky, V.; Vereschagin, K.; Oschwald, M.


    The combustion process in a high-pressure gaseous methane/gaseous oxygen rocket model combustor was investigated by means of optical and laser spectroscopic measurements as well as numerical simulations. The combustor was operated at a pressure of 1.0 MPa and at two mixture ratios (O/F = 1 and 2). OH∗ chemiluminescence imaging was applied for a qualitative analysis of the position and shape of the flame brush. For quantitative results, coherent anti-Stokes Raman spectroscopy (CARS) was applied to measure the spatial temperature distribution inside the combustion chamber. H2 and H2O molecules were probed simultaneously using two synchronized broadband CARS setup. Temperatures were derived from the H2 and H2O single-shot CARS spectra. Furthermore, the Transported Partially Stirred Reactor (TPaSR) model has been employed for simulations at the same operating conditions. The comparison of the numerical simulations to the experimental temperature distributions shows already qualitative agreement although further improvements are still needed.

  4. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG (United States)

    Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET


    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  5. Numerical and experimental study of premixed turbulent hydrogen flame propagation in lean and wet atmosphere; Etude experimentale et numerique de la propagation de flammes premelangees turbulentes dans une atmosphere pauvre en hydrogene et humide

    Energy Technology Data Exchange (ETDEWEB)

    Malet, F


    The main objectives of PhD work concern the characterisation of hydrogen flame propagation in air-steam mixture representative of reactor containment atmosphere in severe accident situations. Laminar and turbulent flame regimes were investigated with: (1) spherical bomb is used to perform laminar flame tests. Different parameters were identified: the laminar flame velocity, SL{sup 0}, and flame thickness, d, the integral length scale, LT, and intensity of turbulence, the Lewis and Zeldovich numbers, Le, b, the expansion ratio, s, the product speed of sound Csp. (2) ENACCEF facility dedicated to flame acceleration. This facility is highly instrumented (16 optical windows with PMT, 9 pressure transducers) to follow the flame propagation. The lower part of ENACCEF has 6 gas sampling locations. The mixture is ignited by a spark discharge at the bottom-end using electrodes. Tests performed on ENACCEF show the effect of blockage ratio, obstacles shape and gas composition on flame velocity. Some tests performed on the previous facilities were numerically simulated with TONUS CFD code. (author)

  6. The effects of the hydrogen addition on the HCN profiles in fuel-rich-premixed, burner-stabilized C1-C3 alkane flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.


    The effects of hydrogen addition on HCN formation and consumption in fuel-rich, burnerstabilized methane, ethane and propane flames are reported. The HCN mole fraction was measured using quartz-microprobe sampling followed by direct absorption spectroscopy. Experiments were performed at equivalence

  7. The effects of hydrogen addition on Fenimore NO formation in low-pressure, fuel-rich-premixed, burner-stabilized CH4/O-2/N-2 flames

    NARCIS (Netherlands)

    Sepman, A. V.; van Essen, V. M.; Mokhov, A. V.; Levinsky, H. B.


    We investigate the effects of hydrogen addition on Fenimore NO formation in fuel-rich, low-pressure burner-stabilized CH4/O-2/N-2 flames. Towards this end, axial profiles of temperature and mole fractions of CH and NO are measured using laser-induced fluorescence (LIF). The experiments are performed

  8. The effects of hydrogen addition on NO formation in atmospheric-pressure, fuel-rich-premixed, burner-stabilized methane, ethane and propane flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    The effects of hydrogen addition on NO formation in fuel-rich, burner-stabilized methane, ethane and propane flames are reported. Profiles of temperature and NO mole fraction were obtained using spontaneous Raman scattering and laser-induced fluorescence (LIF), respectively. Experiments were

  9. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. (United States)

    Obst, Lieselotte; Göde, Sebastian; Rehwald, Martin; Brack, Florian-Emanuel; Branco, João; Bock, Stefan; Bussmann, Michael; Cowan, Thomas E; Curry, Chandra B; Fiuza, Frederico; Gauthier, Maxence; Gebhardt, René; Helbig, Uwe; Huebl, Axel; Hübner, Uwe; Irman, Arie; Kazak, Lev; Kim, Jongjin B; Kluge, Thomas; Kraft, Stephan; Loeser, Markus; Metzkes, Josefine; Mishra, Rohini; Rödel, Christian; Schlenvoigt, Hans-Peter; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Ziegler, Tim; Schramm, Ulrich; Glenzer, Siegfried H; Zeil, Karl


    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 10 9 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.

  10. Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation

    KAUST Repository

    Manias, Dimitrios


    The dynamics and structure of two turbulent H2/air premixed flames, representative of the corrugated flamelet (Case 1) and thin reaction zone (Case 2) regimes, are analyzed and compared, using the computational singular perturbation (CSP) tools, by incorporating the tangential stretch rate (TSR) approach. First, the analysis is applied to a laminar premixed H2/air flame for reference. Then, a two-dimensional (2D) slice of Case 1 is studied at three time steps, followed by the comparison between two representative 2D slices of Case 1 and Case 2, respectively. Last, statistical analysis is performed on the full three-dimensional domain for the two cases. The dominant reaction and transport processes are identified for each case and the overall role of kinetics/transport is determined.

  11. Bactericidal effect of plasma jet with helium flowing through 3% hydrogen peroxide against Enterococcus faecalis (United States)

    Zhou, Xin-Cai; Li, Yu-Lan; Liu, De-Xi; Cao, Ying-Guang; Lu, Xin-Pei


    The aim of the present study was to assess the antimicrobial activity of plasma jet with helium (He) flowing through 3% hydrogen peroxide in root canals infected with Enterococcus faecalis. A total of 42 single-rooted anterior teeth were prepared, sterilized, inoculated with an E. faecalis suspension and incubated for 7 days. Next, the teeth were randomly divided into six experimental groups (including groups treated by plasma jet with or without He for different time durations) and one control group treated without plasma. The number of surviving bacteria in each canal was determined by counting the colony forming units (CFU)/ml on nutrient agar plates. The results indicated that statistically significant reduction in CFU/ml (Pfaecalis and should be considered as an alternative method for root canal disinfection in endodontic treatments. PMID:27882119

  12. The Role of Post Flame Oxidation on the UHC Emission for Combustion of Natural Gas and Hydrogen Containing fuels

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Schramm, Jesper


    In-cylinder post flame oxidation of unburned hydro-carbons from crevices in a lean burn spark ignition engine has been examined for natural gas and mixtures of natural gas and a hydrogen containing producer gas. For this purpose a model was developed to describe the mixing of cold unburned...... during in-cylinder post oxidation. The Arrhenius parameters were determined using the reaction mechanism, which gave the prediction of the results from the combustion reactor experiments. The investigation showed that addition of producer gas to natural gas promotes the in-cylinder post oxidation...... significantly. Furthermore it was found that the cyclic variation in the post oxidation is reduced by addition of producer gas to natural gas....

  13. Turbulent and Stable/Unstable Laminar Burning Velocity Measurements from Outwardly Propagating Spherical Hydrogen-Air Flames at Elevated Pressures (United States)

    Smallbone, Andrew; Tsuneyoshi, Kousaku; Kitagawa, Toshiaki

    The laminar burning velocity of pre-mixed hydrogen-air mixtures was measured in a fan stirred combustion bomb. Unstretched laminar burning velocities and Markstein lengths were obtained at 0.10MPa for equivalence ratios of 0.4, 0.6, 0.8 and 1.0 using high speed flame imaging. The difficulties which arose whilst obtaining similar measurements at 0.25MPa and 0.50MPa are outlined. The turbulent burning velocity was measured at equivalence ratios of 0.4 and 0.8 from explosions carried out at 0.10MPa with turbulence intensities of 0.8 and 1.6m/s. Higher turbulent burning velocity ratios were observed for mixtures which yielded lower Markstein lengths in the laminar combustion experiments.

  14. Selective Hydrogen Sulphide Removal from Acid Gas by Alkali Chemisorption in a Jet Reactor

    Directory of Open Access Journals (Sweden)

    Bobek Janka


    Full Text Available Natural gas is a primary energy source that contains a number of light paraffins. It also contains several undesirable components, such as water, ammonia, hydrogen sulphide, etc. In our study, a selective hydrogen sulphide removal process was achieved by alkali chemisorption in a custom-designed jet reactor. Several model gas compositions (CO2-H2S-N2 were evaluated to find parameters that enable H2S absorption instead of CO2. The negative effect of the presence of CO2 in the raw gas on the efficiency of H2S removal was observed. The beneficial effect of the low residence time (less than 1 s on the efficiency of H2S removal was recognized. Optimal operational parameters were defined to reach at least a 50% efficiency of H2S removal and minimal alkali consumption.

  15. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.


    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  16. A study on the fire response of compressed hydrogen gas vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Yohsuke; Tomioka, Junichi; Suzuki, Jinji [Japan Automobile Research Institute (Japan)


    To investigate the events that could arise when fighting fires in vehicles with compressed hydrogen CFRP (carbon fiber reinforced plastic) composite cylinders, we conducted experiments to examine whether a hydrogen jet flame caused by the activation of the pressure relief device (PRD) can extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles. (orig.)


    KAUST Repository

    Attili, Antonio


    The alignment of vorticity and gradients of conserved and reactive scalars with the eigenvectors of the strain rate tensor (i.e., the principal strains) is investigated in a direct numerical simulation of a turbulent nonpremixed flame achieving a Taylor’s scale Reynolds number in the range 100≤Reλ≤150 (Attili et al. Comb. Flame, 161, 2014). The vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain. These alignment statistics are in almost perfect agreement with those in homogeneous isotropic turbulence (Ashurst et al. Physics of Fluids 30, 1987) and differ significantly from the results obtained in other nonpremixed flames in which vorticity alignment with the most extensive strain was observed (Boratavet al. Physics of Fluids 8, 1996). The gradients of conserved and reactive scalars align with the most compressive strain. It is worth noting that conditioning on the local values of the mixture fraction, or equivalently conditioning on the distance from the flame sheet, does not affect the statistics. Our results suggest that turbulence overshadows the effects of heat release and chemical reactions. This may be due to the larger Reynolds number achieved in the present study compared to that in previous works.

  18. Charmonium Spectroscopy at the ISR using an Antiproton Beam and a Hydrogen Jet Target

    CERN Multimedia


    This experiment studies the formation of charmonium states not directly accessible in e|+e|- annihilation. The good momentum definition of the cooled @* beam allows a precise measurement of the width of these states. A hydrogen gas jet has been used, yielding a luminosity of 3.10|3|0 cm|-|2sec|-|1 with 10|1|1~@*. Three types of exclusive events are selected: e|+e|-~(J/@Y) for calibration of the energy of the machine, e|+e|-@g~(@c states) and @g@g~(@h^c, @h'^c). The experiment uses MWPC, scintillator hodoscopes, Freon Cerenkov counters for the e|+e|- determination and electromagnetic calorimeters (@g detection and energies of the electrons).

  19. Statistically advanced, self-similar, radial probability density functions of atmospheric and under-expanded hydrogen jets (United States)

    Ruggles, Adam J.


    This paper presents improved statistical insight regarding the self-similar scalar mixing process of atmospheric hydrogen jets and the downstream region of under-expanded hydrogen jets. Quantitative planar laser Rayleigh scattering imaging is used to probe both jets. The self-similarity of statistical moments up to the sixth order (beyond the literature established second order) is documented in both cases. This is achieved using a novel self-similar normalization method that facilitated a degree of statistical convergence that is typically limited to continuous, point-based measurements. This demonstrates that image-based measurements of a limited number of samples can be used for self-similar scalar mixing studies. Both jets exhibit the same radial trends of these moments demonstrating that advanced atmospheric self-similarity can be applied in the analysis of under-expanded jets. Self-similar histograms away from the centerline are shown to be the combination of two distributions. The first is attributed to turbulent mixing. The second, a symmetric Poisson-type distribution centered on zero mass fraction, progressively becomes the dominant and eventually sole distribution at the edge of the jet. This distribution is attributed to shot noise-affected pure air measurements, rather than a diffusive superlayer at the jet boundary. This conclusion is reached after a rigorous measurement uncertainty analysis and inspection of pure air data collected with each hydrogen data set. A threshold based upon the measurement noise analysis is used to separate the turbulent and pure air data, and thusly estimate intermittency. Beta-distributions (four parameters) are used to accurately represent the turbulent distribution moments. This combination of measured intermittency and four-parameter beta-distributions constitutes a new, simple approach to model scalar mixing. Comparisons between global moments from the data and moments calculated using the proposed model show excellent

  20. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib


    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  1. Evidence of 9Be  +  p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas (United States)

    Krasilnikov, A. V.; Kiptily, V.; Lerche, E.; Van Eester, D.; Afanasyev, V. I.; Giroud, C.; Goloborodko, V.; Hellesen, C.; Popovichev, S. V.; Mironov, M. I.; contributors, JET


    The intensity of 9Be  +  p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be  +  p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.

  2. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  3. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.


    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  4. Theoretical analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet

    KAUST Repository

    El-Amin, Mohamed


    Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).

  5. Study of Hadronic Jets Produced by Charged Pion and Proton Beams Incident on Hydrogen and Aluminum Targets

    Energy Technology Data Exchange (ETDEWEB)

    Yung, Kar Woo [California Inst. of Technology (CalTech), Pasadena, CA (United States)


    High transverse momentum ($P_T$) particles are thought to reflect the underlying parton (quark or gluon) mechanisms of hadron interactions. A particularly simple model by Feynman, Field and Fox (or FFF>, involves hard scattering of a pair of partons via gluon exchange (Quantum Chromodynamics or GCD) with subsequent fragmentation or the partons into hadrons. We present results from an experiment (E260 at Fermilab) on the production of Jets (groups of particles) and single charged particles, at both low and high $P_T$, in 200 Gev interactions. The experiment used a calorimeter triggered multiparticle spectrometer. Results are presented on the comparisons of cross sections and associated charged particle distributions for pion and proton beams and aluminium and hydrogen targets.

  6. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions

    KAUST Repository

    Hong, Seunghyuck


    This paper presents an experimental investigation into mode-transitions observed in a 50-kW, atmospheric pressure, backward-facing step combustor burning lean premixed C3H8/H2 fuel mixtures over a range of equivalence ratios, fuel compositions and preheat temperatures. The combustor exhibits distinct acoustic response and dynamic flame shape (collectively referred to as "dynamic modes") depending on the operating conditions. We simultaneously measure the dynamic pressure and flame chemiluminescence to examine the phase between pressure (p\\') and heat release fluctuations (q\\') in the observed dynamic modes. Results show that the heat release is in phase with the pressure oscillations (θqp≈0) at the onset of a dynamic mode, while as the operating conditions change within the mode, the phase grows until it reaches a critical value θqp=θc, at which the combustor switches to another dynamic mode. According to the classical Rayleigh criterion, this critical phase (θc) should be π/2, whereas our data show that the transition occurs well below this value. A linear acoustic energy balance shows that this critical phase marks the point where acoustic losses across the system boundaries equal the energy addition from the combustion process to the acoustic field. Based on the extended Rayleigh criterion in which the acoustic energy fluxes through the system boundaries as well as the typical Rayleigh source term (p\\'q\\') are included, we derive an extended Rayleigh index defined as Re=θqp/θc, which varies between 0 and 1. This index, plotted against a density-weighted strained consumption speed, indicates that the impact of the operating parameters on the dynamic mode selection of the combustor collapses onto a family of curves, which quantify the state of the combustor within a dynamic mode. At Re=0, the combustor enters a mode, and switches to another as Re approaches 1. The results provide a metric for quantifying the instability margins of fuel

  7. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.


    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  8. Weak Hydrogen Bonds from Aliphatic and Fluorinated Alocohols to Molecular Nitrogen Detected by Supersonic Jet FTIR Spectroscopy (United States)

    Oswald, Soenke; Suhm, Martin A.


    Complexes of organic molecules with the main component of earth's atmosphere are of interest, also for a stepwise understanding of the phenomenon of matrix isolation. Via its large quadrupole moment, nitrogen binds strongly to polarized OH groups in hydrogen-bonded dimers. Further complexation leads to a smooth spectral transition from free to embedded molecules which we probe in supersonic jets. Results for 1,1,1,3,3,3-hexafluoro-2-propanol, methanol, t-butyl alcohol, and the conformationally more complex ethanol are presented and assigned with the help of quantum chemical calculations. Kuma, S., Slipchenko, M. N., Kuyanov, K. E., Momose, T., Vilesov, A. F., Infrared Spectra and Intensities of the H_2O and N_2 Complexes in the Range of the ν_1- and ν_3-Bands of Water, J. Phys. Chem. A, 2006, 110, 10046-10052. Coussan, S., Bouteiller, Y., Perchard, J. P., Zheng, W. Q., Rotational Isomerism of Ethanol and Matrix Isolation Infrared Spectroscopy, J. Phys. Chem. A, 1998, 102, 5789-5793. Suhm, M. A., Kollipost, F., Femtisecond single-mole infrared spectroscopy of molecular clusters, Phys. Chem. Chem. Phys., 2013, 15, 10702-10721. Larsen, R. W., Zielke, P., Suhm, M. A., Hydrogen bonded OH stretching modes of methanol clusters: a combined IR and Raman isotopomer study, J. Chem. Phys., 2007, 126, 194307. Zimmermann, D., Häber, T., Schaal, H., Suhm, M. A., Hydrogen bonded rings, chains and lassos: The case of t-butyl alcohol clusters, Mol. Phys., 2001, 99, 413-425. Wassermann, T. N., Suhm, M. A., Ethanol Monomers and Dimers Revisited: A Raman Study of Conformational Preferences and Argon Nanocoating Effects, J. Phys. Chem. A, 2010, 114, 8223-8233.

  9. Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs (United States)


    profiles for the opposed jet burner using Unicorn and Chemkin Pro, ethylene/air flame, Wang-Colket mechanism. .............................33 Figure...35 Figure 31. Flame simulations using UNICORN (Katta et al...two-dimensional (2-D) flame simulation computer code UNICORN (Katta et al., 2006) with those obtained using the one- dimensional (1-D) flame

  10. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.


    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  11. Autoignition and flame stabilisation processes in turbulent non-premixed hot coflow flames

    NARCIS (Netherlands)

    Oldenhof, E.


    This dissertation examines stabilisation processes in turbulent non-premixed jet flames, created by injecting gaseous fuel into a co-flowing stream of hot, low-oxygen combustion products. Being able to predict whether and how a flame achieves stable and reliable combustion is a matter of great

  12. The effect of hydrogen bonding on torsional dynamics: A combined far-infrared jet and matrix isolation study of methanol dimer

    DEFF Research Database (Denmark)

    Kollipost, F.; Andersen, Jonas; Wallin Mahler Andersen, Denise


    The effect of strong intermolecular hydrogen bonding on torsional degrees of freedom is investigated by far-infrared absorption spectroscopy for different methanol dimer isotopologues isolated in supersonic jet expansions or embedded in inert neon matrices at low temperatures. For the vacuum......-isolated and Ne-embedded methanol dimer, the hydrogen bond OH librational mode of the donor subunit is finally observed at ∼560 cm(-1), blue-shifted by more than 300 cm(-1) relative to the OH torsional fundamental of the free methanol monomer. The OH torsional mode of the acceptor embedded in neon is observed...

  13. Flame Length (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  14. Multipoint ignition by flame dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Rychter, T.J.


    In conventional piston engines exothermic chemical reactions occur in flames that are tightly localized in space. This is a cause of many problems encountered in engine combustion, such as knock and cycle-to-cycle variability. An alternative to the classical combustion process based on the propagation of the flame can be the initiation of exothermic reactions by a set of ignition centers causing multipoint initiation of combustion. This can be achieved by spreading the chemically active hot gases through the combustion chamber. In practice this has been done by combustion-product recirculation or by the use of jets. Numerous investigations have been reported on the combustion system in which a jet of chemically active hot gases is dynamically introduced into the main combustion chamber causing multipoint ignition of a premixed charge. The jet has been generated either by burning a rich mixture in a large prechamber, in a small torch cell, or by the discharge of a relatively large amount of electrical energy in a small cavity to produce a jet of plasma. A way to reduce significantly the energy to generate the plasma jet has been proposed and has proved to be especially advantageous fur burning mixtures near their flammability limits.

  15. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... (Computational Fluid Dynamics) where the fundamental equation for flow, heat- and mass transfer are solved numerically in computational domains similar to the real systems.A model describing the particle dynamics in the flame is coupled with the flow-field information in order to compute effluent particle...

  16. Effects of Swirl on Strongly-Pulsed Turbulent Diffusion Flames (United States)

    Liao, Y.-H.; Hermanson, J. C.


    The dynamics of large-scale structures in strongly-pulsed, swirling, turbulent jet diffusion flames were examined experimentally. The combustor used a combination of axial and tangentially-injected air to produce a range of swirl numbers. Gaseous ethylene fuel was injected through a 2 mm diameter nozzle on the combustor centerline with a jet-on Reynolds number of 5000. The flames were fully-modulated, with the fuel flow completely shut off between pulses. High-speed imaging of the flame luminosity was employed to examine the flame dimensions and the celerity of the large-scale flame structures. The flames were found to be approximately 15-20% shorter when swirl was imposed, depending on the injection time. The more compact flames in swirl appear to be due to the presence of recirculation inside the flames. For longer injection times, the celerity of the flame structures generally decreases as the swirl intensity increases. This is evidently due to the reversed velocity in the recirculation zone. For shorter injection times, the flame celerity has an increasing trend with increased swirl intensity due to flames being closer to the fuel nozzle at burnout.

  17. Inadequacy representation of flamelet-based RANS model for turbulent non-premixed flame (United States)

    Lee, Myoungkyu; Oliver, Todd; Moser, Robert


    Stochastic representations for model inadequacy in RANS-based models of non-premixed jet flames are developed and explored. Flamelet-based RANS models are attractive for engineering applications relative to higher-fidelity methods because of their low computational costs. However, the various assumptions inherent in such models introduce errors that can significantly affect the accuracy of computed quantities of interest. In this work, we develop an approach to represent the model inadequacy of the flamelet-based RANS model. In particular, we pose a physics-based, stochastic PDE for the triple correlation of the mixture fraction. This additional uncertain state variable is then used to construct perturbations of the PDF for the instantaneous mixture fraction, which is used to obtain an uncertain perturbation of the flame temperature. A hydrogen-air non-premixed jet flame is used to demonstrate the representation of the inadequacy of the flamelet-based RANS model. This work was supported by DARPA-EQUiPS(Enabling Quantification of Uncertainty in Physical Systems) program.

  18. Effect of Intense Sound Waves on a Stationary Gas Flame (United States)

    Hahnemann, H; Ehret, L


    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  19. Flames in vortices & tulip-flame inversion (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  20. Numerical study of flame structure in the mild combustion regime

    Directory of Open Access Journals (Sweden)

    Mardani Amir


    Full Text Available In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.

  1. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.


    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  2. The influence of Kr, CO2, and iso-C4H8 admixtures on the time of the formation of a stable flame front in mixtures of natural gas and isobutylene with oxygen and hydrogen with air under initiation with a spark discharge (United States)

    Rubtsov, N. M.; Seplyarskii, B. S.; Chernysh, V. I.; Tsvetkov, G. I.


    High-speed color filming was used to study laminar spherical flame propagation at the initial stage in preliminarily mixed stoichiometric mixtures of natural gas and isobutylene with oxygen containing krypton and carbon dioxide and in hydrogen-air mixtures at atmospheric pressure in a bomb with a constant volume. Under experimental conditions ( T 0 = 298 K, p 0 = 100 torr, spark discharge energy E 0 = 0.91 J), the dilution of mixtures with Kr and CO2 increased the time of formation of a stable flame front by more than 10 times. The introduction of a small chemically active admixture (1.2% isobutylene) into a stoichiometric mixture of hydrogen and air sharply increased the time of formation of a stable flame front, which was evidence of an important role played by the chemical mechanism of the reaction in the formation of the combustion field.

  3. Hydrogen. (United States)

    Bockris, John O'M


    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  4. High-Speed Turbulent Reacting Flows: Intrinsic Flame Instability and its Effects on the Turbulent Cascade (United States)

    Poludnenko, Alexei


    Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force

  5. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.


    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  6. Detailed Multidimensional Simulations of the Structure and Dynamics of Flames (United States)

    Patnaik, G.; Kailasanath, K.


    Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.

  7. Numerical and experimental investigation of vortical flow-flame interaction

    Energy Technology Data Exchange (ETDEWEB)

    Najm, H.N.; Schefer, R.W.; Milne, R.B.; Mueller, C.J. [Sandia National Labs., Livermore, CA (United States); Devine, K.D.; Kempka, S.N. [Sandia National Labs., Albuquerque, NM (United States)


    A massively parallel coupled Eulerian-Lagrangian low Mach number reacting flow code is developed and used to study the structure and dynamics of a forced planar buoyant jet flame in two dimensions. The numerical construction uses a finite difference scheme with adaptive mesh refinement for solving the scalar conservation equations, and the vortex method for the momentum equations, with the necessary coupling terms. The numerical model construction is presented, along with computational issues regarding the parallel implementation. An experimental acoustically forced planar jet burner apparatus is also developed and used to study the velocity and scalar fields in this flow, and to provide useful data for validation of the computed jet. Burner design and laser diagnostic details are discussed, along with the measured laboratory jet flame dynamics. The computed reacting jet flow is also presented, with focus on both large-scale outer buoyant structures and the lifted flame stabilization dynamics. A triple flame structure is observed at the flame base in the computed flow, as is theoretically expected, but was not observable with present diagnostic techniques in the laboratory flame. Computed and experimental results are compared, along with implications for model improvements.

  8. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors (United States)

    Emerson, Benjamin; Lieuwen, Tim


    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  9. Task D: Hydrogen safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Sievert, B.G. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)


    This report covers two topics. The first is a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels. The second is an experimental investigation of hydrogen flame impingement. Four areas of concern in the conversion of natural gas safety publications to hydrogen safety publications are delineated. Two suggested design criteria for hydrogen vehicle fuel systems are proposed. It is concluded from the experimental work that light weight, low cost, firewalls to resist hydrogen flame impingement are feasible.

  10. Hydrogen Fire Spectroscopy Issues Project (United States)

    Youngquist, Robert C. (Compiler)


    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  11. 4D spatiotemporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence. (United States)

    Halls, Benjamin R; Jiang, Naibo; Meyer, Terrence R; Roy, Sukesh; Slipchenko, Mikhail N; Gord, James R


    High-speed (20 kHz rate), volumetric laser-induced-fluorescence imaging of combustion intermediates such as a formaldehyde (CH2O) and polycyclic aromatic hydrocarbon (PAH) species is demonstrated for tracking the four-dimensional (4D) evolution of turbulent flames. The third-harmonic, 355 nm output of a burst-mode Nd:YAG laser with a 130 mJ/pulse is expanded to 30 mm diameter for volume illumination of the base region of a methane-hydrogen jet diffusion flame. Eight simultaneous images from different viewing angles are used to collect the resulting fluorescence signal for reconstruction of 200 time-sequential three-dimensional volumes over 10 ms duration. The signal-to-noise ratio (SNR) of 300:1 is achieved after reconstruction with a temporal resolution of 100 ns and spatial resolution of 0.85-1.5 mm.

  12. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.


    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  13. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris


    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  14. Aspects of the mechanism of the flame ionization detector

    DEFF Research Database (Denmark)

    Holm, Torkil


    The development of flame ionization detection (FID) took place on an empirical basis without a clear understanding of the mechanism. The study of flames by MS showed that the all-important ion was the formylium ion CHO+. The pre-combustion degradation was thought to be a pyrolytic degradation...... and hydrogenation at the high temperatures obtained close to the combustion zone. Using a capillary probe inside the flame it was recently shown that a degradation of all hydrocarbons to methane takes place at low temperatures by the reaction of hydrogen atoms which are generated in the burning hydrogen...

  15. Effects of energy release on near field flow structure of gas jets (United States)

    Agrawal, Ajay K.; Gollahalli, Subramanyam R.; Griffin, Devon


    The primary objective is to understand how buoyancy affects the structure of the shear layer, the development of fluid dynamic instabilities, and formation of the coherent structures in the near-nozzle regions of gas jets. The secondary objectives are to study the role of buoyancy in lifting and reattachment process of diffusion flames, to evaluate the scaling behavior of diffusion flames, and to aid development and/or validation of theoretical models by providing quantitative data in the absence of buoyancy. Fast reacting hydrogen or hydrogen-inert fuels are used to isolate the effects of buoyancy on fluid dynamics without masking the flame behavior by soot and radiative heat transfer. This choice of fuel also permits an evaluation of simulating low gravity in low pressure ground experiments because the similarity constraints are relaxed for the fast reacting, nonsooting diffusion flames. The diagnostics consists primarily of a color schlieren system coupled with computer generated rainbow filters, video recording, and image analysis. The project involves (1) drop tower experiments, (2) ground experiments, and (3) theoretical analysis.

  16. Investigation of Flame Stretch in Turbulent Lifted Jet Flame


    Ruan, S; Swaminathan, Nedunchezhian; Mizobuchi, Y


    This is an Accepted Manuscript of an article published by Taylor & Francis in Combustion Science and Technology on 24 February 2014, available online:

  17. Numerical Study of Flame Stabilization Mechanism in a Premixed Burner with LES Non-adiabatic Flamelet Approach (United States)

    Tang, Yihao; Hassanaly, Malik; Raman, Venkat


    In the development of highly efficient gas turbine combustion system, using high-hydrogen-content fuels is a new solution that limits pollutant emissions but also triggers flame stabilization issues. One promising concept to handle such instabilities within a large range of operating conditions is the FLOX® burner. A noticeable feature of the FLOX® burner is that it discharges high momentum jets without swirl, and flame stabilization is achieved in the shear layer around the jets. Experimental investigations have concluded that low velocity zones were absent and the flashback propensity was effectively decreased. It is proposed to study the stabilization mechanism to understand what physical phenomena are decisive in the process. In a preliminary numerical study, an adiabatic flamelet table was used along with LES simulations. Although the flow field's main features were captured, the simulation had issues in accurately predicting some important thermochemical quantities, including near wall quenching effects and OH mass fraction distribution. This work focuses on the effect of the adiabatic hypothesis on the flame stabilization mechanism. A non-adiabatic flamelet model is implemented and the impact on the stabilization mechanism is being quantified.

  18. Structure and stabilization of hydrogen-rich transverse.

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Sgouria [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilde, B [Georgia Inst. of Technology, Atlanta, GA (United States); Kolla, Hemanth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seitzman, J. [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, T. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    This paper reports the results of a joint experimental and numerical study of the ow characteristics and flame stabilization of a hydrogen rich jet injected normal to a turbulent, vitiated cross ow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air cross ow, the present conditions lead to an autoigniting, burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/cross flow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the reacting JICF. Vorticity spectra extracted from the windward shear layer reveal that the reacting jet is globally unstable and features two high frequency peaks, including a fundamental mode whose Strouhal number of ~0.7 agrees well with previous non-reacting JICF stability studies. The paper concludes with an analysis of the ignition, ame stabilization, and global structure of the burner-attached flame. Chemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after

  19. Comparative Analysis of Flame Characteristics of Castor Oil and ...

    African Journals Online (AJOL)

    The flame characteristics of castor oil based foam and that of polyether foam impregnated with inorganic flame retardants (FR) were investigated. The polyether foams were impregnated with measured concentration of Antimony trioxide and Sodium bromide, Ammonium dihydrogen orthophosphate, Diammonium hydrogen ...

  20. Numerical Simulations of the Flame of a Single Coaxial Injector

    Directory of Open Access Journals (Sweden)

    Victor P. Zhukov


    Full Text Available The processes of mixing and combustion in the jet of a shear-coaxial injector are investigated. Two test cases (nonreacting and reacting are simulated using the commercial computational fluid dynamics code ANSYS CFX. The first test case is an experiment on the mixing in a nonreacting coaxial jet carried out with the use of planar laser induced fluorescence (PLIF. The second test case is an experiment on the visualization of hydrogen-oxygen flame using PLIF of OH in a single injector combustion chamber at pressure of 53 bar. In the first test case, the two-dimensional axisymmetric simulations are performed using the shear-stress turbulence (SST model. Due to the dominant flow unsteadiness in the second test case, the turbulence is modeled using transient SAS (Scale-Adaptive Simulation model. The combustion is modeled using the burning velocity model (BVM while both two- and three-dimensional simulations are carried out. The numerical model agrees with the experimental data very well in the first test case and adequately in the second test case.

  1. Persistence, bioaccumulation and toxicity of halogen-free flame retardants.

    NARCIS (Netherlands)

    Waaijers, S.L.; Kong, D; Hendriks, H.S.; de Wit, C.A.; Cousins, I.T.; Westerink, R.H.S.; Leonards, P.E.G.; Kraak, M.H.S.; Admiraal, W.; de Voogt, P.; Parsons, J.R.


    Polymers are synthetic organic materials that have a high carbon and hydrogen content, which renders them readily combustible. When used in buildings, electrical appliances, furniture, textiles, transportation, mining, and in many other applications, polymers have to fulfill flame retardancy

  2. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)


    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  3. Sensing flame structure by process tomography. (United States)

    Liu, Jing; Liu, Shi; Zhou, Wanting; Qi, Xin; Lei, Jing; Mu, Huaiping


    Non-intrusive visualization of the structure of flames can offer us many advantages in studying the reaction mechanisms of combustion and observing special distributions of the parameters required for the development of equipment such as jet engines and gas turbines. Process tomography is a relatively new technique for such a task, but is useful owing to its fast speed and capability of detecting signals related to ionizations caused by chemical reactions and thermal effects. Electric capacitance tomography (ECT) is one of the process tomographic techniques. ECT usually comprises a sensor array of electrodes that detect permittivity variations in the measuring zone, a data-logging device and a computer that controls data acquisition and carries out image reconstruction. There have been studies on ECT imaging of flames; however, ECT has not been exploited sufficiently to reveal the inner structure of the flames. In this study, a sensor with planar electrodes is created, and the associated three-dimensional sensitivity map is generated by the finite-element method to detect flame structure. A series of experiments are carried out covering a range of feed rates of fuel and air. Data are collected by the ECT sensor and hardware. The results of the ECT reconstruction show good agreement with actual features, and the structure of the flame is found. This opens up a new route for the study of flames. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  4. Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall (United States)

    Masuzaki, S.; Tokitani, M.; Otsuka, T.; Oya, Y.; Hatano, Y.; Miyamoto, M.; Sakamoto, R.; Ashikawa, N.; Sakurada, S.; Uemura, Y.; Azuma, K.; Yumizuru, K.; Oyaizu, M.; Suzuki, T.; Kurotaki, H.; Hamaguchi, D.; Isobe, K.; Asakura, N.; Widdowson, A.; Heinola, K.; Jachmich, S.; Rubel, M.; contributors, JET


    Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011–2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.

  5. Unsteady behavior of locally strained diffusion flames affected by curvature and preferential diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kenji; Takagi, Toshimi


    Experimental and numerical studies are made of transient H{sub 2}/N{sub 2}--air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics are conducted paying attention to transient local extinction and reignition in relation to the unsteadiness, flame curvature and preferential diffusion effects. The results are as follows. (1) Transient local flame extinction is observed where the micro jet impinges. But, the transient flame can survive instantaneously in spite of quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction due to the micro air jet impingement. The temperature after reignition becomes significantly higher than that of the original flame. This high temperature is induced by the concentration of H{sub 2} species due to the preferential diffusion in relation to the concave curvature. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiments. (3) The reignition is induced after the formation of combustible premixed gas mixture and the consequent flame propagation. (4) The reignition is hardly observed after the extinction by micro fuel jet impingement. This is due to the dilution of H{sub 2} species induced by the preferential diffusion in relation to the convex curvature. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation with preferential diffusion.

  6. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control (United States)


    et al. [9], will be considered due to considerations on fuel -mixing within the experimental setup. The turbulent intensity theory postulates that...consisted of a delrin plastic case surrounding a 10 7 AWG solid core copper wire charging up to 12 needle electrodes on the same loop, though only...the leading edge of the flame, it was possible to reattach a lifted jet flame, while maintaining a constant fuel flow rate. b) With a negatively

  7. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.


    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

  8. Experimental study of the structure of laminar axisymmetric H2/air diffusion flames

    NARCIS (Netherlands)

    Toro, Vishal Vijay


    This thesis presents an experimental study of the structure of laminar axisymmetric coflow hydrogen diffusion flames. The motivation behind studying these flames is the current drive towards sustainable energy and strict pollution norms. In this regard, hydrogen as a fuel is one such candidate,

  9. Novel Flame-Based Synthesis of Nanowires for Multifunctional Application (United States)


    controlled morphologies by stagnation swirl flames, Journal of Aerosol Science, (02 2012): 71. doi: 10.1016/j.jaerosci.2011.10.001 Nasir K. Memon...Films with Controlled Morphology by a Stagnation Swirl Flame,” Journal of Aerosol Science 44:71-82 (2012). 5. Zhang, Y., Xiong, G., Li, S., Dong, Z...field. The effect of temperature on the solid-particle Raman spectra is investigated by seeding nanoparticles into a co-flow jet diffusion flame, where

  10. Twin Jet (United States)

    Henderson, Brenda; Bozak, Rick


    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  11. Turbulent Flame Stabilization Methods Using Confinement, Diluents, and High-Potential Electric Fields (United States)


    due to an increase in turbulent swirling . Liftoff delays were also present in both the semi-confined and fully confined cases, such that a higher jet ...1. Determine if confining a methane jet flame (with the presence of ambient coflow) would increase flame stability and decrease turbulent swirling ...confined (confinement cylinder with viewing window open) behaved much more sporadically due to an increase in turbulent swirling . Liftoff delays were

  12. Hydrogen Fire Spectroscopy Issues Project (United States)

    National Aeronautics and Space Administration — This one year effort had four aspects; complete and document the calibrated spectral intensity of a hydrogen flame, understand the role of atmospheric attenuation on...

  13. N-H···π hydrogen-bonding and large-amplitude tipping vibrations in jet-cooled pyrrole-benzene. (United States)

    Pfaffen, Chantal; Infanger, Daniel; Ottiger, Philipp; Frey, Hans-Martin; Leutwyler, Samuel


    The N-H···π hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr·Bz, Pyr·Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H···π hydrogen bond to the benzene ring. The pyrrole is tipped by ω(S(0)) = ±13° relative to the surface normal of Bz. The N···ring distance is 3.13 Å. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle ω(S(1)) = ±21°. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H···π interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1)←S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr·Bz in the same region exhibits a weak 0 band that is red-shifted by 58 cm(-1) relative to that of Bz (38 086 cm(-1)). The origin appears due to symmetry-breaking of the π-electron system of Bz by the asymmetric pyrrole NH···π hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0 band. The Bz moiety in Pyr·Bz exhibits a 6a band at 0 + 518 cm(-1) that is about 20× more intense than the origin band. The symmetry breaking by the NH···π hydrogen bond splits the degeneracy of the ν(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by ∼6 cm(-1). Both the 0 and 6 bands of Pyr·Bz carry a progression in the low

  14. Hydrogen Trailer Storage Facility (Building 878). Consequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Wood, C.L.


    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This consequence analysis documents the impact that a hydrogen accident could have to employees, the general public, and nearby facilities. The computer model ARCHIE was utilized to determine discharge rates, toxic vapor dispersion analyses, flammable vapor cloud hazards, explosion hazards, and flame jets for the Hydrogen Trailer Storage Facility located at Building 878. To determine over pressurization effects, hand calculations derived from the Department of the Air Force Manual, ``Structures to Resist the Effects of Accidental Explosions,`` were utilized. The greatest distances at which a postulated facility event will produce the Lower Flammability and the Lower Detonation Levels are 1,721 feet and 882 feet, respectively. The greatest distance at which 10.0 psi overpressure (i.e., total building destruction) is reached is 153 feet.

  15. Cool Flame Quenching (United States)

    Pearlman, Howard; Chapek, Richard


    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  16. Assessment of existing and new modeling strategies for the simulation of OH* radiation in high-temperature flames (United States)

    Fiala, Thomas; Sattelmayer, Thomas


    Four methods to calculate OH* radiation from numerical simulations of flames above 2700 K are presented: (1) A state-of-the-art chemiluminescence model: OH* emission is assumed to be proportional to the concentration of an excited sub-species OH*. OH* is implemented in the detailed chemical reaction mechanism. (2) A spectral model: emission and absorption are computed and integrated on a line-by-line basis from the HITRAN data base. (3) An equilibrium filtered radiation model: it provides a very simple way to compute OH* emissivity in a post-processing step. This is a simplification of the chemiluminescence model suitable for high-temperature flames. (4) An extension of the latter model to approximate the influence of self-absorption. The advantages and limitations of all approaches are discussed from a physics-based perspective. Their performances are assessed in a laminar hydrogen-oxygen jet flame at varying pressure. The importance of self-absorption for OH* radiation is analyzed and emphasized. Recommendations for the model selection are given.

  17. Unsteady numerical simulations of the stability and dynamics of flames (United States)

    Kailasanath, K.; Patnaik, G.; Oran, E. S.


    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state

  18. Flames in fractal grid generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)


    Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)

  19. Modeling non-unity Lewis number effects in premixed flames (United States)

    Blanquart, Guillaume; Knudsen, Ed; Pitsch, Heinz


    The combustion of hydrogen in Low Swirl Burners (LSB) is considered as an alternative for power production for it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermo-diffusive instabilities induced by the large diffusivity of hydrogen. The numerical modeling of these flows remain challenging for the transition of small scale instabilities into large scale turbulent structures cannot be modeled by conventional theories. In this work, a model is presented for the simulation of premixed flames with non-unity Lewis number fuels. This model relies on the Levelset/Progress variable approach which was found perfectly suited for the modeling of premixed flames with close to unity Lewis number fuels such as methane. Combined with the solution of an additional transport equation for mixture fraction, this model is formulated and validated in simple 1D laminar premixed flames. The model is found to capture accurately global quantities such as burning velocity and flame thickness as well as mixture fraction fluctuations. Then, this model is applied in Large Eddy Simulation (LES) of a Low Swirl Burner of H2/Air (φ=0.4). The simulation shows the formation of a strongly wrinkled flame with local extinction. The results obtained with this new formulation show significant improvement when compared with experimental measurements.

  20. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.


    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  1. Mechanism of the flame ionization detector. II. Isotope effects and heteroatom effects

    DEFF Research Database (Denmark)

    Holm, Torkil


    of 2%. The reason for the small or non-existent isotope effects is that H/2H exchange takes place in the pre-combustion hydrogenolysis in the flame. This was shown by taking samples from the lower part of the flame by means of a fused silica capillary probe. By the same technique the hydrogenolytic......The relative molar flame ionization detecton (FID) response (RMR) for a hydrocarbon does not change when deuterium is substituted for hydrogen. The exception is methane for which an inverse deuterium effect of 3..5% is observed for tetradeuteriomethane. [13C]Methane shows an inverse isotope effect...... reactions in the hydrogen flame of compounds added to the hydrogen gas in low concentrations were followed. Alcohols, ethers, ketones, and esters all produced methane and carbon monoxide, while amines produced methane and hydrogen cyanide, halogen compounds methane and hydrogen halide, etc. The FID response...

  2. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair


    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  3. The effect of ignition location on explosion venting of hydrogen-air mixtures (United States)

    Cao, Y.; Guo, J.; Hu, K.; Xie, L.; Li, B.


    The effect of ignition location and vent burst pressure on the internal pressure-time history and external flame propagation was investigated for vented explosions of hydrogen-air mixtures in a small cylindrical vessel. A high-speed camera was used to record videos of the external flame while pressure transducers were used to record pressure-time histories. It was found that central ignition always leads to the maximum internal peak overpressure, and front ignition resulted in the lowest value of internal peak overpressure. The internal peak overpressures are increased corresponding to the increase in the vent burst pressure in the cases of central and rear ignition. Because of the effect of acoustic oscillations, the phenomenon of oscillations is observed in the internal pressure profile for the case of front ignition. The pressure oscillations for the cases of rear and central ignition are triggered by external explosions. The behavior of flames outside the chamber is significantly associated with the internal pressure of the chamber so that the velocity of the jet flame is closely related to the internal overpressure peak.

  4. Desensitizing Flame Structure and Exhaust Emissions to Flow Parameters in an Ultra-Compact Combustor (United States)


    fuel .... 9 Figure 2.4: UNICORN model of hydrogen in air flame front propagation under the loading condition (a) 10 g’s and (b) 500 g’s...Lean Blowout ...................................................................................8 UNICORN Unsteady Ignition and Combustion with...computationally recreate Lewis’ experimental results. Using the Unsteady Ignition and 9 Combustion with Reactions ( UNICORN ) code, flame propagation

  5. Microphysics of Astrophysical Flames (United States)

    Dursi, L. J.; Zingale, M.; Caceres, A.; Calder, A. C.; Timmes, F. X.; Truran, J. W.; Rosner, R.; Lamb, D. Q.; Brown, E.; Ricker, P.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N.


    Type Ia supernovae are thought to begin with a deflagration phase, where burning occurs as a subsonic flame which accelerates and possibly undergoes a transition to a supersonic detonation. Both the acceleration and possible transition will depend on the microphysics of astrophysical flames, and their interaction with a turbulent flow in degenerate material. Here we present recent progress in studying the interactions of astrophysical flames and curvature and strain at the FLASH center; in particular, we discuss quantitative measurements of the effects of strain on burning rate of these flames, and implications for instability growth and quenching. This work was supported by the DOE ASCI/Alliances program at the University of Chicago under grant No. B341495 and the Scientific through Advanced Computing (SciDAC) program of the DOE, grant number DE-FC02-01ER41176 to the Supernova Science Center/UCSC.

  6. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  7. Fuzzy jets

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)


    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  8. Influence of hydrodynamic instabilities on the propagation mechanism of fast flames


    Maley, Logan; Bhattacharjee, Rohit; Lau-Chapdelaine, S. She-Ming; Radulescu, Matei Ioan


    The present work investigates the structure of fast supersonic turbulent flames typically observed as precursors to the onset of detonation. These high speed deflagrations are obtained after the interaction of a detonation wave with cylindrical obstacles. Two mixtures having the same propensity for local hot spot formation were considered, namely hydrogen-oxygen and methane-oxygen. It was shown that the methane mixture sustained turbulent fast flames, while the hydrogen mixture did not. Detai...

  9. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    Energy Technology Data Exchange (ETDEWEB)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)


    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  10. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)


    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  11. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray


    In this paper, we investigate flame-vortex interaction in a lean premixed, laboratory scale, backward-facing step combustor. Two series of tests were conducted, using propane/hydrogen mixtures and carbon monoxide/hydrogen mixtures as fuels, respectively. Pressure measurements and high speed particle imaging velocimetry (PIV) were employed to generate pressure response curves as well as the images of the velocity field and the flame brush. We demonstrate that the step combustor exhibits several operating modes depending on the inlet conditions and fuel composition, characterized by the amplitude and frequency of pressure oscillations along with distinct dynamic flame shapes. We propose a model in which the combustor\\'s selection of the acoustic mode is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a relationship between these quantities at the operating conditions corresponding to each mode transition. Based on this relationship, we show that numerically-calculated density-weighted strained flame speed can be used to collapse the combustion dynamics data over the full range of conditions (inlet temperature, fuel composition, and equivalence ratio). Finally, we validate our strain flame based model by measuring the strain rate using the flame image and the velocity field from the PIV measurement. Our results show that the measured strain rates lie in the same range as the critical values at the transitions among distinct modes as those predicted by our model.

  12. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar


    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  13. Quenching of excited rubidium (52P) atoms in flames

    NARCIS (Netherlands)

    Hooymayers, H.P.; Nienhuis, G.

    An alternating current photoelectric device (compare the work of Boers,(1) Hooymayers et al(2-4) and Hooymayers(5)) has been used for determining the yield factor p of resonance fluorescence for the infrared rubidium doublet (7800/7947 Å). From the p-values measured in five different hydrogen flames

  14. Structural studies on locally strained diffusion flames. 3rd Report. Analysis on local flame extinction and reignition phenomena of unsteady strained flames; Kyokusho yugami wo tomonau kakusan kaen ni kansuru kenkyu. 3. Hiteijo yugami wo tomonau kaen no kyokusho shoen to saichakka gensho

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K.; Takagi, T. [Osaka University, Osaka (Japan)


    Experimental and numerical studies are made of transient H2/N2-air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by the laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics reduce the following results. (1) Transient local flame extinction is observed where the micro jet impinges. The transient flame can survive instantaneously in spite of the quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction induced by an impinging micro air jet. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiment. (3) The reignition is hardly observed after the extinction by the micro fuel jet impingement. (4) These characteristic phenomena of (2) or (3) are dominated by the concentration or dilution of H2 due to the preferential diffusion with the concave or convex flame curvature, respectively. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation to preferential diffusion. 15 refs., 11 figs.

  15. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.


    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  16. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu


    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  17. Large Eddy Simulations of the Vortex-Flame Interaction in a Turbulent Swirl Burner (United States)

    Lu, Zhen; Elbaz, Ayman M.; Hernandez Perez, Francisco E.; Roberts, William L.; Im, Hong G.


    A series of swirl-stabilized partially premixed flames are simulated using large eddy simulation (LES) along with the flamelet/progress variable (FPV) model for combustion. The target burner has separate and concentric methane and air streams, with methane in the center and the air flow swirled through the tangential inlets. The flame is lifted in a straight quarl, leading to a partially premixed state. By fixing the swirl number and air flow rate, the fuel jet velocity is reduced to study flame stability as the flame approaches the lean blow-off limit. Simulation results are compared against measured data, yielding a generally good agreement on the velocity, temperature, and species mass fraction distributions. The proper orthogonal decomposition (POD) method is applied on the velocity and progress variable fields to analyze the dominant unsteady flow structure, indicating a coupling between the precessing vortex core (PVC) and the flame. The effects of vortex-flame interactions on the stabilization of the lifted swirling flame are also investigated. For the stabilization of the lifted swirling flame, the effects of convection, enhanced mixing, and flame stretching introduced by the PVC are assessed based on the numerical results. This research work was sponsored by King Abdullah University of Science and Technology (KAUST) and used computational resources at KAUST Supercomputing Laboratory.

  18. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.


    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  19. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh


    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred at a constant equivalence ratio and was independent of the jet velocity in propane/air mixtures. The observation of a local extinction phenomenon of the negatively stretched flame due to the flame curvature could not be consistently explained based on flame stretch or the Karlovitz number, since they varied appreciably with the jet velocity. The concept of the local Karlovitz number (KaL) was introduced, which is defined as the ratio of the characteristic reaction time in the normal direction for a stretched flame to the characteristic flow time in the tangential direction for the stretched flame. The local Karlovitz number maintained a constant value under tip opening conditions, irrespective of the jet velocity. Tip opening occurred at a reasonably constant local Karlovitz number of about ~1.72 when the nitrogen dilution level in propane and n-butane fuels was varied.

  20. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik


    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  1. Synthesis of ZnO particles in a quench-cooled flame reactor

    DEFF Research Database (Denmark)

    Hansen, Jens Peter; Jensen, Joakim Reimer; Livbjerg, Hans


    The quench cooling of a flame by injection of cold air was studied in a flame reactor for the formation of ZnO particles in a premixed flame with a precursor jet. A rapid temperature drop downstream from the temperature peak is advantageous for the attainment of a large specific surface area....... At the highest tested production rate, the specific surface area of the ZnO particles increases from 20 to 60 m(2)/g when quenching is employed. The particles are characterized by BET surface area measurements, TEM images, and the size distributions of particle aggregates are measured by a scanning mobility...

  2. Propane-Fueled Jet Engine (United States)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.


    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author:

  3. "Magic Eraser" Flame Tests (United States)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda


    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  4. Lagrangian Enstrophy Dynamics in Highly Turbulent Premixed Flames (United States)

    Darragh, Ryan; Towery, Colin; Poludnenko, Alexei; Hamlington, Peter


    Turbulent combustion is a multi-scale and multi-physics problem depending upon both chemical and fluid dynamic processes. These processes are often examined using an Eulerian framework, but recently the Lagrangian framework, a long-time tool in non-reacting flow research, has become increasingly common for the study of turbulent combustion. The two analysis frameworks are in fact equivalent, with the only difference being a change in reference frame. In this study, a Lagrangian fluid parcel tracking algorithm is used to analyze the enstrophy (i.e., vorticity magnitude) dynamics in turbulent premixed reacting flows. The analysis of vorticity dynamics in the premixed flame case is based on data from a three dimensional direct numerical simulation of a premixed stoichiometric hydrogen-air flame in an unconfined domain. Enstrophy budget terms are tracked along Lagrangian trajectories as fluid parcels travel through the flame, with particular focus on understanding the dynamical causes of turbulence variations through the flame preheat and reaction zones with respect to both the fluid parcel and the flame. Additionally, the ability of trajectories to completely sample the flame is discussed.

  5. Flame-conditioned turbulence modeling for reacting flows (United States)

    Macart, Jonathan F.; Mueller, Michael E.


    Conventional approaches to turbulence modeling in reacting flows rely on unconditional averaging or filtering, that is, consideration of the momentum equations only in physical space, implicitly assuming that the flame only weakly affects the turbulence, aside from a variation in density. Conversely, for scalars, which are strongly coupled to the flame structure, their evolution equations are often projected onto a reduced-order manifold, that is, conditionally averaged or filtered, on a flame variable such as a mixture fraction or progress variable. Such approaches include Conditional Moment Closure (CMC) and related variants. However, recent observations from Direct Numerical Simulation (DNS) have indicated that the flame can strongly affect turbulence in premixed combustion at low Karlovitz number. In this work, a new approach to turbulence modeling for reacting flows is investigated in which conditionally averaged or filtered equations are evolved for the momentum. The conditionally-averaged equations for the velocity and its covariances are derived, and budgets are evaluated from DNS databases of turbulent premixed planar jet flames. The most important terms in these equations are identified, and preliminary closure models are proposed.

  6. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels (United States)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  7. Spherical expanding flames in H{sub 2}-N{sub 2}O-Ar mixtures: flame speed measurements and kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mevel, R.; Dupre, G.; Paillard, C.-E. [Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE) Centre National de la Recherche Scientifique (CNRS), Orleans (France); University of Orleans (France); Lafosse, F.; Chaumeix, N. [Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE) Centre National de la Recherche Scientifique (CNRS), Orleans (France)


    Although ignition of hydrogen-nitrous oxide mixtures is a serious issue for nuclear waste storage and semi-conductor manufacturing, available flame speed data have not been recently updated and thermodiffusive stability is not known. In order to palliate this, the flame speed of a hydrogen-nitrous oxide mixture diluted in Ar (60% mol) was measured in a spherical bomb as a function of equivalence ratio. The initial pressure and temperature were held constant around ambient conditions. It is shown that the unstretched flame speed of the hydrogen-nitrous oxide mixture is relatively low for a hydrogen-based mixture, with a maximum of 56 cm/s for the stoichiometric condition. Further, hydrogen-nitrous oxide-argon flames appear unstable with respect to thermodiffusive effects at an equivalence ratio of 1. The downward flammability limit of hydrogen-nitrous oxide-argon was observed for hydrogen content of 8 mol%. The modeling of these experimental data has been performed with three recently developed models. All kinetic schemes give satisfactory predictions of the experimentally observed data. Sensitivity and reaction pathway analysis have demonstrated that the dynamic of the system is dominated by the reaction N{sub 2}O + H = N{sub 2} + OH which governs the rate of energy release. (author)

  8. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K


    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  9. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei


    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  10. Onboard hydrogen generation for automobiles (United States)

    Houseman, J.; Cerini, D. J.


    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  11. Flame Retardant Epoxy Resins (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.


    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  12. The Chemiluminescence and Structure Properties of Normal/Inverse Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Ting Zhang


    Full Text Available The flame emission spectrometry was applied to detect the distribution of excited radicals in two types CH4/O2 coflow jet diffusion flames (normal and inverse diffusion flames. Combining the image analysis along with the spectrometry, the chemiluminescence and structure characteristics of these diffusion flames were investigated. The results show that the inverse diffusion flame (IDF with relatively high inlet oxygen velocity is composed of two regions: a bright base and a tower on top of the base, which is quite different from the normal diffusion flame (NDF. The flame is divided into two regions along the flame axis based on maximum OH* position (Region I: initial reaction zone; Region II: further oxidation zone. The degree of the further oxidization taking place in Region II is obvious in accordance with OH* distribution, which is the main difference in reaction zone between fuel-rich condition and fuel-lean condition for NDFs. For IDFs, the change of OH* distribution with increasing equivalence O/C ratio ([O/C]e in Region II is not conspicuous. More OH* and CH* are generated in IDFs, due to the inner high-speed O2 flow promoting the mixing of fuel and oxygen to a certain extent.

  13. Antimony: a flame fighter (United States)

    Wintzer, Niki E.; Guberman, David E.


    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  14. Experimental study of combustion characteristics of isolated pockets of hydrogen-air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Manoubi, M.; LaFleche, M. [Univ. of Ottawa, Dept. of Mechanical Engineering, Ottawa, Ontario (Canada); Liang, Z., E-mail: [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Radulescu, M. [Univ. of Ottawa, Dept. of Mechanical Engineering, Ottawa, Ontario (Canada)


    This paper examines the dynamics of unconfined hydrogen-air flames and the criterion for flame propagation between neighbouring pockets of reactive gas separated by air using the soap bubble technique. The combustion events were visualized using high-speed schlieren or large-scale shadowgraph systems. It was revealed that for sufficiently lean hydrogen-air mixtures characterized by low flame speeds, buoyancy effects become important at small scales. The critical radius of hemispherical flame that will rise due to buoyancy is highly sensitive to the hydrogen concentration. The test results demonstrate that for transition of a flame between neighbouring pockets, the separation distance between the bubbles is mainly determined by the expansion ratio for near stoichiometric mixture, but it becomes much smaller for leaner mixtures because the flame kernel rises due to buoyant effects before the flame can reach the second bubble, thus the separation distance is no longer governed by the expansion ratio. (author)

  15. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric [Texas A & M Univ., College Station, TX (United States); Krejci, Michael [Texas A & M Univ., College Station, TX (United States); Mathieu, Olivier [Texas A & M Univ., College Station, TX (United States); Vissotski, Andrew [Texas A & M Univ., College Station, TX (United States); Ravi, Sankat [Texas A & M Univ., College Station, TX (United States); Plichta, Drew [Texas A & M Univ., College Station, TX (United States); Sikes, Travis [Texas A & M Univ., College Station, TX (United States); Levacque, Anthony [Texas A & M Univ., College Station, TX (United States); Camou, Alejandro [Texas A & M Univ., College Station, TX (United States); Aul, Christopher [Texas A & M Univ., College Station, TX (United States)


    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  16. Effects of optical diagnostic techniques on the accuracy of laminar flame speeds measured from Bunsen flames: OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF (United States)

    Wu, Yi; Modica, Vincent; Yu, Xilong; Li, Fei; Grisch, Frédéric


    The effects of optical diagnostic techniques on the accuracy of laminar flame speed measured from Bunsen flames were investigated. Laminar flame speed measurements were conducted for different fuel/air mixtures including CH4/air, acetone/air and kerosene (Jet A-1)/air in applying different optical diagnostic techniques, i.e. OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF. It is found that the OH* chemiluminescence imaging technique cannot directly derive the location of the outer edge of the fresh gases and it is necessary to correct the position of the OH* peak to guarantee the accuracy of the measurements. OH-PLIF and acetone/kerosene-PLIF respectively are able to measure the disappearance of the fresh gas contour and the appearance of the reaction zone. It shows that the aromatic-PLIF technique gives similar laminar flame speed values when compared with those obtained from corrected OH* chemiluminescence images. However, discrepancies were observed between the OH-PLIF and the aromatic-PLIF techniques, in that OH-PLIF slightly underestimates laminar flame speeds by up to 5%. The difference between the flame contours obtained from different optical techniques are further analysed and illustrated with 1D flame structure simulation using detailed kinetic mechanisms.

  17. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.


    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  18. Fiscal 1997 survey report. Subtask 8 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen combustion turbines/development of combustion control technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system (WE-NET) subtask 8 suiso nensho turbine no kaihatsu nensho seigyo gijutsu no kaihatsi

    Energy Technology Data Exchange (ETDEWEB)



    Concerning the development of hydrogen combustion turbines, the paper described the fiscal 1997 results. As a hydrogen/oxygen combustor, the annular combustor was studied. Based on the results obtained by the last fiscal year, a combustor for the evaluation test was designed/fabricated. Oxygen is mixed with vapor at the portion of the burner, rotated/jetted (flame held by the circulation flow generated) and made to burn with hydrogen (porous injection). The smooth ignition and equilibrium wall temperature distribution were made possible. Concentrations of the residual hydrogen/oxygen in the stoichiometric mixture ratio combustion were both less than 1%. Further, can type combustor I is a type in which hydrogen and oxygen are burned near the burner and then are diluted by vapor. Improved of the burner structure and diluted vapor hole, it was tested. In can type combustor II, a mixture of oxygen and vapor is supplied and burned with hydrogen. The appropriate supply of oxygen was 20% distribution to the primary scoop and 80% to secondary. In both combustors, smooth ignition was possible, and concentrations of the residual hydrogen/oxygen in the stoichiometric mixture ratio combustion were controlled at minimum (approximately 1%). The evaluation method for the optimum hydrogen/oxygen combustor was studied. 142 figs., 24 tabs.

  19. Electric Fields for Flame Extinguishment (United States)


    ethylene-air and methane-air flames, the application of a DC field of 0.5 kV/cm increased the burning velocity by close to a factor of two. Salamandra and...flame surface area and thus the velocity, but Jaggers and von Engel also saw physical perturbations in flame fronts with no electric field. Salamandra ...Conductivity in Propane-Air Flames by Using Rydberg State Stark Spectroscopy," Proc. Combustion Inst., Fall (1990). 12. Salamandra , G.D., and Mairov, N.I

  20. Hydrogen Fire Detection System Features Sharp Discrimination (United States)

    Bright, C. S.


    Hydrogen fire detection system discovers fires by detecting the flickering ultraviolet radiation emitted by the OH molecule, a short-lived intermediate combustion product found in hydrogen-air flames. In a space application, the system discriminates against false signals from sunlight and rocket engine exhaust plume radiation.

  1. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas


    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  2. Visualization of conventional and combusting subsonic jet instabilities

    CERN Document Server

    Kozlov, Victor; Litvinenko, Yury


    Based on new information obtained on free microjets, this book explains the latest phenomena in flame evolution in the presence of a transverse acoustic field with round and plane propane microjet combustion. It gives an overview of recent experimental results on instability and dynamics of jets at low Reynolds numbers and provides the reader, step by step, with the milestones and recent advances in jet flow stability and combustion. Readers will also discover a clarification of the differences between top-hat and parabolic round and plane jet instability. Chapters demonstrate features of the interaction between jet and crossflow, and how experimental data testify to similarities of the perturbed flow patterns of laminar and turbulent round jets. A similar response of the jets to external acoustic oscillations is shown, as well as the peculiarities of the effect of a transverse acoustic field on downstream evolution of round and plane macro- and microjets. Basic features of round and plane, macro and micro je...

  3. Vorticity Dynamics in Single and Multiple Swirling Reacting Jets (United States)

    Smith, Travis; Aguilar, Michael; Emerson, Benjamin; Noble, David; Lieuwen, Tim


    This presentation describes an analysis of the unsteady flow structures in two multinozzle swirling jet configurations. This work is motivated by the problem of combustion instabilities in premixed flames, a major concern in the development of modern low NOx combustors. The objective is to compare the unsteady flow structures in these two configurations for two separate geometries and determine how certain parameters, primarily distance between jets, influence the flow dynamics. The analysis aims to differentiate between the flow dynamics of single nozzle and triple nozzle configurations. This study looks at how the vorticity in the shear layers of one reacting swirling jet can affect the dynamics of a nearby similar jet. The distance between the swirling jets is found to have an effect on the flow field in determining where swirling jets merge and on the dynamics upstream of the merging location. Graduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.

  4. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures (United States)

    Allgood, Daniel C.


    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  5. Cryogenic hydrogen release research.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  6. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines (Year Two) (United States)


    formation during fast- pyrolysis and fast-hydropyrolysis. To study coal gasification in the presence of excess hydrogen, an optically accessible, high...counter-flow flames using axi-symmetric 2-D flame codes. 15. SUBJECT TERMS Biomass fast hydropyrolysis, hydrodeoxygenation, and coal steam pyrolysis ...utilization of biomass and coal to produce appropriate aviation liquid fuels. Several prototype, fast- pyrolysis reactors were built and tested to

  7. Influence of heat transfer on high pressure flame structure and stabilization in liquid rocket engines


    Mari, Raphaël


    This research work deals with the problem of the flame stabilization in the context of high pressure liquid rocket engines. Flame stabilization in a rocket engine is a critical feature. An instability can lead to important damages of the engine or the destruction of the launcher and the satellite. The engines (Vulcain 2 and Vinci) of the Ariane 5, and the future Ariane 6, use the hydrogen/oxygen propellants. One characteristic of this couple is its high specific impulse. The launcher performa...

  8. Flame Resistant Foam (United States)


    Solimide manufactured by Imi-Tech Corporation, is a lightweight fire resistant material produced under a manufacturing process that allows it to be uniformly foamed. Can be produced in a variety of densities and structural configurations and remains resilient under exposure to temperatures ranging from minus 300 to plus 500 degrees Fahrenheit. Is resistant to open flame and generates virtually no smoke or toxic by-products. Used in aircraft for its superior damping characteristics, lighter weight and fire barrier properties, it's also applicable to ships and surface transportation systems such as transit cars, trains, buses and automobiles.

  9. Finite amplitude wave interaction with premixed laminar flames (United States)

    Aslani, Mohamad; Regele, Jonathan D.


    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  10. Modelling of technical spray flames; Modellierung technischer Sprayflammen

    Energy Technology Data Exchange (ETDEWEB)

    Gutheil, E.


    The paper presents a fundamental introduction to the modelling of laminar and turbulent spray flames. Methods of modelling the underlying processes are presented and investigated for their applicability. Ignition characteristics of laminar gases and sprays are investigated and discussed. Combustion of fuel sprays in counterflow configurations is modelled, and important influencing parameters of the structure and quenching conditions of these flames are identified. Typical applications of spray combustion are modelled, i.e. engines (ignition in a diesel engine and combustion in a stratified charge engine) and a free jet spray diffusion flame. The emphasis in both cases is on the chemical reactions. Integration of detailed chemical reacaiton mechanisms makes it possible to investigate pollutant formation in spray flames. (orig.) [Deutsch] Die Arbeit gibt einen fundamentalen Einblick in die Modellierung laminarer und turbulenter Sprayflammen. Methoden der Modellierung der zugrundeliegenden Prozesse werden dargestellt und auf ihre Anwendbarkeit hin untersucht. Es werden Charakteristika der Zuendung in laminaren Gasen und Sprays untersucht und diskutiert. Die Verbrennung von Brennstoffsprays in der Gegenstromkonfiguration wird modelliert, und es werden wesentliche Einflussgroessen auf die Struktur und die Verloeschbedingungen dieser Flammen identifiziert. Als typische Anwendungen der Sprayverbrennung werden die motorische Verbrennung (Zuendung in einem Dieselmotor und Verbrennung in einem Schichtlademotor) und eine Freistrahl-Spraydiffusionsflamme modelliert. Dabei liegt der Schwerpunkt jeweils bei der Modellierung der chemischen Reaktionen. Die Einbindung detaillierter chemischer Reaktionsmechanismen ermoeglicht dabei die Untersuchung der Schadstoffbildung in Sprayflammen. (orig.)

  11. FT-ICR study on hydrogenation of niobium cluster cations Nbn+ (n=2-15) in seeded supersonic jet and multiple-collision-induced dissociation of NbnHm+ hydrides (United States)

    Vakhtin, Andrei B.; Sugawara, Ko-ichi


    Hydrogenation of niobium cluster cations Nbn+ (n=2-15) in a seeded supersonic jet of H2/He and multiple-collision-induced dissociation (MCID) of the resulting NbnHm+ hydrides have been studied using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The nascent NbnHm+ hydrides trapped in the FT-ICR cell have broad m distributions with no apparent prevalence of odd or even m. A pulse of argon applied to the trapped clusters causes a dramatic squeezing of the initial m distribution (through the collision-induced removal of weakly bound H2 molecules), favoring several particular hydrides for each cluster size n, e.g., Nb7H8+, Nb7H11+, and Nb7H12+ for n=7. The maximum m values of these stable hydrides are close to the stoichiometric composition of NbH2 for the clusters with nMCID of the NbnHm+ clusters occurs through the sequential desorption of H2 molecules yielding NbnH+ and Nbn+ as final dissociation products for odd and even m, respectively. Based on the experiments on the MCID of Nb12H18+, an explanation is suggested for different reactivities of the Nb12+ clusters toward H2 in the ICR and fast-flow-reactor experiments.

  12. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)


    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  13. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation (United States)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.


    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  14. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation (United States)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.


    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  15. Measurement of impinging butane flame using combined optical system with digital speckle tomography (United States)

    Ko, Han Seo; Ahn, Seong Soo; Kim, Hyun Jung


    Three-dimensional density distributions of an impinging and eccentric flame were measured experimentally using a combined optical system with digital speckle tomography. In addition, a three-dimensional temperature distribution of the flame was reconstructed from an ideal gas equation based on the reconstructed density data. The flame was formed by the ignition of premixed butane/air from air holes and impinged upward against a plate located 24 mm distance from the burner nozzle. In order to verify the reconstruction process for the experimental measurements, numerically synthesized phantoms of impinging and eccentric flames were derived and reconstructed using a developed three-dimensional multiplicative algebraic reconstruction technique (MART). A new scanning technique was developed for the accurate analysis of speckle displacements necessary for investigating the wall jet regions of the impinging flame at which a sharp variation of the flow direction and pressure gradient occur. The reconstructed temperatures by the digital speckle tomography were applied to the boundary condition for numerical analysis of a flame impinged plate. Then, the numerically calculated temperature distribution of the upper side of the flame impinged plate was compared to temperature data taken by an infrared camera. The absolute average uncertainty between the numerical and infrared camera data was 3.7%.

  16. Turbulent Flame Speed and Self Similarity of Expanding Premixed Flames (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung


    In this study we present experimental turbulent flame speed data measured in constant-pressure expanding turbulent flames, propagating in nearly homogenous isotropic turbulence, in a dual-chamber, fan-stirred vessel. The cold flow is characterized by high speed particle image velocimetry while the flame propagation rate is obtained by tracking high speed Schlieren images of unity Lewis number methane-air flames over wide ranges of pressure and turbulence intensity. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from expanding flames and those from Bunsen geometries can be scaled by a single parameter: the turbulent Reynolds number utilizing recent theoretical results obtained by spectral closure of the G equation, after correcting for gas expansion effects.

  17. Feature of high velocity oxygen-fuel flame spraying; Kosoku flame yoshaho no tokucho to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Sakaki, K. [Shinshu University, Nagano (Japan). Faculty of Engineering


    A description is given about the high velocity flame spraying method. In this method, fuel and oxygen under high pressure are supplied to a spraying gun, a supersonic stream of flame is jetted out of a fine nozzle, and spray particles are injected into the flame to impinge on the substrate surface at a very high speed for the formation of a coating. This method is advantageous in that the spray particles are higher in flying speed than in other spraying methods, that the produced coating is dense and close and excellent in adhesion, that the flame temperature is relatively low, and that the spray material is suppressed in terms of phase transformation, oxidation, and decomposition. This spraying technique is disadvantageous in that the spray materials that it can use are limited in variety because this method meets difficulties in spraying upon high melting-point metal or ceramics. This paper also outlines the spraying devices (chamber combustion type and throat combustion type) and the characteristics of produced coatings, and spray materials and their application (centering about carbide thermit spraying) are mentioned. 23 refs., 6 figs., 2 tabs.

  18. Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers

    Directory of Open Access Journals (Sweden)

    Naveen Pathak


    Full Text Available We report on the development of radiation and electron sources based on laser-plasma acceleration for biomedical and nuclear applications, using both the table top TW laser at ILIL and the 220 TW FLAME laser system at LNF. We use the ILIL laser to produce wakefield electrons in a self-focusing dominated regime in a mm scale gas-jet to generate large, uniform beams of MeV electrons for electron radiography and radiobiology applications. This acceleration regime is described in detail and key parameters are given to establish reproducible and reliable operation of this source. We use the FLAME laser to drive laser-plasma acceleration in a cm-scale gas target to obtain stable production of >100 MeV range electrons to drive a Thomson scattering ɣ-ray source for nuclear applications.

  19. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan


    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  20. Horizontally Issuing Diffusion Flames Characterized by OH-PLIF and Visualizations

    Directory of Open Access Journals (Sweden)

    J.J. Heffernen


    Full Text Available Planar laser induced fluorescence and flame visualizations characterized the effect of buoyancy on the behavior of the combustion zone of diffusion jet flames which issued from horizontally-oriented tubes into ambient air. The study focused on the mixing characteristics of propane and ethylene at Reynolds numbers ranging from 300 to 1500 in the near field of the jet (up to X/D=9 and Froude numbers ranging as low as 0.36, based on cold-flow gas properties and conditions. Performing the study with a variety of fuel tube diameters enabled independent control of Froude and Reynolds numbers. The PLIF visualizations revealed the presence of the hydroxyl radical in the mixing layer for all cases. The hydroxyl concentrations were consistently higher in the upper portion of the mixing layer, indicative of more vigorous mixing in this region. The visualizations also revealed the evolution of polycyclic aromatic hydrocarbons which were initially spatially segregated from the portion of the reaction zone containing the hydroxyl radical. The polycyclic aromatic hydrocarbons initiate in fuel-rich regions nearer to the jet core than the hydroxyl radical, though the two regions eventually combine well downstream of the tube exit. Both the hydroxyl radical and the polycyclic aromatic hydrocarbons were more prominent on the upper side of the jet flame. Both propane and ethylene fuels led to qualitatively similar features of the flow field, indicating the important role played by the buoyancy-influenced fluid dynamics of the combustion products. The resulting cross sectional PLIF images were used to produce a three-dimensional representation of the reaction zone, indicating the jet spread and trajectory. The data was empirically correlated and found to collapse when based on the Froude number consistent with the density and temperature of a fully-reacted stoichiometric mixture. Complementary visualizations provided additional insight into the trajectory of the jet

  1. Geometrical properties of turbulent premixed flames and other corrugated interfaces (United States)

    Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.


    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  2. Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach. (United States)

    Varga, Tamás; Olm, Carsten; Nagy, Tibor; Zsély, István Gy; Valkó, Éva; Pálvölgyi, Róbert; Curran, Henry J; Turányi, Tamás


    A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. (Combust Flame, 2013, 160, 995-1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst, 2015, 35, 589-596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet-stirred reactors. The experimental conditions covered wide ranges of temperatures (800-2500 K), pressures (0.5-50 bar), equivalence ratios (ϕ = 0.3-5.0), and C/H ratios (0-3). In total, 48 Arrhenius parameters and 5 third-body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H2/CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature-dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data.

  3. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A


    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  4. Flame spraying of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Varacalle, D.J. Jr.; Zeek, D.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Couch, K.W.; Benson, D.M. [Protech Laboratory Corp., Cincinnati, OH (United States); Kirk, S.M. [3M Co., St. Paul, MN (United States)


    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs.

  5. Active Control of High Speed Jet Flames Using Counterflow

    National Research Council Canada - National Science Library

    Krothapalli, Anjaneyulu


    .... An optical temperature measurement technique, refereed to as Laser Speckle Displacement (LSD) was developed for instantaneous temperature field measurements. It is shown that the technique is easy to implement and can be used in conjunction with PIV for simultaneous velocity and temperature measurements in reacting flows.

  6. Direct Numerical Simulations of an Unpremixed Turbulent Jet Flame (United States)


    11’’ Tile MIach number of 1.5 and Re ’ynolds ninl- of lengt II scale can be resol veil si ng f it-- ijost powe’r- - her of :1700 were- chosen. The...Turb . .lAm- Flors . Vol. 16, 1984. 1981, p. 3.44. ’Btchlor G. K.. Theory of Homtogfiuouvs Turbu- 3vGhoitiem. A. F.. Chmoriti. A. .J., amid Oppenheim

  7. Electrical Aspects of Impinging Flames (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer


    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Scullion, E.; Gallagher, P. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Doyle, J. G. [Armagh Observatory, College Hill, Armagh, BT61 9DG (United Kingdom); Shelyag, S., E-mail: [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria, 3800 (Australia)


    Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1 m Solar Telescope to study EB events on the solar disk and at the limb. Both data sets show that EBs are connected to the foot points of forming chromospheric jets. The limb observations show that a bright structure in the Hα blue wing connects to the EB initially fueling it, leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of Hα. In the disk data set, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame. The EB then splits into two, with associated brightenings in the inter-granular lanes. Micro-jets are then observed, extending to 500 km with a lifetime of a few minutes. Observed velocities of the micro-jets are approximately 5–10 km s{sup −1}, while their chromospheric counterparts range from 50 to 80 km s{sup −1}. MURaM simulations of quiet Sun reconnection show that micro-jets with properties similar to those of the observations follow the line of reconnection in the photosphere, with associated Hα brightening at the location of increased temperature.

  9. Pileup Jet Identification

    CERN Document Server

    CMS Collaboration


    High pileup in LHC collisions can increase incidence of jets by several large factors. To reduce the incidence of jets from pileup and to preserve the rate of good jets, a jet identification based on both vertex information and jet shape information has been developed. The construction of this jet identifier is described and the performances are evaluated using both Z+jets MC simulated samples and Z+jets data collected in the 2012 $\\sqrt{s}=8$ TeV run. The effectiveness of this jet identifier is discussed in the context of jet vetoes and vector boson fusion production.

  10. Dynamic Characterization of Candle Flame

    Directory of Open Access Journals (Sweden)

    Suvojit Ghosh


    Full Text Available The present work focuses on studying the flickering of a candle placed in a hollow cylindrical glass tube. Variations in flame area and intensity have been studied as the oscillating parameters of the flame with a camera and a Photomultiplier tube (PMT, and results have been found to be indicative of the presence of some well defined peaks in the amplitude spectrum of the flame intensity. Tests have been carried out with a range of candle diameters for the same glass tube giving similar results. Fluctuations in fractal dimension of the flame structure have also been studied in the course of the work. The time series data generated by processing camera images and also the PMT voltage output has been studied for existence of periodicity in the signal recorded. The correlation dimension has been determined for a number of experiments to characterize the dynamics of the signal.

  11. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.


    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  12. Non-invasive seedingless measurements of the flame transfer function using high-speed camera-based laser vibrometry (United States)

    Gürtler, Johannes; Greiffenhagen, Felix; Woisetschläger, Jakob; Haufe, Daniel; Czarske, Jürgen


    The characterization of modern jet engines or stationary gas turbines running with lean combustion by means of swirl-stabilized flames necessitates seedingless optical field measurements of the flame transfer function, i.e. the ratio of the fluctuating heat release rate inside the flame volume, the instationary flow velocity at the combustor outlet and the time average of both quantities. For this reason, a high-speed camera-based laser interferometric vibrometer is proposed for spatio-temporally resolved measurements of the flame transfer function inside a swirl-stabilized technically premixed flame. Each pixel provides line-of-sight measurements of the heat release rate due to the linear coupling to fluctuations of the refractive index along the laser beam, which are based on density fluctuations inside the flame volume. Additionally, field measurements of the instationary flow velocity are possible due to correlation of simultaneously measured pixel signals and the known distance between the measurement positions. Thus, the new system enables the spatially resolved detection of the flame transfer function and instationary flow behavior with a single measurement for the first time. The presented setup offers single pixel resolution with measurement rates up to 40 kHz at an maximum image resolution of 256 px x 128 px. Based on a comparison with reference measurements using a standard pointwise laser interferometric vibrometer, the new system is validated and a discussion of the measurement uncertainty is presented. Finally, the measurement of refractive index fluctuations inside a flame volume is demonstrated.

  13. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan


    baseline case, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. By varying applied AC in a wide range of frequency and voltage, several insta- bility modes were observed, including flicking flames, partial pinch-off of flames, and spinning flames. High speed imaging together with Mie scattering techniques were combined to reveal the flame dynamics as well as the flow structure inside the flames. Original steady toroidal vortices triggered by AC were noted to exhibit axisymmetric axial instability in the flicking and partial pinch-off modes and non-axisymmetric azimuthal instability in the spinning mode. Electrical measurements were also conducted simultaneously to identify the voltage, current, and electrical power responses. Integrated power was noted to be sensitive to indicate subtle variation of flames properties and to the occurrence of axial instability. Under low frequency AC forcing with electrical conditions not generating toroidal vortices, responses of flames were further investigated. Several nonlinear flame responses, including frequency doubling and tripling phenomena, were identified. Spectral analysis revealed that such nonlinear responses were attributed to the combined effects of triggering buoyancy-induced oscillation of the flame as well as the Lorenz force generated by applying AC. Phase delay behaviors between the applied voltage and the heat release rate (or flame size) were also studied to explore the potential of applying AC in controlling flame instability. It was found that the phase delay had large variations for AC frequency smaller than

  14. Jet in jet in M87 (United States)

    Sob'yanin, Denis Nikolaevich


    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  15. Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina; Hecht, Ethan; Reynolds, John Thomas; Blaylock, Myra L.; Erin E. Carrier


    The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.

  16. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.


    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated....... The simple hydrocarbon flames are dominated by a series of hydrocarbonic ions and, to a minor extent, protonated oxo-compounds. The introduction of sulfur to the flames leads to significant changes in the ion composition, as sulfur-containing species become dominant. The ability of the technique to study...

  17. N (HI) and Jet Power/Emission in AGNs

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Neutral hydrogen (HI) 21-cm absorption has been detected against very powerful radio jets. In this paper, based on Gupta's sample (Gupta et al. 2006), we present our preliminary study of the correlations between the HI column density N(HI) and the jet power, N(HI) versus the low frequency luminosity at ...

  18. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in dust cloud flames: Origins of dust explosion

    CERN Document Server

    Ivanov, Michael A Liberman M F


    We examines regimes of the hydrogen flames propagation and ignition of mixtures heated by the radiation emitted from the flame. The gaseous phase is assumed to be transparent for radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. Depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the unreacted mixture can be either the increase of the flame velocity for uniformly dispersed particles or ignition deflagration or detonation ahead of the flame via the Zel'dovich gradient mechanism in the...

  19. Combustion Synthesis of Nanomaterials Using Various Flame Configurations

    KAUST Repository

    Ismail, Mohamed Anwar


    Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have been investigated; scale-up in laboratory synthesis and advanced nanoparticle synthesis. Concerning the scale-up issue, a novel curved wall-jet (CWJ) burner was designed for flame synthesis. This was achieved by injecting precursors of TiO2 through a central port into different flames zones that were stabilized by supplying fuel/air mixtures as an annular-inward jet over the curved wall. This provides a rapid mixing of precursors in the reaction zone with hot products. In order to increase the contact surface between the precursor and reactants as well as its residence time within the hot products, we proposed two different modifications. The CWJ burner was modified by adding a poppet valve on top of the central port to deliver the precursor tangentially into the recirculating flow upstream within the recirculation zone. Another modification was made by adopting double-slit curved wall-jet (DS-CWJ) configuration, one for the reacting mixture and the other for the precursor instead of the central port. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases were investigated. Ethylene (C2H4), propane (C3H8), and methane (CH4) were used with varying equivalence ratio and Reynolds number and titanium tetraisopropoxide (TTIP) was the precursor. Flow field and flame structure were quantified using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. TiO2 nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman Spectroscopy, and BET nitrogen adsorption for surface area analysis. The flow field quantified by PIV consisted of a wall-jet region leading to a recirculation zone, an

  20. Laser controlled flame stabilization (United States)

    Early, James W.; Thomas, Matthew E.


    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  1. Time-resolved stereoscopic PIV study of flashback in swirl flames at elevated pressures (United States)

    Ranjan, Rakesh; Ebi, Dominik; Clemens, Noel


    Boundary layer flashback of turbulent premixed swirl flames can pose a major challenge to the operation of stationary gas turbines, especially with hydrogen-rich fuels. To improve our understanding of the physics behind this phenomenon at gas turbine relevant conditions, it is essential to investigate flashback at elevated pressures. With this purpose in mind, flashback experiments with hydrogen/methane-air premixtures are conducted in a model swirl combustor installed in an optically accessible high-pressure combustion facility. We have employed stereoscopic PIV in conjunction with high speed chemiluminiscence imaging to study the upstream propagation of the flame in the premix tube during flashback. Experiments are run at pressures ranging from 1 atm to 5 atm. These time-resolved measurements provide valuable insight into the flame-flow interaction during flashback at elevated pressures.

  2. Joint Scalar versus Joint Velocity-Scalar PDF Simulations of Bluff-Body Stabilized Flames with REDIM

    NARCIS (Netherlands)

    Merci, B.; Naud, B.; Roekaerts, D.; Maas, U.


    Two transported PDF strategies, joint velocity-scalar PDF (JVSPDF) and joint scalar PDF (JSPDF), are investigated for bluff-body stabilized jet-type turbulent diffusion flames with a variable degree of turbulence–chemistry interaction. Chemistry is modeled by means of the novel reaction-diffusion

  3. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing


    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  4. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C. [Brookhaven National Lab., Upton, NY (United States)] [and others


    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  5. An experimental investigation on self-acceleration of cellular spherical flames

    DEFF Research Database (Denmark)

    Wu, Fujia; Jomaas, Grunde; Law, Chung K.


    , whether it could also be self-turbulizing. Extensive experiments at elevated pressures and thereby reduced laminar flame thicknesses and enhanced propensity to exhibit Darrieus-Landau instability were conducted for hydrogen/air mixtures over an extensive range of equivalence ratios. The results...

  6. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho


    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  7. The Morphology of Chromium and LIF Measurement of Atomic Arsenic in Laminar Diffusion Flames

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young Bin [Department of Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)


    The morphology and size distribution of chromium oxides and the concentration measurement of atomic arsenic have been studied in laminar diffusion flames. Nitrogen was added to vary flame temperatures in hydrogen flames. Ethene flames were used in order to investigate the potential for interaction between the soot aerosol that is formed in these flames and the chromium aerosol. Two sources of chromium compounds were introduced:chromium nitrate and chromium hexacarbonyl. A detailed investigation of the morphology was carried out by scanning electron microscopy(SEM). The amounts of Cr(VI) and total Cr were determined by a spectrophotometric method and by X-ray fluorescence spectrometry, respectively. Also, LIF was used for the measurement of atomic arsenic, which was excited at 197.2 nm and was detected at 249.6 nm. Results showed that the morphology of the particles varied with the flame temperature and with the chromium source. The particles were characterized by porous structures, cenospheres and agglomerated dense particles when chromium nitrate solution was added to the flames. At low to moderate temperature, porous sintered cenospheric structures were formed, in some cases with a blow hole. At higher temperatures, an agglomerated cluster which was composed Cr(VI) from the undiluted H{sub 2} flame was more than 10 times larger than in the 50%H{sub 2}/50%N{sub 2} flame on a mass basis. Single point LIF measurement of atomic arsenic indicated that arsenic exist only in the low temperature, fuel rich region. (author). 14 refs., 1 tab., 7 figs.

  8. Flame Retardants Used in Flexible Polyurethane Foam (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  9. Assessment of flame/kinetic models through detailed comparisons with experiment (United States)

    Bergthorson, Jeffrey


    Planar premixed flames are stabilized in the stagnation flow field of an impinging jet. Methane, ethane, and ethylene premixed flames are studied experimentally as a function of stoichiometry and imposed strain rate. Simultaneous measurements of axial velocity and CH radical concentration profiles are made using Particle Streak Velocimetry (PSV) and Planar Laser Induced Fluorescence (PLIF). Stagnation-wall temperature and inlet mixture-composition data are acquired concurrently and permit a full specification of the wall and inflow boundary conditions. Experimental results are simulated numerically using the Cantera reacting-flow package in terms of a one-dimensional formulation and a multi-component transport model. Simulated velocity profiles are corrected for particle inertia, thermophoretic, and finite particle-track time-interval effects and allow direct comparisons with experiment. Measured versus predicted velocity and CH profile comparisons allow the validity of flow, transport, and kinetic models for methane, ethane, and ethylene flames to be assessed.

  10. Physical and Chemical Processes in Turbulent Flames (United States)


    used a constant-pressure, fan -stirred combustion chamber to investigate the propagation of a spherically expanding flame (Fig. 1.1). Chambers based...radius, closer to the fans . However during flame expansion, the mean radial flow adjacent to the flame is radially outward in nature shown by the...AFRL-OSR-VA-TR-2015-0136 Physical and Chemical Processes in Turbulent Flames Chung Law TRUSTEES OF PRINCETON UNIVERSITY Final Report 06/23/2015


    Directory of Open Access Journals (Sweden)

    Stanislav LICHOROBIEC


    Full Text Available The topic of the article is devoted to the experimental development of directional charges, which have a front part filled with water and are thus capable of forming a high velocity water jet, which has intense cooling effects and is accompanied by a shock wave created by the explosion of the charge. The water jet can then be used to extinguish the flame from an intense fire epicenter caused, for example, by a gas pipe failure, a tank with flammable liquid or an oil well. The text is accompanied with the visual design of the water spout prototype, including the experimental test of extinguishing the focus of an intense flame caused by various sources.

  12. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.


    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  13. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.


    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  14. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.


    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  15. Environmental Considerations for Flame Resistant Textiles (United States)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...

  16. 30 CFR 14.20 - Flame resistance. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  17. Inclusive Jets in PHP

    CERN Document Server

    Roloff, Philipp


    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  18. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames

    KAUST Repository

    Attili, Antonio


    The effect of Damköhler number on turbulent nonpremixed sooting flames is investigated via large scale direct numerical simulation in three-dimensional n-heptane/air jet flames at a jet Reynolds number of 15,000 and at three different Damköhler numbers. A reduced chemical mechanism, which includes the soot precursor naphthalene, and a high-order method of moments are employed. At the highest Damköhler number, local extinction is negligible, while flames holes are observed in the two lowest Damköhler number cases. Compared to temperature and other species controlled by fuel oxidation chemistry, naphthalene is found to be affected more significantly by the Damköhler number. Consequently, the overall soot mass fraction decreases by more than one order of magnitude for a fourfold decrease of the Damköhler number. On the contrary, the overall number density of soot particles is approximately the same, but its distribution in mixture fraction space is different in the three cases. The total soot mass growth rate is found to be proportional to the Damköhler number. In the two lowest Da number cases, soot leakage across the flame is observed. Leveraging Lagrangian statistics, it is concluded that soot leakage is due to patches of soot that cross the stoichiometric surface through flame holes. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  19. On the Feasibility of Multi-kHz Acquisition Rate Tomographic-PIV in Turbulent Flames (United States)


    wherein high frequency (kHz- framerate ) stereoscopic-PIV is applied in a plane perpendicular to the axial flow direction of a gaseous jet, and...particle distributions was accomplished using the multiplicative algebraic reconstruction technique. The results indicate that high quality tomographic...indicate that high quality tomographic-PIV measurements in a turbulent flame are possible with laser pulse energies of 25mJ, which is well within the

  20. Experimental study on propane/oxygen and natural gas/oxygen laminar diffusion flames in diluting and preheating conditions

    Directory of Open Access Journals (Sweden)

    Kashir Babak


    Full Text Available In the present study, propane/oxygen and natural gas/oxygen diffusion flames within laminar regime have been investigated experimentally to determine the effects of oxidant preheating and diluting. This research has been divided into two parts. At first, effect of oxygen dilution with nitrogen and carbon dioxide gases has been investigated. In this section, stability and flame configuration variations are studied. Furthermore, it is inferred that combustion of natural gas and propane with pure oxygen can increase flame stability against increasing the fuel jet velocities through increasing burning velocity of the flame as compared with the combustion of natural gas or propane with normal air. In the other part, oxidant stream preheating up to 480 K and contemporaneous diluting with nitrogen or carbon dioxide are investigated and results are compared with non-preheating tests. Preheating causes more flame stability with respect to dilution process. Also, Due to combustion products temperature rise and also reduction in ignition delay time in preheating, these flames are more stable and also visually more luminous in comparison with normal temperature flames.

  1. Premixer Design for High Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome


    combustion process, were analyzed to evaluate the performance of the different concepts. Detailed 1-D analysis was performed to provide 1-step NOx and 1-step combustion models that could be utilized in CFD to provide more accurate estimates of NOx for more complicated combustion designs. The swozzle results identified potential problems with flame holding, flashback and with adequate mixing. Flame holding issues were further evaluated with laboratory testing to determine under what conditions a jet in cross flow would flame hold. Additional CFD analysis was also performed on fuel injection from a peg to simulate fuel injection off a vane's trailing edge. This task was concluded with a Conceptual Design Review of the two selected design concepts. (3) Optimize design and re-evaluate operability risks. This task extended the analysis of LDI concepts and increased understanding of the optimal design configuration. Designs were selected for subscale combustion laboratory testing and then modeled using CFD to validate CFD methodology. CFD provided a good qualitative match and reasonable quantitative match with the test results. Tests and CFD modeling indicated a path to low NOx combustion with no diluent addition. Different swirler designs were also evaluated and the most promising, a counter rotating swirler, was selected for further evaluation. CFD modeling was performed and the design was optimized to improve mixing. CFD modeling indicated the potential for low NOx combustion without diluent addition. CFD was validated against cold flow testing on a swirler using helium injection in place of hydrogen. Further validation work is still needed to ensure the ability to accurately model the mixing of swirling flows. Entitlement testing was performed on a perfectly premixed H2/N2/air mixture. Results showed that low NOx could be obtained at the temperatures of interest (7FB conditions) with no diluent addition. Results also showed that further NOx reductions might be possible by

  2. The VLT FLAMES Tarantula Survey

    NARCIS (Netherlands)

    Evans, C.; Taylor, W.; Sana, H.; Hénault-Brunet, V.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.; Bonanos, A.; Bressert, E.; Brott, I.; Campbell, M.; Cantiello, M.; Carraro, G.; Clark, S.; Costa, E.; Crowther, P.; de Koter, A.; de Mink, S.; Doran, E.; Dufton, P.; Dunstall, P.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I.; Izzard, R.; Köhler, K.; Langer, N.; Lennon, D.; Maíz Apellániz, J.; Markova, N.; Najarro, P.; Puls, J.; Ramirez, O.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Smartt, S.; Stroud, V.; van Loon, J.; Vink, J.S.; Walborn, N.


    We introduce the VLT FLAMES Tarantula Survey, an ESO Large Programme from which we have obtained optical spectroscopy of over 800 massive stars in the spectacular 30 Doradus region of the Large Magellanic Cloud. A key feature is the use of multi-epoch observations to provide strong constraints on

  3. Cars Spectroscopy of Propellant Flames (United States)


    Propellant Flames," Fast Reactions in Energetic Systems, D. Capellos and R. F. Walker, ed., Reidel, Boston, MA, 1981, pp 473-434. 2. L. E. Harris and M. E...Beardell Y. Carignon J. Fendell K, Aron E. Petro DRStfC-LCE-(D), R. Walker P. Marinkas C. Capellos S. Buluou F. Gilbert Dover, tU 07801 Afmtnistrator

  4. Theory of Colored Flame Production (United States)


    cal/mole, UnO electron volt per molecule is equivalent to 23.US3 kilocalories per gram mole. At ++ ~2000Oý, it is estimatted that molecules with a...because halides stimulate alkali metal compound folaltion, the halogens must be classed as negativo enhancement agents in flames containing alkali

  5. Liquid developer jetting device

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Jun-ichi; Sasahara, Toshihiko; Nakamura, Manabu


    The liquid developer jetting device of the present invention comprises an air jetting nozzle for jetting pressurized air to an object to be tested. A liquid developer jetting nozzle is disposed near the air jetting nozzle for jetting a developer upwardly. The liquid developer jetting nozzle is situated in front of the air jetting nozzle for jetting the liquid developer in the direction perpendicular to the pressurized air jetted from the air jetting nozzle. In order to perform an penetration flaw detection test for an abut-welded portion of a drain nozzle disposed to the bottom of a reactor pressure vessel, the liquid developer jetting device is disposed in adjacent with the welded portion. Since the liquid developer jetted while dispersed from the developer jetting nozzle is further dispersed by the pressurized air from the air jetting nozzle, the density of the jetted the developer is made uniform despite of the short distance to the object to be tested. Accordingly, developing processing can be performed even in a restricted space. (I.N.).

  6. Critical Scales, Fundamental Structures and Inherent Instabilities of Turbulent Flames (United States)


    turbulence scales were both analyzed. It was shown that in both limits interactions of detonations with non-uniform fluid density fields had greater...effects than interactions with non-uniform fluid velocity fields. High-speed turbulent-combustion dynamics thereby was shown to behave very...Williams,   “Ignition  Time  of  Hydrogen-­‐Air  Diffusion  Flames,”  Comptes  Rendus   Mecanique  340,  882-­‐893  (2012

  7. Simulation of soot size distribution in an ethylene counterflow flame

    KAUST Repository

    Zhou, Kun


    Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic hydrocarbons (PAHs) condensation PAHs condensing on soot particle surface surface processes hydrogen-abstraction-C2H2-addition, oxidation coagulation two soot particles coagulating to form a bigger particle This simulation work investigates soot size distribution and morphology in an ethylene counterflow flame, using i). Chemkin with a method of moments to deal with the coupling between vapor consumption and soot formation; ii). Monte Carlo simulation of soot dynamics.

  8. Jet reconstruction and jet studies in PHENIX

    CERN Document Server

    Iordanova, A


    Jets of particles in localized regions of phase space are produced from partonic hard-scatterings of quarks and gluons contained within protons and neutrons. In pp and d+Au collisions the produced jets fragment into many hadrons, which can then be reconstructed in the PHENIX detector. In contrast, jets in heavy-ion collisions (for example Cu+Cu) may propagate through the created hot, dense medium which, in turn, could lower the energy of the jet. This energy loss has several consequences including modification of the expected rate of (final) particle production and jetshapes. By directly studying the jets measured in heavy-ion collisions, we can start to understand the properties of the hot, dense medium. However, the large nonjet backgrounds make such measurements difficult. In this talk, I will discuss the latest PHENIX results involving jets, jet reconstruction and high-pT phenomena in the context of our current understanding of heavy-ion collisions.

  9. Characterization of Horizontally-Issuing Reacting Buoyant Jets (United States)


    mixing characteristics of a vertically issuing helium jet through the implementation of stroboscopic Schlieren imaging and Doppler velocimetry. One of...instabilities, a rainbow schlieren deflectometry technique was implemented in conjunction with a high speed imaging system. Ultimately, the flame structure and...stored in liquid form. The propane, therefore, must be vaporized before being used for experimental purposes. In order to vaporize the propane Zimmer

  10. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley


    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  11. Direct Numerical Simulations of NOx formation in spatially developing turbulent premixed Bunsen flames with mixture inhomogeneity

    KAUST Repository

    Luca, Stefano


    Direct Numerical Simulation of three-dimensional spatially developing turbulent methane/air flames are performed. Four flames are simulated; they differ for the level of premixing of the fuel inlet: one has a fully premixed inlet, the other three have a partially premixed inlet that mimic a common injection strategy in stationary gas turbines. The jet consist of a methane/air mixture with global equivalence ratio ɸ = 0.7 and temperature of 800 K. The simulations are performed at 4 atm. The inlet velocity field and the fuel/air fields were extracted from a fully developed turbulent channel simulation. Chemistry is treated with a new skeletal chemical mechanism consisting of 33 species developed specifically for the DNS. The data are analyzed to study possible influences of partial premixing on the flame structure and the combustion efficiency. The results show that increasing the level of partial premixing, the fluctuations of heat release rate increase, due to the richer and leaner pockets of mixture in the flame, while the conditional mean decreases. Increasing the level of partial premixing, the peak of NO and the range of NO values for a given temperature increase. An analysis of NO production is performed categorizing the different initiation steps in the Ndecomposition through four pathways: thermal, prompt, NNH and NO. Different behaviour with respect to laminar flames is found for the NNH pathway suggesting that turbulence influences this pathway of formation of NO.

  12. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.


    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  13. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.


    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  14. Mechanism of Candle Flame Oscillation: Detection of Descending Flow above the Candle Flame (United States)

    Nagamine, Yuko; Otaka, Koki; Zuiki, Hiroyuki; Miike, Hidetoshi; Osa, Atsushi


    When several candles are bundled together, the size of the combined candle flame oscillates. We carried out observational experiments to understand the mechanism of this oscillation. These were optical imaging, shadow graph imaging, temperature imaging around the oscillating candle flame, and image analysis to obtain the quantitative velocity distribution of the air flow above the candle flame. The experiments detected the descending air flow to the candle flame from the upper area, and showed that the descending air flow is involved with the candle flame oscillation. According to the results, we propose a new mechanism of the candle flame oscillation using the analogy of the cumulonimbus cloud in meteorology.

  15. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.


    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  16. Jet Veto Measurements at ATLAS

    CERN Document Server

    Hesketh, Gavin Grant; The ATLAS collaboration


    Jet veto cross section measurements in ATLAS ATLAS has no new dedicated analyses on BFKLtype analyses. We suggest the following mixture of jet veto / exclusive jet cross sections in V+jet, VV+jet, multijets: - Z+jets 13 TeV and Jet vetoes in Z VBF, W VBF studies - WW+0,1 jets - Other dibosons + jets: Zgamma+jets and WZ+jets, - Studies of rapidity separations etc in 4jet events

  17. An experimental investigation of reacting and nonreacting coaxial jet mixing in a laboratory rocket engine (United States)

    Schumaker, Stephen Alexander

    Coaxial jets are commonly used as injectors in propulsion and combustion devices due to both the simplicity of their geometry and the rapid mixing they provide. In liquid rocket engines it is common to use coaxial jets in the context of airblast atomization. However, interest exists in developing rocket engines using a full flow staged combustion cycle. In such a configuration both propellants are injected in the gaseous phase. In addition, gaseous coaxial jets have been identified as an ideal test case for the validation of the next generation of injector modeling tools. For these reasons an understanding of the fundamental phenomena which govern mixing in gaseous coaxial jets and the effect of combustion on these phenomena in coaxial jet diffusion flames is needed. A study was performed to better understand the scaling of the stoichiometric mixing length in reacting and nonreacting coaxial jets with velocity ratios greater than one and density ratios less than one. A facility was developed that incorporates a single shear coaxial injector in a laboratory rocket engine capable of ten atmospheres. Optical access allows the use of flame luminosity and laser diagnostic techniques such as Planar Laser Induced Fluorescence (PLIF). Stoichiometric mixing lengths (LS), which are defined as the distance along the centerline where the stoichiometric condition occurs, were measured using PLIF. Acetone was seeded into the center jet to provide direct PLIF measurement of the average and instantaneous mixture fraction fields for a range of momentum flux ratios for the nonreacting cases. For the coaxial jet diffusion flames, LS was measured from OH radical contours. For nonreacting cases the use of a nondimensional momentum flux ratio was found to collapse the mixing length data. The flame lengths of coaxial jet diffusion flames were also found to scale with the momentum flux ratio but different scaling constants are required which depended on the chemistry of the reaction. The

  18. Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion

    KAUST Repository

    Shanbhogue, S.J.


    © 2015 The Combustion Institute. In this paper, we report results from an experimental investigation on transitions in the average flame shape (or microstructure) under acoustically coupled and uncoupled conditions in a 50 kW swirl stabilized combustor. The combustor burns CH4/H2 mixtures at atmospheric pressure and temperature for a fixed Reynolds number of 20,000 and fixed swirl angle. For both cases, essentially four different flame shapes are observed, with the transition between flame shapes occurring at the same equivalence ratio (for the same fuel mixture) irrespective of whether the combustor is acoustically coupled or uncoupled. The transition equivalence ratio depends on the fuel mixture. For the baseline case of pure methane, the combustor is stable close to the blowoff limit and the average flame in this case is stabilized inside the inner recirculation zone. As the equivalence ratio is raised, the combustor transitions to periodic oscillations at a critical equivalence ratio of φ=0.65. If hydrogen is added to the mixture, the same transition occurs at lower equivalence ratios. For all cases that we investigated, flame shapes captured using chemiluminescence imaging show that the transition to harmonic oscillations in the acoustically coupled cases is preceded by the appearance of the flame in the outer recirculation zone. We examine the mechanism associated with the transition of the flame between different shapes and, ultimately, the propagation of the flame into the outer recirculation zone as the equivalence ratio is raised. Using the extinction strain rates for each mixture at different equivalence ratios, we show that these transitions in the flame shape and in the instability (in the coupled case) for different fuel mixtures collapse as a function of a normalized strain rate : κextDU∞. We show that the results as consistent with a mechanism in which the flame must overcome higher strains prevailing in the outer recirculation zone, in order

  19. Structure of Unsteady Partially Premixed Flames and the Existence of State Relationships

    Directory of Open Access Journals (Sweden)

    Suresh K. Aggarwal


    Full Text Available In this study, we examine the structure and existence of state relationships in unsteady partially premixed flames (PPFs subjected to buoyancy-induced and external perturbations. A detailed numerical model is employed to simulate the steady and unsteady two-dimensional PPFs established using a slot burner under normal and zero-gravity conditions. The coflow velocity is parametrically varied. The methane-air chemistry is modeled using a fairly detailed mechanism that contains 81 elementary reactions and 24 species. Validation of the computational model is provided through comparisons of predictions with nonintrusive measurements. The combustion proceeds in two reaction zones, one a rich premixed zone and the other a nonpremixed zone. These reaction zones are spatially separated, but involve strong interactions between them due to thermochemistry and scalar transport. The fuel is mostly consumed in the premixed zone to produce CO and H2, which are transported to and consumed in the nonpremixed zone. The nonpremixed zone in turn provides heat and H-atoms to the premixed zone. For the range of conditions investigated, the zero-g partially premixed flames exhibit a stable behavior and a remarkably strong resistance to perturbations. In contrast, the corresponding normal-gravity flames exhibit oscillatory behavior at low coflow velocities but a stable behavior at high coflow velocities, and the behavior can be explained in terms of a global and convective instabilities. The effects of coflow and gravity on the flames are characterized through a parameter VR, defined as the ratio of coflow velocity to jet velocity. For VR ≤ 1 (low coflow velocity regime, the structures of both 0- and 1-g flames are strongly sensitive to changes in VR, while they are only mildly affected by coflow in the high coflow velocity regime (VR > 1. In addition, the spatio-temporal characteristics of the 0- and 1-g flames are markedly different in the first regime, but are

  20. Developments in modelling of thermal radiation from pool and jet fires

    NARCIS (Netherlands)

    Boot, H.


    In the past decades, the standard approach in the modelling of consequences of pool and jet fires would be to describe these fires as tilted cylindrical shaped radiating flame surfaces, having a specific SEP (Surface Emissive Power). Some fine tuning on pool fires has been done by Rew and Hulbert in

  1. Infrared Instrument for Detecting Hydrogen Fires (United States)

    Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John


    The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.

  2. Heat and mass transfer in flames (United States)

    Faeth, G. M.


    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  3. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue


    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate......Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...... created in the flame, the monomers will nucleate homogeneously and agglomerate to form aggregates of large ensembles of monomers. The aggregates will then sinter together to form single particles. If the flame temperature and the residence time are sufficiently high, the formed oxide particles...

  4. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames-Body Stabilized Flames (United States)


    improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the, the improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the flame...39 4.1 Volvo Rig Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Simulation Description

  5. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    KAUST Repository

    Wang, Jui-Yang


    A jet-stirred reactor was designed and constructed in the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST); was validated with n-heptane, iso-octane oxidation and cyclohexene pyrolysis. Different configurations of the setup have been tested to achieve good agreement with results from the literature. Test results of the reactor indicated that installation of a pumping system at the downstream side in the experimental apparatus was necessary to avoid the reoccurrence of reactions in the sampling probe. Experiments in ethyl levulinate oxidation were conducted in the reactor under several equivalence ratios, from 600 to 1000 K, 1 bar and 2 s residence time. Oxygenated species detected included methyl vinyl ketone, levulinic acid and ethyl acrylate. Ethylene, methane, carbon monoxide, hydrogen, oxygen and carbon dioxide were further quantified with a gas chromatography, coupled with a flame ionization detector and a thermal conductivity detector. The ethyl levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental data, some discrepancies were noted; predictions of ethylene production were not well matched. The kinetic model was improved by updating several classes of reactions: unimolecular decomposition, H-abstraction, C-C and C-O beta-scissions of fuel radicals. The updated model was then compared again with experimental results and good agreement was achieved, proving that the concerted eliminated reaction is crucial for the kinetic mechanism formulation of ethyl levulinate. In addition, primary reaction pathways and sensitivity analysis were performed to describe the role of molecular structure in combustion (800 and 1000 K for ethyl levulinate oxidation in the jet-stirred reactor).

  6. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck


    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  7. Large eddy simulation of spark ignition in a turbulent methane jet

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, G. [CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse Cedex (France); Richardson, E. [Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Poinsot, T. [Institut de Mecanique des Fluides de Toulouse, CNRS, Avenue C. Soula, 31400 Toulouse (France)


    Large eddy simulation (LES) is used to compute the spark ignition in a turbulent methane jet flowing into air. Full ignition sequences are calculated for a series of ignition locations using a one-step chemical scheme for methane combustion coupled with the thickened flame model. The spark ignition is modeled in the LES as an energy deposition term added to the energy equation. Flame kernel formation, the progress and topology of the flame propagating upstream, and stabilization as a tubular edge flame are analyzed in detail and compared to experimental data for a range of ignition parameters. In addition to ignition simulations, statistical analysis of nonreacting LES solutions is carried out to discuss the ignition probability map established experimentally. (author)

  8. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg


    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  9. Flame Retardation Modification of Paper-Based PVC Wallcoverings

    National Research Council Canada - National Science Library

    Lin, Hui; Yang, Haiyang; Xiao, He; Cao, Shilin; Huang, Liulian; Chen, Lihui; Li, Jian


    The flame-retarded paper-based polyvinyl chloride (PVC) wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives...

  10. Hydrogen sensor (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing


    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  11. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan


    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  12. Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

    KAUST Repository

    Chowdhury, Snehaunshu


    In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.

  13. Model flames in the Boussinesq limit: The effects of feedback (United States)

    Vladimirova, N.; Rosner, R.


    We have studied the fully nonlinear behavior of premixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. The key results include the establishment of criteria for when such flames propagate as simple planar flames, elucidation of scaling laws for the effective flame speed, and a study of the stability properties of these flames. The simplicity of some of our scaling results suggests that analytical work may further advance our understandings of buoyant flames.

  14. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    tended regions of emission. These jets, which occur across the electromagnetic spectrum, are powered by supermassive black holes in the centres of the host galaxies. Jets are seen on the scale of parsecs in the nuclear regions to those which power the giant radio sources extending over several mega- parsecs. These jets ...

  15. Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lieuwen, Tim [Georgia Inst. of Technology, Atlanta, GA (United States); Santavicca, Dom [Georgia Inst. of Technology, Atlanta, GA (United States); Yang, Vigor [Georgia Inst. of Technology, Atlanta, GA (United States)


    During the duration of this sponsorship, we broadened our understanding of combustion instabilities through both analytical and experimental work. Predictive models were developed for flame response to transverse acoustic instabilities and for quantifying how a turbulent flame responds to velocity and fuel/air ratio forcing. Analysis was performed on the key instability mechanisms controlling heat release response for flames over a wide range of instability frequencies. Importantly, work was done closely with industrial partners to transition existing models into internal instability prediction codes. Experimentally, the forced response of hydrogen-enriched natural gas/air premixed and partially premixed flames were measured. The response of a lean premixed flame was investigated, subjected to velocity, equivalence ratio, and both forcing mechanisms simultaneously. In addition, important physical mechanisms controlling the response of partially premixed flames to inlet velocity and equivalence ratio oscillations were analyzed. This final technical report summarizes our findings and major publications stemming from this program.

  16. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)


    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  17. Droplet impaction on solid surfaces exposed to impinging jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zia


    The thermal response of hot surfaces exposed to impinging jet fire and subsequent impacting water droplets is investigated. The research was done mainly experimentally by utilizing three different concepts. This included experiments on a laboratory scale steel plate and large outdoor fire tests with a quadratic steel channel and steel plates. Besides the horizontal jet flame itself was characterized in a comprehensive study. As a comparative study, the last three types of the experiment were additionally modeled by the CFD-code Kameleon FireEx for validation of results. The purpose of the experiments done on bench scale steel plate (L x W x T : 300 x 200 x 8 mm) was mainly to map data on wetting temperature, water droplet size, droplet impingement angle, and droplet velocity prior to large scale jet fire tests. The droplet release angle normal to hot surface gives best cooling effect, when the surface is oriented in upright position. The partial wetting begins at about 165 degrees C. When the surface is positioned in horizontal plane, the droplet of about 5 mm in diameter wets the hot surface partially at around 240-250 degrees C within an impaction distance of 20 cm. At about 150 degrees C, the droplet is entirely attached to the surface with almost zero contact angle, and cools down the solid at a critical heat flux equivalent to 1750 kW/m{sup 2}. The cooling effectiveness is about 8 % with a Weber number of 68. Although in the event of horizontal channel (L x W x T : 1000 x 200 x 8 mm) water droplets were not applied, however, the knowledge gained with jet fire tests gave valuable information about temperature progress in solids (steels and insulation) and their response to impinging jet fire during long duration experiments. The temperature of the insulated area of the channel keeps 200 degrees C below that of the exposed surface, as long as the insulation material remained intact. Upon long test fire durations, the insulation either burns or degrades despite

  18. Tulip flames: changes in shape of premixed flames propagating in closed tubes (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  19. Ultrafast XRD of Heterogeneous Solid Hydrogen at LCLS (United States)

    Levitan, Abraham; Fletcher, Luke; MacDonald, Michael; Glenzer, Siegfried


    The high intensity and short pulse duration of the Linac Coherent Light Source (LCLS) at SLAC allows for single shot x-ray scattering studies from a jet of frozen hydrogen. The high repetition rate of LCLS allows us to build a detailed understanding of the cold structure of this jet. This provides a strong foundation for analysis of time resolved scattering data from the laser heated hydrogen jet. Angularly resolved x-ray diffraction at 5 . 5keV is used to establish the structure of the cold 5 μm diameter solid hydrogen jet. The jet was composed of approximately 65 % +/- 5 % HCP and 35 % +/- 5 % FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains. Funding through the DOE SULI program.

  20. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.


    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  1. Liquid hydrogen: back to basics

    Energy Technology Data Exchange (ETDEWEB)

    Sherif, S.A. [Dept. of Mechanical and Aerospace Engineering, Univ. of Florida, Florida (United States)


    'Full text': Liquid hydrogen is primarily used as a rocket fuel and is predestined for supersonic and hypersonic space vehicles to a large extent because it has the lowest boiling point density and the highest specific thrust of any known fuel. Its favorable characteristics include its high heating value per unit mass, its wide ignition range in hydrogen/oxygen or air mixtures, as well as its large flame speed and cooling capacity due to its high specific heat which permits very effective engine cooling and cooling the critical parts of the outer skin. Liquid hydrogen has some other important uses such as in high-energy nuclear physics and bubble chambers. The transport of hydrogen is vastly more economical when it is in liquid form even though cryogenic refrigeration and special Dewar vessels are required. Although liquid hydrogen can provide a lot of advantages, its uses are restricted in part because liquefying hydrogen by existing conventional methods consumes a large amount of energy (around 30% of its heating value). Liquefying 1 kg of hydrogen in a medium-size plant requires 10 to 13 kWh of electric energy. In addition, boil-off losses associated with the storage, transportation, and handling of liquid hydrogen can consume up to 40% of its available combustion energy. It is therefore important to search for ways that can improve the efficiency of the liquefiers and diminish the boil-off losses. This lecture gives an overview of the main issues associated with the production, storage, and handling of liquid hydrogen. Some discussion of promising ways of hydrogen liquefaction will also be presented. (author)

  2. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert


    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  3. Biodegradation of brominated and organophosphorus flame retardants

    NARCIS (Netherlands)

    Waaijers, S.L.; Parsons, J.R.


    Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase

  4. Flame retardant cotton based highloft nonwovens (United States)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  5. Flame retardant cotton barrier nonwovens for mattresses (United States)

    According to regulation CPSC 16 CFR 1633, every new residential mattress sold in the United States since July 2007 must resist ignition by open flame. An environmentally benign “green”, inexpensive way to meet this regulation is to use a low-cost flame retardant (FR) barrier fabric. In this study, a...

  6. Chemical processes in the HNF flame

    NARCIS (Netherlands)

    Ermolin, N.E.; Zarko, V.E.; Keizers, H.L.J.


    Results of modeling the HNF flame structure are presented. From an analysis of literature data on the thermal decomposition and combustion of HNF, it is concluded that the dissociative vaporization of HNF proceeds via the route HNFliq → (N2H4)g + (HC(NO 2)3)g. The flame structure is modeled using a

  7. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W


    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  8. Combustion of Biofuel as a Renewable Energy Source in Sandia Flame Geometry (United States)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen

    Energy security and climate change are two important key causes of wide spread employment of biofuel notwithstanding of problems associated with its usage. In this research, combustion of biofuel as a renewable energy source was numerically investigated in the well-known and practical Sandia flame geometry. Combustion performance of the flame has been simulated by burning biodiesel (methyl decanoate, methyl 9-decenoate, and n-heptane) oxidation with 118 species reduced/skeletal mechanism. The open-source code OpenFoam was used for simulating turbulent biodiesel-air combustion in the cylindrical chamber using the standard k-epsilon model. To check the accuracy of numerical results, the system was initially validated with methane-air Sandia national laboratories flame D experimental results. Excellent agreements between numerical and experimental results were observed at different cross sections. After ignition, temperature distributions at different distances of axial and radial directions as well as species mass fraction were investigated. It is concluded that biofuel has the capability of implementation in the turbulent jet flame that is a step forward in promotion of sustainable energy technologies and applications.

  9. Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets

    KAUST Repository

    Guiberti, T. F.


    This paper reports an analysis of the influence of fuels on the stabilization of turbulent piloted jet flames with inhomogeneous inlets. The burner is identical to that used earlier by the Sydney Group and employs two concentric tubes within the pilot stream. The inner tube, carrying fuel, can be recessed, leading to a varying degree of inhomogeneity in mixing with the outer air stream. Three fuels are tested: dimethyl ether (DME), liquefied petroleum gas (LPG), and compressed natural gas (CNG). It is found that improvement in flame stability at the optimal compositional inhomogeneity is highest for CNG and lowest for DME. Three possible reasons for this different enhancement in stability are investigated: mixing patterns, pilot effects, and fuel chemistry. Numerical simulations realized in the injection tube highlight similarities and differences in the mixing patterns for all three fuels and demonstrate that mixing cannot explain the different stability gains. Changing the heat release rates from the pilot affects the three fuels in similar ways and this also implies that the pilot stream is unlikely to be responsible for the observed differences. Fuel reactivity is identified as a key factor in enhancing stability at some optimal compositional inhomogeneity. This is confirmed by inference from joint images of PLIF-OH and PLIF-CHO, collected at a repetition rate of 10kHz in turbulent flames of DME, and from one-dimensional calculations of laminar flames using detailed chemistry for DME, CNG, and LPG.

  10. Quenching processes in flame-vortex interactions (United States)

    Zingale, M.; Niemeyer, J. C.; Timmes, F. X.; Dursi, L. J.; Calder, A. C.; Fryxell, B.; Lamb, D. Q.; MacNeice, P.; Olson, K.; Ricker, P. M.; Rosner, R.; Truran, J. W.; Tufo, H. M.


    We show direct numerical simulations of flame-vortex interactions in order to understand quenching of thermonuclear flames. The key question is-can a thermonuclear flame be quenched? If not, the deflagration-detonation transition mechanisms that demand a finely tuned preconditioned region in the interior of a white dwarf are unlikely to work. In these simulations, we pass a steady-state laminar flame through a vortex pair. The vortex pair represents the most severe strain the flame front will encounter inside the white dwarf. We perform a parameter study, varying the speed and size of the vortex pair, in order to understand the quenching process. No quenching is observed in any of the calculations performed to date. .

  11. Response of a swirl-stabilized flame to transverse acoustic excitation (United States)

    O'Connor, Jacqueline

    This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. Several important issues are addressed. First, the velocity-coupled pathway by which the unsteady velocity field excites the flame is described in great detail. Here, a transfer function approach has been taken to illustrate the various pathways through which the flame is excited by both acoustic and vortical velocity fluctuations. It has been shown that while the direct excitation of the flame by the transverse acoustic field is a negligible effect in most combustor architectures, the coupling between the transverse acoustic mode in the combustor and the longitudinal mode in the nozzle is an important pathway that can result in significant flame response. In this work, the frequency response of this pathway as well as the resulting flame response is measured using PIV and chemiluminescence measurements, respectively. Next, coupling between the acoustic field and the hydrodynamically unstable swirling flow provides a pathway that can lead to significant flame wrinkling by large coherent structures in the flow. Swirling flows display two types of hydrodynamic instability: an absolutely unstable jet and convectively unstable shear layers. The absolute instability of the jet results in vortex breakdown, a large recirculation zone along the centerline of

  12. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  13. Quantum-chemical study of antioxidant additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Poletaeva, O.Yu. [Ufa State Petroleum Technological Univ., Ufa (Russian Federation); Karimova, R.I. [Bashkir State Agrarian Univ., Ufa (Russian Federation); Movsumzade, E.M. [Institute of Education of Indigenous Small-Numbered Peoples of the North RAE, Moscow (Russian Federation)


    To obtain the necessary quality of jet fuels it can be used technological methods (hydrocracking, deep hydration, hydrogenation) that increases the cost of the finished product. The second way is to use less purified raw materials with the introduction of effective additives. Fuels obtained by direct distillation, in ambient air are oxidized with great difficulty and oxidation products accumulate in them is very slow. Fuels derived by hydrogenation processes, have high susceptibility to oxidation, as a result in 1-2 years of storage considerably reduced their quality. Antioxidant additives play an important role in improving the quality of jet fuel. (orig.)

  14. Jet dynamics and stability

    Directory of Open Access Journals (Sweden)

    Perucho M.


    Full Text Available The dynamics and stability of extragalactic jets may be strongly influenced by small (and probable di_erences in pressure between the jet and the ambient and within the jet itself. The former give rise to expansion and recollimation of the jet. This occurs in the form of conical shocks, or Mach disks, if the pressure di_erence is large enough. Pressure asymmetries within the jet may trigger the development of helical patterns via coupling to kink current-driven instability, or to helical Kelvin-Helmholtz instability, depending on the physical conditions in the jet. I summarize here the evidence collected during the last years on the presence of recollimation shocks and waves in jets. In the jet of CTA 102 evidence has been found for (travelingshock-(standingshock interaction in the core-region (0.1 mas from the core, using information from the light-curve of the source combined with VLBI data. The conclusions derived have been confirmed by numerical simulations combined with emission calculations that have allowed to study the spectral evolution of the perturbed jet. Helical structures can also be identified in radio-jets. The ridge-line of emission of the jet of S5 0836+710 has been identified as a physical structure corresponding to a wave developing in the jet flow. I review here the evidence that has allowed to reach this conclusion, along with an associated caveat. Current data do not allow to distinguish between magnetic or hydrodynamical instabilities. I finally discuss the importance of these linear and non-linear waves for jet evolution.

  15. Catalytic autothermal reforming of Jet fuel (United States)

    Lenz, Bettina; Aicher, Thomas

    Aircraft manufacturers have to reduce the emissions and the specific fuel consumption of their systems. Fuel cell use in a 'more electric aircraft' can be one possibility. To keep the technology simple only one fuel (Jet A, Jet A-1) shall be used on board the aircraft. Therefore, the catalytic reforming of Jet A-1 fuel was examined in this paper, although the use of fossil fuels causes the production of greenhouse effect promoting gases like carbon dioxide CO 2. The autothermal reforming of desulphurised kerosene is examined with a 15 kW (based on the lower heating value of Jet fuel) test rig. The experiments are performed at steam to carbon ratios of S/C = 1.5-2.5 and air to fuel ratios of λ = 0.24-0.32, respectively. The composition of the product gas, the volumetric flow rate of the product gas at standard conditions and the temperatures in the catalyst are determined as a function of the operating variables. The gas hourly space velocity (GHSV) is varied between 50,000 and 300,000 h -1. The influence of sulphur containing feed streams (real Jet fuel) on reforming behaviour is investigated as well as the influence of the hydrogen concentration on the hydrodesulphurisation process. Another simple way of desulphurisation is the adsorption of liquid sulphur containing hydrocarbons, the influence of the variation of the liquid hourly space velocity (LHSV) is measured at a temperature of 150 °C.

  16. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames (United States)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)


    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  17. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi


    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  18. A new approach to utilize Hydrogen as a safe fuel

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aal, H.K.; Sadik, M.; Bassyouni, M. [Department of Chemical Engineering, Higher Technical Institute, Tenth of Ramadan, Cairo (Egypt); Shalabi, M. [Department of Chemical Engineering, KFUPM (Saudi Arabia)


    Fundamental to the creation of a hydrogen economy is a viable, safe and affordable hydrogen-energy-system. Examining carefully some of the key properties of hydrogen that are related to fire and explosion, it is found that hydrogen is combustible over a wide range of concentrations. At atmospheric pressure, it is combustible at concentrations from 4% to 74.2% by volume. It has the highest flame velocity of any gas and its ignition energy is very low, which is 32% less than methane gas. In this paper, the problem of 'safe hydrogen' is tackled using a new theoretical approach. Hydrogen is mixed with predetermined amounts of methane gas and to be sold as 'Hydrothane'. The properties of this mixture-most important are the flame speed, lower explosion limit (LEL) and upper explosion limit (UEL) are to be developed as a function of the ratio of the hydrogen-methane. The maximum flame speed, cm/s, for a selected number of hydrocarbons along with the corresponding volume percentage of combustible mixture (fuel in air) are used in the proposed analysis. In addition, Le Chatelier's law is used to predict limits of flammability of the Hydrothane. (author)

  19. Thermonuclear Quenching in Flame-Vortex Interactions (United States)

    Zingale, M.; Niemeyer, J. C.; Timmes, F. X.; Dursi, L. J.; Calder, A. C.; Fryxell, B.; Olson, K.; Ricker, P.; Rosner, R.; Truran, J. W.; Tufo, H.; MacNeice, P.


    A Type Ia supernova begins as a flame, deep in the interior of a white dwarf. At some point, the burning may undergo a deflagration-detonation transition (DDT). Some mechanisms for this transition require a preconditioned region in the star. As the flame propagates down the temperature gradient, the speed increases, and the transition to a detonation may occur (see Khokhlov et al. 1997; Niemeyer & Woosley 1997). For this to happen, the region must be free of any temperature fluctuations -- any burning must be quenched. We show direct numerical simulations of flame-vortex interactions in order to understand quenching of thermonuclear flames. The key question is -- can a thermonuclear flame be quenched? If not, the DDT mechanisms that demand the finely tuned preconditioned region are unlikely to work. In these simulations, we pass a steady-state laminar flame through a vortex pair. The vortex pair represents the most severe strain the flame front will encounter inside the white dwarf. We perform a parameter study, varying the speed and size of the vortex pair, in order to understand the quenching process. These simulations were carried out with the FLASH Code. This work is supported by the Department of Energy under Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. These calculations were performed on the Nirvana Cluster at Los Alamos National Laboratory

  20. Flame Color as a Lean Blowout Predictor

    Directory of Open Access Journals (Sweden)

    Rajendra R. Chaudhari


    Full Text Available The study characterizes the behavior of a premixed swirl stabilized dump plane combustor flame near its lean blow-out (LBO limit in terms of CH* chemiluminiscence intensity and observable flame color variations for a wide range of equivalence ratio, flow rates and degree of premixing (characterized by premixing length, Lfuel. LPG and pure methane are used as fuel. We propose a novel LBO prediction strategy based solely on the flame color. It is observed that as the flame approaches LBO, its color changes from reddish to blue. This observation is found to be valid for different levels of fuel-air premixing achieved by changing the available mixing length of the air and the fuel upstream of the dump plane although the flame dynamics were significantly different. Based on this observation, the ratio of the intensities of red and blue components of the flame as captured by a color CCD camera was used as a metric for detecting the proximity of the flame to LBO. Tests were carried out for a wide range of air flow rates and using LPG and CH4 as fuel. For all the operating conditions and both fuels tested, this ratio was found to monotonically decrease as LBO was approached. Moreover, the value of this ratio was within a small range close to LBO for all the cases investigated. This makes the ratio suitable as a metric for LBO detection at all levels of premixing.

  1. What ignites optical jets?

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Jester


    The properties of radio galaxies and quasars with and without optical or X-ray jets are compared. The majority of jets from which high-frequency emission has been detected so far (13 with optical emission, 11 with X-rays, 13 with both) are associated with the most powerful radio sources at any given redshift. It is found that optical/X-ray jet sources are more strongly beamed than the average population of extragalactic radio sources. This suggests that the detection or non-detection of optical emission from jets has so far been dominated by surface brightness selection effects, not by jet physics. It implies that optical jets are much more common than is currently appreciated.

  2. Early forest fire detection using low-energy hydrogen sensors

    Directory of Open Access Journals (Sweden)

    K. Nörthemann


    Full Text Available Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

  3. Large Eddy Simulation Modeling and Flamelet Analysis of a Jet in Cross Flow (United States)

    Chan, Wai Lee; Kolla, Hemanth; Ihme, Matthias; Chen, Jacqueline


    Jet in cross flow (JICF) configurations are frequently used as fuel injection strategies in combustion systems, such as gas turbines, boilers, and high-speed propulsion systems. Recently, direct numerical simulations (DNS) have been performed to investigate flame-stabilization mechanisms in a reactive JICF. By utilizing this DNS-database, fundamental modeling assumptions of flamelet-based large eddy simulation (LES) combustion models for application to JICF are evaluated. To this end, a priori and a posteriori studies are performed using steady and unsteady flamelet models to isolate and model combustion flow processes that control transient ignition events and flame stabilization.

  4. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed


    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  5. Optical characteristics of a RF DBD plasma jet in various Ar/O2 ...

    Indian Academy of Sciences (India)

    Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H β . It is mostly seen that, the radiation intensity of Ar ...

  6. N(HI) and Jet Power/Emission in AGNs Zhongzu Wu1,∗ , Minfeng ...

    Indian Academy of Sciences (India)

    Abstract. Neutral hydrogen (HI) 21-cm absorption has been detected against very powerful radio jets. In this paper, based on Gupta's sample. (Gupta et al. 2006), we present our preliminary study of the correlations between the HI column density N(HI) and the jet power, N(HI) versus the low frequency luminosity at 408 MHz, ...

  7. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.


    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  8. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)


    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  9. Flaming alcoholic drinks: flirting with danger. (United States)

    Tan, Alethea; Frew, Quentin; Yousif, Ali; Ueckermann, Nicola; Dziewulksi, Peter


    Alcohol-related burn injuries carry significant mortality and morbidity rates. Flaming alcoholic beverages served in trendy bars and clubs are becoming increasingly popular. The dangers associated with an ignited alcoholic drink are often underestimated by party goers whose risk assessment ability is already impaired by heavy alcohol consumption. The authors present two cases demonstrating the varied severity of burn injuries associated with flaming alcoholic drinks, and their clinical management. Consumption of flaming alcoholic drinks poses potential risks for burn injuries. Further support is required to enable national and local agencies to implement effective interventions in drinking environments.

  10. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk


    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  11. Flame tolerant secondary fuel nozzle (United States)

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier


    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  12. Some fundamental acoustic observations in combusting turbulent jets (United States)

    Ramohalli, K.


    A study is presented of the possibility of using the acoustic radiation emitted from turbulent combustion zones to characterize the structure, mechanics and properties of turbulent combustion. Theoretical consideration is given to the acoustic characteristics of a nonpremixed open turbulent jet flame and the response of the acoustic spectrum to changes in combustion conditions. Experimental observations made of the acoustic emissions from a laboratory burner that establishes turbulent flames at the exit of a fully developed pipe flow as well as two commercial burners using methane, ethane and propane fuels are then presented which reveal changes in the acoustic amplitudes in three high-frequency bands associated with changes in the air-fuel ratio. Results suggest a means for combustion diagnostics and demonstrate the possibility of using acoustic measurements in investigations of combustion zone processes.

  13. The remarkable AGN jets (United States)

    Komissarov, Serguei

    The jets from active galactic nuclei exhibit stability which seems to be far superior compared to that of terrestrial and laboratory jets. They manage to propagate over distances up to a billion of initial jet radii. Yet this may not be an indication of some exotic physics but mainly a reflection of the specific environment these jets propagate through. The key property of this environment is a rapid decline of density and pressure along the jet, which promotes its rapid expansion. Such an expansion can suppress global instabilities, which require communication across the jet, and hence ensure its survival over huge distances. At kpc scales, some AGN jets do show signs of strong instabilities and even turn into plumes. This could be a result of the flattening of the external pressure distribution in their host galaxies or inside the radio lobes. In this regard, we discuss the possible connection between the stability issue and the Fanaroff-Riley classification of extragalactic radio sources. The observations of AGN jets on sub-kpc scale do not seem to support their supposed lack of causal connectivity. When interpreted using simple kinematic models, they reveal a rather perplexing picture with more questions than answers on the jets dynamics.

  14. Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone

    Energy Technology Data Exchange (ETDEWEB)

    Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)


    The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

  15. Design of the cryogenic hydrogen release laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Ethan S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ciotti, Michael [H< sub> 2< /sub> Fueling Engineering Linde, LLC, Murray Hill, NJ (United States)


    A cooperative research and development agreement was made between Linde, LLC and Sandia to develop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. A three-stage heat exchanger will be used to cool gaseous hydrogen using liquid nitrogen, gaseous helium, and liquid helium. A cryogenic line from the heat exchanger into the lab will allow high-fidelity diagnostics already in place in the lab to be applied to cold hydrogen jets. Data from these experiments will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  16. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.


    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  17. Model Flames in the Boussinesq Limit: The Effects of Feedback


    Vladimirova, N.; Rosner, R.


    We have studied the fully nonlinear behavior of pre-mixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. Key results include the establishment of criterion for when such flames propagate as simple planar flames; elucidation of scaling laws for the effective flame speed; and a study of the stability properties of these flames. The simplicity of some of our scalings results suggests that analytical work may further advance our understandings of buoyant f...

  18. Structure of diffusion flames from a vertical burner (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold


    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  19. Hydrogen Generator (United States)


    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  20. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures

    KAUST Repository

    Taamallah, Soufien


    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the onset of thermo-acoustic instabilities and their link to the mean flame configurations - or macrostructures - under acoustically coupled and decoupled conditions. Methane-hydrogen mixtures are used to explore the role of the fuel in changing the flame macrostructure, as determined by chemilumi-nescence, as the equivalence ratio (φ) varies. We observe four different configurations: a columnar flame (I); a bubble-columnar flame (II); a single conical flame (III); and a double conical flame (IV). We also observe different thermo-acoustic modes in the lean regime investigated, φ ∈ [0.5-0.75], that correspond to different flame configurations. By changing the combustor length without affecting the underlying flow, the resonant modes of the combustor are shifted to higher frequencies allowing for the decoupling of heat release fluctuations and the acoustic field over a range of equivalence ratio. We find that the same flame macrostructures observed in the long, acoustically coupled combustor arise in the short, acoustically decoupled combustor and transition at similar equivalence ratios in both combustors. The onset of the first fully unstable mode in the long combustor occurs at similar equivalence ratio as the flame transition from configuration III to IV. In the acoustically decoupled case, this transition occurs gradually starting with the intermittent appearance of a flame in the outer recirculation zone (ORZ). Spectral analysis of this phenomenon, referred to as "ORZ flame flickering" shows the existence of an unsteady event occurring over a narrow frequency band centered around 28 Hz along with a weaker broadband region at lower frequency in the range [1-10] Hz. The tone at 28 Hz is shown to be associated with the azimuthal advection of the flame by the outer recirculation zone flow. Changes in the fuel composition, by adding hydrogen (up to 20%), do not

  1. Experimental investigation of syngas flame stability using a multi-tube fuel injector in a high pressure combustor (United States)

    Maldonado, Sergio Elzar

    Over 92% of the coal consumed by power plants is used to generate electricity in the United States (U.S.). The U.S. has the world's largest recoverable reserves of coal, it is estimated that reserves of coal will last more than 200 years based in current production and demand levels. Integrated Gasification Combined Cycle (IGCC) power plants aim to reduce the amount of pollutants by gasifying coal and producing synthesis gas. Synthesis gas, also known as syngas, is a product of coal gasification and can be used in gas turbines for energy production. Syngas is primarily a mixture of hydrogen and carbon monoxide and is produced by gasifying a solid fuel feedstock such as coal or biomass. The objective of the thesis is to create a flame stability map by performing various experiments using high-content hydrogen fuels with varying compositions of hydrogen representing different coal feedstocks. The experiments shown in this thesis were performed using the High-Pressure Combustion facility in the Center for Space Exploration Technology Research (CSETR) at the University of Texas at El Paso (UTEP). The combustor was fitted with a novel Multi-Tube fuel Injector (MTI) designed to improve flame stability. This thesis presents the results of testing of syngas fuels with compositions of 20, 30, and 40% hydrogen concentrations in mixtures with carbon monoxide. Tests were completed for lean conditions ranging from equivalence ratios between 0.6 and 0.9. The experimental results showed that at an equivalence ratio of 0.6, a stable flame was not achieved for any of the fuel mixtures tested. It was also observed that the stability region of the syngas flame increased as equivalence ratio and the hydrogen concentration in syngas fuel increases with the 40% hydrogen-carbon monoxide mixture demonstrating the greatest stability region. Design improvements to the MTI are also discussed as part of the future work on this topic.

  2. Fuel-rich hydrogen-air combustion for a gas-turbine system without CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Noriyuki; Namo, Takamitsu; Arai, Norio [Nagoya Univ. (Japan). Research Center for Advanced Energy Conversion


    We propose a new and innovative gas-turbine system using fuel-rich hydrogen combustion, which we call a chemical gas-turbine system. It involves a fuel-rich hydrogen-air combustor as a major component. We have focused on a coaxial diffusion flame under normal pressure. The effects of equivalence ratio and swirl number have been investigated by measuring temperature profiles, gas composition, and flame structures using direct observations of OH radical emissions. The flames were shortened and NO{sub x} emission decreased with swirling under fuel-rich conditions. (author)

  3. A Jet-Stirred Apparatus for Turbulent Combustion Experiments (United States)

    Davani, Abbasali; Ronney, Paul


    A novel jet-stirred combustion chamber is designed to study turbulent premixed flames. In the new approach, multiple impinging turbulent jets are used to stir the mixture. It is well known that pair of counterflowing turbulent jets produces nearly a constant intensity (u') along the jet axes. In this study, different numbers of impinging jets in various configurations are used to produce isotropic turbulence intensity. FLUENT simulations have been conducted to assess the viability of the proposed chamber. In order to be able to compare different configurations, three different non dimensional indices are introduces. Mean flow index; Homogeneity index, and Isotropicity index. Using these indices one can compare various chambers including conventional Fan-stirred Reactors. Results show that a concentric inlet/outlet chamber (CAIO) with 8 inlets and 8 outlets with inlet velocity of 20 m/s and initial intensity of 15% produces near zero mean flow and 2.5 m/s turbulence intensity which is much more higher than reported values for Fan-stirred chamber. This research was sponsored by National Science Foundation.

  4. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring


    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  5. Brominated Flame Retardants and Perfluorinated Chemicals (United States)

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a large class of chemicals known as organohalogens. It is believed that both BFRs and PFCs saved lives by reducing flammability of materials commonly used and bactericidal (biocidal) properties. Thes...

  6. Nanocellular foam with solid flame retardant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.; Costeux, Stephane


    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.

  7. Characterization of flame radiosity in shrubland fires (United States)

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro


    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  8. Physical and Chemical Processing in Flames (United States)


    SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT...have experimentally acquired such chemistry-affected data as the ignition criteria and laminar flame speeds of fuel-air mixtures, which are...Chaos, A. Kazakov, Z. Zhao, F. L. Dryer , Int. J. Chem. Kinetics 39, 399–414 (2007) M. Lawes, M. P. Ormsby, C. G.W. Sheppard, R. Woolley, Combust. Flame

  9. Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor

    Energy Technology Data Exchange (ETDEWEB)

    Altay, H. Murat; Speth, Raymond L.; Hudgins, Duane E.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)


    The combustion dynamics of propane-hydrogen mixtures are investigated in an atmospheric pressure, lean, premixed backward-facing step combustor. We systematically vary the equivalence ratio, inlet temperature and fuel composition to determine the stability map of the combustor. Simultaneous pressure, velocity, heat release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When fuel is injected far upstream from the step, the equivalence ratio entering the flame is temporally and spatially uniform, and the combustion dynamics are governed only by flame-vortex interactions. Four distinct dynamic regimes are observed depending on the operating parameters. At high but lean equivalence ratios, the flame is unstable and oscillates strongly as it is wrapped around the large unsteady wake vortex. At intermediate equivalence ratios, weakly oscillating quasi-stable flames are observed. Near the lean blowout limit, long stable flames extending from the corner of the step are formed. At atmospheric inlet temperature, the unstable mode resonates at the 1/4 wavemode of the combustor. As the inlet temperature is increased, the 5/4 wavemode of the combustor is excited at high but lean equivalence ratios, forming the high-frequency unstable flames. Higher hydrogen concentration in the fuel and higher inlet temperatures reduce the equivalence ratios at which the transitions between regimes are observed. We plot combustion dynamics maps or the response curves, that is the overall sound pressure level as a function of the equivalence ratio, for different operating conditions. We demonstrate that numerical results of strained premixed flames can be used to collapse the response curves describing the transitions among the dynamic modes onto a function of the heat release rate parameter alone, rather than a function dependent on the equivalence ratio, inlet temperature and fuel

  10. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration


    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  11. Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air (United States)

    Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.


    A unique idealized study of the subject fuel vs. air systems was conducted using an Oscillatory-input Opposed Jet Burner (OOJB) system and a newly refined analysis. Extensive dynamic-extinction measurements were obtained on unanchored (free-floating) laminar Counter Flow Diffusion Flames (CFDFs) at 1-atm, stabilized by steady input velocities (e.g., U(sub air)) and perturbed by superimposed in-phase sinusoidal velocity inputs at fuel and air nozzle exits. Ethylene (C2H4) and methane (CH4), and intermediate 64/36 and 15/85 molar percent mixtures were studied. The latter gaseous surrogates were chosen earlier to mimic ignition and respective steady Flame Strengths (FS = U(sub air)) of vaporized and cracked, and un-cracked, JP-7 "like" kerosene for a Hypersonic International Flight Research Experimentation (HIFiRE) scramjet. For steady idealized flameholding, the 100% C2H4 flame is respectively approx. 1.3 and approx.2.7 times stronger than a 64/36 mix and CH4; but is still 12.0 times weaker than a 100% H2-air flame. Limited Hot-Wire (HW) measurements of velocity oscillations at convergent-nozzle exits, and more extensive Probe Microphone (PM) measurements of acoustic pressures, were used to normalize Dynamic FSs, which decayed linearly with pk/pk U(sub air) (velocity magnitude, HW), and also pk/pk P (pressure magnitude, PM). Thus Dynamic Flame Weakening (DFW) is defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = -100 d(U(sub air)/U(sub air),0Hz)/d(pkpk P). Key findings are: (1) Ethylene flames are uniquely strong and resilient to extinction by oscillating inflows below 150 Hz; (2) Methane flames are uniquely weak; (3) Ethylene / methane surrogate flames are disproportionately strong with respect to ethylene content; and (4) Flame weakening is consistent with limited published results on forced unsteady CFDFs. Thus from 0 to approx. 10 Hz and slightly higher, lagging diffusive responses of key species led to progressive phase lags (relative

  12. Jet physics in ATLAS

    CERN Multimedia

    CERN. Geneva


    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet performance and physics measurements, together with results from new physics searches using the 2011 dataset. They include studies of the underlying event and fragmentation models, measurements of the inclusive jet, dijet and multijet cross sections, parton density functions, heavy flavours, jet shape, mass and substructure. Searches for new physics in monojet, dijet and photon-jet final states are also presented.

  13. Jet propulsion without inertia

    CERN Document Server

    Spagnolie, Saverio E


    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increas...

  14. Quasar Jet Acceleration (United States)

    Polito, Nicholas; Hough, David


    We observed radio jets in six lobe-dominated quasars (LDQs) from 1995 to 2008 using the NRAO VLBA at 8.4 and 15 GHz. These observations have tracked jet component positions and velocities over that time period. There is a correlation between apparent jet speed and projected core distance in these LDQs at greater than 99 per cent confidence levels (Hough 2008, Extragalactic Jets, eds: Rector and DeYoung, ASP, p. 274). Four of our sources show this effect particularly strongly. We only tracked single jet components over relatively short distances, but the assumption of a unique velocity profile allows us to study component motion on an effective timescale of approximately 20-50 years. Results for 3C207 and 3C263 show a good fit using a constant acceleration model. The cause of such acceleration is still unknown, though ``magnetic acceleration'' by a gradient in magnetic field pressure is one possibility.

  15. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li


    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  16. Simulations of Solar Jets (United States)

    Kohler, Susanna


    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  17. Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor (United States)


    needles within a quarter of its cells.39 Hydrogen flows through the hypodermic needles , and air passes through the remaining cells. At the exit of the...5 II. Theory and Previous Research ........................................................................ 6 II.1 Standard Gas...flame temperatures, emissions and other characteristics. 6 II. Theory and Previous Research II.1 Standard Gas Turbine Engine Combustor A

  18. Design and evaluation of a continuous flow, integrated nebulizer-hydride generator for flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Miguel Murillo


    Full Text Available An evaluation of the performance of a continuous flow hydride generator-nebulizer for flame atomic absorption spectrometry was carried out. Optimization of nebulizer gas flow rate, sample acid concentration, sample and tetrahydroborate uptake rates and reductant concentration, on the As and Se absorbance signals was carried out. A hydrogen-argon flame was used. An improvement of the analytical sensitivity relative to the conventional bead nebulizer used in flame AA was obtained (2 (As and 4.8 (Se µg L-1. Detection limits (3σb of 1 (As and 1.3 (Se µg L-1 were obtained. Accuracy of the method was checked by analyzing an oyster tissue reference material.

  19. High-Resolution Height-Profile Analysis and Laser-Ionization Characterization of a Wide Range of Fullerenes in Laminar Diffusion Flames (United States)

    Siegmann, K.; Hepp, H.; Sattler, K.

    Neutral fullerenes are detected online in laminar, atmospheric pressure methane diffusion flames using time-of-flight mass spectrometry combined with laser ionization. The intensity of the C60 signal shows a quadratic dependence of the laser-pulse energy, which is consistent with two-photon ionization. Poly-cyclic aromatic hydrocarbons (PAH) are also found in these flames. Height profiles of fullerenes are compared with height profiles of PAH and it is found that the concentration of fullerenes most strongly at a height where the concentration of PAH decreases the most. This height in the flame probably marks the burnout of the available hydrogen. Since all fullerenes, independent of their number of carbons, peak at the same height above burner, we conclude that fullerenes in flames do not grow by the addition of small molecules.

  20. Experimental Study of Ignition over Impact-Driven Supersonic Liquid Fuel Jet

    Directory of Open Access Journals (Sweden)

    Anirut Matthujak


    Full Text Available This study experimentally investigates the mechanism of the ignition of the supersonic liquid fuel jet by the visualization. N-Hexadecane having the cetane number of 100 was used as a liquid for the jet in order to enhance the ignition potential of the liquid fuel jet. Moreover, the heat column and the high intensity CO2 laser were applied to initiate the ignition. The ignition over the liquid fuel jet was visualized by a high-speed digital video camera with a shadowgraph system. From the shadowgraph images, the autoignition or ignition of the supersonic liquid fuel jet, at the velocity of 1,186 m/s which is a Mach number relative to the air of 3.41, did not take place. The ignition still did not occur, even though the heat column or the high intensity CO2 laser was alone applied. The attempt to initiate the ignition over the liquid fuel jet was achieved by applying both the heat column and the high intensity CO2 laser. Observing the signs of luminous spots or flames in the shadowgraph would readily indicate the presence of ignitions. The mechanism of the ignition and combustion over the liquid fuel jet was clearly clarified. Moreover, it was found that the ignition over the supersonic liquid fuel jet in this study was rather the force ignition than being the auto-ignition induced by shock wave heating.

  1. Comparing a Fischer-Tropsch Alternate Fuel to JP-8 and Their 50-50 Blend: Flow and Flame Visualization Results (United States)

    Hicks, Yolanda R.; Tacina, M.


    Combustion performance of a Fischer-Tropsch (FT) jet fuel manufactured by Sasol was compared to JP-8 and a 50-50 blend of the two fuels, using the NASA/Woodward 9 point Lean Direct Injector (LDI) in its baseline configuration. The baseline LDI configuration uses 60deg axial air-swirlers, whose vanes generate clockwise swirl, in the streamwise sense. For all cases, the fuel-air equivalence ratio was 0.455, and the combustor inlet pressure and pressure drop were 10-bar and 4 percent. The three inlet temperatures used were 828, 728, and 617 K. The objectives of this experiment were to visually compare JP-8 flames with FT flames for gross features. Specifically, we sought to ascertain in a simple way visible luminosity, sooting, and primary flame length of the FT compared to a standard JP grade fuel. We used color video imaging and high-speed imaging to achieve these goals. The flame color provided a way to qualitatively compare soot formation. The length of the luminous signal measured using the high speed camera allowed an assessment of primary flame length. It was determined that the shortest flames resulted from the FT fuel.

  2. A, a Brominated Flame Retardant

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshita


    Full Text Available Tetrabromobisphenol A (TBBPA, a brominated flame retardant, has been found to exacerbate pneumonia in respiratory syncytial virus- (RSV- infected mice. We examined the effect of Brazilian propolis (AF-08 on the exacerbation of RSV infection by TBBPA exposure in mice. Mice were fed a powdered diet mixed with 1% TBBPA alone, 0.02% AF-08 alone, or 1% TBBPA and 0.02% AF-08 for four weeks and then intranasally infected with RSV. TBBPA exposure increased the pulmonary virus titer and level of IFN-γ, a representative marker of pneumonia due to RSV infection, in the lungs of infected mice without toxicity. AF-08 was significantly effective in reducing the virus titers and IFN-γ level increased by TBBPA exposure. Also, AF-08 significantly reduced proinflammatory cytokine (TNF-α and IL-6 levels in the lungs of RSV-infected mice with TBBPA exposure, but Th2 cytokine (IL-4 and IL-10 levels were not evidently increased. Neither TBBPA exposure nor AF-08 treatment affected the anti-RSV antibody production in RSV-infected mice. In flow cytometry analysis, AF-08 seemed to be effective in reducing the ratio of pulmonary CD8a+ cells in RSV-infected mice with TBBPA exposure. TBBPA and AF-08 did not exhibit anti-RSV activity in vitro. Thus, AF-08 probably ameliorated pneumonia exacerbated by TBBPA exposure in RSV-infected mice by limiting excess cellular immune responses.

  3. Jet noise suppression by swirling the jet flow. (United States)

    Schwartz, I. R.


    The effect of swirling flow on jet noise suppression was experimentally investigated in a relatively small, low-thrust, fan-jet engine. Measurements of acoustic properties of the near and far fields, jet-flow characteristics, and engine thrust were made with and without stationary swirl vanes installed in the primary exhaust nozzle. Preliminary test results indicate that substantial reductions in jet overall sound pressure levels and overall acoustic power were obtained with minimal thrust losses. Based on preliminary analysis, present results, and previous experiments with swirling hot jets, it is predicted that even greater jet noise reductions can be obtained in higher thrust engines, particularly with afterburning, by swirling jet exhaust.

  4. Hydrogen Embrittlement (United States)

    Woods, Stephen; Lee, Jonathan A.


    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  5. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom


    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  6. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik


    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  7. Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhe, E-mail:; Clouthier, Tony; Thomas, Bryan


    Highlights: • Combustion during continuous hydrogen release. • Periodical slow burning with a low release rate or weak turbulence. • Fast global burning with stratified hydrogen or strong turbulence. • Initiation of standing flame. - Abstract: Deliberate hydrogen ignition systems have been widely installed in many water cooled nuclear power plants to mitigate hydrogen risk in a loss-of-coolant accident. Experimental studies were performed at a large scale facility to simulate a post-accident containment scenario, where hydrogen is released into a volume (not closed) with an energized igniter. The test chamber had a volume of 60 m{sup 3}. The test parameters included hydrogen injection mass flow rate, injection elevation, igniter elevation, and level of turbulence in the chamber. Several dynamic combustion behaviors were observed. Under certain conditions, slow burning occurred periodically or locally without significant pressurization, and the hydrogen concentration could be maintained near the lean hydrogen flammability limit or a steady hydrogen distribution profile could be formed with a maximum hydrogen concentration less than 9 vol.%. Under other conditions, a global fast burn or a burn moving along the hydrogen dispersion pathway was observed and was followed by an immediate initiation of a standing flame. The study provided a better understanding of the dynamic combustion behavior induced by a deliberate igniter during a continuous hydrogen release. The data can be used for validation of combustion models used for hydrogen safety analysis.

  8. Cars temperature measurements in sooting, laminar diffusion flames (United States)

    Boedeker, L. R.; Dobbs, G. M.


    Temperature distributions have been measured in axisymmetric ethylene-air diffusion flames using high spatial resolution coherent anti-Stokes Raman spectroscopy. As ethylene flow increased and the flame approached a smoke-point condition, the temperatures attained in the upper part of the flame were reduced by about 300K below the maximum radial temperatures low in the flame. Addition of diluent N2 to ethylene caused a reduction in temperature low in the flame but increased temperature higher in the flame. Maximum temperatures attained in all ethylene flames were between 0.84 and 0.89 of respective adiabatic flame temperatures (AFT). The upper temperature of the near-smoke-point flame was only 0.76 of AFT. Results are compared with the generalized flame front model of Mitchell. MIE scattering measurements are also discussed. Brief studies with propane and a nonsooting, CO flame are reported; maximum axial and radial temperatures were between 0.84 and 0.87 of AFT. Results indicate the importance of thermal loss from soot radiation, radial transport processes and fuel pyrolysis. Nonluminous radiation and finite reaction rates are other possible factors. The upper luminous part of the highly sooting ethylene flame is likely above the primary flame front and is a soot burnout zone.

  9. Launch Pad Flame Trench Refractory Materials (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary


    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  10. Curved wall-jet burner for synthesizing titania and silica nanoparticles

    KAUST Repository

    Ismail, Mohamed


    A novel curved wall-jet (CWJ) burner was designed for flame synthesis, by injecting precursors through a center tube and by supplying fuel/air mixtures as an annular-inward jet for rapid mixing of the precursors in the reaction zone. Titanium dioxide (TiO2) and silicon dioxide (SiO2) nanoparticles were produced in ethylene (C2H4)/air premixed flames using titanium tetraisopropoxide (TTIP) and hexamethyldisiloxane (HMDSO) as the precursors, respectively. Particle image velocimetry measurements confirmed that the precursors can be injected into the flames without appreciably affecting flow structure. The nanoparticles were characterized using X-ray diffraction, Raman spectroscopy, the Brunauer-Emmett-Teller (BET) method, and high-resolution transmission electron microscopy. In the case of TiO2, the phase of nanoparticles could be controlled by adjusting the equivalence ratio, while the particle size was dependent on the precursor loading rate and the flame temperature. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ > 1.3). In the case of SiO2, the particle size could be controlled from 11 to 18 nm by adjusting the precursor loading rate. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  11. The mechanism of self-ignition and flame holding in supersonic combustion chamber (United States)

    Goldfeld, Marat; Timofeev, Konstantin


    The presented research has been concentrated to definition of conditions of self-ignition of hydrogen in the combustion chamber at the entrance Mach number 4. The experimental model was made in the form of rectangular channel with a flame holder in the form of backward facing step (BFS). Fuel injection was carried out in front of BFS on the top and bottom walls of model through 8 circular holes, which was located under angles of 45° or 90°. Performed investigations allowed determining effective model of fuel injection for self-ignition and flame stabilization and prevention of choking of the channel. It is shown that the choice of the fuel injection scheme determines the ignition conditions and controlling the combustion process.

  12. Impacts of a jet's exit flow pattern on mixing and combustion performance

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, G.J.; Mi, J.; Newbold, G.J.R.; Nobes, D.S. [Turbulence, Energy and Combustion Group, School of Mechanical Engineering, The University of Adelaide, South Australia 5005 (Australia); Alwahabi, Z.T. [Turbulence, Energy and Combustion Group, Chemical Engineering, The University of Adelaide, South Australia 5005 (Australia)


    energy from the fine to the larger scales, can be beneficial for combustion in applications where high radiant heat transfer is desirable. Precessing and flapping jets are found to cause an increase in flame volume relative to an equivalent simple jet (SJ), implying lower molecular mixing rates. However, importantly, this decrease in mixing is achieved with no increase in the flame length. Rather the width to length ratio of these flames is increased significantly. This is of practical significance because the length of a flame is often the limiting dimension in industrial systems. The reduced strain-rates lead to an increased presence of soot within the flame, while not, in general, significantly influencing the emission of soot from the flame. The increased volume of soot leads to increased radiation, which in turn acts to reduce flame temperature, so lowering thermal NO{sub x} emissions through a global residence time-temperature reduction. For example, in full-scale cement kilns these burner nozzles are found to reduce NO{sub x} emissions by around 40-60% and increase fuel efficiency (or output) by around 5-10%. (author)

  13. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure (United States)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)


    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  14. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.


    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  15. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo


    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  16. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  17. Jet Measurements In CMS

    CERN Document Server

    Ganguly, Sanmay


    A measurement of inclusive jet and dijet production cross sections is presented. Data from large hadron collider (LHC) proton-proton collisions at $\\sqrt{s}=$ 7 TeV, corresponding to $4.67 fb^{-1}$ of integrated luminosity, have been collected with the compact muon solenoid (CMS) detector. Jets are reconstructed with the anti-$k_T$ clustering algorithm with size parameter $R=0.7$, extending to rapidity $|y|=2.5$, transverse momentum $p_{T}=$ 2 TeV, and dijet invariant mass $M_{JJ}=$ 5 TeV. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order (NLO), corrected for non perturbative (NP) factors, using various sets of parton distribution functions. Determination Of Jet Energy Correction from $\\sqrt{s}=$ 7 TeV CMS data is presented. The individual components are determined. The jet energy scale uncertainty factors are also shown.

  18. Effect of silver addition on the formation and deposition of titania nanoparticles produced by liquid flame spray

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, H., E-mail:; Maekelae, J. M.; Aromaa, M.; Ristimaeki, J. [Tampere University of Technology, Institute of Physics (Finland); Kanerva, T.; Levaenen, E.; Maentylae, T. [Tampere University of Technology, Institute of Materials Science (Finland); Keskinen, J. [Tampere University of Technology, Institute of Physics (Finland)


    In this study, liquid flame spray (LFS) was used to produce titania, silver and silver-titania deposits of nanoparticles. Titanium(IV)ethoxide (TEOT) and silver nitrate in ethanol solutions were used as precursors and sprayed into turbulent hydrogen-oxygen flame. Production rates of 1.5-40 mg/min of titania were used with silver additions of 1, 2, 4, and 8 wt% compared to titania. Nanoparticle deposits were collected by thermophoretic sampling at six different axial distances from the flame torch head: 3, 5, 10, 12, 15, and 20 cm, of which the all but the last one occurred inside the flame. The deposit samples were analysed by TEM and SAED analysis. The powder samples of the particles were also collected by electric precipitator to XPS and specific surface area analysis. Particle size and effective density after the flame in the aerosol were analysed with SMPS and ELPI. The results from the previous studies i.e. controlling the particle size by setting the production rates of the particles were seen to apply also for this binary system. Characterisation of the deposits showed that when the substrate is inserted into the flame, in the beginning of the flame the deposit is formed by gas phase deposition whereas further down the flame the particles are first formed in the gas phase and then deposited. The location of the transition from gas phase deposition to gas phase nucleation prior to deposition depends on chemical/physical properties (e.g. thermodynamics and gas phase interactions) of the precursor, precursor concentration in the flame and also flame temperature profile. Therefore, the deposit collection distance from the burner also affected the collected particle size and degree of agglomeration. The two component deposits were produced in two different ways: one-step method mixing both precursors in the same solute, and two-step method spraying each precursor separately. The particle morphology differs between these two cases. In one-step method the primary

  19. Effect of silver addition on the formation and deposition of titania nanoparticles produced by liquid flame spray (United States)

    Keskinen, H.; Mäkelä, J. M.; Aromaa, M.; Ristimäki, J.; Kanerva, T.; Levänen, E.; Mäntylä, T.; Keskinen, J.


    In this study, liquid flame spray (LFS) was used to produce titania, silver and silver-titania deposits of nanoparticles. Titanium(IV)ethoxide (TEOT) and silver nitrate in ethanol solutions were used as precursors and sprayed into turbulent hydrogen-oxygen flame. Production rates of 1.5-40 mg/min of titania were used with silver additions of 1, 2, 4, and 8 wt% compared to titania. Nanoparticle deposits were collected by thermophoretic sampling at six different axial distances from the flame torch head: 3, 5, 10, 12, 15, and 20 cm, of which the all but the last one occurred inside the flame. The deposit samples were analysed by TEM and SAED analysis. The powder samples of the particles were also collected by electric precipitator to XPS and specific surface area analysis. Particle size and effective density after the flame in the aerosol were analysed with SMPS and ELPI. The results from the previous studies i.e. controlling the particle size by setting the production rates of the particles were seen to apply also for this binary system. Characterisation of the deposits showed that when the substrate is inserted into the flame, in the beginning of the flame the deposit is formed by gas phase deposition whereas further down the flame the particles are first formed in the gas phase and then deposited. The location of the transition from gas phase deposition to gas phase nucleation prior to deposition depends on chemical/physical properties (e.g. thermodynamics and gas phase interactions) of the precursor, precursor concentration in the flame and also flame temperature profile. Therefore, the deposit collection distance from the burner also affected the collected particle size and degree of agglomeration. The two component deposits were produced in two different ways: one-step method mixing both precursors in the same solute, and two-step method spraying each precursor separately. The particle morphology differs between these two cases. In one-step method the primary

  20. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  1. Effects of Annular and Rectangular Confinement on the Hydrodynamics of Reacting, Swirling Jets (United States)

    Emerson, Benjamin; Lieuwen, Tim


    In gas turbine combustors, flames are stabilized in the shear layers of swirling jets. In such devices, the flame's dynamics and its unsteady heat release are strongly governed by the fluid dynamics of the swirling jet flow. This unsteady heat release can couple with an acoustic mode of the combustor to cause a troublesome self-excited oscillation known as combustion instability. This coupling often occurs through the fluid dynamics, where the flame is dynamically wrinkled by acoustically excited vortical structures. This study uses linear stability analysis to study the effects of confinement on the fluid dynamics of reacting, swirling jets. Previous studies have explored confinement effects of an outer cylindrical wall. This study investigates other types of confinement. The analysis compares the classical arrangement, with flow through an outer cylindrical wall, to two other arrangements: flows through annular or rectangular confinements. The analysis shows that these confinement changes can have significant impacts on the instability growth rates, frequencies, and mode shapes. For example, changing a cylindrical confinement to a rectangular confinement tends to alter the hydrodynamic mode shape by straightening the nodal lines in the hydrodynamic velocity field.

  2. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)


    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  3. Protostellar Jets in Context

    CERN Document Server

    Tsinganos, Kanaris; Stute, Matthias


    This volume contains the proceedings of the Conference Protostellar Jets in Context held by the JETSET Marie Curie Research Training Network in July 2008. This meeting not only served to showcase some of the network's achievements but was also a platform to hear from, discuss and debate the recent findings of world-class astrophysicists in the field of protostellar jet research. Jets from young stars are of course not an isolated astrophysical phenomenon. It is known that objects as diverse as young brown dwarfs, planetary nebulae, symbiotic stars, micro-quasars, AGN, and gamma-ray bursters produce jets. Thus in a series of talks, protostellar jets were put in context by comparing them with their often much larger brethren and also by considering the ubiquitous accretion disks that seem to be necessary for their formation. With this spectrum of contributions on observations and the theory of astrophysical jets and accretion disks, this book serves as a comprehensive reference work for researchers and students...

  4. Effects of the Burner Diameter on the Flame Structure and Extinction Limit of Counterflow Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Chang Bo Oh


    Full Text Available Experiments and numerical simulations were conducted to investigate the effects of the burner diameter on the flame structure and extinction limit of counterflow non-premixed methane flames in normal gravity and microgravity. Experiments were performed for counterflow flames with a large inner diameter (d of 50 mm in normal gravity to compare the extinction limits with those obtained by previous studies where a small burner (d < 25 mm was used. Two-dimensional (2D simulations were performed to clarify the flame structure and extinction limits of counterflow non-premixed flame with a three-step global reaction mechanism. One-dimensional (1D simulations were also performed with the same three-step global reaction mechanism to provide reference data for the 2D simulation and experiment. For microgravity, the effect of the burner diameter on the flame location at the centerline was negligible at both high (ag = 50 s−1 and low (ag = 10 s−1 strain rates. However, a small burner flame (d = 15 mm in microgravity showed large differences in the maximum flame temperature and the flame size in radial direction compared to a large burner flame (d = 50 mm at low strain rate. In addition, for normal gravity, a small burner flame (d = 23.4 mm showed differences in the flame thickness, flame location, local strain rate, and maximum heat release rate compared to a large burner flame (d = 50 mm at low strain rate. Counterflow non-premixed flames with low and high strain rates that were established in a large burner were approximated by 1D simulation for normal gravity and microgravity. However, a counterflow non-premixed flame with a low strain rate in a small burner could not be approximated by 1D simulation for normal gravity due to buoyancy effects. The 2D simulations of the extinction limits correlated well with experiments for small and large burner flames. For microgravity, the extinction limit of a small burner flame (d = 15 mm was much lower than that

  5. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg


    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  6. The Transition to Turbulence of Rayleigh-Taylor Unstable Flames (United States)

    Hicks, Elizabeth P.; Rosner, R.


    Part of the uncertainty surrounding the explosion mechanism of Type 1A supernovae is the extent to which the turbulence created by the flame front can speed the flame up. A premixed flame moving against a sufficiently strong gravitational field becomes deformed and creates vorticity. If gravity is strong enough, this vorticity is shed and deposited behind the flame front. We have completed some two-dimensional direct numerical simulations of this shedding process for various values of the gravitational force. If gravity is weak enough, the flame front remains flat and no vorticity is created. If gravity is slightly stronger, the flame front becomes cusped and creates vorticity; long vortices attach to the flame front and extend behind it. For even larger values of gravity, the far end of these vortices becomes unstable and sheds more vortices. For simulations with increased gravity, the position of the shedding instability moves closer to the flame front. Next, the vortex shedding disturbs the flame front, causing the flame to pulsate. These pulsations lose their left/right symmetry and the period of oscillation doubles. For even higher values of gravity, an additional frequency is introduced into the system as the Rayleigh-Taylor instability begins to dominate over burning. Eventually, the pulsations of the flame become quite complex and the interaction between the flame front and the vortices can't be simply described. We have measured the subsequent wrinkling of the flame front by computing its fractal dimension and the energy spectra behind the flame front. Measurements of the fractal dimension suggest that it saturates, implying that any additional speed up of the flame must be due to large-scale stretching or disruption of the flame front. Our simulations were performed at NERSC which is supported by the Department of Energy.

  7. Effectiveness of Flame Retardants in TufFoam.

    Energy Technology Data Exchange (ETDEWEB)

    Abelow, Alexis Elizabeth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nissen, April [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Massey, Lee Taylor [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  8. On stability of premixed flames in stagnation - Point flow (United States)

    Sivashinsky, G. I.; Law, C. K.; Joulin, G.


    A quantitative description of flame stabilization in stagnation-point flow is proposed. Asymptotic and stability analyses are made for a flame model where the density of the gas is assumed to be constant and the reaction zone is assumed to be narrow and concentrated over the flame front. It is shown that, if blowing is sufficiently strong, the corrugations disappear and a plane flame results. The phenomena cannot be fully described by means of classical linear stability analysis.

  9. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, Alexei [Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics. Enrico Fermi Inst.; Austin, Joanna [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Bacon, C. [Univ. of Illinois, Urbana, IL (United States). Dept. of Aerospace Engineering


    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagration-to-detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratory, currently the fourth fastest super-computer in the world.

  10. Front roughening of flames in discrete media (United States)

    Lam, Fredric; Mi, XiaoCheng; Higgins, Andrew J.


    The morphology of flame fronts propagating in reactive systems composed of randomly positioned, pointlike sources is studied. The solution of the temperature field and the initiation of new sources is implemented using the superposition of the Green's function for the diffusion equation, eliminating the need to use finite-difference approximations. The heat released from triggered sources diffuses outward from each source, activating new sources and enabling a mechanism of flame propagation. Systems of 40 000 sources in a 200 ×200 two-dimensional domain were tracked using computer simulations, and statistical ensembles of 120 realizations of each system were averaged to determine the statistical properties of the flame fronts. The reactive system of sources is parameterized by two nondimensional values: the heat release time (normalized by interparticle diffusion time) and the ignition temperature (normalized by adiabatic flame temperature). These two parameters were systematically varied for different simulations to investigate their influence on front propagation. For sufficiently fast heat release and low ignition temperature, the front roughness [defined as the root mean square deviation of the ignition temperature contour from the average flame position] grew following a power-law dependence that was in excellent agreement with the Kardar-Parisi-Zhang (KPZ) universality class (β =1 /3 ). As the reaction time was increased, lower values of the roughening exponent were observed, and at a sufficiently great value of reaction time, reversion to a steady, constant-width thermal flame was observed that matched the solution from classical combustion theory. Deviation away from KPZ scaling was also observed as the ignition temperature was increased. The features of this system that permit it to exhibit both KPZ and non-KPZ scaling are discussed.

  11. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie


    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at © 2015 Taylor & Francis.

  12. Computatonal and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, M.D.; Long, M.B. [Yale Univ., New Haven, CT (United States)


    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  13. Brominated flame retardants: occurrence, dietary intake and risk assessment

    NARCIS (Netherlands)

    Winter-Sorkina R de; Bakker MI; Wolterink G; Zeijlmaker MJ; SIR


    Brominated flame retardants have entered the human food chain. For the time being the occurrence of these chemicals in Dutch food does not pose a human health risk. However, this might easily change at increasing contents of flame retardants in Dutch food. The monitoring of brominated flame

  14. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis

    NARCIS (Netherlands)

    van der Veen, I.; de Boer, J.


    Since the ban on some brominated flame retardants (BFRs), phosphorus flame retardants (PFRs), which were responsible for 20% of the flame retardant (FR) consumption in 2006 in Europe, are often proposed as alternatives for BFRs. PFRs can be divided in three main groups, inorganic, organic and

  15. 30 CFR 75.600-1 - Approved cables; flame resistance. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant. ...


    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.


    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  17. Direct numerical simulation of two-phases turbulent combustion: application to study of propagation and structure of flames; Simulation numerique directe de la combustion turbulente diphasique: application a l'etude de la propagation et de la structure des flammes

    Energy Technology Data Exchange (ETDEWEB)

    Canneviere, K.


    This work is devoted to the study of the propagation and the structure of two-phases turbulent flames. To this end, Direct Numerical Simulations (DNS) are used. First, numerical systems for two-phases flow simulations is presented along with a specific chemical model. Then, a study of laminar spray flames is carried out. An analytical study related to the dynamics of evaporation of droplets is first proposed where the influence on the equivalence ratio of the ratio between the heating delay of the droplet and the evaporation delay is detailed. The simulation of a propagating flame through a cloud of droplets is carried out and a pulsating behavior is highlighted. A study of these flames according to the topology of liquid fuel enabled us to characterize a double flame structure composed of a premixed flame and a diffusion flame. Our last study is devoted to spray turbulent flames. Two-phase combustion of turbulent jets has been simulated. By varying the spray injection parameters (density, equivalence ratio), a database has been generated. This database allowed us to describe local and global flame regimes appearing in the combustion of sprays. They have been categorized in four main structures: open and closed external regime, group combustion and mixed combustion. Eventually, a combustion diagram has been developed. It involves the spray vaporization time, the mean inter-space between droplets or group of droplets and eventually the injected equivalence ratio. (author)

  18. Pressurized hydrogen and methane releases

    Energy Technology Data Exchange (ETDEWEB)

    Ruffin, E.; Mouilleau, Y.; Chaineaux, J.


    This paper reports on an experimental investigation of the concentration field of supercritical jets of methane and hydrogen. The jets were produced by venting a tank containing gas at a pressure of 40 bars (568 psi) to atmosphere through orifices whose diameters ranged from 25 to 150 mm. The investigation was designed with experiments on a scale typical of that encountered in industry during accidental discharges of pressurised gas, a scale much larger that that normally used in a laboratory. The concentration measurements were made in the subsonic zone of the jets using an original technique. This technique employs a sensor using the catalytic oxidation effects and can measure the concentration of combustible gas in highly reactive environments with no risk of ignition. Ignition tests of the flammable atmospheres and measurements of the aerial pressures had also been performed. The results show that concentration fields of supercritical and subsonic jets are equal if they are weighted by a properly chosen equivalent diameter. Explosion tests show that the over pressures produced by the deflagrations are highly dependent of the ignition point. (author). 6 figs.

  19. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.


    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  20. Characteristics of combustion and heat transfer of excess enthalpy flames stabilized in a stagnation flow. 2nd Report. ; Heat flux at high flow rate and effects of Lewis number. Yodomi nagarechu ni anteika sareta choka enthalpy kaen no nensho oyobi etsudentatsu tokusei. 2. ; Koryuryo ni okeru netsuryusoku oyobi Lewis su no koka

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S. (Daido Institute of Technology, Nagoya (Japan)); Asato, K.; Kawamura, T. (Gifu University, Gifu (Japan). Faculty of Engineerirng); Mazaki, T. (Daido Senior High School, Nagoya (Japan)); Umemura, H. (Mitsubishi Electric Corp., Tokyo (Japan))


    For the purpose of developing small-sized combustors of high heat transfer efficiency for household and business uses, a study has been carried out on the characteristics of an excess enthalpy flame stabilized in a stagnant flow, the maximum heat flux utilizable from flames through a heat receiver wall, the heat transfer characteristics near the extinction limits, and the effects of Lewis number (Le). Even when heat is drawn from the heat receiver wall in the downstream of flames, stable flames are kept until they extremely approach the heat receiver wall by the effect of preheating for lean methane-air flames of Le[approx equal]1.0 and lean propane-air flames of Le>1.0 and by the effect of preheating and Lewis effect for lean hydrogen-air flames of Le<1.0. In any flames, therefore, the heat flux to the heat receiver wall increases abruptly with the increase of stagnant velocity gradient and thereby the heat transfer characteristics at the heat receiver wall are improved. Heat transfer in the cases where flames exist on the outside and inside of the temperature boundary layer depend not on the thickness of the temperature boundary layer but on the position of flames. 6 refs., 9 figs.

  1. B-jets and z + b-jets at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, Daniel; /Rome U.


    The authors present CDF cross-section measurements for the inclusive production of b jets and the production of b jets in association with a Z{sup 0} boson. Both measurements are in reasonable agreement with NLO QCD predictions.

  2. Radiative Structures of Lycopodium-Air Flames in Low Gravity (United States)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.


    Initially uniform clouds of fuel particulates in air sustain processes which may lead to particle cloud nonuniformities. In low gravity, flame-induced Kundt's Tube phenomena are observed to form regular patterns of nonuniform particle concentrations. Irregular patterns of particle concentrations also are observed to result from selected nonuniform mixing processes. Low gravity flame propagation for each of these classes of particle cloud flames has been found to depend importantly on the flame-generated infrared radiative fields. The spatial structures of these radiative fields are described. Application is made for the observed clases of lycopodium-air flames.

  3. Ionic Mechanisms of Carbon Formation in Flames. (United States)


    is that of Street and Thonas 1 1. These au- the burner temperature and burner and chimney thors used an apparatus in which a flow of heated dimensions...slitlctuies would overlap; It is classital mythology [hat prcmixed and dif. the molecules with greatest deviation from the fusion flames have different

  4. Radical recombinations in acetylene-air flames

    NARCIS (Netherlands)

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to

  5. Numerical study of one swirling flame

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    This paper presents numerical study of one of Sydney swirl flames. Good agreements gained between numerical results and the experimental data. Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods show different flow patterns in isothermal and reacting case. The influence...

  6. Nitrogen/argon diluted acetylene and ethylene blue flames under infrared CO2 laser irradiation

    Directory of Open Access Journals (Sweden)

    Peter V. Pikhitsa


    Full Text Available We investigated changes in emission spectra from nitrogen/argon diluted laminar diffusion acetylene and ethylene blue flames irradiated by a powerful cw infrared CO2 laser. The changes in the radical emission bands can be interpreted as an indication of laser-induced decomposition of ethylene (for laser absorbing C2H4 fuel and of laser-absorbing intermediates (for non-absorbing C2H2 fuel. The results indicate that released active hydrogen plays an important role in addition/abstraction reactions without any participation of oxygen.

  7. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Peterson, Eric


    This progress report documents the first year of the project, from October 1, 2010 through September 30, 2011. Laminar flame speeds and ignition delay times have been measured for hydrogen and various compositions of H2/CO (syngas) at elevated pressures and elevated temperatures. Two constant-volume cylindrical vessels were used to visualize the spherical growth of the flame through the use of a schlieren optical setup to measure the laminar flame speed of the mixture. Hydrogen experiments were performed at initial pressures up to 10 atm and initial temperatures up to 443 K. A syngas composition of 50/50 was chosen to demonstrate the effect of carbon monoxide on H2-O2 chemical kinetics at standard temperature and pressures up to 10 atm. All atmospheric mixtures were diluted with standard air, while all elevated-pressure experiments were diluted with a He:O2 of 7:1 to minimize hydrodynamic instabilities. The laminar flame speed measurements of hydrogen and syngas are compared to available literature data over a wide range of equivalence ratios where good agreement can be seen with several data sets. Additionally, an improved chemical kinetics model is shown for all conditions within the current study. The model and the data presented herein agree well, which demonstrates the continual, improved accuracy of the chemical kinetics model. A high-pressure shock tube was used to measure ignition delay times for several baseline compositions of syngas at three pressures across a wide range of temperatures. The compositions of syngas (H2/CO) presented in this study include 80/20, 50/50, 40/60, 20/80, and 10/90, all of which are compared to previously published ignition delay times from a hydrogen-oxygen mixture to demonstrate the effect of carbon monoxide addition. Generally, an increase in carbon monoxide increases the ignition delay time, but there does seem to be a pressure dependency. At low temperatures and

  8. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Elliot Sullivan- [Univ. of California, Irvine, CA (United States); McDonell, Vincent G. [Univ. of California, Irvine, CA (United States)


    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  9. Flame speeds and curvature of premixed, spherically expanding flames advecting in a turbulent channel flow (United States)

    Fries, Dan; Ochs, Bradley; Ranjan, Devesh; Menon, Suresh


    A new facility has been developed at the Georgia Institute of Technology to study sub- and supersonic combustion, which is based on classical flame bomb studies but incorporates a mean flow, allowing for a wider variety of turbulent conditions and the inclusion of effects like compressibility, while supporting shear-free spherical flames. Homogeneous, isotropic turbulence is generated via an active vane grid. Methane-air flame kernels advecting with the mean flow are generated using Laser Induced Breakdown ignition. The facility is accessing the thin reaction zone regime with uRMS' /SL0 = 6 . 9 - 22 , L11 /δF = 44 - 68 and Reλ = 190 - 550 . The flame kernels are probed with OH-Planar Laser Induced Fluorescence (PLIF). To validate the facility, results at Ū = 30 m/s are compared to existing data using a scaling derived from a spectral closure of the G-equation. This indicates the reacting flow remains Galilean invariant under the given conditions. The differences between global and local turbulent consumption speeds derived from OH-PLIF results are discussed with a focus on modeling efforts. The curvature of flame wrinkles is evaluated to examine the impact of different turbulent scales on flame development. This work was supported by the Air Force Office of Scientific Research under basic research Grant FA9550-15-1-0512 (Project monitor: Dr. Chiping Li).

  10. Flame exposure time on Langmuir probe degradation, ion density, and thermionic emission for flame temperature. (United States)

    Doyle, S J; Salvador, P R; Xu, K G


    The paper examines the effect of exposure time of Langmuir probes in an atmospheric premixed methane-air flame. The effects of probe size and material composition on current measurements were investigated, with molybdenum and tungsten probe tips ranging in diameter from 0.0508 to 0.1651 mm. Repeated prolonged exposures to the flame, with five runs of 60 s, resulted in gradual probe degradations (-6% to -62% area loss) which affected the measurements. Due to long flame exposures, two ion saturation currents were observed, resulting in significantly different ion densities ranging from 1.16 × 1016 to 2.71 × 1019 m-3. The difference between the saturation currents is caused by thermionic emissions from the probe tip. As thermionic emission is temperature dependent, the flame temperature could thus be estimated from the change in current. The flame temperatures calculated from the difference in saturation currents (1734-1887 K) were compared to those from a conventional thermocouple (1580-1908 K). Temperature measurements obtained from tungsten probes placed in rich flames yielded the highest percent error (9.66%-18.70%) due to smaller emission current densities at lower temperatures. The molybdenum probe yielded an accurate temperature value with only 1.29% error. Molybdenum also demonstrated very low probe degradation in comparison to the tungsten probe tips (area reductions of 6% vs. 58%, respectively). The results also show that very little exposure time (probe tip.

  11. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.


    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  12. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications. (United States)

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim


    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  13. Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    KAUST Repository

    Hong, Seunghyuck


    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the dependence of the recirculation zone (RZ) size and structure on the fuel composition using high-speed particle image velocimetry (PIV) and chemiluminescence measurements for C3H8/H2/air lean premixed flames stabilized in a backward-facing step combustor. Results show an intricate coupling between the flame anchoring and the RZ structure and length. For a fixed fuel composition, at relatively low equivalence ratios, the time-averaged RZ is comprised of two counter rotating eddies: a primary eddy (PE) between the shear layer and the bottom wall; and a secondary eddy (SE) between the vertical step wall and the PE. The flame stabilizes downstream of the saddle point of the dividing streamline between the two eddies. As equivalence ratio is raised, the flame moves upstream, pushing the saddle point with it and reducing the size of the SE. Higher temperature of the products reduces the velocity gradient in the shear layer and thus the reattachment length. As equivalence ratio approaches a critical value, the saddle point reaches the step and the SE collapses while the flame starts to exhibit periodic flapping motions, suggesting a correlation between the RZ structure and flame anchoring. The overall trend in the flow field is the same as we add hydrogen to the fuel at a fixed equivalence ratio, demonstrating the impact of fuel composition on the flow field. We show that the reattachment lengths (LR), which are shown to encapsulate the mean RZ structure, measured over a range of fuel composition and equivalence ratio collapse if plotted against the strained consumption speed (Sc). Results indicate that for the flame to remain anchored, the RZ structure should satisfy lR,isothermal/L R,reacting · S c/U ∞ ∼ 0.1. If this criterion cannot be met, the flame blows off, flashes back or becomes thermoacoustically unstable, suggesting a Damköhler-like criterion for

  14. Kerosene wick lamp flame deformation in gradient magnetic fields (United States)

    Saeedi, A.; Moghiman, M.


    The behavior of a kerosene wick lamp flame in the presence of non-uniform DC magnetic fields has been investigated and the results of this experimental study are presented. It has long been recognized that magnetic fields can influence the behavior of diffusion flames as a result of the paramagnetic and diamagnetic properties of the constituent gases. Using an electromagnet consisting of two coils and cores to generate a horizontal magnetic field, a non-uniform upward increasing and decreasing magnetic field was applied to a kerosene wick lamp flame. The experimental results show that the influence of DC gradient magnetic field on diffusion flame structure deformation depends on the flame position in the increasing or decreasing magnetic field, the flame situation relative to the maximum of the absolute value of the gradient and the quantity of the gradient magnetic field. It was also observed that both flame front area and flame height decrease in the positive and negative gradient field below the maximum of the absolute value of the gradient. Also, increasing the absolute of the gradient of the square magnetic induction in the positive and negative gradient field above the maximum of the absolute value of the gradient cause to elongate the flame and increase in the flame front area and then the flame height and front area decrease.

  15. Laser-saturated fluorescence measurements in laminar sooting diffusion flames (United States)

    Wey, Changlie


    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  16. Multiple Jets at the LHC with High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Smillie, Jennifer M.


    We present a flexible Monte Carlo implementation of the perturbative framework of High Energy Jets, describing multi-jet events at hadron colliders. The description includes a resummation which ensures leading logarithmic accuracy for large invariant mass between jets, and is matched to tree...... of the perturbative corrections on several dijet and trijet observables which are relevant in the search for new physics....

  17. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    satisfies these criteria when vigorous breakthrough is achieved, not all available data follow the free jet profile for the central upwell, particularly at lower nozzle velocities. Alternative flow regimes are considered and new models for cloud height, “cavern height,” and the rate of jet penetration (jet celerity) are benchmarked against data to anchor scaling analyses. This analytical modeling effort to provide a technical basis for scaling PJM mixed vessels has significant implications for vessel mixing, because jet physics underlies “cavern” height, cloud height, and the volume of mixing considerations. A new four-parameter cloud height model compares favorably to experimental results. This model is predictive of breakthrough in 8 ft vessel tests with the two-part simulant. Analysis of the upwell in the presence of yield stresses finds evidence of expanding turbulent jets, confined turbulent jets, and confined laminar flows. For each, the critical elevation at which jet momentum depletes is predicted, which compare favorably to experimental cavern height data. Partially coupled momentum and energy balances suggest that these are limiting cases of a gradual transition from a turbulent expanding flow to a confined laminar flow. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing (i.e., breakthrough with slow peripheral mixing). Consideration of jet celerity shows that the rate of jet penetration is a governing consideration in breakthrough to the surface. Estimates of the volume of mixing are presented. This analysis shows that flow along the vessel wall is sluggish such that the central upwell governs the volume of mixing. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing and estimates of hydrogen release rates from first principles.

  18. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality. (United States)

    Cheng, Jun; Li, Tao; Huang, Rui; Zhou, Junhu; Cen, Kefa


    To produce quality jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons, two zeolites of HY and HZSM-5 supporting Ni and Mo were used as catalysts to convert soybean oil into jet fuel. Zeolite HY exhibited higher jet range alkane selectivity (40.3%) and lower jet range aromatic hydrocarbon selectivity (23.8%) than zeolite HZSM-5 (13.8% and 58.9%). When reaction temperature increased from 330 to 390°C, yield of jet fuel over Ni-Mo/HY catalyst at 4 MPa hydrogen pressure increased from 0% to 49.1% due to the shift of reaction pathway from oligomerization to cracking reaction. Further increase of reaction temperature from 390 to 410°C resulted in increased yield of jet range aromatic hydrocarbons from 18.7% to 30%, which decreased jet fuel quality. A high yield of jet fuel (48.2%) was obtained at 1 MPa low hydrogen pressure over Ni (8 wt.%)-Mo (12 wt.%)/HY catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Robert [Purdue Univ., West Lafayette, IN (United States); Anderson, William [Purdue Univ., West Lafayette, IN (United States)


    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  20. Resolving boosted jets with XCone

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse; Wilkason, Thomas F. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA, 02139 (United States)


    We show how the recently proposed XCone jet algorithm smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  1. Jet Physics in ATLAS

    CERN Document Server

    Sandoval, C; The ATLAS collaboration


    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet physics measurements. These measurements constitute precision tests of QCD in a new energy regime, and show sensitivity to the parton densities in the proton and to the value of the strong coupling, alpha_s.

  2. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir


    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  3. Modelling of laminar spray flames in high-pressure conditions; Modellierung laminarer Sprayflammen unter Hochdruckbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlotz, D.; Gutheil, E.


    The structure of laminar spray diffusion flames is investigated in counterflow configuration using numerical methods in a spray of liquid oxygen with hydrogen as carrier gas. The model considers detailed chemistry and detailed transport. The conditions selected require an extension of the model to consider the transport properties at cryogenic inlet temperatures as well as changed phase equilibria of binary mixtures at high pressure. The parametric dependence of the flame structure on the elongation velocity and the global equivalence ratio is presented and discussed. The model enables calculation of quenching conditions which are a fundamental parameter in simulating turbulent spray diffusion flames by means of a flamelet approach. [German] Die Struktur laminarer Spraydiffusionsflammen wird in der Gegenstromkonfiguration mittels numerischen Methoden untersucht. Ein Spray aus fluessigem Sauerstoff mit Traegergas Wasserstoff wird gegen Wasserstoff bei hohem subkritischen Druck und mit kryogener Eintrittstemperatur eingeduest. In dem Modell werden detaillierte Chemie und detaillierter Transport beruecksichtigt. Die gewaehlten Bedingungen erfordern die Modellerweiterung bezueglich der Transporteigenschaften bei kryogenen Eintrittstemperaturen sowie die Beruecksichtigung veraenderter Phasengleichgewichte binaerer Mischungen bei Hochdruck. Parametrische Abhaengigkeiten der Flammenstruktur von der Streckungsgeschwindigkeit und dem globalen Aequivalenzverhaeltnis werden dargestellt und diskutiert. Das Modell ermoeglicht die Bestimmung von Verloeschbedingungen, die fuer die Simulation turbulenter Spraydiffusionsflammen mittels eines Flamelet-Ansatzes grundlegend sind. (orig.)

  4. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways. (United States)

    Han, Jeongwoo; Tao, Ling; Wang, Michael


    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H2 options for STJ via catalytic conversion are investigated: external H2 from natural gas (NG) steam methane reforming (SMR), in situ H2, and H2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H2 from NG SMR or 71% with H2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and

  5. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro


    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  6. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...

  7. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    Abstract. The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct ...

  8. Breakup of diminutive Rayleigh jets

    NARCIS (Netherlands)

    van Hoeve, W.; Gekle, S.; Snoeijer, Jacobus Hendrikus; Versluis, Michel; Brenner, Michael P.; Lohse, Detlef


    Discharging a liquid from a nozzle at sufficient large velocity leads to a continuous jet that due to capillary forces breaks up into droplets. Here we investigate the formation of microdroplets from the breakup of micron-sized jets with ultra high-speed imaging. The diminutive size of the jet

  9. Multi-jet production and jet correlations at CMS

    CERN Document Server

    Veres, Gabor


    Hadronic jet production at the LHC is an excellent testing ground for QCD. Essential components of QCD, necessary for the description of the experimental data on hadronic jets, are hard parton radiation and multiple parton interactions. The importance of these components increases for final states including multiple jets. We will show results on observables sensitive to the hard parton radiation, like the azimuthal (de)correlation between jets with small and large rapidity separation. Dijet events with a rapidity gap between them will also be presented and their fraction measured as a function of jet transverse momentum and collision energy.

  10. Construction of hydrogenation stalls for explosions

    Energy Technology Data Exchange (ETDEWEB)

    Raichle, L.


    This report contained explanations for different questions that had been asked by the Association of Chemical Manufacturers. The first item discussed was the pressure occurring in hydrogenation stalls in hydrogen explosions. The pressures actually used were much smaller than the maximum design pressure due to burning gases being allowed to escape from the top and front of the stalls since these areas were open and it could not be assumed that the whole stall space was filled with a 32% hydrogen concentration at the beginning of an explosion. The second item discussed was specifications and rules for the building of hydrogenation stalls. These included the calculations for simple wind pressure according to the Building Code with the usual safety factors and the calculations for an inner pressure of 300 kg/m/sup 2/ with the usual safety factors. An explanation of a stall explosion in Poelitz and reinforced stall construction in Poelitz were two other items that were discussed. Appendix I of the report involved maximum pressures and temperature in hydrogen explosions. Diagram I was involved with this. Appendix II discussed the behavior of a hydrogen flame at high emerging velocities and Appendix III discussed stall construction at Poelitz.

  11. The physics of jets

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, W.


    Recent data on the fragmentation of quarks and gluons is discussed in the context of phenomenological models of parton fragmentation. Emphasis is placed on the experimental evidence for parton showers as compared to a fixed order QCD treatment, on new data on inclusive hadron production and on detailed studies of baryon production in jets.

  12. Kuwornu-Adjaottor, JET

    African Journals Online (AJOL)

    Kuwornu-Adjaottor, JET. Vol 33, No 1 (2013) - Articles God and the Suffering of His People Abstract PDF. ISSN: 0855-0395. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News.

  13. Fastener investigation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, P., E-mail:; Thompson, V.; Riccardo, V.


    Highlights: • Experimental work to identify the cause of a bolt seizure inside the JET vessel. • Taguchi method used to reduce tests to 16 while covering 5 parameters. • Experimental work was unable to reproduce bolt seizure. • Thread contamination had little effect on the bolt performance. - Abstract: JET is an experimental fusion reactor consisting of magnetically confined, high temperature plasma inside a large ultra-high vacuum chamber. The inside of the chamber is protected from the hot plasma with tiles made from beryllium, tungsten, carbon composites and other materials bolted to the vessel wall. The study was carried out in response to a JET fastener seizing inside the vacuum vessel. The following study looks at characterising the magnitude of the individual factors affecting the fastener break away torque. This was carried out using a statistical approach, the Taguchi method: isolating the net effect of individual factors present in a series of tests [1](Grove and Davis, 1992). Given the severe environment within the JET vessel due to the combination of heat, ultra-high vacuum and the high contact pressure in bolt threads, the contributions of localised diffusion bonding is assessed in conjunction with various combinations of bolt and insert material.

  14. Jet printing flexible displays


    Street, R. A.; Wong, W S; Ready, S. E.; Chabinyc, M.L; Arias, A.C.; Limb, S.; Salleo, A; Lujan, R.


    Jet printing is an interesting patterning technique for electronic devices because it requires no physical mask, has digital control of ejection, and provides good layer-to-layer registration. It also has the potential to reduce display manufacturing costs and enable roll-to-roll processing. The technique is illustrated with examples of prototype printed displays using amorphous silicon and polymer semiconductors.

  15. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.


    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of

  16. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)


    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  17. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies


    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  18. Determination of the turbulent viscosity inside a strongly heated rectangular jet: experimental and numerical studies; Determination de la viscosite turbulente dans un jet rectangulaire fortement chauffe: etudes experimentale et numerique

    Energy Technology Data Exchange (ETDEWEB)

    Sarh, B.; Gokalp, I.; Sanders, H. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France)


    In the framework of the studies carried out by the LCSR on variable density flows and diffusion turbulent flames, this paper deals with the study of the influence of density variation on the characteristics of a heated rectangular turbulent jet emerging in a stagnant surrounding atmosphere and more particularly on the determination of turbulent viscosity. The dynamical field is measured using laser-Doppler anemometry while the thermal field is measured using cold wire anemometry. A numerical predetermination of the characteristics of this jet, based on a k-{epsilon} modeling, is carried out. (J.S.) 6 refs.

  19. Hydrogen usage

    Energy Technology Data Exchange (ETDEWEB)


    This short tabular report listed the number of m/sup 3/ of hydrogen required for a (metric) ton of product for various combinations of raw material and product in a hydrogenation procedure. In producing auto gasoline, bituminous coal required 2800 m/sup 3/, brown coal required 2400 m/sup 3/, high-temperature-carbonization tar required 2100 m/sup 3/, bituminous coal distillation tar required 1300 m/sup 3/, brown-coal low-temperature-carbonization tar required 850 m/sup 3/, petroleum residues required 900 m/sup 3/, and gas oil required 500 m/sup 3/. In producing diesel oil, brown coal required 1900 m/sup 3/, whereas petroleum residues required 500 m/sup 3/. In producing diesel oil, lubricants, and paraffin by the TTH (low-temperature-hydrogenation) process, brown-coal low-temperature-carbonization tar required 550 m/sup 3/. 1 table.

  20. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.


    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  1. Effect of Wind Velocity on Flame Spread in Microgravity (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)


    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  2. Flame Retardation Modification of Paper-Based PVC Wallcoverings

    Directory of Open Access Journals (Sweden)

    Lin Hui


    Full Text Available The flame-retarded paper-based polyvinyl chloride (PVC wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives. Flame retardancy, thermostability, smoke suppression and mechanical properties were tested regarding to the prepared wallcoverings. The results showed that 2ZnO·3B2O3·3.5H2O could improve flame retardancy and thermostability of paper-based PVC wallcoverings; plasticizer tricresyl phosphate increased flame retardancy of the prepared materials auxiliarily. Also, flame-retarded paper-based PVC wallcoverings with higher flame retardancy, smoke suppression and mechanical property was prepared using plant fiber paper with fix quantity of 90 g/m3 as base material, using 2ZnO·3B2O3·3.5H2O as inorganic flame retardant, and using tricresyl phosphate as plasticizer. For the flame-retarded paper-based PVC wallcoverings in this study, the limit oxygen index (LOI reaches 32.3, maximal smoke density is 16.91 %, and the horizontal and longitudinal wet tensile strength reaches 1.38 kN·m−1 and 1.51 kN·m−1 respectively. Meanwhile, its flame retardancy meets the requirements about flame retardancy for material Class B1 listed in Chinese National Standards GB 8624-2012, Classification for burning behavior of building materials and products. This research creates an effective path to prepare paper-based PVC wallcoverings with high flame retardancy.

  3. Ultrafast X-Ray Diffraction of Heterogeneous Solid Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, Abraham [Olin College of Engineering, Needham, MA (United States)


    Angularly resolved x-ray diffraction at 5.5 keV establishes the structure of a 5 µm diameter solid hydrogen jet, providing a foundation for analysis of hydrogen in a warm dense matter state. The jet was composed of approximately 65 % ± 5% HCP and 35 % ± 5% FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains.

  4. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker


    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  5. Flame Retardant Polyamide Fibres: The Challenge of Minimising Flame Retardant Additive Contents with Added Nanoclays

    Directory of Open Access Journals (Sweden)

    Richard Horrocks


    Full Text Available This work shows that halogen-free, flame retarded polyamide 6 (PA6, fabrics may be produced in which component fibres still have acceptable tensile properties and low levels (preferably ≤10 wt % of additives by incorporating a nanoclay along with two types of flame retardant formulations. The latter include (i aluminium diethyl phosphinate (AlPi at 10 wt %, known to work principally in the vapour phase and (ii ammonium sulphamate (AS/dipentaerythritol (DP system present at 2.5 and 1 wt % respectively, believed to be condense phase active. The nanoclay chosen is an organically modified montmorillonite clay, Cloisite 25A. The effect of each additive system is analysed in terms of its ability to maximise both filament tensile properties relative to 100% PA6 and flame retardant behaviour of knitted fabrics in a vertical orientation. None of the AlPi-containing formulations achieved self-extinguishability, although the presence of nanoclay promoted lower burning and melt dripping rates. The AS/DP-containing formulations with total flame retardant levels of 5.5 wt % or less showed far superior properties and with nanoclay, showed fabric extinction times ≤ 39 s and reduced melt dripping. The tensile and flammability results, supported by thermogravimetric analysis, have been interpreted in terms of the mechanism of action of each flame retardant/nanoclay type.

  6. Thermal Insulation System for Large Flame Buckets (United States)

    Callens, E. Eugene, Jr.; Gamblin, Tonya Pleshette


    The objective of this study is to investigate the use of thermal protection coatings, single tiles, and layered insulation systems to protect the walls of the flame buckets used in the testing of the Space Shuttle Main Engine, while reducing the cost and maintenance of the system. The physical behavior is modeled by a plane wall boundary value problem with a convective frontface condition and a backface condition designed to provide higher heat rates through the material.

  7. Computational and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, Mitchell [Yale Univ., New Haven, CT (United States)


    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  8. The advanced flame quality indicator system

    Energy Technology Data Exchange (ETDEWEB)

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A. [Insight Technologies, Inc., Bohemia, NY (United States)


    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  9. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes

    CERN Document Server

    Kazakov, Kirill A


    The problem of spontaneous acceleration of premixed flames propagating in open horizontal tubes with smooth walls is revisited. It is proved that in long tubes, this process can be considered quasi-steady, and an equation for the flame front position is derived using the on-shell description. Numerical solutions of this equation are found which show that as in the case of uniform flame movement, there are two essentially different regimes of flame propagation. In the type I regime, the flame speed and its acceleration are comparatively low, whereas the type II regime is characterized by significant flame acceleration that rapidly increases as the flame travels along the tube. A detailed comparison of the obtained results with the experimental data on flame acceleration in methane-air mixtures is given. In particular, it is confirmed that flames propagating in near-stoichiometric mixtures and mixtures near the limits of inflammability belong to the types II and I, respectively, whereas flames in transient mixt...

  10. Similarity and Scaling of Turbulent Flame Speeds for Expanding Premixed Flames of C4-C8 n -alkanes (United States)

    Wu, Fujia; Saha, Abhishek; Chaudhuri, Swetaprovo; Yang, Sheng; Law, Chung K.


    We experimentally investigated the propagation speed of constant-pressure expanding flames in near isotropic turbulence using a dual-chamber, fan-stirred vessel. The motivation is to test whether the fuel similarity concept among C4-C8 n-alkanes on laminar flames also holds for turbulent flames. Previously it was found that the laminar flame speed and Markstein length are almost identical for C4-C8 n-alkanes. If this fuel similarity concept can also be shown for turbulent flames, it will suggest a canonical flame structure for large hydrocarbon fuels, i . e . , large fuels always decompose to small C0-C4 fuel fragments before being oxidized, and would significantly simplify the description of the flames. Preliminary results show that in the flamelet and thin-reaction zone, turbulent flame speeds of C4-C8 n-alkanes are indeed largely similar at various conditions, thereby suggesting the fuel similarity for turbulent flames. In addition, it is found that the normalized turbulent flame speed also approximately scales with the square root of an appropriately-defined Reynolds number recently found for C0-C4 fuels. This work was supported by the AFOSR under the technical monitoring of Dr. Chiping Li.

  11. Smoldering, Transition and Flaming in Microgravity (United States)

    Fernandez-Pello, A. C.; Bar-Ilan, A.; Lo, T. L.; Walther, D. C.; Urban, D. L.


    A research project is underway to study smolder and the transition to flaming in microgravity. The Microgravity Smoldering Combustion (MSC) flight project is an ongoing research project to provide a better understanding of the controlling mechanisms of smoldering combustion. The Smoldering Transition and Flaming (STAF) project is a recently established research program that will utilize the Fluids and Combustion Facility (FCF) of the ISS to examine the transition from smolder to flaming in microgravity. In forced flow smolder experiments ambient pressure in the MSC chamber rises, thus motivating the need to understand the effects of pressure on smoldering combustion. Further, the STAF experiment has constraints on experimental scale and testing at elevated pressure may be a mechanism to reduce the sample size by enhancing the smolder reaction. In the work we are reporting here, a series of ground-based tests determine the effects of pressure on smoldering combustion. These tests are compared with data obtained from experiments conducted aboard the Space Shuttle in flights STS-69 and STS-77. Measurements of one-dimensional smolder propagation velocity are made by thermocouple probing and a non-intrusive Ultrasound Imaging System (UIS)]. Thermocouples are also used to obtain reaction temperatures and the UIS is used to determine permeabilities of the fuel in real-time.

  12. Description of the ATLAS jet veto measurement and jet gap jet events at hadronic colliders

    CERN Document Server

    Royon, C


    We present a new QCD description of the ATLAS jet veto measurement, using the Banfi- Marchesini-Smye equation to constrain the inter-jet QCD radiation. This equation resums emis- sions of soft gluons at large angles and leads to a very good description of data. We also investigate jet gap jet events in hadron-hadron collisions, in which two jets are produced and separated by a large rapidity gap. Using a renormalisation-group improved NLL kernel implemented in the HERWIG Monte Carlo program, we show that the BFKL predictions are in good agreement with the Tevatron data, and present predictions that could be tested at the LHC.

  13. Spray and Combustion Characteristics of a Novel Multi-circular Jet Plate in Air-assisted Atomizer

    Directory of Open Access Journals (Sweden)

    Hisham Amirnordin Shahrin


    Full Text Available Atomization of liquid fuel in air-assisted atomizer is highly dependent on air mixing, which can be enhanced using turbulent generators, such as multi-circular jet (MCJ plates and swirler. This study aims to determine the effects of novel MCJ plates on the spray and combustion characteristics of an air-assisted atomizer by evaluating spray and flame parameters, such as penetration length, cone angle, and cone area. MCJ 30 and MCJ 45, with inclined jets at 30° and 45°, respectively, were used in the experiment. A swirler was also used for comparison. The spray and flame images were recorded at different equivalence ratios through direct photography and analyzed using image J software. Flame temperature was determined using a thermal infrared camera, and burning chamber and flue gas temperatures were measured using thermocouples. The spray and flame characteristics of MCJ 30 exhibited performance comparable with those of the MCJ 45 and swirler. The integration of turbulence and swirling motion concept into the novel MCJ plates can enhance the mixing formation and thus improve the performance of burner combustion.

  14. Versatile Hydrogen

    Indian Academy of Sciences (India)

    Hydrogen is probably the most intriguing ele- ment in the periodic table. Although it is only the seventh most abundant element on earth, it is the most abundant element in the uni- verse. It combines with almost all the ele- ments of the periodic table, except for a few transition elements, to form binary compounds of the type E.

  15. Flame Propagation Through Swirling Eddys, A Recursive Pattern

    CERN Document Server

    Ashurst, W T


    Abstract: Computed flame motion through and between swirling eddys exhibits a maximum advancement rate which is related to the time duration of flame motion between eddys. This eddy spatial structure effect upon the apparent turbulent flame speed appears to be similar to the square-root dependence observed in wrinkled flamelet data. The rate-limiting behavior at one eddy length-scale can be removed by inclusion of smaller eddys which reside between the larger eddys. This large-eddy, small-eddy concept yields a recursion relation and repeated functional iteration can be done to approximate a desired flame speed relation. As an example, an iteration to produce $S_T Currently, the iteration process is a post-diction of flame speed, but if a universality can be developed, then a predictive theory of turbulent flame propagation might be achieved.

  16. New developments in the theory of flame propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sivashinsky, G.I. [City College of the City Univ. of New York, NY (United States)


    Two topics in combustion fluid mechanics are discussed. The first is a theory of the outward propagating spherical flame in the regime of well-developed hydrodynamic instability. In a qualitative agreement with experimental observations it is shown that the flame assumes a fractal-like wrinkled structure resulting in the overall burning rate acceleration. In contrast to hydrodynamically unstable flames, the expanding flame subject exclusively to the effect of diffusive instability does not indicate any disposition toward acceleration. The second topic concerns the dynamics of diffusively unstable flames subjected to radiative heat losses. At high enough heat losses the flame breaks up into separate self-propagating cap-like flamelets while a significant portion of the fuel remains unconsumed.

  17. Stability of a laminar flame front propagating within a tube

    Energy Technology Data Exchange (ETDEWEB)

    Salamandra, G.D.; Maiorov, N.I.


    The present study examines the deformation of a flame propagating in a semi-closed horizontal tube under the action of perturbations artificially created on the flame surface by brief action of a transverse electrical field on the combustion zone. The fuel mixture used was a dry methane-air mixture containing 10% CH4, which produced a flame front with relatively low convexity. Flame front propagation was recorded by high-speed photographic methods. Interpretation of the photographs reveals that the magnitude of the perturbations increases by an exponential law; fine scale perturbations on the flame surface are suppressed by coarse scale perturbations, while the stable curved form of the flame front in the tube is ensured by the stabilizing action of the tube walls.

  18. A Counterflow Diffusion Flame Study Of Branched Octane Isomers (United States)


    public release; distribution is unlimited. A counterflow diffusion flame study of branched octane isomers The views, opinions and/or findings contained...MC 0934 La Jolla, CA 92093 -0934 ABSTRACT A counterflow diffusion flame study of branched octane isomers Report Title Conventional petroleum, Fischer...counterflow diffusion flame study of branched octane isomers Approved for public release; distribution is unlimited. 61657.7-EG REPORT DOCUMENTATION PAGE

  19. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame (United States)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN


    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.


    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry


    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion